
Talend ESB
Infrastructure Services
Configuration Guide

5.2.1

Publication date 12 November 2012
Copyright © 2011-2012 Talend Inc.

Copyleft

This documentation is provided under the terms of the Creative Commons Public License (CCPL). For more
information about what you can and cannot do with this documentation in accordance with the CCPL, please read:
http://creativecommons.org/licenses/by-nc-sa/2.0/

This document may include documentation produced at The Apache Software Foundation which is licensed under
The Apache License 2.0.

Notices

Talend and Talend ESB are trademarks of Talend, Inc.

Apache CXF, CXF, Apache Karaf, Karaf, Apache Cellar, Cellar, Apache Camel, Camel, Apache Maven, Maven,
Apache Archiva, Archiva are trademarks of The Apache Foundation. Eclipse Equinox is a trademark of the Eclipse
Foundation, Inc. SoapUI is a trademark of SmartBear Software. Hyperic is a trademark of VMware, Inc. Nagios
is a trademark of Nagios Enterprises, LLC.

All other brands, product names, company names, trademarks and service marks are the properties of their
respective owners.

Talend ESB Infrastructure Services Configuration Guide

Table of Contents
1. Introduction .. 1

1.1. Prerequisites to using Talend ESB ... 1
2. Service Locator installation ... 3

2.1. Download and install ... 3
2.2. Installing in standalone mode .. 3
2.3. Start using command line ... 4
2.4. Running a replicated Service Locator ... 4
2.5. Running Apache Zookeeper as an OSGi bundle .. 5
2.6. Maintaining a Service Locator ... 5
2.7. Enabling Service Locator usage in CXF .. 6
2.8. The Service Locator SOAP Service .. 6
2.9. The Service Locator REST Service .. 11

3. Service Locator configuration .. 15
3.1. Service Locator Provider configuration .. 15
3.2. Service Locator Consumer configuration ... 16
3.3. Additional Metadata .. 17
3.4. Service Locator endpoint selection strategy configuration 18
3.5. Properties file ... 19
3.6. Restricting access to the Service Locator ... 20
3.7. Service Locator for RESTful services ... 24

4. Service Activity Monitoring (SAM) .. 27
4.1. Overview ... 27
4.2. Architecture ... 28
4.3. Installation ... 29
4.4. Configuration ... 37
4.5. Running and Testing .. 40
4.6. Event Structure ... 43
4.7. EVENTS_CUSTOMINFO Structure ... 44

5. Using STS with the Talend Runtime ... 45
5.1. Deploying the STS into the Talend Runtime container .. 45
5.2. Deploying the STS into a Servlet Container (Tomcat) .. 46
5.3. Security Token Service (STS) Configuration .. 46
5.4. Data Service Configuration for using STS .. 47
5.5. Creating keys for the Security Token Service ... 48

6. ActiveMQ .. 51
6.1. Overview ... 51
6.2. Standalone ActiveMQ broker .. 52
6.3. ActiveMQ OSGi bundles .. 53
6.4. ActiveMQ broker inside a Talend Runtime container ... 54
6.5. ActiveMQ Web Console ... 55
6.6. Examples ... 56

7. Installing BPM server and console in the Talend Runtime ... 59
7.1. Starting the BPM server and console into the Talend Runtime container 59
7.2. Copying the Bonita license into the container ... 60
7.3. Accessing the Bonita console .. 60

8. Apache Archiva and the Talend Artifact Repository ... 61
8.1. Overview ... 61
8.2. More information .. 62
8.3. Downloading and installing Archiva ... 62
8.4. Browsing repositories ... 63
8.5. Configuring Maven to use an Archiva repository ... 64
8.6. Deploying to a Repository .. 66

Talend ESB Infrastructure Services Configuration Guide

Talend ESB Infrastructure Services Configuration Guide

List of Figures
8.1. A repository with some Talend artifacts already deployed ... 63
8.2. Default Archiva Repositories ... 66

Talend ESB Infrastructure Services Configuration Guide

Talend ESB Infrastructure Services Configuration Guide

List of Tables
6.1. [start-options] syntax ... 52
6.2. [uri] parameter syntax .. 53

Talend ESB Infrastructure Services Configuration Guide

Talend ESB Infrastructure Services Configuration Guide

List of Examples
3.1. Service Locator Feature configuration for endpoint .. 16
3.2. Service Locator Feature configuration for client .. 17
3.3. Service Locator enabled endpoint with additional metadata ... 17
3.4. Service Locator enabled client with additional metadata requirements 18
3.5. Service Locator Feature RESTful service provider configuration 24
3.6. Service Locator RESTful service consumer configuration ... 25

Talend ESB Infrastructure Services Configuration Guide

Talend ESB Infrastructure Services Configuration Guide

Chapter 1. Introduction
This guide covers runtime installation and configuration information for Talend ESB services. Topics covered
include installation and configuration of the Service Locator, Service Activity Monitoring and the Security Token
Service.

For additional information on the Security Token Service, see the Talend ESB STS User Guide.

We use the term <TalendRuntimePath> for the directory where Talend Runtime is installed. This is
typically the full path of either Runtime_ESBSE or Talend-ESB-V5.2.x, depending on the version
of the software that is being used. Please substitute appropriately.

For instance, the Talend Runtime examples are in the <TalendRuntimePath>/examples/
talend directory.

1.1. Prerequisites to using Talend ESB
There are a number of software and hardware prerequisites you should be aware of, prior to starting the
installation of Talend ESB software.

For a complete list of compatible software and software versions:

• If you are using Talend ESB Studio, Talend Data Services Studio or Talend ESB, see the corresponding
Talend Installation Guide.

• If you are using Talend Open Studio for ESB or Talend ESB Standard Edition, see the link to the
Installation procedure on the Talend ESB download page (http://www.talend.com/download/esb).

• Some of the ESB components use Apache software components (for example, Apache CXF, Apache
Camel). For details on the exact software versions involved, see the section on Apache software in the
product release notes.

http://www.talend.com/download/esb

Talend ESB Infrastructure Services Configuration Guide

Talend ESB Infrastructure Services Configuration Guide

Chapter 2. Service Locator installation
This chapter describes the steps to install and run the Service Locator. The Service Locator is a service that provides
service consumers with a mechanism to discover service endpoints at run time. The Service Locator consists of
two parts: The endpoint repository and the Service Locator feature.

Since creating a distributed, fault-tolerant endpoint repository is a non-trivial task, the Service Locator
implementation is based on proven open source technology - Apache ZooKeeper. This is a highly reliable service
that provides coordination between distributed processes.

To learn more about Apache ZooKeeper, visit http://zookeeper.apache.org/.

Please note that only one Service Locator (ZooKeeper) instance can run on a machine at a time.

2.1. Download and install
The Service Locator ships with Talend ESB; it is in the <TalendRuntimePath>/zookeeper directory.

2.2. Installing in standalone mode
Setting up the Service Locator server in standalone mode is straightforward.

Installation consists of creating a configuration file.

1. Navigate to <TalendRuntimePath>/zookeeper or the root of the unpacked Apache Zookeeper
package.

2. To start the Service Locator you need a configuration file. Create this file - the default name is conf/
zoo.cfg (you can give it a different name):

http://zookeeper.apache.org/

Start using command line

4 Talend ESB Infrastructure Services Configuration Guide

tickTime=2000
dataDir=/var/locator
clientPort=2181

3. Change the value of dataDir to specify an existing, initially empty directory.

Here is a description for each of the fields:

Field name Description

tickTime the basic time unit in milliseconds used by the Service Locator. It is
used to do heartbeats, and the minimum session timeout will be twice the
tickTime

dataDir the location to store the in-memory database snapshots and, unless specified
otherwise, the transaction log of updates to the database

clientPort the port to listen for client connections

2.3. Start using command line
Now that you have created the configuration file, you can start the Service Locator server. The bin directory contain
scripts that allow easy access (classpath in particular) to the Service Locator server and command line client:

bin/zkServer.sh start [configFilename] (Linux)
bin/zkServer.cmd start [configFilename] (Windows)

where "configFilename" needs to be specified if it isn't the default zoo.cfg.

This runs the Service Locator in standalone mode. There is no replication, so if the Service Locator process fails,
the service will go down, so you may want to consider using a replicated Service Locator.

2.3.1. Logging

The Service Locator server logs messages using log4j. You will see log messages logged at the console (default)
and/or a log file depending on the log4j configuration.

2.4. Running a replicated Service Locator
Running the Service Locator server in standalone mode is convenient for evaluation, development, and testing.
But in production, you should run the Service Locator in replicated mode. A replicated group of servers in the
same application is called a quorum, and in replicated mode, all servers in the quorum have copies of the same
configuration file. The configuration is similar to the one used in standalone mode, but with a few differences:

tickTime=2000
dataDir=/var/locator
clientPort=2181
initLimit=5
syncLimit=2
server.1=locator_host1:2888:3888
server.2=locator_host2:2888:3888
server.3=locator_host3:2888:3888

Running Apache Zookeeper as an OSGi bundle

Talend ESB Infrastructure Services Configuration Guide 5

• The new configuration entry, initLimit limits the time the Service Locator servers in quorum have to connect
to a leader. For initLimit and syncLimit timeouts, the unit of time is specified using tickTime. In this
example, the timeout for initLimit is 5 ticks at 2000 milleseconds a tick, or 10 seconds.

• The configuration entry syncLimit limits how far out of date a server can be from a leader.

• The entries of the form server.X list the servers that make up the Service Locator service. When the server
starts up, it knows which server it is by looking for the file myid in the data directory. That file has the contains
the server number, in ASCII.

• Note the two port numbers after each server name: "2888" and "3888". Peers use the former port to connect
to other peers. Such a connection is necessary so that peers can communicate, for example, to agree upon the
order of updates. More specifically, a Service Locator server uses this port to connect followers to the leader.
When a new leader arises, a follower opens a TCP connection to the leader using this port. Because the default
leader election also uses TCP, we currently require another port for leader election. This is the second port in
the server entry.

2.5. Running Apache Zookeeper as an OSGi
bundle
Another way to run Apache Zookeeper server is to install its OSGi bundle into the Karaf container. The
configuration of Apache Zookeeper server is similar to the one used in standalone mode. The path to configuration
file container\etc\org.talend.esb.locator.server.cfg

1. Start the Talend Runtime container

2. Execute the console command features:install tesb-zookeeper-server

3. Execute the console command list

You should see a similar output to this:

 ID State Blueprint Spring Level Name
 [168] [Active] [] [] [60] ZooKeeper
 server control bundle (1.2)

To ensure that feature installed successfully, you can run examples related to the Service Locator server.

2.6. Maintaining a Service Locator
The Service Locator continually saves znode snapshot files and, optionally, transactional logs in a Data Directory
to enable you to recover data. It's a good idea to back up the Service Locator data directory periodically. Although
the Service Locator is highly reliable because a persistent copy is replicated on each server, recovering from
backups may be necessary if a catastrophic failure or user error occurs.

The Service Locator server does not remove the snapshots and log files, so they will accumulate over time. You
will need to cleanup this directory occasionally, based on your backup schedules and processes. To automate
the cleanup, a zkCleanup.sh script is provided in the bin directory. Modify this script as necessary for your
situation. In general, you want to run this as a cron task based on your backup schedule.

The data directory is specified by the dataDir parameter in the Service Locator server configuration file, and the
data log directory is specified by the dataLogDir parameter. For more information, see Ongoing Data Directory
Cleanup.

http://zookeeper.apache.org/doc/trunk/zookeeperAdmin.html#sc_configuration
http://zookeeper.apache.org/doc/trunk/zookeeperAdmin.html#Ongoing+Data+Directory+Cleanup
http://zookeeper.apache.org/doc/trunk/zookeeperAdmin.html#Ongoing+Data+Directory+Cleanup

Enabling Service Locator usage in CXF

6 Talend ESB Infrastructure Services Configuration Guide

2.7. Enabling Service Locator usage in CXF
You need the client component of the Service Locator (locator-<5.2.1>.jar) to enable your CXF service or
consumer to use the Service Locator.

To use the Locator client in CXF you need to add the locator-<5.2.1>.jar into your classpath or war file.
Also add it to the OSGi container if it uses one. To learn more about Locator client configuration for both provider
or consumer please see the Service Locator Configuration Manual.

2.8. The Service Locator SOAP Service
The Service Locator SOAP Service component provides a way to access the Service Locator operations (such
as Register an endpoint, Unregister an endpoint, Lookup endpoints for given service, etc.) via the SOAP
interface.

To access the Service Locator instance operations via SOAP, you need to extend the Service Locator by installing
an additional proxy service component called the Service Locator SOAP service in the Talend Runtime container.
To do so, follow the below steps:

1. Type features:install tesb-locator-soap-service in the Talend Runtime container to
enable the Service Locator service component;

2. Type features:install tesb-zookeeper-server in the Talend Runtime container to enable the
Service Locator server (zookeeper server) component;

3. Type list in the Talend Runtime container. You should see the output:

 ID State Blueprint Spring Level Name
 [189] [Active] [] [] [60] Locator
 Service :: Common (5.2.1)
 [190] [Active] [] [] [60] Locator
 Service :: SOAP Service (5.2.1)
 [191] [Active] [] [] [60] ZooKeeper
 server control bundle (1.2)

The above output shows that the Service Locator service component and Service Locator server (ZooKeeper
server) are enabled in the Talend Runtime container.

Also you can configure the ZooKeeper server in the Talend Runtime container by editing the following
configuration file:

container/etc/org.talend.esb.locator.server.cfg

 # The number of milliseconds of each tick
 tickTime=2000
 # The number of ticks that the initial
 # synchronization phase can take
 initLimit=10
 # The number of ticks that can pass between
 # sending a request and getting an acknowledgement
 syncLimit=5
 # the directory where the snapshot is stored.
 dataDir=./zookeeper/data
 # the port at which the clients will connect
 clientPort=2181

The Service Locator SOAP Service

Talend ESB Infrastructure Services Configuration Guide 7

 #Number of client connection (default = 10; unlimited = 0)
 maxClientCnxns = 0

This configuration is the same as the Service Locator configuration, described in Section 2.2, “Installing in
standalone mode”.

To check that the service is working, access its WSDL at:

http://localhost:8040/services/ServiceLocatorService?wsdl.

