talend
*open integration solutions

o

Talend Open Studio
for ESB

Mediation Components

Reference Guide

5.2.1

Talend Open Studio for ESB Mediation Components

Adapted for v5.2.1. Supersedes previous Reference Guide releases.

Copyleft
This documentation is provided under the terms of the Creative Commons Public License (CCPL).

For more information about what you can and cannot do with this documentation in accordance with the CCPL,
please read: http://creativecommons.org/licenses/by-nc-sa/2.0/

Notices
Talend, Talend Integration Factory, Talend Service Factory, and Talend ESB are trademarks of Talend, Inc.

Apache CXF, CXF, Apache Karaf, Karaf, Apache Camel, Camel, Apache Maven, Maven, Apache Archiva and
Archiva are trademarks of The Apache Foundation.

SoapUl is atrademark of SmartBear Software.

All other brands, product names, company names, trademarks and service marks are the properties of their
respective owners.

http://creativecommons.org/licenses/by-nc-sa/2.0/

Table of Contents

Preface ..o v
General informationooel s v
PUrPOSE ..o Y
Audience ... \Y
Typographical conventions................ v
Feedback and Supportcoeveiiinnnt. Y
Context componentscoceeeveenneennnen. 1
cBeanRegisterooiii e 2
cBeanRegister properties.................. 2
Related Scenariooeeee 2
CCONFIG w e 3
cConfig propertiesoovvviiievennnnn 3

Scenario: Implementing a dataset
from the Registrycoeeinnet. 3
cIJM SConnectionFactoryccooevvennn 7
cJM SConnectionFactory properties....... 7
Related scenario:cocoeen 8
Exception componentsccovevevneeennnn. 9
cErrorHandler ... 10
cErrorHandler properties................. 10

Scenario: Logging the exception
thrown during a client/server talk 10
CINterceptoooiii 14
clntercept propertieso.e.... 14

Scenario: Intercepting several routes
and redirect them in asingle new

FOULE ..o 14
CONEXCEPLionoovviiiiii i 18
cOnException properties................. 18

Scenario: Using cOnException to
ignore exceptions and continue

message rouUtingovvveveviiieeennnn. 18
(ol I Y 23
CTry propertiesovvvveveiiinneannns 23

Scenario: Using cTry to build Try/
Catch/Finally blocks for exception

handling ... 23
Messaging componentsccceceuuneeee. 29
COXF 30
CCXF propertiescovvvvvveinnnn.. 30
Scenario 1: Providing aWeb service
using cCXF from aWSDL file.......... 31
Scenario 2: Providing aWeb service
using cCXF fromaJavaclass........... 33
Scenario 3: Providing aWeb service
from a Route Resource.................... 36
cDatasetc.oviiii 40
cDataset properties.........covvvivienn. 40
Scenario: Using cDataset to receive
MESSAOES .. vvvveveeeeeeeeiieeeeeens 40
CRile 44
cFile propertiesc.ooeveiinnnnn. a4

Scenario: Reading files from one
directory and writing them to another

.. 44
[o 47
CFtp propertiescovvveiiiiiiann 47
Related scenario:oeeeeee. 47
CHEED oo 48
CHttp propertiesccooeeiinnn. .. 48
Scenario: Retrieving the content of a
remotefile ... 49
CIMS 53
CIMS propertiesovveieiiiiiiannnn 53
Scenario 1: Sending and receiving a
message from aJMS queue.............. 53
Scenario 2: Setting up aJJMS local
transaction ..o 57

Scenario 3: Sending and receiving a
scheduled delivery of messages from

aJMS Queue using Camel Quartz......

cMail Properties............cceevivnnen.

Scenario: Using cMail to send and

receive mails..............ooooeeeinnnns
cMessagingEndpoint ...t
cMessagingEndpoint properties........
Commonly used Camel components. ..

Scenario 1: Moving files from one

message endpoint to another

Scenario 2: Sending files to another

message endpoint

Scenario 3: Using an Xquery

endpoint to filter messages.............

cTimer propertiesoovvvennns

Related Scenario:
Miscellaneous components....................
[0 oo

cLog propertiescoeveiiiiieinnns

Related scenario:

cLoop propertiesooeeviiiiennn
Related scenario:

CStop propertiesovvveeeeiiiinnnn.

Related scenario:

Processor components...........ccoeeevneennes
cBean ...

cBean properties ..ot

Related Scenario

cDelayer ..o
cDelayer properties....................

Scenario: Using cDelayer to delay

MEeSSage FOULINGvvvvveeeiieennns
cExchangePattern ...l

cExchangePattern properties............

Scenario: Enabling the InOut

exchange pattern to get replies.........
€cJavaDSLProcessorc.cevvevieiiiiinnnns
cJavaDSL Processor properties.........
Related scenario:coovvennn
CPrOCESSOr ..vvvieeeei e
cProcessor properties..................t
Related scenario:c.ccovvvennn
cTalendJob ...
cTalendJob properties..................

Scenario: Using camel message
headers as context parameters to call

AJOD Lo

Routing componentscccoeevueeennnn.

CAQOregate ...t
CAQOregateoovvviiiiiieeeannn.

Scenario: Aggregating three

messages into ONecoevevuvnnnn.
cDynamicRouter ...,
cDynamicRouter properties............

Scenario: Routing files conditionally

to different filepaths...................
cldempotentConsumer
cldempotentConsumer properties......

Scenario: Deduplicating messages

while routing them
cLoadBalancerccooeiiiiinnnn
cLoadBalancer properties..............

Scenario: Distributing messages to
receiver endpoints based on round

robIN ...
cMessageFiltercovviiiiiiiii

. 89

91

.92
.92
.. 93
.. 93
.. 93

.. 9%
.. 9%

95

Talend Open Studio for ESB Mediation Components Reference Guide

Talend Open Studio for ESB Mediation Components

cMessageFilter properties.............. 136

Scenario: Filtering messages

according to a criterion 136
cMessageRouter ... 140

cMessageRouter properties............. 140

Scenario: Routing messages

according to a criterion 140
cMulticastoovviiii 145

cMulticast properties................... 145

Scenario: Route a message to
multiple endpoints and set a new

body foreachoeeeiit 145
cPipesAndFilters ... 151

cPipesAndFilters properties............. 151

Scenario: Using cPipesAndFiltersto

process the task in sequence............ 151
CRecipientList ..o 155

cRecipientList properties............... 155

Scenario: Routing a message to

multiple recipients 155
CROULINGSIIP . 159

cRoutingSlip properties................. 159

Scenario 1: Routing a message
consecutively to a series of endpoints

Scenario 2: Routing each message
conditionally to a series of endpoints.. 163

CSPltter ..o 166
cSplitter properties............ooooonn.. 166
Related scenario: 166

cThrottler ... 167
cThrottler properties.................... 167
Scenario: Throttling the message
flow oo 167
Viewing the code and executing the
Routecoovviiiiii 169

CWITETap oo 171
cWireTap properties 171
Scenario: Wiretapping a message in
aRoute.............ooi 1711

Transformation components................ 175

cContentEnrichercooieinen. 176
cContentEnricher properties............ 176
Scenario: Receiving messages from a
lissof URLS ..o 176

cConvertBodyToOoovvvvviiiiieiiiieaas 183
cConvertBodyTo properties............ 183

Scenario: Converting the body
of an XML fileinto an

org.w3c.dom.Document.class........... 183
CSetBody ... 188

cSetBody properties.................... 188

Scenario: Replacing the content of

messages with their extracts............ 188
cSetHeaderooiiiiiiiii 192

cSetHeader properties.................. 192

Scenario: Splitting a message

and renaming the sub-messages

according to contained information....... 192
Related scenarios 196

iv Talend Open Studio for ESB Mediation Components Reference Guide

Preface

General information

Purpose

This Reference Guide explains in detail the major Camel components of the M ediation perspective
of Talend Open Sudio for ESB.

Information presented in this document applies to Talend Open Sudio for ESB releases beginning
with 5.2.1.

Audience

This guide isfor users and administrators of Talend Open Sudio for ESB.

The layout of GUI screens provided in this document may vary slightly from your actual GUI.

Typographical conventions

This guide uses the following typographical conventions:

text in bold: window and dialog box buttons and fields, keyboard keys, menus, and menu options,
text in [bold]: window, wizard, and dialog box titles,
textincouri er : system parameters typed in by the user,

text initalics: file, schema, column, row, and variable names referred to in all use cases, and also
names of the fields in the Basic and Advanced setting views referred to in the property table for
each component,

The 7 iconindicates an item that provides additional information about an important point. It is
also used to add comments related to atable or afigure,

The £4 icon indicates a message that gives information about the execution requirements or
recommendation type. It is also used to refer to situations or information the end-user needs to be
aware of or pay specia attention to.

Feedback and Support

Y our feedback is valuable. Do not hesitate to give your input, make suggestions or requests regarding
this documentation or product and find support from the Talend team, on Talend’ s Forum website at:

Talend Open Studio for ESB Mediation Components Reference Guide

Feedback and Support

http://talendforge.org/forum

Vi Talend Open Studio for ESB Mediation Components Reference Guide

http://talendforge.org/forum

Context components

This chapter details the major components that you can find in the Context family from the Palette of the
Mediation perspective of Talend Open Studio for ESB.

The Context family groups components that define contexts you want to use in your Routes.

Talend Open Studio for ESB Mediation Components Reference Guide

cBeanRegister

cBeanRegister

=

cBeanRegister properties

Component Family Context

Function cBeanRegister registers a Java bean that can be referenced by a cBean.

Pur pose cBeanRegister alows you to register a Java bean that can be referenced by a cBean.
Basic settings Id Enter the Id for the Java bean you want to register.

Smple Select this option to call a bean class that is stored in the Code
node of the Repository.

Customized Select this option to define the Java bean by entering the code in
the Code box.

Class Name Thisfield appears when the Simple option is selected.

Enter the name of the bean class that is stored in the Code node
of the Repository.

For more information about creating and using Java Beans, see
Talend Open Studio for ESB User Guide.

Soecify Arguments This check box appears when the Simple option is selected. Select
this check box to set the optional arguments in the corresponding
table. Click [+] as many times as required to add arguments to the
table.

Imports This box appears when the Customized option is selected.

Enter the Java code that helps to import, if necessary, external
libraries used in the Code box.

Code This box appears when the Customized option is selected.

Enter the code of the bean in the box.
Usage cBeanRegister cannot be added directly in a Route.
Limitation n/a

Related Scenario

For arelated scenario, see:

» cConvertBodyT o: section Scenario: Converting the body of an XML fileinto an org.w3c.dom.Document.class.

Talend Open Studio for ESB Mediation Components Reference Guide

cConfig

cConfig

cConfig properties

Component Family Context
Function cConfig allows you to set the Camel Context.
Purpose cConfig manipulates the Camel context as needed by the Routes.
Basic settings Imports Enter the Java code that helps to import, if necessary, external
libraries used in the Code box.
Code Write a piece of code to manipulate the Camel Context.
Dependencies Select thelibrary or librariesthat is required by the Camel Context
or Typeconverter Registry from thelist.
Usage cConfig cannot be added directly in a Route.
Limitation n/a

Scenario: Implementing a dataset from the Registry

In this scenario, an instance of dataset is added in the Registry and implemented by a cM essagingEndpoint
component.

r_cE

" Create_dataset

d

-—*D
Read_dataset ’ ’ ’ ’ ' Monitor

:
m
}

Dropping and linking the components

1. Fromthe Palette, expand the Context folder, and drop a cConfig component onto the design workspace.
2. Expand the M essaging folder, and drop a cM essagingEndpoint component onto the design workspace.
3. Expand the Processor folder, and drop a cProcessor component onto the design workspace.

4. Right-click the input cM essagingEndpoint component, select Row > Route from the contextual menu and
click the cProcessor component.

5. Label the components to better identify their functionality.

Talend Open Studio for ESB Mediation Components Reference Guide 3

Scenario: Implementing a dataset from the Registry

Configuring the components

1. Double-click the cConfig component, which is labelled Create dataset, to display its Basic settings view
in the Component tab. and set its parameters.

== =
Create_dataset(cConfig_1) =ic) D

Basic settings Imports S/fimport java.util.List; -
Advanced settings hd
W

1Ew Code org.apache.camel.impl.SimpleRegistry registry = new = E
Documentation org.apache.camel.impl.SimpleRegistry();

registry.put ("foo", new
org.apache.camel .component .dataset.SimpleDataSet ())
camelContext.setRegistry(registry) ;

Dependencies Lib Path

2. Write apiece of code in the Code field to register the dataset instance foo into the registry, as shown below.

org. apache. canel . i npl . Si npl eRegi stry registry = new
or g. apache. canel . i npl . Si npl eRegi stry();

registry. put("foo", new
or g. apache. canel . conponent . dat aset . Si npl eDat aSet ()) ;
canel Cont ext . set Regi stry(registry);

3. Double-click theinput cM essagingEndpoint component, whichislabelled Read dataset, todisplay itsBasic
settings view in the Component tab.

=0
—8 Read_dataset{cMessagingEndpoint_1) EE E
Basic settings LRI dataset: foo
Advanced settings
Drynamic settings
View

Dacumentation

4. IntheURI field, enter dataset:foo between the quotation marks.

5. Double-click the cProcessor component, which islabelled Monitor, to display its Basic settings view in the
Component tab.

- =

& & Monitor(cProcessor_1) |‘:":' |[
I rt ' . - - &

Basic settings mparts f/import java.util.list; "

Advanced settings =

Vi Code System.out.println{"Message =~ |

= content: "+
Documentation exchange.getIn() .toString());

4 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Implementing a dataset from the Registry

6. Inthe Code box, customize the code as follows so that the Run console displays the message contents:

System out. println("Message content: "+
exchange. getln().toString());

7. PressCtrl+Sto save your route.

Viewing code and executing the Route

1. Click the Codetab at the bottom of the design workspace to have alook at the generated code.

pubklic void initEoute () throws Exception
routeBuilder = new org.apache.camel . builder.RouteBuildex ()
public wvoid configure () throws Exception

from{uriMap.get ("Read dataset"))
.routeld("Read dataset") .process|
new org.apache.camel.Processor|()
public void process |
org.apache.camel.Exchange exchange)
throws Exception

toString()):

}) .id ("cProcessor 1");

o

getCamelContexts () .get (0) .addBoutes (routeBuilder) ;

As shown in the code, a message route is built from the endpoint identified byRead_dat aset and
cProcessor _1 gets the message content and displaysit on the console.

2. Click the Run view to display it and click the Run button to launch the execution of your route. You can
also press F6 to execute it.

RESULT: The message content is printed in the console.

Talend Open Studio for ESB Mediation Components Reference Guide 5

Scenario: Implementing a dataset from the Registry

Execution

cConfig-ctx) started in 0.359 =econd=
[stati=stics] connecting to socket on port 3876
[=tati=stics] connected

Mes=zage content: Message: <hellorworld!<-hello:
Mesz=zage content: Message: <hello:world!<-hello:
[- data=zet:~~foo] dataset .- foo

INFO Sent: ¢ messages =o far. Last group toolk:
15% milli= which i=: 133 333 mnessages per =econd.
average: 133.333

Mes=zage content: Message: <hello:world!<-hello:
Mes==zage content: Message: <hello:world!<-hello:
[- data=zet:~~foo] dataset .~ foo

INFO Sent: 4 messages =o far. Last group toolk:
0 millis which i=s: 7 messages per =econd.
average: 266 667

Me==zage content: Messzage: <hello:world!<-hello: *

6 Talend Open Studio for ESB Mediation Components Reference Guide

¢cIJM SConnectionFactory

cJMSConnectionFactory

MS

=l

cJMSConnectionFactory properties

Component Family

Context

Function cJM SConnectionFactory specifies the connection factory that can be used by multiple cIMS
components in a Route.
Purpose cJM SConnectionFactory is used to specify the IMS connection factory for message handling.

MQ Server

Select an MQ server from ActiveM Q, Customized, or WebSphere
MQ.

Use Transaction

Select this check box to enablelocal transaction in the current Route.

Broker URI

(for ActiveM Q only)

Type in the URI of the message broker. For intra-Route message
handling, you can simply use the default URI vm://localhost?
broker .persistent=fal se.

Use PooledConnectionFactory

(for ActiveM Q only)

Select this check box to use PooledConnectionFactory.

Max Connections

Specify the maximum number of connections of the
PooledConnectionFactory. Thisfield isavailable only when the Use

(for ActiveMQ only) PooledConnectionFactory check box is selected.

Max Active Specify the maximum number of sessions per connection. Thisfield
) is available only when the Use PooledConnectionFactory check

(for ActiveMQ only) box is selected.

Idle Timeout (in ms)

(for ActiveM Q only)

Specify the maximum waiting time (in milliseconds) before the
connection breaks. This field is available only when the Use
PooledConnectionFactory check box is selected.

Expiry Timeout (in ms)

Specify thetime (in milliseconds) before the connection breakssince
itisused for thefirst time. The default value is 60000. The expiry is

(for ActiveM Q only) disabled if 0 is specified. Thisfield is available only when the Use
PooledConnectionFactory check box is selected.
Codes Write a piece of code to specify the IMS connection factory to be

(for Customized only)

used for message handling.

Dependencies

(for Customized only)

Specify the library or libraries required by the JMS connection
factory.

Host Name Type in the name or IP address of the host on which the IBM
WebSphere MQ server is running.

(for WebSphere MQ only)

Port Typeinthe port of the IBM WebSphere MQ server, 1414 by default.

(for WebSphere M Q only)

Transport Type Select a type of message transport between the IBM WebSphere
MQ server and the WebSphere MQ broker from Bindings, Bindings

(for WebSphere MQ only) then Client, and Client.

Queue Manager Type in the name of the queue manager, or specify the name of the
IBM WebSphere MQ server to find a queue manager.

(for WebSphere MQ only)

Authentication On some operating systems, select this check box and provide
the username and password for the IBM WebSphere MQ server

(for WebSphere MQ only) to validate the access permission. This option is not required on

Windows.

Talend Open Studio for ESB Mediation Components Reference Guide

Related scenario:

Specify additional libraries required by the IBM WebSphere MQ

Dependencies
broker, which are normally provided with the server installer.
(for WebSphere M Q)
Usage ¢JM SConnectionFactory cannot be added directly in a Route.
Limitation n/a

Related scenario:

For arelated scenario, see section Scenario 1: Sending and receiving a message from a JMS queue.

Talend Open Studio for ESB Mediation Components Reference Guide

Exception components

This chapter details the major components that you can find in the Exception family from the Palette of the
Mediation perspective of Talend Open Studio for ESB.

The Exception family groups components that are dedicated to exception handling of Routes.

Talend Open Studio for ESB Mediation Components Reference Guide

cErrorHandler

cErrorHandler

)

cErrorHandler properties

Component Family Exception

Function cErrorHandler provides multiple strategies to deal with errors processing an Event Driven
Consumer.

Purpose cErrorHandler offers different strategies for error handling during the processing.

Basic settings Default Handler This error handler does not support a dead letter queue and will
return exceptions back to the caller.

Set Maximum Redeliveries: select this check box to set the
number of redeliveriesin the Maximum Redeliveries (int) field.

Set Redelivery Delay: select this check box to set the initial
redelivery delay (in milliseconds) inthe Redelivery Delay (long)
field.

Set Retry Attempted Log Level: select this check box to select
the log level in the Level list for log messages when retries are
attempted.

Asynchronized Delayed Redelivery: select this check box to
allow asynchronous delayed redelivery.

More Configurations by Code: select this check box to enter
codes in the Code box for further configuration.

Dead Letter This handler supports attempting to redeliver the message
exchange a number of times before sending it to a dead letter
endpoint.

Dead Letter Uri: select this check box to define the endpoint of
the dead |etter queue.

Other parameters share the same meaning as those of the default
handler.

Logging Handler This handler logs the exceptions.

Set Logger Name: select this check box to give a name to the
logger in the Namefield.

Set Log Level: select this check box to decide the log level from
the Level list.

Usage cErrorHandler isused separately or asamiddle or end component in aRoute. If thiscomponent
isused separately, it will handle errorsin all sub-routes. If this component is used in the middle
or end of asub-route, it will only handle exceptions that happen in the components of this sub-
route, either before or after the cErrorHandler.

Limitation n/a

Scenario: Logging the exception thrown during a
client/server talk

In this scenario, a Jetty server is started before a client browser requests access to it. Then an exception isthrown
at the server side and logged by cErrorHandler.

10 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Logging the exception thrown during a client/server talk

Dropping and linking the components

1. Drop the following components from the Palette onto the workspace: cMessagingEndpoint,
cErrorHandler and cProcessor, labelled as Jetty Server, Error_Handler and Throw_Exception
respectively.

2. Link cMessagingEndpoint and cProcessor using a Row > Route connection.
Error_Handler

r" roukel " B

Jeti:y_Serifer ' ' ’ ’ Thru:ulé-.l_Exu:éptiu:un ’

Configuring the components

1. Double-click cErrorHandler to open its Basic settings view in the Component tab.

=0
m Error_Handler (cErrorHandler_1) =lo [

) Default Handler () Dead Letker (%) Logging Handler
[]5et Logger Mame
[]5et Logger Level

Basic settings
Advanced setkings
Dywnamic settings
Wigsa

Documentation

2. Select Logging Handler to log the exceptions that are thrown.

3. Double-click cM essagingEndpoint to open its Basic settings view in the Component tab.

=
—» = Jetty_Server(cMessagingEndpoint_2) =C [

Basic settings LRI “jetby:htkp: [flocalhost G839) service"
Advanced settings
Dwnamic setkings
Wiew

Documentation

4. IntheUrifield, enterjetty: http://1 ocal host: 8889/ servi ce to specify the Jetty server.

5. Click Advanced settings for further setup.

Talend Open Studio for ESB Mediation Components Reference Guide 11

Scenario: Logging the exception thrown during a client/server talk

6.
7.

8.
9.

—n Jetty Server{cMessagingEndpoint_2)

Easic settings Dependencies Zamel component
Advanced settings Jetty

Dwnamic sekkings

Wi

Drocumentation

»

£

Inthe Dependenciestable, click the[+] buttonto add alineand selectj et t y fromthe Camel component list.

Double-click cProcessor to open its Basic settings view in the Component tab.

& & Throw_Exception{cProcessor_1) [
Basic settings Coade throw new
Advanced settings Exception("server

=ide error"™
Dwnamic setkings]
View

Docurmentation

In the Code box, enter t hr ow new Exception("server side error") tothrow an exception.

Press CtrI+S to save your Route.

Viewing code and executing the Route

1.

Click the Codetab at the bottom of the design workspace to check the generated code.
public void initRoute () throws Exception {
routebuilder = new org.apache.camel.builder.FRouteBuilder () {
public void configure () throws Exception {
errorHandler [(loggingErrorHandler (])

fromuriMap.get ("Jetty Server™])
.routeld("Jetty Jerver™)] .process|
new org.apache.camel.Processor() |
public void process|
org.apache.camel..Exchange exchange)
throws Exception {
throw new Exception
"server side error™);

Pl id({"cProcessor 1) ;

Asshown above, theroute startsf r omthe endpoint Jet t y_Ser ver and throwsthe exception of ser ver si de
error viacProcessor_1.

12

Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Logging the exception thrown during a client/server talk

4

Press F6 to execute the Route.

TéstEerrHandler—ctH} started in 0.531 seconds
[ztati=tic=s] connecting to socket on port 3743
[ztati=stics] connected

The Jetty server has started.

Launch an Internet browser and enter ht t p: / /| ocal host : 8889/ ser vi ce (the Jetty server URI configured

above) in the address bar to access the server.

f http:fflocalhost: BBE9/service - Windows Internet Expig

@ o & httpfflocalhost: 8359/ service

File Edit Wiew Faworites Tools Help
£ windows Live B - BE

'E:? okt '@http:,l',l'l-:u:alhu:ust:EBBQIservice

java.lang.Exception: server =ide error
at work.testerrorhandler 0 1.TestExr:
at org.apache.camel.util.fAsyncProce:

As shown above, the request failed due to the server error.

Go to the Studio and check the resultsin the Run tab.

TéstEerrHandler—ctx} started in 0.531 seconds
[=tati=ztics] connecting to =ocket on port 3743
[=tati=tic=s] connected

[qtp32200294-21] Logger ERROR

Failed delivervy for (Messageld:

ID-talend—-andyv—3694-1334888116328-0-2 on Exchangeld:
ID-talend—andv—-3694-1334888116328-0-1). Exhau=sted after
delivery attempt: 1 caught: java. lang.Exception: =server

=1de error
java.lang. Exception: =erver =ide error
at

worlk . testerrorhandler_0_1. TestErrorHandler$lCamelInplsl

%1 process(TeztErrorHandler . java:229)
[file:~E.-TOS _ESB-r81629

-5 1 NMHR-AwArk=rnares Jawasmlazsess 1l

As shown above, cErrorHandler haslogged the exception at the level of ERROR.

Talend Open Studio for ESB Mediation Components Reference Guide

13

clntercept

cintercept

cintercept properties

Component Family Exception

Function clnter cept intercepts the messages in al the sub-routes on a Route before they are produced, and
routes them in a new single sub-route without modifying the original ones. When this detour is
complete, message routing to the originally intended target endpoints continues.

Purpose cl nter cept intercepts each message sub-route and redirectsit in another sub-route without modifying
the original one. This can be useful at testing time to simulate error handling.

Usage clnter cept isastart component of a sub-route.

Connections Row / Route Select the Route link to intercept all the messages of all the sub-routes listened

to by the clnter cept.

Trigger / When Select theWhen link to filter the messagesto intercept and click the Component
view.

In the Type list, select the type of language you will use to declare your
condition.

In the Condition field, type in the condition that will be used to filter the
messages.

All the messages that do not match this condition are dropped by default or can
be retrieved with the Otherwise link to a different channel.

Limitation To keep the original sub-routes untouched, clntercept only be used in a separate sub-route .

Scenario: Intercepting several routes and redirect
them in a single new route

In this scenario, messages on two sub-routes are intercepted and routed along a new sub-route, which is then
terminated before the original sub-routes continue.

FILE | ' ' ' ' FILE ~
== routa TP
Sender_1 Receiver_1
FILE | ' ' ' ' FILE ~
e route? e
Sender_2 Receiver_ 2
)) L) EILE -))))
T T | route3 H routed '_"—*‘:'_ routes F_O_ _
Interceptor Monitor Receiver_3 Route_terminator

14 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Intercepting several routes and redirect them in a single new route

Dropping and linking the components

This scenario requires five cFile components, one cl nter cept component, one cProcessor component, and one
cStop component.

1

2.

From the M essaging folder of the Palette, drop four cFile components onto the design workspace.

Connect the two pairs of cFile components using Row > Route connections. Messages on these two sub-
routes will be intercepted.

From the Exception folder, drop a cl nter cept component onto the design workspace.
From the Processor folder, drop a cProcessor component onto the design workspace.
From the M essaging folder, drop afifth cFile component onto the design workspace.
From the Miscellaneous folder, drop a cStop component onto the design workspace.

Connect these four components one to the next using Row > Route connections. Along this sub-route,
intercepted messages will be directed to a new endpoint before the entire Route is terminated.

Label the components to better identify their rolesin the Route.

Configuring the components and connections

Inthisscenario, the cl nter cept component intercepts all the messages on al the sub-routes as soon asthe messages
are sent and does not have propertiesto set. The cStop component stopsthe sub-route on which it isdropped before
it completes and does not have properties to set. Therefore, you only need to configure the messaging endpoints
and monitor components.

1

Double-click the cFile component labeled Sender_1 to display its Basic settingsview inthe Component tab.

FILE —
—»u Sender_1 (cFile_1) =i L
Basic settings Path "D:/talend_files/input_1" o
Advanc.ed SEFtings jar:jaljrgpetErs
Dynamic settings Flatten
_ | AutoCreate
- BufferSize(kb) ~ "128"
Encoding cusTOM = | *
FileMame o

In the Path field, specify the file path to the first source your are going to send messages from, and leave
the other parameters as they are.

Double-click the cFile component labeled Receiver 1 to display its Basic settings view in the Component
tab.

Talend Open Studio for ESB Mediation Components Reference Guide 15

Scenario: Intercepting several routes and redirect them in asingle new route

8.

9.

FILE ==
—pn Receiver_1(cFile_2) =io L
Basic settings Path "Duftalend_files/esb/out 1" *
. Parameters
Ad d sett
vanc.e g .|r1gs 7| Noop
Dynamic settings Flatten
View | AutoCreate
Documentation BufferSize(kh) " 25"
Encoding CUSTOM - | *
FileMarme

In the Path field, specify the file path to the first destination you are going to send messages to, and leave
the other parameters as they are.

In the same way, set the cFile components labeled Sender_2 and Receiver 2 across the second sub-route.

Double-click the cProcessor component, which is labeled Monitor, to display its Basic settings view in
the Component tab, and customize the code in the Code area to display the file names of the messages
intercepted on the console:

System out . println("Message intercepted: "+
exchange. get I n() . get Header (" Canel Fi | eNange")) ;

Double-click the cFile component labeled Receiver 3 to display its Basic settings view in the Component
tab.

FILE =
—pn Receiver_3(cFile_5) oo L
Basic settings Path "D:/talend_files/esb/intercept” * [
Advanc.ed se#ings jar:jaljrgpeters
Dynamic settings Flatten
View | AutoCreate
Documentation BufferSize(kb) 78"
Enceding CUSTOM - *
FileMame "

In the Path field, specify the file path to the destination for the intercepted messages, and leave the other
parameters as they are.

Press Ctrl+S to save your Route.

Viewing code and executing the Route

1.

Click the Codetab at the bottom of the design workspace to have alook at the generated code.

16

Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Intercepting several routes and redirect them in a single new route

public wvoid initBRoute () throws Exception {
routeBuilder = new org.apache.camel . builder.RouteBuilder () {
public void configure() throws Exception {

intercept ()
.routeld ("Interceptor™)
.process (new org.apache.camel .Processor () {
public vold process|(
org.apache.camel .Exchange exchange)
throws Exception {
System.out
Jprintln|("Message intercepted: "
+ exchange

TgetIn()
.getHeader (
"CamelFileName™)) ;
}).id("cProcessor_1").to{
uriMap.get ("Receiver 3")).id("cFile_3")
Stop i)
Lid("eStop_1");
from(uriMap.get ("Sender 1 ")) .routeld("Sender 1 ").tol
uriMap.get ("Receiver 1")).1id("cFile 2");
from(uriMap.get ("Sender 2")) .routeld("Sender 2").to|
uriMap.get ("Receiver 2")).1d("cFile 4");
getCamelContexts () .get (0) .addRoutes (routeBuilder) ;

Execution

Run (= Kill Clear

INFQ Apache Camsl 2.8.2 (CamnslContext: ~
clntercept_sl-ctx) started in 0.707 =seconds
[=tati=stics] connecting to =ocket on port 3672
[stati=ztics] connected

Hesz=zage intercepted: filel . zZml

Mesz=zage intercepted: Message_ 1 =ml

Mes=zage intercepted: MHessage 2. =zml

Messzage intercepted: file? =Zml

Mesz=zage intercepted: fileld. zml

Mes=zage intercepted: MHessage 3. =Zml

m

Line limit |1pp Wrap

As shown in this piece of code, Interceptor intercepts al messages on route, the intercepted messages are
directed. t o theendpoint Receiver 3, and cStop_1 terminates message routing before the messages are routed
f r omthe endpoint Sender_1. t o the endpoint Receiver_1 and f r omthe endpoint Sender_2 . t o the endpoint

Click the Run view and click the Run button to launch the execution of your Route. You can aso press
F6 to execute it.

RESULT: Files are sent from the endpoints, caught by the clntercept component, monitored by the
cProcessor component and sent to a new endpoint, and then the original sub-routes are terminated before
they can continue.

Talend Open Studio for ESB Mediation Components Reference Guide

17

cOnException

cOnException

O—
O3
l--_;l—'l

cOnException properties

Component Family Exception
Function cOnException catches the defined exceptions to trigger desired actions.
Purpose cOnException is designed to catch the defined exceptions for desired error handling.
Basic settings Exceptions Click the plus button to add as many lines as needed in the table
to define the exceptions to be caught.
Set a redelivering tries| Select this check box to set the maximum redelivering triesin the
count Maximum redelivering triesfield.
Non blocking asynchronous| Select this check box to enable the feature of not blocking
behavior asynchronous behavior.
Exception behavior None: select this option to take no action on the origina route.
Handletheexceptions:. select thisoption to handle exceptions and
break out the original route.
Ignor e the exceptions: select this option to ignore the exceptions
and continue routing in the original route.
Route the original input|Select this check box to route the original message instead of the
body instead of the current | current message that might be changed during the routing.
body
Usage cOnException is generally used as a standalone component in a sub-route.
Limitation n/a

Scenario: Using cOnException to ignore exceptions
and continue message routing

In this scenario, a cOnException component is used to ignore an 10 exception thrown by a Java bean so that the
message is successfully routed to the destination in spite of the exception.

FILE |

B3
e 4

Ignore_exception

—p
Source

rctﬂel

" D routel "W

Throw_exception

Monitar

18

Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Using cOnException to ignore exceptions and continue message routing

Dropping and linking the components

1. Dragand drop these components from the Palette onto the workspace: a cOnException component, a cFile
component, a cBean component, and cProcessor component.

2. Link cFileto cBean using a Row > Route connection.
3. Link cBean to cProcessor using a Row > Route connection.

4. Label the componentsto better identify their rolesin the Route.

Configuring the components

1. Double-click the cOnException component, which is labelled Ignore_exception, to open its Basic settings
view in the Component tab.

B— .) =0 L
54 Ignore_exception(cOnException_1) S
Basic settings Exceptions Exception

Advanced settings java.ic I0Exception

Dynamic settings
View

Documentation

m

%)
[] Set a redelivering tries count

[Mon blocking asynchronous behavior

Exception behavicur
1 Mone

' Handle the exceptions

@ Ignore the exceptions

[] Route the original input body instead of the current body -

2. Click the plus button to add alinein the Exceptionstable, and define the exception to catch. In thisexample,
enter j ava. i 0. | OExcept i on to handle 10 exceptions.

Inthe Exception behavior area, select thel gnor ethe exceptions option to ignore exceptions and let message
routing continue. L eave the other parameters as they are.

3. Double-click the cFile component, which is labelled Source, to open its Basic settings view in the
Component tab.

Talend Open Studio for ESB Mediation Components Reference Guide 19

Scenario: Using cOnException to ignore exceptions and continue message routing

FILE =n|[=

—pn Source(cFile_1) S L

Basic settings Path "D:/talend_files/input” * _|

- Parameters
Ad d sett
1.ranl::.le 5 -|ngs 7] Noop

Dynamic settings Flatten

View | AutoCreate

Documentation BufferSize(kh) "] 28"
Encoding CUSTOM - *
FileMame

4. InthePath field, enter the path of the message source, and leave the other parameters as they are.
5. Double-click the cBean component, which is labelled Throw_exception, to open its Basic settings view in
the Component tab.
‘=n|[c
l Throw_exception(cBean_1) S
N . Reference @ Mew Instance
Basic settings
I ——— Bean class beans.throwlOException.class
View Specify the method
Documentation
6. Select New Instance and in the Bean class field, enter the name of the bean to throw an 10 exception,
beans.throwl OException.class in this scenario.
Note that this bean has already been defined in the Code node of the Repository and it looks like this:
package beans;
i nport java.io.| OException;
i nport org. apache. canel . Exchange;
public class throw OException {
/**
* @hrows | OException
*/
public static void hel |l oExanpl e(String nessage, Exchange exchange) throws
| OException {
t hrow new | OExcepti on("An | CExcepti on has been caught");
}
}
For more information about creating and using Java Beans, see Talend Open Sudio for ESB User Guide.
7. Double-click the cProcessor component, which is labelled Monitor, to open its Basic settings view in the
Component tab.
20 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Using cOnException to ignore exceptions and continue message routing

= DD|

% & Monitor(cProcessor_1) ==

Basic settings Code System.out.println("Message consumed: "+ -
exchange.getIn() .getHeader ("CamelFileHame™)) ;

Advanced settings
Dynamic settings
View

Documentation

8. Inthe Code area, customize the code to display the file name of the consumed message on the Run console:

System out. println("Message consunmed: "+
exchange. get I n() . get Header (" Canel Fi | eNange")) ;

9. PressCtrl+Sto save your Route.

Viewing code and executing the Route

1. Click the Codetab at the bottom of the design workspace to check the generated code.

public void initRoute () throws Exception {
routeBuilder = new org.apache.camel .builder.RouteBuilder() {
public void configure() throws Exception f{

onException(java.io.I0Exception.class)

.continued|troe) .routeld ("Ignore exception”);
from({uriMap.get ("Source")) .routeld ("Source™) .bean (
beans.throwlCException.class) .id("cEBean 1")
processz (new org.apache.camel.Processor() {
public void process|
org.apache.camel .Exchange exchange)
throws Exception {
Syastem.out.println("Mes=zage consumed: "
+ exchange.getIn() .getHeader (

"CamelFileName")) :
}).id("cProcessor_1");
getCamelContexta () .get (0) . addRoutes (routeBuilder) ;
As shown above, Ignore_exception handles any 10 exception thrown by

. bean(beans. t hr om CExcepti on. cl ass) invoked by cBean_1, so that messages from the endpoint
Sour ce can be successfully routed onwards (cont i nued(t rue)) in spite of the exception.

2. Press F6 to execute the Route.

The route gets executed successfully and the files from the source are successfully routed to the destination.

Talend Open Studio for ESB Mediation Components Reference Guide 21

Scenario: Using cOnException to ignore exceptions and continue message routing

Execution
Run = Kill Clea
terolze= 1 /dan00p=true | L
[main] DefaunltCanslContext
INFO Total 1 routes., of which 1 1=
started.
[main] DefaultCanelContext

INFO Apache Camel 2.8.2 (CamnelContext:
cOnException_sl-ctx) =tarted in 0.577
seconds

[stati=stics] connecting to =ocket on port
ae51

[stati=tic=s] connected

Mes==zage consumed: Hello. txt

Mes=zage consumed: World. t=t

m

Line limit {100 Wrap

3. Changethe exception handling option in the cOnException component or deactivate the component and run
the Route again.

The exception thrown by the Java bean prevents the messages from being routed successfully.

