talend
*open integration solutions

o

Talend ESB Mediation

Developer Guide

Publication date 12 November 2012
Copyright © 2011-2012 Taend Inc.

Copyleft

This documentation is provided under the terms of the Creative Commons Public License (CCPL). For more
information about what you can and cannot do with this documentation in accordance with the CCPL, please read:
http://creativecommons.org/licenses/by-nc-sa/2.0/

This document may include documentation produced at The A pache Software Foundation which islicensed under
The Apache License 2.0.

Notices
Taend and Talend ESB are trademarks of Talend, Inc.

Apache CXF, CXF, Apache Karaf, Karaf, Apache Cellar, Cellar, Apache Camel, Camel, Apache Maven, Maven,
ApacheArchiva, Archivaaretrademarks of The Apache Foundation. Eclipse Equinox isatrademark of the Eclipse
Foundation, Inc. SoapUl is atrademark of SmartBear Software. Hyperic is atrademark of VMware, Inc. Nagios
isatrademark of Nagios Enterprises, LLC.

All other brands, product names, company names, trademarks and service marks are the properties of their
respective owners.

Document includes Enterprise Integration Patterns graphics licensed under the Creative Commons Attribution
License. Book: Enterprise Integration Patterns by Gregor Hohpe and Bobby Woolf; Website: http://
Www . eai patterns.com/eai patterns.html.

Table of Contents

O [gL oo (8 1o o TSRS PR 1
2. Enterprise INtegration PalternSoiuuiiiiiei e 3
2.0 LISt OF EIPS .ot 3
A e o o (o] S PP PPUPPUPTPN 8
2.3. Claim CRECK ... e 12
2.4. COMPELING CONSUMEY'S ...cunieti ettt et e et e et et et e e et e e et e et e eaa e eat e eeanaaeanas 14
2.5. ComMPOSEd MESSAGE PrOCESSONuiieieitiieiet et e et et e e e et e e e e et eeaaeeaaeaes 15
2.6. Content Based ROULEYiiiiiriieiieii e e 15
2.7, CoNENt ENMCNENeeeiei e 16
2.8, CONENt FilTEr «ooeeeeeeet e 20
2.9, CONMIOl BUSceeitieeeeii ettt et e e e 21
2.10. Correlation TAENTIFIENuieieei e e 22
2.11. Dead Letter Channelioiiiiiioiiii e 22
202, DAY e 28
P G B L= (o | PSSP 30
2.14. Durable SUDSCIIDEYoouiiiee e 31
2.15. DYNAMIC ROULES ...ttt et e e e e e 32
2.16. EVENt DIIVEN CONSUIMETceiitieeiitiiieeeeit e e eest e e eest e e e ent e e e ent e e e ent e e eennaeeees 34
207, EVENE MBSSAOE ... ceeeteitee ettt ettt e 34
2.18. GUArANEEd DEIIVEIYceee it 35
2.19. 1deMPOLENt CONSUIMES cuiieiit ettt e e et e et e e e et e e e e e e e e et e eenaeeees 36
2.20. LOBO BAIANCES ...ttt 38
2020, L0 ettt 42
A W o o] o B PP P PP PPRPI 43
2,23, IMIBSSA0E ..ttt e e ea e 44
224, MESSAOE BUS ... 45
2.25. MeSsage Channeloueiiiii e 46
2.26. MeSSA0E DiSPAICNES ...t 46
2.27. MeSSA0E ENAPOINTceuuieiieiit et e e e eaes 47
2.28. MESSAOE FILEN .. 47
2.29. MESSAGE HISIOMY ...ttt e e e e e 48
2.30. MESSA0E ROULEYeieiiiie ettt et e e et e e e e ea e enns 49
2.31. MESSATE TraNGIBIONuieeieiii ettt et e et e et e et e e e e eeanas 50
2.32. MESSAOING GALEWEYeeveeiii ettt e et e e et e et e e e e eanas 51
2.33. MESSATING MBPPES ... ettt ettt e e et e e e e e e ea e 52
234 IMUITICBSE ... ceeee ettt 52
2.35. NOMMAIIZEN ..ottt et e e e 55
2.36. PIPES and FlLErS ... oo 56
2.37. Point to POint Channeloouiiiiiiii e 57
2.38. POHING CONSUMEYceiiiii ettt et e et e e et e e e e e e eeanns 57
2.39. Publish Subscribe Channelcooouiiiiiii e 61
2.40. RECIPIENT LISt ..ttt et e e e e e eanas 62
241, ReQUESE REDIY .ooriiiiei et 65
242, RESEQUENCESituiteit ettt ettt et e e e ettt e et e et e et e et e et e ea e e e e aaa 66
243, REUIMN AGAIESSveieeeeiie ettt e e e e e 70
244, ROULING SHIP ettt ettt e e e et e e et e eaa e eees 71
245, SAMPIING L.ttt e a e e et 72
2.46. SCAtEr-GaENEYeiieeiii e 74
2.47. SEIECHIVE CONSUMETciieiiiieeeeii et ettt et ettt et e e e nn e e ennens 77
2.48. SEIVICE ACHIVELONiiieii et r e e 78
2089, SONT ..ttt 79
250, SPlIEE ettt e e e e enn 80
P2 T I 41 10111 PP PPPPTIN 86
2.52. Transactional ClIENtuiiiiiiiei e 87
253 VEAIIOAE ... 92
25, WITE T A ittt ettt e e e 93

Talend ESB Mediation Developer Guide

Talend ESB Mediation

3. COMIPONENLS . ui ettt e e et e e e e e e et 95
3L ACHVEMQ oot 99
32 N (0] PR 102
1T =T o O STPPIN 104
3 B O o = PP 106
ST O -SSP 113
G T O 11 = PP 114
3.7. Crypto (Digital SIgNAUIES)cevueiiiieiiii e e e e e aaaas 116
G 09 SRR 118
3.9. CXF Bean COmMPONENT ...uiuiiiiiiiiiee e e s e e et e e e e e e e e e ae e anas 137
B.L0. CXFRS ..ottt a e aen 140
G35 T T 1= o S PT 141
TN B Y o | PSPPI 142
30 G T = o PSP 142
30 7 T = TP 145
BLAS. FIAIPACK vt 163
I L o (== 0= (= PP 167
30 2 e I PP 169
B L8, HI7 e e 177
30 R TR o N I I P 181
3L N - LSV o S PRT 189
320, JCR ittt et 192
32 B] = OSSPSR 194
I/ TN < 1 Y PP 197
B2, IMIS o 203
132 TN 1V PSP 217
B2, TP A e eaaan 219
I AN = ¢ PSP 223
13022 T I oo SO 224
320, LUCENE .ttt ettt ea e 227
GG 0 1Y I PP 231
1T I 1Y o PSP 237
332, IMYBALIS vttt 242
GGG T (0 o= 1 (1= 245
I 7 O 1= P 253
G LY o PRSPPI 256
B30, RMI i 257
337 RS e 258
338, SE D A o 260
B39, SEIVIEL ..ttt 263
3.40. SNITO SECUNTY ..ivvuiiiii e e e e e e e e e e e aaeeeens 264
B L, SMIPP e e 268
B2, SNIMP L 275
RGNS o) 11 0o I N1 (<o = (o] NP 277
344, SPIING SECUNMLY ovvuiiiiee it e e e e et e e e e e e e e e e e e e e et e e et e e e eeaens 281
3.45. SQL COMPONENT ...vuitiiieieeee et e et e e e et et et n e e e anaans 286
BB, SSH oo e 293
BT, SHUD e 294
I I PSSP 295
I T 2= SRRSO 295
350, VEIOCILY oevtiieeiiii et 297
B 0L, VM i 300
3.52. XQUENY ENAPOINTovtniiiiiei e e e e e e e e e e e e e e aans 300
G35 € R S PRT 301
Y A o) (= = o= SN 304

4, Talend ESB Mediation EXaMPIESiiiiiiiii e e e e e e e e e e e e e eaaas 309

iv Talend ESB Mediation Developer Guide

Chapter 1. Introduction

This manual coversthe Apache Camel 2.10.x series.

2

Talend ESB provides a fully supported, stable, production ready distribution of the industry leading open source
integration framework Apache Camel. Apache Camel uses well known Enterprise Integration Patterns to make
message based system integration simpler yet powerful and scalable.

The Apache Camel uses alightweight, component based architecture which allows great flexibility in deployment
scenarios: as stand-alone JVM applications or embedded in a servlet container such as Tomcat, or within a JEE
server, or in an OSGi container such as Equinox.

Apache Camel and Talend ESB come out of the box with an impressive set of available components for all
commonly used protocolslike http, https, ftp, xmpp, rssand many more. A large number of dataformatslike EDI,
JSON, CSV, HL7 and languages like JS, Python, Scala, are supported out of the box. Its extensible architecture
allows developers to easily add support for proprietary protocols and data formats.

The Talend ESB distribution supplements Apache Camel with support for OSGi deployment, support for
integrating Talend jobs on Camel routes and a number of advanced examples. Its OSGi container uses Apache
Karaf, alightweight container providing advanced features such as provisioning, hot deployment, logger system,
dynamic configuration, complete shell environment, and other features.

Talend ESB Mediation Developer Guide

Talend ESB Mediation Developer Guide

Chapter 2. Enterprise Integration Patterns

Camel supports most of the Enterprise Integration Patterns from the excellent book by Gregor Hohpe and Bobby

Woolf.

2.1. List of EIPs

2.1.1. Messaging Systems

Section 2.25, “Message Channel”

How does one application
communicate with another using

messaging?

Section 2.23, “Message”

How can two applications connected
by a message channel exchange a
piece of information?

Section 2.36, “Pipes and Filters’

How can we perform complex
processing on a message while
maintaining independence and
flexibility?

Talend ESB Mediation Developer Guide

http://www.eaipatterns.com/toc.html

Messaging Channels

)

Section 2.30, “Message Router”

How can you decouple individual
processing steps so that messages
can be passed to different filters
depending on a set of conditions?

A\t
A
LA

Section 2.31, “Message Tranglator”

How can systems using different
data formats communicate with each
other using messaging?

H

Section 2.27, “ Message Endpoint”

How does an application connect to
a messaging channel to send and
receive messages?

2.1.2. Messaging Channels

Section 2.37,
Channel”

“Point to Point

How can the caler be sure that
exactly one receiver will receive the
document or perform the call?

Section 2.39, “Publish Subscribe
Channel”

How can the sender broadcast an
event to all interested receivers?

Section 2.11, “Dead Letter Channel”

What will the messaging system do
with amessage it cannot deliver?

o o] 7 |

Section 2.18,
Delivery”

“Guaranteed

How can the sender make sure that
amessage will be delivered, even if
the messaging system fails?

Section 2.24, “Message Bus”

What is an architecture that
enables separate applications to
work together, but in a de-coupled
fashion such that applications can
be easily added or removed without
affecting the others?

2.1.3. Message Construction

Section 2.17, “Event Message’

How can messaging be used to
transmit events from one application
to another?

Talend ESB Mediation Developer Guide

Message Routing

Section 2.41, “Request Reply”

When an application sends a
message, how can it get a response
from the receiver?

Section
Identifier”

2.10,

“Correlation

How does a requestor that has
received areply know which request
thisisthe reply for?

Section 2.43, “Return Address’

How does a replier know where to
send the reply?

2.1.4. Message Routing

Section 2.6, “ Content Based Router”

How do we handle a situation
where theimplementation of asingle
logical function (e.g., inventory
check) is spread across multiple
physical systems?

Section 2.28, “Message Filter”

How can a component avoid
receiving uninteresting messages?

Section 2.15, “Dynamic Router”

How can you avoid the dependency
of the router on al possible
destinations while maintaining its
efficiency?

Section 2.40, “Recipient List”

How do we route a message to alist
of (static or dynamically) specified
recipients?

Section 2.50, “ Splitter”

How can we process a message if it
contains multiple elements, each of
which may have to be processed in a
different way?

Aggregator

How do we combine the results of
individual, but related messages so
that they can be processed as a
whole?

Section 2.42, “ Resequencer”

How can we get a stream of related
but out-of-sequence messages back
into the correct order?

Talend ESB Mediation Developer Guide

Message Transformation

Section 2.5, “Composed Message
Processor”

How can you maintain the overall
message flow when processing
a message consisting of multiple
elements, each of which may require
different processing?

Section 2.46, “ Scatter-Gather”

How do you maintain the overal
message flow when a message needs
to be sent to multiplerecipients, each
of which may send areply?

Section 2.44, “Routing Sip”

How do we route a message
consecutively through a series of
processing steps when the sequence
of stepsis not known at design-time
and may vary for each message?

Section 2.51, “Throttler”

How can | throttle messages to
ensure that a specific endpoint does
not get overloaded, or we don't
exceed an agreed SLA with some
external service?

Section 2.45, “ Sampling”

How can | sample one message
out of many in a given period to
avoid downstream route does not get
overloaded?

Section 2.12, “Delayer”

How can | delay the sending of a
message?

Section 2.20, “Load Balancer”

How can | balance load across a
number of endpoints?

Section 2.34, “Multicast”

How can | route a message to a
number of endpoints at the same
time?

Section 2.22, “Loop”

How can | repeat processing a
message in aloop?

2.1.5. Message Transformation

I:I—I-|:|

Section 2.7, “Content Enricher”

How do we communicate with
another system if the message
originator does not have al the
required data items available?

Section 2.8, “ Content Filter”

How do you simplify dealing with
a large message, when you are
interested only in afew dataitems?

Section 2.3, “Claim Check”

How can we reduce the data
volume of message sent across
the system without sacrificing
information content?

Talend ESB Mediation Developer Guide

Messaging Endpoints

> 0
¥
O

Section 2.35, “Normalizer”

How do you process messages
that are semantically equivalent, but
arrive in adifferent format?

Section 2.49, “ Sort”

How can | sort the body of a
message?

Section 2.53, “Validate”

How can | validate a message?

2.1.6. Messaging Endpoints

Section 2.33, “Messaging Mapper”

How do you move data between
domain objects and the messaging
infrastructure while keeping the two
independent of each other?

Section 2.16,
Consumer”

“Event Driven

How can an application
automatically consume messages as
they become available?

Section 2.38, “Polling Consumer”

How can an application consume
a message when the application is
ready?

Section 2.4,
Consumers’

“Competing

How can a messaging client process
multiple messages concurrently?

Section 2.26, “ Message Dispatcher”

How can multiple consumers on
a single channel coordinate their
message processing?

FEEEE

Section 2.47, “ Selective Consumer”

How can a message consumer select
which messagesit wishesto receive?

E

Section 2.14, “Durable Subscriber”

How can a subscriber avoid missing
messages while it's not listening for
them?

Section 2.19,
Consumer”

“ldempotent

How can a message receiver deal
with duplicate messages?

@

Section 2.52, “ Transactional Client”

How can a client control its
transactions with the messaging
system?

Talend ESB Mediation Developer Guide 7

System Management

Section 2.32, “Messaging Gateway” |How do you encapsulate access to
the messaging system from the rest
of the application?

Section 2.48, “ Service Activator” How can an application design a
service to be invoked both via
_ . > various messaging technologies and

via non-messaging techniques?

I
pd
PN
)

2.1.7. System Management

Section 2.9, “Control Bus’ How can we effectively administer a
messaging system that is distributed
across multiple platforms and awide
geographic area?

Section 2.13, “ Detour” How can you route a message
through intermediate steps to
perform validation, testing or
debugging functions?

Section 2.54, “Wire Tap” How do you inspect messages that
travel on a point-to-point channel?

Section 2.29, “Message History” How can we effectively analyze and
debug the flow of messages in a
loosely coupled system?

Log How can | log processing amessage?

2.2. Aggregator

The Aggregator from the EIP patterns all ows you to combine anumber of messages together into a single message.

% %]

Inventory Inventory Inwentory
ltern 1 ltern 2 ltern 3 Aggregatar lnventory
Crder

A correlation Expression is used to determine the messages which should be aggregated together. If you want to
aggregate all messages into a single message, just use a constant expression. An AggregationStrategy is used to
combine all the message exchanges for a single correlation key into a single message exchange.

8 Talend ESB Mediation Developer Guide

http://www.eaipatterns.com/Aggregator.html
http://camel.apache.org/expression.html

Aggregator options

The aggregator provides a pluggable repository which you can implement your own
or g. apache. canel . spi . Aggr egat i onReposi t ory. If you need a persistent repository then you can
use either Camel HawtDB or SQL Component.

You can manualy complete all current aggregated exchanges by sending in a message containing the header
Exchange AGGREGATION_COMPLETE_ALL_GROUPS set to true. The message is considered a signal
message only, the message headers/contents will not be processed otherwise.

The Apache Camel website maintains several examples of this EIP in use.

2.2.1. Aggregator options

The aggregator supports the following options:

Option Default Description

correlationExpression Mandatory Expression which evaluates the correlation key
to use for aggregation. The Exchange which has the same
correlation key is aggregated together. If the correlation key
could not be evaluated an Exception is thrown. You can
disable this by using the i gnor eBadCor r el ati onKeys
option.

aggregationStrategy Mandatory Aggr egati onStrat egy which is used to
merge the incoming Exchange with the existing already
merged exchanges. At first call theol dExchange parameter
is nul I . On subsequent invocations the ol dExchange
contains the merged exchanges and newkxchange is
of course the new incoming Exchange. The strategy can
also be aTimeoutAwareAggregationStrategy implementation,
supporting the timeout callback. Here, Camel will invoke the
ti meout method when the timeout occurs. Notice that the
values for index and total parameters will be -1, and the
timeout parameter will only be provided if configured as a

fixed value.

strategyRef A reference to lookup the Aggr egat i onSt r at egy in the
Registry.

completionSize number of messages aggregated before the aggregation is

complete. This option can be set as either a fixed value or
using an Expression which allows you to evaluate a size
dynamically; it will use | nt eger as result. If both are set,
Camd will fallback to use the fixed value if the Expression
result wasnul | or 0.

completionTimeout Time in milliseconds that an aggregated exchange should be
inactive before it is complete. This option can be set as either
a fixed value or using an Expression which allows you to
evaluate a timeout dynamically; it will use Long as result. If
both are set Camel will fallback to use the fixed value if the
Expression result was nul | or 0. You cannot use this option
together with completionlnterval, only one of the two can be
used.

completionlnterval A repeating period in milliseconds by which the aggregator
will complete all current aggregated exchanges. Camel has a
background task which is triggered every period. Y ou cannot
use this option together with completionTimeout, only one of
them can be used.