The WSDL file for the Service Locator SOAP Service can be found at:

add-ons/locator/LocatorService.wsdl

The corresponding schema files with definitions of the types are:

add-ons/locator/locator-common-types.xsd

add-ons/locator/locator-soap-types.xsd

Currently the Service Locator service provides the following operations:

• Register an endpoint: For a specific service, register an endpoint on the Service Locator server, so the user
can access this endpoint through the service locator server. Parameters: fully qualified service name, endpoint
URL, user defined properties (optional). Return: void

The Register an endpoint operation is described in LocatorService.wsdl as follows:

<operation name="registerEndpoint">
 <input message="lps:registerEndpointInput"/>
 <output message="lps:registerEndpointOutput"/>
 <fault name="InterruptedExceptionFault"
 message="lps:InterruptedExceptionFault"/>
 <fault name="ServiceLocatorFault" message="lps:ServiceLocatorFault"/>
</operation>

 <message name="registerEndpointInput">
 <part name="parameters" element="lpx:registerEndpoint"/>
</message>
<message name="registerEndpointOutput">
 <part name="parameters" element="lpx:registerEndpointResponse"/>
</message>

The related message type definition is separately described in locator-soap-types.xsd and locator-
common-types.xsd as follows:

<xsd:element name="registerEndpoint">
<xsd:complexType>
 <xsd:sequence>
 <xsd:element name="serviceName" type="xsd:QName"/>
 <xsd:element name="endpointURL" type="xsd:anyURI"/>
 <xsd:element name="binding" type="lpx:BindingType" />
 <xsd:element name="transport" type="lpx:TransportType" />
 <xsd:element name="properties" type="lpx:SLPropertiesType"
 minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name="registerEndpointResponse">

http://localhost:8040/services/ServiceLocatorService?wsdl

The Service Locator SOAP Service

8 Talend ESB Infrastructure Services Configuration Guide

<xsd:complexType>
 <xsd:sequence/>
</xsd:complexType>
</xsd:element>

 <xsd:simpleType name="BindingType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="SOAP11" />
 <xsd:enumeration value="SOAP12" />
 <xsd:enumeration value="JAXRS" />
 <xsd:enumeration value="OTHER" />
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="TransportType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="HTTP" />
 <xsd:enumeration value="HTTPS" />
 <xsd:enumeration value="JMS" />
 <xsd:enumeration value="OTHER" />
 </xsd:restriction>
 </xsd:simpleType>

An example of registering an endpoint for a specific service is provided in the project /examples/talend/
tesb/locator-service/soap-proxy/war/:

An example of simple locator service configuration is in /examples/talend/tesb/locator-
service/soap-proxy/war/src/main/resources/client.xml:

 <jaxws:client id="locatorService"
 address="http://localhost:8040/services/ServiceLocatorService"
 serviceClass="org.talend.services.esb.locator.v1.LocatorService"
 </jaxws:client>

An example of how to register an endpoint using this configuration
is in/examples/talend/tesb/locator-service/soap-proxy/war/src/main/java/
demo/service/ContextListener.java:

ClassPathXmlApplicationContext context =
 new ClassPathXmlApplicationContext ("/client.xml");
LocatorService client =
 (LocatorService) context.getBean("locatorService");
String serviceHost = "localhost:";

try {
 client.registerEndpoint(new QName(
 "http://talend.org/esb/examples/", "GreeterService"),
 serviceHost, BindingType.SOAP_11, TransportType.HTTP, null);
 } catch (InterruptedExceptionFault e) {
 e.printStackTrace();
 } catch (ServiceLocatorFault e) {
 e.printStackTrace();
}

• Unregister an endpoint: Unregister an endpoint, which has been registered on the Service Locator server, from
the Service Locator server. After unregistering the endpoint, it can not be accessed by the Service Locator server.
Parameters: fully qualified service name, endpoint URL. Return: success or non-success (endpoint did not exist)

The Service Locator SOAP Service

Talend ESB Infrastructure Services Configuration Guide 9

The Unregister an endpoint operation is described in LocatorService.wsdl as follows:

<operation name="unregisterEndpoint">
 <input message="lps:unregisterEndpointInput"/>
 <output message="lps:unregisterEndpointOutput"/>
 <fault name="InterruptedExceptionFault"
 message="lps:InterruptedExceptionFault"/>
 <fault name="ServiceLocatorFault" message="lps:ServiceLocatorFault"/>
</operation>

<message name="unregisterEnpointRequest">
 <part element="lpx:unregisterEndpointRequest" name="input"/>
</message>
<message name="unregisterEndpointInput">
 <part name="parameters" element="lpx:unregisterEndpoint"/>
</message>
<message name="unregisterEndpointOutput">
 <part name="parameters" element="lpx:unregisterEndpointResponse"/>
</message>

The related message type definition is separately described in locator-soap-types.xsd and
locator-common-types.xsd as follows:

<xsd:element name="unregisterEndpoint">
<xsd:complexType>
 <xsd:sequence>
 <xsd:element name="serviceName" type="xsd:QName"/>
 <xsd:element name="endpointURL" type="xsd:anyURI"/>
 </xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name="unregisterEndpointResponse">
<xsd:complexType>
 <xsd:sequence/>
</xsd:complexType>
</xsd:element>

Example of Unregister an endpoint for a specific service provided in project /examples/talend/tesb/
locator-service/soap-proxy/war/:

 ClassPathXmlApplicationContext context =
 new ClassPathXmlApplicationContext("/client.xml");
 LocatorService client = (LocatorService) context
 .getBean("locatorService");

 String serviceHost = this.context.getInitParameter("serviceHost");

 ...

 client.unregisterEndpoint(new QName("http://talend.org/esb/examples/",
 "GreeterService"), serviceHost);

• Lookup all endpoints for a given service: Lookup all endpoints for the given service which has been registered
on the Service Locator server. Parameters: fully qualified service name, required user defined properties
(optional). Return: list of WS-Addressing EPR's, for all endpoints that provide the service and fullfil the required
properties. If none exists return business fault

The Service Locator SOAP Service

10 Talend ESB Infrastructure Services Configuration Guide

The Lookup all endpoints for given Service operation is described in LocatorService.wsdl as follows:

<operation name="lookupEndpoints">
 <input message="lps:lookupEndpointsInput"/>
 <output message="lps:lookupEndpointsOutput"/>
 <fault name="InterruptedExceptionFault"
 message="lps:InterruptedExceptionFault"/>
 <fault name="ServiceLocatorFault" message="lps:ServiceLocatorFault"/>
</operation>

<message name="lookupEndpointsInput">
 <part name="parameters" element="lpx:lookupEndpoints"/>
</message>
<message name="lookupEndpointsOutput">
 <part name="parameters" element="lpx:LookupEndpointsResponse"/>
</message>

The related message type definition is separately described in locator-soap-types.xsd and
locator-common-types.xsd as follows:

<xsd:complexType name="lookupRequestType">
 <xsd:sequence>
 <xsd:element name="serviceName" type="xsd:QName"/>
 <xsd:element name="matcherData" type="lpx:MatcherDataType"
 minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
</xsd:complexType>
<xsd:element name="LookupEndpointsResponse">
<xsd:complexType>
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="0" name="return"
 nillable="false" type="wsa:EndpointReferenceType"/>
 </xsd:sequence>
</xsd:complexType>
</xsd:element>

• Lookup one endpoint for a given service: Lookup only one endpoint for the given service which has
been registered on the Service Locator server. Parameters: fully qualified service name, required user defined
properties (optional). Return: one WS-Addressing EPR, for an endpoint that provides the service and fullfills
the required properties. If several endpoints match, select one randomly. If none exists, return business fault.

The Lookup endpoint for given Service operation is described in LocatorService.wsdl as follows:

<operation name="lookupEndpoint">
 <input message="lps:lookupEndpointInput"/>
 <output message="lps:lookupEndpointOutput"/>
 <fault name="InterruptedExceptionFault"
 message="lps:InterruptedExceptionFault"/>
 <fault name="ServiceLocatorFault" message="lps:ServiceLocatorFault"/>
</operation>

<message name="lookupEndpointInput">
 <part name="parameters" element="lpx:lookupEndpoint"/>
</message>
<message name="lookupEndpointOutput">
 <part name="parameters" element="lpx:lookupEndpointResponse"/>
</message>

The Service Locator REST Service

Talend ESB Infrastructure Services Configuration Guide 11

The related message type definition is separately described in locator-soap-types.xsd and locator-
common-types.xsd as follows:

<xsd:element name="lookupEndpoint" type="lpx:lookupRequestType"/>
<xsd:element name="lookupEndpointResponse">
<xsd:complexType>
 <xsd:sequence>
 <xsd:element name="value" type="wsa:EndpointReferenceType"/>
 </xsd:sequence>
</xsd:complexType>
</xsd:element>

Example of Lookup endpoint for the given service provided in project /examples/talend/tesb/
locator-service/soap-proxy/client/:

Example of simple locator service configuration you can see in /examples/talend/tesb/locator-
service/soap-proxy/client/src/main/resources/META-INF/client.xml:

 <jaxws:client id="locatorService"
 address="http://localhost:8040/services/ServiceLocatorService"
 serviceClass="org.talend.services.esb.locator.v1.LocatorService"
 </jaxws:client>

Example how to lookup endpoint using this configuration you can see in/examples/talend/tesb/
locator-service/soap-proxy/client/src/main/java/demo/client/Client.java:

 ClassPathXmlApplicationContext context =
 new ClassPathXmlApplicationContext("/META-INF/client.xml");
 LocatorService client =
 (LocatorService) context.getBean("locatorService");

 W3CEndpointReference endpointReference = client.lookupEndpoint(
 new QName("http://talend.org/esb/examples/", "GreeterService"),
 null);
 System.out.println(endpointReference.toString());

 javax.xml.ws.Service jaxwsServiceObject = Service.create(
 new QName("http://talend.org/esb/examples/", "GreeterService"));

 Greeter greeterProxy =
 jaxwsServiceObject.getPort(endpointReference, Greeter.class);
 String reply = greeterProxy.greetMe("HI");
 System.out.println("Server said: " + reply);

2.9. The Service Locator REST Service
The Service Locator REST Service component provides a way to access the Service Locator operations in REST
manner.

To access the Service Locator instance operations via REST, you need to extend the Service Locator by installing
an additional proxy service component in the Talend Runtime container. To do so, follow the below steps:

1. Type features:install tesb-locator-rest-service in the Talend Runtime container to
enable the REST Locator Service component;

The Service Locator REST Service

12 Talend ESB Infrastructure Services Configuration Guide

2. Type features:install tesb-zookeeper-server in the Talend Runtime container to enable the
Service Locator server (zookeeper server) component;

3. Type list in the Talend Runtime container. You should see the output:

 ID State Blueprint Spring Level Name
 [190] [Active] [] [] [60] Locator
 Service :: Common (5.2.1)
 [191] [Active] [] [] [60] Locator
 Service :: REST Service (5.2.1)
 [192] [Active] [] [] [60] ZooKeeper
 server control bundle (1.2)

The above output shows that the Service Locator REST Service component and Service Locator server
(ZooKeeper server) are enabled in the Talend Runtime container.

The Service Locator server (Zookeeper server) configuration is the same as described in Section 2.8, “The Service
Locator SOAP Service”.

To check that the service is working, access its WADL in a browser at: http://localhost:8040/services/
ServiceLocatorRestService?_wadl&_type=xml

The WADL file for the Service Locator REST Service can be found at:

add-ons/locator/LocatorService.wadl

The corresponding schema files with definitions of types are:

add-ons/locator/locator-common-types.xsd

add-ons/locator/locator-rest-types.xsd

add-ons/locator/ws-addr.xsd

Currently the Service Locator REST Service has these operations:

• Register an endpoint for a specific service. Parameters: fully qualified service name, endpoint URL, user defined
properties (optional). Return: void.

The Register an endpoint for a specific service operation is described in LocatorService.wadl as
follows:

<resource path="endpoint">
 <method name="POST" id="registerEndpoint">
 <request>
 <representation mediaType="application/xml"
 element="ns:RegisterEndpointRequest"/>
 <representation mediaType="application/json"
 element="ns:RegisterEndpointRequest" />
 </request>
 </method>
</resource>

Example of request url with POST method:

locator/endpoint/

<?xml version="1.0" encoding="UTF-8"?>
<lpx:RegisterEndpointRequest
 xmlns:lpx="http://talend.org/schemas/esb/locator/rest/2011/11"
 xmlns:tns="http://www.w3.org/2005/08/addressing"

http://localhost:8040/services/ServiceLocatorRestService?_wadl&_type=xml
http://localhost:8040/services/ServiceLocatorRestService?_wadl&_type=xml

The Service Locator REST Service

Talend ESB Infrastructure Services Configuration Guide 13

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://talend.org/schemas/esb/locator/rest/2011/11 locator-rest-type
s.xsd">
 <serviceName>
 {http://service.proxy.locator.esb.talend.org}LocatorServiceImpl
 </serviceName>
 <endpointURL>
 http://services.talend.org/TestEndpoint
 </endpointURL>
 <binding>JAXRS</binding>
 <transport>HTTP</transport>
 <EntryType>
 <key>systemTimeout</key>
 <value>200</value>
 </EntryType>
</lpx:RegisterEndpointRequestType>

• Unregister an endpoint: Unregister an endpoint for specific Service from the Service Locator server, which
has been registered on the Service Locator server. After unregistering the endpoint, it can not be accessed.
Parameters: fully qualified service name, endpoint URL. Return: void

The Unregister an endpoint is described in LocatorService.wadl as follows:

<resource path="endpoint/{serviceName}/{endpointURL}">
 <method name="DELETE" id="unregisterEndpoint">
 <request>
 <param name="serviceName" type="xsd:string" style="template"
 required="true" />
 <param name="endpointURL" type="xsd:string" style="template"
 required="true" />
 </request>
 </method>
</resource>

Example of request url with DELETE method:

locator/endpoint/{namespaceURI}serviceName/endpointURL

• Lookup all endpoints: Lookup all endpoints for the given service which has been registered on the Service
Locator server. Parameters: fully qualified service name, required user defined properties (optional). Return:
list of WS-Addressing EPR's, for all endpoints that provide the service and fullfil the required properties. If
none exists return WebApplicationException and status 404.

The Lookup all endpoints for given Service operation is described in LocatorService.wadl as follows:

<resource path="endpoints/{serviceName}">
 <method name="GET" id="lookupEndpoints">
 <request>
 <param name="serviceName" type="xsd:string" style="template"
 required="true" />
 <param name="param" type="xsd:string" style="matrix"
 repeating="true" />
 </request>
 <response status="200">
 <representation mediaType="application/xml"
 element="ns:EndpointReferenceList" />
 <representation mediaType="application/json"
 element="ns:EndpointReferenceList" />

The Service Locator REST Service

14 Talend ESB Infrastructure Services Configuration Guide

 </response>
 </method>
</resource>

Example of request url with GET method:

locator/endpoints/{namespaceURI}localPart/
p=key1,value1;p=key2,value2;p=key3,value3

• Lookup one endpoint for a given service. Parameters: fully qualified encoded service name, required user
defined properties (optional). Return: one WS-Addressing EPR, for an endpoint that provides the service
and fullfills the required properties. If several endpoints match select one randomly. If none exists return
WebApplicationException and status 404.

The Lookup one endpoint for given Service operation is described in LocatorService.wadl as follows:

<resource path="endpoint/{serviceName}">
 <method name="GET" id="lookupEndpoint">
 <request>
 <param name="serviceName" type="xsd:string" style="template"
 required="true" />
 <param name="param" type="xsd:string" style="matrix"
 repeating="true" />
 </request>
 <response status="200">
 <representation mediaType="application/xml"
 element="wsa:EndpointReference"/>
 <representation mediaType="application/json"
 element="wsa:EndpointReference"/>
 </response>
 </method>
</resource>

Example of request url with GET method:

locator/endpoint/{namespaceURI}localPart/
p=key1,value1;p=key2,value2;p=key3,value3

If you have Talend ESB, there is GUI functionality provided by the Talend Administration Center, for
viewing the Service Locator information. Please see Talend Enterprise ESB Installation Guide and Talend
Administration Center User Guide for more details.

Talend ESB Infrastructure Services Configuration Guide

Chapter 3. Service Locator configuration
Like any standard CXF feature, the Service Locator Feature is configured separately for the service provider side
and service consumer side. The provider side Service Locator Feature extension registers and deregisters service
endpoints in the endpoint repository when the provider becomes available or unavailable. The consumer side
Service Locator Feature extension transparently retrieves service endpoint addresses from the endpoint repository
when a service call to a provider is to be made.

The chapter describes in detail the Service Locator Feature Spring configuration.

3.1. Service Locator Provider configuration
To enable Locator feature import locator beans in Spring configuration file <import
resource="classpath:tesb/locator/beans.xml" /> for servlet container and <import
resource="classpath:tesb/locator/beans-osgi.xml" /> for OSGI container.

To add the Locator feature to a CXF service provider, use <jaxws:features> including the bean
org.talend.esb.servicelocator.cxf.LocatorFeature.