22 Talend Open Studio for ESB Mediation Components Reference Guide

cTry

cTry

cTry properties

try

Component Family Exception
Function cTry offers Java's exception handling abilities by building Try/Catch/Finally blocks.
Purpose cTry isdesigned to build Try/Catch/Finally blocks to handle exceptions.
Usage CTry isused as amiddle component in a Route.
Connections Try Select this link to isolate the part of your Route that is likely to throw an
exception or exceptions.
When the Try link is followed by multiple components, a compile
7 error may occur showing "The nethod doCatch() is
undefined for the type ExpressionNode". Inthiscase usea
cJavaDSL Processor component to end the Try block with the code
.endDoTry() asaworkaround.
Catch Select thislink to catch any exception thrown in the Route.
In the Exceptions field, typein an expression to filter the type of exception to
catch.
Thislink can be used only when aTry link is present.
7
Finally Select link to execute final instructions regardless of any exceptions that may
occur in the Route.
Thislink can be used only when aTry link is present.
r
Route Select thislink to route all the messages from the sender to the next endpoint.
Limitation n/a

Scenario: Using cTry to build Try/Catch/Finally blocks
for exception handling

In this scenario, the content of each file sent from the message sender to the receiver ischecked and if any file does
not meet the content requirement, an exception isthrown and the relevant information is displayed on the console.

Talend Open Studio for ESB Mediation Components Reference Guide 23

Scenario: Using cTry to build Try/Catch/Finally blocks for exception handling

Throw_exc éptiu:un '

FILE °
_'—*':' | ~ routel
Sender

fingd B
Show_exception

FILE °

—p E

Receiver

Dropping and linking components

1. Fromthe Messaging folder of the Palette, drop twockile components onto the design workspace, one asthe
message sender and the other as the message receiver.

2. From the Exception folder, drop a cTry component onto the design workspace to build Try, Catch and
Finally blocks.

3. From the Processor folder, drop two cProcessor components onto the design workspace.
4. Link thecFilecomponent serving as message sender tothe cTry component using aRow > Route connection.

5. Link the cTry component to one cProcessor using a Row > Try connection. This cProcessor component
will throw an exception if any file coming via this connection does not contain the required content.

6. Link the cTry component to the other cProcessor component using a Row > Catch connection to catch the
exception. This cProcessor component will display theinformation related to the exception and the file name
that does not contain the required content.

7. Link the cTry component to the receiving cFile component using a Row > Finally connection.

8. Label the components according to their rolesin the Route.

Configuring the components and connections

1. Double-click the cFile component labeled Sender to open its Basic settings view in the Component tab.

24 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Using cTry to build Try/Catch/Finally blocks for exception handling

FILE =0
—»n Sender(cFile_1) S L
Basic settings Path "[:/talend_files/input” *
. Parameters
Ad d sett
1.rar1|::.le = .|ngs 7| Noop

Dynamic settings Flatten
View | AutoCreate
Documentation BufferSize(kh) 128"

Encaoding UTF-& -

FileMame

In the Path field, fill in or browse to the path to the folder that holds the source files.
From the Encoding list, select the encoding type of your source files. Leave the other parameters asthey are.

Repeat these step to define the output file path and encoding type in the Basic settings view of the other
cFile component, which is labeled Receiver.

Double-click the cProcessor component labeled Throw_exception to open its Basic settings view in the
Component tab, and customize the code in the Code area to throw an exception and display relevant
information if any file coming viathe try connection does not meet the content requirement, as follows:

String body = exchange. getln().getBody(String.class);
System out. println("\nTrying: "+body);
Exception e = new Exception("Only 'Tal end I ntegration Solutions' is acceptable.
Pl ease check the file:");
if(!"Talend Integration Sol utions". equal s(body)) {
t hrow e;
}el se{
Systemout.println("File is good.");
}

Click the catch connection and then the Component tab to open its Basic settings view, and fill the
Expression field with an expression to specify the type of exception to catch.

In this scenario, fill in Except i on. cl ass to catch any exception thrown.

= catchl

Basic settings Exceptions Exception.class

Advanced settings

Double-click cProcessor component labeled Show_exception to open its Basic settings view in the
Component tab, and customize the codein the Code areato display the exception information and the rel ated
file name, asfollows:

System out . pri ntl n(exchange. get Propert y(" Canel Excepti onCaught") +
' + exchange. getln(). get Header (" Canel Fi | eNane")) ;

Click CtrI+Sto save your Route.

Talend Open Studio for ESB Mediation Components Reference Guide 25

Scenario: Using cTry to build Try/Catch/Finally blocks for exception handling

Viewing code and executing the Route

1. Click the Codetab at the bottom of the design workspace to check the generated code.

public wvoid initRoute () throws Exception {
routeBuilder = new org.apache.camel .builder.RouteBuilder() {
public void configure () throws Exception {
from{uriMap.get ("Sendexr™))
.routeId("Sendexr")

.id("cTry 1)
~doTry ()
.process (new org.apache.camel.Processor() {

public wvoid process|
org.apache.camel.Exchange exchange)
throws Exception {
String body = exchange.getIn().getBody(
String.class);
System.out.println{"\nTrying: " + body):
Exception e = new Exception|
"Cnly 'Talend Integration Sclutions' is acceptakble. Please check the file:"):;
if (!"Talend Integration Solutions"
.equals (body)) {
throw e;
} else {
System.out.println("File is good."):

}).id("cProcessor_1").doCatch(Exception.class)
.process(new org.apache.camel.Processor() {
public void process|
org.apache.camel.Exchange exchange)
throws Exception {
System.out
.println(exchange
.getProperty ("CamelExceptionCaught™)

2w
+ exchange
.getIn()
.getHeader|
"CamelFileName")) ;
}).id("cProcessor_2").doFinally().to|
uriMap.get ("Receiver™)).id("cFile 2");

As shown above, while messages are routed f r omthe sender . t o the receiver, . doTry(), . doCat ch() and
. doFi nal I y() blocks are built by cTry_1. Thus, when any file does not meet the content requirement, an
exception is thrown and caught, before each file is finally routed to the receiver.

2. PressF6 to execute the Route.

Execution

Run = Kill Clear

e e I A = o e e e e

[statisztics] connecting to socket on port 3443 =+
[2tati=tic=s] conhected

Trving: Hello world!

java.lang. Exception:

Only 'Talend Integration Solutions' i=
acceptable. Pleasse check the file: Filel txt
Trving: Talend Integration Solutions =
File i= good.

Line limit |100 Wrap

26 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Using cTry to build Try/Catch/Finally blocks for exception handling

RESULT: When afilethat does not meet the content requirement is detected, an exception isthrown, and the
exception information is displayed on the console. Regardless of the exception, al the files from the sender
are sent to the receiver.

Talend Open Studio for ESB Mediation Components Reference Guide 27

Talend Open Studio for ESB Mediation Components Reference Guide

Messaging components

This chapter details the mgjor components that you can find in the M essaging family from the Palette of the
Mediation perspective of Talend Open Studio for ESB.

The Messaging family groups components that provide access to messaging endpoints, file systems, repository
of code, and so on.

Talend Open Studio for ESB Mediation Components Reference Guide

cCXF

cCXF

cCXF properties

CAF
—lp I

Component Family

Messaging

Function

cCXF provides integration with Apache CXF for connecting to JAX-WS services.

Pur pose

cCXF is used to provide or consume Web services.

Basic settings

Service/Address

The service endpoint URL where the Web serviceis provided.

In case cCXF is used to consume a Web service and the endpoint
lookup shall use the Service Locator (the Use Service L ocator
check box is selected), the URL needs to be "I ocator://
anyAddress/".

Service/Type

Select which type you want to use to provide Web service. Either
wsdIURL or serviceClass.

wsdIURL : Select this type to provide the Web service from a
WSDL file. Choose Repository or Fileto provide the Web service
from a Route Resource or the file system.

serviceClass: Select this type to provide the Web service from an
SEI (Service Endpoint Interface) Javaclass.

Service/ WSDL File

This field appears when the wsdIURL service type is selected. If
the WSDL fileisfrom the file system, browse to or enter the path
tothe WSDL file. If the WSDL fileisfrom aRoute Resource, click
[...] and select the one you want from the Resources tree view. The
Version list appears alowing you to choose from all the versions
of the Route Resource.

Service/Service Class

This field appears when the serviceClass service type is selected.
Enter the name of the service class to be used to provide the Web
service.

Service/Datafor mat

The exchange data style POJO, PAYLOAD, RAW, or
CXF_MESSAGE.

POJOs (Plain Old Java Objects) are the Java parameters to the
method being invoked on the target server.

PAYLOAD is the message payload, the contents of the
soap: body.

RAW isthe raw message that is received from the transport layer
without SAM (Service Activity Monitor) support.

CXF_MESSAGE is the raw message that is received from the
transport layer with SAM support.

Service

Select this check box to specify the service port. This option is
useful especially when there are multi service portsin the WSDL
or service class.

Service Name

The service name this service is implementing. It maps to the
wsdl : servi ce@ane intheformat of ns: SERVI CE_NAME where
ns isanamespace prefix valid at this scope.

Port Name

The endpoint name this service is implementing. It maps to the
wsdl : port @ane, inthe format of ns: PORT_NAME wherens isa
namespace prefix valid at this scope.

30

Talend Open Studio for ESB Mediation Components Reference Guide

Scenario 1: Providing a Web service using cCXF from aWSDL file

ESB FeaturesUse Service| Captures events and stores this information to facilitate in-
Activity Monitor depth analysis of service activity and track-and-trace of messages
throughout a business transaction. This can be used to analyze
serviceresponsetimes, identify traffic patterns, perform root cause
analysis and more.

This feature is not supported when MESSAGE is used

) as the processing mode. When MESSAGE is selected
in the Dataformat field, the Use Service Activity
Monitor check box is disabled.

ESB Features/Use Service|Provides service consumers with a mechanism to discover service
Locator endpointsat runtimewithout specifying the physical |ocation of the
endpoint. Additionally, it allows service providersto automatically
register and unregister their service endpoints at the Service
Locator.

For service consumers, the URL additionally needs to
2 be set to "l ocator://anyAddress/" in the CXF
Configuration / Addressfield.

The Custom Properties table appears when the Use Service

Locator check box is selected. Click . r . to add as many
properties as needed to the table. Enter the name and the value of
each property inthe Property Namefield and the Property Value
field respectively to identify the service. For moreinformation, see
Talend ESB Runtime Configuration Guide for how to install and
configure the Service Locator.

Advanced settings

Arguments Set the optional argumentsin the corresponding table. Click [+] as
many times as required to add arguments to the table. Then click
the corresponding Valuefield and enter avalue. Seethessite http:/
camel.apache.org/cxf.html for available URI options.

Usage

cCXF can be astart, middle or end component in a Route.

Limitation

Multiple cCXF components with the same label in a Route is not supported.

Scenario 1: Providing a Web service using cCXF from

a WSDL file

In this scenario, a Web service is produced by a cCXF component using aWSDL file.

OXE .)))))) .
R = T R, o d
WebService_producer cProcessor_1

Dropping and linking the components

This use case requires one cCXF component and one cProcessor component.

1. Fromthe Palette, expand the M essaging folder, and drop a cCXF component onto the design workspace.

2. Expand the Processor folder, and drop a cProcessor component onto the design workspace.

3. Right-click the cCXF component, select Row > Route from the contextual menu and click the cProcessor

component.

Talend Open Studio for ESB Mediation Components Reference Guide 31

http://camel.apache.org/cxf.html
http://camel.apache.org/cxf.html

Scenario 1: Providing a Web service using cCXF from aWSDL file

4. Labe the cCXF component for better identification of its functionality.

Configuring the components

In this scenario, the cProcessor component is used only to enable the cCXF component to function as a service
producer. Therefore, it does not need any configuration.

1. Double-click the cCXF component to display its Basic settings view in the Component tab.

CXF] =n E
—»n Web5ervice_producer(cCXF_1)
Basic setti Service
asic settings
ng Address "http://192168.0.212:8000/service.endpoint” *
Advanced settings -
- Type wsdlURL - | |File -
View —
Documentation Wsdl File D:/talend_files/input/airport_soap_route.wsdl
Dataformat PAYLOAD -
[Service
ESE Features
[] Use Service Activity Monitor

[Use Service Locator

2. In the Address field, type in the service endpoint URL for the Web service to be provided,
http://192.168.0.212: 8000/service.endpoint in this example.

3. Fromthe Typelist, select wsdlURL to enable producing the Web service from aWSDL file.
4. IntheWsdl Filefield, browse to or typein the path to the WSDL file to be used.
5. From the Dataformat list, select PAYL OAD mode for the wsdlURL data format.

6. PressCtrl+Sto save your route.

Viewing code and executing the Route

1. Click the Codetab at the bottom of the design workspace to have alook at the generated code.

protected void initUriMap() {
uriMap = new java.util.HashMap<String, String>{():
uriMap.put ("WebService producer”, Mot ST
+ "nttp://192.168.0.212:8000/service. endpoint™ + "?wsdlURL="
+ "D:/ftalend files/input/airport scap route.wsdl"
+ "idataFormat=PRYLOAD™) ;

As shown in the code, the cCXF component labelled WebSer vi ce_pr oducer produces the Web service
from an input file ai r port _soap_rout e. wsdl using the endpoint URL htt p://192. 168. 0. 212: 8000/
servi ce. endpoi nt .

2. Click the Run view to display it and click the Run button to launch the execution of your Route. Y ou can
also press F6 to execute it.

32 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario 2: Providing a Web service using cCXF from a Java class

RESULT: The service is successfully started. You can access it from a Web browser using the service
endpoint URL followed by ?wsdl .

2 http://localhost:8000/service.endpoint?wsdl - Microsoft Internet Explorer

BIX
/ ;,:

File Edit View Favorites Tools Help
eBack @ d \ﬂ @ h /._‘J Search “f\'{Favorihes E} [_'\'v :\4 — _J &E} 3‘ % ﬁ ﬁ

Links @Snagit E (e |

-

Address @ http: flocalhost:8000/service. endpoint?wsd v| &

=?xml version="1.0" encoding="UTF-8" 2=
- <wsdl:definitions targetNamespace="http://airportsoap.sopera.de"

xmins:http="http:/ /schemas.xmlsoap.org/wsdl/http/" xmins:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmins:s="http:/ fwww.w3.0rg/2001/XMLSchema" xmins:soap="http:/ /schemas.xmlsoap.org/wsdl/soap/"
xmins:soapl2="http:/ /schemas.xmlsoap.org/wsdl/soap12/"
xmins:soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmins:tns="http:/ / airportsoap.sopera.de"
xmins:wsdl="http:/ /schemas.xmlsoap.org/wsdl/">

- awsdl:types=
+ «s:schema elementFormDefault="qualified" targetNamespace="http:/ fairportsoap.sopera.de"

xmins:
xmins:
xmins:
xmins:
xmlns:
xmins:
xmlns:

http="http://schemas.xmlsoap.org/wsdl/http/"

mime="http:/ /schemas.xmlsoap.org/wsdl/mime/"
s="http://www.w3.0rg/2001/XMLSchema"
soap="http://schemas.xmlsoap.org/wsdl/soap/"
soaplz="http://schemas.xmlsoap.org/wsdl/soap12/"
soapenc="http://schemas.xmlsoap.org/soap/encoding/"

tns="http:/ /airportsoap.sopera.de" xmins:wsdl="http:/ /schemas.xmlsoap.org/wsdl/">

</wsdl:types:=

<wsdl:message name="getAirportInformationByISOCountryCodeSoapOut">
zwsdl:message name="getAirportInformationByISOCountryCodeSoapFault">
zwsdl:message name="getAirportInformationByISOCountryCodeSoapIn":=
zwsdl:portType name="airportSoap":>

zwsdl:binding name="airportSoap" type="tns:airportSoap":>

+ <wsdl:service name="airport":=
</wsdl:definitions =

@ Done
-

|«

\a Local intranet

Scenario 2: Providing a Web service using cCXF from
a Java class

In this scenario, a Web serviceis provided from a Java class file using a cCXF component.

Creating a Java class

1. Fromtherepository treeview, expand the Code node and right click the Beans node. In the contextual menu,
select Create Bean.

1 Contexts

= Code
F': -',‘T:j Create Bean
] 3 Create folder
(W
O IEI Impart items
& ligl Export items
EyrPogresETEDoTy T
& Recycle bin

=

Expand/Collapse

BB

2. The New Bean wizard opens. In the Name field, type in a name for the bean, for example, CXFdemobean.

Click Finish to close the wizard.

Talend Open Studio for ESB Mediation Components Reference Guide 33

Scenario 2: Providing a Web service using cCXF from a Java class

Hew Bean

Add a Route in the repository @

Mame | C¥Fdemobean |

Purpose | |

Description

Author

Locker

|

| |
Version | ||E

|

|

Status v

Path || Select]

@ [Einish l [Cancel

Change the classtypetoi nt er f ace, change the return typeto st ri ng and remove the message body.
package beans;
public interface CXFdenpbean {

public String hell oExanpl e(String nessage)
}

Press CtrI+S to save your bean.

Dropping and linking the components

OXF . : : : : : : e
A =< =T = R S f
WebService_producer cProcessor_1

This use case requires one cCXF component and one cProcessor component.

1. From the Palette, expand the M essaging folder, select the cCXF component and drop it onto the design
workspace.

2. Expand the Processor folder, select the cProcessor component and drop it onto the design workspace.

3. Right-click the cCXF component, select Row > Route in the contextual menu and click the cProcessor
component.

34 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario 2: Providing a Web service using cCXF from a Java class

4. Labe the components for better identification of their functionality.

Configuring the components

In this scenario, the cProcessor component is used only to enable the cCXF component to function as a service
producer. Therefore, it does not need any configuration.
1. Double-click the cCXF component to display its Basic settings view in the Component tab.

p Job{Route | =2 Component &3 B Run (Job cC | [2! Problems Contexts(Ro = B8

CXF] = E
—pn Web5ervice_producer(cCXF_1)
Basic setti Service
asic settings
g Address "http://192.168.0.212:8001 /service.endp |:|ir1t"| *
Advanced settings -
- Type serviceClass =
Wiew
i Service Class "beans.CXFdemobean”
Documentation
Dataformat PCIO -
[] Service
ESE Features
[C] Use Service Activity Monitar

[Use Service Locator

2. In the Address field, type in the service endpoint URL for the Web service to be provided,
http://192.168.0.212: 8001/ser vice.endpoint in this example.

3. From the Type from, select serviceClass to start the Web service from a Java class.
4. Inthe Service Classfield, specify the predefined bean class, CXFdemobean in this example.
5. From the Datafor mat list, select POJO as the serviceClass service data format.

6. PressCtrl+Sto save your Route.

Viewing code and executing the Route

1. Click the Codetab at the bottom of the design workspace to have alook at the generated code.

protected wvoid initUriMap() {
uriMap = new java.util.HashMap<S5tring, String>{():
uriMap.put ("WebService producer”, "cxf://"

+ "http://192.168.0.212:8001/service.endpoint™
+ "?zervicelClass=" 4+ "beans.CXFdemobean" 4+ "&dataFormat=POJO") :

As shown in the code, the cCXF component labelled WebSer vi ce_pr oducer produces the Web service
from an predefined bean beans. CXFdenobean using the endpoint URL http://192. 168. 0. 212: 8001/
servi ce. endpoi nt .

2. Click the Run view to display it and click the Run button to launch the execution of your Route. Y ou can
also press F6 to execute it.

Talend Open Studio for ESB Mediation Components Reference Guide 35

Scenario 3: Providing a Web service from a Route Resource

RESULT: The service is successfully started. You can access it from a Web browser using the service
endpoint URL followed by ?wsdl .

- http:/flocalhost:8001/service.endpoint?wsdl - Microsoft Internet Explorer |’._||’E|E|
File Edit View Favorites Tools Help -:,'
e Back - _/'l |ﬂ \g L h 7) Search “_i-‘:(Favorites E‘E <] H____’,_ — _J &?} Ea ﬁ ﬁ
Address @ http: /localhost: 300 1/service. endpoint?wsd| V| Go | Links [E2 Snagit E £ |

L
<?xml version="1.0" encoding="UTF-8" ?= F
- «zwsdl:definitions name="CXFdemobean" targetlNamespace="http:/ /beans/"
xmins:ns1="http://schemas.xmlsoap.org/soap/http"
xmins:soap="http:/ /schemas.xmilsoap.orgfwsdl/soap/" xmins:tns="http:/ /beans/"
xmins:wsdl="http:/ /schemas.xmlsoap.org/wsdl/"
xmins:xsd="http:/ /fwww.w3.0rg/2001/XMLSchema">
zwsdl:portType name="CXFdemobeanPortType" /=
- =wsdl:binding name="CXFdemobeanSoapBinding" type="tns:CXFdemobeanPortType">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http" /=
</wsdl:binding=>
- =wsdl:service name="CXFdemobean"=
- zwsdl:port binding="tns:CXFdemobeanSoapBinding" name="CXFdemobeanPort">
<soap:address location="http:/ /localhost:8001 /service.endpoint" /=
</wsdl:port=
</wsdl:service=
</wsdl:definitions = =
b
Iéj Cone \:J Local intranet

Scenario 3: Providing a Web service from a Route
Resource

In this scenario, aWeb service is provided from a Route Resource using a cCXF component.

Creating a Route Resource

1. FromtheRepository treeview, right-click the Resour ces node and select Cr eate Resour ce from the context

menu.
Repository £3 - 5 Mavigator = B8
LOCAL: ESBDEMOS = | t:’><h e~
> 38 Routes
s |E]] Reso
E]Q;I Contd/E Create Resource
s Code [Create folder

> E-'] Recys Expand/Collapse

Import items

£ &)

Export items

2. The New Route Resour ce wizard opens. In the Name field, type in a name for the Resource, for example,
DemoServiceWsdl. Click Finish to close the wizard.

36 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario 3: Providing a Web service from a Route Resource

3.

4.

4% MNew Route Resource l [=] |&J

Create Route Resource

Create a new Route Resource

Source File Browse

Mame DemoServiceWsdl

Purpose

Description -

Authar test@talend.com

Locker

Version 01

Status -

'-f?:' Finish l ’ Cancel

L A

Browseto an existing WSDL file from the local file system and click Finish.

Press Ctrl+S to save your Route Resource.

Dropping and linking the components

CXE . : : : : : : S
_ | S| _ . ~ routel . . F.H.
WebService_producer cProcessor_1

This use case requires acCXF and a cProcessor component.

1

2.

From the Palette, expand the M essaging folder, and drop a cCXF component onto the design workspace.
Expand the Processor folder, and drop a cProcessor component onto the design workspace.

Right-click the cCXF component, select Row > Route from the contextual menu and click the cProcessor
component.

Label the cCXF component for better identification of its functionality.

Talend Open Studio for ESB Mediation Components Reference Guide 37

Scenario 3: Providing a Web service from a Route Resource

Configuring the components

In this scenario, the cProcessor component is used only to enable the cCXF component to function as a service
producer. Therefore, it does not need any configuration.

1

Double-click the cCXF component to display its Basic settings view in the Component tab.

CXF = [=]
—»u WebService_producer(cCXF_1) =8 u
Basic setti Service
asic settings
"9 Address I'http://localhost:8000/service.endpoint” *
Advanced settings .
: Type wsdIURL - | |Repository -~
View —
Documentation WSDL File Resource: DemoServiceWsdl [| Version |Latest ~
Dataformat PAYLOAD -
[Service
ESE Features
[T Use Service Activity Monitor
[] Use Service Locator

In the Address field, type in the service endpoint URL for the Web service to be provided, http://
local host: 8000/service.endpoint in this example.

From the Type list, select wsdlURI and use the Repository property type to start the Web service from the
Route Resource that we have created.

In the WSDL File field, click the [...] button and select DemoServiceWsdl from the Resources tree view.
Click OK to close the wizard.

Press CtrI+S to save your Route.

Viewing code and executing the Route

1. Click the Codetab at the bottom of the design workspace to have alook at the generated code.
protected volid initUriMap() {
uriMap = new java.util.HashMap<S5tring, String>():
uriMap.put ("WebService producer cCXF 1", "cxf: S
+ "nttp://localhost:8000/service. endpoint™ + "?wsdlURL="
+ "glasspath:DemoServiceWsdl™ 4+ "idataFormat=PAYLOAD™) :
As shown in the code, the cCXF component labelled WebSer vi ce_pr oducer produces the Web service
from an predefined Route Resource DenoSer vi ceVedl using theendpoint URL ht t p: / /1 ocal host : 8000/
servi ce. endpoi nt .
2. Click the Run view to display it and click the Run button to launch the execution of your Route. Y ou can
also press F6 to execute it.
RESULT: The service is successfully started. You can access it from a Web browser using the service
endpoint URL followed by ?wsdl .
38 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario 3: Providing a Web service from a Route Resource

' e IEI EE ™y

l|@ hittp://localhost:8000/service.endpoint?wsdl I S gl Nelb 4 ” @ localhost f,-b ‘E’l? ‘:=

<?xml version="1.0" encoding="UTF-8"?=
- <wsdl:definitions name="DemoService" xmlns:xsd="http://fwww.w3.0rg/2001/XMLSchema" |
xmins:wsdl="http:/ /schemas.xmlsoap.org/wsdl/" xmins:tns="http:/ /www.talend.org/service/"
xmins:soap="http://schemas.xmlsoap.org/wsdl/soap/"
targetMamespace="http:/ /www.talend.org/service/">
+ <wsdl:types>
+ <wsdl:message name="DemoServiceOperationResponse">
- <wsdl:message name="DemoServiceOperationRequest">
<wsdl:part name="parameters" element="tns:DemoServiceOperationRequest">
</wsdl:part>
</wsdl:message>
- <wsdl:portType name="DemoServicePortType">
+ <wsdl:operation name="DemoServiceOperation">
</wsdl:portType=
- <wsdl:binding name="DemoServiceBinding" type="tns:DemoServicePortType"=>
<soap:binding transport="http:/ /schemas.xmlsoap.org/soap/http" style="document"/=
+ <wsdl:operation name="DemoServiceOperation">
</wsdl:binding>
- zwsdl:service name="DemoService">
+ <wsdl:port name="DemoServicePort" binding="tns:DemoServiceBinding">
</wsdl:service=
< /wsdl:definitions= i

m

Talend Open Studio for ESB Mediation Components Reference Guide 39

cDataset

cDataset

cDataset properties

Component Family Messaging

Function The cDataset component createsanew dataset or references an existing dataset to send or receive
messages.

Purpose The cDataset component allows you to create a new dataset or reference an existing dataset to
send or receive messages.

Basic settings Id The ID of the Dataset bean.

Produce Delay Specify adelay in milliseconds to cause producers to pause.

Consume Delay Specify adelay in milliseconds to cause consumers to pause.

Preload Sze Specify how many messages should be sent before the Route
completesitsinitialization.

Initial Delay Specify the time in milliseconds to wait before starting sending
messages.

Minimum Rate Specify the least number of messages that the dataset should
contain before starting sending messages.

Register new Bean Select this check box to register a new bean.

Bean Class Enter the class of the bean. This field appears when the Register
new Bean check box is selected.

Arguments Set the optional argumentsin the corresponding table. Click [+] as
many times as required to add arguments to the table. This table
appears when the Register new Bean check box is selected.

Usage cDataset can be a start, middle, or end component of a Route.
Limitation n/a

Scenario: Using cDataset to receive messages

In this scenario, a cDataset component is used to receive messages triggered by acTimer.

| = = >
_ oy routed —'_ routes ' |'|:I.|_tEl H
Starter Set_message_body Receive_message Monitor

Dropping and linking the components

1. From the Messaging folder of the Palette, drag and drop a cTimer and a cDataset component onto the
design workspace.

40 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Using cDataset to receive messages

2. Fromthe Transformation folder, drag and drop a cSetBody component onto the design workspace.
3. From the Processor folder, drag and drop one cProcessor component onto the design workspace.
4. Connect the components using Row > Route connections.

5. Label the components to better identify their roles in the Route, as shown above.

Configuring the components

1. Double-click the first cTimer component, which is labelled Sarter, to open its Basic settings view in the
Component tab.

=m|(c
G) Starter(cTimer_1) =& L
Basic settings Period 1000
Advanced settings Repeat 2
Yiew Delay 1000
Documentation [Fixced Rate
Daemon

[] 5et Schedule Time

2. Inthe Repeat field, enter 2 to generate the message exchange twice. Keep the default settings of the other
options.

3. Double-click the cSetBody component, which islabelled Set_ message body, to openits Basic settings view
in the Component tab.

=0
==

=+ | Set_message_body(cSetBody_1)

Basic settings Language Constant -
Advanced settings Expression "Hello!" *
View

Documentation

4. Select Constant inthe Language list and enter " Hel | o! " in the Expression field as the message body.

5. Double-click the cDataset component, which is labelled Receive_message, to open its Basic settings view
in the Component tab.

Talend Open Studio for ESB Mediation Components Reference Guide 41

Scenario: Using cDataset to receive messages

—, =o
- Receive_message(cDataset_1) == E
K
Basic settings Id "myDataset” (Registered Dataset Bean ID)
Advanced settings Produce Delay 3 Consume Delay 0
View Preload Size] Initial Delay 1000
Documentation Mininum Rate i
Register new Bean
Bean Class org.apache.camel.component.dataset. SimpleDataSet
Arguments Value

*Mote: Please use cBeanRegister to register Bean for more complex case

6. Intheld field, enter "nyDat aset " asthe dataset bean ID. Keep the default settings of the other options.

In the Bean Class field, the default implementation that is shipped by Camel
or g. apache. canel . conponent . dat aset . Si npl eDat aSet is Set. In this use case, a new dataset bean is

registered.

7. Double-click the first cProcessor component, which is labelled Monitor, to open its Basics settings view
in the Component tab.

- =0
2 & Monitor(cProcessor_1) B D

Basic settings
Advanced settings Code .)
View

Documentation

m

System.out.println("--—-——-———- BODY———————— ™
Svyvstem.out.println (exchange.getIn() .getBody
String.class)):

System.out.princtln{("-———————-— END-————————— ™)

8. Inthe Code area, customize the code to show the body of the message exchanges.

Systemout.println("--------- BODY-------- ")
System out . pri ntl n(exchange. getln(). get Body(Strl ng. cl ass));
Systemout.println("--------- END--------- ")

9. Press Ctrl+Sto save your Route.

42 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Using cDataset to receive messages

Viewing the code and executing the Route

1

Click the Codetab at the bottom of the design workspace to have alook at the generated code.

public wvoid configure ()

throws Exception {

from{uriMap.get ("Starter cTimer 1"})

.routeld("Starter cTimer 1").setBody()
.constant ("Hello!™) .id ("c5etBody_1")

.to{uriMap.get ("Receive message cDataset

.id("cDatasec_1")
process (new org.apache.camel.Processor()
public void process|

lfr:l :I

{

org.apache.camel .Exchange exchange)

throws Exception {

* Provide own codes to consume or translate the

* message exchange

* Eparam org.apache.camsl.Exchange exchangs
System.out.println("--—-—————- BODY ———————— ™y

Syztem.out.println(exchange.getIn() .getBody |

String.class)):

System.out.println("-———————— END—-———————— "y

by .id("cProcesscr_1"):

As shown in the code, the Route is built fromthe St art er _cTi mer _1 endpoint, set the message body as
“Hel | o! " by cSet Body_1, routed . t o cDat aset _1, and then processed by cProcessor _1.

Press F6 to execute the Route.

RESULT: The message body is displayed twice in the execution console.

Execution

Run Kill Clear

INFO Apache Camel 2.9.3 (CamelContext:
cDataset—ctx®) started in 0.270 seconds

[ztatistics] connecting to soclket on port 3678

[=tati=tic=s] conhected

BODY
Hellao!
END
BODY
Hellol
END
Line limit {100 Wrap

m

Talend Open Studio for ESB Mediation Components Reference Guide

cFile

cFile

FILE
—lp I

cFile properties

Component Family

Messaging

Function cFile provides access to file systems.

Purpose cFile alows files to be processed by any other Camel components or messages from other
components to be saved to disk.

Basic settings Path Path to the file or files to be accessed or saved.
Parameters/Noop Select this check box to keep the file or filesin the original folder

after being read.

Parameters/Flatten

Select this check box to flatten the file name path to strip any
leading paths. This alows you to consume recursively into sub-
directories, but when you, for example, write the files to another
directory, they will be written in asingle directory.

Parameters/AutoCreate Select this check box to create the directory specified in the Path
field automatically if it does not exist.

Parameters/Buffer Sze(kb) | Write buffer sized in bytes.

Encoding Specify the encoding of the file, 1SO-8859-15, UTF-8, or
CUSTOM.

FileName The name of the file to be processed. Use this option if you want
to consume only asinglefilein the specified directory.

Advanced settings Advanced Set the optional argumentsin the corresponding table. Click [+] as

many times as required to add arguments to the table. Then click
the corresponding Valuefield and enter avalue. Seethe site http://
camel .apache.org/file2.html for available URI options.

Usage

cFile can be a start, middle or end component in a Route.

Limitation

n/a

Scenario: Reading files from one directory and writing
them to another

In this scenario, an input cFile component is configured to visit a local file directory and send the files in the
directory to an output cFile component which writes the filesin another directory.

FILE '

FILE

=k routel e

Message_source

Message_destination

Talend Open Studio for ESB Mediation Components Reference Guide

http://camel.apache.org/file2.html
http://camel.apache.org/file2.html

Scenario: Reading files from one directory and writing them to another

Dropping and linking the components

1. From the Palette, expand the Messaging folder and select the cFile component. Drop one as the input
component and another as the output component onto the design workspace.

2. Right-click theinput cFile component, select Row > Route in the contextual menu and click the output cFile
component.

3. Label the components to better identify their respective functionality.

Configuring the components

1. Double-click the input cFile component to display its Basic settings view in the Component tab.

FILE : %L

—»n Message source(cFile_1)

Basic sattings Path "[r/talend_files/input” " -

- Parameters
Ad d sett
vanc.e 5 .|ngs 7| Noop

Dynamic settings Flatten

View 7| AutoCreate

Documentation BufferSize(kh) 128"
Encoding CUSTOM - " *
FileMame

2. Inthe Path field, browse to or enter the input file path, and leave the other parameters asthey are.

3. Double-click the output cFile component to display its Basic settings view in the Component tab.
FILE o _ En)
—»= Message_destination(cFile_2)

[ion]

Basic settings Path "Duftalend_files/output” * I:I
Advanced settings jﬂr:]?:.r;sters
Dynamic settings Flatten
View J| AutoCreate
Documentation BufferSize(kb) L2
Encoding CUSTOM .| #
FileMame o

4. Inthe Path field, browse to or enter the output file path, as shown above. Leave the other parameters as
they are.

5. Press Ctrl+Sto save your route.

Viewing code and executing the Route

1. Click the Codetab at the bottom of the design workspace to have alook at the generated code.

Talend Open Studio for ESB Mediation Components Reference Guide 45

Scenario: Reading files from one directory and writing them to another

public void initRoute() throws Exception {
routeBuilder = new org.apache.camel .builder.RouteBuilder() {
public void configure() throws Exception {
from(uriMap.get ("Message source")) .routeld|
"Message source").tol
uriMap.get ("Hessage destination™))
LAd("cFile 2");

ir

getCamelContexta() .get (0) .addRoutes (routeBuilder) ;

As shown in the code, a message route is built f r omone endpoint . t o another.

2. Click the Run view to display it and click the Run button to launch the execution of your Route. Y ou can
also press F6 to execute it.

RESULT: Theinput files are written to specified output directory.

46 Talend Open Studio for ESB Mediation Components Reference Guide

cFtp

CFtp

FTP
—*D

cFtp properties

Component Family

Messaging

Function cFtp provides access to remote file systems over the FTP, FTPS and SFTP protocols.

Pur pose cFtp allows data exchange over remote file systems.

Basic settings Parameters/type Select the file transfer protocoal, ftp or sftp, ftps.
Parameters/server Type in the remote server address to be accessed.
Parameters/port Type in the port number to be accessed.
Parameters/username Typein the user authentication information.
Parameters/password Type in the user authentication information.
Parameters/directory Enter the directory you want to access on the remote server. If not

specified, the root directory will be accessed.

Advanced settings

camel .apache.org/ftp.html for available URI options.

Advanced Set the optional argumentsin the corresponding table. Click [+] as
many times as required to add arguments to the table. Then click
the corresponding Valuefield and enter avalue. Seethe site http://

Usage

cFtp can be a start, middle or end component in a Route.

Limitation

n/a

Related scenario:

No scenario is available for this component yet.

Talend Open Studio for ESB Mediation Components Reference Guide

47

http://camel.apache.org/ftp.html
http://camel.apache.org/ftp.html

cHttp

CHttp

CHttp properties

Component Family

Messaging

Function

cHttp provides Http-based endpoints for consuming external Http resources, i.e. as a client to
call external serversusing Http.

Purpose

cHttp isdesigned to build a client endpoint to call external Http resources using Http.

Basic settings

Uri

The URI of the Http resource to call.

Method

List of the Http request methods.

Get

Retrieve the information identified by the request URI:

Parameters: click the [+] button to add lines as needed and define
the key and value in the table.

Encoder Charset: enter the encoder charset in the field.

Post

Request that the origin server accept the entity enclosed in the
request as a new subordinate of the resource identified by the
request URI:

Plain Text: select the Content-Type from text/plain, text/html,
text/xml, application/x-www-form-urlencoded, application/xml,
application/json, or other... (specify the Content-Type in the next
field that appears when other ... is selected), and typein thetext in
the Content box as the request message.

Form Style: click the[+] button to add lines as needed and define
thekey and valuein the Par ameter stable. Also, enter the encoder
charset in the Encoder Char set field.

Use Message Body: use the incoming message body as the
Http request. Select the Content-Type from text/plain, text/
html, text/xml, application/x-www-form-urlencoded, application/
xml, application/json, or other... (specify the Content-Typein the
next field that appears when other... is selected),

Put

Request that the enclosed entity be stored under the supplied
request URI.

Plain Text: select the Content-Type from text/plain, text/html,
text/xml, application/x-www-form-urlencoded, application/xml,
application/json, or other... (specify the Content-Typein the next
field that appears when other ... is selected), and typein thetext in
the Content box as the request message.

Form Style: click the[+] button to add lines as needed and define
thekey and valuein the Parameter stable. Also, enter the encoder
charset in the Encoder Char set field.

Use Message Body: use the incoming message body as the
Http request. Select the Content-Type from text/plain, text/
html, text/xml, application/x-www-form-urlencoded, application/
xml, application/json, or other... (specify the Content-Typein the
next field that appears when other... is selected),

Delete

Request that the origin server delete the resource identified by the
request URI.

Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Retrieving the content of aremotefile

Parameters: click the[+] button to add lines as needed and define
the key and value in the table.
Encoder Char set: enter the encoder charset in the field.