Talend ESB Mediation Developer Guide 9

http://camel.apache.org/hawtdb.html
http://camel.apache.org/sql-component.html
http://camel.apache.org/aggregator2.html#Aggregator2-Examples
http://camel.apache.org/expression.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/registry.html
http://camel.apache.org/expression.html
http://camel.apache.org/expression.html
http://camel.apache.org/expression.html
http://camel.apache.org/expression.html

Aggregator options

Option

Default

Description

completionPredicate

A Predicate to indicate when an aggregated exchange is
complete.

completionFromBatchConsumer

fal se

This option is if the exchanges are coming from a Batch
Consumer. Then when enabled the Section 2.2, “ Aggregator”
will use the batch size determined by the Batch Consumer
in the message header Canel Bat chSi ze. See more details
at Batch Consumer. This can be used to aggregate all files
consumed from a File endpoint in that given poll.

forceCompl etionOnStop

fal se

Indicates completing all current aggregated exchanges when
the context is stopped.

eagerCheckCompletion

fal se

Whether or not to eager check for completion when a new
incoming Exchange has been received. This option influences
the behavior of the conpl eti onPredi cat e option as
the Exchange being passed in changes accordingly. When
f al se the Exchange passed inthe Predicateisthe aggregated
Exchange which means any information you may store on the
aggregated Exchangefrom the Aggr egat i onStr at egy is
available for the Predicate. When t r ue the Exchange passed
in the Predicate is the incoming Exchange, which means you
can access data from the incoming Exchange.

groupExchanges

fal se

If enabled then Camel will group al
aggregated Exchanges into a single combined
or g. apache. canel . i mpl . G oupedExchange
holder class that holds all the aggregated Exchanges. And
as a result only one Exchange is being sent out from
the aggregator. Can be used to combine many incoming
Exchanges into a single output Exchange without coding a
customAggr egat i onSt r at egy yourself. Notethisoption
does not support persistant aggregator repositories.

ignorelnvalidCorrelationK eys

fal se

Whether or not to ignore correlation keys which could not
be evaluated to a value. By default Camel will throw an
Exception, but you can enable this option and ignore the
situation instead.

closeCorrelationK eyOnCompl etion

Whether or not too late Exchanges should be accepted or
not. You can enable this to indicate that if a correlation key
has already been completed, then any new exchanges with
the same correlation key be denied. Camel will then throw a
cl osedCorrel ati onKeyExcepti on exception. When
using this option you passin ai nt eger which is a number
for a LRUCache which keeps that last X number of closed
correlation keys. You can pass in O or a negative value to
indicate a unbounded cache. By passing in a number you are
ensured that cache won't grow too big if you use a log of
different correlation keys.

discardOnCompl etionTimeout

fal se

Whether or not exchanges which complete due to a timeout
should be discarded. If enabled then when a timeout occurs
the aggregated message will not be sent out but dropped
(discarded).

aggregationRepository

Allows you to plugin you own implementation of Camel's
Aggr egat i onReposi t ory classwhich keepstrack of the
current inflight aggregated exchanges. Camel uses by default
amemory based implementation.

10 Talend ESB Mediation Developer Guide

http://camel.apache.org/predicate.html
http://camel.apache.org/batch-consumer.html
http://camel.apache.org/batch-consumer.html
http://camel.apache.org/batch-consumer.html
http://camel.apache.org/batch-consumer.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/predicate.html
http://camel.apache.org/predicate.html
http://camel.apache.org/exchange.html
http://camel.apache.org/predicate.html
http://camel.apache.org/exchange.html

Exchange Properties

Option Default Description

aggregationRepositoryRef Reference to lookup a aggr egat i onReposi t ory in the
Registry.

parallelProcessing fal se When aggregated are completed they are being send out of the

aggregator. This option indicates whether or not Camel should
use athread pool with multiple threads for concurrency. If no
custom thread pool has been specified then Camel creates a
default pool with 10 concurrent threads.

executorService If using par al | el Processi ng you can specify a custom
thread pool to be used. In fact also if you are not using
par al | el Processi ng this custom thread pool is used to
send out aggregated exchanges as well.

executorServiceRef Reference to lookup aexecut or Ser vi ce in the Registry

timeoutCheckerExecutorService If using either of the completionTimeout,
completionTimeoutExpression, or completionlnterval options
abackground thread is created to check for the completion for
every aggregator. Set this option to provide a custom thread
pool to be used rather than creating a new thread for every

aggregator.

timeoutCheckerExecutorServiceRef Reference to lookup a timeoutCheckerExecutorService in the
Registry.

2.2.2. Exchange Properties

The following properties are set on each aggregated Exchange:

header type description

Camel Aggr egat edSi ze int The total number of Exchanges aggregated into this
combined Exchange.

Canel Aggr egat edConpl et edBy | String Indicator how the aggregation was completed asavalue
of either: pr edi cat e, si ze, consurmer,ti nmeout
orinterval .

2.2.3. About AggregationStrategy

The Aggr egati onStrat egy is used for aggregating the old (lookup by its correlation id) and the new
exchanges together into a single exchange. Possible implementations include performing some kind of combining
or delta processing, such as adding line items together into an invoice or just using the newest exchange and
removing old exchanges such as for state tracking or market data prices; where old values are of little use.

Notice the aggregation strategy is a mandatory option and must be provided to the aggregator.

If your aggregation strategy implements Ti meout Awar eAggr egat i onSt r at egy, then Camel will invoke
the timeout method when the timeout occurs. Notice that the values for index and total parameters will be-1, and
the timeout parameter will be provided only if configured as a fixed value. Y ou must not throw any exceptions
from the timeout method.

If your aggregation strategy implements Conpl et i onAwar eAggr egat i onStr at egy, then Camel will
invoke the onCompl ete method when the aggregated Exchangeis completed. Thisallowsyou to do any last minute

Talend ESB Mediation Developer Guide 11

http://camel.apache.org/registry.html
http://camel.apache.org/registry.html

About completion

custom logic such as to cleanup some resources, or additional work on the exchange as its now completed. You
must not throw any exceptions from the onCompletion method.

2.2.4. About completion

When aggregation Exchanges at some point you need to indicate that the aggregated exchanges is complete, so
they can be send out of the aggregator. Camel alows you to indicate completion in various ways as follows:

» completionTimeout - Is an inactivity timeout in which istriggered if no new exchanges have been aggregated
for that particular correlation key within the period.

» completioninterval - Once every X period all the current aggregated exchanges are compl eted.
» completionSize - Is anumber indicating that after X aggregated exchanges it's complete.

» completionPredicate - Runs a Predicate when a new exchange is aggregated to determine if we are complete
or not

» completionFromBatchConsumer - Special option for Batch Consumer which allows you to complete when all
the messages from the batch has been aggregated. |

« forceCompletionOnStop - Indicates to complete all current aggregated exchanges when the context is stopped.

Notice that al the completion ways are per correlation key. And you can combine them in any way you like. It's
basicaly the first which triggers that wins. So you can use a completion size together with a completion timeout.
Only completionTimeout and completioninterval cannot be used at the same time.

Notice the completion is a mandatory option and must be provided to the aggregator. If not provided Camel will
throw an Exception on startup.

2.3. Claim Check

The Claim Check from the EIP patterns allows you to replace message content with a claim check (aunique key),
which can be used to retrieve the message content at a later time. The message content is stored temporarily in a
persistent store like a database or file system. This pattern is very useful when message content is very large (thus
it would be expensive to send around) and not all components require all information.

It can aso be useful in situations where you cannot trust the information with an outside party; in this case, you
can use the Claim Check to hide the sensitive portions of data.

Check Luggage Data Enricher
Y U —“LD 7 N
& - e
Message Message Message
Wi Data wy' Clairmn Check W Data
Data Store

12 Talend ESB Mediation Developer Guide

http://camel.apache.org/exchange.html
http://camel.apache.org/predicate.html
http://camel.apache.org/batch-consumer.html
http://www.eaipatterns.com/StoreInLibrary.html

Claim Check

In the below example we'll replace a message body with a claim check, and restore the body at a later step.

Using the Fluent Builders

from("direct:start").to("bean: checkLuggage", "nock:testCheckpoint",
bean: dat aEnri cher”, "nock:result");

Using the Spring XML Extensions

<r out e>
<fromuri="direct:start"/>
<pi pel i ne>
<to uri ="bean: checkLuggage"/>
<to uri="nock:test Checkpoint"/>
<to uri ="bean: dat aEnri cher"/>
<to uri="nock:result"/>
</ pi pel i ne>
</route>

The example route is pretty simple - it's a Pipeline. In areal application you would have some other steps where
thenock: t est Checkpoi nt endpoint isin the example.

The message isfirst sent to the checkLuggage bean which looks like

public static final class CheckLuggageBean {
public void checkLuggage(Exchange exchange, @ody String body,
@Pat h("/order/ @ustld") String custld) {
/! store the nessage body into the data store,
/1 using the custld as the clai mcheck
dat aStore. put (custld, body);
/1 add the claimcheck as a header
exchange. get I n() . set Header (" cl ai mCheck", custld);
/1 remove the body fromthe nessage
exchange. get I n() . set Body(nul |);

}

This bean stores the message body into the data store, using the cust | d as the claim check. In this example,
we're just using a HashMap to store the message body; in a real application you would use a database or file
system, etc. Next the claim check is added as a message header for use later. Finally we remove the body from
the message and pass it down the pipeline.

The next step in the pipeline is the nock: t est Checkpoi nt endpoint which is just used to check that the
message body is removed, claim check added, etc.

To add the message body back into the message, we use the dat aEnr i cher bean which looks like

public static final class DataEnricherBean {
publ i c voi d addDat aBackl n(Exchange exchange, @Header ("cl ai nCheck")
String clai nCheck) {
/1 query the data store using the clai mcheck as the key and
/! add the data back into the nessage body
exchange. get I n() . set Body(dat aSt or e. get (cl ai mCheck)) ;
/1 renmpbve the nessage data fromthe data store
dat aSt or e. renove(cl ai nCheck) ;
/1 renove the claimcheck header
exchange. get I n() . renoveHeader (" cl ai nCheck");

}

This bean queries the data store using the claim check as the key and then adds the data back into the message.
The message body is then removed from the data store and finally the claim check is removed. Now the message
is back to what we started with!

Talend ESB Mediation Developer Guide 13

Competing Consumers

For full details, check the example source here:

camel-core/src/test/javalorg/apache/camel/processor/ClaimCheck Test.java

2.4. Competing Consumers

Camd supports the Competing Consumers from the EIP patterns using a few different components.

Consumer

I_’tﬂﬁﬂtﬂ g

sender Messages Consumer

Feceiver

W,

Consurmer

FHeceiver
Y ou can use the following components to implement competing consumers:-
» Section 3.38, “SEDA” for SEDA based concurrent processing using a thread pool

» Section 3.24,“IMS’ for distributed SEDA based concurrent processing with queues which support reliableload
balancing, failover and clustering.

To enable Competing Consumers with JMS you just need to set the concurrentConsumers property on the
Section 3.24, “JMS’ endpoint.

For example

from("j nms: MyQueue?concur r ent Consuner s=5") . bean(SoneBean. cl ass) ;

Or in Spring DSL:

<r out e>
<fromuri="j ns: MyQueue?concur r ent Consuner s=5"/ >
<to uri="bean: soneBean"/ >

</rout e>

14 Talend ESB Mediation Developer Guide

http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ClaimCheckTest.java
http://www.eaipatterns.com/CompetingConsumers.html

Composed Message Processor

Or just run multiple VMs of any Section 3.1, “ ActiveMQ” or Section 3.24, “JMS’ route.

2.5. Composed Message Processor

The Composed Message Processor from the EIP patterns allows you to process a composite message by splitting
it up, routing the sub-messages to appropriate destinations and the re-aggregating the responses back into asingle

message.

E—h D—PS —K
0 -
P —

YWidget Inventory

O
» O—0O —
O
Mewv Order Splitter Router Agoregator Valiites

Gadget Inventary

Composite Message Processar

Camd provides two solutions for implementing this EIP -- using both the Splitter and Aggregator EIPs or just
the Splitter alone. With the Splitter-only option, all split messages are aggregated back into the same aggregation
group (like a fork/join pattern), whereas using an Aggregator provides more flexibility by allowing for grouping
into multiple groups.

See the Camel Website for the latest examples of thisEIPin use.

2.6. Content Based Router

The Content Based Router from the EIP patterns allows you to route messages to the correct destination based
on the contents of the message exchanges.

E Widget
Inventaory
|
—
(Gadget
Mew Order -
Router 41]1[[" 41]1[[’ 41]1[[9 Inventory

The following example shows how to route a request from an input seda:a endpoint to either seda:b, seda:c or
seda:d depending on the evaluation of various Predicate expressions

Using the Fluent Builders

Talend ESB Mediation Developer Guide 15

http://www.eaipatterns.com/DistributionAggregate.html
http://camel.apache.org/composed-message-processor.html
http://www.eaipatterns.com/ContentBasedRouter.html
http://camel.apache.org/predicate.html
http://camel.apache.org/fluent-builders.html

Content Enricher

Rout eBui | der bui | der = new Rout eBui |l der () {
public void configure() {
error Handl er (deadLet t er Channel (" nmock: error"));

from("seda: a")
. choi ce()
.when(header ("fo0").isEqual To("bar"))
.to("seda: b")
.when(header ("fo0").isEqual To("cheese"))
.to("seda: c")
.ot herwi se()
.to("seda:d");

B

Using the Spring XML Extensions

<canel Cont ext errorHandl er Ref =" error Handl er"
xm ns="http://canel . apache. or g/ schema/ spri ng" >

<r out e>
<fromuri="seda: a"/ >
<choi ce>
<when>
<xpat h>$f oo = ' bar' </ xpat h>
<to uri="seda: b"/>
</ when>
<when>
<xpat h>%$f oo = ' cheese' </ xpat h>
<to uri="seda:c"/>
</ when>

<ot herw se>
<to uri="seda:d"/>
</ ot her wi se>
</ choi ce>
</rout e>
</ canel Cont ext >

For further examples of this pattern in use see this JUnit test case.

2.7. Content Enricher

Camel supports the Content Enricher from the EIP patterns using a Section 2.31, “Message Trandator”, an
arbitrary Processor in the routing logic or using the enrich [17] DSL element to enrich the message.

16 Talend ESB Mediation Developer Guide

http://camel.apache.org/spring-xml-extensions.html
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ChoiceTest.java?view=markup
http://www.eaipatterns.com/DataEnricher.html
http://camel.apache.org/processor.html

Content enrichment using a Message Translator or a Processor

Enricher
4’@—:{%
Bazic Message Enriched Message
Hesource

2.7.1. Content enrichment using a Message Translator
or a Processor

Using the Fluent Builders

Y ou can use Templ ating to consume amessage from one destination, transform it with something like Section 3.50,
“Velocity” or XQuery and then send it on to another destination. For example using InOnly (one way messaging)

from("activeng: My. Queue") .
to("vel ocity: coml acnme/ MyResponse. vni') .
to("activenqg: Anot her. Queue") ;

If you want to use InOut (request-reply) semantics to process requests on the My.Queue queue on Section 3.1,
“ActiveMQ” with a template generated response, then sending responses back to the IMSReplyTo Destination
you could use this:

from("activeny: My. Queue") .
to("vel ocity: conl acne/ MyResponse. vii') ;

We can also use Bean Integration to use any Java method on any bean to act as the transformer

from("activeny: My. Queue") .
beanRef (" myBeanNane", " myMet hodNanme").
to("activenq: Anot her. Queue") ;

For further examples of this pattern in use you could look at one of the JUnit tests
» TransformTest
o TransformViaDSL Test

Using Spring XML

<rout e>
<fromuri="activenqg: | nput"/>
<bean ref ="nmyBeanNane" nethod="doTransforni/>
<to uri="activenq: Qut put"/>

</rout e>

Talend ESB Mediation Developer Guide 17

http://camel.apache.org/fluent-builders.html
http://camel.apache.org/templating.html
http://camel.apache.org/xquery.html
http://camel.apache.org/bean-integration.html
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformTest.java?view=markup
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformViaDSLTest.java?view=markup

Content enrichment using the enrich DSL element

2.7.2. Content enrichment using the enrich DSL
element

Camel comes with two flavors of content enricher in the DSL
 enrich
e pol |l Enrich

enri chisusingaProducer to obtain the additional data. It isusually used for Section 2.41, “ Request Reply”
messaging, for instanceto invoke an external web service. pol | Enr i ch onthe other hand isusing a Section 2.38,
“Polling Consumer” to obtain the additional data. It isusually used for Section 2.17, “ Event Message” messaging,
for instance to read afile or download a FTP file. Enrich options:

Name Default Value Description

uri The endpoint uri for the external service to enrich from.
Y ou must use either uri or ref.

ref Refers to the endpoint for the external service to enrich

from. Y ou must use either uri or ref.

strat egyRef Refers to an AggregationStrategy to be used to merge
the reply from the external service, into a single
outgoing message. By default Camel will use the reply
from the external service as outgoing message.

Using the Fluent Builders

AggregationStrategy aggregati onStrategy = ...
from"direct:start")

.enrich("direct:resource”, aggregationStrategy)
.to("direct:result");

from("direct:resource")

The content enricher (enr i ch) retrieves additional datafrom aresource endpoint in order to enrich anincoming
message (contained in the original exchange). An aggregation strategy is used to combine the original exchange
and the resource exchange. The first parameter of the Aggr egat i onSt r at egy. aggr egat e(Exchange,
Exchange) method corresponds to the the original exchange, the second parameter the resource exchange. The
results from the resource endpoint are stored in the resource exchange's out-message. Here's an example template
for implementing an aggregation strategy.

public class Exanpl eAggregati onStrategy inplenents Aggregati onStrategy {

publ i ¢ Exchange aggregat e(Exchange origi nal, Exchange resource) {

oj ect original Body = original.getln().getBody();

Ooj ect resourceResponse = resource. get Qut (). get Body();

/1 conbi ne original body and resourceResponse

oj ect nmergeResult = ...

if (original.getPattern().isQutCapable()) {
original.getQut().setBody(nergeResult);

} else {
original.getln().setBody(nergeResult);

}

return original;

18 Talend ESB Mediation Developer Guide

http://camel.apache.org/fluent-builders.html

Aggregation strategy is optional

Using this template the original exchange can be of any pattern. The resource exchange created by the enricher
isaways an in-out exchange.

Using Spring XML

The same example in the Spring DSL

<canel Cont ext id="canel" xm ns="http://canel.apache. org/schena/ spring">
<r out e>
<fromuri="direct:start"/>
<enrich uri="direct:resource" strategyRef="aggregati onStrategy"/>
<to uri="direct:result"/>
</route>
<r out e>
<fromuri="direct:resource"/>
</route>
</ canel Cont ext >

<bean i d="aggregati onStrategy" class="..." />

2.7.3. Aggregation strategy is optional

The aggregation strategy is optional. If you do not provide it Camel will by default just use the body obtained
from the resource.

from("direct:start")
.enrich("direct:resource")
.to("direct:result");

In the route above the message send to the di rect: resul t endpoint will contain the output from the
di rect: resour ce aswe do not use any custom aggregation.

Andin Spring DSL just omit thest r at egyRef attribute:

<r out e>
<fromuri="direct:start"/>
<enrich uri="direct:resource"/>
<to uri="direct:result"/>
</rout e>

2.7.4. Content enrichment using pollEnrich

Thepol | Enri ch worksjust astheenr i ch option however asit uses a Section 2.38, “Polling Consumer” we
have 3 methods when polling

* receive
» receiveNoWait
* receive(timeout)

By default Camel will usether ecei veNoWi t . If thereis no datathen the newExchange in the aggregation
strategy isnul | .