Service Locator Consumer configuration

16 Talend ESB Infrastructure Services Configuration Guide

Example 3.1. Service Locator Feature configuration for endpoint

 <beans
 xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://cxf.apache.org/jaxws
 http://cxf.apache.org/schemas/jaxws.xsd">
 <import resource="classpath:META-INF/cxf/cxf.xml" />
 <import resource="classpath:META-INF/tesb/locator/beans-osgi.xml"/>
 <jaxws:endpoint xmlns:tns="http://talend.org/esb/examples/"
 id="greeter" implementor="demo.service.GreeterImpl"
 serviceName="tns:GreeterService" address="/GreeterService">
 <jaxws:features>
 <bean
 class="org.talend.esb.servicelocator.cxf.LocatorFeature"/>
 </jaxws:features>
 </jaxws:endpoint>
 </beans>

In the example above you can see that locator client was added through configuration exactly the same way as a
standard CXF feature using <jaxws:features>.

3.2. Service Locator Consumer configuration
To enable Locator feature, import locator beans in Spring configuration file <import
resource="classpath:tesb/locator/beans.xml" /> for servlet container and <import
resource="classpath:tesb/locator/beans-osgi.xml" /> for OSGI container.

To add the Locator feature to a CXF service consumer, use <jaxws:client> including the bean
org.talend.esb.servicelocator.cxf.LocatorFeature.

Additional Metadata

Talend ESB Infrastructure Services Configuration Guide 17

Example 3.2. Service Locator Feature configuration for client

 <beans
 xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xmlns:util="http://www.springframework.org/schema/util"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-3.0.xsd
 http://www.springframework.org/schema/util
 http://www.springframework.org/schema/util/spring-util-3.0.xsd ">
 <import resource="classpath:META-INF/cxf/cxf.xml" />
 <import resource="classpath:/META-INF/tesb/locator/beans.xml" />
 <jaxws:client id="greeterService" address="locator://GreeterService"
 serviceClass="demo.common.Greeter">
 <jaxws:features>
 <bean
 class="org.talend.esb.servicelocator.cxf.LocatorFeature">
 </bean>
 </jaxws:features>
 </jaxws:client>
 </beans>

In the example above you can see that Locator client was added through configuration in exactly the same way as
a standard CXF feature using <jaxws:features>. Another important point is to configure the JAX-WS client
address. We must use the locator protocol for client: address="locator://service_name".

3.3. Additional Metadata
Sometimes you need a more fine grained control of endpoints for a specific service a client gets when retrieving
the endpoints. For this purpose you can define additional metadata for an endpoint, such as the country for which
the endpoint is only valid or the bandwith it provides. The client on the other side may define the metadata it
requires from the endpoint from which a service call is to be made.

Example 3.3. Service Locator enabled endpoint with additional metadata

 <jaxws:endpoint
 xmlns:tns="http://talend.org/esb/examples/" id="greeter"
 implementor="demo.service.GreeterImpl"
 serviceName="tns:GreeterService" address="/GreeterService">
 <jaxws:features>
 <bean
 class="org.talend.esb.servicelocator.cxf.LocatorFeature">
 <property name="availableEndpointProperties">
 <map>
 <entry key="country" value="Luxembourg, Belgium"/>
 <entry key="bandwith" value="Class A"/>
 </map>
 </property>
 </bean>
 </jaxws:features>
 </jaxws:endpoint>

Service Locator endpoint selection strategy configuration

18 Talend ESB Infrastructure Services Configuration Guide

In the example above, the endpoint provides a metadata entry for country with the values Luxembourg and
Belgium and an entry for bandwith with value Class A.

Example 3.4. Service Locator enabled client with additional metadata requirements

 <jaxws:client id="GreeterClient"
 serviceClass="demo.common.Greeter" address="locator://">
 <jaxws:features>
 <bean
 class="org.talend.esb.servicelocator.cxf.LocatorFeature">
 <property name="requiredEndpointProperties"> <map>
 <entry key="country" value="Belgium"/> </map>
 </property>
 </bean>
 </jaxws:features>
 </jaxws:client>

In the example above, the client requires the endpoint to have a metadata entry for country that at least includes
Belgium as value.

3.4. Service Locator endpoint selection
strategy configuration
Currently three endpoint selection strategies are supported: "defaultSelectionStrategy",
"randomSelectionStrategy" and "evenDistributionSelectionStrategy".

1. "defaultSelectionStrategy" keeps the endpoint as long as there is no failover, the other two strategies distribute
the load at different endpoints.

2. "evenDistributionSelectionStrategy" performs a client side round robin strategy. For example, if there are
three instances (endpoints), round robin is normal distribution:"1 2 3 1 2 3 1 2 3". If multiple clients use
"evenDistributionSelectionStrategy", it could happen that all clients choose subsequently the same endpoints
since the locator instances for each client operate independently.

In case of failover (for example if instance 2 goes down), when the Service Locator client again executes a
request for endpoints, it will just get the remaining endpoints (for example, instance 1 and 3). One endpoint
will be picked randomly to begin with, and then the strategy resumes, for example: "1 3 1 3 1 3" or "3 1 3 1 3 1".

3. "randomSelectionStrategy" selects randomly from the available endpoints for each call.
"randomSelectionStrategy" avoids the problem of clients possibly choosing the same endpoints.

In summary, in case of a failover, a random alternative endpoint is selected to start with, and then the selected
strategy resumes as normal.

The selection strategy at a container level is configured in the properties file as described below in the Section 3.5,
“Properties file” section of the document by setting the "locator.strategy" property. If that property is not added
in the configuration file, the "defaultSelectionStrategy" is chosen as default endpoint selection strategy.

Endpoint selection strategy can also be configured for each consumer by adding additional property in consumer
configuration. For the consumer selection strategy setting, add "selectionStrategy" property in the beans.xml file
as shown below:

 <jaxws:features>
 <bean class="org.talend.esb.servicelocator.cxf.LocatorFeature">
 <property name="selectionStrategy"
 value="randomSelectionStrategy"/>

Properties file

Talend ESB Infrastructure Services Configuration Guide 19

 </bean>
 </jaxws:features>

3.5. Properties file
On Talend Runtime container, if you want to configure some properties of the locator feature, please edit:

<TalendRuntimePath>/container/etc/org.talend.esb.locator.cfg

On Servlet Container, if you want to configure some properties, please edit the locator.properties in your
classpath.

You can specify following properties in your configuration file:

Property name Description

locator.endpoints Specify the endpoints of all the instances belonging to the Service Locator
ensemble the Service Locator client might be talking to. The Service
Locator client will pick an endpoint one by one (the order is non-
deterministic) to connect to the Service Locator until a connection is
established. If the property is not set, the default localhost endpoint is
localhost:2181

endpoint.http.prefix necessary when running in a container where the endpoint is only relative
to the container. The default value is an empty string, but typically it is
preset to a value such as : http://localhost:8040/services in
the configuration file.

endpoint.https.prefix necessary when running in a container where the endpoint is only relative
to the container and secured. The default value is an empty string, but
typically it is preset to a value such as : https://localhost:9001/
services in the configuration file.

locator.strategy Three endpoint selection strategies are supported:
"defaultSelectionStrategy", "randomSelectionStrategy" and
"evenDistributionSelectionStrategy".

locator.reloadAdr
essesCount

This parameter is only relevant for locator.strategy=
evenDistributionSelectionStrategy and
locator.strategy= randomSelectionStrategy. These
strategies cache the list of endpoints returned by the locator
for a fixed number of service calls determined by parameter
"locator.reloadAdressesCount". After these calls, the list of available
addresses is refreshed. Set this parameter to a high value to reduce the
number of locator calls in case your services are reliable and a failover
occurs seldom.

connection.timeout specify the time the Service Locator client waits for a connection to get
established. Must be greater than zero, by default 5000 ms.

session.timeout specify the time out of the session established with the server. The session
is kept alive by requests sent by the client. If the session is idle for a period
of time that would timeout the session, the client will send a ping request
to keep the session alive. Must be greater than zero and less than 60000,
by default 5000 ms.

Here is an example of a <TalendRuntimePath>/container/etc/
org.talend.esb.locator.cfg file:

 locator.endpoints=localhost:2181

Service Locator configuration with multiple machines

20 Talend ESB Infrastructure Services Configuration Guide

 endpoint.http.prefix=http://localhost:8040/services
 endpoint.https.prefix=https://localhost:9001/services
 locator.strategy=defaultSelectionStrategy
 locator.reloadAdressesCount=10
 connection.timeout=5000
 session.timeout=5000

3.5.1. Service Locator configuration with multiple
machines
You may need to update some of these values if the containers are not all on the same machine. This section
describes an example scenario, where two containers are accessing the Service Locator, which may be in a third
container.

• If the containers are running on different machines, then you need to replace "localhost" with the actual ip
address.

• You may also need to check the endpoint prefixes that are to be published within the locator.

1. Examine the properties in the file etc/org.talend.esb.locator.cfg in each container which uses
the Service Locator.

2. The locator.endpoints property is set to where the Service Locator is running - this is the normal
preset value:

locator.endpoints=localhost:2181

If the services share the same Service Locator, this needs to be the same in each config file. Replace
"localhost" with the IP address of where the locator is running, for example, if the IP of where Service Locator
is running is 192.168.0.5:

locator.endpoints=192.168.0.5:2181

3. You may also need to update the endpoint prefixes - the default configuration uses localhost (as described
in the properties table):

endpoint.http.prefix=http://localhost:8040/services
endpoint.https.prefix=https://localhost:9001/services

• If the IP of a container is 192.168.0.10:
endpoint.http.prefix=http://localhost:8040/services should be replaced with:
endpoint.http.prefix=http://192.168.0.10:8040/services.

• If the IP of a second container is 192.168.0.20:
endpoint.http.prefix=http://localhost:8040/services should be replaced with:
endpoint.http.prefix=http://192.168.0.20:8040/services.

• If a second container is running on the same host as the first container:
endpoint.http.prefix=http://localhost:8041/services should be replaced with
endpoint.http.prefix=http://192.168.0.10:8041/services.

This is an example; you may need to update your own application differently, depending on its configuration.

3.6. Restricting access to the Service Locator
By default, access to the Service Locator server is not restricted; anyone can add, delete or lookup services.

Enabling authentication for a Service Locator server

Talend ESB Infrastructure Services Configuration Guide 21

This access restriction is added by enabling authentication functionality using the Java Authentication and
Authorization Service (JAAS) login module in the container.

To do that, you have to set corresponding properties in specific container configuration files, and this section
describes this in detail.

Services or clients running on a Talend Runtime container v5.1.x or previous versions can't communicate
with a secured Service Locator.

The authentication feature is only relevant for Service Locator servers running in the Talend Runtime
container, not for the stand-alone version (and not for a pure Apache Zookeeper server).

3.6.1. Enabling authentication for a Service Locator
server

Part of this configuration involves specifying users with corresponding passwords and roles. It depends
on type of your JAAS login module where and how this information is specified. For example, if the
JDBCLoginModule is used then user, passwords and roles are stored in a database.

Please take a look at http://karaf.apache.org/manual/2.2.9/developers-guide/security-framework.html to
get information how to configure and use these different JAAS login modules in the container

The configuration steps needed are as follows:

1. Enable authentication in a server container, by setting the corresponding property in the ZooKeeper server
configuration file <container>/etc/org.talend.esb.locator.server.cfg:

authentication = true

Don't switch off authentication after Service Locator is secured and services have been registered
with the Service Locator.

2. Specify users with corresponding passwords and roles.

By default all information about users is stored in <container>/etc/users.properties. So,
modify this file in the container where the Service Locator is running, and add roles for the user(s).

For example, add the following lines to <container>/etc/users.properties:

tadmin is user with administrator privileges
tadmin=tadmin,admin,sl_admin
sluser is a user for the client side that is just able to lookup
endpoints on Service Locator
sluser=upassword,sl_read
slservice is a user for server side that is able to register and lookup
endpoints on Service Locator
slservice=spassword,sl_maintain

Note that the following roles are available for Service Locator clients:

Role Description

sl_read this role is for clients, that only lookup endpoints.

If the sl_read role is given to a user, they can get data from a node and list its children.

sl_maintain this role is for users that register endpoints on the Service Locator server. The user can:

• get data from a node and list its children

http://karaf.apache.org/manual/2.2.9/developers-guide/security-framework.html

Enabling authentication for a Service Locator client

22 Talend ESB Infrastructure Services Configuration Guide

Role Description

• create a child node

• set data for a node

• delete a child node

sl_admin same as sl_maintain, but in addition, the user can set permissions

Roles are case insensitive - you can use either uppercase or lowercase letters for roles in configuration
files.

For production use, the sample passwords used here will need to be replaced with your project's own
passwords.

3.6.2. Enabling authentication for a Service Locator
client
To enable authentication for a client, define user names and passwords (corresponding to the ones on the
server) by adding authentication properties in the Service Locator configuration file <container>/etc/
org.talend.esb.locator.cfg.

For example:

• in a container where a consumer is looking up services from the Service Locator server, add:

authentication.name=sluser
authentication.password=upassword

• in a container where a Web Service is adding or deleting services from the Service Locator server, add:

authentication.name=slservice
authentication.password=spassword

3.6.3. Securing the Service Locator SOAP Service
The Service Locator SOAP Service provides additional security configuration.

The Service Locator REST service can't currently be secured.

The configuration files described here are created in the container when you install the Service Locator
SOAP Service component.

The predefined security configurations support two scenarios: using a UserName token or a SAML
token. For switching between these scenarios and configuring additional security parameters use the etc/
org.talend.esb.locator.service.cfg configuration file:

You can specify following properties in that file:

Property name Description

locator.authentication NO (default) - No security scenario

SAML - SAML token scenario

TOKEN - UserName token scenario

policy.token Location of the UserName token scenario policy file.

Implementing authentication for the Rent-a-Car example

Talend ESB Infrastructure Services Configuration Guide 23

Property name Description

policy.saml Location of the SAML token scenario policy file.

ws-security.signature.properties Link to the properties file which contains signature
parameters. Used for SAML token verification.
Default value is file:${tesb.home}/etc/
keystores/serviceKeystore.properties.

ws-security.signature.username SAML token signature username. Used for SAML
token verification.

ws-security.signature.password SAML token signature password. Used for SAML token
verification.

The UserName token policy is located and can be configured here: etc/
org.talend.esb.locator.token.policy.

The SAML token policy is located and can be configured here: etc/
org.talend.esb.locator.saml.policy.

3.6.4. Implementing authentication for the Rent-a-Car
example

We modify the current Rent-a-Car example to enable authentication, by updating configuration files as follows:

1. In the first container (where we run the Locator feature and Rent-a-Car services):

update <container>/etc/org.talend.esb.locator.cfg with the user information:

authentication.name=slservice
authentication.password=spassword

2. Then update <container>/etc/users.properties and add the role information:

sluser=upassword,sl_read
slservice=spassword,sl_maintain

3. In the second container (where we run the Rent-a-Car client API)

Update <container>/etc/org.talend.esb.locator.cfg and add:

authentication.name=sluser
authentication.password=upassword

3.6.4.1. Running clients and services in the same container

Note that ideally, when running the Rent-a-Car example, the Service Locator server, every service and every
consumer (app-reservation) are in different containers. But this method is still valid if the application or service
runs in the same container with Service Locator server.

We just have to keep in mind, that all the consumers or services in the same container use the
same locator client with the same credentials (set by the properties authentication.name and
authentication.password in org.talend.esb.locator.cfg).

Service Locator for RESTful services

24 Talend ESB Infrastructure Services Configuration Guide

3.7. Service Locator for RESTful services
The Service Locator feature can be used for both SOAP and RESTful Web Services.

The Service Locator configuration for web services using the REST architectural style is similiar to the SOAP
services configuration as described in previous sections.