Head Identical to GET except that the server MUST NOT return a
message body in the response:

Parameters: click the[+] button to add lines as needed and define
the key and value in the table.

Encoder Char set: enter the encoder charset in the field.

Options Represent a request for information about the communication
options available on the request/response chain identified by the
request URI.

Trace Invoke a remote, application-layer loop-back of the request
message.

Advanced settings Headers Click the [+] button to add lines as needed and define the key and
vaue for headers.
Usage cHttp provides Http based endpoints for consuming external Http resources, i.e. as a client to

call external serversusing Http.

Limitation

Scenario: Retrieving the content of a remote file

In this scenario, cHttp is used to request the body of aweather condition definition file that is available at http://
wsf.cdyne.com/WeatherWS/Weather.asmx.

Dropping and linking the components

1. Drop the following components from the Palette onto the workspace: cMessagingEndpoint,
cSetBody, cHttp and cProcessor, labelled as STARTER, HTTP_REQUEST BODY,
GET_WEATHER_DESCRIPTION and PRINT_RESPONSE respectively.

2. Link the components using a Row > Route connection.

-

=1 y. | DNtp ~
T rodtel — roukes 'E::> rouke? g S
STARTER. HTTP_REOQUEST_BODY GET_WEATHER_DESCRIPTION 'PRINT_RESPCOMSE

Configuring the components

1. Double-click cM essagingEndpoint to open its Basic settings view in the Component tab.

=0
—» 8 STARTER(cMessagingEndpoint_1) o2
LRI "tirner igatrepeatCount=1"

Basic settings
Advanced settings
Dwnamic sektings
Wiew

Daocumentakion

Talend Open Studio for ESB Mediation Components Reference Guide 49

http://wsf.cdyne.com/WeatherWS/Weather.asmx
http://wsf.cdyne.com/WeatherWS/Weather.asmx

Scenario: Retrieving the content of aremotefile

2. IntheURI field, enter ti mer : go?r epeat Count =1 to define atimer for starting message exchanges. In this
example, only one message exchange will be carried out due to the setting of r epeat Count =1.

3. Double-click cSetBody to open its Basic settings view in the Component tab.

=0
—*_—l HTTP_REQUEST_BODY {cSetBody_1) =10 [
Basic settings Language onstant s
&dvanced setkings Expression " zsnapeny:Envelope xmins:soapeny=*

Dwnamic setkings
Wi

Documentation

4. IntheLanguagefield, select Constant.

5. Inthe Expression field, enter the following as the body of the request message:

<soapenv: Envel ope xm ns: soapenv=\"http://schemas. xm soap. or g/ soap/ envel ope/\"

xm ns: weat =\ "http://ws. cdyne. com
/ Weat her W5/ \ " ><soapenv: Header / ><soapenv: Body><weat : Get Weat her Def i ni ti onl nf or mat i on/
></ soapenv: Body></ soapenv: Envel ope>

6. Double-click cHttp to open its Basic settings view in the Component tab.

a2 GET_WEATHER_DESCRIPTION(cHttp_1 ‘ﬁ/l\
= - _ p_1)

Basic settings Uri I hitp:/fwsf.cdyne.com/WeatherWs/Weather.asmx"
Advanced settings =~ Method POST X

View Plain Text Form Style @ Use Message Body

Documentation Content-Type testxml -

7. Inthe Uri field, enter the location of thefile to fetch, http://wsf.cdyne.com/Weather WS/Weather.asmx in this
example.

8. Select POST inthe Method list and then the Use M essage Body radio button. Select text/xml in the Content-
Typelist.

9. Click Advanced settings for further setup.

E’;“" GET_WEATHER_DESCRIPTION(cHttp_1)

Basic settings Headers ke Walue

Advanced settings "SOAPACkon" "http:/iws, cdyne. comieathert'sjGetweatherInformation”
Dynarnic sektings

Wigw

Dacumentation

4 ?

10. Click the[+] button to add aline in the Header s table.

50 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Retrieving the content of aremotefile

Typein SOAPActi on and htt p: // ws. cdyne. con Weat her W&/ Get Weat her | nf or mat i on for the Key and
Valuefields.

11. Double-click cProcessor to open its Basic settings view in the Component tab.

==

% & PRINT_RESPONSE{cProcessor_1)

Basic settings Code

Advanced setkings 0 T T LLEEEEIEE == e

Dwnamic setbings .
SJystem.out,.println(exchange. g
etIn() .getBody(3tring.class)),

Documentation System.out.println(————————o

Wigw

12. In the Code area, enter the following to print the response from the remote website, i.e. the body of the

13.

desired file:

Systemout.println("-------------------- RESPONSE- - - - - - - ------------- ")
System out . printl n(exchange. getln().get Body(String.cl ass));
Systemout.println("-------------------- END- - - ----mmmmaa - ");

Press Ctrl+S to save your Route.

Viewing code and executing the Route

1

Click the Codetab at the bottom of the design workspace to check the generated code.

public void initRoute () throws Exception {
routeBuilder = new org.apache.camel.builder.RouteBuilder () {
public void configure() throws Exception {
from({urilap.get ("3TARTER™))
.routeId("STARTER™)
.setBody()
.constant |
"eaoapenviEnvelope xmlna:soapenv=\Thttp://3chemas.xwlsoap.oryg/ soap/envel
Jid{"cSecBody 17
.setHeader ("Came lHttpMethod™, constant ("POST™)
.setHeader ("Content-Type™,
constant ("text/xml;charset=UTF-8"))
SetHeader |
FEOLPAztion™,
constant ("hotp://ws. cdyne . com/ TeatherWs/ Gecleather Information™))
.tofuriMap.get ("GET WEATHER DESCRIPTICH™))

vid{"cHttp_1") .process|(
new org.apache.camel,FProcessor () {
public void process|
org.apache.camel.Exchange exchange)
throws Exception {
System.out
printlon(M-—-————m RESZPONZE-——————————————————
System.out.println(exchange
.getIni) .getBody|(
Jtring.class)) ;
System.out
println(f-—-——————————— — — — ———— END———————————————————— L

i

i .id({"eProgessor_1");

Talend Open Studio for ESB Mediation Components Reference Guide 51

Scenario: Retrieving the content of aremotefile

As shown above, the message exchange starts from the endpoint STARTER, gets its body
set to <soapenv: Envel ope xm ns: soapenv=\"http://schemas. xm soap. or g/ soap/ envel ope/
\"xm ns: weat =\"http://ws. cdyne. conf Weat her W5/ \ " ><soapenv: Header/

><soapenv: Body><weat : Get Weat her Def i ni ti onl nf or mat i on/ ></ soapenv: Body></

soapenv: Envel ope> at cSet Body_1, and then is sent out to the specified website by cHt t p_1. Finaly, the
response is printed out viacPr ocessor _1.

2. Press F6 to execute the Route.

[stati=tic=] connecting to socket on port 3992
[stati=stics] connected
REESPOHSE
<?Eml wersion="1.0" encoding="utf-8"7:<{=oap:Envelopes
¥nlns:=oap="http. ~s=chemnas . Zml=oap.org-socap-envelops"

Enln=: z=si1="http:. - ~www. wl org-2001-EHLSchemna—-instance"

¥nlns Esd="http: ~www vl org 2001-EMLSchena" r<=scap:Body:<Getlleat
herInformationEesponse

Enln=="http: “w=s. cdyne. con-NeatherVS " »<GetWeatherInformationRes
unlt:<Weatherbescription:<WeatherID:1<-NeatherID:<Description:>Thu
ndexr
Stormns<sDescription:<FicturellRL:http: - ~w= . cdyne . con-NeatherlsS<In
agez-thunder=ztormnz gif < PicturelRL:< -WeatherDescription:<Weather
Descriptions:<WeatherID:2< - MeatherID:<Description:FPartly

ription:<WeatherID:37< WeatherlD:<Description>AM

CLOUDS« »Description:<PicturelRL:http: ~w=s cdvne conTeatherTS-In
agez-partlvcloudy . gif< PicturelRL:< -WeatherDescription:<-Getleat
herInformationEesult < GetWeatherInformationResponse: <. soap:Body
»{ zoap:Envelope:

END

As shown above, the retrieved file defines up to 37 weather conditions with detailed description.

52 Talend Open Studio for ESB Mediation Components Reference Guide

cIMS

cJMS

JMS
—lp I

cJMS properties

Component Family

Messaging

Function ¢JM S allows messages to be sent to, or consumed from, a JIMS Queue or Topic.
Purpose cJMSis used to send messages to, or consume messages from, aJM S Queue or Topic.
URI/Type Select the messaging type, either queue or topic.
URI/Destination Typein aname for the IMS queue or topic.
ConnectionFactory Click the three-dot button and select a JM S connection factory to be

used for handling messages or enter the name of the corresponding
¢JM SConnectionFactory component directly in the field.

Advanced settings

URI Options Set the optional arguments in the corresponding table. Click [+] as
many times as required to add arguments to the table. Then click
the corresponding value field and enter a value. See the site http://
camel.apache.org/jms.html for available URI options.

Usage

¢JM S can be a start, middle or end component in a Route.

Limitation

n/a

Scenario 1: Sending and receiving a message from a

JMS queue

In this scenario, a cJM S component sends messages from the local file system to a message queue in one sub-
route, and the messages are then consumed by another cJM S component in the other sub-route.

ims

.ﬁ.-:ti{feMQC'DnnecEiDnFac'tDry

FILE - S
o routel F—
File_source ' ' ‘Message_producer
e -
o routeZ? e
'Messauje_ccurisumer' ' ' ' monitar

Dropping and linking the components

1. From the Palette, expand the Context folder, and drop a cJM SConnectionFactory component onto the
design workspace to specify the IMS connection factory for handling messages.

Talend Open Studio for ESB Mediation Components Reference Guide 53

http://camel.apache.org/jms.html
http://camel.apache.org/jms.html

Scenario 1: Sending and receiving a message from a JM S queue

2. From the M essaging folder, drop one cFile and two cJM S components onto the design workspace.
3. From the Processor folder, drop acProcessor component onto the design workspace.

4. Connect thecFile component toacJM Scomponent using aRow > Route connection asthe message producer
sub-route.

5. Connect the other cJM S component to the cProcessor component using a Row > Route connection as the
message consumer sub-route.

6. Label the components properly for better identification of their functionalities.

Configuring the components

1. Double-click the cJM SConnectionFactory component to display its Basic settings view in the Component
tab.

us - | EJE
% Activer(ConnectionFacotry {cJMSConnectionFactory_1)

Basic settings MO Server ACEivEMC + [* [[]use Transaction
Advanced settings Broker LRI "“em:| flocalhost?hroker persistent=False" |*
Dvnamic settings [[Juse PocledCannectionFacatry

Vigw

Documentation

2. From the MQ Server list, select an MQ server. In this use case, we use the default ActiveMQ server to
handle the messages.

Inthe Broker URI field, typein the URI of the message broker. Here we simply use the default URI "vm://
localhost?broker .persistent=false".

3. Inthe message producer sub-route, double-click the cFile component to display its Basic settings view.

FILE _ Sa [:
—pn File_source(cFile_1)
= i " +
Basic settings Fath D /ftalend_files /input E]
Advanced settings a;.'j-zlgpetEI's
D i ti
.ynamu: settings [JFiatten
_ AutoCreate
Documentation - -
Buffersize(kb) 128
Encoding CUSTOM Ol *
Filerame

4. Define the properties of the cFile component.

Inthisuse case, simply specify the path to the folder that holdsthe source file to be sent as €l ectronic message,
and leave the other parameters as they are.

5. Double-click the cJM S component labeled Message producer to display its Basic settings view.

54 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario 1: Sending and receiving a message from aJJM'S queue

JMS = E
—pn Message_producer(cIMS_1) =)=

IURI

Basic settings Type *

Adwvanced settings

Destination "gueue, hello *
Dvnamic sekkings | 4 |

Wig ConneckionFactory D |.ﬁ.ctiveMQCDnneu:tiu:unFau:tu:ur';.-' |*
Drocumentation

6. Fromthe Typelist, select queue to send the messagesto a IM'S queue.
In the Destination field, type in aname for the IMS queue, " queue. hel | 0" in this use case.

Double-click the[...] button next to ConnectionFactory. Select the IM S connection factory that you have

just configured in the dialog box and click OK.. Y ou can also enter the name of the cJM SConnectionFactory
component directly in the field.

% Select JMS ConnectionFactory:

K l [Cancel

7. Switch to the message consumer sub-route, and double click the cJMS component labeled
Message consumer to display its Basic settings view.

=0 || =
EJE
—pn Message_consumer(cIMS_2)
Basi i LRI
asic settings Type quele e ¥
ddvanced settings - N
: _ Destination |"queue.hellu" |
Dyvnamic sekkings
Wigw ConnectionFackary | | |.ﬂ.n:l:iveMQCnnnectinnFactnry |*

Ciocurmenkation

8. Configure the message consumer using exactly the same parameters as in the message producer.

9. Double-click the cProcessor component to display its Basic settings view.

Talend Open Studio for ESB Mediation Components Reference Guide 55

Scenario 1: Sending and receiving a message from a JM S queue

o

& & Monitor(cProcessor_1)

"o

Basic settings Code Sy=ztem.out.println("Messages consumed:
c

hange.getlIn() .getHeader ("CamelFilelame")) ;

m

Advanced settings ®

Dynamic settings
View

Documentation

10. Inthe Code area, customize the code as shown below to display the file names of the consumed messages
on the Run console.

System out. println("Message consuned: "+
exchange. get I n() . get Header (" Canel Fi | eNange")) ;

11. Press Ctrl+Sto save your Routes.

Viewing code and executing the Route

1. Click the Codetab at the bottom of the design workspace to have alook at the generated code.

public volid initRoute (] throws Exception |

routebBuilder = new org.apache.camel.builder.FoutebBuilder (]
public void configure() throws Exception {
from{uriMap.getc ("File source')) .routeld("File source')

-tofuriMap.get ("Hessage producer™))
Lid(MeJMS 17

from{uriMap.get ("Hessage consuwer™)) .routeld|
"Message consumer™) .process |
new org.apache.camel.Processor () |

public void process|
org.apache.camel . Exchange exchange)
throws Exception {
System.out.println("Message consumed:
+ exchange.getIn() .getHeader |
"Came lFileNsme™))

Pl .id{"cProcessor_1"):

b
getCame lContexts () .get (0) .addRoutes (routeBuilder) ;

typheConverterBegistry = camelContext.getTypeConverterRegiscry () 2
Javax.jms.ConnectionFactory jwsConnectionFactory = null;
JmsConnectionFactory = new org.apache.activermndg. ActiveMoConhectionFactory|(
" localhost ?hroker . persistent=false™) ;
camelContext.addComponent ["oJM3ConnectionFactoryl™,
org.apache.camel. component. jns . JisComponent

msCowponent (jmsConnectionFactoryl)

In the partially shown code, a message route is built f romthe Fi |l e_source .t o the Message_pr oducer
which then sends the message to a message queue via a broker identified by vm//1 ocal host ?
br oker . per si st ent =f al se. The message f r omthe Message_consuner is processed by cProcessor _1.

56 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario 2: Setting up aJMS local transaction

2. Click the Run hutton in the Run view to launch the execution of your Route. You can also press F6 to
executeit.

RESULT: The message is received by the consumer, as shown on the Run console.

Execution
(= Kill
[méin] DefaunltCanslContext L
INFO Total 2 routes, of which 2?2 1= started.
[main] DefaunltCanslContext

INFO Apache Camsl 2.9.2-SHAPSHOT (CamnslContext:
EEE—ctx) started in 1.828 =seconds

[=tati=tic=s] connecting to =ocket on port 4043
[stati=stics] connected

Hes=zage consumed: Hello. t=t

Scenario 2: Setting up a JMS local transaction

In this scenario, alocal transaction with three stepsis performed to send, test and consume a JM S message:

1. Thefirst Routeis used to send a"hello world!" message to feed the queue.hello IM S queue.

2. The second Route is used to test the received IMS message. This message is redelivered six times to the
gueue.hello queue and is then moved to the Dead Letter IMS queue. The Route is programmed to throw an

exception every time an exchange is processed by the Route.

3. Thelast Routeis used to consume the "hello world!" message from the Dead Letter IMS queue.

Sending a message to the queue.hello JMS queue

| dms v
- -
AMOQ _Send_ConnecticnFactory DatasetConfig

i . .
=] = —
I routel T =PE T ooty R

'SimpIéDatas:etGen' AMQ Send 'PrinfSendf'-.-“lsg

Dropping and linking the components

1. From the Palette, drop the five following components onto the design workspace: one
cJM SConnectionFactory, one cConfig, one cMessagingEndpoint, one cJMS and one cProcessor
component.

2. Connect the cM essagingEndpoint component to the cJM S using a Row > Route connection.

3. Connect the cJM S component to the cProcessor component using a Row > Route connection.

Talend Open Studio for ESB Mediation Components Reference Guide 57

Scenario 2: Setting up aJJMS local transaction

Configuring the components

1.

Double-click the cJM SConnectionFactory component labelled AMQ_Send_ConnectionFactory to display
its Basic settings view in the Component tab.

ih Job(Route AM | 52 Component 22 [k Run (Job AMQ_ | [2 Problems| 7] Contexts(Route = 0O

] =0
ﬁ AMQ Send_ConnectionFactory(AMQ _Send_ConnectionFacotry) E

MG Server ActiveMQ - [* [T Use Transaction
Broker URI "tep:/flocalhost:G1616"

Basic settings

Advanced settings

T — ["] Use PooledConnectionFacotry

Yiew

Documentation

From the MQ Server list, select an MQ server. In this use case, we use the default ActiveMQ server to
handle the messages.

Inthe Broker URI field, typein Active MQ's default URI of the localhost server: "tcp://localhost: 61616".

When using ActiveM Q to handle messages between different Routes, you need to launch the ActiveM Q server before
" executing the Routes. For more information on installing and launching ActiveM Q server, see the Apache Web site
http://activemq.apache.org/index.html.

Double-click the cConfig component, which islabelled DatasetConfig, to display its Basic settings view in
the Component tab and set its parameters.

+n Job(Route AM | 23 Component &3 [k Run (Job AMQ_ | [2 Problems | [} Contexts(Route =8

DatasetConfig(cConfig_1) E

RS P T T T S I UL i iy A e P P

Basic settings Code

Advanced settings */

camelContext.addComponent ("dataset™,
new

org.apache.camel.component .dataset.Dat
Documentation aSetComponent ()) ;

Dynamic settings

Yiew

org.apache.camel . component.dataset.5im
pleDataSet dataset = new
org.apache.camel . component.dataset.5im
pleDataSet (1) ;
dataset.setDefaultBody ("Test Data:
hello world!™):

Aarr arnarhe camal dmnl SdimnmleRemi a2t =

Write apiece of codein the Codefield to register the dataset instance hello into the registry, as shown below.

or g. apache. canel . conponent . dat aset . Si npl eDat aSet dat aset = new
or g. apache. canel . conponent . dat aset . Si npl eDat aSet (1) ;
dat aset . set Def aul t Body(" Test Data: hello world!");
org. apache. canel . i npl . Si npl eRegi stry registry = new
org. apache. canel . i npl . Si npl eRegi stry();
registry. put("hell 0", dat aset);
canel Cont ext . set Regi stry(registry);

58

Talend Open Studio for ESB Mediation Components Reference Guide

http://activemq.apache.org/index.html

Scenario 2: Setting up aJMS local transaction

6. Double-click the cM essagingEndpoint component, which islabelled SmpleDatasetGen, to display itsBasic
settings view in the Component tab. and set its parameters.

n Job(Route AM | 52 Component £3 [k Run (Job AMQ_ | [2¢ Problems| ! Contextsi = B

—»o SimpleDatasetGen(cMessagingEndpoint_1)

Basic settings LRI "dataset:hella”

Advanced settings
Dynamic settings
Wiew

Documentation

7. Inthe URI field, enter dataset: hello between the quotation marks.

8. Double-click the cJM S component labeled AMQ_Send to display its Basic settings view.
h Job(Route AM | 52 Component 22 (b Run (Job AMQ_ | [2 Problems| 7] Contexts(Route = 0O

=1
JME Eie

—pn AMQ Send(cJMS_1)

Basic setti VRl

asic ings Type queue = |*

Advanced settings .
- - Destination "queue.hello”

Dynamic settings

View CDHHECtiDﬂFECtDr}fD AMQ_Send_ConnectionFacotry *

Documentation

9. Fromthe Typelist, select queue to send the message to a JM S queue.
In the Destination field, type in a name for the IMS queue, "queue.hello" in this use case.

Double-click the[...] button next to ConnectionFactory. Select the IMS connection factory that you have
just configured in the dialog box and click OK . Y ou can also enter the name of the cJM SConnectionFactory

component directly in the field.
42 Select IMS ConnectionFactory: I&

sy AMQ_Send_ConnectionFactory

QK] ’ Cancel

P A

10. Double-click the cProcessor component labelled PrintSendMsg to display its Basic settings view in the
Component tab, and customize the code in the Code area to display the sent message intercepted on the

console.

System out. println("AMQ Send: "+

Talend Open Studio for ESB Mediation Components Reference Guide 59

Scenario 2: Setting up aJJMS local transaction

exchange. get I n() . get Body(String.cl ass));

Executing the Route

e Click the Run button in the Run view to launch the execution of your Route. You can aso press F6 to

execute it.

RESULT: One"hello world!" messageis sent to the IMS Queue, as shown

Execution

on | [mon | [Gac

mLdl Ll LIL U, 20Ul =Erunnng=e
[ztatistic=s] connecting to socket
on port 3546

[2tati=tic=s] conhected

AMQ Send: Test Data: hello world!
[data=et:~~hello] dataset:-~hello

in the Run console.

s

INFO Sent: 1 messagesz =o far. Last
group took: 0 milli=s which is: 7
neszages per second. average: 7

Line limit | 1p0 Wrap

Testing the received message

JMs ' ' = =

| | routel rﬂ_ routel 'u_
AMQ_Rev PrintRevisg ThrowEx

| ms’

=1

AM Q_-Rev_(fu:u nnectionFacto rj,r-

Dropping and linking the components

1. FromthePalette, drop thefour following componentsonto the design workspace: one cJM S, two cPr ocessor

components and one cJM SConnectionFactory.

2. Connect the cJM S component to the first cProcessor using a Row > Route connection.

3. Connect the first cProcessor component to the second cProcessor component using a Row > Route

connection.

Configuring the components

1. Double-click the cJM SConnectionFactory component labelled AMQ_Rev_ConnectionFactory to display

its Basic settings view in the Component tab.

60 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario 2: Setting up aJMS local transaction

<p Job{Route A | %2 Component &3 [Run (Job AM | [2! Problems| ! Contexts(Rout| = O

[E] = .
& AMQ _Rev_ConnectionFactory(AMQ _Rev_ConnectionFacotry) E
Basic settings MQ Server ActiveMQ - [* [¥] Use Transaction
Broker URI "tep/flocalhost:61616" *

Advanced settings
—— [7] Use PooledConnectionFacotry
View

Documentation

From the MQ Server list, select an MQ server. In this use case, we use the default ActiveMQ server to
handle the messages.

Select the Use transaction check box.

Inthe Broker URI field, typein Active MQ's default URI of the localhost server: "tcp://localhost:61616".

Double-click the cJM S component labeled AMQ_Rev to display its Basic settings view.
<p Job{Route A | <& Component &3 U Run (Job AM | [5! Problems| ! Contexts(Rout| = O

JMS =

—pn AMQ Rev(cJMS5_1)

Basic setti URl

asic ings Type queue ~ |*

Advanced settings .
: : Destination "queue.hella”

Dynamic settings

View CnnnectiDnFactDr}rD AMQ_Rev_ConnectionFacotry *

Documentation

From the Type list, select queue to send the messages to aJM S queue.
In the Destination field, type in a name for the IMS queue, "queue.hello” in this use case.

Double-click the[...] button next to ConnectionFactory. Select the IMS connection factory that you have
just configured in the dialog box and click OK . Y ou can also enter the name of the cJM SConnectionFactory

component directly in the field.
42 Select IMS ConnectionFactory: I&

2y AMQ_Rev_ConnectionFactory

0K] ’ Cancel

P A

Double-click the first cProcessor component labelled PrintRevMsg to display its Basic settings view in the
Component tab, and customize the code in the Code area to display the received message intercepted on

the console.

System out. println("AMQ Recei ve: "+

Talend Open Studio for ESB Mediation Components Reference Guide 61

Scenario 2: Setting up aJJMS local transaction

exchange. get I n() . get Body(String.cl ass));

7. Double-click the second cProcessor component labelled ThrowEx to display its Basic settings view in the
Component tab, and customize the code in the Code area to throw the Force fail exception every time an
exchange is processed by the route.

t hrow new Exception("Force fail")

Executing the Route

e Click the Run button in the Run view to launch the execution of your Route. You can also press F6 to
execute it.

RESULT: The "hello world!" message is tested and a rollback transaction is performed. Once the message
redelivery attempts exceeds six times, the pending message is sent to the Dead Letter IM S Queue.

Consuming the message from the DeadLetter JMS queue

| ms

- |
cIMSConnectionFactory 1

s . . -
. P owed R
DeadletterQueuslMSs Printisg

Dropping and linking the components

1. From the Palette, drop the three following components onto the design workspace: one
¢JM SConnectionFactory, one cJM S and one cProcessor component.

2. Connect the cJM S component to the cProcessor component using a Row > Route connection.

Configuring the components
1. Double-click the cJM SConnectionFactory component to display its Basic settings view in the Component
tab.
% Job(Route Con |52 Component &8 B Run {Job Consu | (21 Problems Contexts(Route =0

ms . o
% cJMSConnectionFactory_1 E=
Basic settings M Server ActiveMQ - * Use Transaction
Broker URI "tepe/flocalhost:61616" *

Advanced settings
F——— Use PooledConnecticnFacotry
View

Documentation

2. From the MQ Server ligt, select an MQ server. In this use case, we use the default ActiveMQ server to
handle the messages.

3. IntheBroker URI field, typein Active MQ's default URI of the localhost server: "tcp://localhost:61616".

62 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario 2: Setting up aJMS local transaction

4.

Double-click the cJM S component labeled DeadL etter QueueIJMSto display its Basic settings view.
5 Job(Route Con | 52 Component &3 [B= Run (Job Consu [3_ Problems | ' Contexts(Route = 0O

=1
JME Cia

—pn DeadletterQueueJMS(cJMS_1)

Basic setti URl

asic ings Type queue = |*

Advanced settings .
- - Destination "SctiveMQ.DLO"

Dynamic settings

View CDHHECtiDﬂFECtDr}fD cIM5ConnectionFactory_1 *

Documentation

5. Fromthe Typelist, select queue to send the messages to a IM S queue.

In the Destination field, type in a name for the IMS queue, "ActiveMQ.DLQ" in this use case (the default
Dead Letter Queue in ActiveMQ).

Double-click the[...] button next to ConnectionFactory. Select the IMS connection factory that you have
just configured in the dialog box and click OK .. Y ou can also enter the name of the cJM SConnectionFactory

component directly in thefield.
4 Select IMS ConnectionFactory: Iél

aigy cIMSConnectionFactory 1

QK] ’ Cancel

6. Double-click the cProcessor component labelled PrintMsg to display its Basic settings view in the

Component tab, and customize the code in the Code area to display the received message intercepted on
the console.

System out. println("AMQ Receive: "+
exchange. get I n() . get Body(String.cl ass));

Executing the Route

e Click the Run button in the Run view to launch the execution of your Route. You can also press F6 to
executeit.

RESULT: The "hello world!" message that wasin the Dead Letter queue is consumed, as shown in the Run
console.

Talend Open Studio for ESB Mediation Components Reference Guide 63

Scenario 3: Sending and receiving a scheduled delivery of messages from a JMS Queue using Camel Quartz

Execution
Run | [Kill C

Total 1 route=, of which 1 i= ~
=tarted.

[main]
DefaultCanslContext IHFO
Apache Camel 2.9 2-SHAPSHOT
(CamelContext: ConsunerDLO-ctx)
=tarted in 0.618 seconds
[2tati=tic=s] connecting to socket
on port 3832

[stati=tic=s] connected

AMD) Receive: Test Data: hello
world!

m

Line limit | 100 Wrap

Scenario 3: Sending and receiving a scheduled
delivery of messages from a JMS Queue using Camel
Quartz

This scenario will show you how to use the Camel Quartz component to provide a scheduled delivery of messages
from a JM S Queue.

To do this, we will build two Routes, a message producer Route and a consumer Route. We will implement the
Quartz component in the producer Route to send scheduled messages to a IMS Queue. The messages are then
consumed by the consumer Route.

In this use case, we will use Apache ActiveMQ as the message broker. We need to launch the ActiveMQ server

before executing the Route. For more information about installing and launching ActiveMQ server, see the site
http://activemq.apache.org/index.html.

Building the producer Route
Dropping and linking the components
ms

-
cIMSConnectionFactary 1

. . . R
B—————=p | jpp I
" roukel — route? routed =il
" guartzConsumer cSetBody 1 logMessage jmsProducer

1. From the Palette, drag and drop a cJMSConnectionFactory, a ¢cJMS, a cSetBody, and two
cM essagingEndpoint components onto the design workspace.

64 Talend Open Studio for ESB Mediation Components Reference Guide

http://activemq.apache.org/index.html

Scenario 3: Sending and receiving a scheduled delivery of messages from a JMS Queue using Camel Quartz

2. Label the componentsfor better identification of their roles and link them with the Row > Route connection
as shown above.

Configuring the components

1. Double-click the cJM SConnectionFactory component to display its Basic settings view in the Component
tab.

ms . e E
% cJMSConnectionFactory_1
Basic settings MO Server ActiveMQ - [* Use Transaction
Broker URI "tepi/flocalhost61616" *

Advanced settings

Fe——— | Use PooledConnectionFactory

Vi Max Connections 1
iew
Documentation Max Active 500

Idle Timeout(in ms) 30000
Expiry Timecut(in rms) 60000

2. Fromthe MQ Server list, select ActiveM Q to handle messages.

Inthe Broker URI field, typein the URI of the local Active MQ server, "tcp://localhost:61616".

Select the Use PooledConnectionFatory check box and keep the default settings.
3. Double-click the quartzConsumer component to open its Basic settings view in the Component tab.

= D
—# = guartzConsumer (cMessagingEndpoint_1) —

Basic settings IIRI "quartz: [{HelloWorld?trigger . repeatInterval=20008&trigger . repeatCounk=-1"
Advanced setkings
Drwnarnic sektings

Wi

Documentation

4, In the URI field, enter the code "quartz://Hell oWorl d?
trigger.repeatlnterval =20008& ri gger . repeat Count =-1" to define a timer for starting message
exchanges. Inthisuse case, wewant the message to be delivered endlessly between aninterval of two seconds.
For more information about Quartz, see the site http://camel .apache.org/quartz.html.

Click the Advanced settings view. Click . " at the bottom of the Dependencies list to add a row and
select quar t z from the drop-down list. For more information about the Quartz component, see the site http://
camel .apache.org/quartz.html.

Talend Open Studio for ESB Mediation Components Reference Guide 65

http://camel.apache.org/quartz.html
http://camel.apache.org/quartz.html
http://camel.apache.org/quartz.html

Scenario 3: Sending and receiving a scheduled delivery of messages from a JMS Queue using Camel Quartz

—#8 quartzConsumer{cHessagingEndpoint_1)

Dependencies A
Basic settings R Zamel component
Advanced settings quarkz
[rvnamic settings
Wiew
Dacument ation
|:| Use a cuskor companent b

6. Double-click the cSetBody component to open its Basic settings view in the Component tab.
=0
=+ | cSetBody_1 [
Basic settings Language Simple b
Advanced settings Expression "Hello world"
Cwnamic setkings
Wigt

Documentation

7. Select Simple from the Language list box and typein" Hel 1 o wor | d" inthe Expression field.

8. Double-click the logM essage component to open its Basic settings view in the Component tab.
&
—»8 |logMessage({cMessagingEndpoint_2) ==
Basic settings IURI "log:quartzMessage"
Advanced settings
Dynamic settings
Wigsta

Daocumentation

9. IntheURI field, enter "I og: quart zMessage" where the message exchanges are logged.
10. Double-click the jmsProducer component to display its Basic settings view in the Component tab.

IMS En”[:
—pn jmsProducer(cIMS_1)

Basi i LRI
asic settings Type queue |
Advanced settings
= = Destination "guartzTest" *
[wnamic settings
Mg ConneckionFackory E] cIMSConnectionFackary 1 *

Documentation

66 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario 3: Sending and receiving a scheduled delivery of messages from a JMS Queue using Camel Quartz

11. Fromthe Type list, select queue to send the messages to a JM S queue.

In the Destination field, type in aname for the IMS queue, " quart zTest " in this use case.

Inthe ConnectionFactory field, enter the name of the IM S connection factory that you have just configured.

12. Press Ctrl+Sto save your Route.

Viewing the code and executing the Route

1.

Click the Code tab at the bottom of the design workspace to check the generated code.

public void initFoute () throws Exception
routeBuilder = new ord.apache.camel.builder.RouteBuilder()

public void configure () throws Exception |
fromiuriMap.get ("gquartzConsumer™)) .routeId /|
ouartzConsumer ™) . setBody () . simple |
"Hello world"™).id("c3etBody 17) .tof
urilMap.get ("logMessage™)) . id |
"oMessagingEndpoint 27) .Co |
urilMap.get ("jmsProducer™)) . id("eJMS 17 ;

y:
getCamelContexts () .get (0) .addRoutes (routeBuilder) ;

{

As shown above, the message flow from quar t zConsuner is given apayload by cSet Body_1 and then sent

tol ogMessage and j msPr oducer .
Press F6 to execute the Route.

RESULT: Thelogs of the message exchange are printed in the console.
Execution

[ztati=stics] connecting to sockest on port 3802 S

[ztati=tics] connected

[er—ctx_Worker-Z2] guartzlessage IHED

Ezxzchange[ExchangePattern: InOnly. BodyTvpe:String.

Body :Hello world]

[er—ctx_Worker-3] guartzMessage IHFD

Ezxzchangse[ExchangePattern: InOnly. BodyTvpe: String.

Body:Hello world]

[er—ctE_Worker—4] quartzMes=zages IHFOD

Ezxzchange[ExchangePattern: InOnly. BodyTvype: String.

Body :Hello world]

[exr—ctx_Worker-5] guartzMes=zage IHFO

Exchange[EzchangePattern: Intnly, BodyTyvpe:String.

Body :Hello world]

Jabh rartslnsusner andaed & 14056 SRS TIE. fara e code=87
W

[ILirme limit |10 Wrap

Talend Open Studio for ESB Mediation Components Reference Guide

67

Scenario 3: Sending and receiving a scheduled delivery of messages from a JMS Queue using Camel Quartz

Building the consumer Route
Dropping and linking the components

| dms

.|
cIMSConnectionFackory 1

IS)
a routel
—E—n
jmsConsumer logMessage

I o

1. From the Palette, drag and drop a cJMSConnectionFactory, a cJMS, and a cMessagingEndpoint

component onto the design workspace.

2. Label the componentsfor better identification of their roles and link them with the Row > Route connection

as shown above.

Configuring the components

1. Double-click the cJM SConnectionFactory component to display its Basic settings view in the Component

tab.

ﬁ cJMSConnectionFactory_1

= [
o]

M3 Server ActiveMQ - [* Use Transaction

Basic settings
T —— Eroker URI tep:/flocalhost:61616

——— | Use PooledConnectionFactory

- Max Connections 1
View

Documentation Max Active 500

Idle Timeout(in ms) 30000
Expiry Timecut(in ms) &0000

2. Configure the cJM SConnectionFatory component the same as in the producer Route.

*

3. Double-click the jmsConsumer component to display its Basic settings view in the Component tab.

=06
==

JME
—p = imsConsumer(cIMS_1)
- - LRI
Basic settings Tvpe queue e [*
Advanced settings
Dynamic settings Destination "guartzTest" *
Wigw ConnectionFactory E] cIMSConnectionFackory 1 [*

Documentation

4. ConfigurethejmsConsumer component the same as the jmsProducer component in the producer Route to

consume the messages in the defined queue " quart zTest .

68 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario 3: Sending and receiving a scheduled delivery of messages from a JMS Queue using Camel Quartz

5. Double-click the logM essage component to open its Basic settings view in the Component tab.
E
—» = |logMessage(cMessagingEndpoint_2) =a

Basic settings LRI log:quartzMessage

Advanced setkings
Dywnamic settings
Wi

Documentation

6. IntheURI field, enter "I og: quart zMessage" where the message exchanges are logged.

7. PressCtrl+Sto save your Route.

Viewing the code and executing the Route

1. Click the Codetab at the bottom of the design workspace to check the generated code.

public void initRoute() throws Exception |

routebuilder = new ord.apache.camel.builder.RouteBuilder ()] 1
public void configure() throws Exception |
fromi{uriMap.get ("jmsConsumer ™)) .routeld (" jmsConswumer ™)
LofuriMap.get (Tloglessage™)) . id |

"eMessagingEndpoint 17)

b
getCamelContexts () .get (1) .addRoutes (routebBuilder) ;

As shown above, the message flow is routed from j msConsumer to| ogMessage.
2. PressF6 to execute the Route.

RESULT: The logs of the message exchange are printed in the console.

Execution
[stétistics] connected ~
[mer[quartzTe=st]] gquartzMessage IHFD

Exchange[ExchangePattern: InOnly,. BodyTvpe:String.
Body:Hello world]

[mer[quartz=Te=zt]] gquartzMes=zages IHFO
Exchange[ExchangePattern: InOnly,. BodyTvpe:String.
Body:Hello world]

[mer[quartzTe=t]] guartzMes=zage IHFO
Exchange[ExchangePattern: InOnly,. BodvyTvpe:String.
Body:Hello world]

[mer[quartzTe=t]] guartzMes=zage IHFO
Exchange[EzchangePattern: InOnly, BodyTvpe:String.
Body:Hello world]

[mer[quartzTe=t]] guartzMes=zage IHFO
Exchange[EzchangePattern: InOnly, BodyTvpe:String.
Body :Hello world]

[mer[quartz=Te=t]] guartzMes=zages IHFO
Exchange[EzchangePattern: InOnly,. BodyType:String. "

T A . TT_ 11 . ____. 1317

[tire limit [100 Wrap

Talend Open Studio for ESB Mediation Components Reference Guide 69

cMail

cMail

cMail Properties

Component family Messaging

Function cMail is designed to send or receive mails.

Purpose Sends or receives mailsin aroute.