The same configuration options above for enrich also hold for pollEnrich, but thereisalso at i meout value(in
milliseconds) that determines which method will be used:

Talend ESB Mediation Developer Guide 19

Content Filter

timeout is -1 or other negative number thenr ecei ve is selected

timeout isOthenr ecei veNoWai t isselected

otherwiser ecei ve(ti nmeout) isselected

pol | Enri ch doesnot access any data from the current Exchange which means when polling it cannot
use any of the existing headers you may have set on the Exchange. For example you cannot set afilename
in the Exchange. FI LE_NANE header and use pol | Enri ch to consume only that file. For that you
must set the filename in the endpoint URI.

In this example we enrich the message by loading the content from the file named inbox/data.txt.

from"direct:start")
.pol I Enrich("file:inbox?fil eNane=data.txt")
.to("direct:result");

Andin XML DSL you do:

<r out e>
<fromuri="direct:start"/>
<pol | Enrich uri="file:inbox?fil eNane=data.txt"/>
<to uri="direct:result"/>

</rout e>

If thereis no file then the message is empty. We can use a timeout to either wait (potentially forever) until afile
exists, or use atimeout to wait a certain period. For example to wait up to 5 seconds you can do:

<r out e>
<fromuri="direct:start"/>
<pol | Enrich uri="file:inbox?fil eNane=data.txt" ti meout="5000"/>
<to uri="direct:result"/>

</rout e>

2.8. Content Filter

Camd supports the Content Filter from the EIP patterns using one of the following mechanisms in the routing
logic to transform content from the inbound message.

» Section 2.31, “Message Tranglator”
* invoking a Java bean

* Processor object

Content Filter

—]

Message Message

A common way to filter messagesisto use an Expression in the DSL like XQuery, SQL or one of the supported
Scripting Languages.

20 Talend ESB Mediation Developer Guide

http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://www.eaipatterns.com/ContentFilter.html
http://camel.apache.org/processor.html
http://camel.apache.org/expression.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xquery.html
http://camel.apache.org/sql.html
http://camel.apache.org/scripting-languages.html

Control Bus

Using the Fluent Builders

Hereisasimple example using the DSL directly

from("direct:start").set Body(body().append(" Wirld!")).to("nock:result");

In this example we add our own Processor

from("direct:start"). process(new Processor() {
public void process(Exchange exchange) {
Message in = exchange. getln();
i n.set Body(in.getBody(String.class) + " World!");

}).to("nmock:result");

For further examples of this pattern in use you could look at one of the JUnit tests
* TransformTest
» TransformViaDSL Test

Using Spring XML

<r out e>
<fromuri="activenqg: | nput"/>
<bean ref ="nyBeanNane" mnet hhod="doTransforni/>
<to uri="activeng: Qut put"/>

</rout e>

Y ou can aso use XPath to filter out part of the message you areinterested in:

<rout e>
<fromuri="activenq: | nput"/>
<set Body>
<xpat h resul t Type="org. w3c. dom Docunent ">/ /f oo: bar </ xpat h>
</ set Body>
<to uri="activenqg: Qut put"/>
</ rout e>

2.9. Control Bus

The Control Busfrom the EIP patterns alowsfor theintegration system to be monitored and managed from within
the framework.

Message Flow

l Control Bus
.

Talend ESB Mediation Developer Guide 21

http://camel.apache.org/fluent-builders.html
http://camel.apache.org/dsl.html
http://camel.apache.org/processor.html
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformTest.java?view=markup
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformViaDSLTest.java?view=markup
http://www.eaipatterns.com/ControlBus.html

Correlation Identifier

Use a Control Bus to manage an enterprise integration system. The Control Bus uses the same messaging
mechanism used by the application data, but uses separate channels to transmit data that is relevant to the
management of components involved in the message flow. In Camel you can manage and monitor using JMX,
or by using a Java APl from the Camel Context, or from the org.apache.camel.api.management package, or use
the event notifier (example on the Camel site). Starting with Camel 2.11 a new ControlBus Component will be
available that allows you to send messages to a control bus Endpoint that will react accordingly.

2.10. Correlation Identifier

Camd supports the Correlation Identifier from the EIP patterns by getting or setting a header on a Section 2.23,
“Message”.

When working with the Section 3.1, “ActiveMQ” or Section 3.24, “JMS’ components the correlation identifier
header is called JM SCorrelationID. You can add your own correlation identifier to any message exchange to
help correlate messages together to a single conversation (or business process).

Gu:ilrrefaif.fu:ln Message [0
—- —]
71 Ml
: Fequests
I EE

Requestor Replies x‘a Replier

GII:'."."E"IE{’."GH i

Theuseof aCorrelation Identifier iskey to working with the Camel Business Activity Monitoring Framework and
can also be highly useful when testing with simulation or canned data such as with the Mock testing framework

2.11. Dead Letter Channel

Camd supports the Dead L etter Channel from the EIP patterns using the DeadL etterChannel processor which is
an Error Handler.

22 Talend ESB Mediation Developer Guide

http://camel.apache.org/eventnotifier-to-log-details-about-all-sent-exchanges.html
http://camel.apache.org/controlbus-component.html
http://www.eaipatterns.com/CorrelationIdentifier.html
http://camel.apache.org/bam.html
http://www.eaipatterns.com/DeadLetterChannel.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/DeadLetterChannel.html
http://camel.apache.org/error-handler.html

Redelivery

LDeirvery Falls
T — = X
sencer Message Channel Intended
Feceiver
Reroute Deliveary -~

— —)
@

Dead Dead Letter
Message Channel

The mgjor difference between Section 2.11, “Dead Letter Channel” and the Default Error Handler isthat

s Section 2.11, “Dead Letter Channel” has a dead letter queue that whenever an Exchange could not be

processed is moved to. It will always moved failed exchanges to this queue.

Unlike the Default Error Handler that does not have adead letter queue. So whenever an Exchange could
not be processed the error is propagated back to the client.

Notice: You can adjust this behavior of whether the client should be notified or not with the handled
option.

2.11.1. Redelivery

It is common for atemporary outage or database deadlock to cause a message to fail to process; but the chances
areif it istried a few more times with some time delay then it will complete fine. So we typically wish to use
some kind of redelivery policy to decide how many times to try redeliver a message and how long to wait before
redelivery attempts.

The RedeliveryPolicy defines how the message is to be redelivered. Y ou can customize things like

how many times a message is attempted to be redelivered before it is considered a failure and sent to the dead
letter channel

theinitial redelivery timeout
whether or not exponential backoff is used (i.e. the time between retries increases using a backoff multiplier)
whether to use collision avoidance to add some randomness to the timings

delay pattern, see below for details.

Once all attempts at redelivering the message fails then the message is forwarded to the dead | etter queue.

Talend ESB Mediation Developer Guide 23

http://camel.apache.org/defaulterrorhandler.html
http://camel.apache.org/exchange.html
http://camel.apache.org/defaulterrorhandler.html
http://camel.apache.org/exchange.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/RedeliveryPolicy.html

About moving Exchange to dead letter queue and using handled

2.11.2. About moving Exchange to dead letter queue
and using handled

When all attempts of redelivery have failed the Exchange is moved to the dead letter queue (the dead letter
endpoint). The exchange is then complete and from the client point of view it was processed. With this process
the Dead L etter Channel has handled the Exchange.

For instance configuring the dead letter channel, using the fluent builders:

error Handl er (deadLet t er Channel ("] ns: queue: dead")
. maxi munRedel i veri es(3).redeliverDel ay(5000));

Using Spring XML Extensions:

<rout e errorHandl er Ref =" nyDeadLet t er Err or Handl er " >

</rout e>

<bean i d="nyDeadLetter Error Handl er"
cl ass="org. apache. canel . bui | der . DeadLet t er Channel Bui | der " >
<property nane="deadLetterUri" val ue="j ns: queue: dead"/ >

<property nanme="redel i veryPolicy" ref="nyRedeliveryPolicyConfig"/>
</ bean>

<bean i d="nyRedel i veryPol i cyConfi g"
cl ass="org. apache. canel . processor. Redel i veryPol i cy" >
<property nanme="naxi nunRedel i veri es" val ue="3"/>
<property nane="redeliveryDel ay" val ue="5000"/>

</ bean>

The Section 2.11, “Dead Letter Channel” above will clear the caused exception set Excepti on(nul |), by
moving the caused exception to a property on the Exchange, with the key Exchange.EXCEPTION_CAUGHT.
Then the exchangeis moved to thej ms: queue: dead destination and the client will not notice the failure.

2.11.3. About moving Exchange to dead letter queue
and using the original message

The option useOriginalM essageis used for routing the original input message instead of the current message that
potentially is modified during routing.

For instance if you have this route:

from("j ns: queue: order: i nput")
.to("bean: val i dat eOr der")
.to("bean: transfornOrder")
.to("bean: handl eOrder");

The route listen for IMS messages and validates, transforms and handle it. During this the Exchange payload
is transformed/modified. So in case something goes wrong and we want to move the message to another IMS
destination, then we can configure our Section 2.11, “Dead Letter Channel” with the useOriginalBody option.
But when we move the Exchange to this destination we do not know in which state the message is in. Did the
error happen in before the transformOrder or after? So to be sure we want to move the original input message

24 Talend ESB Mediation Developer Guide

http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html

OnRedelivery

wereceived fromj ns: queue: or der : i nput . Sowe can do this by enabling the useOriginal M essage option
as shown below:

/1 will use original body
error Handl er (deadLet t er Channel ("] ns: queue: dead")
.useOri gi nal Message() . mam nmunRedel i veri es(5). redel i ver Del ay(5000) ;

Then the messages routed to the j ms: queue: dead isthe origina input. If we want to manually retry we can
move the IMS message from the failed to the input queue, with no problem as the message is the same as the
original we received.

2.11.4. OnRedelivery

When Section 2.11, “Dead Letter Channel” is doing redelivery it is possible to configure a Processor that is
executed just before every redelivery attempt. This can be used for the situations where you need to ater the
message before it isredelivered. See below for sample.

We aso support for per onException to set a onRedeliver. That means you can do special on redelivery for
different exceptions, as opposed to onRedelivery set on Section 2.11, “Dead Letter Channel” can be viewed as
aglobal scope.

2.11.5. Redelivery default values

Redelivery isdisabled by default. The default redeliver policy uses the following values:
* maximumRedeliveries=0
* redeliverDelay=1000L (1 second)
 useinitialRedeliveryDelay for previous versions
» maximumRedeliveryDelay = 60 * 1000L (60 seconds)
» And the exponentia backoff and collision avoidance is turned off.
» TheretriesExhaustedL oglL evel are set to LoggingL evel. ERROR
» TheretryAttemptedLoglL evel are set to LoggingLevel. DEBUG
» Stack tracesislogged for exhausted messages.
» Handled exceptionsis not logged

Themaximum redeliver delay ensuresthat adelay isnever longer than the value, default 1 minute. Thiscan happen
if you turn on the exponential backoff.

Themaximum redeliveriesisthe number of redelivery attempts. By default Camel will try to processthe exchange
1+ 5times. 1 time for the normal attempt and then 5 attempts as redeliveries. Setting the maximumRedeliveries
to anegative value such as -1 will then always redelivery (unlimited). Setting the maximumRedeliveriesto 0 will
disable any re delivery attempt.

Came will log delivery falures a the DEBUG logging level by default. You
can change this by specifying retriesExhaustedLoglevel and/or retryAttemptedLoglevel. See
ExceptionBuilderWithRetryL oggingL evel SetTest for an example.

Talend ESB Mediation Developer Guide 25

http://camel.apache.org/processor.html
http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/builder/ExceptionBuilderWithRetryLoggingLevelSetTest.java

Redeliver Delay Pattern

Y ou can turn logging of stack traces on/off. If turned off Camel will still log the redelivery attempt; but it's much
less verbose.

2.11.6. Redeliver Delay Pattern

Delay pattern is used as a single option to set arange pattern for delays. If used then the following options do not
apply: (delay, backOffMultiplier, useExponential Back Off, useCollisionAvoidance, maximumRedeliveryDelay).

Theideaisto set groups of ranges using the following syntax: | i mit: del ay; limt 2:delay 2;linmt
3:delay 3;...;limt Ndelay N

Each group has two values separated with colon
e limit = upper limit

 delay = delay in milliseconds And the groups is again separated with semi colon. The rule of thumb is that the
next groups should have a higher limit than the previous group.

Let'sclarify thiswith an example: del ayPat t er n=5: 1000; 10: 5000; 20: 20000

That gives us 3 groups:

+ 5:1000

 10:5000

¢ 20:20000

Resulting in these delays for redelivery attempt:

* Redelivery attempt number 1..4 = 0 ms (as the first group start with 5)

» Redelivery attempt number 5..9 = 1000 ms (the first group)

» Reddlivery attempt number 10..19 = 5000 ms (the second group)

» Redelivery attempt number 20.. = 20000 ms (the last group)

Note: Thefirst redelivery attempt is 1, so the first group should start with 1 or higher.

You can start agroup with limit 1 to eg have a starting delay: del ayPat t er n=1: 1000; 5: 5000
* Redelivery attempt number 1..4 = 1000 ms (the first group)

* Redelivery attempt number 5.. = 5000 ms (the last group)

There is no requirement that the next delay should be higher than the previous. Y ou can use any delay value you

like. For examplewith del ayPat t er n=1: 5000; 3: 1000 we start with 5 sec delay and then later reduce that
to 1 second.

2.11.7. Redelivery header

When a message is redelivered the Deadl etterChannel will append a customizable header to the message to
indicate how many times it has been redelivered. The header CamelRedeliveryMaxCounter, which is also

26 Talend ESB Mediation Developer Guide

http://camel.apache.org/maven/camel-core/apidocs/org/apache/camel/processor/DeadLetterChannel.html

Determining location of endpoint failures

defined on the Exchange. REDELI VERY_ MAX COUNTER, contains the maximum redelivery setting. This
header is absent if you user et r yWhi | e or have unlimited maximum redelivery configured.

And aboolean flag whether it is being redelivered or not (first attempt). The header CamelRedelivered contains
aboolean if the message is redelivered or not, which is also defined on the Exchange. REDELI VERED.

There's an additional header, Canel Redel i ver yDel ay, to show any dynamically calculated delay from

the exchange. This is also defined on the Exchange.REDELIVERY_DELAY. If this header is absent, normal
redelivery rules will apply.

2.11.8. Determining location of endpoint failures

When Camel routes messages it will decorate the Exchange with a property that contains the last endpoint Camel
send the Exchange to:

String | ast Endpoi ntUri = exchange. get Property(Exchange. TO_ENDPO NT,
String. cl ass);

The Exchange. TO_ENDPQO NT have the constant value Canel ToEndpoi nt .

This information is updated when Camel sends a message to any endpoint. So if it exists it's the last endpoint
which Camel send the Exchange to.

When for example processing the Exchange at a given Endpoint and the message is to be moved into the dead
letter queue, then Camel also decorates the Exchange with another property that contains that last endpoint:

String fail edEndpoi nt Uri = exchange. get Property(Exchange. FAI LURE_ENDPO NT,
String. cl ass);

The Exchange. FAI LURE_ENDPQO NT have the constant value Canel Fai | ur eEndpoi nt .

This alows for example you to fetch this information in your dead letter queue and use that for error reporting.
Thisisuseableif the Camel routeisabit dynamic such asthe dynamic Section 2.40, “ Recipient List” so you know
which endpoints failed.

Notice: These information is kept on the Exchange even if the message was successfully processed by a given
endpoint, and then later fails for example in alocal Section 3.3, “Bean” processing instead. So beware that this
isahint that helps pinpoint errors.

from("activeny: queue: f 00")
.to("http://soneserver/sonepat h")
. beanRef ("f00");

Now suppose the route above and afailure happensin the f oo bean. Then the Exchange. TO_ENDPO NT and
Exchange. FAI LURE_ENDPO NT will till contain thevalueof http://someserver/somepath .

2.11.9. Samples

The following example shows how to configure the Dead L etter Channel configuration using the DSL

Talend ESB Mediation Developer Guide 27

http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/dsl.html

Delayer

Rout eBui | der bui | der = new Rout eBui |l der () {
public void configure() {
/1 using dead |etter channel with a seda queue for errors
error Handl er (deadLet t er Channel ("seda: errors"));

/1 here is our route
from("seda:a").to("seda: b");

B

Y ou can also configure the RedeliveryPolicy as this example shows

Rout eBui | der buil der = new Rout eBui | der () {
public void configure() {
/1 configures dead | etter channel to use seda queue for
/] errors and uses at nost 2 redeliveries
/1 and exponential backoff
error Handl er (deadLet t er Channel ("seda: errors").
maxi munRedel i veri es(2). useExponenti al BackOf f ());

/1 here is our route
from("seda:a").to("seda: b");

2.12. Delayer

The Delayer Pattern alows you to delay the delivery of messages to some destination. Note: the specified
expression is a value in milliseconds to wait from the current time, so if you want to wait 3 sec from now, the
expression should be 3000. Y ou can also use along value for afixed value to indicate the delay in milliseconds.
See the Spring DSL samples below for Delayer.

Name Default Value |Description

asyncDel ayed fase If enabled then delayed messages happens
asynchronously using a scheduled thread pool.

execut or Ser vi ceRef Refersto acustom Thread Pool to be used if asyncDelay
has been enabled.

cal | er RunsWhenRej ect ed true Isusedif asyncDelayed wasenabled. Thiscontrolsif the
caller thread should execute the task if the thread pool
rejected the task.

Using the Fluent Builders

from("seda: b").del ay(1000).to("nock:result");

So the above example will delay all messages received on seda:b 1 second before sending them to mock:result.

You can of course use many different Expression languages such as XPath, XQuery, SQL or various Scripting
Languages. The above assumes that the delivery order is maintained and that the messages are delivered in delay
order. If you want to reorder the messages based on delivery time, you can use the Section 2.42, “ Resequencer”
with this pattern. For example:

from("activeny: someQueue") . resequencer (header (" M/Del i veryTi ne")).
del ay("MyRedel i veryTi ne").to("acti venqg: aDel ayedQueue") ;

28 Talend ESB Mediation Developer Guide

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/RedeliveryPolicy.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/expression.html
http://camel.apache.org/xpath.html
http://camel.apache.org/xquery.html
http://camel.apache.org/sql.html
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/scripting-languages.html

Asynchronous delaying

The sample below demonstrates the delay in Spring DSL.:

<canel Cont ext xm ns="http://canel.apache. org/ schema/ spri ng">

<r out e>
<from uri="seda: a"/ >
<del ay>
<header >MyDel ay</ header >
</ del ay>
<to uri="nock:result"/>
</rout e>
<r out e>
<from uri="seda: b"/ >
<del ay>
<const ant >1000</ const ant >
</ del ay>
<to uri="nock:result"/>
</rout e>

</ canel Cont ext >

2.12.1. Asynchronous delaying

You can let the Section 2.12, “Delayer” use non blocking asynchronous delaying, which means Camel will use
a scheduler to schedule a task to be executed in the future. The task will then continue routing. This allows the
caller thread to not block and be able to service other messages etc.

2.12.1.1. From Java DSL

You usetheasyncDel ayed() to enablethe async behavior.

from("activeny: queue: f 00") . del ay(1000) . asyncDel ayed() .
to("acti venqg: aDel ayedQueue") ;

2.12.1.2. From Spring XML

You usetheasyncDel ayed="true" attributeto enable the async behavior.