To add the Locator feature to a RESTful service provider, use <jaxrs:features> including the bean
org.talend.esb.servicelocator.cxf.LocatorFeature.

Example 3.5. Service Locator Feature RESTful service provider configuration

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxrs="http://cxf.apache.org/jaxrs"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://cxf.apache.org/jaxrs
 http://cxf.apache.org/schemas/jaxrs.xsd">

 <import resource="classpath:META-INF/cxf/cxf.xml" />
 <import resource="classpath:META-INF/tesb/locator/beans-osgi.xml" />

 <bean id="orderService" class="demo.service.OrderServiceImpl">
 </bean>

 <jaxrs:server id="orderRESTService" address="/rest">
 <jaxrs:features>
 <bean id="orderServiceLocator"
 class="org.talend.esb.servicelocator.cxf.LocatorFeature"/>
 </jaxrs:features>
 <jaxrs:serviceBeans>
 <ref bean="orderService" />
 </jaxrs:serviceBeans>
 </jaxrs:server>
</beans>

To add the Locator feature to a CXF service consumer, use <jaxrs:client> including the bean
org.talend.esb.servicelocator.cxf.LocatorFeature.

Service Locator for RESTful services

Talend ESB Infrastructure Services Configuration Guide 25

Example 3.6. Service Locator RESTful service consumer configuration

 <beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxrs="http://cxf.apache.org/jaxrs"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://cxf.apache.org/jaxrs
 http://cxf.apache.org/schemas/jaxrs.xsd">

 <import resource="classpath:META-INF/cxf/cxf.xml"/>
 <import resource="classpath:META-INF/tesb/locator/beans.xml" />

 <jaxrs:client id="restClient"
 address="locator://some_usefull_information"
 serviceClass="demo.common.OrderService"
 xmlns:serviceNamespace="http://service.demo/"
 serviceName="serviceNamespace:OrderServiceImpl"
 inheritHeaders="true">
 <jaxrs:headers>
 <entry key="Accept" value="application/xml"/>
 </jaxrs:headers>
 <jaxrs:features>
 <bean class="org.talend.esb.servicelocator.cxf.LocatorFeature">
 <property name="selectionStrategy"
 value="evenDistributionSelectionStrategy"/>
 </bean>
 </jaxrs:features>
 </jaxrs:client>
 </beans>

As you can see, in the example above <jaxrs:client> was configured by setting the serviceName
attribute. We need this service name to discover the endpoint from the Locator server. Please note
the serviceName attribute specifies a service QName, here xmlns:serviceNamespace="http://
service.demo/" serviceName="serviceNamespace:OrderServiceImpl"

The locator protocol in the address attribute is used to enable the Locator feature.

Talend ESB Infrastructure Services Configuration Guide

Talend ESB Infrastructure Services Configuration Guide

Chapter 4. Service Activity Monitoring (SAM)
The Service Activity Monitoring (SAM) component allows for logging and monitoring service calls made with the
Apache CXF framework. For example, Service Activity Monitoring could be used for collecting usage statistics
and fault monitoring.

4.1. Overview
The Service Activity Monitoring (SAM) component consists of two parts:

• Agents (sam-agent) which gather and send monitoring data

• A server (sam-server) which processes and stores the data

The sequence of how these are used is as follows:

1. The Agent creates events out of requests and replies from both the service consumer and provider side.

2. The events are first collected locally and then sent to the Service Activity Monitoring Server periodically (to
not disturb the normal message flow).

3. When the server receives events from the Agent, it optionally uses filters and/or handlers on those events
and stores them into a database.

The Service Activity Monitoring Agent and Server are made available as follows:

• The Service Activity Monitoring Server is available in the Talend Runtime (tesb:start-sam).

• Alternatively, the Service Activity Monitoring Server can be deployed as a WAR in a servlet container and
needs access to a database.

• The Agent is automatically enabled for Data Services deployed on Talend Runtime with the "Use Service
Activity Monitor" option selected in the Studio.

• The Agent is also available as a JAR that needs to be on the classpath of the service consumer and provider.

Messages, Events and Flow IDs

28 Talend ESB Infrastructure Services Configuration Guide

4.1.1. Messages, Events and Flow IDs

One service call can generate four events: for example, a consumer is sending a request (REQ_OUT), the service
receives the request (REQ_IN), the service sends a response (RESP_OUT) and the consumer receives the response
(RESP_IN).

An Agent can be configured to collect all four events of this service call, on both the consumer and provider side.
For further event processing, all of these events will get the same "flow id". For more detailed information, see
Section 4.2, “Architecture”.

Consumer side Provider side

REQ_OUT REQ_IN

RESP_IN RESP_OUT

FAULT_IN FAULT_OUT

Besides normal Event types, additional Lifecycle Events are also generated by SAM agent.

In the Talend Runtime container, when the agent bundle is started or stopped, the SERVER_START/
SERVER_STOP events will be generated. For Service or Data Service bundles, when they have been started/
stopped, the SERVICE_START/SERVICE_STOP (for Provider) or CLIENT_CREATE/CLIENT_DESTROY
(for Consumer) events will be generated.

The value of collector.lifecycleEvent property must be set to true if you want to generate/store the lifecycle
events.

Lifecycle Event type

Talend Runtime container SERVER_START/SERVER_STOP

Service Provider/Consumer SERVICE_START/SERVICE_STOP;
CLIENT_CREATE/CLIENT_DESTROY

Data Service SERVICE_START/SERVICE_STOP;
CLIENT_CREATE/CLIENT_DESTROY

4.2. Architecture
On the left of the below diagram the Agent is described, on the right the Service Activity Monitoring Server.
The Agent is used to collect all message data from both the service and client, and sends this data to the Service
Activity Monitoring Server. This Server will receive events and store them into the database. A web service is
used as the interface between the Agent and the Server.

Installation

Talend ESB Infrastructure Services Configuration Guide 29

The FlowId Producer is a component used to generate the FlowId (a UUID) for the Message Header and pass it
to subsequent messages. For each message exchange, the flow id is created if there is no flow id present. So, for
the first client, the flow id is created for each service call. When you have an intermediary, this receives a service
call, but also calls other services; then the flow id is carried from the incoming call to all calls that follow this call.
Then, on the server side, the flow id is taken from the request and also set on the response.

Filters or handlers can be set up on both the Agent side and Service Activity Monitoring Server side, and can
subsequently be used to filter events and manipulate the event's content. There are some built-in filters and handlers
(for example: StringContentFilter, PasswordHandler) and you can develop your own filters and
handlers by extending the EventFilter or EventHandler Service Provider Interface (SPI).

For the structure of information on events, please see Section 4.6, “Event Structure”.

4.3. Installation
The Service Activity Monitoring installation includes Agent side installation and Server side installation.
Examples (sam-example-client, sam-example-service, sam-example-service2 and sam-example-osgi) are
available to demonstrate how to install a Service Activity Monitoring Agent into Servlet container or OSGi
Container.

You can have multiple instances of the Service Activity Monitoring Server running on a machine at the
one time.

If you want to use the same Service Activity Monitoring Server from multiple containers,
please update the service.url property in file <TalendRuntimePath>/container/etc/
org.talend.esb.sam.agent.cfg in each container. (See Section 4.4.1, “Agent Configuration”).

4.3.1. Agent Installation in a Servlet container

Installing an Agent in a Servlet container (for example, Apache Tomcat, Jetty):

Agent Installation in an OSGi Container

30 Talend ESB Infrastructure Services Configuration Guide

1. The Agent needs to be deployed with the customer's application. The best way to install the agent is to add
it to the classpath using a Maven dependency:

<dependency>
 <groupId>org.talend.esb</groupId>
 <artifactId>sam-agent</artifactId>
 <version>{talend esb version}</version>
</dependency>

2. With Spring, the Agent has to be added to the Spring context:

<import resource="classpath:agent-context.xml" />

3. Then, add the Agent as a jaxws:features to the endpoint/client for Spring-related services, for example:

<jaxws:endpoint
 id="customerService" address="/CustomerServicePort"
 implementor="com.example.customerservice.server.CustomerServiceImpl">
 <jaxws:features>
 <ref bean="eventFeature"/>
 </jaxws:features>
</jaxws:endpoint>

The Agent supports JMS and HTTP/HTTPS transport types in the same way.

4.3.2. Agent Installation in an OSGi Container

Installing the Agent in an OSGi Container (for example, Talend Runtime container):

• Start the Talend Runtime container and type in the following commands to install the Agent bundle:

features:addurl mvn:org.talend.esb/features/5.2.1/xml

features:install tesb-sam-agent

Then, the Agent will be installed into Talend Runtime container.

When a Service Activity Monitoring Server is installed in Talend Runtime, by default,
org.talend.esb.sam.server.cfg has the database recreation activated; this shows errors in the
console log for each subsequent restart of the container ("can’t create table …"). To avoid this startup
logging error please change the db.recreate property in org.talend.esb.sam.server.cfg
to false (db.recreate=false) after you install the Service Activity Monitoring Server.

4.3.3. DataSource Installation

DataSource installation is a prerequisite to Service Activity Monitoring installation.

There are several out-of-box DataSource features which can be installed into a Talend OSGi container or when
using J2EE/Tomcat. This section has the instructions to install the JNDI DataSource:

DataSource Installation

Talend ESB Infrastructure Services Configuration Guide 31

4.3.3.1. Installing MySQL, H2, Oracle, DB2 and SQLServer JDBC
drivers into a container

As the Talend ESB package only provides JDBC drivers for the Derby database, if you are using other databases
you have to explicitly install the corresponding JDBC driver into a container before installing the datasource.

There are three ways of doing this, and these are described in this section.

Installing using a simple copy to the deploy folder

Install the corresponding JDBC driver by copying the driver library into the <TalendRuntimePath>/
deploy folder.

Install the JDBC driver from a public Maven repository

Since MySQL and H2 drivers are available in public repositories, they can be installed in one step using a Karaf
osgi:install command in the container.

Here are the installation instructions for each of these:

MySQL:
osgi:install mvn:mysql/mysql-connector-java/5.1.18

H2:
osgi:install -s mvn:com.h2database/h2/1.3.165

Install the JDBC driver from a local repository

If there is no access to a public repository, the driver needs to be previously installed into a local repository. This is
also true in the case of Oracle, DB2 and SQLServer, as they do not publish the driver in a public Maven repository.

Explicitly install the driver into local repository:

• either an Archiva repository (if your container is configured to work with Archiva)

• or a local repository accessible from the container.

Note you must have Maven installed on the local computer.

1. Install the driver into a repository using mvn install - here are the installation instructions for each of JDBC
driver:

Oracle:

mvn install:install-file -Dfile=
 "C:\oraclexe\app\oracle\product\11.2.0\server\jdbc\lib\ojdbc6.jar"
 -DgroupId=ojdbc -DartifactId=ojdbc -Dversion=11.2.0.2.0
 -Dpackaging=jar

DB2:

mvn install:install-file
 -Dfile="C:\Program Files(x86)\IBM\SQLLIB\java\db2jcc.jar"

DataSource Installation

32 Talend ESB Infrastructure Services Configuration Guide

 -DgroupId=com.ibm.db2.jdbc -DartifactId=db2jcc -Dversion=9.7
 -Dpackaging=jar

SQLServer:

mvn install:install-file
 -Dfile="C:\sqljdbc4-3.0.jar"
 -DgroupId=com.microsoft.sqlserver -DartifactId=sqljdbc4
 -Dversion=3.0 -Dpackaging=jar

The Archiva repository user can also publish the driver via the Archiva web interface ("Upload Artifact"
menu entry in Archiva web interface).

2. Install the driver from the repository into a Talend Runtime container using osgi:install - here are the
installation instructions for each of JDBC driver:

Oracle:

osgi:install wrap:mvn:ojdbc/ojdbc/11.2.0.2.0

DB2:

osgi:install wrap:mvn:com.ibm.db2.jdbc/db2jcc/9.7

SQLServer:

osgi:install wrap:mvn:com.microsoft.sqlserver/sqljdbc4/3.0

Install the driver from the file system using osgi:install

This is useful for DB2, Oracle and SQLServer drivers since they are not published as OSGi bundles.

Oracle:

osgi:install
wrap:file:E:/talend/TESB/db/oracle/ojdbc6.jar\\$Bundle-SymbolicName=
oracle.jdbc&Bundle-Version=11.2.0.2&Bundle-Name='JDBC Driver for Oracle'

DB2:

osgi:install
wrap:file:E:/talend/TESB/db/db2/db2jcc-9.7.jar\\$Bundle-SymbolicName=
com.ibm.db2.jdbc&Bundle-Version=9.7&Bundle-Name='JDBC Driver for IBM DB2'

SQLServer:

osgi:install
wrap:file:E:/talend/TESB/db/mssql/sqljdbc4-3.0.jar\\$Bundle-SymbolicName=
com.microsoft.sqlserver.jdbc&Bundle-Version=3.0&Bundle-Name=
'JDBC Driver for SQL Server'

4.3.3.2. Installing the DataSource in an OSGi container

Type in the following command on the Talend Runtime container console:

features:install tesb-datasource-<Database>

DataSource Installation

Talend ESB Infrastructure Services Configuration Guide 33

The corresponding DataSource will be installed into the container and a configuration file named
org.talend.esb.datasource.<Database>.cfg will be created in the <Talend.runtime.dir>/
container/etc folder.

For example, to install the Derby DataSource:

1. Execute the following command:

features:install tesb-datasource-derby

2. On the Talend Runtime container console, execute the list command, you will find the installed bundles
and configuration of Derby driver:

[225] [Active] [] [] [60] Apache Derby 10.8 (10.8.1000002.10950
77)
[226] [Active] [Created] [] [60] Service Activity Monitoring :: Dataso
urce-derby (5.1.0)

The org.talend.esb.datasource.derby.cfg configuration file has been created into
the <Talend.runtime.dir>/container/etc folder. In this configuration file, you
can change the Database settings dynamically. For example, the default properties of
org.talend.esb.datasource.derby.cfg are:

datasource.server=localhost
datasource.port=1527
datasource.database=db
datasource.createdatabase=create
datasource.user=test
datasource.password=test

Here is a table with the DataSource information for other databases which work with the Talend Runtime container:

DataSource
Name

Database Database,
Driver
Version

Feature ConfigFile

ds-derby Derby 10.8,
10.8.1.2

tesb-datasource-derby org.talend.esb.datasource.derby.cfg

ds-h2 H2 Engine 1.3,
1.3.165

tesb-datasource-h2 org.talend.esb.datasource.h2.cfg

ds-mysql MySQL 5.1,
5.1.18

tesb-datasource-mysql org.talend.esb.datasource.mysql.cfg

ds-oracle Oracle 11.2.0,
11.2.0.2.0

tesb-datasource-oracle org.talend.esb.datasource.oracle.cfg

ds-db2 IBM DB2 9.7, 9.7 tesb-datasource-db2 org.talend.esb.datasource.db2.cfg

ds-sqlserver SQL Server 2008R2,
3.0

tesb-datasource-sqlserver org.talend.esb.datasource.sqlserver.cfg

Other versions of the drivers may work, but have not been tested. See Section 1.1, “Prerequisites to using
Talend ESB” for general information on software prerequisites.

4.3.3.3. Installing the DataSource into J2EE/Tomcat

Information on how to configure a DataSource in the J2EE/Tomcat container can be found in the corresponding
J2EE/Tomcat documentation. For example, to configure a H2 DataSource in Tomcat:

1. Download the H2 driver jar (h2-1.3.165.jar) and put it into CATALINA_HOME/lib directory.

Service Activity Monitoring Server Installation

34 Talend ESB Infrastructure Services Configuration Guide

2. Add a Resource entry for the H2 DataSource to the CATALINA_HOME/conf/context.xml:

<Resource name="jdbc/datasource" auth="Container"
 type="javax.sql.DataSource" username="sa" password=""
 driverClassName="org.h2.Driver"
 url="jdbc:h2:tcp://localhost/~/test"
 maxActive="8" maxIdle="30" maxWait="10000"/>

The JNDI DataSource name "jdbc/datasource" is available to be used in the Service Activity Monitoring Server.