Basic settings Protocols List of protocolsfor sending or receiving mails.
Host Host name of the mail server.
Port Port number of the mail server.

UserName and Password | Login authentication data.

Subject Subject of the mail being sent.
Content Type The mail content type.
From The mail sender.
To The mail receivers.
CcC The CC recipients of the mail. Separate multiple email addresses
with acomma.
BCC The BCC recipients of the mail. Separate multiple email
addresses with a comma.
Advanced settings Arguments Click the [+] button to add lines as needed in the Arguments
table. Then, enter the name and value of an argument.
Usage When used as a start component, cM ail isintended to receive mails. Otherwiseg, it is intended
to send mails.
Limitation n/a

Scenario: Using cMail to send and receive mails

This scenario includes two routes. The first one sends a mail while the second receivesit.
Now we build aroute to send a mail.
Mail sending

1. Drop the components from the Palette onto the workspace: cFile, cMail and cProcessor, respectively
labelled asMail_to_send, Send_Mail and Mail_Sent.

2. Link the components using a Row > Route connection.

— . . . = . . . S
—p O rouke 1 TlL= roukes "H
Mail_to_send ' © Send_Mal ' © Mai_Sent

3. Double-click cFile to open its Basic settings view in the Component tab.

70 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Using cMail to send and receive mails

FILE .
—pn Mail_to_send(cFile_1)

e, " -
Basic settings Path E:/ESBFILE E]
Advanced setkings ar:]aﬂr;peters
Crwnamic setkings |:| Flatten
Vi
= AutoCreate
Documentation
Buffersizelkb) "1zg"
Encoding CUSTOM PPl R
FileMarme I'test mail Ext"

4. Click the[...] button next to the Path field to select the folder that has the file to send.

5. IntheFileNamefield, enter the name of thefile to send, test mail.txt in this use case. Keep the default setup

of other items.

The content of thisfileistest mail body.

6. Double-click cMail to open its Basic settings view in the Component tab.

27 Send_Mail(cMail_1)

Basic settings Protocols
advanced settings Host
Dvnarnic setkings serMame
ig Subject
Documentation

Fram

ZiZ

7. IntheProtocolslist, select smtps.

==

skps s

"smkp, grmail, com” Port ™

contexk JSERMAME |Password |conkext, PASSWORD

ContentType | "text/plain®

To |conkexk USERMAME

BCC |

Inthe Host field, typein the host name of the smtp server, smtp.gmail.comin this use case.

In the User Name and Password fields, enter the login authentication credentials, which are in the form of
context variablesin thisexample. For more information about context variabl e setup, see Talend Open Studio

for ESB User Guide.

K eep the default setting of the ContentTypefield, i.e. text/plain.

Inthe To field, enter the receiver of the mail, which is also in the form of context variable in this example.

8. Double-click cProcessor to open its Basic settings view in the Component tab.

& o Mail_Sent{cProcessor_1)

Basic settings Code

Advanced settings
Crwnamic setkings
Wigw

Docurnentation

Iyztem.out.println("Mail sent™):

9. Inthe Code box, enter the code below to give a prompt after the mail is sent.

Talend Open Studio for ESB Mediation Components Reference Guide

71

Scenario: Using cMail to send and receive mails

Systemout. println("Mil sent");

10. Savethe route and press F6 to run.

[ztati=tic=s] connecting to zocket on port 3612
[stati=tic=] connected
Mail =ent

As shown above, the mail has been sent out successfully.
Now we build a route to receive the mail.
Mail receiving

1. Drop the components from the Palette onto the workspace: cMail and cProcessor, respectively labelled as
Recelve Mail and Mail_Body.

2. Link the components using a Row > Route connection.

] P [=
= routel e @
Receive_Mail ' ' ' ’ ’ Mail_Body

3. Double-click cMail to open its Basic settings view in the Component tab.

= AR E
ﬂ Receive_Mail{cMail_1)

Basic settings Protocols maps o8
Advanced settings Host “imap.gmail, com" Port ["993"
Dynamic setkings LserMame context. JSERMNAME |Passward |conbext,PASSWORD
Vi Subiject ContentType | "texk/plain®
Documentation

Fram To

cc nn BCC m

4. IntheProtocolslist, select imaps.
5. IntheHost field, type in the host name of the imap server, imap.gmail.comin this use case.
6. InthePort field, typein the port number, 993 in this use case.

7. Inthe UserName and Password fields, enter the login authentication credentials, which are in the form of

context variablesin thisexample. For more information about context variabl e setup, see Talend Open Studio
for ESB User Guide.

8. Keep the default setting of the ContentType field, i.e. text/plain.

9. Double-click cProcessor to open its Basic settings view in the Component tab.
& & Mail_Body(cProcessor_1)

Code

Basic settings Jystem.out.printlniexchange.getIn()

Advanced settings getBody(3tring.class)) ;
Dvnarnic settings
Wi

Documentation

72 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Using cMail to send and receive mails

10.

11.

In the Code box, enter the code below to print the mail body.
System out . pri ntl n(exchange. getln().get Body(String.class));

Save the route and press F6 to run.

[=ztati=stic=] Duﬁnecting to socket on port 3915
[statistics] connected
te=t mail bodwy

As shown above, the mail has been received and its content is test mail body.

Talend Open Studio for ESB Mediation Components Reference Guide

73

cMessagingEndpoint

cMessagingEndpoint

cMessagingEndpoint properties

Component Family Messaging
Function cM essagingEndpoint allows two applications to communicate by either sending or receiving
messages, one endpoint can not do both.

Purpose cM essagingEndpoint sends or receives messages.

Basic settings URI URI of the messages to send or receive. It can be of different
format:
-File: "file:/",
-Database: "jdbc:/",

-Protocols: "ftp:/", "http:/"
-etc.

Y ou can add parameters to the URI using the generic URI syntax,
for example:

"file:/directoryNane?opti on=val ue&opti on=val ue"
For more information on the different components that can be

used in cMessagingEndpoint, see Apache Camel’ s Website: http:/
camel .apache.org/components.html.

Advanced settings Dependencies By default, the camel core supports the following components:
bean, browse, class, dataset, direct, file, language, log, mock,
properties, ref, seda, timer, vm.

To use other components, you have to provide the dependencies
corresponding to those components in the cM essagingEndpoint
component. To do so:

Click the plus button to add new lines in the Camel component
list. In the line added, select the component you want to use in
cM essagingEndpoint. For moreinformation about the commonly
used Camel components, see section Commonly used Camel
components.

Use a custom component | If you want to use a custom component, select this check box
and click the three-dot button to upload a jar file with your own
component.

All the transitive dependencies of this custom
2 component should beincluded in thejar file.

Usage This component can be used as sending and/or receiving message endpoint according to its
position in the Route.

Limitation n/a

Commonly used Camel components

Thefollowing tablelists the most commonly used Camel componentsthat can be called by cM essagingEndpoint.

74 Talend Open Studio for ESB Mediation Components Reference Guide

http://camel.apache.org/components.html
http://camel.apache.org/components.html

Commonly used Camel components

Component / Artifactld / URI

Description

ActiveMQ / activemg-camel

activeny: [topic:]destinati onNane

For IMS Messaging with Apache ActiveMQ

Atom / camel-atom

atomuri

Working with Apache Abdera for atom integration, such as
consuming an atom feed.

Bean / camel-core

bean: beanNane[?rmret hod=sonmeMet hod]

Usesthe Camel Bean Binding to bind message exchangesto beans
in the Camel Registry. Is aso used for exposing and invoking
POJO (Plain Old Java Objects).

Cache/ camel-cache

cache: // cachenane[?opti ons]

The cache component facilitates creation of caching endpointsand
processors using EHCache as the cache implementation.

Class/ camel-core

cl ass: cl assNane[?net hod=soneMet hod]

Usesthe Camel Bean Binding to bind message exchangesto beans
in the Camel Registry. Is aso used for exposing and invoking
POJOs (Plain Old Java Objects).

Context / camel-context

cont ext: canmel Cont ext| | ocal Endpoi nt Nane

Used to refer to endpoints within a separate CamelContext to
provide a simple black box composition approach so that routes
can be combined into a CamelContext and then used as a black
box component inside other routes in other Camel Contexts

Crypto (Digital Signatures)

crypto: sign: nane[?options],
opti ons]

crypto:verify: nane[?

Used to sign and verify exchanges using the Signature Service of
the Java Cryptographic Extension.

CXF / camel-cxf

cxf:address[?servi ced ass=...]

Working with Apache CXF for web servicesintegration

CXF Bean / camel-cxf

cxf: bean name

Process the exchange using aJAX WS or JAX RS annotated bean
from theregistry. Requires |ess configuration than the above CXF
Component

CXFRS/ camél-cxf

cxfrs: address[?resourcesC asses=...]

Working with Apache CXF for REST services integration

Direct / camel-core

di rect: nane

Synchronous call to another endpoint from same Camel Context

Event / camel-spring

event://default, spring-event://default

Working with Spring ApplicationEvents

Exec / camel-exec

exec:// execut abl e[?opti ons]

For executing system commands

File/ camel-core

file://nameOfFileODirectory

Sending messages to afile or polling afile or directory.

Flatpack / camel -flatpack

fl at pack: [fixed|delin:configFile

Processing fixed width or delimited files or messages using the
FlatPack library

Freemarker / camel-freemarker

freemar ker : soneTenpl at eResour ce

Generates a response using a Freemarker template

FTP/ camel-ftp

ftp://host[:port]/fileName

Sending and receiving files over FTP.

FTP/ camel-ftp (FTPS)

ftps://host[:port]/fileName

Sending and receiving files over FTP Secure (TLS and SSL).

HI7

m na: tcp://hostnane[: port]

For working with the HL7 MLLP protocol and the HL7 model
using the HAPI library.

Talend Open Studio for ESB Mediation Components Reference Guide

75

http://activemq.apache.org/
http://incubator.apache.org/abdera/
http://ehcache.org/
http://camel.apache.org/context.html
http://apache.org/cxf/
http://apache.org/cxf/
http://flatpack.sourceforge.net
http://freemarker.org/

Commonly used Camel components

Component / Artifactld / URI

Description

HTTP4/ camel-http4

http4://hostnanme[: port]

For calling out to external HTTP servers using Apache HTTP
Client 4.x

Mail / camel-mail

i map: // host nane[: port]

Receiving email using IMap

Jasypt / camel-jasypt

jasypt: uri

Simplified on-the-fly encryption library, integrated with Camel.

JCR/ camel-jcr

jcr://user:password@ eposi tory/ path/to/ node

Storing a message in a JCR (JSR-170) compliant repository like
Apache Jackrabbit

JDBC / camel-jdbc

j dbc: dat aSour ceNane?opt i ons

For performing JDBC queries and operations

Jetty / camel-jetty

jetty:url

For exposing services over HTTP

JMS/ camel-jms

jms:[topic:]destinati onNane

Working with IMS providers

JMX / camel-jmx

jmx://platfornfoptions

For working with JIMX notification listeners

JPA / camel-jpa

jpa://entityName

For using a database as a queue via the JPA specification for
working with OpenJPA, Hibernate or TopLink

Jsch / camel-jsch

scp://1ocal host/destination

Support for the scp protocol.

Log/ camel-core

1 0og: | oggi ngCat egor y[?I evel =ERRCR]

Uses Jakarta Commons Logging to log the message exchange to
some underlying logging system like log4j

Lucene/ camel-lucene

| ucene: searcher Nane: i nsert [?anal yzer =<anal yzer >]

Uses Apache L ucene to perform Java-based indexing and full text
based searches using advanced analysi s/tokenization capabilities

Mail / camel-mail

mai | ://user-info@ost: port

Sending and receiving email

Mock / camel-core

nock: name

For testing routes and mediation rules using mocks

Mail / camel-mail

pop3://user-info@ost: port

Receiving email using POP3 and JavaMail

MyBatis/ camel-mybatis

nybati s:// st at emrent Nane

Performs a query, poll, insert, update or delete in a relational
database using MyBatis

Properties/ camel-core

properties://key[?options]

The properties component facilitates using property placeholders
directly in endpoint uri definitions.

Quartz / camel-quartz

quartz://groupNane/ti mer Name

Provides a scheduled delivery of messages using the Quartz
scheduler

Ref / camel-core

ref : nane

Component for lookup of existing endpoints bound in the Camel
Registry.

RMI / camél-rmi

rm://host[:port]

Working with RMI

76 Talend Open Studio for ESB Mediation Components Reference Guide

http://jackrabbit.apache.org
http://openjpa.apache.org/
http://www.hibernate.org/
http://mybatis.org/
http://www.opensymphony.com/quartz/
http://www.opensymphony.com/quartz/

Commonly used Camel components

Component / Artifactld / URI

Description

RSS/ camel-rss

rss:uri

Working with ROME for RSS integration, such as consuming an
RSS feed.

SEDA / camel-core

seda: name

Asynchronous call to another endpoint in the same Camel Context

Servlet / camel-servlet

servlet:uri

For exposing services over HTTP through the servlet which is
deployed into the Web container.

FTP/ camel-ftp (SFTP)

sftp://host[:port]/fileNane

Sending and receiving files over SFTP (FTP over SSH).

Mail / camel-mail

sntp://user-info@ost[:port]

Sending email using SMTP and JavaMail

SMPP / camel-smpp

snpp://user-info@ost[:port]?options

To send and receive SMS using Short Messaging Service Center
using the JSSMPP library

SNMP / camel-snmp

snnp: // host[: port] ?options

Polling OID values and receiving traps using SNM P via SNMP4J
library

Spring Integration / camel-spring-integration

spring-integration: defaultChannel Narme

The bridge component of Camel and Spring Integration

SQL / camel-sql

sqgl :select * fromtable where id=#

Performing SQL queries using JDBC

SSH / camel-ssh

ssh: [usernane[: password] @ host [:port][?options]

For sending commands to a SSH server

Stub

st ub: someQt her Canel Uri

Allows you to stub out some physical middleware endpoint for
easier testing or debugging

Test / camel-spring

t est : expect edMessagesEndpoi nt Uri

Creates aMock endpoint which expectsto receive al the message
bodies that could be polled from the given underlying endpoint

Timer / camel-core

tinmer://name

A timer endpoint

Velocity / camel-velocity

vel oci ty: someTenpl at eResour ce

Generates a response using an Apache Velocity template

VM / camel-core

vn nane

Asynchronous call to another endpoint in the same VM

XQuery Endpoint/ camel-saxon

xquery: someXQuer yResour ce

Generates a response using an X Query template

XSLT / camel-spring

xsl t: someTenpl at eResour ce

Generates aresponse using an XSLT template

Zookeeper

zookeeper://host:port/path

Working with ZooK eeper cluster(s)

Talend Open Studio for ESB Mediation Components Reference Guide 77

http://rometools.org/
http://code.google.com/p/jsmpp/
http://snmp4j.com
http://www.springframework.org/spring-integration
http://velocity.apache.org/
http://www.w3.org/TR/xslt
http://camel.apache.org/zookeeper.html

Scenario 1: Moving files from one message endpoint to another

Scenario 1: Moving files from one message endpoint
to another

This scenatio uses two cM essagingEndpoint components to read and move files from one endpoint to another.

bp B

m
" roukel

Sender ' ' Feceiver

Dropping and linking the components

1. From the Messaging folder of the Palette, drag and drop two cM essagingEndpoint components onto the
design workspace, one as the message sender and the other as the message receiver, and label them Sender
and Receiver respectively to better identify their roles in the Route.

2. Right-click the component labeled Sender, select Row > Route in the menu and drag to the Receiver to link
them together with aroute link.

Configuring the components and connections

1. Double-click the component labeled Sender to open its Basic settings view in the Component tab.
2. Inthe URI field, typeinthe URI of the messages you want to route.

Aswe are handling files, type in "file://[" and the path to the folder containing the files.
=0
—#8 Sender(cMessagingEndpoint_1) [

Basic settings LRI "File; J {00 fralend_Files/esb)input”
Advanced setkings
Crvnarmic sekkings
Wiew

Document ation

3. Double-click the component labeled Receiver to open its Basic settings view in the Component tab.
4. IntheURI field, typeinthe URI of the folder where you want to route your message.

Aswe are handling files, type in "file://[" and the path to the folder to which the files will be sent.

78 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario 2: Sending files to another message endpoint

=0
—» 8 Receiver(chMessagingEndpoint_2) =5 [
Basic settings LRI File: Jf /D ftalend_Filesfesbfoukput
Advanced settings
Dwvnamic settings
View

Dacument ation

5. Press Ctrl+Sto save your Route.

Viewing code and executing the Route

1. Tohavealook at the generated code, click the Code tab at the bottom of the design workspace.

public void initRoute () throws Exception |
routebBuilder = new org.apache.camel.builder.FouteBuilder() |
public void configure () throws Exception |
from(urilap.get ("Iender™)) .routeld("Iender™) . Lo
uriMap.get ("Receiver™)) .id|
foMessagingEndpoint 27)

b2
getCame lContexts () .get (0) .addRoutes (routeBuilder) ;

The code shows the f romand . t o corresponding to the two endpoints: f r omfor the sending one and . t o
for the receiving one.

2. Inthe Run view, click the Run button to launch the execution of your Route.
Y ou can also press F6 to execute it.
RESULT: Thefilesare moved from their original folder to the target one. Furthermore, anew .camel folder

iscreated in the source folder containing the consumed files. Thisis Camel’ s default behavior. Thus, thefiles
will not be processed endlessly but they are backed up in case of problems.

Scenario 2: Sending files to another message
endpoint

This scenario accesses FTP service and transfers files from one endpoint to another.

m P |
" roukel

Sender ' ' Feceiver

Talend Open Studio for ESB Mediation Components Reference Guide 79

Scenario 2: Sending files to another message endpoint

Dropping and linking components

From the M essaging folder of the Palette, drag and drop two cM essagingEndpoint components onto the
design workspace, one as the message sender and the other as the message receiver, and label them Sender
and Receiver respectively to better identify their roles in the Route.

Right-click the component labeled Sender, select Row > Route in the menu and drag to the Receiver to link
them together with aroute link.

Configuring the components and connections

1. Double-click the component labeled Sender to display its Basic settings view in the Component tab.
2. Inthe URI field, typein the URI of the message you want to route.
Here, we are using an FTP component: ft p: / /i ndus@legas/ r eny/ camel with URI specific parameters
authenticating the FTP connection: ?user name=i ndus&passwor d=i ndus.
E
—p 8 Sender{cMessagingEndpoint_1) ==
Basic settings JRI "ftp: ffindus@degas)remy fcamelrusername=indus&password=indus"
Advanced setkings
Dwnamic settings
Wiew
Dacurentation
3. Forthe FTP component towork in Camel, click the Advanced settingstab of cM essagingEndpoint, click the
[+] button to add a Camel component in the Dependencies table, and select ftp from the Camel component
list to activate the FTP component.
=8 Sender{cMessagingEndpoint_1)
Basic settings Dependencies Zamel component
Advanced settings ftp
Dryvnamic setting=
Wiew
Ciocumentatian
4 3
|:| IJse a cuskon component
4. Double-click the component labeled Receiver to open its Basic settings view in the Component tab.
5. Inthe URI field, typeinthe URI of the folder to which you want your message to be routed.
Aswe are handling files, type in "file://[" and the path to the folder to which the files will be sent.
80 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario 3: Using an Xquery endpoint to filter messages

=0
—» 8 Receiver(chMessagingEndpoint_2) =5 [
Basic settings LRI File: Jf /D ftalend_Filesfesbfoukput
Advanced settings
Dwvnamic settings
View

Dacument ation

6. PressCtrl+Sto save your Route.

Viewing code and executing the Route

1. Tohavealook at the generated code, click the Code tab at the bottom of the design workspace.

protected void initUriMap() 1
uriMap = new Jjava.util.HashMap<String, 3tring=():
uriMap.put ("Sender™,
"frp: S indusidegas/ remy/ came 1 Pusername=indus spassword=induz") ;
uriMap.put ("Receiver®, "file:///D:/talend files/esh/outpuc™):

public void initBoute() throws Exception |
routeBuilder = new org.apache.camel.builder.FouteBuilder (] |
public void configure (] throws Exception {
from(uriMap.get ("Iender™)) .routeld("Iender™) .to|
uriMap.get ("Receiver™)) .id(

"ocMessagingEndpoint 27 ;

Fr
getCamelContexta () .get (0) .addRoutes (routeBuilder)

In this part of code, we can see a route represented by fromand . t o, corresponding to the sending and
receiving endpoints.

2. Inthe Run view, click the Run button to launch the execution of your Route.
Y ou can also press F6 to executeit.

RESULT: The messageis sent (copied) to the receiving endpoint.

Scenario 3: Using an Xquery endpoint to filter
messages

In this scenario, we will use a cM essagingEndpoint component to call a Route Resource as an Xquery parser to
extract messages from the local file system.

The following sample XML fileis used in this scenario:

Talend Open Studio for ESB Mediation Components Reference Guide 81

Scenario 3: Using an Xquery endpoint to filter messages

<peopl e>
<person id="8">
<firstNanme>El | en</first Nane>
<l ast Name>Ri pl ey</ | ast Nane>
<ci t y>Washi ngton</ci ty>
</ per son>
<person id="9">
<firstName>Peter</firstNanme>
<l ast Nane>G een</ | ast Nanme>
<ci ty>London</ci ty>
</ per son>
</ peopl e>

Creating a Route Resource

1. Fromthe repository tree view, right-click the Resour ces node and select Cr eate Resour ce from the context
menu.
Repository &3 o Mavigator =8
LOCAL: ESBDEMOS = | ,::g,‘:. e~

> 88 Routes

3 E‘fl Resoy
Conte

> Code
> 3} Recys Expand/Collapse

Create Resource

&

Create folder

Import items

Export items

{EZ ‘_-‘I:__)Z

2. The New Route Resour ce wizard opens. In the Name field, type in a name for the Resource, for example,
SampleXquery. Click Finish to close the wizard.

82 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario 3: Using an Xquery endpoint to filter messages

4% MNew Route Resource . l [=] |ﬁj

Create Route Resource

Create a new Route Resource

Source File Browse

Mame SampleXquery

Purpose

Description -

Authar test@talend.com

Locker

Version 01

Status -

@:J Finish l ’ Cancel

hy — J

3. Enter the following codein the editor to extract the firstName and lastName of all the person elements.

decl are nanmespace nsO="http://com sap/b";

<peopl e>

{

for $p in /peoplel//person

return
<per son>
<firstName>{$p/firstName/text()}</firstName>
<l ast Nanme>{ $p/ | ast Nane/t ext ()} </ | ast Nane>
</ per son>

}

</ peopl e>

4. PressCtrl+Sto save your Route Resource.

Dropping and linking the components

e =]
| routel route?
. |, L —a—n
Message_scurce AQueryParse Menitor

Talend Open Studio for ESB Mediation Components Reference Guide 83

Scenario 3: Using an Xquery endpoint to filter messages

1. From the Messaging folder of the Palette, drag and drop a cFile and a cM essagingEndpoint component
onto the design workspace.

2. From the Processor folder, drag and drop a cProcessor component onto the design workspace.
3. Link the components with the Row > Route connection as shown above.

4. Labe the components for better identification of their functionality.

Configuring the components and connections

1. Double-click the cFile component to open its Basic settings view in the Component tab.

FILE : =n |:
—»n Message _source(cFile_1)

"Dt I o . —
Basic settings Path D:/data/input/file
A.dvanced settings EPZZFS?EFS
View [Flatten
Documentation AutoCreate
BufferSize(kb) "128"
Encoding CUSTOM - | *
FileMame

2. Inthe Path field, specify the path where the source file peoplexml is located.

3. Right-click the Route from the repository tree view and select M anage Route Resour ces from the context
menu.

84 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario 3: Using an Xquery endpoint to filter messages

4.

i
*Repository &2 - TT Na?igatoq
LOCAL: ESBDEMOS
4 5B Routes
i 3 ErrerHandler
[OO JMSteHTTP
[3 Resource
0B cCHFO0A
@ cMess]
lgﬁ Conte EB Open Route
58 Demo & Read Route
S8 RESTty @F Edit Route Manifest
B :?WiT &7 Edit properties
$ S!mpl 58 Open another version
imp
b |'='ﬁ Resource |-§‘|=_| Manage Route Resources
1 Contexts| 3 Delete
(8 Recydek o | Duplicate
S8 Run Route
&] Export Route
Ga Export iterns

The Manage Route Resour ces wizard is opened.

-
1‘}‘-’ Manage Route Resources

Manage Route Resources

Manage Route Resources

Route Resource Version Type Path

Copy Path

| ok

|| cancel

In the Manage Route Resour ces wizard, click Add and select SampleXquery from the Resources tree view

inthe dialog. Click OK.

Talend Open Studio for ESB Mediation Components Reference Guide

85

Scenario 3: Using an Xquery endpoint to filter messages

i '
£ Select a Route Resource @
-

4 2] Resources
|-§‘|=_| DemoServiceWsdl 0.1

E‘a SampleXquery 0.1

0] 4] [Cancel

The SampleXquery Route Resource is added in the table of the M anage Route Resour ces wizard.

{f Manage Route Resources

Manage Route Resources

Manage Route Resources

Route Resource Version Type Path

SampleXquery Latest User-Defined SampleXquery
EMOVE
Copy Path

QK] ’ Cancel

-

5. Select the SampleXquery from the Route Resources list and click Copy Path. Click OK to close the wizard.

6. Doubleclick the cM essagingEndpoint component to display its Basic settings view in the Component tab.

=o ||
—»= XQueryParse(cMessagingEndpoint_1) = E
Basic settings LRI "wqueny:sampleXquery”
Advanced settings
View

Documentation

7. Inthe URI field, enter xquery: and paste the path of the Route Resource SampleXquery that we just copied
in double quotation marks.

8. Click the Advanced settings tab, add the Camel component saxon in the Dependencies list. For more
information about Xquery, see Apache Camel’s Website: http://camel .apache.org/xquery-endpoint.html.

86 Talend Open Studio for ESB Mediation Components Reference Guide

http://camel.apache.org/xquery-endpoint.html

Scenario 3: Using an Xquery endpoint to filter messages

9.

== XQueryParse(cMessagingEndpoint_1)

Basic settings
Advanced settings
View

Documentation

Dependencies

Carmel component

=3xon

1| 1] 3

;

Double-click the cProcessor component to open its Basic settings view in the Component tab.

;;f_.i.p Monitor(cProcessor 1)

Basic settings Imports

Advanced settings
Code
View

Documentation

S iimport java.util.Lis=st;

System.ocut.println{exchange.getIn() . =
getBody (String.class)) ;

10. Inthe Code area, enter the following code to display the messages intercepted on the console;

System out . pri ntl n(exchange. getln().get Body(String.class));

11. Press Ctrl+Sto save your Route.

Viewing code and executing the Route

1

To have alook at the generated code, click the Code tab at the bottom of the design workspace.

m

=0 =
== (1

Talend Open Studio for ESB Mediation Components Reference Guide

87

Scenario 3: Using an Xquery endpoint to filter messages

public void initRoute() throws Exception {
routeBuilder = new org.apache.camel.builder.BRouteBuilder() {
public wvoid configure|() throws Exception {

from(uriMap.get ("Mes=zage source cFile 1"))
.routeld("Message source cFile 1")
.o luriMap
.get ("XQueryParse cHessagingEndpoint 17))
.id("cHessagingEndpoint 1")
.process (new org.apache.camel.Processor() {
public wvoid process|
org.apache.camel .Exchange exchange)
throws Exception {
Svstem.out
.println("People in London:‘n"
+ exchange
getIn)
.getBody |

String.class));

}).id("cProcessoxr_1"):

As shown in the code above, the message is routed from Message_source_cFile_1

cMessagi ngEndpoi nt _1 and then processed by cPr ocessor _1.

.to

2. In the Run view, click the Run button to launch the execution of your Route. You can also press F6 to

execute it.

RESULT: The firstName and lastName of all the person elements of the source fileis printed in the console.

Job cMessagingEndpoint

Execution
Basic Run

Debug Run Run = Kill Clear

Advanced Settings

Target Exec [ma:!.n 1 DefaultCamelCDr}text INFD Ar =
g [main] ultManagemehtlifecycleStrategy INFO St
[main] FileEndpoint INFO Er
[main] FileEndpoint INFO 1=
[main] DefaultCanselContext INFD Rc
[main] DefaultCanselContext INFD Tc

[main] DefaultCanelContext INFD Ar L

[statistics] connecting to socket on port 3805
[=tatistic=] connected

(peoples<perzonr<firstHame:Ellen<-firstHamns:<lastHamn=:Rig

4 I I

Line limit | 1p0 Wrap

88 Talend Open Studio for ESB Mediation Components Reference Guide

cTimer

cTimer

cTimer properties

Component Family

Messaging

Function The cTimer component generates message exchanges when atimer triggers.
Pur pose The cTimer component allows you to schedule message exchanges.
Basic settings Period Fill thisfield with an integer (in milliseconds) to generate message
exchanges every period.
Repeat Specifiesamaximum limit of message exchange numbers. A value
of zero or negative will generate message exchanges forever.
Delay The number of milliseconds to wait before the first message
exchangeis generated. This option should not be used with the Set
Schedule Time option.
Fixed Rate Select this check box to generate message exchanges at regular
intervals, separated by the specified period.
Daemon Specify whether the thread associated with the timer endpoint runs
as a daemon.
Set Schedule Time Select this check box to specify the time that the first message
exchange should be generated. In the Time field, enter the
time using the pattern yyyy- M dd HH: mm ss or yyyy- M
dd' T' HH: nm ss.
Usage cTimer can only be used as a start component in a Route.
Limitation n/a

Related Scenario:

For arelated scenario, see section Scenario: Using cDataset to receive messages.

Talend Open Studio for ESB Mediation Components Reference Guide 89

Talend Open Studio for ESB Mediation Components Reference Guide

Miscellaneous components

This chapter details the major components that you can find in Miscellaneous family from the Palette of the
Mediation perspective of Talend Open Studio for ESB.

The Miscellaneous family groups components that cover the needs such as iterating a Route or stopping a Route.

Talend Open Studio for ESB Mediation Components Reference Guide

cLog

cLog

cLog properties

Component Family

Miscellaneous

Function cL og logs message exchanges to the underlying logging mechanism. Apache Camel provides the regular
logger and the throughput logger. The default logger logs every exchange. The throughput logger logs
exchanges on a group basis. By default regular logging is used.

Pur pose cL og is used to log message exchanges.

Level Select a logging level from DEBUG, ERROR, INFO, OFF,
TRACE, or WARN.
Use default output log message | Select this option to use the default output log message provided by
the underlying logging mechanism.
Options/ None Select this option to take no action on the log message.
(For default output log message
only)
Options/ Specifiesa group sizefor | Select this option to use throughput logging and specify agroup size
throughput logging for the throughput logging.
(For default output log message|Size: Enter an integer that specifies a group size for throughput
only) logging.
Options / Group message stats by | Select this option to use throughput logging and group message
timeinterval (in millis) statistics.
(For default output log message|Interval: Specify the time interval (in milliseconds) by which the
only) message statistics will be grouped.
Delay: Set theinitial delay (in milliseconds) for message statistics.
Options/ Format the log output | Select thisoption to format thelog output. Click [+] asmany timesas
required to add arguments to the table. Then click the corresponding
(For default output log message|value field and enter a value. See the site http://camel.apache.org/
only) log.html for available options.
Soecify output log message Select this option to specify the output log message.
Message: Use Simple language to construct a dynamic message
which gets logged.
Usage cLogisused asamiddle or end component in a Route.
Limitation n/a

Related scenario:

For arelated scenario, see section Scenario: Routing messages according to a criterion.

92

Talend Open Studio for ESB Mediation Components Reference Guide

http://camel.apache.org/log.html
http://camel.apache.org/log.html

cLoop

cLoop

cLoop properties

Component Family Miscellaneous
Function cL oop allows you to process a message or messages anumber of times and possibly in different
ways.

Purpose cL oop is used to process a message or messages repetitively.

Basic settings Loop Type Select a type of loop to be carried out: Expression, Header, or
Value.
Expression: Use an expression to determine the loop count.
Header : Use a header to determine the loop count.
Value: Use an argument to set the loop count.
When using Expression: In the Language field, select the
language of the expression you want to use to determine the
loop count between Constant, EL, Groovy, Header, Javascript,
JoSQL, JXPath, MVEL, None, OGNL, PHP, Property,
Python, Ruby, Simple, SpEL, SQL, XPath, XQuery. Type in
the expression in the Expression field.
When using Header: Enter the name of the header that you want
to use to determine the loop count in header field.
When using Value: Enter an integer you want to set as the loop
count in the valuefield.

Usage cL oop can be amiddle component in a Route.

Limitation n/a

Related scenario:

No scenario is available for this component yet.

Talend Open Studio for ESB Mediation Components Reference Guide 93

cStop

cStop

X

cStop properties

Component Family Miscellaneous

Function cStop stops the Route to which it is connected.

Purpose cStop stops the Route to which it is connected.

Usage cStop is not a start component, but it can be amiddle or end component in a Route.
Limitation n/a

Related scenario:

For arelated scenario, see section Scenario: Intercepting several routes and redirect themin a single new route
of section clntercept.

94 Talend Open Studio for ESB Mediation Components Reference Guide

Processor components

Thischapter detailsthe major componentsthat you can find in Processor family from the Palette of the M ediation
perspective of Talend Open Sudio for ESB.

The Processor family groups components that help you to perform all types of processing tasks on message flows
such monitoring the message sent or received, setting the message exchange mode, controlling the delivery time,

and so on.

Talend Open Studio for ESB Mediation Components Reference Guide

cBean

cBean

cBean properties

=

Component Family Processor
Function cBean invokes a Java bean that is stored in the Code node of the Repository or registered by
acBeanRegister.
Purpose cBean alows you to invoke a Java bean that is stored in the Code node of the Repository or
registered by acBeanRegister.
Basic settings Reference Select this option to reference a Java bean registered by a
cBeanRegister.
Inthe | d field that appears, enter the Id of the Java bean.
New Instance Select this option to invoke a Java bean that is stored in the Code
node of the Repository.
In the Bean class field that appears, enter the name of the bean
class.
For more information about creating and using Java Beans, see
Talend Open Studio for ESB User Guide.
Soecify the method Select this check box to enter the name of amethod to be included
in the bean.
Usage cBean can be a start, middle or end component in a Route.
Limitation n/a

Related Scenario

For arelated scenario, see:

» cConvertBodyT o: section Scenario: Converting the body of an XML fileinto an org.w3c.dom.Document.class.

9% Talend Open Studio for ESB Mediation Components Reference Guide

cDelayer

cDelayer

w71

cDelayer properties

Component Family Processor

Function The cDelayer component delays the delivery of messages.

Purpose The cDelayer component allows you to set alatency in message routing.

Basic settings Time to wait (in ms) Fill this field with an integer (in milliseconds) to define the time
to wait before sending the message to the subsequent endpoint.

Usage This component is usually used in the middle of a Route.

Limitation n/a

Scenario: Using cDelayer to delay message routing

In this scenario, a cDelayer component is used to delay the routing of each message to the target endpoint by
20 seconds.

FILE _ : : : FILE : S
—>E ool TR oo Tt e Tkl el TR
‘Read " Read_monitor Delay_timer Write " Writer_monitor

Dropping and linking the components

This use case requires one cDelayer component, two cFile components, and two CProcessor components.

1. From the Messaging folder of the Palette, drop two cFile components onto the design workspace, one to
read filesfrom alocal folder and the other to write the files to another local folder.

2. From the Processor folder of the Palette, drop two cProcessor components onto the design workspace, one
next to the reading component to monitor messages read from the source file folder, and the other next to the
writing component to monitor messages written to the target file folder.

3. Fromthe Processor folder of the Palette, drop onecDelayer component onto the design workspace, between
the message reading monitor component and the message writing component.

4. Connect the components using Row > Route connections.

5. Label the components to better identify their roles in the Route, as shown above.

Configuring the components

1. Double-click the first cFile component, which is labelled Read, to open its Basic settings view in the
Component tab.

Talend Open Studio for ESB Mediation Components Reference Guide 97

Scenario: Using cDelayer to delay message routing

FILE . = [:
—pn Read(cFile_1)
. & B +*

Basic settings Path D ftalend_files/input [I]
Advanced settings a;'jzlgpeters
Dynamic settings I:l Elatten
View
: AutoCreate
Documentation —

Buffersize (kb) 128

Encoding CUSTOM || *

FileMame

2. Inthe Path field, enter or browse to the path to the source files, and leave the other parameters as they are.
3. Repeat these steps to define the target folder in property settings of the second cFile component, which is
labelled Write.
4. Double-click the first cProcessor component, which is labelled Read monitor, to open its Basics settings
view in the Component tab.
g E
% Read_monitor(cProcessor_1) =L
Basic settings Code IDE'.t.E date=new Date():
Advanced settings SimpleDateFormat formatter = new
e SimpleDateFormat ("HH:mm:=ss") ; .
String =5 = formatter.format (date);
view System.out.println("ynMessage "+
Documentation exchange.getIn() .gecHeader ("CamelFilellame") +
" read at "+(=3)):
5. Inthe Code area, customize the code to display the time each message is read from the source:
Dat e dat e=new Date();
Si npl eDat eFormat formatter = new Si npl eDat eFor mat (" HH: nm ss") ;
String s = formatter. fornmat (date);
System out . println("\nMessage "+
exchange. get I n() . get Header (" Canel Fi | eNane") +
" read at "+(s));
6. Repeat these steps to configure the second cProcessor component, which is labelled Write_monitor, to
display the time each message is written to the target:
Dat e dat e=new Dat e();
Si npl eDat eFormat formatter = new Si npl eDat eFor mat (" HH: nm ss") ;
String s = formatter. fornat (date);
System out. println("Message "+
exchange. get I n() . get Header (" Canel Fi | eNane")+ " witten at "+(s));
7. Double-click the cDelayer component, which islabelled Delay_timer, to open its Basic settingsview in the
Component tab.
98 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Using cDelayer to delay message routing

=-®-8 Delay_timer(cDelayer_1) =S [

Basic settings Time to wait {inms) | 20000 *

Advanced settings
Dynamic settings

View

8. Inthe Timeto wait (in ms) field, enter the number of milliseconds by which you want to delay message
delivery. Note that the value must be a positive integer.

In this use case, we want each message to be delivered after a 20-second delay.