<r out e>
<from uri ="activeny: queue: f 00"/ >
<del ay asyncDel ayed="true">
<const ant >1000</ const ant >
</ del ay>
<to uri="activeny: aDeal yedQueue"/ >
</rout e>

2.12.2. Creating a custom delay

Y ou can use an expression to determine when to send a message using something like this

Talend ESB Mediation Developer Guide 29

Detour

from("activeny: foo").
del ay() . net hod("soneBean", "conputeDel ay").
to("activenqg: bar");

then the bean would look like this:

public class SoneBean {
public | ong conmput eDel ay() {
| ong delay = 0;
/1 use Java code to conpute a delay value in nmilliseconds
return del ay;

2.13. Detour

The Detour from the EIP patterns allows you to send messages through additional stepsif a control condition is
met. It can be useful for turning on extra validation, testing, debugging code when needed.

— @]

| Destination

b 4

Source

Detour

Control

In the below example we essentially have aroute likefrom("direct:start").to("nock:result")
with a conditional detour to the nock: det our endpoint in the middle of the route:

from("direct:start").choice()
.when() . met hod("control Bean", "isDetour").to("nock:detour").end()
.to("nmock:result");

Using the Spring XML Extensions

<r out e>
<fromuri="direct:start"/>
<choi ce>
<when>
<nmet hod bean="control Bean" net hod="i sDetour"/>
<to uri="nock:detour"/>
</ when>
</ choi ce>
<to uri="nock:result"/>
</rout e>

whether the detour is turned on or off is decided by the Cont r ol Bean. So, when the detour is on the
message is routed to nock: det our and then nock: r esul t . When the detour is off, the message is routed
tonmock: resul t.

For full details, check the example source here:

30 Talend ESB Mediation Developer Guide

http://www.eaipatterns.com/Detour.html

Durable Subscriber

camel-core/src/test/javalorg/apache/camel/processor/Detour Test.java

2.14. Durable Subscriber

Camel supports the Durable Subscriber from the EIP patterns using the Section 3.24, “JMS’ component which
supports publish & subscribe using Topics with support for non-durable and durable subscribers.

- (11
i
Durable
I Subscriber
I Heceiver
Fublisher
-

Publish-Subscribe Mon-Durable
Channel Subscriber

Hecelver

Another aternative isto combine the Section 2.26, “ Message Dispatcher” or Section 2.6, “ Content Based Router”
with Section 3.14, “File€” or Section 3.26, “JPA” components for durable subscribers then Seda for non-durable.

Here are some examples of creating durable subscribers to a IM Stopic. Using the Fluent Builders:

from("direct:start").to("acti veny:topic:foo");

from("activeny: topi c: f oo?cl i ent | d=1&dur abl eSubscri pti onName=bar 1") .
to("mock:resul t1");

from("activeny: topi c: f oo?cl i ent | d=2&dur abl eSubscri pti onName=bar 2") .
to(" mock: resul t2");

Using the Spring XML Extensions:

<r out e>

<fromuri="direct:start"/>

<to uri="activeny: topic:foo"/>
</rout e>

<rout e>
<fromuri="activenq:topic:foo?clientld=1& ..
dur abl eSubscri pti onNanme=bar 1"/ >
<to uri="nock:resultl"/>
</ rout e>

<rout e>
<fromuri="activenq: topic: foo?clientld=2& ...
dur abl eSubscri pti onNanme=bar 2"/ >
<to uri="nock:result2"/>
</ rout e>

Talend ESB Mediation Developer Guide 31

http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/DetourTest.java
http://www.eaipatterns.com/DurableSubscription.html
http://camel.apache.org/seda.html

Dynamic Router

2.15. Dynamic Router

The Dynamic Router from the EIP patterns allows you to route messages while avoiding the dependency of the
router on all possible destinations while maintaining its efficiency.

Oynamic Router Cutput Channel
Mezzage Router
Input Channel Cutput Channel
—)|~ — | C——

Cutput Channel

—- @

[T

Dynamic Fule Base :}‘7

Control Channel

Thereisadynani cRout er inthe DSL whichislike a dynamic Section 2.44, “Routing Sip” which evaluates
the dlip on-the-fly.

Z You must ensure the expression used for the dynam cRout er such as a bean, will return nul | to
s indicate the end. Otherwise the dynamni cRout er will keep repeating endlessly.

Option Default Description

uriDelimiter , Delimiter used if the Expression returned multiple
endpoints.

ignorel nvalidEndpoints fal se If an endpoint URI could not be resolved, whether it should

it be ignored. Otherwise Camel will throw an exception
stating that the endpoint URI is not valid.

The Dynamic Router will set a property (Exchange.SLIP_ENDPOINT) on the Exchange which contains the
current endpoint as it advanced though the dlip. This allows you to know how far we have processed in the slip.
(It'sadlip because the Section 2.15, “Dynamic Router” implementation is based on top of Section 2.44, “Routing
Sip™).

2.15.1. Java DSL

InJavaDSL you can usether out i ngSl i p asshown below:

from("direct:start")
/1 use a bean as the dynami c router
. dynani cRout er (bean(Dynami cRout er Test. cl ass, "slip"));

Which will leverage a Section 3.3, “Bean” to compute the slip on-the-fly, which could be implemented as follows:

32 Talend ESB Mediation Developer Guide

http://www.eaipatterns.com/DynamicRouter.html
http://camel.apache.org/exchange.html

Spring XML

/**

* Use this nethod to conpute dynam ¢ where we shoul d route next.

*

* @aram body the nmessage body

* @eturn endpoints to go, or null to indicate the end

*/

public String slip(String body) {
bodi es. add(body) ;
i nvoked++;

if (invoked == 1) {
return "nock: a";

} else if (invoked == 2) {
return "nock: b, nock: c";

} else if (invoked == 3) {
return "direct:foo";

} else if (invoked == 4) {
return "nock:result";

}

// no nmore so return null
return null;

Mind that this example is only for show and tell. The current implementation is not thread safe. Y ou would have
to store the state on the Exchange, to ensure thread safety.

2.15.2. Spring XML

The same example in Spring XML would be:

<bean id="nySlip" class="org.apache. canel . processor. Dynani cRout er Test"/ >

<canel Cont ext xm ns="http://canel .apache. org/ schena/ spri ng">
<rout e>
<fromuri="direct:start"/>
<dynam cRout er >
<I-- use a nmethod call on a bean as dynamic router -->
<met hod ref="nySlip" nethod="slip"/>
</ dynani cRout er >
</rout e>

<r out e>
<fromuri="direct:foo"/>
<transf or n><const ant >Bye Wor | d</ const ant ></t r ansf or n»
<to uri="nock: foo"/>

</rout e>

</ canel Cont ext >

2.15.3. @DynamicRouter annotation

You can also usethe @ynam cRout er annotation, for example the example below could be written asfollows.
The r out e method would then be invoked repeatedly as the message is processed dynamically. The ideais to

Talend ESB Mediation Developer Guide 33

Event Driven Consumer

return the next endpoint uri where to go. Return nul | to indicate the end. Y ou can return multiple endpoints if
you like, just as the Section 2.44, “Routing Sip”, where each endpoint is separated by a delimiter.

public class MyDynam cRout er {

@onsune(uri = "activeng: foo")
@ynam cRout er
public String route(@XPat h("/custoner/id") String custonerld,
@Header (" Location") String |ocation, Document body) {
/'l query a database to find the best match of the endpoi nt
/'l based on the input paraneters
/] return the next endpoint uri, where to go. Return null
/1 to indicate the end.

2.16. Event Driven Consumer

Camel supports the Event Driven Consumer from the EIP patterns. The default consumer model is event based
(i.e. asynchronous) as this means that the Camel container can then manage pooling, threading and concurrency

for you in a declarative manner.

Event- Driven
Sender Messane Consum er

Feceiver

The Event Driven Consumer isimplemented by consumersimplementing the Processor interface which isinvoked
by the Section 2.27, “Message Endpoint” when a Section 2.23, “Message” is available for processing.

For more details see
 Section 2.23, “Message”

 Section 2.27, “Message Endpoint”

2.17. Event Message

Camel supports the Event Message from the EIP patterns by supporting the Exchange Pattern on a Section 2.23,
“Message” which can be set to InOnly to indicate a oneway event message. Camel Components then implement
this pattern using the underlying transport or protocols.

See also the related Section 2.41, “ Request Reply” EIP.

34 Talend ESB Mediation Developer Guide

http://www.eaipatterns.com/EventDrivenConsumer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Processor.html
http://www.eaipatterns.com/EventMessage.html
http://camel.apache.org/exchange-pattern.html

Guaranteed Delivery

_...IE

Cbzerver
a |- % | @
=ubject Event Observer
hessage
E = aPriceChangedEvent Obszerver

The default behavior of many Componentsis InOnly such asfor Section 3.24, “JMS’ or Section 3.38, “ SEDA”

If you are using a component which defaults to InOut but wish to use InOnly you can override the Exchange
Pattern for an endpoint using the pattern property.

f oo: bar ?exchangePat t er n=I nOnl y

From 2.0 onwards on Camel you can specify the Exchange Pattern using the DSL. Using the Fluent Builders:

from("ng: soneQueue").
inOnly().
bean(Foo. cl ass);

or you can invoke an endpoint with an explicit pattern

<rout e>
<from uri ="nqg: soneQueue"/ >
<inOnly uri="bean: foo"/>
</rout e>

<rout e>
<from uri ="nqg: soneQueue"/ >
<inOnly uri="ny: anot her Queue"/ >
</rout e>

2.18. Guaranteed Delivery

Camel supports the Guaranteed Delivery from the EIP patterns using the following components
» Section 3.14, “File” for using file systems as a persistent store of messages

e Section 3.24, “IJMS’ when using persistent delivery (the default) for working with IMS Queues and Topics for
high performance, clustering and load balancing

Talend ESB Mediation Developer Guide 35

http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/exchange-pattern.html
http://www.eaipatterns.com/GuaranteedMessaging.html

| dempotent Consumer

e Section 3.26, “JPA” for using a database as a persistence layer, or use any of the many other database
components such as SQL, JDBC, iBatissMyBatis, Hibernate

» HawtDB for alightweight key-value persistent store

Sender Receiver

Disk Disk

Computer 1 Computer 2

2.19. I[dempotent Consumer

The Idempotent Consumer from the EIP patternsis used to filter out duplicate messages.

This pattern is implemented using the IdempotentConsumer class. This uses an Expression to calculate a unique
message ID string for a given message exchange; this ID can then be looked up in the |dempotentRepository to
see if it has been seen before; if it has the message is consumed; if it is not then the message is processed and
the ID is added to the repository.

The Idempotent Consumer essentially acts like a Section 2.28, “Message Filter” to filter out duplicates.

Camd will add the message id eagerly to the repository to detect duplication also for Exchanges currently in
progress. On completion Camel will remove the message id from the repository if the Exchange failed, otherwise
it stays there.

Camdl provides the following |dempotent Consumer implementations:
» MemoryldempotentRepository
* FileldempotentRepository

» JpaMessagel dRepository

2.19.1. Options

The Idempotent Consumer has the following options:

Option Default Description

eager true Eager controls whether Camel adds the message to the
repository before or after the exchange has been processed.
If enabled before then Camel will be able to detect duplicate
messages even when messages are currently in progress. By
disabling Camel will only detect duplicates when a message
has successfully been processed.

36 Talend ESB Mediation Developer Guide

http://camel.apache.org/hawtdb.html
http://www.eaipatterns.com/IdempotentReceiver.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/idempotent/IdempotentConsumer.html
http://camel.apache.org/expression.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/spi/IdempotentRepository.html

Using the Fluent Builders

Option Default Description

messagel dRepositoryRef nul | A referencetoal denpot ent Reposi t or y tolookupinthe
registry. This option is mandatory when using XML DSL.

removeOnFailure true Sets whether to remove the id of an Exchange that failed.

2.19.2. Using the Fluent Builders

The following example will use the header myM essagel d to filter out duplicates

Rout eBui | der bui | der = new Rout eBui |l der () {
public void configure() {
error Handl er (deadLet t er Channel (" nmock: error"));

from("seda: a")
. i denpot ent Consuner (header (" nyMessagel d"),
Menor yl denpot ent Reposi t ory. menor yl denpot ent Reposi t or y(200))
.to("seda: b");

I

The above example will use an in-memory based Messagel dRepository which can easily run out of memory and
doesn't work in a clustered environment. So you might prefer to use the JPA based implementation which uses a
database to store the message 1Ds which have been processed

from("direct:start").i denpot ent Consuner (

header (" messagel d"),

j paMessagel dReposi t or y(| ookup(JpaTenpl at e. cl ass), PROCESSOR NANME)
).to("nmock:result");

In the above example we are using the header messageld to filter out duplicates and using the collection
myPr ocessor Name to indicate the Message ID Repository to use. This name is important as you could process
the same message by many different processors; so each may require its own logical Message ID Repository.

For further examples of this pattern in use see this JUnit test case.

2.19.3. Spring XML example

The following example will use the header myM essagel d to filter out duplicates

<I-- repository for the idenpotent consuner -->
<bean i d="nyRepo"
cl ass="org. apache. canel . processor. i denpot ent . Menor yl denpot ent Reposi tory"/>

<canel Cont ext xm ns="http://canel.apache. org/ schema/ spri ng">
<r out e>
<fromuri="direct:start"/>
<i denpot ent Consuner nessagel dReposi t or yRef =" myRepo" >
<I-- use the nessageld header as key for identifying duplicate
messages -->
<header >nessagel d</ header >
<I-- if not a duplicate send it to this nock endpoint -->
<to uri="nock:result"/>
</ i denpot ent Consuner >
</ rout e>
</ canel Cont ext >

Talend ESB Mediation Developer Guide 37

https://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/builder/RouteBuilderTest.java
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/idempotent/MessageIdRepository.html
https://svn.apache.org/repos/asf/camel/trunk/components/camel-jpa/src/test/java/org/apache/camel/processor/jpa/JpaIdempotentConsumerTest.java
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/IdempotentConsumerTest.java?view=markup

Load Balancer

2.20. Load Balancer

The Load Balancer Pattern allows you to delegate to one of a number of endpoints using a variety of different
load balancing policies.

2.20.1. Built-in load balancing policies

Camd provides the following policies out-of-the-box:

Policy Description

Round Robin The exchanges are selected from in a round robin fashion. Thisis a well
known and classic policy, which spreads the load evenly.

Random A random endpoint is selected for each exchange.

Sticky Sticky load balancing using an Expression to calculate a correlation key

to perform the sticky load balancing; rather like jsessionid in the web or
JMSXGrouplD in IMS.

Topic Topic which sends to al destinations (rather like IMS Topics).
Failover In case of failures the exchange is tried on the next endpoint.
Weighted Round Robin The weighted load balancing policy allows you to specify a processing

load distribution ratio for each server with respect to others.In addition to
the weight, endpoint selection is then further refined using round-robin
distribution based on weight.

Weighted Random The weighted load balancing policy allows you to specify a processing
load distribution ratio for each server with respect to others.In addition
to the weight, endpoint selection is then further refined using random
distribution based on weight.

Custom The weighted load balancing policy allows you to specify a processing
load distribution ratio for each server with respect to others. In addition
to the weight, endpoint selection is then further refined using random
distribution based on weight.

2.20.2. Round Robin

The round robin load balancer is not meant to work with failover, for that you should use the dedicated failover
load balancer. The round robin load balancer will only change to next endpoint per message.

The round robin load balancer is stateful as it keeps state which endpoint to use next time.

Using the Fluent Builders

from("direct:start").| oadBal ance() .
roundRobi n() . to("nock: x", "nock:y", "mock:z");

Using the Spring configuration

38 Talend ESB Mediation Developer Guide

http://camel.apache.org/load-balancer.html#LoadBalancer-RoundRobin
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/loadbalancer/RandomLoadBalancer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/loadbalancer/StickyLoadBalancer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/loadbalancer/TopicLoadBalancer.html
camel.apache.org/load-balancer.html#LoadBalancer-Failover
http://camel.apache.org/load-balancer.html#LoadBalancer-WeightedRoundRobinandRandomLoadBalancing
http://camel.apache.org/load-balancer.html#LoadBalancer-WeightedRoundRobinandRandomLoadBalancing
http://camel.apache.org/load-balancer.html#LoadBalancer-CustomLoadBalancer
http://camel.apache.org/fluent-builders.html

Failover

<canel Cont ext id="canel" xm ns="http://canel.apache. org/schenma/spring">
<r out e>
<fromuri="direct:start"/>
<l oadBal ance>
<r oundRobi n/ >
<to uri="nock: x"/>
<to uri="nock:y"/>
<to uri="nock:z"/>
</ | oadBal ance>
</ rout e>
</ canel Cont ext >

So the above example will load balance requests from direct:start to one of the available mock endpoint
instances, in this case using around robbin policy. For further examplesof this pattern in use seethis JUnit test case.

2.20.3. Failover

The f ai | over load balancer is capable of trying the next processor in case an Exchange failed with an
excepti on during processing. You can configure the f ai | over with a list of specific exception to only
failover. If you do not specify any exceptions it will failover over any exceptions. It uses the same strategy for
matching exceptions as the Exception Clause does for the onException.

If you use streaming then you should enable Stream Caching when using the failover load balancer. This
is needed so the stream can be re-read when failing over.

It has the following options:

Option Type Default Description

inheritErrorHandler boolean true Whether or not the Error Handler configured on the
route should be used or not. You can disable it if you
want the failover to trigger immediately and failover
to the next endpoint. On the other hand if you have
this option enabled, then Camel will first let the Error
Handler try to process the message. The Error Handler
may have been configured to redelivery and use delays
between attempts. If you have enabled a number of
redeliveriesthen Camel will try to redeliver to the same
endpoint, and only failover to the next endpoint, when
the Error Handler is exhausted.

maximumFailover- int -1 A value to indicate after X failver attempts we should
Attempts exhaust (give up). Use -1 to indicate newer give up and
awaystry to failover. Use 0 to newer failover. And use
e.g. 3tofailover at most 3 times before giving up. This
option can be used whether or not round robinisenabled
or not.

roundRobin boolean false Whether or not the f ai | over load balancer should
operate in round robin mode or not. If not, then it will
alwaysstart from thefirst endpoint when anew message
is to be processed. In other words it restart from the
top for every message. If round robin is enabled, then it
keeps state and will continue with the next endpointin a
round robin fashion. When using round robin it will not
stick to last known good endpoint, it will always pick
the next endpoint to use.

Talend ESB Mediation Developer Guide 39

http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/RoundRobinLoadBalanceTest.java?view=markup
http://camel.apache.org/exchange.html
http://camel.apache.org/exception-clause.html
http://camel.apache.org/stream-caching.html
http://camel.apache.org/error-handler.html
http://camel.apache.org/error-handler.html
http://camel.apache.org/error-handler.html
http://camel.apache.org/error-handler.html
http://camel.apache.org/error-handler.html

Failover

Thef ai | over load balancer supports round robin mode, which allows you to failover in around robin fashion.
See ther oundRobi n option.