Here are the Resource entry for other databases:

Derby:

<Resource name="jdbc/datasource" auth="Container"
 type="javax.sql.DataSource" username="test" password="test"
 driverClassName="org.apache.derby.jdbc.ClientDriver"
 url="jdbc:derby://localhost:1527/db;create=true"
 maxActive="8" maxIdle="30" maxWait="10000"/>

MySql:

<Resource name="jdbc/datasource" auth="Container"
 type="javax.sql.DataSource" username="test" password="test"
 driverClassName="com.mysql.jdbc.Driver"
 url="jdbc:mysql://localhost:3306/test"
 maxActive="8" maxIdle="30" maxWait="10000"/>

DB2:

<Resource name="jdbc/datasource" auth="Container"
 type="javax.sql.DataSource" username="db2admin" password="qwaszx"
 driverClassName="com.ibm.db2.jcc.DB2Driver"
 url="jdbc:db2://localhost:50000/TEST"
 maxActive="8" maxIdle="30" maxWait="10000"/>

SQLServer:

<Resource name="jdbc/datasource" auth="Container"
 type="javax.sql.DataSource" username="test" password="test"
 driverClassName="com.microsoft.sqlserver.jdbc.SQLServerDriver"
 url="jdbc:sqlserver://localhost:1029;instanceName=sqlexpress;datab
aseName=Test"
 maxActive="8" maxIdle="30" maxWait="10000"/>

Oracle:

<Resource name="jdbc/datasource" auth="Container"
 type="javax.sql.DataSource" username="xxx" password="xxx"
 driverClassName="oracle.jdbc.pool.OracleDataSource"
 url="jdbc:oracle:thin:@localhost:1521:XE"
 maxActive="8" maxIdle="30" maxWait="10000"/>

4.3.4. Service Activity Monitoring Server Installation

The Service Activity Monitoring Server can be installed into a Servlet container or an OSGi Container. It supports
Apache Derby, MySQL, Oracle, SQL Server, IBM DB2 and H2 Database Engine to store Events data.

Service Activity Monitoring Server Installation

Talend ESB Infrastructure Services Configuration Guide 35

4.3.4.1. Database installation and initialization

This section describes database initialization.

1. Make sure your chosen database is installed properly and is accessible.

2. Login with a user which has CREATE permissions and run the "init SQL" script for the corresponding
database (see table below).

The script files for the corresponding databases are described in the following table. You can find the SQL
scripts in the <TalendRuntimePath>/add-ons/sam/db directory

SQL script filename Database

create.sql Apache Derby

create_mysql.sql MySQL

create_oracle.sql Oracle

create_sqlserver.sql SQL Server

create_h2.sql H2 Database Engine

create_db2.sql IBM DB2

You will then find the EVENTS and EVENTS_CUSTOMINFO table have been created in your database.

If the value of db.recreate property in org.talend.esb.sam.server.cfg is set to true, the
"init SQL" script will be executed automatically when starting the Service Activity Monitoring Server.

However, this is NOT recommended for any database except Apache Derby running in embedded mode.

For Oracle database, this causes expected exceptions during starting the Service Activity Monitoring
Service the first time, which can be ignored. For production databases it causes deleting all data from
database after restarting Service Activity Monitoring server.

Automatically starting Derby

For the Derby database, it can be started automatically by adding -
Dorg.talend.esb.sam.server.embedded=true to the environment variable CATALINA_OPTS in
the Tomcat script.

In case of OSGi container, you can start Derby database by installing the feature: tesb-derby-starter.

SQL server and TCP/IP

By default SQL server does not allow connections via TCP/IP - please consult the relevant documentation on
how to enable it.

4.3.4.2. Install the Service Activity Monitoring Server into a
Servlet container

The Service Activity Monitoring Server can be deployed into any Servlet container as a WAR. For example, to
deploy into Tomcat:

copy <TalendRuntimePath>\add-ons\sam\sam-server-war.war $TOMCAT_HOME
\webapps (Windows)

Example Installation

36 Talend ESB Infrastructure Services Configuration Guide

cp <TalendRuntimePath>/add-ons/sam/sam-server-war.war $TOMCAT_HOME/webapps
(Linux)

And to start Apache Tomcat:

$TOMCAT_HOME\bin\startup.bat (Windows)

./$TOMCAT_HOME/bin/startup.sh (Linux)

The Service Activity Monitoring Server requires a database to store event data, so make sure your RDBMS has
been installed and started. Also, the JNDI DataSource should be configurated in the J2EE/Tomcat container. You
will find how to configure the database properties in Section 4.4, “Configuration”.

The Service Activity Monitoring Server can also be running on the Embedded Servlet container (Jetty) with the
following command mvn jetty:run-war. The following sam-server-jetty example is provided to quickly
install/start the Monitoring Server on the Jetty Container:

cd <TalendRuntimePath>/examples/talend/tesb/sam/sam-server-jetty

mvn jetty:run-war

Installing the Service Activity Monitoring Server with the mvn jetty:run-war command uses the embedded
Derby database by default.

4.3.4.3. Install the Service Activity Monitoring Server into the
OSGi Container

Be sure the DataSource feature for your prefered Database has been installed in the container before
installing the Service Activity Monitoring Server.

For your convenience, the following shell commands are provided in Talend Runtime containers:

To install and start the Service Activity Monitoring Server:

tesb:start-sam

To uninstall and stop the Service Activity Monitoring Server (and embedded Derby, if used):

tesb:stop-sam

These are a shortcut. Here we give the expanded version of these, for using with Talend Runtime container or
another OSGi container:

Install the Service Activity Monitoring Server, type in these commands on the console:

features:addurl mvn:org.talend.esb/features/5.2.1/xml

features:install tesb-sam-server

Now, the Service Activity Monitoring Server will be installed and started. You can check its status with this URL
in a browser: http://localhost:8040/services/MonitoringServiceSOAP?wsdl

4.3.5. Example Installation

The sam-example-service.war and sam-example-service2.war provided as a whole customer application with sam-
agent installed. They can be deployed into any Servlet container. For example, they can be deployed into Tomcat:
$TOMCAT_HOME/webapps/.

Configuration

Talend ESB Infrastructure Services Configuration Guide 37

4.4. Configuration

4.4.1. Agent Configuration

The main configuration files for Agents are agent.properties and filter, handler configuration files. The
agent.properties can be created by user and put it into where classpath included. Filter and handlers are based on
Spring bean configuration and you can add them into your application's context (for example, beans.xml).

If the Agent has been installed into OSGi Container, the configuration file is located in the <Talend.runtime.dir>/
container/etc/org.talend.esb.sam.agent.cfg in the container.

Properties description:

Property Default Description

collector.scheduler.interval Interval(in milliseconds) of Agent built-in scheduler. Agent
will make one or several calls to the Service Activity
Monitoring Server sending Events from local queue every
interval milliseconds. How many calls to the Service Activity
Monitoring Server when scheduler interval has arrived is
decided by the number of events in the local queue and the
number of collector.maxEventsPerCall. This interval must be
greater than 0.

collector.maxEventsPerCall The value of this parameter is used to restrict the max number
of Events per call to the Service Activity Monitoring Server.
The purpose is to avoid send large size of soap message body
to the sam-server in one call.

collector.lifecycleEvent false An on-off switch used for Agent to decide if it is to collect and
send the lifecycle events to the Service Activity Monitoring
Server. If true, the Service Activity Monitoring Server must
have been started before the Talend Runtime container is
started, otherwise, the Connection Exceptions will be thrown.

log.messageContent true An on-off switch used for Agent to decide if the SOAP
message content from the Provider/Consumer should be stored
into Event and sent to Service Activity Monitoring Server.

log.maxContentLength -1 The value of this parameter is used to set maximum SOAP
content length per Event. -1 is unlimited.

log.enforceMessageIDTransfer true if enforceMessageIDTransfer=true, SAM will add
WS-Addressing funtionality implicitly and enforce
MessageID transfer between the Events; if
enforceMessageIDTransfer=false (Default value), the
MessageID will be null in the Events if the user doesn't
enable the WSAddressingFeature or Policy with Addressing
explicitly.

service.url The URL of Service Activity Monitoring Server which the
Agent will communicate with.

service.retry.number 5 Number of retries when a call to the Service Activity
Monitoring Server fails.

service.retry.delay 1000 Delay in milliseconds before the next retry to call the Service
Activity Monitoring Server

For example:

DataSource Configuration

38 Talend ESB Infrastructure Services Configuration Guide

collector.scheduler.interval=500
collector.maxEventsPerCall=10
collector.lifecycleEvent=false

log.messageContent=true
log.maxContentLength=-1
log.enforceMessageIDTransfer=true

service.url=
 http://localhost:8080/sam-server-war/services/MonitoringServiceSOAP
service.retry.number=3
service.retry.delay=5000

To filter or manipulate events you can add pre-defined or your own filters and handlers to the Agent. Put the filter
or handler beans into any Spring configuration file. Some example bean definitions can be found below:

Example 1: filters out all messages that contain "contractor" in the body:

<bean id="stringContentFilter"
 class="org.talend.esb.sam.common.filter.impl.StringContentFilter">
 <property name="wordsToFilter">
 <list>
 <value>contractor</value>
 </list>
 </property>
</bean>

Example 2: the Passwordhandler replaces <Password> tags with <Replaced>:

<bean id="passwordHandler"
 class="org.talend.esb.sam.common.handler.impl.PasswordHandler">
 <property name="tagnames">
 <list>
 <value>Password</value>
 </list>
 </property>
</bean>

4.4.2. DataSource Configuration

In case of OSGi container, you can configure the database information for every DataSource installed.
Currently, there are six built-in DataSource for frequently used Database (Derby, H2, MySQL, Oracle, DB2 and
SQLServer). Each configuration file has its own properties, here is an example of the Derby configuration file:
<Talend.runtime.dir>/container/etc/org.talend.esb.datasource.derby.cfg.

datasource.server=localhost
datasource.port=1527
datasource.database=db
datasource.createdatabase=create
datasource.user=test
datasource.password=test

Service Activity Monitoring Server Configuration

Talend ESB Infrastructure Services Configuration Guide 39

Please also see Section 4.3.3.2, “Installing the DataSource in an OSGi container” for information on DataSource
installation.

4.4.3. Service Activity Monitoring Server Configuration

The main configuration files for the Service Activity Monitoring Server are logserver.properties and
filter, handler configuration files.

If the Service Activity Monitoring Server has been installed into OSGi Container, the configuration file is located
in <Talend.runtime.dir>/container/etc/org.talend.esb.sam.server.cfg.

Properties description:

Property Default Description

monitoringServiceUrl The address url published by the Service Activity
Monitoring Server

db.datasource ds-derby DataSource name used by the Service Activity
Monitoring Server to store/query data. For J2EE/
Tomcat, it should be like java:comp/env/<Resource
name>, for OSGi container, it should be like ds-
<Database>.

db.dialect derbyDialect Which DB used to store/query Event data (with different
ID Incrementer, Query, and so on)

db.recreate true Whether re-create tables in database

db.createsql create.sql SQL file name which used to create tables in database

logserver.properties example (for Derby):

monitoringServiceUrl=/MonitoringServiceSOAP

db.datasource=ds-derby (for Tomcat, value should be:
 java:comp/env/jdbc/datasource)
db.dialect=derbyDialect
db.recreate=true
db.createsql=create.sql

logserver.properties example (for H2 Database Engine):

monitoringServiceUrl=/MonitoringServiceSOAP

db.datasource=ds-h2 (for Tomcat, value should be:
 java:comp/env/jdbc/datasource)
db.dialect=h2Dialect
db.recreate=false
db.createsql=create_h2.sql

logserver.properties example (for Mysql):

monitoringServiceUrl=/MonitoringServiceSOAP

db.datasource=ds-mysql (for Tomcat, value should be like:
 java:comp/env/jdbc/datasource)

Running and Testing

40 Talend ESB Infrastructure Services Configuration Guide

db.dialect=mysqlDialect
db.recreate=false
db.createsql=create_mysql.sql

logserver.properties example (for Oracle):

monitoringServiceUrl=/MonitoringServiceSOAP

db.datasource=ds-oracle (for Tomcat, value should be like:
 java:comp/env/jdbc/datasource)
db.dialect=oracleDialect
db.recreate=false
db.createsql=create_oracle.sql

logserver.properties example (for IBM DB2):

monitoringServiceUrl=/MonitoringServiceSOAP

db.datasource=ds-db2 (for Tomcat, value should be like:
 java:comp/env/jdbc/datasource)
db.dialect=DB2Dialect
db.recreate=true
db.createsql=create_db2.sql

logserver.properties example (for SQL Server):

monitoringServiceUrl=/MonitoringServiceSOAP

db.datasource=ds-sqlserver (for Tomcat, value should be like:
 java:comp/env/jdbc/datasource)
db.dialect=sqlServerDialect
db.recreate=true
db.createsql=create_sqlserver.sql

For filter, handler configuration, please refer to Section 4.4.1, “Agent Configuration”.

4.5. Running and Testing

4.5.1. Pre-requisites

This section shows you how to run the examples (sam-example-service, sam-example-service2) with the SAM
Agent supported. First, please check the following:

• the database is running and accessible.

• the Service Activity Monitoring Server is installed and running.

• the examples/talend/tesb/sam/sam-example-service and examples/talend/tesb/sam/sam-example-service2 are
built, and you have deployed them into your container.

• the configuration files (agent.properties, logserver.properties, and so on) are configured
correctly.

General Test

Talend ESB Infrastructure Services Configuration Guide 41

4.5.2. General Test

Start SoapUI tool, send the SOAP message below to sam-example-service2 endpoint, for example like this:
http://localhost:8080/sam-example-service2/services/CustomerServicePort

<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:cus="http://customerservice.example.com/">
 <soapenv:Header/>
 <soapenv:Body>
 <cus:getCustomersByName>
 <name>jacky</name>
 </cus:getCustomersByName>
 </soapenv:Body>
</soapenv:Envelope>

4.5.3. Filters and Handlers Test

This test consists of three steps:

1. Add a PasswordHandler to your Application Service/Client

PasswordHandler is a pre-defined handler used to replace the real password characters with null ('') for
security considerations. You can set the tag name which has the password and need to be replaced. For
example:

<bean id="passwordFilter"
 class="org.talend.esb.sam.common.handler.impl.PasswordHandler">
 <property name="tagnames">
 <list>
 <value>Password</value>
 </list>
 </property>

Filters and Handlers Test

42 Talend ESB Infrastructure Services Configuration Guide

</bean>

Then, send a Message which has the <Password> tag:

<soapenv:Header>
 <wsse:Security
 xmlns:wsse="http://docs.oasisopen.org/wss/2004/01/ \\
 oasis-200401-wss-wssecurity-secext-1.0.xsd"
 soapenv:mustUnderstand="0">

 <wsse:UsernameToken>
 <wsse:Username>user1</wsse:Username>
 <wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/ \\
 oasis-200401-wss-usernametoken-profile-1.0#PasswordDigest">
 IR55epSSTb7sg3Z3+HKNb9MqAWg=</wsse:Password>
 </wsse:UsernameToken>

 </wsse:Security>
</soapenv:Header>

The value of <Password> Element will be replaced with ''.