9. Press Ctrl+Sto save your Route.

Viewing the code and executing the Route

1. Click the Codetab at the bottom of the design workspace to have alook at the generated code.

public void initRoute () throws Exception {
routeBuilder = new org.apache.camel.builder.RouteBuilder ()
public woid configure() throws Exception {
from(uriMap.get ("Read™)) .routeld ("Read") .process |

new org.apache.camel .PFrocessor ()
public void process|
org.apache.camel .Exchange exchange)
throws Exception {

Date date = new Datel():
SimpleDateFormat formatter = new SimpleDateFormat |
"HH:mm:==") ;
String = = formatter.format (date):
System.out.println("\nMessage "
+ exchange.getIn() .getHeader |
"CamelFileMName")
+ " read at " + (=3)):
Py .id("cPFrocessor 1").delay (20000).1d4(
"eDelayer 1") .to(uriMap.get ("Write™)) .id|
"cFile E”T.pr:cessi

Asshown inthe code, a 20-second delay isimplemented according to . del ay(20000) inthe messagerouting
f romthe Read endpoint . t o thew i t e endpoint.

2. Press F6 to execute the Route.

RESULT: Each message read from the source folder is routed to the target folder after a 20-second delay.

Talend Open Studio for ESB Mediation Components Reference Guide 99

Scenario: Using cDelayer to delay message routing

Execution
Kl

cDelaver _=l-ctx) =started in 0.313 =s=econds
[ztati=tics] connecting to zocket on port 3941
[stati=tic=] connected

Mes=zage Hello. txt read at 12:06:27
Mes=zage Hello. tzxt written at 12:06:47

Heszage World. tzt read at 12:06:47
Hesz=zage World. txt written at 12:07:07

100 Talend Open Studio for ESB Mediation Components Reference Guide

cExchangePattern

cExchangePattern

™, B

LPE]

cExchangePattern properties

Component Family Processor

Function cExchangePattern can be configured to indicate the message exchange mode.

Purpose cExchangePattern allows you to set the message exchange mode.

Basic settings Exchange Patterns Select the message exchange mode from InOnly or InOptionalOut,

InOut, Outln, OutOptionalln, RobustInOnly, RobustOutOnly.

Usage Asamiddle component in a Route, cExchangePatter n allows you to set the message exchange
mode.

Limitation

Scenario: Enabling the InOut exchange pattern to get
replies

Inthisscenario, acExchangePatter n component is used to enabl e the request/reply exchange pattern in the Route,
so that the client can get areply from the server.

—_— . . S . . L
= routel ML routeZ "
wwebService_producer Set_exchange_mode Build_reply_message

To send requests to the server side, a soapUl is needed and its configuration will be briefed in the following
contents.

To build the Route, do the following.

Dropping and linking the components

1. From the Processor folder of the Palette, drag and drop a cCXF, a cExchangePattern and a cProcessor
onto the workspace, and label them WebService producer, Set_exchange mode and Build_reply _message
respectively to better identify their rolesin the Route.

2. Link cCXF to cExchangePattern using a Row > Route connection.

3. Link cExchangePattern to cProcessor using a Row > Route connection.

Configuring the components

1. Double-click cCXF to open its Basic settings view in the Component tab.

Talend Open Studio for ESB Mediation Components Reference Guide 101

Scenario: Enabling the InOut exchange pattern to get replies

CXF = G
—pn WebService_producer(cCXF_1)

. " CXF Configurakion
Basic settings

Address "http:fflocalhost: 5000/ service, endpoint” *
Adwanced settings
Type wisdILIRL w
Dwnamic settings
e WSDL File " /Documents and Settings/Andy ZHAMG/Deskiop/airport_soap_route_0.1,wsdl" *[:]
Docurnentation Dataformat PAYLOAD s
|:| Service

ESE Features
|:| Use Service Locatar

|:| Idse Service Ackivity Monitor

2. Inthe Addressfield, leave the default setting unchanged.

3. IntheTypelist, select wsdlURL.

4. IntheWSDL Filefield, enter the URL of thewsdl file. Y ou can also click thethree-dot button to browsefor it.
5. Inthe Dataformat list, select PAYLOAD.

6. Double-click cExchangePattern to open its Basic settings view in the Component tab.
2 EX
| B | Set_exchange_mode(cExchangePattern_1) ==

Basic settings Exchange Patterns |InOuk w

Advanced settings
Dwnamic settings
Wi

Daocumentation

7. Inthe Exchange Patternslist, select InOut to enable the request/reply message exchange mode.

8. Double-click cProcessor to open its Basic settings view in the Component tab.

- =0
% Build_reply_message(cProcessor_1) ==

Code StringBuilder sh = new StringBuilder():

Basic settings
Advanced settings sh.append("<tns:getlirportcInformationEBy
IZOCountryCodeResponse
Hinlns:ths=% "http:/ airportsoap.sopera.d
SEEUE
sh.append("<tns:getlirportcInformationEBy
IZOCountryCodeResult>This is a
response</tnaigetlirport InformationByIs
OCountryCodeResulcs-") ;
sh.appendi("</tns:getlirportInformationk
vIGOZountryCodeResponse>") ;
exchange.getout (] .setBody (sh.Co3tringi)

1

Dwnamic sekkings
Wiew

Documentation

9. Inthe Code box, enter the code below.

102 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Enabling the InOut exchange pattern to get replies

StringBuilder sb = new StringBuilder();

sb. append(" <t ns: get Ai rport | nf ormati onByl SOCount ryCodeResponse xm ns:tns=\"http://
ai rport soap. sopera. de\">");

sh. append(" <t ns: get Ai r port | nf or mat i onByl SCCount r yCodeResul t >This is a response</
tns: get Ai rport | nfornmati onByl SOCount r yCodeResul t >") ;

sb. append(" </tns: get Ai rport| nfornmati onByl SOCount ryCodeResponse>") ;

exchange. get Qut () . set Body(sb.toString());

Asshown above, astring isbuilt here and isused as areply message of theroute. Itisin line with the message
definition of the above wsdl file.

10. Press Ctrl+Sto save your Route.

Viewing code and executing the Route

1. Click the Codetab at the bottom of the design workspace to check the generated code.

public void initRoute|) throws Exception {
routeBuilder = new org.apache.camel.builder.RouteEBuilder ()
public void configure() throws Exception {
ff CEF endpoint for WehZervice producer

org.apache.cawel.Endpoint endpointWeb3ervice producer = endpoint (uriMap
Lget ("WebService producer™));

from (endpointiWebiervice_producer) .routeld|
"WebhZervice producer”) .setExchangePattern(

org.apache.camel.ExchangePattern. Infut) . id |
"cExchangeFattern 1") . process |
new org.apache,camel . Processor (] |
public void process|
org.apache.camel.Exchange exchange)
throws Exception {
StringBuilder sh = new StringBuilder():
sh.append("<tns:getlirportInformationEyI30CountryCodeResponse " +
"xmlns:tns=\ "http://airportsoap. sopera.del "> 2
sh.append(f<tns:getlirportInformationEyIS0CountryCodeResult>" +
"Thi= iz a response</tns:getlirportInformationByI30CountryCodeResults>") ;
sh.append("</tns:getlirport InformationEyIS0OCountryCodeResponses") ;
exchange.getOut (] . setBody |
sh.to3tring()):

b

) .id({"cProcessor_1");

As shown above, the route has its message exchange pattern set as Inout using the method
. set ExchangePat t er n(or g. apache. canel . ExchangePattern. I nQut) . In the meantime, a string is
created using StringBui | der sb = new StringBuilder() a cProcessor_1 and is used as the reply
message via the method exchange. get Qut () . set Body(sb.toString()).

2. PressF6 to execute the Route.

The server Route gets started.

Creating and sending a request to the server Route and getting a
reply

1. Inthe soapUl, create a Test project and edit arequest, asillustrated below:

Talend Open Studio for ESB Mediation Components Reference Guide 103

Scenario: Enabling the InOut exchange pattern to get replies

& New soapUIl Project E]

New soapUI Project

Creates a new soapUI Project in this workspace

Project Name: | Test

Initial WSDL/WADL:

Ildy ZHANG\Desktoplairport_soap_route_0.1 .wsdl” [Browse...

=L Optionali—=

<fsoapenv.Body>=
<=fsoapenv.Envelope=

=air:getAirportinformationBylSOCountryCode=

<air:CountryAbbrviation=This is a request</air: Country Abbrviation=
<fair.getAirportinformationBylISOCountryCode=

Create Requests: Create sample requests for all operations?
Create TestSuite: [] Creates a TestSuite for the imported WSDL or WADL
22 Request 1

> = O i @ [http:!ﬂo-:alhost:Soou,iservi-:e.endpoint
/§_ =soapeny.Envelope xmins: soapenv="http: fischemas xmlsoap orgisoaplenvelope
= | =soapenv:Header/>

% =soapeny:Body>

(-4

Note that the wsdl file must be same as that configured for cCXF, so that the request can be in line with the
definition of the web service.

2. Send the request to the server Route and you can get the reply, asillustrated below:

0
AF

Request 1

Raw 7 xML

ERERO0%.

htkp) flocalhost: 5000/ service , endpoink

-

=zoapeny. Envelope xminz soapeny="http: fzchems
=zoapeny:Header =
=zoapeny.Body=
=air:getdirpotinformationByl=0CountryCode=
= Cpliongi—=
=air: Country &bbrvistion=Thiz iz a request=raiy
=rair. getAirpotinformationEyviSOCountry Code=
=lzoapeny. Body=
disnapenv:EnveIDpe::l

i

<

—|#

Raw 7 =ML

= xmlzoap orgisoapienvelope™s

CodeResponze xminztnz="Http: Fairportsoap sopers
ryCodeResult=Thiz iz a rezponse=Anz: getAirportinfg
CodeResponzes=

104

Talend Open Studio for ESB Mediation Components Reference Guide

cJavaD SL Processor

cJavaDSLProcessor

E}E

cJavaDSLProcessor properties

Component Family

Processor

Function cJavaDSL Processor implements producers and consumers of message exchanges or
implements a Message Trandlator using the Java Domain Specific Language (DSL).

Purpose cJavaDSL Processor can be usable for quickly whirling up some code using Java DSL. If the
code in the inner class gets a bit more complicated it is of course advised to refactor it into a
separate class.

Basic settings Code Type in the code you want to implement using Java DSL.

Usage cJavaDSL Processor is used as amiddle or end component in a Route.

Limitation n/a

Related scenario:

For arelated scenario, see section Scenario: Wiretapping a message in a Route.

Talend Open Studio for ESB Mediation Components Reference Guide 105

cProcessor

cProcessor

cProcessor properties

Component Family Processor

Function cProcessor implements consumers of message exchanges or implements a Message Translator.

Pur pose cProcessor can be usable for quickly whirling up some code. If the code in the inner class gets
abit more complicated it is of course advised to refactor it into a separate class.

Basic settings Imports Enter the Java code that helps to import, if necessary, external

libraries used in the Code box.

Code Type in the Java code you want to implement.

Usage cProcessor is used as a middle or end component in a Route.

Limitation n/a

Related scenario:

For arelated scenario, see section Scenario: Intercepting several routes and redirect themin a single new route
of section clntercept.

106 Talend Open Studio for ESB Mediation Components Reference Guide

cTaendJob

cTalendJob

*%

cTalendJob properties

Component Family

Processor

Function cTalendJob calls a Data Integration Job either from the repository or exported as an OSGI

Bundle For ESB.

Pur pose cTalendJob allowsyouto call aDatalntegration Job in aMediation Route. For moreinformation
on how to build a Job and how to export a Job as an OSGI Bundle for ESB, see Talend Open

Studio for ESB User Guide.

Basic settings Repository Select this option to call a Job from the Repository.

External Select this option to call a Job that is exported as an OSGI Bundle For ESB.

Job This field appears when Repository is selected. Click [...] to show the Job
Designstree view and select the Job that you want to call in your Route.

Version Thisfield appears when Repository is selected. Select the version of the Job if
more than one verson of the Job is available.

Library This field appears when External is selected. Select the library you want to
import from the list, or click on the[...] button to import the jar library of your
Job.

Job This field appears when External is selected. Type in the name of the
package and the name of your job separated by a point. For example:
route_project.txmimap_0_1.tXMLMap To get this naming, you can open
the jar library of your Job, go to OSGI-INF > blueprint and edit the
job.xml file, the naming is available in a bean node like <bean i d="j ob"
class="route_project.txm map_0_1.t XM-Map"/>

Context Select fromthelist or typein the name of the context to use to execute your Job.

Usage cTalendJob can be a start, middle or end component in a Route.
Limitation n/a

Scenario: Using camel message headers as context
parameters to call a job

In this scenario, a Data Integration Job is built with a context variable defined in the Integration perspective.
Then, aRouteisestablished in the M ediation perspective with the message header defined the same asthe context
variablein the DI Job. Meanwhile, acTalendJob component is deployed to call the DI Job and pass the value of
the Route's message header to the DI Job's context variable.

Building a DI Job and exporting it as an OSGI Bundle for ESB

1. In the Integration perspective, drop the following components from the Palette onto the workspace:
tFixedFlowl nput and tL ogRow.

2. Link the components using a Row > Main connection.

Talend Open Studio for ESB Mediation Components Reference Guide 107

Scenario: Using camel message headers as context parametersto call ajob

‘tFixedFlowInput_1

o

rowel (Main
tLogRow_1

3. Double-click tFixedFlowl nput to open its Basic settings view in the Component tab.
=P tFizedFlowinput_1 .
Basic settings Schema Edit schema E]
Advanced settings Mumber of rows |1
Crymamic setkings Mode
View (%) Use Single Table
Docurnentation Values CehmR Yalle
File context.File
4. Click the[...] button next to Edit schema to open the schema editor.
% Schema of tFixedFlowlnput_1 E]
FFixedFlowInput_1
Colurmn kKev Tvpe w| M. DateP... Le... Pr... D.| C..
file: (] string
[I,] [Cancel
Click the [+] button to add aline.
Enter file as the column name and choose Sring as the data type.
Click OK to close the editor.
5. Select the Use Single Table option and enter context.file as the value.
Note that the context default with the variable file has been defined.
For more information about the context setup, see Talend Open Sudio for ESB User Guide.
6. Double-click tL ogRow to open its Basic settings view in the Component tab.
=0 |
E@I tLogRow_1 £2
Basic settings Schems Edit sche
Advanced settings |""|DI:|E_
Dwnamic sektings O Basic
iz (%) Table (print values in cells of a table)
S) wertical {each row is a kevvalue list)
108

Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Using camel message headers as context parameters to call ajob

7. Select Table (print valuesin cells of a table for a better display.
8. PressCtrl+Sto save the Job.
9. Export the Job as an OSGI Bundle for ESB.

10. Unzip the generated jar file.

Building a Route for exchanging messages and calling the DI Job

1. Inthe Mediation perspective, drop the following components from the Palette onto the workspace: cFile,
cSetHeader and cTalendJob, respectively labelled as File_Source, Set_ Header and Call_DI-Job.

2. Link the components using a Row > Route connection.

HER } } } E } } } @
—po rouke 1 o Fouke? il

File_Source " get Header " Cal_DpI-Joh

3. Double-click cFile to open its Basic settings view in the Component tab.

=0
FILE = [
—pu File_Source(cFile_1)
A +
Basic settings Path conbest. root_dir [I]
; Paramekters
Ad d sett
vanced settings [Noop
Crynamic sektings [JFiatten
vi
— AukoiZreake
Documentakion
BufferSizelkb) "1z2a"
Encoding CLISTOM [*
Filerarne

4. InthePath field, enter the variable context.root_dir to specify the file path.
Keep other default settings asthey are.
For more information about the context setup, see Talend Open Sudio for ESB User Guide.

5. Double-click cSetHeader to open its Basic settings view in the Component tab.

B
‘_LL, Set_Header(cSetHeader 1) E=
. . Headers it
Basic settings Mame Language Walue
Advanced settings | "file” Simple "Stheader.camelfilename]”
View

m

Documentation

]

Talend Open Studio for ESB Mediation Components Reference Guide 109

Scenario: Using camel message headers as context parametersto call ajob

6.

10.

Click [+] to add arow to the Header s table.

In the Name field, enter file, which is the same as the context variable of the DI Job.
Select Smple from the Language list.

In the Valuefield, enter ${header.camelfilename} to get the file name.

Double-click cTalendJob to open its Basic settings view in the Component tab.

Exi=
% Call_DI-Job(cTalendJob_1) == _,

Repository @ External

Basic settings
- External Jar
e e Library cTalendlob_ShowContextVar-01,jar -
View
Job "work.ctalendjob_showcontextvar_0_1.cTalendlob_ShowContextVar”
Documentation
Context "Default”

Select the External option and click the[...] button to browse the generated jar file for the DI Job.

Go to the unzipped folder of the above JAR file and open the job.xml in the <DI_Job_JAR_Path>\OSGI-
INF\blueprint folder, E:\cTalendJob_ShowContextVar-0.1\OSGI-INF\blueprint in this example.

Go to the bean tag and copy the content of the attribute class,
work.ctalendjob_showcontextvar_0_1.cTalendJob_ShowContextVar in this example.

Pasteit in the Job field.

Press Ctrl+S to save the Route.

Viewing the code and executing the Route

1

Click the Codetab at the bottom of the design workspace to check the generated code.

public void initRoute () throws Exception |
routefuilder = new ord.apache.camwel.builder.RouteBuilder() 1
public void configure() throws Exception {
from{urilap.get ("File Source™) |
routeld("File Jource')
.2etHeader ("£ile"™)
Bimple (S header.cawelfilenamel)
-id({"c3etHeader 1')
.tol
"talend: "™
+ "work.ctalendjolh showocontexty:
+ fYocontext=" + "Defgult™).id|
"eTalenddob 1) :;

Asshown above, Fi | e_Sour ce providesafilefor the message exchange, cSet Header setsamessage header
and uses the source file name as the header value, and finally that value is passed to cTal endJob_1 for
execution of the DI Job.

Press F6 to execute the Route.

110

Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Using camel message headers as context parameters to call ajob

3. Putafileinto the folder specified by context.root_dir, test mail.txt in this example.

The result below can be found.

[stati=stics] connecting to soclket on port 3471
[tati=stic=s] connected

i tLogRow_1 i

| test mail.t=t|

As shown above, the source file name is displayed via tL ogRow as the Route's message header value has
been passed to the context variable of the DI Job.

Talend Open Studio for ESB Mediation Components Reference Guide 111

Talend Open Studio for ESB Mediation Components Reference Guide

Routing components

This chapter details the major components that you can find in Routing family from the Palette of the M ediation
perspective of Talend Open Sudio for ESB.

The Routing family groups components that moves messages from one endpoint to another based on a set of
conditions.

Talend Open Studio for ESB Mediation Components Reference Guide

CcAggregate

cAggregate

cAggregate

.{:;I

Component Family

Routing

Number of messages

Function CAggr egate aggregates messages together according to specified conditions.
Purpose cAggregate alows you to combine a number of messages together into a single message.
Basic settings Language Select the language of the expression you want to use to
filter your messages, from Constant, EL, Groovy, Header,
Javascript, JoSQL, JXPath, MVEL, None, OGNL, PHP,
Property, Python, Ruby, Simple, SpEL, SQL, XPath, and
XQuery.
Correlation expression/ | Typein the expression that evaluatesthe correlation key to be used
Expression for the aggregation.
Srategy Specify a Java bean to use as the aggregation strategy.
Completion conditions/ | Select this check box to specify the number of messages to

aggregate per batch before the aggregation is compl ete.

By default, this check box is selected and the number

2 of messages is set to 3. If you clear this check box, and
at least one of the other four completion conditions is
met, all the messages retrieved will be aggregated in one
batch.

Completion conditions/
Inactivity ~ timeout (in
milliseconds)

Select this check box to specify the time (in milliseconds) that an
aggregated exchange should beinactive beforeit iscomplete. This
option can be set as either a fixed value or using an Expression
which allows you to evaluate a timeout dynamically.

You can not use this option together with Scheduled
2 interval. Only one of them can be used at atime.

Completion conditions/
Scheduled interval (in
milliseconds)

Select thischeck box to specify arepeating period (in milliseconds)
by which the aggregator will complete all current aggregated
exchanges.

You cannot use this option together with Inactivity

a timeout. Only one of them can be used at atime.
Completion conditions/ | Select this check box to specify a predicate to indicate when an
Predicate matched aggregated exchange is complete.
Completion conditions/ | Select this check box to aggregate al files consumed from afile

Batch consumer

endpoint in agiven poll.

Advanced settings

Check completion before
aggregating

Select this check box to check for completion when a new
incoming exchange has been received. This option influences the
behavior of the Predicate matched option as the exchange being
passed in changes accordingly. When this option is disabled, the
exchange passed in the predicateisthe aggregated exchangewhich
means any information you may store on the aggregated exchange
from the aggregation strategy is available for the predicate. When
this option is enabled, the exchange passed in the predicate is the
incoming exchange, which means you can access data from the
incoming exchange.

Close correlation group

Select thischeck box toindicatethat if acorrelation key hasalready
been compl eted, then any new exchangeswith the same correlation
key will be denied. When using this option, enter a number in

114

Talend Open Studio for ESB Mediation Components Reference Guide

CAggregate

the Maximum bound field to keep that last number of closed
correlation keys.

Ignore invalid correlation
key

Select this check box to ignore the invalid correlation key which
could not be evaluated to avalue. By default Camel will throw an
Exception on encountering an invalid correlation key.

Group arriving exchange

Select this check box to group al aggregated exchanges into
a single combined holder class that holds all the aggregated
exchanges. As aresult only one exchange is being sent out from
the aggregator. Thisoption can be used to combine many incoming
exchanges into a single output exchange.

Use persistence Select this check box to plug in your own implementation
of the repository which keeps track of the current in-flight
aggregated exchanges. By default, Camel uses a memory based
implementation.

Repository This field appears when the Use persistence

check box is selected. The repository is
AggregationRepository, HawtDBAggregationRepository, or
Recover ableAggr egationRepository.

AggregationRepository: The default repository used by Camel
which is a memory based implementation. Enter the name of the
repository in the field.

HawtDBAQggr egationRepository:
HawtDBAggregationRepository is an AggregationRepository
which persists the aggregated messages on the fly. This ensures
that you will not loose messages. With this repository selected, the
following options appear:

Use persistent file: Select this check box to store the aggregated
exchanges in afile. Enter the name of the file for the persistent
storage in the Persistent file field. If the file does not exists on
startup, it will be created.

Recovery/Use recovery: Select this check box to recover failed
aggregated exchanges and have them resubmitted automatically.
Inthe Recovery interval field, enter theinterval (in milliseconds)
to scan for failed exchanges to recover and resubmit. By default
this interval is 5000 milliseconds. In the Dead letter channel
field, enter an endpoint URI for a Dead Letter Channel where
exhausted recovered exchanges will be moved. In the Maximum
redeliveries field, enter the maximum number of redelivery
attempts for a given recovered exchange.

Recover ableAggr egationRepository:
RecoverableAggregationRepository is a JDBC based
AggregationRepository which persiststhe aggregated messageson
the fly. This ensures that you will not loose messages. Enter the
name of the repository in the field.

With this repository selected, the following options appear:

Recovery/Use recovery: Select this check box to recover failed
aggregated exchanges and have them resubmitted automatically.
Inthe Recovery interval field, enter theinterval (in milliseconds)
to scan for failed exchanges to recover and resubmit. By default
this interval is 5000 milliseconds. In the Dead letter channel
field, enter an endpoint URI for a Dead Letter Channel where
exhausted recovered exchanges will be moved. In the Maximum
redeliveries field, enter the maximum number of redelivery
attempts for a given recovered exchange.

Usage cAggregateis used asamiddle or end component in a Route.
Connections Aggregate Select this link to route messages to the next endpoint according
to the selected aggregation strategy.
Route Select thislink to route all the messages from the sender to the next
endpoint.
Limitation n/a

Talend Open Studio for ESB Mediation Components Reference Guide 115

Scenario: Aggregating three messages into one

Scenario: Aggregating three messages into one

Inthis scenario, the cAggr egate component combines three messages from thelocal file systeminto oneand prints
the messages in the console. A Java bean will be used as the aggregation strategy.

Creating a Java bean as the aggregation strategy

To aggregate the messages, we will use a Java bean that will help us build an aggregation strategy.

1. Fromtherepository tree view, expand the Code node and right click the Beans node. In the contextual menu,
select Create Bean.
[Contexts
= Code

=R Br—

E -';"xj Create Bean
] ¥ Create folder
([Expand/Collapse
& (&g Impart items
& lgl Export items
EreoregsEmTry T
[Recycle bin

2. TheNew Bean wizard opens. In the Name field, type in a name for the bean, for example, AggregateBody.
Click Finish to close the wizard.

#* New Bean |:,®

Hew Bean

Add a Route in the repository @

Mame | AggregateBody |

Purpose | |

Description

Author

Locker

|

| |
Version | ||E

|

|

Status v

Path || Select]

@ Einish l [Cancel

116 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Aggregating three messages into one

3. Typeinthe codes as shown in the figure below. In this use case, we just want to aggregate all messagesinto
asingle message.

package beans;

i mport org. apache. canel . Exchange;
i mport org. apache. canel . processor. aggr egat e. Aggr egat i onSt r at egy;

public class AggregateBody inplenents AggregationStrat egy{

publ i c Exchange aggregat e(Exchange ol dEx, Exchange newkx) {

i f (ol dEx==null){
return newkx;

}
String ol dBody ol dEx. get I n() . getBody(String.cl ass);
String newBody newEx. get I n() . get Body(String. cl ass);
newEx. get | n() . set Body(ol dBody+newBody) ;
return newkx;

}

}

4. PressCtrl+Sto save your bean.

Dropping and linking the components

FILE : L : g : : L
=»E T ot TR oot rEPe routes | R—
File source Monitor_before ~ Aggregator Monitor_after

1. Fromthe Palette, expand the M essaging folder, and drop a cFile component onto the design workspace.
2. Expand the Routing folder, and drop a cAggr egate component onto the design workspace.
3. Expand the Processor folder, and drop two cProcessor components onto the design workspace.

4. Right-click the cFile component, select Row > Routefrom the contextual menu and click thefirst cPr ocessor
component.

5. Repeat this operation to connect the first cProcessor component to the cAggr egate component.

6. Right-click the cAggregate component, select Row > Aggregate from the contextual menu and click the
second cProcessor component.

7. Label al the components to better identify their functionality, as shown above.

Configuring the components

1. Double-click the cFile component, which is labelled File _source, to display its Basic settings view in the
Component tab.

Talend Open Studio for ESB Mediation Components Reference Guide 117

Scenario: Aggregating three messagesinto one

FILE = E
—pn File_source(cFile_1) — =
e - n r Ed
Basic settings Fath D talend_files input/agoregate | E]
- Parameters
Advanced settings Noop
Dynamic settings |:| Flatten
View
AutoCreate
Documentation —
Buffersize(kb) | 123 |
Encoding |'CU5TOM wl| |*
Filerame | . |

2. Inthe Path field, browse to or enter the input file path, and |eave the other parameters asthey are.

In this scenario, there are four text files in the specified directory: a.txt, b.txt, c.txt and d.txt, the contents of
which are Thisisa! , Thisisb! , Thisisc! , and Thisisd! respectively.

3. Double-click the cAggregate component, which is labelled Aggregator, to display its Basic settings view
in the Component tab.

Eé- Aggregator(cAggregate_1) =2 E
Basic settings Language
Advanced settings Correlation expression
Dynamic settings Expression | "getBody(String. class)” |*
View Strategy | beans. AggregateBody |*
Documentation Completion conditions

Mumber of messages | 2 |*

|:| Inactivity imeout
[scheduled interval
[]Predicate matched

[1Batch consumer

4. IntheLanguagefield, select Constant or Simple as the expression language.

In the Expression field, enter the expression " get Body(String. cl ass)" to retrieve the body of the
message.

In the Strategy field, enter the name of the Java bean AggregateBody you just created.
Select the Number of messages check box and typein 2 in the field.

5. Double-click the cProcessor component labelled Monitor_before to display its Basic settings view in the
Component tab.

118 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Aggregating three messages into one

- =B
& & Monitor_before(cProcessor_1) E

Basic settings Code System.out.println ("Before

WS
g - S w [
Advanced settings aggregation:
: : exchange.getIn() .getBody (String.
Dynamic settings j -
: class)) ;
View

6. Inthe Code box, customize the code asfollows so that the Run console displays the message contents before
an aggregation takes place:

System out . println("Before aggregation: "+
exchange. get I n() . get Body(String.cl ass));

7. Inthesameway, configurethe cProcessor component labelled Monitor_after so that the Run console displays
the message contents after an aggregation takes place:

Systemout. println("After aggregation: "+
exchange. get I n() . get Body(String.cl ass));

8. Press Ctrl+Sto save your route.

Viewing code and executing the Route

1. Click the Codetab at the bottom of the design workspace to have alook at the generated code.

Talend Open Studio for ESB Mediation Components Reference Guide 119

Scenario: Aggregating three messagesinto one

public wvoid initBoute () throws Exception
routeBuilder = new org.apache.camel . builder.RouteBuilder()
poblic void configure() throws Exception
from({uriMap.get ("File =source™))
.:::te:d["?;;; ocurce™)
.process (new org.apache.camel.Processor()
publiec void process|
org.apache.camel.Exchange exchange)
throws Exception
Svstem.out
.println ("Before aggregation: "
+ exchange
getIn()
.getBody |
Scring.class)):

}).id({"cProcessor 1").aggregate |
Vi

gimple ("getBody (String.class)"),
new beans.fggregateBody ())

.complecionTimeout (1000)

.complecionFromBacchConsumer () .id |
"chggregate 1").process |
new org.apache.camel.Processori)
puobliec woid process|
org.apache,camel ,Exchange exchange)
throws Exception
System.out

.println("After aggregatcion: "
+ exchange
getIn()
getBody (

String.class)):

b).id("cProcessor 2");

As shown in the code, a message f r omthe Fi | e_sour ce endpoint is routed via cProcessor _1 and then
aggregated according to the condition . aggr egat e.

2. Click the Run view to display it and click the Run button to launch the execution of your route. You can
also press F6 to execute it.

RESULT: The four messages are aggregated in two batches, two messages combined into one each batch.

Execution
[Kl

e O = o s == === e L

[stati=tic=s] connecting to =ocket on port 3714 A
[stati=tic=] connected

Before aggregation: Thi= i= al

Before aggregation: This i= bl

After aggregation: Thi= i= al Thi= i= bl

Before aggregation: Thi= i= ol

Before aggregation: This i=s dl

After aggregation: Thi=s is c! Thi=s i= dl

120 Talend Open Studio for ESB Mediation Components Reference Guide

cDynamicRouter

cDynamicRouter

cDynamicRouter properties

Component Family

Routing

Function cDynamicRouter allows you to route messages while avoiding the dependency of the router on
all possible destinations.

Purpose cDynamicRouter is used to route a message or messages to different endpoints on specified
conditions.

Basic settings Bean class Enter the name of the bean class to be used for the dynamic router.

Soecify the method Select this check box to specify the method to be used which is
defined in the bean class.

Ignore Invalid Endpoints | Select this check box to ignore unresolved endpoint URIs. Clear
the check box to throw an exception when endpoint URIs are not
valid.

Usage cDynamicRouter isused as amiddlie or end component in a Route.
Limitation n/a

Scenario: Routing files conditionally to different file

paths

In this scenario, three file messages containing people information are routed to different endpoints according to

the city names they contain.

Thefollowing is an extract of the example XML files used in this use case:

Message 1.xml:

<per son>
<first Nanme>El | en</fi

r st Nane>

<l ast Nane>Ri pl ey</ | ast Nane>
<ci t y>Washi ngt on</ ci ty>

</ per son>
Message 2.xml:

<per son>
<first Nane>Peter</fi

r st Name>

<l ast Nanme>G een</ | ast Nane>

<ci ty>London</ci ty>
</ per son>

Message 3.xml:

<per son>
<firstNanme>Alice</fi

r st Nane>

Talend Open Studio for ESB Mediation Components Reference Guide 121

Scenario: Routing files conditionally to different file paths

<| ast Nane>Yang</ | ast Nanme>
<city>Beijing</city>
</ per son>

A predefined Java bean, setDynaUR], is called in this use case to return endpoint URIs according to the city name
contained in each message, so that the message containing the city name Washington will be routed to endpoint
Washington and so forth.

For more information about creating and using Java Beans, see Talend Open Studio for ESB User Guide.

package beans;

i mport org. apache. canel . Exchange;
i mport org. apache. canel . Header ;

i mport org.w3c. dom Docunent ;

i mport org.w3c.dom El enent ;

i mport org.w3c. dom NodelLi st ;

public class setDynaURl {
public String set URl (Docunent docunent,

@Header (Exchange. SLI P_ENDPO NT) String previous) {
i f(previous!=null){

return null;
}
NodeLi st cities = document. get Docunent El enent (). get El enent sBy TagNane(
City"):

El enent city = (Elenment) cities.itenm(0);
String textContent = city.getTextContent();
return "direct: "+t ext Content;
}
}

Dropping and linking the components

e e
T de-

routel
Message_source Cynamic_router

e I A
Washington Monitor_Washingteon
= ouws &8
London Monitor_London
e e
Beijing Monitor_Beijing

1. From the Palette, expand the Messaging folder, and drop one cFile and three cM essagingEndpoint
components onto the design workspace.

2. Expand the Routing folder, and drop acDynamicRouter component onto the design workspace.

122 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Routing files conditionally to different file paths

3. Expand the Processor folder, and drop three cProcessor components onto the design workspace.
4. Labe the components for better identification of their respective functionality.

5. Right-click the cFile component, select Row > Route from the contextual menu and click the
cDynamicRouter component.

6. Repeat this operation to connect the cM essagingEndpoint components to the cProcessor components.

Configuring the components and connections

1. Double-click the input cFile component to display its Basic settings view in the Component tab and set
its properties.

In this use case, simply specify the input file path and leave the other parameters as they are.

FILE] %[

—pn Message source(cFile_1)

Basic settings Path "[n/talend_files/input” * -

- Parameters
Ad d sett
vanc.e 5 .|ngs 7| Noop

Dynamic settings Flatten

View 7| AutoCreate

Documentation BufferSize(kh) 128"
Encading CUSTOM - *
FileMame "

2. Double-click the cDynamicRouter component to display its Basic settings view in the Component tab.

3. IntheBean classfield, type in the name of the predefined Java bean. Leave the Specify the method check
box unselected as there is only one method in the Java bean and leave the I gnore I nvalid Endpoints check
box unselected if you want the component to throw an exception when endpoint URIs are not valid.

ip Job(Route | 52 Component 3 [k Run (Job D | [£ Problems Contexts(Ro =08

=E
==

#*

-G:E Dynamic_router(cDynamicRouter_1)

Bean class beans.setDynallRlclass
Specify the method

Ignore Invalid Endpoints

Basic settings
Advanced settings
Dynamic settings
View

Documentation

4. Double-click the first cM essagingEndpoint component, which is labelled Washington, to display its Basic
settingsview inthe Component tab, and typein the URI inthe URI field for the destination of your message.

Here, we want to use this component to retrieve the message routed to the URI direct: Washington, as shown
below.

Talend Open Studio for ESB Mediation Components Reference Guide 123

Scenario: Routing files conditionally to different file paths

—8 cMessagingEndpoint_1 == E

Basic settings LRI direct:Washington

Advanced settings
Dynamic settings
View

Documentation

Repeat this step to set the endpoint URIsfor the other two cM essagingEndpoint components: direct: London
and direct: Beijing respectively.

Double-click the first cProcessor component, which is labelled Monitor_Washington, to display its Basic
settings view in the Component tab.

= =
% & Monitor Washington(cProcessor_1) =L
Basic settings Code System.out.println ("Message on endpoint
- Washington: " +
Advanced settings as.'u'ig en i)
exchange.getIn() .getHeader ("CamelFileName")) ;

Dynamic settings

Yiew

Inthe Code box, customizethe codeto display thefile name of the message routed to the endpoint Washington
on the console.

System out. println("Message on endpoi nt Washi ngton: "+
exchange. get | n() . get Header (" Carnel Fi | eNanme")) ;

Repeat these stepsto configure the other two cProcessor componentsto display thefile namesof the messages
routed to the endpoints London and Beijing respectively.

Press Ctrl+S to save your Route.

Viewing code and executing the Route

1. Click the Codetab at the bottom of the design workspace to have alook at the generated code.
public volid initRBoute () throws Exception {
routebBuilder = new org.apache.camel .builder.RouteBuilder() {
puoblic volid configure() throw= Exception {
from(uriMap.get ("Mes=sage source")) .routeld |
"Message source") .dynamicRouter |
bean (beans.setDynalRI.class)) .id|
"cDynamicRouter 1"):
Frrmm frrvdWar ot {MTiTaohd et o T ot aTA FMhla oG st e T
As shown in the code, the incoming message from the endpoint Message_source is routed
by .dynamicRouter to endpoints the URIs of which are dynamicaly set according to
beans. set DynaURl . cl ass.
2. Click the Run view to display it and click the Run button to launch the execution of your Route.
124 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Routing files conditionally to different file paths

You can also press F6 to executeit.

RESULT: The source messages are routed to different endpoints based on the city names contained in the
messages.

Execution

n | [m | [G clear

L L 1 LTS L O L LS L LT L

INFQO Total 4 routes. of which 4 i= =started.
[main] DefaultCanelContext

INFQ Apache Camsl 2.8.2 (CamnselContext:
cDvnamicRouter _sl-ctx) started in 0.747 =seconds
[stati=stics] connecting to socket on port 3429
[=tati=tics] connected

Mes=zage on endpoint Washington: MHessage_ 1. zml
Mesz=zage on endpoint London: Message 2 =ml
Mes=zage on endpoint Beijing: Hessage 3. zZml

m

Line limit {100 Wrap

Talend Open Studio for ESB Mediation Components Reference Guide 125

cldempotentConsumer

cldempotentConsumer

P=u

cldempotentConsumer properties

Component Family Routing

Function cldempotentConsumer deduplicates messages and thereby prevents the receiving message
endpoint from receiving duplicate messages.

Purpose cldempotentConsumer identifies messages that have already been sent to the receiver and
eliminates them. Messages are still sent by the sender but are ignored by the receiver at the
delivery stage.

Basic settings Repository Type Message identifiers need to be stored in a repository. For new
incoming messages, identifiers are checked against the ones stored
in the repository to identify and drop duplicates. There are two
ways to store them:

Memory: messages identifiers are stored temporarily.

The in-memory storage mode can easily run out of
.Y memory and does not work in a clustered environment.
File: messages identifiers are stored in a file. Specify the path to
thisfilein the File storefield.

File store Specify the path and name of the file storing messages identifiers.