Hereisasampleto failover only if al OExcept i on related exception was thrown:

from("direct:start")
/1 here we will |oad balance if |OException was thrown
/1 any other kind of exception will result in the Exchange as fail ed
/1 to failover over any kind of exception we can just omt
/'l the exception in the fail Over DSL
.1 oadBal ance() . fail over (I OExcepti on. cl ass)
.to("direct:x", "direct:y", "direct:z");

Y ou can specify multiple exceptions to failover as the option is varargs, for instance:

/1 enabl e redelivery so failover can react
error Handl er (def aul t Err or Handl er () . maxi nunRedel i veri es(5));

from("direct:foo").
| oadBal ance() . fail over (I OExcepti on. cl ass, MyQ her Excepti on. cl ass)
.to("direct:a", "direct:b");

2.20.3.1. Using failover in Spring DSL

Failover can also be used from Spring DSL and you configureit as:

<rout e errorHandl er Ref =" nyErr or Handl er " >
<fromuri="direct:foo"/>
<l oadBal ance>
<fail over>
<exception>j ava. i o. | OExcepti on</ excepti on>
<except i on>com myconpany. MyQt her Except i on</ except i on>
</fail over>
<to uri="direct:a"/>
<to uri="direct:b"/>
</ | oadBal ance>
</rout e>

2.20.3.2. Using failover in round robin mode

An example using Java DSL:

from"direct:start")
/] Use failover |oad balancer in stateful round robin node
/1 which mean it will failover immediately in case of an exception
/1l as it does NOT inherit error handler. It will also keep retrying as
/1 it is configured to newer exhaust.
.l oadBal ance().failover(-1, false, true).
to("direct: bad", "direct:bad2", "direct:good", "direct:good2");

And the same example using Spring XML:

40 Talend ESB Mediation Developer Guide

Weighted Round-Robin and Random L oad Balancing

<r out e>
<fromuri="direct:start"/>
<l oadBal ance>
<I-- failover using stateful round robin,
which will keep retrying forever those
4 endpoints until success. You can set
t he maxi munfail over Attenpt to break out after
X attenpts -->
<fail over roundRobi n="true"/>
<to uri="direct:bad"/>
<to uri="direct:bad2"/>
<to uri="direct:good"/>
<to uri="direct: good2"/>
</ | oadBal ance>
</route>

2.20.4. Weighted Round-Robin and Random Load
Balancing

In many enterprise environments where server nodes of unequal processing power & performance characteristics
are utilized to host services and processing endpoints, it isfrequently necessary to distribute processing load based
on their individual server capabilities so that some endpoints are not unfairly burdened with requests. Obviously
simple round-robin or random load balancing do not alleviate problems of this nature. A Weighted Round-Robin
and/or Weighted Random load balancer can be used to address this problem.

The weighted load balancing policy allows you to specify a processing load distribution ratio for each server with
respect to others. Y ou can specify this as a positive processing weight for each server. A larger number indicates
that the server can handlealarger load. Theweight is utilized to determinethe payl oad distribution ratio to different
processing endpoints with respect to others.

The parameters that can be used are

Option Type Default Description

roundRobin boolean false The default value for round-robinisfalse. In
the absence of this setting or parameter the
load balancing algorithm used is random.

distributionRatio String none The distributionRatio is a delimited String
consisting on integer weights separated
by delimiters for example "2,3,5". The
distributionRatio must match the number of
endpoints and/or processors specified in the

load balancer list.
distributionRatio- String , The distributionRatioDelimiter is the
Delimiter delimiter used to specify the

distributionRatio. If this attribute is not
specified a default delimiter "," is expected
as the delimiter used for specifying the
distributionRatio.

See the Camel website for examples on using this load balancer.

Talend ESB Mediation Developer Guide 41

http://camel.apache.org/load-balancer.html#LoadBalancer-WeightedRoundRobinandRandomLoadBalancing

Log

2.21. Log

How can | log processing a Section 2.23, “Message” ?

Camel provides many waysto log processing a message. Here is just some examples:
* You can use the Section 3.28, “Log” component which logs the M essage content.
 You can use the Tracer which trace logs message flow.

 You can also use a Processor or Section 3.3, “Bean” and log from Java code.

e Youcanusethel og DSL, covered below.

Thel og DSL alowsyou to use Simplelanguage to construct a dynamic message which getslogged. For example
you can do

from("direct:start").log("Processing ${id}").
to("bean: foo");

Which will construct a String message at runtime using the Simple language. The log message will by logged at
| NFOlevel using the routeid asthelog name. By default arouteisnamedr out e- 1, r out e- 2 etc. But you can
usether out el d(" nyCool Rout e") to set aroute name of choice.

1 What is the difference between log in the DSL and Log component? The | og DSL is much lighter and

— meant for logging humanlogssuchasSt arti ng t o do ... andsoon. It canonly log amessage based
on the Simple language. On the other hand Section 3.28, “Log” component is a full fledged component
which involves using endpoints and etc. The Section 3.28, “Log” component is meant for logging the
Message itself and you have many URI options to control what you would like to be logged.

Thelog DSL have overloaded methods to set the logging level and/or name as well.

from("direct:start").| og(Loggi ngLevel . DEBUG "Processing ${id}").
to("bean: foo");

For example you can use thisto log the file name being processed if you consumefiles.

from"file://target/files").| og(Loggi ngLevel . DEBUG
"Processing file ${file:name}").to("bean: foo");

2.21.1. Using log DSL from Spring

In Spring DSL it isaso easy to use log DSL as shown below:

<route id="foo">
<fromuri="direct:foo"/>
<l og nessage="GCot ${body}"/>
<to uri="nock:foo"/>
</rout e>

Thelog tag has attributes to set thenessage, | oggi ngLevel and| ogNane. For example:

42 Talend ESB Mediation Developer Guide

http://camel.apache.org/tracer.html
http://camel.apache.org/processor.html
http://camel.apache.org/simple.html
http://camel.apache.org/simple.html
http://camel.apache.org/simple.html

Using sif4j Marker

<route id="baz">
<fromuri="direct: baz"/>
<l og nmessage="Me Got ${body}" | oggi ngLevel ="FATAL" | ogNane="cool "/>
<to uri="nock: baz"/>

</ rout e>

2.21.2. Using slf4j Marker

Y ou can specify amarker nameinthe DSL:

<route id="baz">
<fromuri="direct: baz"/>
<l og nessage="Recei ved ${body}" | oggi ngLevel =" FATAL" | ogNane="cool "
mar ker =" my Mar ker "/ >
<to uri ="nock: baz"/>
</ rout e>

2.22. Loop

The Loop alowsfor processing amessage anumber of times, possibly in adifferent way for each iteration. Useful
mostly during testing. Options:

Name Default Value Description

copy false Whether or not copy mode is used. If false then the
same Exchange will be used for each iteration. So the
result from the previous iteration will be visible for the
next iteration. Instead you can enable copy mode, and
then each iteration restartswith afresh copy of theinput
Exchange.

For each iteration two properties are set on the Exchange. These properties can be used by processors down the
pipeline to process the Section 2.23, “Message” in different ways.

Property Description
Canel LoopSi ze Total number of loops
Camel Loopl ndex Index of the current iteration (0 based)

that could be used by processors down the pipeline to process the Section 2.23, “Message” in different ways.
Thefollowing example shows how to take arequest from the dir ect: x endpoint, then send the message repetitively
to mock:result. The number of times the message is sent is either passed as an argument to | oop(), or
determined at runtime by evaluating an expression. The expression must evaluate to an i nt, otherwise a
Runt i neCanel Except i on isthrown.

Using the Fluent Builders

Pass |oop count as an argument

from("direct:a").loop(8).to("nock:result");

Talend ESB Mediation Developer Guide 43

http://camel.apache.org/fluent-builders.html

Message

Use expression to determine loop count

‘fron("direct:b").Ioop(header("loop")).to("nnck:result");

Use expression to determine loop count

‘fron("direct:c").l oop().xpath("/hello/ @imes").to("nock:result");

Using the Spring XML Extensions

Pass |oop count as an argument

<r out e>
<fromuri="direct:a"/>
<l oop>
<const ant >8</ const ant >
<to uri="nock:result"/>
</l oop>
</rout e>

Use expression to determine loop count

<r out e>
<fromuri="direct:b"/>
<l oop>
<header >l oop</ header >
<to uri="nock:result"/>
</| oop>
</rout e>

See the Camel Website for further examples of this patternin use.

2.23. Message

Camd supports the Message from the EIP patterns using the Message interface.

*Eg—%

Sender Message FHecelver

To support various message exchange patterns like one way Section 2.17, “Event Message” and Section 2.41,
“Request Reply” messages Camel uses an Exchange interface which has a pattern property which can be set to
InOnly for an Section 2.17, “ Event Message” which has a single inbound Message, or InOut for a Section 2.41,
“Request Reply” where thereis an inbound and outbound message.

Here is a basic example of sending a Message to aroute in InOnly and InOut modes

44 Talend ESB Mediation Developer Guide

http://camel.apache.org/spring-xml-extensions.html
http://camel.apache.org/loop.html
http://www.eaipatterns.com/Message.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Message.html
http://camel.apache.org/exchange.html

Message Bus

Requestor Code

/11 nOnly
get Cont ext () . cr eat ePr oducer Tenpl at e() . sendBody("di rect:startl nOnly",
"Hello Worl d");

/11 nQut
String result = (String) getContext().createProducerTenpl ate().request Body(
"direct:startlnCut", "Hello World");

Route Using the Fluent Builders

from("direct:startinOnly").inOnly("bean: process");

from("direct:startlnQut").inCut("bean: process");

Route Using the Spring XML Extensions

<r out e>
<fromuri="direct:startlnOnly"/>
<inOnly uri="bean: process"/>

</ rout e>

<r out e>
<fromuri="direct:startlnQut"/>
<i nQut uri ="bean: process"/ >
</rout e>

2.24. Message Bus

Camel supportsthe Message Busfrom the EIP patterns. Y ou could view Camel asaMessage Busitself asit allows
producers and consumers to be decoupled.

Application
Application —
Message Application
Bus

Folks often assume that a Message Bus is a JMS though so you may wish to refer to the Section 3.24, “IJMS’
component for traditional MOM support.

Also worthy of note isthe XM PP component for supporting messaging over XM PP (Jabber)

Talend ESB Mediation Developer Guide 45

http://www.eaipatterns.com/PointToPointChannel.html
http://camel.apache.org/xmpp.html

Message Channel

2.25. Message Channel

Camel supports the Message Channel from the EIP patterns. The Message Channel is an internal implementation
detail of the Endpoint interface and all interactions with the Message Channel are viathe Endpoint interfaces. For
more details see Section 2.23, “Message” and Section 2.27, “Message Endpoint”.

Wessage
Channel -

L

oender Messaging Receiver
Application oystem Application

2.26. Message Dispatcher

Camel supports the Message Dispatcher from the EIP patterns using various approaches.

Performer

Perfarmer

REXY

mender Messages Message
Dizpatcher

Ferfarmer

Feceiver

You can use a component like Section 3.24, “JMS’ with selectors to implement a Section 2.47, “Selective
Consumer” as the Message Dispatcher implementation. Or you can use an Endpoint as the Message Dispatcher
itself and then use a Section 2.6, “Content Based Router” as the Message Dispatcher.

46 Talend ESB Mediation Developer Guide

http://www.eaipatterns.com/MessageChannel.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Endpoint.html
http://www.eaipatterns.com/MessageDispatcher.html
http://camel.apache.org/endpoint.html

M essage Endpoint

2.27. Message Endpoint

Camel supports the Message Endpoint from the EIP patterns using the Endpoint interface.

21 %] ta =% -2

Message Message
Endpaint Message Channel Endpaint
sender Receiver
Application Application

When using the DSL to create Routes you typically refer to Message Endpoints by their URIs rather than directly
using the Endpoint interface. it is then aresponsibility of the Camel Context to create and activate the necessary
Endpoint instances using the available Component implementations.

2.28. Message Filter

The Message Filter from the EIP patterns allows you to filter messages

Widget Gadget ‘Widget Widget

Widget
Gluote Gluote Guote Cluote Ciiote

Message
Filter

The following example shows how to create a Message Filter route consuming messages from an endpoint called
qgueue a which if the Predicate is true will be dispatched to queue:b

Using the Fluent Builders

Rout eBui | der bui | der = new Rout eBui | der () {
public void configure() {
error Handl er (deadLet t er Channel (" nmock: error"));

from("seda: a")

.filter(header("foo0").isEqual To("bar"))
.to("seda: b");

b

You can of course use many different Predicate languages such as XPath, XQuery, SQL or various Scripting
Languages. Here is an XPath example

from("direct:start").
filter().xpath("/person[@ane="'Janmes']").
to("nmock:result");

Using the Spring XML Extensions

Talend ESB Mediation Developer Guide 47

http://www.eaipatterns.com/MessageEndpoint.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Endpoint.html
http://camel.apache.org/dsl.html
http://camel.apache.org/routes.html
http://camel.apache.org/uris.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Endpoint.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/CamelContext.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Component.html
http://www.eaipatterns.com/Filter.html
http://camel.apache.org/predicate.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/predicate.html
http://camel.apache.org/xpath.html
http://camel.apache.org/xquery.html
http://camel.apache.org/sql.html
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/scripting-languages.html
http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/XPathFilterTest.java
http://camel.apache.org/spring-xml-extensions.html

Using stop

<canel Cont ext errorHandl er Ref =" error Handl er"
xm ns="http://canel . apache. or g/ schema/ spri ng" >
<r out e>
<fromuri="seda: a"/>
<filter>
<xpat h>$f oo = ' bar' </ xpat h>
<to uri="seda: b"/>
</[filter>
</ rout e>
</ canel Cont ext >

For further examples of this pattern in use see this JUnit test case.

2.28.1. Using stop

Stopisabit different than amessagefilter asit will filter out all messages. Stop isconvenient to useinaSection 2.6,
“Content Based Router” when you for example need to stop further processing in one of the predicates.

In the example below we do not want to route messages any further that has the word By e in the message body.
Notice how we prevent thisin the when predicate by using the.. st op() .

from("direct:start")
. choi ce()
.when(body().contains("Hello")).to("nbck: hello")
. when(body().contains("Bye")).to("nock: bye"). stop()
.ot herwi se().to("nock: ot her")
.end()
.to("nock:result");

2.28.2. Knowing if Exchange was filtered or not

The Message Filter EIP will add a property on the Exchange which states if it was filtered or not.

The property has the key Exchange.FlILTER MATCHED which has the String vaue of
Canel Fi | t er Mat ched. Its value is a boolean indicating t r ue or f al se. If the value is t r ue then the
Exchange was routed in the filter block.

2.29. Message History

The Message History from the EIP patterns allows for analyzing and debugging the flow of messagesin aloosely
coupled system.

v

[]

48 Talend ESB Mediation Developer Guide

http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/FilterTest.java?view=markup
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://www.eaipatterns.com/MessageHistory.html

Message Router

Attaching a Message History to the message will provide alist of all applications that the message passed through
sinceits origination. In Camel you can trace message flow using the Tracer, or access information using the Java
API from UnitOfWork using the getTracedRouteNodes method. When Camel sends a message to an endpoint
that endpoint information is stored on the Exchange as a property with the key Exchange. TO_ENDPOINT. This
property contains the last known endpoint the Exchange was sent to (it will be overridden when sending to new
endpoint). Alternatively you can trace messages being sent using interceptors or the Event Notifier.

2.30. Message Router

The Message Router from the EIP patterns allows you to consume from an input destination, evaluate some
predicate then choose the right output destination.

oLtGiLeUE 1

— D

incILeLe

oLtueus 2

JEEEEEE

Meszsage
Router

The following example shows how to route a request from an input queue: a endpoint to either queue:b, queue:c
or queue:d depending on the evaluation of various Predicate expressions

Using the Fluent Builders

Rout eBui | der bui | der = new Rout eBui | der () {
public void configure() {
error Handl er (deadLet t er Channel (" nmock: error"));

from("seda: a")
. choi ce()
.when(header ("fo0").isEqual To("bar"))
.to("seda: b")
.when(header ("fo0").isEqual To("cheese"))
.to("seda: c")
.ot herwi se()
.to("seda:d");

b

Here is another example of using a bean to define the filter behavior

from("direct:start")
.filter().method(M/Bean. cl ass, "isCol dCustoner").to("nmock:result").end()
.to("nmock: end");

public static class M/Bean {
publ i c bool ean i sGol dCust orer (@Header ("l evel ") String level) {
return | evel.equal s("gold");
}
}

Talend ESB Mediation Developer Guide 49

https://cwiki.apache.org/confluence/display/CAMEL/Tracer
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/spi/UnitOfWork.html
https://cwiki.apache.org/confluence/display/CAMEL/Intercept
https://cwiki.apache.org/confluence/display/CAMEL/EventNotifier+to+log+details+about+all+sent+Exchanges
http://www.eaipatterns.com/MessageRouter.html
http://camel.apache.org/predicate.html
http://camel.apache.org/fluent-builders.html

Message Trandator

Using the Spring XML Extensions

<canel Cont ext error Handl er Ref =" err or Handl er "
xm ns="http://canel . apache. or g/ schema/ spri ng">

<r out e>
<fromuri="seda: a"/ >
<choi ce>
<when>
<xpat h>$f oo = ' bar' </ xpat h>
<to uri="seda: b"/>
</ when>
<when>
<xpat h>$f oo = ' cheese' </ xpat h>
<to uri="seda:c"/>
</ when>

<ot herw se>
<to uri="seda: d"/>
</ ot her wi se>
</ choi ce>
</rout e>
</ canel Cont ext >

Noteif youuseachoi ce without adding an ot her wi se, any unmatched exchangeswill be dropped by default.

2.31. Message Translator

Camel supports the Message Trand ator from the EIP patterns by using an arbitrary Processor in the routing logic,
by using abean to perform the transformation, or by using transform() inthe DSL.. Y ou can also use a Data Format
to marshal and unmarshal messages in different encodings.

Translator
—_— - —_—

lncoming Message Translated Message

I h

Using the Fluent Builders

Y ou can transform a message using Camel's Bean Integration to call any method on a bean in your Registry such
as your Spring XML configuration file as follows

from("activeny: SomeQueue") .
beanRef (" myTr ansf or mer Bean", " myMet hodNanme").
to("ngseri es: Anot her Queue") ;

Where the "myTransformerBean" would be defined in a Spring XML file or defined in INDI and so on. You can
omit the method name parameter from beanRef() and the Bean Integration will try to deduce the method to invoke
from the message exchange.

or you can add your own explicit Processor to do the transformation

50 Talend ESB Mediation Developer Guide

http://camel.apache.org/spring-xml-extensions.html
http://www.eaipatterns.com/MessageTranslator.html
http://camel.apache.org/processor.html
http://camel.apache.org/data-format.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/registry.html
http://camel.apache.org/spring.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/processor.html

Messaging Gateway

from("direct:start"). process(new Processor () {
public void process(Exchange exchange) ({
Message in = exchange. getln();
in.setBody(in.getBody(String.class) + " Wrldl");

}).to("nmock:result");

or you can use the DSL to explicitly configure the transformation

from("direct:start").transformbody().append(" World!")).to("nock:result");

Use Spring XML

You can aso use Spring XML Extensions to do a transformation. Basically any Expression language can be
substituted inside the transform element as shown below

<canel Cont ext xm ns="http://canel.apache. org/ schema/ spri ng">
<r out e>
<fromuri="direct:start"/>
<t r ansf or n»
<si mpl e>${i n. body} extra data! </sinpl e>
</transfornme
<to uri="nock:end"/>
</ rout e>
</ canel Cont ext >

Or you can use the Bean Integration to invoke a bean

<r out e>
<fromuri="activeng: | nput"/>
<bean ref ="nmyBeanNane" net hod="doTransforni/>
<to uri="activenq: Qut put"/>

</ rout e>

You can also use Templating to consume a message from one destination, transform it with something like
Section 3.50, “Velocity” or XQuery and then send it on to another destination. For example using InOnly (one

way messaging)

from("activeny: My. Queue") .
to("vel ocity: coml acne/ MyResponse. vii') .
to("acti venqg: Anot her. Queue");

If you want to use InOut (request-reply) semantics to process requests on the My.Queue queue on Section 3.1,
“ActiveMQ” with a template generated response, then sending responses back to the IMSReplyTo Destination
you could use this.