<soapenv:Header>
 <wsse:Security
 xmlns:wsse="http://docs.oasisopen.org/wss/2004/01/ \\
 oasis-200401-wss-wssecurity-secext-1.0.xsd"
 soapenv:mustUnderstand="0">

 <wsse:UsernameToken>
 <wsse:Username>user1</wsse:Username>
 <replaced xmlns=""/>
 </wsse:UsernameToken>

 </wsse:Security>
</soapenv:Header>

2. Next, add a CustomInfoHandler to your application service or client. CustomInfoHandler is a pre-defined
handler used to store user-defined key/value in the database. For example:

<bean id="fixedProperties"
 class="org.talend.esb.sam.common.handler.impl.CustomInfoHandler">
 <property name="customInfo">
 <map>
 <entry key="Application name" value="Dummy App"/>
 <entry key="Stage" value="Dev"/>
 </map>
 </property>
</bean>

Then send a message, and the custom key/value properties will be stored in the database.

3. Finally, add filter configuration on the Service Activity Monitoring Server side

Modify server.xml on the Service Activity Monitoring Server. For example:

Monitoring events from database

Talend ESB Infrastructure Services Configuration Guide 43

......
<bean id="monitoringService"
 class="org.talend.esb.sam.server.service.MonitoringServiceImpl">
 <property name="eventFilter">
 <list>
 <ref local="stringContentFilter" />
 </list>
 </property>
 <property name="eventManipulator">
 <list>
 <ref local="contentLengthHandler" />
 </list>
 </property>
 <property name="persistenceHandler" ref="eventRepository" />
</bean>
......

4. The information should now be stored in the database.

4.5.4. Monitoring events from database

If the events have been stored into a database successfully, you can query them from the database. For example:

If you have Talend ESB, there is GUI functionality provided by the Talend Administration Center, for
viewing the Service Activity Monitoring information. Please see Talend Enterprise ESB Installation
Guide and Talend Administration Center User Guide for more details.

Note: If you wish to view the Service Activity Monitoring user interface in the Talend Administration
Center, then both need to be deployed in the same Tomcat Servlet container.

4.6. Event Structure
This is the information stored in the Service Activity Monitoring Server database on a particular event:

Field Type Description

ID bigint(20) The persistence id of the Event

MESSAGE_CONTENT longtext The SOAP message content which come from Service
Provider/Service Consumer. Note: It will be null for all
Lifecycle Events.

EI_TIMESTAMP datetime Timestamp which the Event created

EI_EVENT_TYPE varchar(255) EventType is an enumeration. Values: REQ_IN;
REQ_OUT; RESP_IN; RESP_OUT; FAULT_IN;
FAULT_OUT; SERVER_START; SERVER_STOP;

EVENTS_CUSTOMINFO Structure

44 Talend ESB Infrastructure Services Configuration Guide

Field Type Description

SERVICE_START; SERVICE_STOP;
CLIENT_CREATE; CLIENT_DESTROY

ORIG_CUSTOM_ID varchar(255) Reserved field. It is not be used currently

ORIG_PROCESS_ID varchar(255) Process id is the OS process id

ORIG_HOSTNAME varchar(128) The name of Host which the SAM agent running

ORIG_IP varchar(64) The IP address which the SAM agent running

MI_PORT_TYPE varchar(255) Service port type which enabled the SAM agent. Note:
It will be null for SERVER_START/SERVER_STOP
Events.

MI_OPERATION_NAME varchar(255) Service operation name which enabled the SAM agent.
Note: It will be null for all Lifecycle Events.

MI_MESSAGE_ID varchar(255) the MessageID which is generated/transfered using the
CXF Addressing feature. According to the common
definition of the MessageId in the WS-Addressing Spec,
REQ_OUT and REQ_In are the same message, they
should have the same MessageId; RESP_OUT and
RESP_IN are the same message, they should have the
same MessageId.

Note:

1. The MessageID will be null for all Lifecycle Events.

2. If log.enforceMessageIDTransfer=false and doesn't
enable the WSAddressingFeature or Policy with
Addressing explicitly, it also will be null.

3. It will be null for REQ_IN/RESP_OUT if WS-
Addressing feature only enabled on the provider side
not enabled on the consumer side.

MI_FLOW_ID varchar(64) Unique id (UUID) for the message flow. All events with
the same id belong together. Note: It will be null for all
Lifecycle Events.

MI_TRANSPORT_TYPE varchar(255) Transport type of event. Note: It will be null for all
Lifecycle Events.

ORIG_PRINCIPAL varchar(255) Principal info in the message header. Note: It will be null
for all Lifecycle Events.

CONTENT_CUT tinyint(1) Flag, if the event content has been cut from the Agent.
Note: It will be null for all Lifecycle Events.

4.7. EVENTS_CUSTOMINFO Structure

Field Type Description

ID bigint(20) Stores the unique persistence id of
EVENTS_CUSTOMINFO

EVENT_ID bigint(20) Stores the relative EVENT's ID value

CUST_KEY varchar(255) custom property's key, for example, Application name

CUST_VALUE varchar(255) custom property's value, for example, Dummy App

Talend ESB Infrastructure Services Configuration Guide

Chapter 5. Using STS with the Talend
Runtime
This chapter describes the deployment and configuration of STS with a Talend Runtime container, how to
configure the Data Services to use the STS. It also discusses creating keys and certificates for STS and clients.

We use the term <TalendRuntimePath> for the directory where Talend Runtime is installed. This is
typically the full path of either Runtime_ESBSE or Talend-ESB-V5.2.x, depending on the version
of the software that is being used. Please substitute appropriately.

5.1. Deploying the STS into the Talend
Runtime container

For production use, the sample keys used here will need to be replaced with your project's own keys,
usually signed by a third-party CA.

To enable Security Token Service (STS) in the Talend Runtime, we need to deploy it into a Talend Runtime
container:

1. Replace the STS' sample keystore/truststore called stsstore.jks located in the <TalendRuntimePath>/
container/etc/keystores folder with your own keystore. See Section 5.3, “Security Token Service (STS)
Configuration” for more information.

2. cd <TalendRuntimePath>/container/bin directory, enter trun to start Talend Runtime, a Talend Runtime
container (Karaf) console window will open.

3. In the console, type features:install tesb-sts to install the Security Token Service component.

4. Type list | grep STS in the console. You should see the output:

Deploying the STS into a Servlet Container (Tomcat)

46 Talend ESB Infrastructure Services Configuration Guide

ID State Blueprint Spring Level Name
[203] [Active] [] [started] [60] Apache
CXF STS Core (2.5.0)
Fragments: 204
[204] [Resolved] [] [] [60] Talend ::
ESB :: STS :: CONFIG (5.2.1)

The above shows that Security Token Service (STS) component is enabled in the Talend Runtime container.
The Fragment Bundle 204: Talend :: ESB :: STS :: CONFIG (5.2.1) provides the custom
configuration about the Security Token Service (STS), which will be described in Section 5.3, “Security
Token Service (STS) Configuration”.

5.2. Deploying the STS into a Servlet
Container (Tomcat)

For production use, the sample keys used here will need to be replaced with your project's own keys,
usually signed by a third-party CA.

To enable Security Token Service (STS) using a servlet container (here we are using Tomcat as an example)
follow the below steps:

1. Extract the <TalendRuntimePath>/add-ons/sts/SecurityTokenService.war file and
replace the stsstore.jks STS sample keystore/truststore with your own keystore. Alter the
stsKeystore.properties file with any different configuration information based on your new keystore.
Recompress the extracted WAR into a new WAR file.

2. Deploy the new WAR file created in the previous step into the Tomcat container.

3. Start Tomcat and open a browser with the follow url: http://{tomcat}host:port/
SecurityTokenService/. You'll see several Security Token Services available, such as Username
Token service (UT), X.509 Token service, etc.

4. Enter URL: http://{tomcat host}:port/SecurityTokenService/UT?wsdl, the displayed
WSDL file will describe the details about the Security Token Service.

5.3. Security Token Service (STS)
Configuration
The Security Token Service provides the following methods as described in the below snippet, which is defined
in SecurityTokenService.war/WEB-INF/wsdl/ws-trust-1.4-service.wsdl

<wsdl:service name="SecurityTokenService">
 <wsdl:port name="UT_Port" binding="tns:UT_Binding">
 <soap:address location=
 "http://localhost:8080/SecurityTokenService/UT"/>
 </wsdl:port>
 <wsdl:port name="X509_Port" binding="tns:X509_Binding">
 <soap:address location=
 "http://localhost:8080/SecurityTokenService/X509"/>
 </wsdl:port>
 <wsdl:port name="Transport_Port" binding="tns:Transport_Binding">

Data Service Configuration for using STS

Talend ESB Infrastructure Services Configuration Guide 47

 <soap:address location="/Transport"/>
 </wsdl:port>
 <wsdl:port name="UTEncrypted_Port" binding="tns:UTEncrypted_Binding">
 <soap:address location="/UTEncrypted"/>
 </wsdl:port>
</wsdl:service>

As above snippet shows, the Security Token Service can issue (or validate) UserName Token or X509 Token, etc.

In Talend Runtime container, the configuration of Security Token Service (STS) can be defined in the file:

<TalendRuntimePath>/etc/org.talend.esb.sts.server.cfg:

stsServiceUrl=/SecurityTokenService/UT
jaasContext=karaf
signatureProperties=file:${tesb.home}/etc/keystores/stsKeystore.properties
signatureUsername=mystskey
bspCompliant=false

By default STS is configured to use JAAS interface to verify the user credentials and perform authentication.
As shown above, STS uses karaf JAAS Context which is the default context configured for Talend Runtime
container and uses PropertiesLoginModule of Karaf. This login module uses users.properties file located
in /etc/users.properties which contains a list of users and their passwords, hence the users which are
needed to be authenticated via the STS should be listed here. A different login module can be configured for the
STS by updating the jaasContext parameter in the above configuration. A Talend Runtime container comes
with several login modules that can be used to integrate into your environment, the modules are listed below:

• PropertiesLoginModule

• OsgiConfigLoginModule

• JDBCLoginModule

• LDAPLoginModule

The signatureProperties file, which is located in: /etc/keystores/
stsKeystore.properties, defines the signature configuration as shown below:

org.apache.ws.security.crypto.merlin.keystore.type=jks
org.apache.ws.security.crypto.merlin.keystore.password=stsspass
org.apache.ws.security.crypto.merlin.keystore.alias=mystskey
org.apache.ws.security.crypto.merlin.keystore.file=stsstore.jks

The keystore file name can be changed by altering its value in the stsKeystore.properties file. With the default
configuration as shown above, the Talend Runtime container will expect the STS' private key to have the alias
of mystskey, this can be changed by altering the alias and signatureUsername values in the two
configuration files listed above.

5.4. Data Service Configuration for using STS
In the Talend Runtime container, the configuration used by Data Service Consumers for using
Security Token Service (STS) can be defined in the file: <TalendRuntimePath>/container/etc/
org.talend.esb.job.client.sts.cfg

#STS endpoint configuration
sts.wsdl.location = \
 http://localhost:8040/services/SecurityTokenService/UT?wsdl
sts.namespace = http://docs.oasis-open.org/ws-sx/ws-trust/200512/
sts.service.name = SecurityTokenService

Creating keys for the Security Token Service

48 Talend ESB Infrastructure Services Configuration Guide

sts.endpoint.name = UT_Port

#STS properties configuration
ws-security.sts.token.username = myclientkey
ws-security.sts.token.usecert = true
ws-security.is-bsp-compliant = false
ws-security.sts.token.properties = \
 file:${tesb.home}/etc/keystores/clientKeystore.properties

The STS endpoint used by the consumer is defined by sts.wsdl.location. This configuration should be
changed in case the STS service is running on a different host and port. The keystore configuration described
above is used for signing the timestamp sent in the request by the consumer to the provider. The Talend ESB-
supplied sample keystores and certificates above are not meant for production use. Be sure to use your own keys
(with different passwords) and configure them as discussed below.

A Data Service consumer can use two types of authentication mechanisms: Username token and SAML token.

• When using Username token, the consumer sends the credentials as a part of the request to
the provider and authentication is performed on the provider side. The policy used by the
consumer for Username token authentication is defined in the file <TalendRuntimePath>/etc/
org.talend.esb.job.token.policy.

• For SAML tokens, the consumer makes a SAML token issue request to the STS passing its credentials
and on successful authentication the STS issues a SAML token. This SAML token is sent as a part of
the request to the provider and the provider verifies the validity of the SAML token. The policy used
by the consumer for SAML token authentication is defined in the file <TalendRuntimePath>/etc/
org.talend.esb.job.saml.policy.

When using Username tokens, a Data Service provider receives credentials from the consumer and performs
authentication locally. By default a Data Service provider is configured with JAAS authentication handler and
uses the default JAAS context karaf configured for the Talend Runtime container. The login module configured
for this context uses users.properties file located in /etc/users.properties which contains a list
of users and their passwords. Thus, the user which needs to be authenticated should be listed here.

In the case of a SAML token, the provider locally verifies the integrity of the token using
a certificate, the configuration for it is defined in the file <TalendRuntimePath>/etc/
org.talend.esb.job.service.cfg.

ws-security.signature.properties = \
 file:${tesb.home}/etc/keystores/serviceKeystore.properties
ws-security.signature.username = myservicekey
ws-security.signature.password = skpass

5.5. Creating keys for the Security Token
Service
This section describes how to create keys for the Security Token Service. We highly recommend that you use third-
party signed CA’s (certificate authorities) or create your own Certificate Authority, but the following instructions
can be used to create self-signed keys.

5.5.1. Using OpenSSL to create certificates

First, create the keys.

Using OpenSSL to create certificates

Talend ESB Infrastructure Services Configuration Guide 49

Replace "<PW-Sk>", "<PW-Sk>","<PW-Cs>" and "<PW-Ck>" in the example below with your own
passwords.

5.5.1.1. Creating the service keystore

Note: given the rm commands below, it is probably best to create a new directory and navigate to it before running
these commands from a terminal window.

rm *.p12 *.pem *.jks *.cer
openssl req -x509 -days 3650 -newkey rsa:1024 -keyout servicekey.pem -out
 servicecert.pem -passout pass:<PW-Sk>

When running this openssl command, enter any geographic and company information desired, the key password in
passout, and a common name of your choice (perhaps servicecn for the service and clientcn for the client).

openssl pkcs12 -export -inkey servicekey.pem -in servicecert.pem -out
 service.p12 -name myservicekey -passin pass:<PW-Sk> -passout
 pass:<PW-Sk>

This creates a pkcs12 certificate. Note the <PW-Sk> value will be used both for the keystore and the private key
itself.

keytool -importkeystore -destkeystore servicestore.jks -deststorepass
 <PW-Sk> -deststoretype jks -srckeystore service.p12 -srcstorepass
 <PW-Sk> -srcstoretype pkcs12 # See Note 3

This places the certificate in a new JKS keystore. The keystore's password is changed here to <PW-Sk>, but the
private key's password retains the earlier value of <PW-Sk>. Also note we’re using Java 6 instead of Java 5 keytool
commands (see changes between the two.)

keytool -list -keystore servicestore.jks -storepass <PW-Sk> -v

The list command is just to show the keys presently in the keystore.

keytool -exportcert -alias myservicekey -storepass <PW-Sk> -keystore
 servicestore.jks -file service.cer
keytool -printcert -file service.cer
rm *.pem *.p12

5.5.1.2. Creating the client keystore

openssl req -x509 -days 3650 -newkey rsa:1024 -keyout clientkey.pem
 -out clientcert.pem -passout pass:<PW-Cs>
openssl pkcs12 -export -inkey clientkey.pem -in clientcert.pem
 -out client.p12
 -name myclientkey -passin pass:<PW-Cs> -passout pass: <PW-Ck>
keytool -importkeystore -destkeystore clientstore.jks -deststorepass
 <PW-Cs> -deststoretype jks -srckeystore client.p12
 -srcstorepass <PW-Ck>-srcstoretype pkcs12
keytool -list -keystore clientstore.jks -storepass <PW-Cs> -v
keytool -exportcert -alias myclientkey -storepass <PW-Cs> -keystore
 clientstore.jks -file client.cer
keytool -printcert -file client.cer
rm *.pem *.p12

http://download.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html#Changes

Deploying and Using a Security Token Service (STS)

50 Talend ESB Infrastructure Services Configuration Guide

5.5.2. Deploying and Using a Security Token Service
(STS)

You have created the service and client keystores as in the previous section. Now create the STS keystore as
follows:

Replace <PW-Ts>, <PW-Tk> in the example below with your own passwords.

openssl req -x509 -days 3650 -newkey rsa:1024 -keyout stskey.pem -out
 stscert.pem -passout pass:<PW-Ts>
openssl pkcs12 -export -inkey stskey.pem -in stscert.pem -out sts.p12
 -name mystskey -passin pass:<PW-Ts> -passout pass:<PW-Tk>
keytool -importkeystore -destkeystore stsstore.jks -deststorepass <PW-Ts>
 -srckeystore sts.p12 -srcstorepass <PW-Tk> -srcstoretype pkcs12
keytool -list -keystore stsstore.jks -storepass <PW-Ts>
keytool -exportcert -alias mystskey -storepass <PW-Ts> -keystore
 stsstore.jks -file sts.cer
keytool -printcert -file sts.cer
rm *.pem *.p12

To fix any issues with fixed paths to the keystore and truststore locations within the WSDLs, the source code
download uses Maven resource filtering to allow for a relative path to the project base directory to be used instead.