CacheSze Type in the size of the cache, namely the number of message
identifiersto store.

Use language Select this check box if you want to specify the language used in
the Predicate field to specify the identifier of the messages.

Expression Type in the expression to use to specify the identifier of the
messages.

Eager Select this check box to detect duplicate messages even when
messagesare currently in progress, clear it to detect duplicatesonly
when messages have successfully been processed.

By default, this check box is selected.

SkipDuplicate Select this check box to drop duplicates; clear it to ignore
duplicates so that all messages will be continued.
By default, this check box is selected.

Usage cldempotentConsumer is used as a middle component in a Route.

Connections idemp The idemp link retrieves messages deduplicated by the
cldempotentConsumer component.

Route Asan optional link, the Route link retrieves all messages from the
message sender.

Limitation n/a

Scenario: Deduplicating messages while routing them

In this scenario, duplicated messages are filtered and only the unique one is routed to the destination.

126

Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Deduplicating messages while routing them

Three XML files that have the same content, as shown below, are used in this use case.

<peopl e>
<person id="8">

<first Name>El | en</first Nane>
<l ast Nane>Ri pl ey</ | ast Nane>
<ci t y>Washi ngt on</ci ty>

</ per son>
</ peopl e>

Dropping and linking the components

This use case requires one cFile component, one cldempotentComsumer component, and two cProcessor

components.
FILE W : N
s BT R s S S S
Source Deduplicator Unigque
1. From the Palette, expand the Messaging folder, select the cFile component, and drop it onto the design

workspace as the message source component.

Expand the Routing folder, select the cldempotentComsumer component and drop it onto the design
workspace as the message deduplicator.

Expand the Processor folder, drop two cProcessor components onto the design workspace, one as the
consumer for deduplicated messages and another for all messages.

Right-click the cFile component, select Row > Route from the contextual menu and click the
cldempotentComsumer component.

Right-click the cldempotentComsumer component, select Row > idemp from the contextual menu and
click the cProcessor component on the top.

Connect the cl dempotentComsumer component to the other cProcessor component using a Row > Route
connection. This optional connection will retrieve all the messages coming from the source.

Label the components to better identify their rolesin the Route.

Configuring the components and connections

1

Double-click the cFile component, which is labelled Source, to display its Basic settings view in the
Component tab.

Talend Open Studio for ESB Mediation Components Reference Guide 127

Scenario: Deduplicating messages while routing them

FILE _ [So |L
—p = Source(cFile_1)
Basic sattings Path "[r/talend_files/esh/input” " (-
Advan c.ed set.tings apzz:jrgpeters
Dynamic settings [Flatten
View AutoCreate E
Decumentation BufferSize(kh) " 78"
Encoding UTF-8 -
FileMame " il

In the Path field, specify the file path to the message source.

From the Encoding list, select the encoding type of your source files, and leave al the other parameters as
they are.

Double-click the cldempotentComsumer component, which is labelled Deduplicator, to display its Basic
settings view in the Component tab.

= _ =m [

%= 8 Deduplicator(cldempotentConsumer_1) =
Repository

Basic setti :

asic sethings Repository Type |File -
Advanced settings —

- - ? File stare "D:ftalend._files/esb/camel_temp.bt” *[o |

Dynamic settings

. Cache size 200 *
View
Documentation ["] Use language Expression xpath("/people/person”)| *

Eager

SkipDuplicate

From the Repository Type list, select between Memory and File to specify where the message identifiers
will be stored before the deduplication process. For this scenario, select File.

In the File storefield, specify the location of the file storing message identifiers.

In the Expression field, enter an expression to filter the messages. In this scenario, enter the following
expression to filter the messages according to the person node of the XML files: xpat h("/ peopl e/
person"), and leave al the other parameters as they are. Alternatively, you can select the Use language
check box, select XPath from the L anguage list, and enter "/ peopl e/ per son" inthe Predicate field.

Double-click the cProcessor component labelled Uniqueto display itsBasic settingsview inthe Component
tab.

Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Deduplicating messages while routing them

= =0 |
% & Unique(cProcessor_1) =L
Basic settings Code System.out.println ("Message consumed on e
- Onigque: "+
Advanced settings '11.qae a)
exchange.getIn() .getHeader ("CamelFileMName™)) ;

Dynamic settings
View

Documentation

6. Inthe Code area, customize the code to display the file name of the message that passes the deduplication:

System out. println("Message consumed on Uni que: "+
exchange. get | n() . get Header (" Canel Fi | eNanme")) ;

7. Repeat these steps to configure the other cProcessor component, which is labelled All, to display the file
names of all the messages coming from the source:

System out. println("Message consuned on All: "+
exchange. get I n() . get Header (" Canel Fi | eNange")) ;

8. Press Ctrl+Sto save your Route.

Viewing code and executing the Route

1. Click the Codetab at the bottom of the design workspace to view the generated code.

public wvoid initRoute() throws Exception {
routeBuilder = new org.apache.camel.builder.RouteBuilder() {
puobklic wvoid configure() throws Exception {
from (uriMap.get ("Source"))
.routeld("Source™)
.idempotentConsumer
xpath (" /people/persaon™),
org.apache.camel.processor.idenpotent . FileIdempotentRepository
.fileTdempotentRepository
new java.io.File(
"D:/talend files/esb/camel temp.txt"},
200)) .eager(truoe)
.skipDuplicate (trne)
.id("cIdempotentConsumer 1").process |
new org.apache.camel.Processor() {

In this partially shown piece of code, messages f r omthe Sour ce are filtered according to the expression
xpat h("/ peopl e/ per son") and deduplicated by cI denpot ent Consurrer _1.

2. Click the Run view to display it and click the Run button to launch the execution of your Route. Y ou can
also press F6 to execute it.

RESULT: When several files have the same content, only the first one is routed to the receiving endpoint.

Talend Open Studio for ESB Mediation Components Reference Guide 129

Scenario: Deduplicating messages while routing them

Execution

Run (= Kill | Clea
cldenpotentComnzunser_=sl-ct2) =tarted in 0,657 i
seconds

[statisztic=s] connecting to soclket on port 3634
[ztatistics] connected

Hessage consumed on Unigue: filel =ml

Hesszage consumed on All: filel . =ml

Message consumed on All: file? =ml

Hesszage consumed on All: filed. =ml

Line limit {100 Wrap

130 Talend Open Studio for ESB Mediation Components Reference Guide

cLoadBalancer

cLoadBalancer

*L3

cLoadBalancer properties

Component Family

Routing

Function cLoadBalancer allows you to distribute messages across multiple endpoints using different load

balancing strategies.

Purpose cLoadBalancer alows you to distribute messages among several endpoints using a variety of load

balancing strategies.

Basic settings Srategy Select between Random, Round Robin, Sticky, Topic, Failover, and
Custom. Each method is described below.

Random The receiving endpoint is chosen randomly at each exchange.

Round Robin Messages are distributed according to the round robin method which distributes the load evenly.

Sticky Language Select the language of the expression to use in the Expression field to
distribute the messages.

Expression Type in the expression that will be used to calculate a correlation key that
will determine the endpoint to choose.

Topic Select this option to send all the messagesto all the endpoints.

Failover Basic mode By default, the failover load balancing always sends the messages to the
first endpoint. If thefirst endpoint fails, the messages are sent to subsequent
endpoints.

Secify exceptions Specify the exceptionsto which thefailover should react to in the Exception
table.

Use with Round robin Select this option to use failover with advanced options.
From the Maximum failover attempt list, select the number of attempt to
be proceed before giving up the transfer:
-Attempt forever: always attempts to transfer the messages and always try
to failover.
-Never failover: gives up immediately the transfer of messages and never
try to failover.
-A number of attempts: attempts n number of time to transfer messages,
specify that number in the Number of attemptsfield.
Inherit error handler: Select true if you want Camel error handler to be
used. If you select false, the load balancer will immediately failover when
an exception is thrown.
Use Round robin: Select true if you want to combine failover with round
robin. Failover load balancing with round robin mode distributes the load
evenly between the services, and it provides automatic failover.

Custom Load balancer Type in the name of your custom load balancer.

Usage cL oadBalancer is used as a middle component in a Route.

Connections Load Balance Select this link to route messages to the next endpoint according to the
selected load-balancing strategy.

Route Select thislink to route all the messages from the sender to the next endpoint.

Limitation n/a

Talend Open Studio for

ESB Mediation Components Reference Guide 131

Scenario: Distributing messages to receiver endpoints based on round robin

Scenario: Distributing messages to receiver endpoints
based on round robin

Inthisscenario, acL oadBalancer component isused to distribute four messages evenly to two receiving endpoints
in accordance with the round robin load balancing method.

Dropping and linking the components

This scenario requires one cFile component as the message sender, one cL oadBalancer component to distribute
the messages to two different receivers in a load balancing manner, two cJavaDSL Processor components to
define the URIs of the receivers, two cM essagingEndpoint components to retrieve the messages routed to the
two receivers, and two cProcessor components to display the effect of round robin load balancing.

o

lerl) To_Receiver A

FILET . . . -
e routel v o

Sender Lualﬂ_balancer '

o

' Tu:u_FLec ei*.r'er_E! '

=] i
e T e
Recemner A Monitor_A
=] i
= . . ews %8
Recener B Monitor_B

From the Messaging folder of the Palette, drop one cFile component and two cM essagingEndpoint
components onto the workspace, and label them according to their roles in the Route: Sender, Receiver_A,
and Receiver_B respectively.

From the Routing folder, drop a cLoadBalancer component onto the design workspace, and label it
Load_balancer.

From the Pr ocessor folder, drop two cJavaDSL Processor componentsand two cProcessor components onto
the design workspace, and label them according to their rolesin the Route: To_Receiver A, To_Receiver_B,
Monitor_A, and Monitor_B respectively.

Link the cFile component to the cL oadBalancer component using a Row > Route connection.

Link cLoadBalancer to each of the two cJavaDSL Processor components using a Row > L oad Balance
connection.

Link each of the two cM essagingEndpoint components to the corresponding cProcessor component using
aRow > Route connection.

Configuring the components and connections

1

Double-click the cFile component to open its Basic Settings view in the Component tab.

132

Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Distributing messages to receiver endpoints based on round robin

5.

FILE -
—pn Sender(cFile_1)

Basic settings Path
- Parameters
Ad d sett
1.-'anu::.va 5 .mgs 7] Noop
Dynamic settings [Flatten
View AutoCreate
Documentation BufferSize(kh)
Encoding
FileMarne

=o|[=
o]

"[nftalend_files/input” * l:]

128"
UTF-8 -

In the Path field, specify the file path to message source.

Fromthe Encoding list, select the encoding type of your messagefiles. L eavethe other parametersasthey are.

Double-click the cL oadBalancer component to open its Basic Settings view in the Component tab, and
select the load balancing method you want to use from the Strategy list. In this scenario, we use the default

Round robin method.

. =10
OIEI Load balancer(cLoadBalancer 1) ==
=]
Basic settings Strategy Round robin =

Advanced settings
Dynamic settings

View

Double-click the cJavaDSL Processor component labeled To_Receiver_A to open its Basic Settings view
in the Component tab, and enter URI of the first receiver between the double quotation marks in the Code

area, di r ect : a in thisexample.

To_Receiver_A{cJavaDSLProcessor_1) =

Basic settings Code

Advanced settings
Dynarnic settings

View

=E

.to("directc:a") »

m

Repeat this step to define the URI of the other receiver, di rect : b, in the cJavaDSL Processor component

labeled To_Receiver B.

Double-click the cM essagingEndpoint component labeled Receiver A to open its Basic Settings view in
the Component tab, and enter URI of the first receiver between the double quotation marksin the URI field,

di rect : a inthisexample.

Talend Open Studio for ESB Mediation Components Reference Guide 133

Scenario: Distributing messages to receiver endpoints based on round robin

—»= Receiver_A(cMessagingEndpoint_4) e L

Basic settings URI "direct:a"

Advanced settings
Dynamic settings
View

Documentation

Repeat this step to define the URI of the other receiver, di r ect : b, in the cM essagingEndpoint component
labeled Receiver_B.

Double-click the cProcessor component labeled Monitor_A to open its Basic Settings view in the
Component tab, and customize the code in the Code area to display the file names of the messages routed
to Receiver_A on the console;

System out. println("Message on Receiver A "+
exchange. get | n() . get Header (" Carnel Fi | eNanme")) ;

Repeat this step to customize the code in the cProcessor component labeled Monitor_B to display the file
names of the messages routed to Receiver_B on the console.

Press Ctrl+S to save your Route.

Viewing the code and executing the Route

1

Click the Codetab at the bottom of the design workspace to check the generated code:

puoblic void initRoute () throws Exception {
routeBuilder = new org.apache.camel . builder.BRouteBuilder () {
public void configure ()} throws Exception {
from(uriMap.get ("Sender™)) .routeld ("Sendexr")
JdonadBalance () .roundBRobin () .1d{
"cLoadBalancer 1")

.to("direct:a").id ("cJavaDsLFProcessor 1")

.to("direct:b").id ("cJavalSLlProcessor 2");

As shown above, while messages are routed f r omthe source endpoint . t o the destination endpoints, routing
load balancing is implemented according to the . r oundRobi n() method by cLoadBal ancer _1.

Press F6 to run your Route.

RESULT: Of the four messages from the sender, two are routed to Receiver_A and two are routed to
Receiver B in around robin manner.

134

Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Distributing messages to receiver endpoints based on round robin

Execution

T

P T e e

started in 0.723 seconds -
[statistics] connecting to soclket on
port 3905

[ztati=tic=s] connected

Hesszage on Receiver_A: Message 1. =ml
Message on Receiver_ B: Message 2 =Zml
Message on Receiver_ A: Message 3. =Zml
Hes=zage on Receiver_B: Message 4. =ml

(]

Line limit | 1qp Wrap

Talend Open Studio for ESB Mediation Components Reference Guide 135

cMessageFilter

cMessagekFilter

+
A 4

cMessageFilter properties

Component Family Routing
Function cMessageFilter filtersthe content of messages according to the specified criterion and routes the filtered

messages to the specified output channel. All messages that do not match the criteriawill be dropped.

For more information on the Camel Message Filter EIP: http://camel.apache.org/message-filter.html.

Pur pose Use cM essageFilter to eliminate unwanted messages from a channel according to the defined criterion.
Basic settings Language Select the language of the expression you use to filter your messages from Constant,

EL, Groovy, Header, JavaScript, JoSQL, JXPath, MVEL, None, OGNL, PHP,
Property, Python, Ruby, Simple, SpEL, SQL, XPath, and XQuery.

Expression Typein the expression to use to filter the messages.
Usage cM essageFilter is used as a middle component in a Route.
Connections Filter Select thislink to route the filtered messages to the next endpoint.

Route Select thislink to route all the messages from the sender to the next endpoint.
Limitation n/a

Scenario: Filtering messages according to a criterion

In this use case, we filter XML messages that are sent from the sending endpoint according to a defined criterion:
only the XML filesin which the value of the city node is Paris are sent to a folder named Paris_only.

Of the four XML files used in this scenario, Message 1.xml and Message 4.xml contain the city name of Paris.
Thefollowing is an example:

<per son>
<firstNanme>Pi erre</firstNane>
<l ast Nane>Dupont </ | ast Nane>
<city>Paris</city>

</ per son>

Dropping and linking the components

Thisscenario requiresone cM essageFilter component to filter the messagesfrom the sender, one cFile component
as the message sender, one cFile component to receiver the messages containing Paris, one cFile component to
receiver all the messages from the sender, and two cProcessor components to monitor the messages routed to
the two receivers.

136 Talend Open Studio for ESB Mediation Components Reference Guide

http://camel.apache.org/message-filter.html

Scenario: Filtering messages according to a criterion

Sender Filter
. Toutes, . . .
FILE =

=8 [gutes PP

Unfiltered f'-.-“lu:unitbr_U nfiltered

FILE ' Iz
=" quted »
' ' Péris_u:uril:,r ' Mu:uhitu:ur_l:"aris '
. . . | doutel
FILE &
—p-o routel ? \\

1. Fromthe Messaging folder of the Palette, drop three cFile components onto the design workspace, and label
them Sender, Paris_only, and Unfiltered respectively to better identify their roles.

2. From the Routing folder, drop a cM essageFilter component onto the design workspace, and label it Filter.

3. From the Processor folder, drop two cProcessor components onto the design workspace, and label them
Monitor_Paris and Monitor_Unfiltered respectively.

4. Right-click the cFile component labeled Sender, select Row > Route from the contextual menu and click
the cM essageFilter component.

5. Right-click the cM essageFilter component, select Row > Filter from the contextual menu and click the cFile
component labeled Paris_only. This endpoint will retrieve the messages that meet the defined criterion.

6. Right-click the cM essageFilter component, select Row > Route from the contextual menu and click the
cFile component labeled Unfiltered. This endpoint will collect all the messages, including those meeting the
filter criterion. This connection is optional.

7. Right-click the cFile component labeled Paris_only, select Row > Route from the contextual menu and click
the cProcessor component labeled Monitor_Paris. Repeat this step to connect the cFile component labeled
Unfiltered to the cProcessor component labeled Monitor_Unfiltered.

Configuring the components and connections

1. Double-click the cFile component labeled Sender to open its Basic settings view in the Component tab.

FILE _ = L
—pn Sender(cFile_1)
Basic settings Path "D:/talend_files/input” ™
- Parameters
Ad d =ett
vanc.e = .|r1gs 7| Noop
Dynamic settings Flatten
View 7| AutoCreate
Documentation BufferSizelkh) "1 78"
Encading UTF-& -
FileMame "

2. Inthe Path field, specify thefile path to message source.

3. FromtheEncoding list, select the encoding type of your messagefiles. Leavethe other parametersasthey are.

Talend Open Studio for ESB Mediation Components Reference Guide 137

Scenario: Filtering messages according to a criterion

4. Double-click the cM essageFilter component to open its Basic settings view in the Component tab.

$: ==
¥ Filter(cMessageFilter_1)

Basic settings Language APath -

Advanced settings Expression
Dynamic settings

'/person[city="Paris']"

Yiew

Documentation

5. Select the language of the expression you want to use to filter your messages, and enter an expression to
define a criterion according to which you want to filter your messages.

In this scenario, we want to sort out the XML files containing a city node with the value of Paris, so
we select XPath from the Language list, and fill the in the Expression field with this expression: "/
person[city="Paris']".

6. Double-click the cFile component labeled Paris_only to open its Basic settings view in the Component
view, and specify the path for the messages meeting the filter criterion in the Path field.

FILE . . =i L

—pu Paris_only(cFile_2)

Basic settings Path "D:/talend_files/esb/Paris_ocnly" * e

- Parameters
Ad d sett
van::.e £ .|ngs 7| Noop

Cynamic settings Flatten

View | AutoCreate

Documentation BufferSize(kb) 178"
Enceding CUSTOM - *
FileMame

Repeat this step to define the path for all the messages from the sender in the cFile component labeled
Unfiltered.

7. Double-click the cProcessor component labeled Monitor_Paris to open its Basic settings view in the
Component view, and customize the code in the Code area to display the file names of the messages that
meet the filter criterion on the console:

System out. println("Message sent to folder Paris_only: "+
exchange. get | n() . get Header (" Carnel Fi | eNanme")) ;

Repeat this step to customize the code in the cProcessor component labeled Monitor_Unfiltered to display
the file names of all the messages from the sender.

8. PressCtrl+Sto save your Route.

Viewing the code and executing the Route

1. Tohavealook at the generated code, click the Code tab at the bottom of the design workspace.

138 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Filtering messages according to a criterion

public void initRoute () throws Exception {
routeBuilder = new org.apache.camel.builder.RouteBuildexr () {
pubklic void configure() throws Exception {
from(uriMap.get ("Sender™))
routeld("Sendexr™)
Filter()
.¥path("/person[city='Paris']")
.id ("cHMessageFilter 1")
.to(uriMap.get ("Paris_only"))
.id("cFile_2")
.process (new org.apache.camel.Processor() {
public wvoid process|
org.apache.camel .Exchange exchange)
throws Exception {
System.out
.println("Message sent to folder Paris only: "
+ exchange

getIni()
. getHeader (
"CamelFileName™)) ;
Y} .1id("cProcessor 1").end() .tof
uriMap.get ("Unfiltered")) .id("cFile_3")

As shown in this piece of code, messages f r omthe sender are filtered by cMessageFi | t er _1 according
to . xpat h("/person[city="Paris']") and the messages matching the filter are send . t o the endpoint
Paris_only, whileal messages are sent . t o the endpoint Unfi | t er ed.

Click the Run view to display it and click the Run button to launch the execution of your Route.
You can also press F6 to executeit.

RESULT: The messages are filtered according to the defined criterion and the messages containing "Paris"
are redirected to the Paris_only folder, all the messages, including those containing "Paris’, are sent to the
Unfiltered folder.

Execution

on | [man | [Guc

4w ABpAIIE dieslr 2 .00 2 gl Ll e L
cHes=zageFilter_=l-ctx) =tarted in 0.707 =seconds=s
[stati=stics] connecting to socket on port 3577
[ztatistic=s] connected

Message =ent to folder Paris _only: Message 1. =ml
Hes=zage =ent to folder Unfiltered: MHessage_1.=zml
Mes==sage =ent to folder Unfiltered: Message 2 =ml
Hesszage sent to folder Unfiltered: MHessage 3 .=Zml
Mes=sage =ent to folder Pari=s only: Message 4 =ml
Message =ent to folder Unfiltered: Message 4. =wml

m
o]

m

Line limit {100 Wrap

Talend Open Studio for ESB Mediation Components Reference Guide 139

cMessageRouter

cMessageRouter

<z

cMessageRouter properties

Component Family Routing
Function cM essageRouter routes messages in different channels according to specified conditions.
Purpose cMessageRouter creates different channels for each filtered message types so that messages

can later on be treated more accurately in each new channel.

Usage cM essageRouter isused as amiddle component in aRoute. It can only have one input channel
but multiple output channels. Messages can be outputted through either aWhen, Otherwise or
Route types of connection.

Connections Trigger / When Select the When link and click the Component view.

In the Type list, select the type of language you will use to declare
your condition.

In the Condition field, typein the condition that will be used to filter
the messages.

All the messages that do not match this condition are retrieved with
the Otherwiselink to adifferent channel or dropped if an Otherwise
link does not present.

There can be more than one When link in a Route.
-

Trigger / Otherwise This link automatically retrieves the messages that do not match the
When conditions.

There can be only one Otherwise link, which is optional,
" in aRoute.

Limitation It is recommended not to put any message handling after the When or the Otherwise link.
Always use a Mock/Direct endpoint to replace them and make a new Route to handle the
messages.

Scenario: Routing messages according to a criterion

In this use case, we route XML messages that are sent from the sending endpoint according to adefined criterion:
those XML files in which the value of the city node is Paris are sent to a folder named Paris_only, and other
messages are sent to afolder named Other_cities.

140 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Routing messages according to a criterion

directParis
enl

FILE"T : : ..',‘,/g'

| i roukel o
Sender ' ' Mess'age_rc'uuter :
ather
qﬂ
directOthers
EILE - . . .
. 5 [FO3
" roubes T=—pm robed s i)
" directParisRoute ' Recéiver_lf'aris ' ' Monitor_Paris
EILE - . . .
. 5 [FO3
" roubes T=—pm roukes s i)
“directOthersRoute " Receiver_Others " Monitor_Others

Of the four XML files used in this scenario, Message 1.xml and Message 4.xml contain the city name of Paris.
Thefollowing is an example:

<per son>
<firstNane>Pi erre</firstNane>
<| ast Nane>Dupont </ | ast Nane>
<city>Paris</city>

</ per son>

Dropping and linking the components

1. From the Messaging folder of the Palette, drop three cFile and four cM essagingEndpoint components
onto the design workspace, and label them Sender, Receiver_Paris, and Receiver_Others, directParis,
directOthers, directParisRoute, and directOther sRoute respectively to better identify their roles.

2. From the Routing folder, drop a cMessageRouter component onto the design workspace, and label it
Message _router.

3. From the Miscellaneous folder, drop two cLog components onto the design workspace, and label them
Monitor_Paris and Monitor_Others respectively.

4. Right-click the cFile component labeled Sender, select Row > Route from the contextual menu and click
the cM essageRouter component.

5. Right-click the cM essageRouter component, select Trigger > When from the contextual menu and click
the cM essagingEndpoint component labeled directParis. Thisendpoint will retrieve the messages that meet
the defined criterion.

6. Right-click the cM essageRouter component, select Trigger > Otherwise from the contextual menu and
click the cM essagingEndpoint component labeled directOthers. This endpoint will collect all the messages
that do not meet the filter criterion.

7. Right-click the cMessagingEndpoint component labeled directParis, select Row > Route from the
contextual menu and click the cFile component labeled Receiver Paris. Repeat this operation to link
the component labeled Receiver Paris to Monitor_Paris, directOthersRoute to Receiver_Others, and
Receiver _Othersto Monitor_Others respectively using the Row > Route connection.

Talend Open Studio for ESB Mediation Components Reference Guide 141

Scenario: Routing messages according to a criterion

Configuring the components and connections

The cMessageRouter component does not have any property as it filters and routes the messages from one
endpoint to others based on the conditions set in its When connection(s).

1. Double-click the cFile component labeled Sender to open its Basic settings view in the Component tab.

FILE E=ER|E
—»= Sender(cFile_1) S L

Basic settings Path "Di/talend files/input” * [
Advanced settings jﬁr:lﬁur‘;'lsters
Dynamic settings Flatien
View J| AutoCreate
Documentation BufferSize(kb) ~ "128"
Encoding UTE-8 i
FileMame i

2. Inthe Path field, specify the file path to message source.
Fromthe Encoding list, select theencoding type of your messagefiles. Leavethe other parametersasthey are.

3. Inthe design workspace, click the When connection you created and click the Component view to define
afilter against which messages will be routed.

= whenl
Basic settings Type [Z
Advanced settings Condition "/person[city="Paris"']" =

m

4. IntheTypelit, select xpath because the format of the messages used is XML.

In the Condition field, type in "/ person[city="Paris']" to retrieve only those messages in which the
value of the city nodeis Paris.

5. Double-click the cM essagingEndpoint component |abeled directParisto open its Basic settingsview inthe
Component tab.

=0
—8 directParis{cMessagingEndpoint_1) =l [
Basic settings LRI direct:Paris
Advanced settings
Dwnamic sekkings
Wiew

Documentation

6. IntheURI field, enter the endpoint URI, for example, "direct: Paris' to receive the filtered message.

142 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Routing messages according to a criterion

7. Repeat these steps to set the endpoint URI of the cM essagingEndpoint components labeled directOthers as
"direct: Others'. Set the endpoint URIs of the cM essagingEndpoint components labeled directParisRoute
and directOthersRoute as "direct: Paris" and "direct: Others" respectively.

8. Double-click the cFile component labeled Receiver_Paristo open its Basic settingsview in the Component
tab, and specify the path for the messages meeting the filter criterion in the Path field.

FILE) _ =n [
—pn Receiver_Paris{cFile_2)
e, : " +
Basic settings Fath F:fdatafoukputParis_only E]
Advanced setkings ar:;rgpeters
O i LEi
WNAMIC sekkings [Ratten
i
e autoCreate
Dacumentation
Buffersizelkb) "1za"
Encoding CLSTCM o [*
Filerarne

Repeat this step to define the path for al the other messages from the sender in the cFile component labeled
Receiver_Others.

9. Double-click the cL og component labeled Monitor_Paristo open its Basic settings view in the Component

tab.
LOG e
Ly Monitor_Paris(clog_1) =
Basic settings Level INFO
Advanced settings) Use default output log message (%) Specify output log message
Cymamic setkings Message "Message sent to Folder Paris_only: $4header, CamelFilefameoniyL"
Wi
Diacurnenkation

10. Select INFO inthe Levd list. Select the Specify output log message option and enter the following codein
the M essage field to display the filename of the message sent to the specified directory.

Message sent to folder Paris_only: ${header.Canel Fil eNameOnl y}

Repeat this step to customize the message in the cL og component labeled Monitor_Others to display the
filename of the message sent to the specified directory.

11. Press Ctrl+Sto save your Route.

Viewing code and executing the Route

1. Click the Codetab at the bottom of the design workspace to have alook at the generated code.

Talend Open Studio for ESB Mediation Components Reference Guide 143

Scenario: Routing messages according to a criterion

public wvoid initRoute () throws Exception {

routebuilder = new org.apache.camel.builder.RouteBuilder () §
public wvoid configure () throws Exception {
fromiuriMap.getc ("3ender™)) .routelId|("Zender™) .choice ()
Lid("cHessageRouter 1") .when() .xpath(

"iperson[oity='Paris']1") .toli
urilap.getc ("directcParis™)) . id|
"eMessagingEndpoint 17) .otherwise() .to|
urilap.get ("direccOthers™)) . idj

"ocMessagingEndpoint 27
from{uriMap.get ("direccParisRouce™))
.routeld|"directParisRoute™)
JtofuriMap.get ("Receiver Paris"))
Lid("eFile 2
.logilorg.apache.camel.LogyinglLevel ., INFO,
"Honitor Paris",
"Message sent to folder Paris only: ${header.CamelFileNameOnly: ™)

Lid(MoLog 17)
fromiuriMap.get ("directcOthersRoute®™))
Jrouteld{"directOthersFoute™)
Lto(uriMap.get ("Receiver Others"))
Lid({"eFile 3M)
logilorg.apache..camel. Logginglevel, INFO,
"Honitor Others",
"Message sent to folder Other cities: §{header.CamelFileNsmeCnly}"

Lid{"eLog 27

As shown in the code, the messages are routed according to conditions initialized with the . choi ce() piece
of code. Thefilter you defined isinitialized with the . when() piece of code, and the non filtered messages
arerouted through the . ot her wi se() piece of code.

2. Click the Run button in the Run view or press F6 to execute your Route.

RESULT: The files containing “Paris’ are sent to a folder named Paris_only, and the other messages are
sent in afolder called Other_cities.

Job cMessageRouter

. Execution
Basic Run

Debug Run = kil

Advanced Settings

[=tati=tic=] connecting to socket on port 3837 A
[=tatiztic=s] connected

[tsmeszagerouter] Monitor Paris

INFQ MHessage sent to folder Paris only:

Hezzage_ 1 =ml
[tsmezzagerouter] Monitor Others

INFO HMessage =ent to folder Other cities:

Hes=age 2 . =Zml

[trmezzagerouter] Monitor Others

IHFQ Message sent to folder Other cities:

Hes=zage 2 .=ml

[trmessagerouter] Monitor Paris

INFQ Meszsage =zent to folder Paris only:

Hezzage 4 .=Zml A

Target Exec

144 Talend Open Studio for ESB Mediation Components Reference Guide

cMulticast

cMulticast

o

-

cMulticast properties

Component Family Routing

Function cMulticast routes one or more messages to a number of endpoints at one go.

Purpose cMulticast isused to route one or more messages to anumber of endpointsat one go and process
them in different ways.

Basic settings URIS Add as many lines as needed in the URI s table to define the endpoints

to route the message(s) to.

Use ParallelProcessing | Select this check box to multicast the message(s) to the specified
endpoints simultaneously.

set timeout Select this check box and set a timeout in the Timeout field, in
milliseconds. If cMulticast failsto send and process all the messages
within the set timeframe, it breaks out and continues.

Note that this check box appears only when the Use
Par allel Processing check box is selected.

Use Aggregation| Select this check box to refer to a predefined Java bean as an
Srategy aggregation strategy for assembling the messages from the message
source into a single outgoing message.

By default, the last message acts as the outgoing message.

Connections Route Select this link to route the message(s) from the sender to the next
endpoint.
EndBlock Select thislink to route the message(s) from the end block of the Route
to the next endpoint.
Usage cMulticast can be used as amiddle or end component in a Route.
Limitation n/a

Scenario: Route a message to multiple endpoints and
set a new body for each

In this scenario, acM ulticast component is used to route a message to two endpoints. The source message and the
message on each endpoint is then set a new body. The cProcessor component is used to monitor the messages.

Talend Open Studio for ESB Mediation Components Reference Guide 145

Scenario: Route a message to multiple endpoints and set a new body for each

routes
FILE ' ' ' *Hmzurce' Set_new_body
. L _new_
.—FI:! | !'cutEl_ _EE: \‘*]
Source_file Multicast routes =
L
'Mu:unit'cur_endhlnck

e T = - >
s s O ous
direct_a Setbody_a Monitor_direct_a
B p=p | = >
s roue O owg e
direct_b Setbody_b Monitor_direct_kb

Dropping and linking the components

1. From the Palette, expand the Messaging folder. Drag and drop a cFile and two cM essagingEndpoint
components onto the design workspace.

2. From the Routing folder, drag and drop acM ulticast component onto the design workspace.

3. From the Process folder, drag and drop four cProcessor components onto the design workspace.

4. From the Transformation folder, drag and drop three cSetBody components onto the design workspace.
5. Label the components as shown above to better identify their roles in the Route.

6. Right-click thecM ulticast component, select Row > EndBlock in the context menu and click the cPr ocessor
component labeled M onitor _endblock.

7. Right-click the cFile component, select Row > Route in the context menu and click the cMulticast
component. Repeat this step to link the rest componentsin the Route as shown above using the Row > Route
connection.

Configuring the components

1. Double-click the cFile component labeled Source fileto open its Basic settingsview inthe Component tab.

146 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Route a message to multiple endpoints and set a new body for each

FILE _ _ =n E
—pn Source_file(cFile_1)
"Dt i P *

Basic settings Path: O:/data/input/file E]
A.dvanced settings ar:zrl;npeters
ey [flatten
Documentation autoCreate

bufferSize(kb) "128"

Encading CUSTOM - *

fileMarme

2. Inthe Path field, fill in or browse to the path where the source file Hello.txt is located. Keep the default
settings for other fields.

3. Double-click the cM ulticast component |abeled Multicast to open its Basic settings view in the Component
tab.

+u .] =i [
'E!: Multicast(cMulticast_1) =
Basic settings URIS Uri
Advanced settings "direct:a"
View "direct:b"

Documentation

[Use ParallelProcessing
[Use Aggregation Strategy

4. Inthe URIS table, click the plus button to add two lines and specify the URIs of the endpoints where the
message will be sent, "direct:a" and "direct:b" in this use case.

5. Double-click the cM essagingEndpoint component labeled direct_a to open its Basic settings view in the
Component tab.

=
==

== direct_a(cMessagingEndpoint_1)

Basic settings URI "direct:a"

Advanced settings
Wiew

Documentation

6. IntheURI field, enter the endpoint URI, "direct:a" in this use case.

Repeat this step to set the endpoint URI for direct b as"direct:b".

Talend Open Studio for ESB Mediation Components Reference Guide 147

Scenario: Route a message to multiple endpoints and set a new body for each

7. Double-click the cProcessor component labeled Monitor_source to open its Basic settings view in the
Component tab.

- =0
% & Monitor_source(cProcessor_1) ==

~
Basic settings Import ffimport java.util.Listc; i
Advanced settings :
Vi Code System.out.println ("The =ource +
1w message is: " +
Documentation exchange.getIn() .getBody (5tring.class)

)z

8. Inthe Code box, enter the code below to print the source message in the console.

System out . println("The source nessage is: " +
exchange. get I n() . get Body(String. cl ass));

Repeat this step to customize the code of Monitor_endblock, M onitor_direct_a, and Monitor_direct_ b as
shown below to print the message of each endpoint.

Monitor_endblock:

System out. println("The endbl ock message is: " +
exchange. get I n(). get Body(String.class));

Monitor_direct_a:

Systemout. println("direct a just downl oaded:
"+exchange. getl n(). get Body(String.cl ass));

Monitor_direct_b:

Systemout.println("direct b just downl oaded:
"+exchange. get I n(). get Body(String.cl ass));

9. Double-click the cSetBody component labeled Set new _body to open its Basic settings view in the
Component tab.

=+ | Set_new_body(cSetBody_3) =8
Basic settings Language SIMPLE -
Advanced settings | Expression "Mew message’| *

View

Documentation

10. Select SIMPLE inthe Language list.
In the Expression field, enter "New message” as the new message body.

Repeat this step to set the message body for direct:a and direct:b as "message A" and "message B"
respectively.

11. Press Ctrl+Sto save your Route.

148 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Route a message to multiple endpoints and set a new body for each

Viewing code and executing the Route

1. Click the Codetab at the bottom of the design workspace to check the generated code.

public RouteBuilder route() {
retorn new RouteBuilder() {
public void configure() throws Exception {
from(uriMap.get ("Source_file cFile 1"})
.routeld("Source file cFile 1")
multicast ()
.to("direct:a"™, "direct:b")
Lid("cHulticast_1")
.process (new org.apache.camel.Processor() {
public woid process |
org.apache.camel.Exchange exchange)
throws Exception {
System.out.println ("The source message is:
+ exchange.getIn()
.getBody (String.class)) ;

"

}).id("cProcessor_1") .setBody () .simple ("HNew message")
1d("cSetBody 3") .end()
.process (new org.apache.camel.Processor() {

public wvold process |
org.apache.camel .Exchange exchange)
throws Exception {
System.out.println ("The endblock message is:
+ exchange.getIn()
.getBody (5tring.clas=s));

n

t).id("cProcessoxr_2"):
from(uriMap.get ("direct_a cMessagingEndpoint_ 1"))
.routeld("direct_a cMessagingEndpoint 1").setBody ()
.2imple ("mes=zage A") .id ("cSetBody 1")
.process (new org.apache.camel.Processor() {
public woid process |
org.apache.camel.Exchange exchange)
throws Exception {
System.out.println("direct a just downloaded:
+ exchange.getIn()
.getBody (5tring.class)) ;

"

}).id("cProcessor_3"):

In the partially shown code, the source messageisrouted f r om" Source_file_cFile_1" .todirect:aand
direct:bvia"cMil ticast_1". Themessageisthen processed by " cProcessor _1" and given the message
body "New message" by "cSet Body_3". The . end block of the route is processed by " cProcessor _2".
The message from "direct _a_cMessagi ngEndpoi nt _1" is set the message body "nessage A" by
" cSet Body_1" and processed by " cPr ocessor _3". The message from di r ect : b is processed similarly.

2. Click the Run view to display it and click the Run button to launch the execution of your Route. Y ou can
also press F6 to execute it.