‘frorr(" activenq: My. Queue") .to("vel ocity: coml acme/ MyResponse. vii') ;

2.32. Messaging Gateway

Camd has several endpoint components that support the Messaging Gateway from the EIP patterns.

Talend ESB Mediation Developer Guide 51

http://camel.apache.org/spring-xml-extensions.html
http://camel.apache.org/expression.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/templating.html
http://camel.apache.org/xquery.html
http://www.eaipatterns.com/MessagingGateway.html

Messaging Mapper

E 5

Iy

Messaging Messaging hMessaging
Gateway System Gateway
Application Application

Componentslike Section 3.3, “Bean” and Section 3.8, “CXF” provide away to bind a Javainterfaceto the message
exchange.

However you may want to read the Using CamelProxy documentation as a true Section 2.32, “Messaging
Gateway” EIP solution. Another approach is to use @'r oduce which you can read about in POJO Producing
which a so can be used as a Section 2.32, “Messaging Gateway” EIP solution.

2.33. Messaging Mapper

Camel supports the Messaging Mapper from the EIP patterns by using either Section 2.31, “Message Translator”
pattern or the Type Converter module.

Messadging
Mapper

Business Messadging
O hject Infrastructure

2.34. Multicast

The Multicast allows for routing the same message to a number of endpoints and process them in adifferent way.
The main difference between the Multicast and Splitter is that Splitter will split the message into several pieces
but the Multicast will not modify the request message. Options:

Name Default |Description
Value

strat egyRef Refersto an AggregationStrategy to be used to assemblethe replies
from the multicasts, into a single outgoing message from the
Multicast. By default Camel will use the last reply as the outgoing
message.

par al | el Processi ng false If enabled then sending messages to the multicasts occurs
concurrently. Note the caller thread will still wait until all messages

52 Talend ESB Mediation Developer Guide

http://camel.apache.org/using-camelproxy.html
http://camel.apache.org/pojo-producing.html
http://www.eaipatterns.com/MessagingMapper.html
http://camel.apache.org/type-converter.html

Example

Name

Default
Value

Description

has been fully processed, before it continues. Its only the sending
and processing the replies from the multicasts which happens
concurrently.

execut or Ser vi ceRef

Refers to a custom Thread Pool to be used for parallel processing.
Notice if you set this option, then parallel processing is automatic
implied, and you do not have to enable that option as well.

st opOnExcepti on

fase

Whether or not to stop continue processing immediately when an
exception occurred. If disabled, then Camel will send the message
to all multicastsregardlessif one of them failed. Y ou can deal with
exceptions in the AggregationStrategy class where you have full
control how to handle that.

stream ng

false

If enabled then Camel will process replies out-of-order, eg in the
order they come back. If disabled, Camel will process repliesinthe
same order as multicasted.

ti meout

Sets atotal timeout specified in millis. If the Multicast hasn't been
ableto send and process al replieswithin the given timeframe, then
the timeout triggers and the Multicast breaks out and continues.
Notice if you provide a TimeoutAwareAggregationStrategy then
the timeout method isinvoked before breaking out. If thetimeout is
reached with running tasks still remaining, certain tasks for which
it is difficult for Camel to shut down in a graceful manner may
continue to run. So use this option with a bit of care.

onPr epar eRef

Refers to a custom Processor to prepare the copy of the Exchange
each multicast will receive. Thisallowsyou to do any custom logic,
such as deep-cloning the message payload if that's needed etc.

shar eUni t O Wr k

false

Whether the unit of work should be shared. See the same option on
Splitter for more details.

2.34.1. Example

The following example shows how to take a request from the direct:a endpoint, then multicast these request to

direct:x, direct:y, direct:z.

Using the Fluent Builders

from("direct:a").multicast().to("direct:x", "direct:y", "direct:z");

By default Multicast invokes each endpoint sequentially. If parallel processing is desired, smply use

from("direct:a").multicast().parallel Processing().to("direct:x"
"direct:y", "direct:z");

In case of using InOut MEP, an AggregationStrategy is used for aggregating all reply messages. The default isto
only use the latest reply message and discard any earlier replies. The aggregation strategy is configurable:

from("direct:start")

.mul ti cast (new MyAggregationStrategy())
.parall el Processing().tineout(500).to("direct:a", "direct:b", "direct:c")

.end()
.to("nock:result");

Talend ESB Mediation Developer Guide 53

http://camel.apache.org/fluent-builders.html

Stop processing in case of exception

2.34.2. Stop processing in case of exception

The Section 2.34, “Multicast” will by default continue to process the entire Exchange even in case one of the
multi casted messageswill throw an exception during routing. For exampleif you want to multicast to 3 destinations
and the second destination fails by an exception. What Camel does by default is to process the remainder
destinations. Y ou have the chance to remedy or handle thisin the Aggr egat i onSt r at egy.

But sometimes you just want Camel to stop and let the exception be propagated back, and let the Camel error
handler handleit. Y ou can do this by specifying that it should stop in case of an exception occurred. Thisis done
by the st opOnExcept i on option as shown below:

from("direct:start")
.mul ticast()
. st opOnException().to("direct:foo", "direct:bar", "direct:baz")
.end()
.to("nmock:result");
from"direct:foo").to("nock:foo");
from "direct:bar").process(new M/Processor()).to("nock: bar");
from"direct:baz").to("nock: baz");

And using XML DSL you specify it as follows:

<r out e>
<fromuri="direct:start"/>
<mul ti cast stopOnException="true">
<to uri="direct:foo"/>
<to uri="direct:bar"/>
<to uri="direct:baz"/>
</mul ticast>
<to uri="nock:result"/>
</ rout e>

<r out e>
<fromuri="direct:foo"/>
<to uri="nock:foo"/>

</ rout e>

<r out e>
<fromuri="direct: bar"/>
<process ref="myProcessor"/>
<to uri="nock: bar"/>

</ rout e>

<r out e>
<fromuri="direct: baz"/>
<to uri="nock: baz"/>

</ rout e>

2.34.3. Using onPrepare to execute custom logic when
preparing messages

The Multicast will copy the source Exchange and multicast each copy. However the copy is a shallow copy, so
in case you have mutateable message bodies, then any changes will be visible by the other copied messages. If
you want to use a deep clone copy then you need to use a custom onPrepare which alows you to do this using
the Processor interface.

54 Talend ESB Mediation Developer Guide

http://camel.apache.org/exchange.html

Normalizer

Note that onPrepare can be used for any kind of custom logic which you would like to execute before the Exchange
is being multicasted.

The Multicast EIP page on the Camel website hosts a dynamically updated example of using onPrepare to execute
custom logic.

2.35. Normalizer

Camel supports the Normalizer from the EIP patterns by using a Section 2.30, “Message Router” in front of a
number of Section 2.31, “Message Translator” instances.

Mormali zer

%Wt R0

—

-t

Commaon Format

Different Message

Formats Router
_ — —

Translators

e
[

sdlEdIEs

The below exampl e showsaM essage Normalizer that convertstwo types of XML messagesinto acommon format.
Messages in this common format are then filtered.

Using the Fluent Builders

/1l we need to normalize two types of incom ng nessages
from"direct:start")
. choi ce()
.when() . xpat h("/ enpl oyee") .t o(
"bean: nor mal i zer ?nmet hod=enpl oyeeToPer son")
.when() . xpat h("/custoner").to(
"bean: nor mal i zer ?net hod=cust omer ToPer son")
.end()
.to("nmock:result");

In this case we're using a Java bean as the normalizer. The class looks like this

public class MyNormalizer {
public voi d enpl oyeeToPer son(Exchange exchange,
@XPat h("/ enpl oyee/ nane/text()") String nanme) {
exchange. get Qut () . set Body(cr eat ePer son(nan®)) ;

}

public voi d cust onmer ToPer son(Exchange exchange,
@XPat h("/ cust oner/ @ane") String name) {
exchange. get Qut () . set Body(cr eat ePer son(nane)) ;

}

private String createPerson(String name) {
return "<person nanme=\"" + name + "\"/>";
}

Talend ESB Mediation Developer Guide 55

http://camel.apache.org/multicast.html#Multicast-UsingonPreparetoexecutecustomlogicwhenpreparingmessages
http://www.eaipatterns.com/Normalizer.html
http://camel.apache.org/fluent-builders.html

Pipes and Filters

Using the Spring XML Extensions

The same example in the Spring DSL

<canel Cont ext xm ns="http://canel .apache. org/ schena/ spri ng">

<rout e>
<fromuri="direct:start"/>
<choi ce>
<when>
<xpat h>/ enpl oyee</ xpat h>
<to uri ="bean: nor mal i zer ?net hod=enpl oyeeToPer son"/ >
</ when>
<when>
<xpat h>/ cust oner </ xpat h>
<to uri ="bean: normal i zer ?met hod=cust oner ToPer son"/ >
</ when>
</ choi ce>
<to uri="nock:result"/>
</ rout e>

</ canel Cont ext >

<bean i d="nornalizer" class="org.apache. canel.processor. MyNornmal i zer"/>

2.36. Pipes and Filters

Camel supports Pipes and Filters from the EIP patterns in various ways.

Pipe Pipe
——| Decrypt |——*

Fipe Pipe

Authenticate De-Dup

Incaming Fitter Fitter Fitter “Clean’
Crroler CQroer

With Camel you can split your processing across multiple independent Endpoint instances which can then be
chained together.

You can create pipelines of logic using multiple Endpoint or Section 2.31, “Message Translator” instances as
follows:

from("direct:a").pipeline("direct:x", "direct:y", "direct:z",
"mock:result");

Though pipeline is the default mode of operation when you specify multiple outputs in Camel. The opposite to
pipeline is multicast; which fires the same message into each of its outputs. (See the example below).

In Spring XML you can use the <pipeline/> element:

<r out e>
<fromuri="acti venyg: SoneQueue"/ >
<pi pel i ne>
<bean ref="fo0"/>
<bean ref="bar"/>
<to uri="acti venq: Qut put Queue"/ >
</ pi pel i ne>
</route>

56 Talend ESB Mediation Developer Guide

http://camel.apache.org/spring-xml-extensions.html
http://www.eaipatterns.com/PipesAndFilters.html
http://camel.apache.org/endpoint.html

Point to Point Channel

In the above the pipeline element is actually unnecessary, you could use this:

<r out e>
<fromuri="activeny: SonreQueue"/ >
<bean ref="foo0"/>
<bean ref="bar"/>
<to uri="activenq: Qut put Queue"/ >
</route>

Which is a bit more explicit. However if you wish to use <multicast/> to avoid a pipeline - to send the same
message into multiple pipelines - then the <pipeline/> element comes into its own.

<rout e>
<fromuri="activeny: SonreQueue"/ >
<mul ti cast >
<pi pel i ne>
<bean ref="sonet hi ng"/ >
<to uri="1og: Sonet hi ng"/ >
</ pi pel i ne>
<pi pel i ne>
<bean ref="fo0"/>
<bean ref="bar"/>
<to uri="activenq: Qut put Queue"/ >
</ pi pel i ne>
</mul ti cast >
</rout e>

In the above example we are routing from a single Endpoint to alist of different endpoints specified using URIs.

2.37. Point to Point Channel

Camel supports the Point to Point Channel from the EIP patterns using the following components

» Section 3.38, “SEDA” for in-VM seda based messaging

» Section 3.24, “IMS’ for working with IMS Queues for high performance, clustering and load balancing
 Section 3.26, “JPA” for using a database as a simple message queue

* XMPP for point-to-point communication over XM PP (Jabber)

~ %% == %

Sender Crder Order Order Foint-to-Point Crder Order Order Receiver
#3 £ #1 Channel #3 #2 #1

* and others

2.38. Polling Consumer

Camd supports implementing the Polling Consumer from the EIP patterns using the PollingConsumer interface
which can be created via the Endpoint.createPollingConsumer() method.

Talend ESB Mediation Developer Guide 57

http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://www.eaipatterns.com/PointToPointChannel.html
http://camel.apache.org/xmpp.html
http://www.eaipatterns.com/PollingConsumer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/PollingConsumer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Endpoint.html#createPollingConsumer()

ConsumerTemplate

-2 S

Folling
Sender Message Consumer
Feceiver

So in your Java code you can do

Endpoi nt endpoi nt = cont ext. get Endpoi nt ("acti veng: ny. queue") ;
Pol | i ngConsuner consuner = endpoi nt. createPol | i ngConsuner () ;
Exchange exchange = consuner.receive();

There are 3 main polling methods on PollingConsumer

Method name Description
receive() Waits until amessage is available and then returns it; potentially blocking forever
receive(long) Attempts to receive a message exchange, waiting up to the given timeout and

returning null if no message exchange could be received within the time available

receiveNoWait() Attempts to receive amessage exchange immediately without waiting and returning
null if amessage exchange is not available yet

2.38.1. ConsumerTemplate

The Consuner Tenpl at e is a template much like Spring's JnsTemplate or JdbcTemplate supporting the
Section 2.38, “Polling Consumer” EIP. With the template you can consume Exchange s from an Endpoint.

The template supports the three operations above, but also including convenient methods for returning the body:
consumneBody, and so on. The example from above using ConsumerTemplateis:

‘ Exchange exchange = consuner Tenpl at e. recei ve("acti veng: my. queue") ;

Or to extract and get the body you can do:

‘Ooj ect body = consuner Tenpl at e. recei veBody("acti venq: ny. queue") ;

And you can provide the body type as a parameter and have it returned as the type:

String body = consuner Tenpl at e. recei veBody("acti veny: my. queue",
String. cl ass);

You get hold of aConsumer Tenpl at e from the Canel Cont ext with thecr eat eConsuner Tenpl at e
operation:

Consuner Tenpl at e consumer = cont ext . creat eConsurer Tenpl at e() ;

58 Talend ESB Mediation Developer Guide

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/PollingConsumer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/PollingConsumer.html#receive()
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/PollingConsumer.html#receive(long)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/PollingConsumer.html#receiveNoWait()
http://camel.apache.org/exchange.html
http://camel.apache.org/endpoint.html

Scheduled Poll Components

For using Spring DSL with consumer Template, see the dynamically maintained examples for the most up-to-
date examples.

2.38.2. Scheduled Poll Components

Quite a few inbound Camel endpoints use a scheduled poll pattern to receive messages and push them through
the Camel processing routes. That isto say externally from the client the endpoint appears to use an Section 2.16,
“Event Driven Consumer” but internally a scheduled poll is used to monitor some kind of state or resource
and then fire message exchanges. Since this is such a common pattern, polling components can extend the
Schedul edPoll Consumer base class which makes it simpler to implement this pattern.

The ScheduledPoll Consumer supports the following options:

Option Default Description

poll Strategy A pluggable or g. apache. canel .

Pol I i ngConsurner Pol | Strategy adlowing you to
provide your custom implementation to control error handling
usually occurred during the pol | operation before an
Exchange have been created and being routed in Camel.
In other words the error occurred while the polling was
gathering information, for instance access to a file network
failed so Camel cannot access it to scan for files. The default
implementation will log the caused exception at WARN level

and ignoreit.
sendEmptyMessage- |false If the polling consumer did not poll any files, you can enable
Whenldle this option to send an empty message (no body) instead.
initialDelay 1000 Milliseconds before the first poll starts.
delay 500 Milliseconds before the next poll of the file/directory.
useFixedDelay true Controls if fixed delay or fixed rate is used. See
ScheduledExecutorService in JDK for details.
timeUnit TimeUnit. Timeunit fori ni ti al Del ay and del ay options.
MILLISECONDS
runLoggingLevel TRACE The consumer logs astart/completelog linewhenit polls. This
option alows you to configure the logging level for that.
scheduledExecutor- null Allowsfor configuring a custom/shared thread pool to use for
Service the consumer. By default each consumer has its own single

threaded thread pool. This option allows you to share athread
pool among multiple consumers.

2.38.3. About error handling and scheduled polling
consumers

Schedul edPoll Consumer is scheduled based anditsr un method isinvoked periodically based on schedul e settings.
But errors can also occur when apoll is being executed. For instanceif Camel should poll afile network, and this
network resource is not available then aj ava. i 0. | OExcept i on could occur. As this error happens before
any Exchange has been created and prepared for routing, then the regular Error Handling in Camel does not apply.
So what does the consumer do then? Well the exception is propagated back to ther un method whereit is handled.
Camd will by default log the exception at WARN level and then ignore it. At next schedule the error could have
been resolved and thus being able to poll the endpoint successfully.

Talend ESB Mediation Developer Guide 59

http://camel.apache.org/polling-consumer.html#PollingConsumer-UsingConsumerTemplatewithSpringDSL
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/impl/ScheduledPollConsumer.html
http://camel.apache.org/exchange.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/impl/ScheduledPollConsumer.html
http://camel.apache.org/exchange.html
http://camel.apache.org/error-handling-in-camel.html

About error handling and scheduled polling consumers

2.38.3.1. Controlling the error handling using
PollingConsumerPollStrategy

or g. apache. canel . Pol | i ngConsurer Pol | St r at egy is a pluggable strategy that
you can configure on the Schedul edPol | Consunmer. The default implementation
or g. apache. canel . i npl . Def aul t Pol | i ngConsuner Pol | St r at egy will log the caused exception
at WARN level and then ignore thisissue.
The strategy interface provides the following 3 methods
* begin

e voi d begi n(Consuner consuner, Endpoint endpoint)
e commit

e void comit (Consuner consumer, Endpoint endpoint)
» commit ()

e void conmit(Consumer consuner, Endpoint endpoint, int polledMessages)

 rollback

* bool ean rol | back(Consumer consuner, Endpoint endpoint, int retryCounter,
Exception e) throws Exception

The begin method returns a boolean which indicates whether or not to skipping polling. So you can implement
your custom logic and return f al se if you do not want to poll thistime.

The commit method has an additional parameter containing the number of message that was actually polled. For
example if there was no messages polled, the value would be zero, and you can react accordingly.