Next, the service keystore will need to have the STS public key added so it trusts it, and vice-versa. Also, the
client will need to have the STS' and WSP's certificates added to its truststore, as it relies on symmetric binding
to encrypt the SOAP requests it makes to both:

keytool -keystore servicestore.jks -storepass <PW-Sk> -import -noprompt
 -trustcacerts -alias mystskey -file sts.cer
keytool -keystore stsstore.jks -storepass <PW-Ts> -import -noprompt
 -trustcacerts -alias myservicekey -file service.cer
keytool -keystore clientstore.jks -storepass <PW-Cs> -import -noprompt
 -trustcacerts -alias mystskey -file sts.cer
keytool -keystore clientstore.jks -storepass <PW-Cs> -import -noprompt
 -trustcacerts -alias myservicekey -file service.cer

If you plan on using X.509 authentication of the WSC to the STS (instead of UsernameToken), the former's public
key will need to be in the latter's truststore. This can be done with the following commands:

keytool -exportcert -alias myclientkey -storepass <PW-Cs> -keystore
 clientstore.jks -file client.cer
keytool -keystore stsstore.jks -storepass <PW-Ts> -import -noprompt
 -trustcacerts -alias myclientkey -file client.cer

Since the service does not directly trust the client (the purpose for our use of the STS to begin with), we will not
add the client's public certificate to the service's truststore as normally done with message-layer encryption.

Talend ESB Infrastructure Services Configuration Guide

Chapter 6. ActiveMQ
The Java Message Service (JMS) is a standardized Java API for sending messages between two or more
applications. ActiveMQ implements the JMS 1.1 specification, and it also supports other languages.

There are two types of communication supported by JMS 1.1:

• point-to-point: direct messages are sent from a producer to a specified consumer via a JMS queue.

• publish and subscribe: communication is indirectly through topics. Topics are published by producers, and
consumers subscribe to specified topics.

Talend ESB embeds Apache ActiveMQ message broker to support this functionality. The job of the ActiveMQ
message broker is to transport events between distributed applications, guaranteeing that they reach their intended
recipients.

Beyond this documentation, see http://activemq.apache.org for more information.

6.1. Overview
• The Apache ActiveMQ broker can be run as a standalone server (see Section 6.2, “Standalone ActiveMQ

broker”), or inside a container (see Section 6.4, “ActiveMQ broker inside a Talend Runtime container”).

• The ActiveMQ Web Console is a web based administration tool for an ActiveMQ broker (see Section 6.5,
“ActiveMQ Web Console”).

• ActiveMQ OSGi bundles (Section 6.3, “ActiveMQ OSGi bundles”) may also be used in a Talend Runtime
container to communicate with an ActiveMQ broker.

• You can also access ActiveMQ programatically - see the section on the (Apache Camel) ActiveMQ component
in the Talend ESB Mediation Development Guide.

http://activemq.apache.org

Download and install

52 Talend ESB Infrastructure Services Configuration Guide

6.1.1. Download and install

ActiveMQ ships with Talend ESB; the relevant files are in the <TalendRuntimePath>/activemq directory,
and include binary distributions for all supported platforms.

6.2. Standalone ActiveMQ broker
You can run the Apache ActiveMQ broker server as follows:

1. In a command console:

cd <TalendRuntimePath>/activemq/bin

2. Then enter:

activemq console (Linux*)
activemq (Windows)

The Apache ActiveMQ broker should now be running.

*Note the "console" option in Linux runs the broker in the foreground; the default is to run it in the
background.

You can view this using the local Web Console at http://localhost:8161/admin/. To increase reliability, you may
want to run the Web Console in a separate container, and this is preconfigured in Talend ESB, see Section 6.5,
“ActiveMQ Web Console”.

6.2.1. Configuration

There are a number of configuration options, and these are listed by entering activemq -h.

You can configure the ActiveMQ broker by using a configuration file, or a broker URI; the default location for
configuration files is in activemq/conf.

The syntax is Main start [start-options] [uri]

Table 6.1. [start-options] syntax

Option Description Example

-D<name>=<value> Define a system property activemq -Dactivemq.home=
<TalendRuntimePath>/activemq

(default if using Talend ESB)

--version Display the version information activemq --version

-h,-?,--help Display the start broker help information activemq -h

Note in the table below, the transport URI specifies the transport and ports to connect to the broker, for example
TCP to connect to a remote ActiveMQ using a TCP socket, or VM which allows clients to connect to a broker in
a container within the same VM. (Having multiple connectors may improve reliability and load balancing.) For
the full list of options, see http://activemq.apache.org.

http://localhost:8161/admin/
http://activemq.apache.org

ActiveMQ OSGi bundles

Talend ESB Infrastructure Services Configuration Guide 53

Table 6.2. [uri] parameter syntax

Example Type Description

Main xbean:file:activemq.xml XBean
based

Loads the xbean configuration file from the current
working directory

activemq Main xbean:activemq.xml XBean
based

Loads the xbean configuration file from the classpath

activemq Main broker:(tcp://
localhost:61616, tcp://localhost:5000)?
useJmx=true

URI
based

Configures the broker with 2 transport connectors and
jmx enabled.

activemq Main broker:(tcp://
localhost:61616, network:tcp://
localhost:5000)?persistent=false

URI
based

Configures the broker with 1 transport connector, and 1
network connector and persistence disabled

Note, the broker URI information can also be added to the configuration file instead of being specified on the
command line.

6.3. ActiveMQ OSGi bundles
All ActiveMQ modules are packaged as OSGi bundles and can be used in any OSGi container, and in particular
in a Karaf container such as the Talend Runtime container.

1. By default, the ActiveMQ Karaf features are already added to the Talend Runtime container, but if they have
been removed, then add them again by entering:

features:addUrl
 mvn:org.apache.activemq/activemq-karaf/5.7.0/xml/features

2. If you enter features:list, then you can see the ActiveMQ bundles in the output:

karaf@trun>features:list
State Version Name Repository
[...]
[uninstalled] [5.7.0] activemq activemq-5.7.0
[uninstalled] [5.7.0] activemq-spring activemq-5.7.0
[uninstalled] [5.7.0] activemq-blueprint activemq-5.7.0
[uninstalled] [5.7.0] activemq-optional activemq-5.7.0
[uninstalled] [5.7.0] activemq-camel activemq-5.7.0
[uninstalled] [5.7.0] activemq-web-console activemq-5.7.0
[...]

3. ActiveMQ supports several languages, including Spring and Blueprint. If you want to include support for
either of these, enter the corresponding command:

karaf@trun> features:install activemq-spring
or
karaf@trun> features:install activemq-blueprint

6.3.1. Commands

Here are the ActiveMQ OSGi commands (for example: activemq:list):

ActiveMQ broker inside a Talend Runtime container

54 Talend ESB Infrastructure Services Configuration Guide

activemq: command Description

browse Display selected messages in a specified destination

bstat Displays useful broker statistics

create-broker Creates a broker instance

destroy-broker Destroys a broker instance

list Lists all available brokers in the specified JMX context

purge Delete selected destination's messages that matches the message selector

query Display selected broker component's attributes and statistics

Note: to obtain some detailed help on a given command, enter:

activemq:[command] --help

6.4. ActiveMQ broker inside a Talend Runtime
container
An ActiveMQ broker may also be run in an OSGi container such as Talend Runtime container.

6.4.1. Broker creation

By default, no broker is created in the Talend Runtime container. The following commands can be used to start
a broker within the Talend Runtime container:

karaf@trun> features:install activemq
karaf@trun> features:install activemq-spring
karaf@trun> activemq:create-broker
Creating file: <TalendRuntimePath>/container/deploy/localhost-broker.xml

Default ActiveMQ Broker (localhost) configuration file created at:
<TalendRuntimePath>/container/deploy/localhost-broker.xml

It creates a broker with a sensible default configuration, but you can edit the mentioned file to modify the broker's
configuration.

Along with the broker, a pooled JMS ConnectionFactory is registered in OSGi and the broker is integrated
with the transaction manager embedded in it. The broker is also registered in the local JMX mbean server.

If you want to create multiple brokers, you need to give them some names. This can be done by entering:

karaf@trun> activemq:create-broker --name mybroker
Creating file: <TalendRuntimePath>/container/deploy/mybroker-broker.xml

Default ActiveMQ Broker (mybroker) configuration file created at:
<TalendRuntimePath>/container/deploy/mybroker-broker.xml

By default the command will use Spring configuration. If you want to use Blueprint configuration use:

karaf@trun> activemq:create-broker --type blueprint

Broker destruction

Talend ESB Infrastructure Services Configuration Guide 55

6.4.2. Broker destruction

To remove an existing broker, simply run the following command:

karaf@trun> activemq:destroy-broker
Default ActiveMQ Broker (localhost) configuration file created at:
<TalendRuntimePath>/container/deploy/localhost-broker.xml removed.

To destroy a named broker, run the following command:

karaf@trun> activemq:destroy-broker --name mybroker
Default ActiveMQ Broker (localhost) configuration file created at:
<TalendRuntimePath>/container/deploy/mybroker-broker.xml removed.

6.4.3. Broker querying

Several commands are available to query the broker. To address local brokers, you need to use the --jmxlocal
parameter. The following command displays available brokers:

karaf@trun> activemq:list --jmxlocal
BrokerName = mybroker

To have more detailed informations, run:

karaf@trun> activemq:query --jmxlocal

It will display informations about the connectors, list of queues, and so on. You can also browse or purge queues
using the activemq:browse and activemq:purge commands.

6.5. ActiveMQ Web Console
The ActiveMQ Web Console is a web based administration tool for working with ActiveMQ, which can be
configured to communicate with a standalone ActiveMQ broker or one running in a container. Web Console is
included in the ActiveMQ distribution.

6.5.1. Configuring ActiveMQ Web Console

When an ActiveMQ broker is running, an ActiveMQ Web Console is automatically created in the same VM or
container. Similarily, starting an ActiveMQ Web Console with no configuration specified will create a broker
embedded in the same VM or container. However, to increase reliability, you may want to run the Web Console
in a separate container to the broker.

In the Talend Runtime, the ActiveMQ Web Console is pre-configured to connect to a broker running within another
Talend Runtime via tcp. So by default, it does not create its own embedded broker.

The pre-configured properties are enabled when installing the Talend Runtime and are in the <container>/
etc/system.properties file:

webconsole.type=properties
webconsole.jms.url=tcp://localhost:61616

Install the Web Console to a container

56 Talend ESB Infrastructure Services Configuration Guide

webconsole.jmx.url=service:jmx:rmi:///jndi/rmi://localhost:1099/karaf-trun
webconsole.jmx.user=tesb
webconsole.jmx.password=tesb

where webconsole.jms.url is the URL of the broker and webconsole.jmx.url is the JMX URL of
the Talend Runtime.

if you make any changes to the configuration, you will need to restart your container for them to take
effect.

6.5.2. Install the Web Console to a container

In order to install the Web Console to a container:

1. If it hasn't been installed already, install the war feature:

karaf@trun> features:install war

2. Then enter:

karaf@trun> features:install activemq-web-console

This will install and start the Web Console which you can access, at http://localhost:8040/activemqweb/ depending
on your configuration. See Section 6.5.1, “Configuring ActiveMQ Web Console” for the pre-configured details.

• To connect to a standalone broker from a Web Console in a container, you need to update the configuration
details in <container>/etc/system.properties. The default, local Web Console for a standalone
broker is at http://localhost:8161/admin/.

• if the default Talend configuration is commented out or deleted, this will start a broker in the local container
and connect to it (it will give an error if a broker is already running).

6.5.3. Additional configuration for authentication

In order to use the ActiveMQ Web Console with a broker configured with authentication, it is necessary to
edit the container/etc/system.properties file and configure the username and password for a JMS
connection:

webconsole.jms.user=system
webconsole.jms.password=manager

6.6. Examples
The examples are in: <TalendRuntimePath>/activemq/example.

Note you might need to download Apache Ant from http://ant.apache.org/ to build and run these.

1. Start a broker if one isn't running, for example, in a console enter:

cd <TalendRuntimePath>/activemq
bin/activemq

http://localhost:8040/activemqweb/
http://localhost:8161/admin/
http://ant.apache.org/

Examples

Talend ESB Infrastructure Services Configuration Guide 57

2. In another shell, run the producer part of the examples:

cd <TalendRuntimePath>/activemq/example
ant producer

3. In another shell, run the consumer part:

cd <TalendRuntimePath>/activemq/example
ant consumer

You should then see messages being produced and consumed.

4. You can also view these in the Web Console, if it is active, by clicking the "Queues" tab:

5. You can also pass additional commands into these topics using variables that are available in the build.xml.
Below is an example:

ant consumer -Durl=tcp://localhost:61616 -Dtopic=true -Ddurable=true
-Dmax=5000

ant producer -Durl=tcp://localhost:61616 -Dtopic=true -DtimeToLive=30000
-Dmax=5000

6. For a summary of all the available goals and options enter:

ant help

Talend ESB Infrastructure Services Configuration Guide

Talend ESB Infrastructure Services Configuration Guide

Chapter 7. Installing BPM server and console
in the Talend Runtime
This chapter describes the steps to launch the BPM server and console in a Talend Runtime container.

Talend BPM server allows you to deploy and run your processes. The Bonita console provides a Web interface
that allows you to manage individual steps, instances (called cases) and processes.

Both are integrated in the Talend Runtime container and can be started by executing specific commands.

Please note that this chapter only applies to users who subscribed to a BPM solution.

7.1. Starting the BPM server and console into
the Talend Runtime container
1. Type in the following command on the Talend Runtime container console:

tbpm:start-all

Alternatively, enter:

tbpm:start-server

to start only the server, or enter:

tbpm:start-console

to start only the console.

Copying the Bonita license into the container

60 Talend ESB Infrastructure Services Configuration Guide

2. On the Talend Runtime container console, execute the list command, you will find the installed BPM
bundles.

7.2. Copying the Bonita license into the
container
If you installed Talend Runtime manually:

Copy the bonita licence file you received by email and paste it in the <TalendRuntimePath>/etc/
bonita/server/licenses directory.