Talend Open Studio for ESB Mediation Components Reference Guide 149

Scenario: Route a message to multiple endpoints and set a new body for each

Execution
Run (= Kill Clear
[main] DefaultCamelContext o~
IHFQ Total 3 routes. of which 3 i= =started.
[main] DefaultCanslContext

IHFO Apache Camsl 2.10.7 (CamslContext:
Copy_of _multicaszt—ctx) =tarted in 0.520 =econds=
[statistics] connecting to soclket on port 3916
[tati=stic=s] connected

direct a just downloaded: messzage A

direct b just downloaded: message B

The source messzage i=: Hello worldl

The endblock message i=s: Hew message

m

Line limit {100 Wrap

RESULT: The source file message is Hello world!. The message routed to direct:a and direct:b is set the
message body message A and message B respectively. The end block message of this Route is New message
that is set by the component labeled Set_new_body.

150 Talend Open Studio for ESB Mediation Components Reference Guide

cPipesAndFilters

cPipesAndFilters

+<

cPipesAndFilters properties

Component Family Routing

Function The cPipesAndFilter s component divides message processing into a sequence of independent endpoint
instances, which can then be chained together.

Purpose This component allows you to split message routing into a series of independent processing stages.

Basic settings URI list Click the plus button to add new lines for URIs that identify endpoints.

Usage cPipesAndFiltersisusualy used in the middle of a Route.

Limitation n/a

Scenario: Using cPipesAndFilters to process the task
in sequence

In this scenario, a cPipesAndFilters component is used so that messages sent from the sender endpoint undergo
stage A and stage B. Upon compl etion of both stages, the messages are routed to afile system, which isthereceiver
endpoint for the messages.

FILE ° ’ ’ ’ | FILE ° T
—I'dﬁ'ﬂ - I
| | routel _ - route2 T TP® route3 H _
Sender cPipesAndFilters_1 Receiver Monitor_Receiver
e T N S
Stage_A Monitor_stage_ A

=] >
I ro I.|tE5_ H

E‘;tage_E - - ' ' ' ' Monifor_stég e B '

Dropping and linking the components

1. From the Messaging folder of the Palette, drop two cFile components onto the design workspace, one as
the message sender and the other as the message receiver, and label them Sender and Receiver respectively
to better identify their rolesin the Route.

2. From the Routing folder, drop one cPipesAndFilters component onto the design workspace, between the
two cFile components.

3. From the Messaging folder, drop two cM essagingEndpoint components onto the design workspace, one
as the endpoint of stage A and the other as the endpoint of stage B, and label them Sage A and Sage B
respectively to better identify their roles in the Route.

Talend Open Studio for ESB Mediation Components Reference Guide 151

Scenario: Using cPipesAndFilters to process the task in sequence

4. From the Processor folder, drop three cProcessor components onto the design workspace to monitor
messages received on the receiver, stage A and stage B endpoints respectively, and label them
Monitor_Receiver, Monitor_stage A, and Monitor_stage B respectively to better identify their rolesin the
Route.

5. Right-click the cFile component labeled Sender, select Row > Route from the contextual menu, and click
the cPipesAndFilter s component.

Repeat this step to set up the rest Row > Route connections, as shown above.

Configuring the components

1. Double-click the cFile component labeled Sender to open its Basic settings view in the Component tab.

FILE - — I:
—» = Sender(cFile_1)
Basic settings Path "D:ftalend_files/input” L
Advanc.ed s#ings ar:laljrgsters
Dynamic settings] Flatten
View AutoCreate
Documentation BufferSize(kb) "128"

Encoding UTE-8 iC

FileMame n

2. Inthe Path field, fill in or browse to the path to the folder that holds the source files.
3. Fromthe Encoding list, select the encoding type of your sourcefiles. Leave the other parameters asthey are.

4. Repeat these steps to define the path to the output files and the output encoding type in the Basic settings
view of the cFile component labeled Receiver.

5. Double-click the cPipesAndFilter s component to open its Basic settings view in the Component tab.

'*ﬂ cPipesAndFilters_1 I:

Basic settings URT list URI
Advanced settings "direct:a"
Dynamic settings "direct:b"

Wiew

Documentation

m

4 L 3

y

152 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Using cPipesAndFilters to process the task in sequence

6. Click the plus button to add two lines to the URI list table, and fill the first line with " di rect : a* and the
second linewith " di rect : b" to define the URIs of stage A and stage B that the messages will undergo.

7. Double-click the cM essagingEndpoint component labeled Stage A to configure the component inits Basic
settings view and define the URI of stage A.

—= Stage_A(cMessagingEndpoint_1)

Basic settings URI "direct:a”

Advanced settings
Dynamic settings
Wiew

Documentation

Repeat this step to define the URI of stage B in the Basic settings view of the cM essagingEndpoint
component labeled Stage B.

8. Double-click the cProcessor component labeled Monitor_Receiver to open its Basic settings view, and
customize the code in the Code area to display the file names of the messages received on Receiver, as
follows:

System out . println("Message sent to Receiver: "+
exchange. get I n() . get Header (" Canel Fi | eNange")) ;

Repeat this step to customize the code in the other two cProcessor components to display the file names of
the messages received on stage A and stage B respectively:

System out . println("Message sent to stage A: "+
exchange. get I n() . get Header (" Canel Fi | eNange")) ;

System out . println("Message sent to stage B: "+
exchange. get I n() . get Header (" Canel Fi | eNange")) ;

9. PressCtrl+Sto save your Route.

Viewing code and executing the Route

1. Click the Codetab at the bottom of the design workspace to have alook at the generated code.

public void initEBoute() throws Exception {
routeBuilder = new org.apache.camel .builder.RouteBuilder() {
public void configure() throws Exception {
from{uriMap.get ("Sender")) .routeld ("Sendexr™) .pipeline |

"direct:a"™, "direct:b")
Lid("cPipesindFilters 1").to|
uriMap.get ("Receiver")).id("cFile 2")

As shown in the code, messages sent f r omSender are redirected to endpoints identified by di rect : a and
direct: b by cPi pesAndFi | t ers_1 before being routed to Recei ver .

2. PressF6 to run your Route.

RESULT: The message delivery goes through stage A and then stage B before reaching Receiver.

Talend Open Studio for ESB Mediation Components Reference Guide 153

Scenario: Using cPipesAndFilters to process the task in sequence

Execution

—

@kl |[[Cler

ripeE=allriliiLers =1—UoLx)] TLarlreed L1l u., 23u3

=econds

[=tatiztic=s]

3768

[=tatiztics=]

Me==age
Hes=age
Hes==age
Mes==age
Hes=zage
Mes=age

Line lirit

zent
zent
=ent
zent
zent
=zent

100

connecting to =ocket on port

connected

to stage A: Message 1 =mnl

to stage B: Message_1. zml

to Receiver: Message 1 =ml
to stage A: Message 2 =mnl

to stage B: Message_ 2 =ml

to Receiver: Message 2 =mnl

Wrap

m

154

Talend Open Studio for ESB Mediation Components Reference Guide

cRecipientList

cRecipientList

<

cRecipientList properties

Component Family Routing
Function cRecipientList is designed to route messages to a number of dynamically specified recipients.
Purpose cRecipientList alows you to route messages to a number of dynamically specified recipients.
Basic settings Language Select the expression language from the drop-down list.
Expression Type in the expression that returns multiple endpoints.
Stop On Exception Select this check box to stop processing immediately when an
exception occurred.
Ignore Invalid | Select this check box to ignore invalid endpoints.
Endpoints
Parallel Processing Select this check box to send the message to the recipients
simultaneously.
Usage As a middle component, cRecipientList alows you to route messages to a number of
dynamically specified recipients.
Limitation n/a

Scenario: Routing a message to multiple recipients

In this scenario, a cRecipientList component is used to route a message to alist of recipients.

—po roukel o roukes o

Read Input " cSetHeader 1 " CRecipientList_1
™" routes " B

Recipient & ' ' ' ' ' ' ' ‘Print_File_Mame_a
™" routed " B

Recipient B ' ' ' ' ' ' ' "Print_File_Mame_E

To build the Route, do the following.

Dropping and linking the components

1. Drag and drop the components from the Palette onto the workspace: cFile, cSetHeader, cRecipientList,
two cM essagingEndpoint and two cProcessor. Change the label of the cFile component to Read | nput.
Change the labels of the two cM essagingEndpoint components to Recipient_A and Recipient_B. Change
the labels of the two cProcessor componentsto Print_File Name A and Print_File Name B.

Talend Open Studio for ESB Mediation Components Reference Guide 155

Scenario: Routing a message to multiple recipients

2. Link Read_Input to cSetHeader using a Row > Route connection.
3. Link cSetHeader to cRecipientList using a Row > Route connection.
4. Link Recipient_A to Print_File Name_A using a Row > Route connection.

5. Link Recipient_B to Print_File Name B using a Row > Route connection.

Configuring the components

1. Double-click cFileto open its Basic settings view in the Component tab.

FILE =n [:
—pn Read_Input(cFile_1)
e, ; " #
Basic settings Path E:fdatafinput E]
A Parameters
Advanced setkings Nop
Dwnamic settings |:| Flatten
Vi
s autoCreate
Documentation
Buffersizelkb) "1ze"
Encoding CLSTOM | *
Filerarne

2. Inthe Path field, type in the path to the source message, for example, "E:/data/input”. Keep other default
settings unchanged.

3. Double-click cSetHeader to open its Basic settings view in the Component tab.

il", cSetHeader 1 S |:

Basic settings Headers Mame Language Value

Advanced settings i "ListOfRecipients” Constant "direct:a, direct:b” |
View

m

Documentation

4. Click [+] toadd arow to the Headerstable.
In the Name field, enter the header name, for example, "ListOfRecipients’.
In the Language list, select Constant.
In the Value field, enter the endpoint URIs, for example, "direct:a,direct:b".

5. Double-click cRecipientList to open its Basic settings view in the Component tab.

156 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Routing a message to multiple recipients

=
-C% cRecipientList_1 |

Basic settings Language ERlE bt
Advanced settings Expression "ListOfRecipients” |*
Crnamic setkings |:| Stop ©n Exception

Wiz []1gnore Irevalid Endpoints

Diocurnentation []Parellel Processing

6. IntheLanguagelist, select Header.

In the Expression field, enter the name of the header that contains the recipients list, that is,

"ListOfRecipients".
7. Double-click Recipient_A to open its Basic settings view in the Component tab and define the URI of
recipient A.
— 8 Recipient_A{cMessagingEndpoint_1) S
Basic settings LRI direct: 2"
Advanced setkings
Cwnamic setkings
Wigst
Docurnentation
Perform the same operation to Recipient_B to define the URI of recipient B.
8.

Double-click Print_File Name_A to open its Basic settings view in the Component tab and enter the code
below to print out the message received by Recipient_A.

System out. println("Recipient_a just
downl oaded: " +exchange. get I n() . get Header (" Canel Fi | eNange")) ;

= =0
& & Print_File_Name_A(cProcessor_1) =L [
Basic settings Code System.out.println("Recipient_a just

Advanced settings doynloaded: "+exchange.getIn() .getHeader ("CamelFilelame™)) ;
Dynamic settings

Wiew

Docurnentation

Perform the same operation to Print_File Name B and type in the code below in its code box:

System out. println("Recipient_b just
downl oaded: " +exchange. get I n() . get Header (" Canel Fi | eNane")) ;

9. PressCtrl+Sto save your Route.

Viewing code and executing the Route

1. Click the Codetab at the bottom of the design workspace to check the generated code.

Talend Open Studio for ESB Mediation Components Reference Guide 157

Scenario: Routing a message to multiple recipients

public void initFoute()] throws Exception {
routebuilder = new org.apache.camel.builder.RoutebBuilder () {
public void configure (] throws Exception {
from{urilap.get ("Read Input”)).routeld("Read Input')
.ZetHeader ("LiscOfRecipient=s") . constant |
fdirect:a,direct:b™) . id("c3ecHeader 1)
.Eecipientlist () header ("ListOfRecipient=") .14/
feRecipientlLisc 17)
from{urillap.get ("Recipient A")) .routeld("Recipient 4™
.process (new org.apache.camel.Processor() |
public volid process|
org.apache.camel . Exchange exchange)
throws Exception {

Svstet.out
.println("Recipient a just downloaded:"

+ exchange

sgetIng)
.getHeader |
"Came lFilelNamwe™))
i
V). idi"eProcessor_1");
from{urilap.get ("Recipient E")).routeld("Recipient E")
.process(new org.apache.camel.Processor()] |

public void process|
org.apache.camel . Exchange sxchange)
throws Exception {
Iystetn. out
.princln("Recipient b just downlosded:”
+ exchange
.getIng)
.getHeader |
"CammelFilelawe™)) !

M .id{"cProcessor_4");

As shown above, the route gets the message from Read_| nput , and . set Header (" Li st Of Reci pi ents")
recipients using .constant ("direct:a,direct:b"). Then, cRecipientList_1 reads
. header ("Li st Of Reci pi ent s") and routes the message to the recipientsincluded in it.

2. Press F6 to execute the Route.

The message is sent to recipients included in the header.

[ztati=stics] connecting to =ocket on port 3620
[stati=tic=s] connected

Fecipient_a just downloaded:File A txt
Fecipient_b ju=st downloaded:File_ A t=t

158 Talend Open Studio for ESB Mediation Components Reference Guide

cRoutingSlip

cRoutingSlip

oHHOHO
cRoutingSlip properties
Component Family Routing
Function cRoutingSlip alows you to route a message or messages consecutively through a series of
processing steps, with the sequence of steps unknown at design time and variable for each
message.
Purpose cRoutingSlip is used to route a message or messages consecutively to a series of endpoints.
Basic settings Header name Type in name of the message header as defined in the preceding
cSetHeader component, mySip by default. The header should
carry alist of endpoint URISs you wish each message to be routed
to.
URI delimiter Delimiter used to separate multiple endpoint URIs carried in the
message header, comma (,) by default.
Usage cRoutingSlip is used as a middle or end component of a sub-route. It aways follows a
cSetHeader component, which sets a header to each message to carry alist of endpoint URIs.
Limitation na

Scenario 1. Routing a message consecutively to a
series of endpoints

In this scenario, messages from afile system isrouted consecutively to a series of endpoints according to the URIs
carried in the message header.

Dropping and linking the components

This use case requires a cFile component as the message sender, a cSetHeader component to define a
series of endpoints, a cRoutingSlip component to route messages to the endpoints consecutively, three
cM essagingEndpoint componentsto retrieve messages routed to the endpoints, and three cProcessor components
to monitor messages routed to the connected messaging endpoints.

Talend Open Studio for ESB Mediation Components Reference Guide 159

Scenario 1: Routing a message consecutively to a series of endpoints

FILE - i_,
) BT = R R S A
Sender Set_endpoints Routing_slip
e 2 .
Endpoint_a Monitor_a
1 2 .
Endpoint_k Monitor_b
e 2
Endpoint_c Monitor_c

From the Palette, expand the M essaging folder, drop one cFile and three cM essagingEndpoint components
onto the design workspace, and label them to better identify their roles in the Route, as shown above.

From the Transfor mation folder, drop a cSetHeader component onto the design workspace, and labdl it to
better identify itsrolein the Route.

From the Routing folder, drop a cRoutingSlip component onto the design workspace, and label it to better
identify itsrole in the Route.

From the Processor folder, drop three cProcessor components onto the design workspace, and label them
to better identify their rolesin the Route.

Right-click the cFile component, select Row > Route from the contextual menu and click the cSetHeader
component.

Right-click the cSetHeader component, select Row > Route from the contextual menu and click the
cRoutingSlip component.

Repeat this operation to connect the cM essagingEndpoint components to the corresponding cProcessor
components.

Configuring the components and connections

1

Double-click the cFile component, which is labelled Sender, to display its Basic settings view in the
Component tab.

FILE =0
—pu Sender(cFile_1) alo L

Basic settings Path "Di/talend files/esb/cities” []
Advanced settings ﬁr:lﬂnrgpeters
Dynamic settings 7 Flatten
View AutoCreate
Documentation BufferSize(kh) 2"
Encoding UTF-8 T
FileMarne e

160

Talend Open Studio for ESB Mediation Components Reference Guide

Scenario 1: Routing a message consecutively to a series of endpoints

2. InthePath field, fill in or browse to the path to the folder that holds the source files Beijing.xml, London.xml,
Paris.xml, and Washington.xml.

From the Encoding list, select the encoding type of your source files. Leave the other parameters asthey are.

3. Double-click the cSetHeader component, which islabelled Set_endpoints, to display its Basic settings view
in the Component tab.

HE
il’j Set_endpoints(cSetHeader 1) ==
. . Headers m
Basic settings Mame Language Value
Advanced settings {"myslip” Constant "direct:c direct:a, directh”
Wiew

m

Documentation

.

1T} 3

A @

4. Click [+] to add arow to the Header stable.
In the Name field, type in the name of the header you want to add to each message.

In this use case, we simply use mySlip, which is the default value filled in the Header name field of the
cRoutingSlip component.

5. From the Language list box, select the Constant or Simple, and in the Value field, type in the URIs you
wish the message to be routed consecutively to, separated by acomma, which isthe default value of the URI
delimiter field of the cRoutingSlip component.

In this use case, we want the message to be routed first to endpoint c, then to endpoint a, and finally to
endpoint b.

6. Double-click the cRoutingSlip component, which islabelled Routing_dlip, to display itsBasic settings view
in the Component tab, and define the message header in the Header name field and the URI delimiter in
the URI delimiter field.

In this use case, we simply use the default settings.
E[
ssaa Routing_slip(cRoutingSlip_1) =8

Basic settings Header name "mySlip"

Advanced settings | URI delimiter
Dynamic settings
View

Documentation

7. Double-click the cM essagingEndpoint component labelled Endpoint_ato display its Basic settingsview in
the Component tab, and type in the URI in the URI field for the destination of your messages.

Here, we want to use this component to retrieve the message routed to the URI direct:a.

Talend Open Studio for ESB Mediation Components Reference Guide 161

Scenario 1: Routing a message consecutively to a series of endpoints

3e)
o

=8 Endpoint_a(cMessagingEndpoint_2)

Basic settings URI "direct:a"

Advanced settings
Dynamic settings
View

Documentation

Repeat this step to set the endpoint URIsin the other cM essagingEndpoint components: direct:b and direct:c
respectively.

Double-click the cProcessor component, which is labelled Monitor_a, to display its Basic settings view in
the Component tab, and customize the code so that the console will display information the way you wish.

Here, we want to use this component to monitor the messages routed to the connected endpoint a and display
the file name, so we customize the code accordingly, as follows:

System out. println("Message recei ved on endpoint a: "+
exchange. get I n() . get Header (" Canel Fi | eNange")) ;

Repeat this step to customize the code for the other two cProcessor components, for messages routed to the
connected endpoints b and ¢ respectively.

System out . println("Message recei ved on endpoint b: "+
exchange. get I n() . get Header (" Canel Fi | eNange")) ;

System out . printl n("Message recei ved on endpoint c: "+
exchange. get I n() . get Header (" Canel Fi | eNange")) ;

Press CtrI+S to save your Route.

Viewing code and executing the Route

1. Click the Codetab at the bottom of the design workspace to have alook at the generated code.
puoblic vold initRoute () throws Exception {
routeBuilder = new org.apache.camel .builder.RouteBuilder () {
public volid configure () throws Exception {
from(uriMap.get ("Sender™)) .routeld ("Sender™) .setHeader (
"myS1lip™)
.constant ("direct:c,direct:a,direct:b"}) .id|
"cSetHeader 1").routingSlip |
header ("myS1ip"™), ",.").id{
"cRoutingSlip 1");
In this partially shown code, messages from the sender are given a header according to . set Header , which
carriesalist of URIs("direct:c, direct: a, di rect: b"), and then routed in the slip pattern according by
cRoutingSlip_1.
2. Click the Run view to display it and click the Run button to launch the execution of your Route.
Y ou can also press F6 to executeit.
162 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario 2: Routing each message conditionally to a series of endpoints

Execution
Run (= Kill Clea

E e e e e e e e e ey P e T e

[2tati=stics] connecting to socket on port 3767 ¢
[stati=ztics] connected

Mes=zage received on endpoint o: Beijing.zml

Mesz=zage received on endpoint a: Beijing. z®Zml

Mes=szage received on endpoint b: Beijing. zml

Hesz=zage receiwved on endpoint o London. =ml

Mesz=zage receiwved on endpoint a: London. ®zml

Mes=zage received on endpoint b: London.zml

Mes=zage received on endpoint o Paris. =Zml

Messzage received on endpoint a: Paris. =ml

Mes=zage received on endpoint b: Pari=. zml

Mesz=szage received on endpoint o Washington. zml |&

Mes=szage received on endpoint a: Washington.zml

Mez=zage received on endpoint b: Washington =ml _
Line limit |100 Wrap

RESULT: The source file messages are routed consecutively to the defined endpoints: ¢, then a, and then b.

Scenario 2: Routing each message conditionally to a
series of endpoints

In this scenario, which is based on the previous scenario, each message from afile system isrouted consecutively
to different endpoints according to the city name it contains.

All files used in this use case are named after the city name they contain. The following are the extracts of two
examples:

Beijing.xml:

<per son>
<first Nanme>Ni col as</first Name>
<l ast Nanme>Yang</ | ast Nane>
<city>Beijing</city>

</ per son>

Paris.xml:

<per son>
<firstNane>Pi erre</firstName>
<| ast Nane>Dupont </ | ast Nane>
<city>Paris</city>

</ per son>

A predefined Java Bean, setEndpoints, iscalled in this use case to return endpoint URIs according to the city name
contained in each message, so that the messages will be routed as follows:

» The message containing the city name Paris will be routed first to endpoint a, then to endpoint b, and finally
to endpoint c.

» The message containing the city name Beijing will be routed first to endpoint c, then to endpoint a, and finally
to endpoint b.

* Any other messages will be routed to endpoint b and then to endpoint c.

Talend Open Studio for ESB Mediation Components Reference Guide 163

Scenario 2: Routing each message conditionally to a series of endpoints

For more information about creating and using Java Beans, see Talend Open Studio for ESB User Guide.

package beans;

i mport org.w3c.dom Docunent ;
i mport org.w3c. dom El enent ;
i mport org.w3c. dom NodeLi st ;

public class setEndpoints {
public String hell oExanpl e(Docunent docunent) {
NodeLi st cities = docunent. get Docunment El ement (). get El enent sBy TagNane(
"city");
El enent city = (Element) cities.iten(0);
String textContent = city.get TextContent();
if ("Paris".equal s(textContent)) {
return "direct:a,direct:b,direct:c";
} else if ("Beijing".equals(textContent)) ({
return "direct:c,direct:a,direct:b";
} else
return "direct:b,direct:c";
}
}

Dropping and linking the components

In this scenario, we will reuse the Route set up in the previous scenario, without adding or removing any
components or modifying any connections.

Configuring the components and connections

In this scenario, we only need to configure the cSetHeader component to call the predefined Java Bean, and keep
the settings of al the other components are they are in the previous scenario.

1. Double-click the cSetHeader component to display its Basic settings view in the Component tab.

S
E Set_endpoints(cSetHeader 1) E=
. . Headers n
Basic settings Mame Language Value
Advanced settings {"myslip” Bean "beans.setEndpoints”
View

m

Documentation

2. Select Bean from the Language list box, and in the Value field, specify the Java Bean that will return the
endpoint URIs. In this use case, typein:

beans. set Endpoi nts

3. PressCtrl+Sto save your Route.

164 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario 2: Routing each message conditionally to a series of endpoints

Viewing code and executing the Route

1. Click the Codetab at the bottom of the design workspace to have alook at the generated code.

public wvoid initRoute ()

throws Exception {

routeBuilder = new org.apache.camel.builder.RouteBuilder({} {
public wvoid configure () throws Exception {
from(uriMap.get ("Sender™)) .routeld("Sender") .setHeader (

"myS51lip"™) .method (beans. setEndpoints.class) .id(
"cSetHeader 1").routingSlip(header ("myS1lip"™),
", ") .id("cRouting3lip 1"):

In this partially shown code, messages from the sender are given a header according to . set Header , which
carriesalist of URIsreturned by thebeans. set Endpoi nt s. cl ass, and thenrouted tothecRout i ngSl i p_1.

2. Click the Run view to display it and click the Run button to launch the execution of your Route.

Y ou can also press F6 to execute it.

Execution

He==age
Hes=zage
Hes=age
He==age
Hes=zage
He=z=age
Hes=zage
Hes==age
He==age
Hes=zage

 mKk

[stati=ztic=s] connecting to socket on port 3974
[ztati=tics] connected

received
received
received
received
received
received
recelved
received
received
received

Line limit |1q0

on
on
on
on
on
on
an
on
on
on

endpoint
endpoint
endpoint
endpoint
endpoint
endpoint
endpoint
endpoint
endpoint
endpoint

[e T I e T

Beijing. =ml
Beijing. zml
Beijing. =ml
London . zml
London . =ml
Pari=z . zml
Pari=. zml
Pari=. zml
Washington . ®Zml
Washington. zml

Wrap

RESULT: The sources are routed consecutively to the defined endpoints: the message containing the city
name Beijing isrouted first to endpoint c, then to endpoint a, and finally to endpoint b; the message containing
the city name Paris is routed first to endpoint a, then to endpoint b, and finally to endpoint c; the other
messages are routed to endpoint b and then to endpoint c.

Talend Open Studio for ESB Mediation Components Reference Guide

165

cSplitter

cSplitter

=]
o #:
cSplitter properties
Component Family Routing
Function cSplitter splits amessage into several submessages according to a condition.
Pur pose cSplitter separates multiple elements of a message so that they can be handled and treated
differently in individual routes
Basic settings Expression Type in the expression to use to split the messages.
Usage cSplitter isused as amiddle component in a Route.
Connections split Select thislink to route the splitted messages to the next endpoint.
Route Select thislink toroute all the messages from the sender to the next
endpoint.
Limitation n/a

Related scenario:

For a related scenario, see section Scenario: Splitting a message and renaming the sub-messages according to
contained information of section cSetHeader.

166 Talend Open Studio for ESB Mediation Components Reference Guide

cThrottler

cThrottler

fl

cThrottler properties

Component Family Routing
Function cThrottler isdesigned to limit the number of messages flowing to the subsequent endpoint.
Purpose cThrottler allows you to limit the number of messages flowing to a specific endpoint in order
to prevent it from getting overloaded.
Basic settings Request per period The number of messages allowed to pass cThrottler within the
defined time period.
Set time period Select this check box to set the value of the time period (in

milliseconds) and enable throttling.

Use asynchronous| If this check box is selected, any messages that are delayed will be

delaying routed asynchronously using a scheduled thread pool.
Usage Being a middle component, cThrottler allows you to limit the number of messages flowing to
a specific endpoint in order to prevent it from getting overloaded.
Connections throttler Select thislink to route the throttled messages to the next endpoint.
Route Select this link to route al the messages from the sender to the next
endpoint.
Limitation n/a

Scenario: Throttling the message flow

In this scenario, a cThrottler component is used to reduce the number of messages flowing out within a time
period.

FILE |

ql]
Read_Oukput

roufes

.
o roukes + T l == g

"Prinkt_File_Content " cThraoktler 1 " Prirt_File_Mame

To build the Route, do the following.

Talend Open Studio for ESB Mediation Components Reference Guide 167

Scenario: Throttling the message flow

Dropping and linking the components

1. Drag and drop the components from the Palette onto the workspace: cThrottler, cFile and two cProcessor .
Change the label of the cFile component to Read_Output. Change the labels of the two cProcessor
componentsto Print_File Nameand Print_File Content.

2. Link Read_Output to cThrottler using a Row > Route connection.

3. LinkcThrottler toPrint_File NameusingaRow > Throttler connection, andto Print_File_Content using
aRow > Route connection.

Configuring the components

1. Double-click Read_Output to open its Basic settings view in the Component tab.

FILE [
—pn Read_Output(cFile_2)
e, " B
Basic settings Path E:[/data/output E]
Advanced setkings ar:].zrgsters
Cwnarmic sekkings D Flatten
i
1= AutoCreate
Documentakion
Buffersizeikb) "128"
Encoding CLSTOM " *
FileMame .

2. Inthe Path field, type in the path to the source message, for example, "E:/data/output”. Keep the default
settings for other fields.

3. Double-click cThrottler to open its Basic settings view in the Component tab.

+ T l cThrottler_1 =

Basic settings Fequest per period (I

Advanced settings Set time period 5000
Dynamic settings []use asynchronous delaving
Wiem

Drocumentation

4. Inthe Request per period field, type in the number of messages allowed to pass the throttler per period,
for example, 1.

In the Set time period field, typein the value of the period, for example, 8000.

5. Double-click Print_File Name to open its Basic settings view in the Component tab.

168 Talend Open Studio for ESB Mediation Components Reference Guide

Viewing the code and executing the Route

$_& Print_File_Name(cProcessor_2) =

Code

Basic settings Jystem.out.println("The f£ile that passes

Advanced settings throttler is:
"+exchange.getIn() . getHeader { "Came 1F i leName")

1

Dynamic setkings
Wi

Docurmentation

6. Inthe Code box, enter the code below to get the name of the message that passes the throttler.

Systemout.println("The file that passes throttler is:
"+exchange. get I n() . get Header (" Canel Fi | eNane")) ;

7. Double-click Print_File Content to open its Basic settings view in the Component tab.

& & Print_File_Content{cProcessor_3) =5
Basic settings Code Svstem.out.println("The content of ™
Advanced settings +exchange.getIn() .getHeader ("Cawe lFilelame ™)

+ " is:
"+exchange.getIn() .getBody (3tring.class)) ;

Dvnamic sekkings
Vi

Documentation

8. Inthe Code box, enter the code below to get the content of the message that passes the throttler.

Systemout. println("The content of " +exchange.getln(). get Header (" Canel Fi | eNanme") + "
is: "
+exchange. get I n() . get Body(String. cl ass));

9. PressCtrl+Sto save your Route.

Viewing the code and executing the Route

1. Click the Codetab at the bottom of the design workspace to check the generated code.

Talend Open Studio for ESB Mediation Components Reference Guide 169

Viewing the code and executing the Route

public void initRoute () throws Exception {

routebuilder = new org.apache.camel.builder.RouteBuilder (] |
public void configureil) throws Exception {
from{urillap.get ("Read Output']).routeld("Read Output’)
.throttleil) .timePeriodMillis (8000) .1id(
"eThrottler 17 .process |
new org.apache.camel.FProcessor() |

public woid process|
org.apache.camel.Exchange exchange)
throws Exception |
System.out
.printlni"The £ile that passes throttler is: "
+ exchange
.getIni)
.getHeader |
"CarmelFileMame™)) ;

il id("cProcessor_2") .end() .process |
new org.apache.camel.Processor(] 1
public void process|
org.apache.camel. Exchange exchange)
throws Exception |
System.out
.printlni"The content of '
+ exchange

.getIni)
.getHeader |
"CamelFilellame™)
+ " iz
+ exchange
.getIng)
.getBody |

3tring.class)) ;

As shown above, the messages from Read_Qut put go through throttling at cThrottl er _1, with only (1)
message allowed to leave the throttler withineacht i mePeri odM I 1§ s(8000) . Meanwhile, the filename and
the content of the throttled message are printed out via the two processors.

2. Press F6 to execute the Route.

As shown below, File A.txt was delivered within the first time period while in the second period, File B.txt
was delivered as well.

\
v

2 rows - 2 rows
’ — [T 0.15 rows/s ’ 0.15 rows/s =
—_—————————P
‘ route? v & P routed +Tl route? g
Print_File_Content cThrottler_1 Print_File_Name " Print_File_Content ’ " cThrottler_1) " Print_File_Name

rotter_RecipientList 0 | % Component ' UB* Run (Job New_MyThrotter_RecipientList) -otter_RecipientList 0 | Component | (B Run (Job New_MyThrotter_RecipientList)

er_RecipientList ar_RecipientList
Execution Execution
-
[statistics) connecting to socket on port 3739 [statistics] connecting to socket on port 3338
[statistics] connected [statistics] connected ‘)
The file that passes throttler is: File A t=xt The file that passes throttler is: File A.txt
The content of File_A. txt is: China The content of File A txt is: China
Usa USA

The file that passes throttler is: File_B. txt
The content of File B.txt is: France
Germany

170 Talend Open Studio for ESB Mediation Components Reference Guide

cWireTap

cWireTap

cWireTap properties

Component Family

Routing

Function cWireTap alows you to route messages to a separate tap endpoint while it is forwarded to the
ultimate destination.
Purpose cWireTap is used to route messages to a separate endpoint while forwarded to the ultimate
destination.
Basic settings URI The endpoint URI to send the wire tapped message.
Populate new exchange Select this check box to populate a new exchange of the message.
Populate Type This option appears when the Populate new exchange check box
isselected. The Populate Typeiseither Expression or Processor.
Expression: Using expression allows you to set the message body
of the new exchange.
Language: Select the language of the expression you want to
use to set the message body between Constant, Header, None,
Property, Simple, XPath.
Expression: Enter the expression to set the message body.
Processor: Using processor gives you full power to specify how
the exchange is populated as you can set properties, headers and
so on to the message with a piece of Java code in the Code field.
Copy the original message | Select this check box to use a copy of the exchange when wire
tapping the message. This option appears when the Populate new
exchange check box is selected.
Usage cWireTap can be a middle component in a Route.
Limitation n/a

Scenario: Wiretapping a message in a Route

In this scenario, a cWireTap component is used to route a message to a separate endpoint while it is routed to

the ultimate destination.

FILE - . . .))) .
—Pl | routel ' t _ _ route2 _ '_ _ _
Source Wiretapper Set_destination
= ows . ®

Endpoint_a Manitor_a
__'. | routed .':_H_

Endpoint_b Manitor_b

Talend Open Studio for ESB Mediation Components Reference Guide 171

Scenario: Wiretapping a message in a Route

Dropping and linking the components

1. FromthePalette, expand the M essaging folder, and drop acFile and two cM essagingEndpoint components
onto the design workspace.

2. Expand the Routing folder, and drop a cWireT ap component onto the design workspace.

3. Expand the Processor folder, and drop a cJavaDSL Processor and two cProcessor components onto the
design workspace.

4. Right-click the cFile component, select Row > Route from the contextual menu and click the cWireTap
component.

5. Repeat this operation to connect the components as shown above.

6. Label the components to better identify their functionality.

Configuring the components

1. Double-click the cFile component labeled Source to display its Basic settings view in the Component tab.

FILE _ =n [

—pn Source(cFile_1)

Basic settings Path "[nftalend_files/input” * |_

= Parameters
Ad d sett
1.rar1|::.va g .|ngs 7] Noop

Dynamic settings Flatten

View o | AutoCreate

Documentation BufferSizelkh) "128"
Encaoding CUSTOM - | *
FileMarme

2. InthePath field, browseto or enter the input file path. In this use case, thereisaHello.txt filein the specified
file path, which contains the content Hello World!. Leave the other parameters as they are.

3. Double-click the cWireTap component to display its Basic settings view in the Component tab.

=0
—{~ Wiretapper(cWireTap_1) == l_l
e & -
Basic settings URI direct:a
Advanced settings | Populate new exchange
. - Populate Type
Dynamic settings Expression L
View @ Processor
Documentation
Code System.cut.println ("\nMessage wiretapped: "+
exchange.getIn() .getHeader ("CamelFileName"}) ;
System.out.println("Message content: "+

exchange.getIn() .getBody (String.class)+"\n") ;

4. Enter"direct:a" inthe URI field to route the wiretapped message to this endpoint.

172 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Wiretapping a message in a Route

Select the Populate new exchange check box, select Processor as the populate type, and then enter the
following code in the Code box to display the file name of the wiretapped message and its content on the

console:

System out. println("\nMessage wiretapped: "+
exchange. get | n() . get Header (" Canel Fi | eName")) ;
System out. println("Message content: "+
exchange. getln().getBody(String.class)+"\n");

Double-click the cJavaDSL Processor component to display its Basic settings view in the Component tab.

_ (=0
Set_destination(cJavaD5LProcessor_1) @JL

Basic settings Code .to("direct:b") -

m

Advanced settings
Dynamic settings

e

In the Code field, enter the Java code . t o(" direct: b") to define the URI of the endpoint to route the
original message to.

Double-click the cM essagingEndpoint component labeled Endpoint_a to display its Basic settingsview in
the Component tab. Enter "di rect : a" inthe URI field to retrieve the message routed to this endpoint.

=l =
o]

== Endpoint_a(cMessagingEndpoint_1)

Basic settings URI "direct:a”
Advanced settings
Dynamic settings

Wiew

Repeat this operation to set the endpoint URI for Endpoint_b.

Double-click the cProcessor component labeled Monitor_a to display its Basic settings view in the
Component tab. Enter the following code in the Code box to display the file name of the message routed

to Endpoint_a.

System out. println("Message on endpoint a: "+
exchange. get | n() . get Header (" Canel Fi | eNanme")) ;

% & Monitor_a(cProcessor_1) co
Basic settings Code System.out.println("Message on endpoint a: "+ =
exchange.getIn|() .getHeader ("CamelFileName")) ;

Advanced settings
Dynamic settings

Wiew

=
Then, configure the other cProcessor component in the same way to display the file name of the message
routed to Endpoint_b.

Talend Open Studio for ESB Mediation Components Reference Guide 173

Scenario: Wiretapping a message in a Route

9. Press Ctrl+Sto save your Route.

Viewing code and executing the Route

1. Click the Codetab at the bottom of the design workspace to have alook at the generated code.

public wvoid initRoute() throws Exception {
routeBuilder = new org.apache.camel.builder.RouteBuilder() {
public void configure () throws Exception {
from{uriMap.get ("Source™)) .routeld("Source™) .wireTap |
"direct:a") .newExchange |
new org.apache.camel.Processor() {

public void process |
org.apache.camel.Exchange exchange)
throws Exception {
Iy Auto-generated method stub
Svstem. out
println("\nMessage wiretapped: "
+ exchange
.getIni{)
.getHeader |
"CamelFileName")) ;
System.out.println("Message content: "
+ exchange.getIn().getBody|(
String.clas=) + "\n");

Lid ("cWireTap 1")

.to("direct:kb") .id("cJavaD5LProcessor 1");

In this partially shown code, any message f r omthe endpoint Sour ce will be wiretapped by . wi reTap and
routed to "di rect : a". The fine name and content of each wiretapped message will be displayed on the
console. The original message will be routed . t o an endpoint identified by the URI " di rect : b", which is
defined in cJavaDSLProcessor _1.

2. Click the Run view to display it and click the Run button to launch the execution of your Route. Y ou can
also press F6 to execute it.

RESULT: The source message is wiretapped and routed to endpoint a as well as being routed to endpoint b.