The most interesting isther ol | back asit alows you do handle the caused exception and decide what to do.
For instance if we want to provide a retry feature to a scheduled consumer we can implement the

Pol I i ngConsuner Pol | St r at egy method and put theretry logicinther ol | back method. Let'sjust retry
up until 3 times:

publ i ¢ bool ean rol | back(Consuner consuner, Endpoi nt endpoi nt,
int retryCounter, Exception e) throws Exception {
if (retryCounter < 3) {
/] return true to tell Canel that it
/1 should retry the poll inmediately
return true;
}
/| okay we give up do not retry anynore
return fal se;

Notice that we are given the Consumner as a parameter. We could use this to restart the consumer as we can
invoke stop and start:

/] error occurred let's restart the consuner,
/1 that could maybe resol ve the issue
consuner . stop();

consuner.start();

60 Talend ESB Mediation Developer Guide

Publish Subscribe Channel

Notice: If youimplement thebegi n operation make sureto avoid throwing exceptionsasin such acasethepol |
operation is not invoked and Camel will invoke ther ol | back directly.

2.38.3.2. Configuring an Endpoint to use
PollingConsumerPollStrategy

To configure an Endpoint to use a custom Pol | i ngConsuner Pol | Strat egy you use the option
pol | St rat egy. For example in the file consumer below we want to use our custom strategy defined in the
Registry with the beanid myPol | :

‘fron("fi | e://inbox/?pol | Strategy=#nyPol|").to("activeny: queue: i nbox")

2.39. Publish Subscribe Channel

Camel supports the Publish Subscribe Channel from the EIP patterns using the following components

» Section 3.24, “IMS’ for working with IMS Topics for high performance, clustering and load balancing

—%{_

Address Subscriber
Changed

I PSS -

Fublisher Address Address Subschber
Changed Changed

—9%,—

Fublish-Subscribe Address Subscriber
Channel Changed

» XMPP when using rooms for group communication

Another option is to explicitly list the publish-subscribe relationship using routing logic; this keeps the producer
and consumer decoupled but lets you control the fine grained routing configuration using the DSL or XML
Configuration.

Using the Spring XML Extensions

Talend ESB Mediation Developer Guide 61

http://camel.apache.org/endpoint.html
http://camel.apache.org/registry.html
http://www.eaipatterns.com/PublishSubscribeChannel.html
http://camel.apache.org/xmpp.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/spring-xml-extensions.html

Recipient List

<canel Cont ext errorHandl er Ref =" error Handl er"
xm ns="http://canel . apache. or g/ schema/ spri ng" >
<r out e>
<fromuri="seda: a"/>
<mul ti cast >

<to uri="seda: b"/>
<to uri="seda:c"/>
<to uri="seda:d"/>
</mul ticast>
</ rout e>

</ canel Cont ext >

2.40. Recipient List

The Recipient List from the EIP patterns alows you to route messages to a number of dynamically specified
recipients.

Recipient Channel

— — G
— — G —

)
g — G

The recipients will receive a copy of the same Exchange and Camel will execute them sequentially.

<

Fecipient List

GR|8Is

2.40.1. Options

Name Default Description
Value
delimter , Delimiter used if the Expression returned multiple
endpoints.
strat egyRef An AggregationStrategy that will assemble the replies

from recipientsinto a single outgoing message from the
Recipient List. By default Camel will use the last reply
as the outgoing message.

paral | el Processi ng fase If enabled, messages are sent to the recipients
concurrently. Note that the calling thread will still wait
until all messages have been fully processed before it
continues; it'sthe sending and processing of repliesfrom
recipients which happensin parallel.

62 Talend ESB Mediation Developer Guide

http://www.eaipatterns.com/RecipientList.html
http://camel.apache.org/exchange.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/AggregationStrategy.html

Static Recipient List

Name Default Description
Value

execut or Ser vi ceRef A custom Thread Pool to use for parallel processing.
Note that enabling this option implies parallel
processing, so you need not enable that option as well.

st opOnExcepti on false Whether to immediately stop processing when an
exception occurs. If disabled, Camel will send
the message to all recipients regardless of any
individual failures. You can process exceptions in an
AggregationStrategy implementation, which supports
full control of error handling.

i gnor el nval i dEndpoi nt s fase Whether to ignore an endpoint URI that could not be
resolved. If disabled, Camel will throw an exception
identifying the invalid endpoint URI.

streani ng fase If enabled, Camel will processreplies out-of-order - that
is, in the order received in reply from each recipient. If
disabled, Camel will process replies in the same order
as specified by the Expression.

ti meout Specifies a processing timeout milliseconds. If the
Recipient List hasn't been able to send and process all
replies within this timeframe, then the timeout triggers
and the Recipient List breaks out, with message flow
continuing to the next element. Note that if you provide
a TimeoutAwareAggregationStrategy, its {{timeout} }
method isinvoked before breaking out. If the timeout is
reached with running tasks still remaining, certain tasks
for which it is difficult for Camel to shut down in a
graceful manner may continue to run. So use this option
with abit of care.

onPr epar eRef A custom Processor to prepare the copy of the
[Exchange] each recipient will receive. This alows
you to perform arbitrary transformations, such as deep-
cloning the message payload (or any other custom
logic).

shar eUni t O Wor k false Whether the unit of work should be shared. Seethe same
option with the Splitter EIP for more details.

2.40.2. Static Recipient List

Thefollowing example shows how to route arequest from an input queue: a endpoint to astatic list of destinations

Using Annotations Y ou can use the RecipientList Annotation on a POJO to create a Dynamic Recipient List. For
more details see the Bean Integration.

Using the Fluent Builders

Rout eBui | der bui |l der = new Rout eBui | der () {
public void configure() {
error Handl er (deadLet t er Channel (" nock: error"));

from("seda: a")
.multicast().to("seda: b", "seda:c", "seda:d");

Talend ESB Mediation Developer Guide 63

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/AggregationStrategy.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/TimeoutAwareAggregationStrategy.html
http://camel.apache.org/recipientlist-annotation.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/fluent-builders.html

Dynamic Recipient List

Using the Spring XML Extensions

<canel Cont ext error Handl er Ref =" er r or Handl| er "
xm ns="http://canel . apache. or g/ schenma/ spri ng" >
<r out e>
<from uri="seda: a"/ >
<mul ti cast >
<to uri="seda: b"/>
<to uri="seda:c"/>
<to uri="seda:d"/>
</mul ticast>
</rout e>
</ canel Cont ext >

2.40.3. Dynamic Recipient List

Usually one of the main reasons for using the Recipient List pattern is that the list of recipients is dynamic
and calculated at runtime. The following example demonstrates how to create a dynamic recipient list using an
Expression (which in this case it extracts a named header value dynamically) to calculate the list of endpoints
which are either of type Endpoint or are converted to a String and then resolved using the endpoint URIs.

Using the Fluent Builders

Rout eBui | der bui | der = new Rout eBui |l der () {
public void configure() {
error Handl er (deadLet t er Channel (" nock: error"));

from("seda: a")
. reci pi entLi st (header ("fo0"));

B

The above assumes that the header contains a list of endpoint URIs. The following takes a single string header
and tokenizes it

from("direct:a").recipientList(
header ("reci pi ent Li st Header") . t okeni ze(","));

2.40.3.1. lteratable value

The dynamic list of recipients that are defined in the header must be iteratable such as:
e java. util.Coll ection

e java. util.lterator

o arrays

e org.w3c. dom NodelLi st

 asingle String with values separated with comma

64 Talend ESB Mediation Developer Guide

http://camel.apache.org/spring-xml-extensions.html
http://www.eaipatterns.com/RecipientList.html
http://camel.apache.org/expression.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/fluent-builders.html

Request Reply

« any other type will be regarded as asingle value

Using the Spring XML Extensions

<camel Cont ext errorHandl er Ref ="error Handl er"
xm ns="http://canel . apache. or g/ schema/ spri ng">
<rout e>
<fromuri="seda: a"/>
<r eci pi ent Li st >
<xpat h>$f oo</ xpat h>
</ reci pi ent Li st >
</rout e>
</ canel Cont ext >

For further examples of this pattern in use see this JUnit test case.

2.40.3.2. Using delimiter in Spring XML

In Spring DSL you can set the del i ni t er attribute for setting a delimiter to be used if the header value is a
single String with multiple separated endpoints. By default Camel uses comma as delimiter, but this option lets
you specify a customer delimiter to use instead.

<rout e>
<fromuri="direct:a" />
<I-- use comma as a delinmter for String based val ues -->
<recipientList delimter=",">

<header >myHeader </ header >
</recipi ent Li st >
</ rout e>

So if myHeader containsa String withthevalue" act i venq: queue: f oo, activenqg:topic: hello ,
| og: bar " then Camel will split the String using the delimiter given in the XML that was comma, resulting into
3 endpoints to send to. Y ou can use spaces between the endpoints as Camel will trim the value when it lookup
the endpoint to send to.

Note: In JavaDSL you usethet okeni zer to archive the same. The route abovein Java DSL:

‘fron("di rect:a").recipientlist(header("nyHeader").tokenize(","));

In Camel 2.1 it isabit easier as you can pass in the delimiter as second parameter:

‘frorr("di rect:a").recipientlList(header("nyHeader"), "#");

2.41. Request Reply

Camel supports the Request Reply from the EIP patterns by supporting the Exchange Pattern on a Section 2.23,
“Message” which can be set to InOut to indicate arequest/reply. Camel Components then implement this pattern
using the underlying transport or protocols.

See also the related Section 2.17, “ Event Message” EIP.

Talend ESB Mediation Developer Guide 65

http://camel.apache.org/spring-xml-extensions.html
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/RecipientListTest.java?view=markup
http://www.eaipatterns.com/RequestReply.html
http://camel.apache.org/exchange-pattern.html

Resequencer

't%':j'
Request Request
Channel

e P, —

Reply Reply
Fequestor Channel Replier

For example when using Section 3.24, “JMS’ with InOut the component will by default perform these actions

* create by default atemporary inbound queue

* set the IMSReplyTo destination on the request message

* set the IMSCorrelationl D on the request message

* send the request message

 consume the response and associate the inbound message to the request using the IMSCorrelationlD (as you
may be performing many concurrent request/responses).

When consuming messages from Section 3.24, “JMS’ a Request-Reply is indicated by the presence of the
JM SReplyTo header. Y ou can explicitly force an endpoint to be in Request Reply mode by setting the exchange
pattern on the URI. e.g.

j ms: MyQueue?exchangePat t er n=I nQut

Y ou can also specify the exchange pattern in DSL rule or Spring configuration, see the Request-Reply EIP page
on the Apache Camdl site for the latest updated example.

2.42. Resequencer

The Resequencer from the EIP patterns allows you to reorgani se messages based on some comparator. By default
in Camel we use an Expression to create the comparator; so that you can compare by a message header or the
body or a piece of a message etc.

Yoo et

Resequencer

Camd supports two resequencing algorithms:

66 Talend ESB Mediation Developer Guide

http://camel.apache.org/request-reply.html#RequestReply-ExplicitlyspecifyingInOut
http://www.eaipatterns.com/Resequencer.html
http://camel.apache.org/expression.html

Batch Resequencing

» Batch resequencing collects messages into a batch, sorts the messages and sends them to their output.

e Stream resequencing re-orders (continuous) message streams based on the detection of gaps between
messages.

By default the Section 2.42, “Resequencer” does not support duplicate messages and will only keep the last
message, in case a message arrives with the same message expression. However in the batch mode you can enable
it to alow duplicates. For Batch mode, in Java DSL thereisaal | owDupl i cat es() method and in Spring
XML thereisanal | owDupl i cat es=t r ue attribute on the <bat ch- conf i g/ > you can use to enableit.

2.42.1. Batch Resequencing

The following example shows how to use the batch-processing resequencer so that messages are sorted in order
of the body() expression. That is messages are collected into a batch (either by a maximum number of messages
per batch or using atimeout) then they are sorted in order and then sent out to their output.

Using the Fluent Builders

from"direct:start")
.resequence() . body()
.to("mock:result");

Thisisequivalent to

from"direct:start")
. resequence(body()) . bat ch()
.to("nmock:result");

The batch-processing resequencer can be further configured viathesi ze() andti meout () methods.

from("direct:start")
.resequence(body()).batch().size(300).tinmeout (4000L)
.to("nmock:result")

This sets the batch size to 300 and the batch timeout to 4000 ms (by default, the batch size is 100 and the timeout
is 1000 ms). Alternatively, you can provide a configuration object.

from("direct:start")
. resequence(body()). bat ch(new Bat chResequencer Confi g(300, 4000L))
.to("nock:result")

So the above example will reorder messages from endpoint direct:a in order of their bodies, to the endpoint
mock:result. Typicaly you'd use a header rather than the body to order things,; or maybe a part of the body. So
you could replace this expression with

resequencer (header (" nySeqNo"))

for example to reorder messages using a custom sequence number in the header my SeqNo.

You can of course use many different Expression languages such as XPath, XQuery, SQL or various Scripting
Languages.

Using the Spring XML Extensions

Talend ESB Mediation Developer Guide 67

http://camel.apache.org/fluent-builders.html
http://camel.apache.org/expression.html
http://camel.apache.org/xpath.html
http://camel.apache.org/xquery.html
http://camel.apache.org/sql.html
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/spring-xml-extensions.html

Stream Resequencing

<canel Cont ext id="canel" xm ns="http://canel.apache. org/schenma/spring">
<r out e>
<fromuri="direct:start" />
<r esequence>
<si mpl e>body</ si npl e>
<to uri="nock:result" />
<!--
bat ch-config can be omtted for default (batch)
resequencer settings
-->
<bat ch-confi g bat chSi ze="300" bat chTi meout ="4000" />
</ resequence>
</rout e>
</ canel Cont ext >

In the bat ch mode, you can aso reverse the expression ordering. By default the order is based on 0..9,A..Z,
which would let messages with low numbers be ordered first, and thus also also outgoing first. In some cases you
want to reverse order, which is now possible.

In Java DSL thereisar ever se() method and in Spring XML thereisanr ever se=t r ue attribute on the
<bat ch- confi g/ > you can useto enableit.

2.42.2. Stream Resequencing

The next example shows how to use the stream-processing resequencer. Messages are re-ordered based on their
seguence numbersgiven by as eqnumheader using gap detection and timeouts onthelevel of individual messages.

Using the Fluent Builders

from("direct:start").resequence(header ("seqnuni')).
stream().to("nock:result");

The stream-processing resequencer can be further configured viathecapaci t y() andti meout () methods.

from"direct:start")
. resequence(header ("seqnunt)). stream(). capacity(5000).ti meout (4000L)
.to("mock:result")

This sets the resequencer's capacity to 5000 and the timeout to 4000 ms (by default, the capacity is 1000 and the
timeout is 1000 ms). Alternatively, you can provide a configuration object.

from("direct:start")
. resequence(header ("segnuni)) . strean
new StreanResequencer Confi g(5000, 4000L)).to("nock:result")

The stream-processing resequencer algorithm is based on the detection of gaps in a message stream rather than
on afixed batch size. Gap detection in combination with timeouts removes the constraint of having to know the
number of messages of a sequence (i.e. the batch size) in advance. Messages must contain a unique sequence
number for which a predecessor and a successor is known. For example a message with the sequence number 3
has a predecessor message with the sequence number 2 and a successor message with the sequence number 4. The
message sequence 2,3,5 has a gap because the sucessor of 3 is missing. The resequencer therefore has to retain
message 5 until message 4 arrives (or atimeout occurs).

If the maximum time difference between messages (with successor/predecessor relationship with respect to the
seguence number) in a message stream is known, then the resequencer's timeout parameter should be set to this
value. Inthiscaseit is guaranteed that all messages of astream are delivered in correct order to the next processor.
The lower the timeout value is compared to the out-of-sequence time difference the higher is the probability for
out-of -sequence messages delivered by thisresequencer. Large timeout values should be supported by sufficiently
high capacity values. The capacity parameter is used to prevent the resequencer from running out of memory.

68 Talend ESB Mediation Developer Guide

http://camel.apache.org/fluent-builders.html

Further Examples

By default, the stream resequencer expects | ong sequence numbers but other sequence numbers types can be
supported as well by providing a custom expression.

public class M/Fil eNameExpressi on i npl ements Expression {

public String getFil eName(Exchange exchange) ({
return exchange. getln().getBody(String.class);
}

public Object eval uat e(Exchange exchange) ({
/'l parse the file name with YYYYMVDD- DNNN pattern
String fil eNane = get Fi | eNane(exchange);
String[] files = fileNanme.split("-D");
Long answer = Long. parselLong(files[0]) * 1000 +
Long. par seLong(files[1]);
return answer;

public <T> T eval uat e(Exchange exchange, C ass<T> type) {
oj ect result = eval uat e(exchange);
return exchange. get Cont ext (). get TypeConverter().convert To(type
result);

}

or custom comparator viathe conpar at or () method

Expr essi onResul t Conpar at or <Exchange> conpar at or = new MyConpar at or () ;
from("direct:start")
. resequence(header ("seqgnuni)) . strean() . conpar at or (conpar at or)
.to("nmock:result");

orviaaSt r eanResequencer Confi g object.

Expr essi onResul t Conpar at or <Exchange> conparator = new MyConpar at or () ;
St reanResequencer Confi g config = new StreanResequencer Confi g(100, 1000L
conparator);

from("direct:start")
. resequence(header ("segnuni)). strean{confi g)
.to("nock:result");

Using the Spring XML Extensions

<canel Cont ext id="canel"
xm ns="http://canel . apache. or g/ schema/ spri ng" >
<rout e>
<fromuri="direct:start"/>
<r esequence>
<si mpl e>i n. header . seqnunx/ si npl e>
<to uri="nock:result" />
<stream confi g capacity="5000" ti nmeout="4000"/>
</ resequence>
</rout e>
</ canel Cont ext >

2.42.3. Further Examples

See the Camel Website for further examples of this component in use.

Talend ESB Mediation Developer Guide 69

http://camel.apache.org/spring-xml-extensions.html
http://camel.apache.org/resequencer.html

Return Address

2.43. Return Address

Camel supports the Return Address from the EIP patterns by using the JMSRepl yTo header.

Rleply Rleply
Chaphel 1 Chanpe! 2

Fequest
Channel

Requestor 1 _..:}_,...-...HEF“H

Channel 1 Feeply

Requestor 2

Feply
Channel 2 Feeply

For example when using Section 3.24, “JMS’ with InOut the component will by default return to the address given
in JMSRepl yTo.

Requestor Code:

get MockEndpoi nt (" nmock: bar ") . expect edBodi esRecei ved("Bye Worl d");
tenpl at e. sendBodyAndHeader ("direct:start", "Wrld", "JMSReplyTo",
"queue: bar");

Route Using the Fluent Builders:

from("direct:start").to("acti venq: queue: f oo?preser veMessageQos=true");
from("activeng: queue: f 00"). transform body(). prepend("Bye "));
from("activenq: queue: bar ?di sabl eRepl yTo=t rue").to("nock: bar");

Route Using the Spring XML Extensions:

<rout e>

<fromuri="direct:start"/>

<to uri="activenq: queue: f o0?pr eser veMessageQos=t rue"/ >
</route>

<rout e>

<from uri="activeny: queue: f 00"/ >
<transforne

<si npl e>Bye ${i n. body} </ si npl e>
</transfornpr

</rout e>

<route> <from uri="activemq:queue: bar?disableReply To=true"/> <to uri="mock:bar"/> </route> { code}

For a complete example of this pattern, see this JUnit test case.