If you installed Talend Runtime via Talend Installer:

Talend Installer automatically copies the bonita license file in the <TalendRuntimePath>/etc/bonita/
server/licenses directory.

7.3. Accessing the Bonita console
The Bonita console is now available at this URL: http://localhost:8040/bonita.

Use the following credentials to log in the Bonita console:

username: admin

password: bpm

You can now manage the BPM services you created in the Studio.

For more information about how to create and expose BPM Web services from the Studio, see the Talend ESB
Studio User Guide.

Talend ESB Infrastructure Services Configuration Guide

Chapter 8. Apache Archiva and the Talend
Artifact Repository
This chapter discusses configuring Apache Archiva in Talend ESB. Most of this chapter refers to Talend ESB
Standard Edition. For completeness, it also includes a brief overview of Talend Artifact Repository, which is
repository management software, based on Apache Archiva, and preconfigured to be used directly within the
Talend ESB.

In the Talend ESB Getting Started Guide, there is an example of using Archiva and the Talend Artifact
Repository to upload and deploy services in the Rent-a-Car demo.

This chapter mainly focuses on aspects of Archiva that are typically used in Talend ESB development.

8.1. Overview
Apache Archiva is extensible repository management software.

The Talend Artifact Repository is based on Apache Archiva, and provides a standard-based repository. It is used
within the Talend ESB to support the deployment of artifacts to the distributed Talend Runtime container, using
a number of pre-configured Talend repositories, which are in addition to the default Archiva ones.

It is available in the Talend ESB as a zip file as part of the Talend Administration Center download.

The Talend Administration Center is a web-based application for administering all aspects of associated software,
from collaborative work and the related code repository management, up to the remote deployment of production
data services and routes.

The Talend Administration Center uses the Talend Artifact Repository to store and to provide the deployment
artifacts for the Talend Runtime container, and their user interfaces are linked for ease of use.

More information

62 Talend ESB Infrastructure Services Configuration Guide

8.2. More information
For more information on Apache Archiva, see http://archiva.apache.org/.

Talend Administration Center is available only for Talend ESB.

For information on the Talend Artifact Repository, see Talend Enterprise ESB Installation Guide, and also the
fully-worked example in Talend ESB Getting Started Guide.

For information on the Talend Administration Center, see Talend Enterprise ESB Installation Guide and Talend
Administration Center User Guide.

The remainder of this chapter focuses on using Apache Archiva, and configuring Maven to access and deploy to
Archiva repositories.

Please note that Maven 3.0.3 is required for the functionality described in this document.

8.3. Downloading and installing Archiva
If you're using Linux, then check the JDK version in the conf\wrapper.conf file in the Archiva
installation to make sure the correct JDK is being referenced (see Section 1.1, “Prerequisites to using
Talend ESB”); otherwise the default version of JDK on the local machine will be used. If needed, update
this line and insert the correct JDK path:

 # Java Application
 wrapper.java.command=/pathToCorrectJDK/java

8.3.1. Talend ESB Standard Edition

If you are using Talend ESB Standard Edition, then download Apache Archiva from http://archiva.apache.org and
extract it. In the Archiva directory, run:

./bin/archiva console (Linux)

.\bin\archiva.bat console (Windows)

Archiva is now running on http://localhost:8080/archiva/.

8.3.2. Talend ESB

If you are using Talend ESB, then see Talend Enterprise ESB Installation Guide for details on how to install the
Talend Artifact Repository (based on Achiva).

The Talend Artifact Repository is now running on http://localhost:8082/archiva/ with user: tadmin pwd:
tadmin.

http://archiva.apache.org/
http://archiva.apache.org
http://localhost:8080/archiva/
http://localhost:8082/archiva/

Browsing repositories

Talend ESB Infrastructure Services Configuration Guide 63

8.4. Browsing repositories

Figure 8.1. A repository with some Talend artifacts already deployed

8.4.1. Permissions

The user can only browse those repositories where the user is an observer or a manager. If the user does not
have permission to access any repository, a message saying "You have access to no repositories. Ask your system
administrator for access" will be displayed.

8.4.2. Artifact Info

Items in the repositories are hyperlinked allowing you easy access to view more information. By clicking on the
Group Id or Artifact Id you will be taken to the repository browser. The Artifact Info page is divided into six views:

1. Info: Basic information about the artifact is displayed here. These are the groupId, artifactId,
version and packaging. A dependency pom snippet is also available, which a user can just copy and paste
in a pom file to declare the artifact as a dependency of the project.

2. Dependencies: The dependencies of the artifact will be listed here. The user can easily navigate to a specific
dependency by clicking on the groupId, artifactId, or version link. The scope of the dependency
is also shown.

3. Dependency Tree: The dependencies of the artifact are displayed in a tree-like view, which can also be
navigated.

4. Used By: Lists all the artifacts in the repository which use this artifact.

Downloading Artifacts

64 Talend ESB Infrastructure Services Configuration Guide

5. Mailing Lists: The project mailing lists available in the artifact's pom are displayed here.

6. Download: Clicking on this link will download the artifact to your local machine.

8.4.3. Downloading Artifacts

Artifacts can be downloaded from the artifact info page. All files, except for the metadata.xml files, that are
associated with the artifact are available in the download box.

The size of the files in bytes are displayed at the right section of the download box. Note: Upon downloading
the artifact, you will be asked to enter your username and password for the repository where the artifact will be
downloaded from. Only users with Global Repository Manager, Repository Manager, or Repository Observer
roles for that repository can download the artifact.

8.4.4. Identifying an Artifact

Archiva indexes all of the artifacts that it discovers during the repository scanning process, storing information
about their contents. This includes the checksum of the artifact, which can help to uniquely identify it within the
repository.

You can search for an artifact using this checksum, please see http://archiva.apache.org for more details.

8.5. Configuring Maven to use an Archiva
repository
To get your local Maven installation to use an Archiva proxy you need to add the repositories you require to your
'settings.xml'. This file is usually found in $user.dir/.m2/settings.xml (see http://maven.apache.org/
settings.html for more details).

How you configure the settings depends on how you would like to utilise the repository. You can add the Archiva
repository as an additional repository to others already declared by the project.

8.5.1. Using Archiva as an additional repository

You will need to add one entry for each repository that is setup in Archiva. If your repository contains plugins;
remember to also include a <pluginRepository> setting.

1. Create a new profile to setup your repositories:

<settings>
 ...
 <profiles>
 <profile>
 <id>Repository Proxy</id>
 <activation>
 <activeByDefault>true</activeByDefault>

http://archiva.apache.org
http://maven.apache.org/settings.html
http://maven.apache.org/settings.html

Using Archiva as an additional repository

Talend ESB Infrastructure Services Configuration Guide 65

 </activation>
 <!-- *** -->
 <!-- repositories for jar artifacts -->
 <!-- *** -->
 <repositories>
 <repository>
 ...
 </repository>
 ...
 </repositories>
 <!-- *** -->
 <!-- repositories for maven plugins -->
 <!-- *** -->
 <pluginRepositories>
 <pluginRepository>
 ...
 </pluginRepository>
 ...
 </pluginRepositories>
 </profile>
 ...
 </profiles>
 ...
</settings>

2. Add your repository configuration to the profile.

You can copy the repository configuration from the POM Snippet on the Archiva Administration Page for
a normal repository. It should look much like:

<repository>
 <id>repository-1</id>
 <url>
 http://repo.mycompany.com:8080/archiva/repository/internal/
 </url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
</repository>

3. Add the necessary security configuration

This is only necessary if the guest account does not have read access to the given repository.

<settings>
 ...
 <servers>
 <server>
 <id>repository-1</id>
 <username>{archiva-user}</username>
 <password>{archiva-pwd}</password>
 </server>
 ...
 </servers>

Deploying to a Repository

66 Talend ESB Infrastructure Services Configuration Guide

 ...
</settings>

An example of this is given in the Archiva section in the Talend ESB Getting Started Guide.

8.6. Deploying to a Repository
Now that we have configured Maven to use Archiva, we are ready to deploy to it. There are different ways on
how you can deploy artifacts in an Archiva repository.

• Configuring Maven to deploy to an Archiva repository which is covered in this section.

• Deploying via the Web UI Form - please see http://archiva.apache.org for more details.

8.6.1. Configuring Maven to deploy to an Archiva
repository

Figure 8.2. Default Archiva Repositories

1. Create a user in Archiva to use for deployment (or use 'guest' if you wish to deploy without a username and
password - however, 'guest' is not available with Talend respositories).

2. The deployment user needs the Role 'Repository Manager' for each repository that you want to deploy to.

3. Define the server for deployment inside your 'settings.xml', use the newly created user for authentication:

<settings>
 ...
 <servers>
 <server>
 <id>archiva.internal</id>
 <username>{archiva-deployment-user}</username>
 <password>{archiva-deployment-pwd}</password>
 </server>
 <server>
 <id>archiva.snapshots</id>
 <username>{archiva-deployment-user}</username>
 <password>{archiva-deployment-pwd}</password>
 </server>
 ...

http://archiva.apache.org

Deploying to Archiva using HTTP

Talend ESB Infrastructure Services Configuration Guide 67

 </servers>
 ...
</settings>

8.6.2. Deploying to Archiva using HTTP

Configure the distributionManagement part of your pom.xml (customising the URLs as needed).

The id of the repository in distributionManagement must match the id of the server element in
settings.xml.

<project>
...
<distributionManagement>
 <repository>
 <id>archiva.internal</id>
 <name>Internal Release Repository</name>
 <url>
 http://reposerver.mycompany.com:8080/archiva/repository/internal/
 </url>
 </repository>
 <snapshotRepository>
 <id>archiva.snapshots</id>
 <name>Internal Snapshot Repository</name>
 <url>
 http://reposerver.mycompany.com:8080/archiva/repository/snapshots/
 </url>
 </snapshotRepository>
 </distributionManagement>
 ...
</project>

8.6.3. Deploying to Archiva using WebDAV

In some cases, you may want to use WebDAV (Web-based Distributed Authoring and Versioning) to deploy
instead of HTTP. If you find this is necessary, to facilitate greater ease of collaboration, then follow the same
process as for HTTP, with this additional step:

Add dav: to the front of the deployment URLs:

<project>
 ...
 <distributionManagement>
 <repository>
 <id>archiva.internal</id>
 <name>Internal Release Repository</name>
 <url>dav:http://reposerver.mycompany.com:8080/archiva/repository/i
nternal/</url>
 </repository>
 <snapshotRepository>
 <id>archiva.snapshots</id>
 <name>Internal Snapshot Repository</name>

Deploying to Archiva using WebDAV

68 Talend ESB Infrastructure Services Configuration Guide

 <url>dav:http://reposerver.mycompany.com:8080/archiva/repository/s
napshots/</url>
 </snapshotRepository>
 </distributionManagement>
 ...
</project>

	Talend ESB Infrastructure Services
	Table of Contents
	Chapter 1. Introduction
	1.1. Prerequisites to using Talend ESB

	Chapter 2. Service Locator installation
	2.1. Download and install
	2.2. Installing in standalone mode
	2.3. Start using command line
	2.3.1. Logging

	2.4. Running a replicated Service Locator
	2.5. Running Apache Zookeeper as an OSGi bundle
	2.6. Maintaining a Service Locator
	2.7. Enabling Service Locator usage in CXF
	2.8. The Service Locator SOAP Service
	2.9. The Service Locator REST Service

	Chapter 3. Service Locator configuration
	3.1. Service Locator Provider configuration
	3.2. Service Locator Consumer configuration
	3.3. Additional Metadata
	3.4. Service Locator endpoint selection strategy configuration
	3.5. Properties file
	3.5.1. Service Locator configuration with multiple machines

	3.6. Restricting access to the Service Locator
	3.6.1. Enabling authentication for a Service Locator server
	3.6.2. Enabling authentication for a Service Locator client
	3.6.3. Securing the Service Locator SOAP Service
	3.6.4. Implementing authentication for the Rent-a-Car example
	3.6.4.1. Running clients and services in the same container

	3.7. Service Locator for RESTful services

	Chapter 4. Service Activity Monitoring (SAM)
	4.1. Overview
	4.1.1. Messages, Events and Flow IDs

	4.2. Architecture
	4.3. Installation
	4.3.1. Agent Installation in a Servlet container
	4.3.2. Agent Installation in an OSGi Container
	4.3.3. DataSource Installation
	4.3.3.1. Installing MySQL, H2, Oracle, DB2 and SQLServer JDBC drivers into a container
	Installing using a simple copy to the deploy folder
	Install the JDBC driver from a public Maven repository
	Install the JDBC driver from a local repository
	Install the driver from the file system using osgi:install

	4.3.3.2. Installing the DataSource in an OSGi container
	4.3.3.3. Installing the DataSource into J2EE/Tomcat

	4.3.4. Service Activity Monitoring Server Installation
	4.3.4.1. Database installation and initialization
	Automatically starting Derby
	SQL server and TCP/IP

	4.3.4.2. Install the Service Activity Monitoring Server into a Servlet container
	4.3.4.3. Install the Service Activity Monitoring Server into the OSGi Container

	4.3.5. Example Installation

	4.4. Configuration
	4.4.1. Agent Configuration
	4.4.2. DataSource Configuration
	4.4.3. Service Activity Monitoring Server Configuration

	4.5. Running and Testing
	4.5.1. Pre-requisites
	4.5.2. General Test
	4.5.3. Filters and Handlers Test
	4.5.4. Monitoring events from database

	4.6. Event Structure
	4.7. EVENTS_CUSTOMINFO Structure

	Chapter 5. Using STS with the Talend Runtime
	5.1. Deploying the STS into the Talend Runtime container
	5.2. Deploying the STS into a Servlet Container (Tomcat)
	5.3. Security Token Service (STS) Configuration
	5.4. Data Service Configuration for using STS
	5.5. Creating keys for the Security Token Service
	5.5.1. Using OpenSSL to create certificates
	5.5.1.1. Creating the service keystore
	5.5.1.2. Creating the client keystore

	5.5.2. Deploying and Using a Security Token Service (STS)

	Chapter 6. ActiveMQ
	6.1. Overview
	6.1.1. Download and install

	6.2. Standalone ActiveMQ broker
	6.2.1. Configuration

	6.3. ActiveMQ OSGi bundles
	6.3.1. Commands

	6.4. ActiveMQ broker inside a Talend Runtime container
	6.4.1. Broker creation
	6.4.2. Broker destruction
	6.4.3. Broker querying

	6.5. ActiveMQ Web Console
	6.5.1. Configuring ActiveMQ Web Console
	6.5.2. Install the Web Console to a container
	6.5.3. Additional configuration for authentication

	6.6. Examples

	Chapter 7. Installing BPM server and console in the Talend Runtime
	7.1. Starting the BPM server and console into the Talend Runtime container
	7.2. Copying the Bonita license into the container
	7.3. Accessing the Bonita console

	Chapter 8. Apache Archiva and the Talend Artifact Repository
	8.1. Overview
	8.2. More information
	8.3. Downloading and installing Archiva
	8.3.1. Talend ESB Standard Edition
	8.3.2. Talend ESB

	8.4. Browsing repositories
	8.4.1. Permissions
	8.4.2. Artifact Info
	8.4.3. Downloading Artifacts
	8.4.4. Identifying an Artifact

	8.5. Configuring Maven to use an Archiva repository
	8.5.1. Using Archiva as an additional repository

	8.6. Deploying to a Repository
	8.6.1. Configuring Maven to deploy to an Archiva repository
	8.6.2. Deploying to Archiva using HTTP
	8.6.3. Deploying to Archiva using WebDAV