Execution
Run [Kill Clear
Wil lap =17 ena) = LOl L L1l [R P el I N N R Y

[statistics] connecting to socket on port 3467 ¢

[stati=stics] connected

Hes=age wiretapped: Hello. t=zt
Hes=zage content: Hello worldl

Message on endpoint b: Hello. t=t
Hessage on endpoint a: Hello. t=t

Line limit {100 Wrap

174 Talend Open Studio for ESB Mediation Components Reference Guide

Transformation components

This chapter details the major components that you can find in Transformation family from the Palette of the
Mediation perspective of Talend Open Studio for ESB.

The Transfor mation family groups component that execute data transformation processes.

Talend Open Studio for ESB Mediation Components Reference Guide

cContentEnricher

cContentEnricher

L
]

cContentEnricher properties

Component Family Transformation

Function cContentEnricher is designed to use a consumer or producer to obtain additional data,
respectively intended for event messaging and request/reply messaging.

Purpose cContentEnricher alows you to use a consumer or producer to obtain additional data,
respectively intended for event message messaging and request/reply messaging.

Basic settings Resource URI This refers to the destination to which a message will be delivered
if using a producer is selected; it refers to the source from which a
message will be obtained if using a consumer is selected.

Using a producer Select this check box to use a producer to provide additional data, i.e.
sending a message to the defined URI.

Using a consumer Select this check box to use a consumer to obtain additional data, i.e.
requesting a message from the defined URI.

Use Aggregation | Select thischeck box to definethe aggregation strategy for assembling

Srategy the basic message and the additional data.

Soecify timeout This area appears when Using a consumer is selected. The timeout

options are as follows:

Wait until a message arrive: the component keeps waiting for a
message.

Immediately polls the message: the component immediately polls
from the defined URI.

Waiting at most until the timeout triggers: select this check box
to type in a timeout value in Millis. The component waits for the
message only within the defined time period.

Usage cContentEnricher alows you to use a consumer or producer to obtain additional data,
respectively intended for event message messaging and request/reply messaging.
Limitation n/a

Scenario: Receiving messages from a list of URLS

In this scenario, we will use the Camel component HTTP4 and the cContentEnricher component to retrieve
messages from alist of URLSs. To do this, we need to build two sub-routes, one to read afile with alist of URLS
and send the messages to the local file system, the other to retrieve the messages on these URLSs.

In thisuse case, we will take alist of URLson thelocal Tomcat server asthe example. So we need to start Apache
Tomcat before executing the Route.

A TXT file URLI i st isused to providethelist of URLS, as shown below.

docs/i nt roducti on. ht m
docs/ set up. ht m

176 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Receiving messages from alist of URLS

FILE d . . . 5 .
oG I ' N -
—a roukel B routed i routes 4@ roukes

UIRLlist coplitker 1 clawaDSLProcessor_1 cConkentEnricher_ 1 setFilsMame
roube?
))) 5))) 5)))))) T3
T routes rootes T '—r‘:"
fetchURL setlIRI sekPATH http4Endpaint retrigvedFiles

Dropping and linking the components

From the Palette, drag and drop a cSplitter, a cJavaDSL Processor, a cContentEnricher, two cFile, two
cMessagingEndpoint, and three cSetHeader components onto the design workspace.

Label the components properly for better identification of their roles and link them using the Row > Route
connection as shown above.

Configuring the components

Configuring thefirst sub-route

1.

2.

3.

Double-click the URL list component to display its Basic settings view in the Component tab.

=0
FILE _ =n [
—pn URLlist{cFile_1)
ne=, A . n Ed
Basic settings Path F:fdatafinputf/contentEnricher [3
Advanced settings ar:.zrgsters
Dwnamic sekkings D Flatten
i
e AukoiZreake

Dacurentation

Buffersizelkb) "1zg"

Encoding ZUSTOM v *

Filerarne "URLlisk. ExE"

In the Path field, browse to the file path where the URL list file is saved.
In the FileName field, enter the filename URLIist.txt.

Double-click the cSplitter component to display its Basic settings view in the Component tab.

Talend Open Studio for ESB Mediation Components Reference Guide 177

Scenario: Receiving messages from alist of URLsS

!l#é cSplitter_1 ol [

. . . i " +
Basic settings Expression body(String, class), bakenize!"irin")

Advanced setkings
[rvnamic settings
Wiew

Dacument ation

4. Inthe Expression field, enter the code body(St ri ng. cl ass) . t okeni ze("\r\n") to split the messagein
each row into sub-messages.

Note that this piece of codeis for Windows only. For Unix, change it to body(St ri ng. cl ass) . t okeni ze("\n"),
] and for Mac, body(String. cl ass) . tokeni ze("\r").

5. Double-click the cJavaDSL Processor component to display its Basic settings view in the Component tab.

=0
=@ CclavaDSLProcessor_1 — [:

A
Basic settings Code dogiMsplicterOutput:

Advanced settings §{bodyi ")
Dwnamic sekkings
Wiew

Documentation

6. Inthe Codearea, enter thecode. | og("splitterQut put: ${body}") to get the split message body.

7. Double-click the cContentEnricher component display its Basic settings view in the Component tab.

mrdl . =T E
& cContentEnricher 1 22
" , " *
Basic settings Resource LRI direct:fetchiJRL
Merge data

Advanced settings @ using a producer
Dwnamic setkings O‘ sing & consumer
Wi

T g |:| s aggregation skrakbegy

8. Select using a producer to use aproducer to provide additional data and send the message to adefined URI.
In the Resour ce URI field, enter " di rect : f et chURL" where the message will be delivered.

9. Double-click the setFileName component to display its Basic settings view in the Component tab.

178 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Receiving messages from alist of URLS

=o|[=
E setFileName(cSetHeader_3) @U

Basic settings Headers Mame

Language Walue

Advanced settings i "org.apache.camel.Exchange.FILE NAME" Simple "Stheader.CamelHttpPath}"
View

m

Documentation

£l [114 3

B @
10. Click [+] to add arow to the Header stable.

In the Name field, enter or g. apache. canel . Exchange. FI LE_NAME to define the file name for each
incoming message.

Select Simplein the Language list.
Inthe Value field, enter " ${ header . Canel Ht t pPat h} " to get the URI's path of the incoming message.

11. Double-click theretrievedFiles component to display its Basic settings view in the Component tab.

L. EE
—pn retrievedFiles{cFile_2)
Basic settings Path "F:fdatajoukputfcontentEnricher” * E]
Advanced setkings ar:].z:sters
Cwnamic setkings |:| Flatten
Vi
= autoCreate
Documenkation
Buffersizelkb) "1z25"
Encoding CUSTOM "™ *
FileMarne

12. Inthe Path field, browse to the destination file path where you want the messages to be saved.

Configuring the second sub-route

1. Double-click the fetchURL component to display its Basic settings view in the Component tab.
=0
=8 fetchURL{cMessagingEndpoint_1) [

Basic settings LRI "direct:fetchURL"
Advanced settings
Dwnamic sektings
Wien

Documentakion

2. IntheURI field, enter "direct:fetchURL" that is defined in the cContentEnricher component.

3. Double-click the setURI component to display its Basic settings view in the Component tab.

Talend Open Studio for ESB Mediation Components Reference Guide 179

Scenario: Receiving messages from alist of URLsS

4 setURI(cSetHeader 2) 5B

Basic settings Headers Mame Language Value

Advanced settings { "org.apache.camel.Exchange.HTTP_URI" Simple "http://localhost:B080"

View

m

Documentation

1| 1] 3 .
:

4. Click [+] to add arow to the Header stable.

In the Name field, enter org. apache. canel . Exchange. HTTP_URl to define the HTTP URI of each
message.

Select Simpleinthe Languagellist.
Inthe Valuefield, enter "htt p: / /| ocal host : 8080" of the local Tomcat server.

5. Double-click the setPATH component to display its Basic settings view in the Component tab.

4 setPATH(cSetHeader 1) 55

Basic settings Headers Mame Language Value

Advanced settings | "org.apache.camel Exchange HTTP_PATH" Simple "S{body}"

View

m

Documentation

4 | 1 3 -

]

6. Click [+] to add arow to the Header stable.

In the Name field, enter or g. apache. canel . Exchange. HTTP_PATH to define the HTTP path of each
message.

Select Simpleinthe Languagellist.
Inthe Valuefield, enter " ${ body}" that is split from the original message.
7. Double-click the http4Endpoint component to display its Basic settings view in the Component tab.

= || C
— 8 http4Endpoint (cMessagingEndpoint_2) o E

Basic settings URI | "httpe:lncalhost:B080 |

Advanced setkings
Dwnamic settings
View

Daocumentakion

180 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Receiving messages from alist of URLS

8. IntheURI field, enter "http4:localhost:8080" to consuming HT TP resources on the local Tomcat server.

Click the Advanced settingsview. Click . " at the bottom of the Dependencieslist to add arow and select
ht t p4 from the drop-down list. For more information about HTTP4, see the site http://camel.apache.org/
http4.html.

=8 http4Endpoint{ciessagingEndpoint_2)

. . Dependencies -
Basic sectings Camel component
Advanced settings hkkp4
Drvnamic settings
Wiew
Documentation

2

Press Ctrl+S to save your Route.

Viewing code and executing the Route

1. Click the Codetab at the bottom of the design workspace to have alook at the generated code.

public void initRoute()] throws Exception {
routebuilder = new org.apache.cawel. builder.RouteBuilder () 1
public void configure()l throws Exception |
fromi{uriMap.get ("URLli=t™)) .routeld ("URLli=t™) .3plit|
body(2tring.clags) .tokenize (", ")) .1d/(

"eEplitter 1)

LlogiTaplitterdutput: §{body: ™) .id/{
"oJavalD3LFProcessor 1')
.enrichi"direct:fetchURL™)

Sid{"ecContentEnricher 17) .setHeader |
org.apache.camel . Exchange . FILE NAME)

Bimple (" {header.Came lHttpPathy ™) . id |
"eietHeader 3" .told

uriMap.get ("retrievedFiles™)) .id|
"oFile 27);
fromi{uriMap.get ("fetchURL™)) .routeld|("fetchURL™)

.setHeader (oryg.apache.camel.Exchange . HTTF_TRT)

LBimple("http: /S localhost:80307) . id|
"eZetHeader 27 .setHeader |
org.apache.camel.Exchangs . H-TTP PATH)

.simplei"${hndg}"].idi"cSEtHeader_l"].tDi
uriMap.get ("httpd4Endpoint™)) .id |
"oMessagingEndpoint 27

[
getCame lContexts () .get (1) .addRoutes (routebBuilder) ;

Talend Open Studio for ESB Mediation Components Reference Guide 181

http://camel.apache.org/http4.html
http://camel.apache.org/http4.html

Scenario: Receiving messages from alist of URLsS

As shown above, amessage route is built from the URLI i st totheretri evedFil es viathe.split, .| og,
.enrich, and . set Header . The other message route is built from f et chURL to ht t p4Endpoi nt via two

2.

. set Header.
Press F6 to execute the Route.

RESULT: The split message is printed on the Run console.

Execution
[Kll

L3 Lrl] UELdUWL L dilEL Il L s L iyt v
Foute: fetchlURL =tarted and consuming from:
Endpoint[direct .~ fetchlUEL]
[main] DefaultCanslContext INFO Total
2 routes, of which 2 is started.
[main] DefaultCanselContext IHED
Apache Camsl 2.9.2 (CamelContext: ContentEnricher—ctz)
started in 1.343 seconds
[stati=ztic=] connecting to soclket on port 3607
[=tati=tic=s] connected
[contentEnricher] URLlist INED
splitterOutput: docs<introduction. html
[contentEnricher] UTELlist IHFO
splitterCutput: docs- setup.html
L

The messages from the list of URL s are saved in defined directory of the local file system.

fddress |0 FidataloutputcontentEnricherdocs

J Make a new Folder

ﬁa Publish this Folder ko the
Weh

kd Share this Falder

Marmne Size | Type
File and Folder Tasks & |& | inkroduction. hkml 11 KB Firefox HTML Document
|8 | setup. bl 13KB Firefox HTML Document

b iE’GD

182

Talend Open Studio for ESB Mediation Components Reference Guide

cConvertBodyTo

cConvertBodyTo

<

cConvertBodyTo properties

Component Family Transformation

Function cConvertBodyTo converts the message body to the given class type.

Purpose cConvertBodyTo is used to convert the message body to a given class type.

Basic settings Target Class Name Enter the name of the class type that you want to convert the
message body to.

Usage cConvertBodyTo is used as a middle component in a Route.

Limitation

Scenario: Converting the body of an XML file into an
org.w3c.dom.Document.class

In this scenario, a cConvertBodyTo component is used to convert the body of an XML file into an
org.w3c.dom.Document.class. Then a cBean component imports the org.w3c.dom.Document class, checks its
content and prints out the root element name and the content of each category element.

The XML fileisasfollows:

<bookst or e>
<bookshel f >
<cat egor y>Cooki ng</ cat egor y>
<quantity>100</ quantity>
</ bookshel f >
<bookshel f >
<cat egor y>Languages</ cat egor y>
<quanti ty>200</ quantity>
</ bookshel f >
<bookshel f >
<cat egor y>Art s</ cat egor y>
<quanti t y>300</ quantity>
</ bookshel f >
<bookshel f >
<cat egor y>Sci ence</ cat egor y>
<quanti t y>400</ quantity>
</ bookshel f >
</ bookst or e>

Creating a Bean

1. Fromtherepository treeview, expand the Code node and right click the Beans node. I n the contextual menu,
select Create Bean.

Talend Open Studio for ESB Mediation Components Reference Guide 183

Scenario: Converting the body of an XML file into an org.w3c.dom.Document.class

] Contexts
= Code

SRS Br—

§| % Create Bean
] 3 Create folder
] Expand/Collapse
O IEI Import items

& [l Export items
rhﬂ'ﬂ AggrogareooTryoRTT
&} Recycle bin

B E

2. The New Bean wizard opens. In the Name field, type in a name for the bean, for example,
PrintConvertToBean. Click Finish to close the wizard.

¥ New Bean l (5] ihj

New Bean

Add a Route in the repository @
Marne PrintConvertToBean|

Purpose

Descripticn -
Author test@talend.com

Locker

Version 01
Status 57

1 o
@ [Einsh || Cancel

3. Enter the following code in the designh workspace.

package beans;

i nport org.w3c. dom Docunent ;

i nport org.w3c. dom El enent ;

i nport org.w3c. dom NodelLi st ;
public class PrintConvertToBean {

/**
* print input nessage
* @ar am nessage
*/
public static void hel | oExanpl e(Docunment nessage) {

184 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Converting the body of an XML file into an org.w3c.dom.Document.class

if (message == null) {
System out.println("There's no nmessage here!");
return;
}
El ement root El ement = nessage. get Docunent El ement () ;
if (rootElenent == null) {
Systemout. println("There's no root el enent here!l");
return;
}

System out . println("The root elenment nane is:"
+ root El ement . get NodeNane()) ;
System out . println("The book categories are:");
NodeLi st types = root El ement . get El ement sByTagNanme(" cat egory");
for(int i = 0;i<types.getLength();i++){
El ement child = (Elenment) types.iten(i);
System out . println(child.getFirstChild().getNodeVal ue());
}
}
}

4. PressCtrl+Sto save your bean.

For more information about creating and using Java Beans, see Talend Open Studio for ESB User Guide.

Dropping and linking the components

Register_bean

FILE - : : h. : : : h. :
b] routel " 'é route? : D

' Read_meséage Cnnvert_'messzige_hcid}r ' F'rinf_meséage '

1. Drag and drop a cFile, a cConvertBodyTo, a cBean and a cBeanRegister from the Palette onto the
workspace.

2. Link the cFile, cConvertBodyT o and cBean using the Row > Route connection as shown above.

3. Label the components to better identify their functionality.

Configuring the components

1. Double-click the cFile component to open its Basic settings view in the Component tab.

Talend Open Studio for ESB Mediation Components Reference Guide 185

Scenario: Converting the body of an XML file into an org.w3c.dom.Document.class

FILE)
—pn Read_message(cFile_1)

—_— i ; v B
Basic settings Fath | D talend_files input/books | E]
Advanced settings a;:jzzpeters
Dynamic settings |:| Elatten
'|I|" W
= AutoCreate
Documentation —
Buffersize(kb) | 123 |
Encoding |'CL|5TOM o I - |*
FileMame | "books, xml |

2. Inthe Path field, enter or browse to the path to the source XML file.

If the sourcefilefolder contains morethan onefile, enter the name of the XML file of interest
field, and leave the other parameters as they are.

intheFileName

3. Double-click the cConvertBodyTo component to open its Basic settings view in the Component tab.

= E
..é Convert_message_body(cConvertBodyTo_1) ==l =

\ w3
Basic settings Target Class Mame ||:|r|;|. w3c.dom.Document. class

|*

Advanced settings
Dynamic settings
View

Documentation

4. IntheTarget ClassNamefield, enter your target class name, org.w3c.dom.Document.class

in this scenario.

5. Double-click the cBeanRegister component to open its Basic settings view in the Component tab.

= = || o
Register_bean(cBeanRegister_1) = E
n n *
Basic settings Id bean
Advanced settings @ Simple) Custormnized
View Class Mame beans.PrintConvert ToBean|
Documentation [Specify Arguments

6. Intheld field, enter "bean".

Select the Simple option and in the Class Name field, enter the name of the bean
beans.PrintConvertToBean in this scenario.

7. Double-click the cBean component to open its Basic settings view in the Component tab.

to be invoked,

186 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Converting the body of an XML file into an org.w3c.dom.Document.class

=0
D Print_message(cBean_1) == [
N . @ Reference () Mew Instance
Basic settings
Id "bean” *

Advanced settings

View [] Specify the method

Documentation

8. Seect Referenceandintheld field, enter "bean" to call the bean that is registered by the cBeanRegister.

9. PressCtrl+Sto save your Route.

Viewing code and executing the Route

1. Click the Codetab at the bottom of the design workspace to check the generated code.

puoblic vold initBoute () throws Exception {
routeBuilder = new org.apache.camel ..builder.RouteBuilder() {
poblic void configure() throws Exception {

from(uriMap.get ("Read message cFile 1"))
-routeld ("Read message cFile 1")
convertBodyTIo (org.wic.dom. Document . class)
Lid("cConvertBodyTo 1") .beanRef ("bean")
id("cBean 1"):

Lo
Fa

getCamelContexta () .get (0) . addRoutes (routeBuilder) ;

As shown above, the message from the endpoint Read_nessage_cFil e_1 has its body converted to
or g. w3c. dom Docurrent . cl ass by cConver t BodyTo_1, and then processed by bean invoked by cBean_1.

2. Press F6 to execute the Route.

RESULT: The root element name and the contents of the category elements are displayed.

i il

L=LdLl=n L] DUisEs L Ly Ld UK E L UL L
3759 -
[tatistic=s] connected

The root slement is: bookstore

The book categories are:

Cooking

Languages

Arts

Science

Execution

Talend Open Studio for ESB Mediation Components Reference Guide 187

cSetBody

cSetBody

cSetBody properties

Component Family Transformation

Function cSetBody replaces the payload of each message sent to it.

Purpose cSetBody isused to replace the content of each message sent to it according to expression value.

Basic settings Language Select the language of the expression you use to set the content
for matched messages, from Constant, EL, Groovy, Header,
JavaScript, JoSQL, JXPath, MVEL, None, OGNL, PHP,
Property, Python, Ruby, Simple, SpEL, SQL, XPath, and
XQuery.

Expression Type in the expression to set the message content.
Usage cSetBody is used as a middle component in a Route.
Limitation n/a

Scenario: Replacing the content of messages with
their extracts

In this scenario, file messages are routed from one endpoint to another, with the content of each message replaced
with the information extracted from it.

Thefollowing is an example of the XML files used in this use case:

<peopl e>
<per son>
<firstName>Pi erre</firstNanme>
<l ast Nane>Duboi s</ | ast Nane>
<city>Paris</city>
</ per son>
</ peopl e>

Dropping and linking the components

This use case uses two cFile components, one as the message sender and the other as the receiver, a cSetBody
component to replace the content of the messages on route, and acProcessor component to display the new content
of the messages routed to the receiving endpoint.

FILE FILE ° . .
——————— =

" routel ' route2 TR route3 _

Sender Content_replacer Receiver Monitor

1. Fromthe Palette, expand the M essaging folder, and drop two cFile components onto the design workspace.

188 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Replacing the content of messages with their extracts

2. Fromthe Transfor mation folder, drop acSetBody component onto the design workspace, between the two
cFile components.

3. From the Processor folder, drop a cProcessor component onto the design workspace, following the second
cFile component.

4. Right-click thefirst cFile select Row > Route from the contextual menu and click the cSetBody component.

5. Repeat this operation to connect the cSetBody component to the second cFile component, and the second
cFile component to the cProcessor component.

6. Label the components to better identify their roles in the Route, as shown above.

Configuring the components and connections

1. Double-click the cFile component labeled Sender to display its Basic settings view in the Component tab.

FILE] = [
—pn >ender(cFile_1)
Basic settings Path "Dnftalend_files/esh/input” * |:|
- Parameters
Ad d sett
vanc.e 5 .|ngs 7| Noop
Dynarnic settings Flatten
View | AutoCreate
Documentation BufferSize(kh) 178"
Encoding UTF-8 -
FileMame "

2. Inthe Path field, fill in or browse to the path to the folder that holds the source files.
3. Fromthe Encoding list, select the encoding type of your sourcefiles. Leave the other parameters asthey are.

4. Repeat these steps to define output file path and encoding type in the Basic settings view of the other cFile
component, which is labeled Receiver.

5. Double-click the cSetBody component to display its Basic settings view in the Component tab.

=0
=+ | Content_replacer(cSetBody_1) =& L
Basic settings Language #Path -
Advanced settings Expression "/people/person” "

Dynamic settings
View

Documentation

6. From the Language list box, select the language of the expression you are going to use.
Here we are handling XML files, so select XPath from the list box.

7. Inthe Expression field, typein the expression that will return the new message content you want.

Talend Open Studio for ESB Mediation Components Reference Guide 189

Scenario: Replacing the content of messages with their extracts

In this use case, we want person to be the root element of each file when routed to the receiving endpoint,
sotypein"/ peopl e/ per son" inthe Expression field.

Double-click the cProcessor component to display its Basic settings view in the Component tab, and
customize the code so that the console will display information the way you wish.

Inthisuse case, wewant to display thefile name and content of each message routed to the receiving endpoint,
S0 we customize the code as follows:

Systemout.printIn("File received: " +
exchange. get | n(). get Header (" Canel Fi | eNane") +
“\'nContent:\n " +

exchange. getln().getBody(String.class));

Press Ctrl+S to save your Route.

Viewing code and executing the Route

Click the Codetab at the bottom of the design workspace to have alook at the generated code.

public volid initRoute () throws Exception {
routebBuilder = new org.apache.camel .builder.RouteBuilder() {
public void configure() throws Exception f{
from({uriMap.get ("Sender™)) .routeld ("Sender™) .setBody ()
.xpath("/people/person”) .id("cSetBody_1") .to|

uriMap.get ("Receiver")) .id("cFile 2")

In this partially shown code, a message route is built from one endpoint .t o another, and while in
routing, the content of each message is replaced according to the condition . xpat h("/ peopl e/ per son")
by " cSet Body_1".

Click the Run view to display it and click the Run button to launch the execution of your Route. Y ou can
also press F6 to execute it.

Execution

on | [moan | [Guc

[=tati=tics| connecting to =ocket on
port 3953

[statistic=s] connected

File received: filel =ml

Content :

¢per=zon 1d="8":
¢firstHame:Ellen<-firsztHam=:
¢lastHame:Riplev<-lastHane»
<citvyrWashingtond city:

L SpeErsSon
File received: filed. =ml
Content :

{person id="9":
<firstHame:Pierre<-firstName:
¢lastHame:Iuboi=<{ laztHam=:
¢oitvr:Paris<-city:>

{SpEreon -

m

Line limit 100 Wrap

RESULT: The XML files are sent to the receiver, where person has become the root element of each file.

190

Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Replacing the content of messages with their extracts

Talend Open Studio for ESB Mediation Components Reference Guide 191

cSetHeader

cSetHeader

cSetHeader properties

Component Family Transformation

Function cSetHeader sets headers on each message sent to it.

Purpose cSetHeader isused to set headers or customize the default headers, if any, on each message sent
to it for subsequent message processing.

Basic settings Headers Click [+] to add as many headers as required to the table.
Name Typein aname for the message header.
Language Select Bean if you want to call a predefined Java Bean to

return the header value, or the language of the expression you
use, from None, Constant, EL, Groovy, Header, JavaScript,
JoSQL, JXPath, MVEL, OGNL, PHP, Property, Python,
Ruby, Simple, SpEL, SQL, XPath, and XQuery.

Value Type in the expression to set the value of the message header, or
the Bean class that will return a value for the message header, in
the form of beans. BEAN_NAME.

Usage cSetHeader is used as a middle component in a Route.

Limitation n/a

Scenario: Splitting a message and renaming the sub-
messages according to contained information

In this scenario, a file message containing people information is split into sub-messages. Each sub-messages is
renamed according the city name it contains, and then routed to another endpoint.

The following is the example XML file used in this use case:

<peopl e>
<per son>
<firstName>Pi erre</firstNane>
<l ast Nane>Duboi s</ | ast Nane>
<city>Paris</city>
</ per son>
<per son>
<first Nanme>Ni col as</first Name>
<| ast Nanme>Yang</ | ast Nane>
<city>Beijing</city>
</ per son>
<per son>
<firstName>El | en</first Nane>
<l ast Nane>Ri pl ey</ | ast Nane>
<ci t y>Washi ngt on</ci t y>
</ per son>
</ peopl e>

A predefined Java Bean, setFileNames, is called by the cSetHeader component used in this use case to define a
file name for each message according to the city name it contains. For more information about creating and using
Java Beans, see Talend Open Sudio for ESB User Guide.

192 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Splitting a message and renaming the sub-messages according to contained information

package beans;

i mport org.w3c. dom Docunent ;
i mport org.w3c.dom El enent ;
i mport org.w3c. dom Nodeli st ;

public class setFil eNanes {
public String getCityName(Docunent docunent) {
NodeLi st cities = docunent. get Docunent El ement (). get El enent sBy TagNane(
“eity");
El enent city = (Elenment) cities.iten{0);
String textContent = city.getTextContent();
return textContent+".xm";
}
}

Dropping and linking the components

This use case uses two cFile components, one as the message sender and the other as the receiver, a cSplitter
component to split the source message into sub-messages, acSetHeader component to rename each sub-message,
and a cProcessor component to display the file name of each message routed to the receiver.

FILE -)) H‘}..)) i_l) EILE -
OGO » -

% routel © T ® routed ~ route3 T TrE

Sender Splitter Set_file_name Receiver

routed

P

Monitor

1. Fromthe Palette, expand the M essaging folder, and drop two cFile components onto the design workspace.

2. From the Routing folder, drop a cSplitter component onto the design workspace, between the two cFile
components.

3. From the Transformation folder, drop a cSetHeader component onto the design workspace, between the
cSplitter component and the receiving cFile component.

4. Right-click thefirst cFile component, select Row > Route from the contextual menu and click the cSplitter
component.

5. Right-click thecSplitter component, select Row > Split from the contextual menu and click the cSetHeader
component.

6. Right-click the cSetHeader component, select Row > Route from the contextual menu and click the second
cFile component.

7. Right-click the second cFile component, select Row > Route from the contextual menu and click the
cProcessor component.

8. Label the components to better identify their roles in the Route, as shown above.

Talend Open Studio for ESB Mediation Components Reference Guide 193

Scenario: Splitting a message and renaming the sub-messages according to contained information

Configuring the components and connections

1. Double-click the cFile component labeled Sender to display its Basic settings view in the Component tab.

FILE _ =i [
—pn Sender(cFile_1)
"y e/ I wook [T
Basic settings Path D:/talend_files/esh/input |
. Parameters
Ad d sett
vanced settings 7] Noap
Dynamic settings Flatten
View | AutoCreate
Documentation BufferSize(kh) "1 28"
Encoding UTF-& -
FileMame "peoplexml”

2. Inthe Path field, fill in or browse to the path to the folder that holds the source files.
From the Encoding list, select the encoding type of your source files.

Inthe FileNamefield, typein the file name of the source message. Y ou can skip this step if the source folder
contains only onefile.

3. Repeat steps 1 and 2 above to define the output file path and encoding type in the Basic settings view of the
other cFile component, which is labeled Receiver. Leave the FileName field blank.

FILE =0
—»n Receiver(cFile_2) S L

Basic settings Path "D:ftalend_files/esb/output” * |:|
Advanced settings jar:lﬁljrgpeters
Dynamic settings Flatien
View J| AutoCreate
Documentation BufferSize(kb) L2
Encoding UTE-8 i
FileMame o

4. Double-click the cSplitter component to display its Basic settings view in the Component tab, and fill the
Expression field with an expression according to which you want to split the source message.

In this use, as we want to split the message into sub-messages at each person node of the XML file, type
inxpat h("/ peopl e/ person").

194 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Splitting a message and renaming the sub-messages according to contained information

- =0 L
mgre Splitter(cSplitter_1) =

Basic settings Expressicn xpath("/pecple/person”)

Advanced settings
Dynamic settings
View

Documentation

5. Double-click the cSetHeader component, which islabeled Set_file_nhame to display its Basic settings view
in the Component tab.

S
£| Set_file name(cSetHeader 1) =E
. . Headers n
Basic settings Mame Language Value
Advanced settings i "FileMame" Bean "beans.setFileMames”
View

m

Documentation

.

6. Click [+] to add arow to the Header stable.
In the Name field, type in the name of the header you want to give to the messages.
Here, as we want to define the file name for each incoming message, fill in" Fi | eNanme" asthe header name.

Select Bean in the Language field and type in the name of the predefined Java Bean in the Value field,
beans. set Fi | eNanmes in this use case.

7. Double-click the cProcessor component to display its Basic settings view in the Component tab, and
customize the code so that the console will display information the way you wish.

In this use case, we want to display the file name each message routed to the receiving endpoint, so we
customize the code as follows:

Systemout.printIn("File received: "+
exchange. get I n() . get Header ("Fi | eNane")) ;

8. PressCtrl+Sto save your Route.

Viewing code and executing the Route

1. Click the Codetab at the bottom of the design workspace to have alook at the generated code.

Talend Open Studio for ESB Mediation Components Reference Guide 195

Related scenarios

public BEouteBuilder route() {

return new EouteBuilder() {
public void configure () throws Exception {

from(uriMap.get ("Sender cFile 1"}).routeld("Sender cFile 1")
.split (xpath ("/people/person”)).id ("cSplitter 1")
.setHeader ("FileName™) .method ("beans.setFilelames™)
.id("cSetHeader 1").to(uriMap.get ("Receiver cFile 2"))
Lid("cFile_2")
Jprocess (new org.apache.camel.Processor() {

public void process|
org.apache.camel .Exchange exchange)
throws Exception {
System.out.println("File received:
+ exchange.getIn()
.getHeader ("FileNames")) ;

n

by .id("cFrocessor 1"):

As shown in the code, a message route is built fr om one endpoint . t o another, and while in routing,
the source message is split according to the condition xpat h("/ peopl e/ person") by cSplitter_1,
and each sub-message is given a header named Fil eNane, the value of which is returned by
. met hod(beans. set Fi | eNames) .

2. Click the Run view to display it and click the Run button to launch the execution of your Route. Y ou can
also press F6 to execute it.
Execution

Run Kill Clear

INFQ Created default XPathFactory -
Com . =un . org . apache . ¥path . internal . jaxp. X{FPath
FactorvImpl@cbiai9bb

File received: Pari=s.zxml

File received: Beijing.=ml

File received: Washington.zml =

Line limit | 1pp Wrap

RESULT: The sourcefile messageis split into sub-messages and each sub-message is renamed after the city
name it contains and routed to the receiving endpoint.

Related scenarios

For more scenarios, see:
section Scenario: Using camel message headers as context parametersto call ajob
section Scenario 1: Routing a message consecutively to a series of endpoints

section Scenario 2: Routing each message conditionally to a series of endpoints

196 Talend Open Studio for ESB Mediation Components Reference Guide

	Talend Open Studio for ESB Mediation Components
	Table of Contents
	Preface
	General information
	Purpose
	Audience
	Typographical conventions

	Feedback and Support

	Context components
	cBeanRegister
	cBeanRegister properties
	Related Scenario

	cConfig
	cConfig properties
	Scenario: Implementing a dataset from the Registry
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route

	cJMSConnectionFactory
	cJMSConnectionFactory properties
	Related scenario:

	Exception components
	cErrorHandler
	cErrorHandler properties
	Scenario: Logging the exception thrown during a client/server talk
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route

	cIntercept
	cIntercept properties
	Scenario: Intercepting several routes and redirect them in a single new route
	Dropping and linking the components
	Configuring the components and connections
	Viewing code and executing the Route

	cOnException
	cOnException properties
	Scenario: Using cOnException to ignore exceptions and continue message routing
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route

	cTry
	cTry properties
	Scenario: Using cTry to build Try/Catch/Finally blocks for exception handling
	Dropping and linking components
	Configuring the components and connections
	Viewing code and executing the Route

	Messaging components
	cCXF
	cCXF properties
	Scenario 1: Providing a Web service using cCXF from a WSDL file
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route

	Scenario 2: Providing a Web service using cCXF from a Java class
	Creating a Java class
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route

	Scenario 3: Providing a Web service from a Route Resource
	Creating a Route Resource
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route

	cDataset
	cDataset properties
	Scenario: Using cDataset to receive messages
	Dropping and linking the components
	Configuring the components
	Viewing the code and executing the Route

	cFile
	cFile properties
	Scenario: Reading files from one directory and writing them to another
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route

	cFtp
	cFtp properties
	Related scenario:

	cHttp
	cHttp properties
	Scenario: Retrieving the content of a remote file
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route

	cJMS
	cJMS properties
	Scenario 1: Sending and receiving a message from a JMS queue
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route

	Scenario 2: Setting up a JMS local transaction
	Sending a message to the queue.hello JMS queue
	Testing the received message
	Consuming the message from the DeadLetter JMS queue

	Scenario 3: Sending and receiving a scheduled delivery of messages from a JMS Queue using Camel Quartz
	Building the producer Route
	Building the consumer Route

	cMail
	cMail Properties
	Scenario: Using cMail to send and receive mails

	cMessagingEndpoint
	cMessagingEndpoint properties
	Commonly used Camel components
	Scenario 1: Moving files from one message endpoint to another
	Dropping and linking the components
	Configuring the components and connections
	Viewing code and executing the Route

	Scenario 2: Sending files to another message endpoint
	Dropping and linking components
	Configuring the components and connections
	Viewing code and executing the Route

	Scenario 3: Using an Xquery endpoint to filter messages
	Creating a Route Resource
	Dropping and linking the components
	Configuring the components and connections
	Viewing code and executing the Route

	cTimer
	cTimer properties
	Related Scenario:

	Miscellaneous components
	cLog
	cLog properties
	Related scenario:

	cLoop
	cLoop properties
	Related scenario:

	cStop
	cStop properties
	Related scenario:

	Processor components
	cBean
	cBean properties
	Related Scenario

	cDelayer
	cDelayer properties
	Scenario: Using cDelayer to delay message routing
	Dropping and linking the components
	Configuring the components
	Viewing the code and executing the Route

	cExchangePattern
	cExchangePattern properties
	Scenario: Enabling the InOut exchange pattern to get replies
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route
	Creating and sending a request to the server Route and getting a reply

	cJavaDSLProcessor
	cJavaDSLProcessor properties
	Related scenario:

	cProcessor
	cProcessor properties
	Related scenario:

	cTalendJob
	cTalendJob properties
	Scenario: Using camel message headers as context parameters to call a job
	Building a DI Job and exporting it as an OSGI Bundle for ESB
	Building a Route for exchanging messages and calling the DI Job
	Viewing the code and executing the Route

	Routing components
	cAggregate
	cAggregate
	Scenario: Aggregating three messages into one
	Creating a Java bean as the aggregation strategy
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route

	cDynamicRouter
	cDynamicRouter properties
	Scenario: Routing files conditionally to different file paths
	Dropping and linking the components
	Configuring the components and connections
	Viewing code and executing the Route

	cIdempotentConsumer
	cIdempotentConsumer properties
	Scenario: Deduplicating messages while routing them
	Dropping and linking the components
	Configuring the components and connections
	Viewing code and executing the Route

	cLoadBalancer
	cLoadBalancer properties
	Scenario: Distributing messages to receiver endpoints based on round robin
	Dropping and linking the components
	Configuring the components and connections
	Viewing the code and executing the Route

	cMessageFilter
	cMessageFilter properties
	Scenario: Filtering messages according to a criterion
	Dropping and linking the components
	Configuring the components and connections
	Viewing the code and executing the Route

	cMessageRouter
	cMessageRouter properties
	Scenario: Routing messages according to a criterion
	Dropping and linking the components
	Configuring the components and connections
	Viewing code and executing the Route

	cMulticast
	cMulticast properties
	Scenario: Route a message to multiple endpoints and set a new body for each
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route

	cPipesAndFilters
	cPipesAndFilters properties
	Scenario: Using cPipesAndFilters to process the task in sequence
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route

	cRecipientList
	cRecipientList properties
	Scenario: Routing a message to multiple recipients
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route

	cRoutingSlip
	cRoutingSlip properties
	Scenario 1: Routing a message consecutively to a series of endpoints
	Dropping and linking the components
	Configuring the components and connections
	Viewing code and executing the Route

	Scenario 2: Routing each message conditionally to a series of endpoints
	Dropping and linking the components
	Configuring the components and connections
	Viewing code and executing the Route

	cSplitter
	cSplitter properties
	Related scenario:

	cThrottler
	cThrottler properties
	Scenario: Throttling the message flow
	Dropping and linking the components
	Configuring the components

	Viewing the code and executing the Route

	cWireTap
	cWireTap properties
	Scenario: Wiretapping a message in a Route
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route

	Transformation components
	cContentEnricher
	cContentEnricher properties
	Scenario: Receiving messages from a list of URLs
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route

	cConvertBodyTo
	cConvertBodyTo properties
	Scenario: Converting the body of an XML file into an org.w3c.dom.Document.class
	Creating a Bean
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route

	cSetBody
	cSetBody properties
	Scenario: Replacing the content of messages with their extracts
	Dropping and linking the components
	Configuring the components and connections
	Viewing code and executing the Route

	cSetHeader
	cSetHeader properties
	Scenario: Splitting a message and renaming the sub-messages according to contained information
	Dropping and linking the components
	Configuring the components and connections
	Viewing code and executing the Route

	Related scenarios