70 Talend ESB Mediation Developer Guide

http://www.eaipatterns.com/ReturnAddress.html
http://svn.apache.org/viewvc/camel/trunk/components/camel-jms/src/test/java/org/apache/camel/component/jms/JmsInOnlyWithReplyToAsHeaderTest.java?view=markup

Routing Slip

2.44. Routing Slip

The Routing Slip from the EIP patterns all ows you to route a message consecutively through a series of processing
steps where the sequence of stepsis not known at design time and can vary for each message.

EEEE—
Froc A
OO0
Froc B
Attach Routing Slip
to Meszage —
FProc C

Foute Mezzage
Aocording to Slip

2.44.1. Example

Thefollowing route will take any messages sent to the Apache ActiveM Q queue SomeQueue and pass them into
the Routing Slip pattern.

from("activeny: SomeQueue") . routingSlip("header Name") ;

Messages will be checked for the existance of the "headerName" header. The value of this header should be a
comma-delimited list of endpoint URIs you wish the message to be routed to. The Section 2.23, “Message” will
be routed in a pipeline fashion (i.e. one after the other).

The Section 2.44, “Routing Sip” will set a property (Exchange. SLI P_ENDPQO NT) on the Exchange which
contains the current endpoint as it advanced though the slip. This allows you to know how far we have processed

inthe dip.

The Section 2.44, “Routing Sip” will compute the slip befor ehand which means, the dlip is only computed once.
If you need to compute the slip on-the-fly then use the Section 2.15, “Dynamic Router” pattern instead.

For further examples of this pattern in use see the Camel routing slip test cases.

2.44.2. Configuration options

Here we set the header name and the URI delimiter to something different.

Using the Fluent Builders

from("direct:c").routingSlip("aRoutingSli pHeader", "#");

Using the Spring XML Extensions

Talend ESB Mediation Developer Guide 71

http://www.eaipatterns.com/RoutingTable.html
http://activemq.apache.org
http://www.eaipatterns.com/RoutingTable.html
http://camel.apache.org/uris.html
http://camel.apache.org/exchange.html
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/routingslip
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html

Ignore invalid endpoints

<canel Cont ext i d="buil dRouti ngSli p"
xm ns="http://activeny. apache. or g/ canel / schena/ spri ng" >
<r out e>
<fromuri="direct:c"/>
<routingSlip header Name="aRouti ngSl i pHeader" uriDelimter="#"/>
</rout e>
</ canel Cont ext >

2.44.3. Ignore invalid endpoints

The Section 2.44, “Routing Sip” now supports i gnor el nval i dEndpoi nt's which the Section 2.40,
“Recipient List” also supports. You can useit to skip endpoints which areinvalid.

from("direct:a").routingSlip("nyHeader").ignorelnval i dEndpoi nts();

And in Spring XML it is an attribute on the recipient list tag.

<r out e>

<fromuri="direct:a"/>

<routingSlip header Nane="myHeader" i gnorel nval i dEndpoi nt s="true"/>
</rout e>

Thenlet'ssay thenyHeader containsthefollowing two endpointsdi r ect : f 0o, xxx: bar . Thefirst endpoint
isvalid and works. However the second is invalid and will just be ignored. Camel logs at INFO level about, so
you can see why the endpoint was invalid.

2.44.4. Expression supporting

The Section 2.44, “Routing Sip” now supports to take the expression parameter as the Section 2.40, “ Recipient
List” does. You can tell Camel the expression that you want to use to get the routing dlip.

from("direct:a").routingSlip(header("myHeader")).ignorel nval i dEndpoi nts();

Andin Spring XML it is an attribute on the recipient list tag.

<rout e>
<fromuri="direct:a"/>
<! --NOTE you need to specify the expression el enent
inside of the routingSlip elenent -->
<routingSlip ignorelnval i dEndpoi nts="true">
<header >myHeader </ header >
</routingSlip>
</ rout e>

2.45. Sampling

A sampling throttler allows you to extract a sample of the exchanges from the traffic through a route. It is
configured with a sampling period during which only a single exchange is allowed to pass through. All other
exchanges will be stopped.

72 Talend ESB Mediation Developer Guide

Sampling

Will by default use a sample period of 1 second. Options:

Name Default Value Description

nmessageFr equency |(none) Samples the message every N'th message. Y ou can use
either frequency or period.

sanpl ePeri od 1 Samples the message every N'th message. Y ou can use
either frequency or period.

units seconds Time unit as an enum of java.util.concurrent. TimeUnit
from the JDK.

Y ou can use this EIP with the sanpl e DSL as shown in the following examples:

Using the Fluent Builders These samples also show how you can use the different syntax to configure the
sampling period:

fronm("direct:sanple")

. sanpl e()
.to("nock:result");

from("direct:sanpl e-configured")
.sanpl e(1, Ti meUnit.SECONDS)
.to("nock:result");

from("direct:sanpl e-confi gured-via-dsl")
.sanpl e() . sanpl ePeri od(1).tineUnits(Ti meUnit. SECONDS)
.to("nock:result");

from("direct: sanpl e- nressageFr equency")
. sanpl e(10)
.to("nock:result");

from("direct: sanpl e- nessageFr equency-vi a-dsl ")
. sanpl e() . sanpl eMessageFr equency(5)
.to("nock:result");

Using the Spring XML Extensions And the same examplein Spring XML is:

<rout e>
<fromuri="direct:sanple"/>
<sanpl e sanpl ePeri od="1" units="seconds">
<to uri="nock:result"/>
</ sanpl e>
</rout e>
<rout e>
<from uri="direct:sanpl e- messageFr equency"/ >
<sanpl e messageFr equency="10">
<to uri="nock:result"/>
</ sanpl e>
</rout e>
<rout e>
<fromuri="direct: sanpl e- messageFr equency-vi a-dsl "/ >
<sanpl e messageFr equency="5">
<to uri="nock:result"/>
</ sanpl e>
</rout e>

And since it uses adefault of 1 second you can omit this configuration in case you also want to use 1 second

Talend ESB Mediation Developer Guide 73

http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html

Scatter-Gather

<r out e>
<fromuri="direct:sanple"/>
<I-- will by default use 1 second period -->
<sanpl e>
<to uri="nock:result"/>
</ sanpl e>
</rout e>

2.46. Scatter-Gather

The Scatter-Gather from the EIP patterns allows you to route messages to a number of dynamically specified
recipients and re-aggregate the responses back into a single message.

Cluote
— Vendor A —

Broadcast
e Vendor B I—> —
Cluote Reqguest
— Vendor O I—> —
Ty« ot
41— UO-=0O
O

"Best" Quote

Agoregatar

2.46.1. Dynamic Scatter-Gather Example

In this example we want to get the best quote for beer from severa different vendors. We use a dynamic
Section 2.40, “Recipient List” to get the request for a quote to all vendors and an Section 2.2, “Aggregator” to
pick the best quote out of al the responses. The routes for this are defined as:

74 Talend ESB Mediation Developer Guide

http://www.eaipatterns.com/BroadcastAggregate.html

Dynamic Scatter-Gather Example

<canel Cont ext xm ns="http://canel.apache. org/ schema/ spri ng">
<r out e>
<fromuri="direct:start"/>
<reci pi entLi st>
<header >| i st Of Vendor s</ header >
</recipi ent Li st >
</rout e>
<r out e>
<from uri ="seda: quot eAggr egat or "/ >
<aggr egat e strategyRef="aggregatorStrategy" conpl eti onTi neout ="1000">
<correl ati onExpr essi on>
<header >quot eRequest | d</ header >
</ correl ati onExpr essi on>
<to uri="nock:result"/>
</ aggr egat e>
</rout e>
</ canel Cont ext >

So in thefirst route you see that the Section 2.40, “ Recipient List” islooking at thel i st Of Vendor s header for
thelist of recipients. So, we need to send a message like

Map<String, bject> headers = new HashMap<String, Object>();
headers. put ("l i st Of Vendors", "bean:vendorl, bean:vendor?2, bean:vendor3");
headers. put (" quot eRequest | d*, "quot eRequest-1");
t enpl at e. sendBodyAndHeader s("direct:start",
"<quot e_request itenr\"beer\"/>", headers);

This message will be distributed to the following Endpoint s. bean: vendor 1, bean: vendor 2, and
bean: vendor 3. These are al beans which look like

public class My/Vendor {
private int beerPrice;

@°r oduce(uri = "seda: quot eAggr egat or ")
private Producer Tenpl at e quot eAggr egat or ;

public MyVendor (i nt beerPrice) {
this. beerPrice = beerPrice;

}

public void get Quote(@Path("/quote request/@tem') String item
Exchange exchange) throws Exception {
if ("beer".equals(item) {
exchange. get I n() . set Body(beerPrice);
quot eAggr egat or . send(exchange) ;
} else {
t hrow new Exception("No quote available for " + iten);

}

and are loaded up in Spring like

Talend ESB Mediation Developer Guide 75

http://camel.apache.org/endpoint.html

Dynamic Scatter-Gather Example

<bean i d="aggregator Strategy" cl ass=
"org. apache. canel . spri ng. processor. scattergather. \\
Lowest Quot eAggr egati onStr at egy”/ >

<bean i d="vendor 1"
cl ass="org. apache. canel . spri ng. processor. scatt er gat her. MyVendor " >
<constructor - arg>
<val ue>1</ val ue>
</ construct or - ar g>
</ bean>

<bean i d="vendor 2"
cl ass="org. apache. canel . spri ng. processor. scatt er gat her. MyVendor " >
<constructor - arg>
<val ue>2</ val ue>
</ construct or - ar g>
</ bean>

<bean i d="vendor 3"
cl ass="org. apache. canel . spri ng. processor. scatt er gat her. MyVendor " >
<constructor - arg>
<val ue>3</ val ue>
</ construct or - ar g>
</ bean>

Each bean isloaded with a different price for beer. When the message is sent to each bean endpoint, it will arrive
at the MyVendor . get Quot e method. This method does a simple check whether this quote request is for beer
and then sets the price of beer on the exchange for retrieval at a later step. The message is forwarded on to the
next step using POJO Producing (see the @Produce annotation).

At the next step we want to take the beer quotes from all vendors and find out which one was the best (i.e. the
lowest!). To do this we use an Section 2.2, “Aggregator” with a custom aggregation strategy. The Section 2.2,
“Aggregator” needs to be able to compare only the messages from this particular quote; this is easily done
by specifying a correlationExpression equal to the value of the quoteRequestid header. As shown above in the
message sending snippet, we set this header to quot eRequest - 1. This correlation value should be unique or
you may include responses that are not part of this quote. To pick the lowest quote out of the set, we use a custom
aggregation strategy like

public class Lowest Quot eAggr egati onStr at egy
i mpl enents Aggregati onStrategy {
publ i ¢ Exchange aggr egat e(Exchange ol dExchange, Exchange newExchange) ({
/1 the first time we only have the new exchange
if (ol deExchange == null) {
return newExchange

}

if (ol dExchange. getln().getBody(int.class)
< newkxchange. get I n().getBody(int.class)) {
return ol dExchange

} else {
return newExchange

}
}

Finally, we expect to get the lowest quote of $1 out of $1, $2, and $3.

resul t. expect edBodi esRecei ved(1); // expect the | owest quote

Y ou can find the full example source here:

camel-spring/src/test/javalorg/apache/camel /spring/processor/scattergather/

76 Talend ESB Mediation Developer Guide

http://camel.apache.org/pojo-producing.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/processor/scattergather/

Static Scatter-Gather Example

camel-spring/src/test/resources/org/apache/camel /spring/processor/scattergather/scatter-gather . xml

2.46.2. Static Scatter-Gather Example

Y ou can lock down which recipients are used in the Scatter-Gather by using astatic Section 2.40, “Recipient List”.
It looks something like this

from("direct:start").nulticast().to("seda: vendor1", "seda:vendor2",
"seda: vendor 3") ;

from("seda: vendor 1").to("bean: vendor 1") .t o(" seda: quot eAggr egat or") ;
from("seda: vendor 2") . to("bean: vendor 2") .t o("seda: quot eAggr egat or");
from("seda: vendor 3").to("bean: vendor 3") .t o("seda: quot eAggr egat or") ;

from("seda: quot eAggr egat or ")
. aggr egat e(header (" quot eRequest 1 d"),
new Lowest Quot eAggr egati onStrategy()).to(
"mock:result")

2.47. Selective Consumer

The Selective Consumer from the EIP patterns can be implemented in two ways

%% % Ot

o _ oelective
Specifying Messages with Consurm er
Froducer Selection Values

Heceiver

The first solution is to provide a Message Selector to the underlying URIs when creating your consumer. For
example when using Section 3.24, “JMS’ you can specify a selector parameter so that the message broker will
only deliver messages matching your criteria.

The other approach is to use a Section 2.28, “Message Filter” which is applied; then if the filter matches the
message your consumer isinvoked as shown in the following example

Using the Fluent Builders

Rout eBui | der bui |l der = new Rout eBui | der () {
public void configure() {
error Handl er (deadLet t er Channel (" nock: error"));

from("seda: a")
.filter(header("fo0").isEqual To("bar"))
. process(nmyProcessor) ;

Talend ESB Mediation Developer Guide 77

http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/scattergather/scatter-gather.xml
http://www.eaipatterns.com/MessageSelector.html
http://camel.apache.org/uris.html
http://camel.apache.org/fluent-builders.html

Service Activator

Using the Spring XML Extensions

<bean i d="nyProcessor" class="org. apache. canel . bui | der. MyProcessor"/ >

<camel Cont ext errorHandl er Ref ="error Handl er"
xm ns="http://canel . apache. or g/ schema/ spri ng">

<rout e>
<fromuri="seda: a"/ >
<filter>
<xpat h>$f oo = ' bar' </ xpat h>
<process ref="myProcessor"/>
</filter>
</rout e>

</ canel Cont ext >

2.48. Service Activator

Camel has several endpoint components that support the Service Activator from the EIP patterns.

— % B
Request SEervice
-
oy | S
Requestor Replier

Componentslike Section 3.3, “Bean”, Section 3.8, “CXF” and Pojo provide aaway to bind the message exchange
to a Javainterface/service where the route defines the endpoints and wiresit up to the bean.

In addition you can use the Bean Integration to wire messages to a bean using annotation.

Hereisasimple example of using a Direct endpoint to create a messaging interface to a Pojo Bean service. Using
the Fluent Builders:

from("direct:invokeM/Service").to("bean: nyService");

Using the Spring XML Extensions:

<rout e>
<fromuri="direct:invokeM/Service"/>
<to uri ="bean: nyService"/>

</ rout e>

78 Talend ESB Mediation Developer Guide

http://camel.apache.org/spring-xml-extensions.html
http://www.eaipatterns.com/MessagingAdapter.html
http://camel.apache.org/pojo.html
http://camel.apache.org/bean-integration.html

2.49. Sort

Sort can be used to sort a message. Imagine you consume text files and before processing each file you want to

be sure the content is sorted.

Sort will by default sort the body using a default comparator that handles numeric values or uses the string
representation. You can provide your own comparator, and even an expression to return the value to be sorted.
Sort requires the value returned from the expression evaluation is convertibleto j ava. uti | . Li st asthisis

required by the JDK sort operation.

Name Default Value Description

comparator which doesa A..Z sorting.

compar at or Ref A->Z sorting Refers to a custom javautil.Comparator to use for
sorting the message body. Camel will by default use a

2.49.1. Java DSL Example

In the route below it will read the file content and tokenize by line breaks so each line can be sorted.

from("file://inbox").sort(body().tokenize("\n")).to(
"bean: MySer vi ceBean. processLi ne");

Y ou can pass in your own comparator as a second argument:

from("file://inbox").sort(body().tokenize("\n"),
new MyRever seConparator()).to("bean: MyServi ceBean. processLi ne");

2.49.2. Spring DSL Example

In the route below it will read the file content and tokenize by line breaks so each line can be sorted.

Example 2.1.

<r out e>
<fromuri="file://inbox"/>
<sort>
<si mpl e>body</ si npl e>
</sort>
<beanRef ref="myServiceBean" met hod="processLine"/>
</ route>

And to use our own comparator we can refer to it as a Spring bean:

Example 2.2.

<rout e>
<fromuri="file://inbox"/>
<sort conpar at or Ref =" myRever seConpar at or " >
<si mpl e>body</ si npl e>
</sort>
<beanRef ref="MServiceBean" nethod="processLine"/>
</ rout e>

<bean i d="myRever seConparator" cl ass="com nyconpany. M/Rever seConpar at or "/ >

Talend ESB Mediation Developer Guide

79

Splitter

Besides <si npl e>, you can supply an expression using any language you like, so long asit returns alist.

2.50. Splitter

The Splitter from the EI P patterns allowsyou split amessage into anumber of piecesand processthem individually

— % % %

Crder Crder Order
[term 1 ltern 2 ltern 3

Mew Order oplitter

Y ou need to specify a Splitter asspl i t () . In earlier versions of Camel, youneedtousesplitter ().

Options:
Name Default Value Description
strategyRef Refersto an AggregationStrategy to be used to assemble

therepliesfrom the sub-messages, into asingle outgoing
message from the Splitter. See the defaults described
below in What the Splitter returns.

parallel Processing false If enables then processing the sub-messages occurs
concurrently. Note the caller thread will still wait until
al sub-messages has been fully processed, before it
continues.

executorServiceRef Refers to a custom Thread Pool to be used for parallel
processing. Notice if you set this option, then paralle
processing is automatic implied, and you do not have to
enable that option aswell.

stopOnException fase Whether or not to stop continue processing immediately
when an exception occurred. If disable, then Camel
continue splitting and process the sub-messages
regardiess if one of them failed. You can dea with
exceptions in the AggregationStrategy class where you
have full control how to handle that.

streaming false If enabled then Camel will split in a streaming fashion,
which means it will split the input message in chunks.
This reduces the memory overhead. For example if
you split big messages its recommended to enable
streaming. If streaming is enabled then the sub-message
replies will be aggregated out-of-order, eg in the order
they come back. If disabled, Camel will process sub-
message repliesin the same order asthey where splitted.

timeout Sets atotal timeout specified in millis. If the Recipient
List hasn't been able to split and process all replies
within the given timeframe, then the timeout triggers
and the Splitter breaks out and continues. Natice if you

80 Talend ESB Mediation Developer Guide

http://camel.apache.org/languages.html
http://www.eaipatterns.com/Sequencer.html

Example

Name Default Value Description

provide a TimeoutAwareAggregationStrategy then the
timeout method is invoked before breaking out. If the
timeout is reached with running tasks still remaining,
certain tasks for which it is difficult for Camel to shut
down in agraceful manner may continue to run. So use
this option with a bit of care.

onPrepareRef Refersto acustom Processor to preparethe sub-message
of the Exchange, beforeitsprocessed. Thisallowsyouto
do any custom logic, such as deep-cloning the message
payload if that's needed etc.

shareUnitOfWork fase Whether the unit of work should be shared. See further
below for more details.

Exchange Properties:

Property Type Description

Camel SplitIndex int A split counter that increases for each Exchange being split. The
counter starts from O.

Camel SplitSize int The total number of Exchanges that was splitted. This header is not

applied for stream based splitting. This header is aso set in stream
based splitting, but only on the completed Exchange.

Camel SplitComplete boolean Whether or not this Exchange is the last.

The Section 2.50, “Splitter” will by default return the last splitted message.

The Section 2.50, “Splitter” will by default return the origina input message.

For all versionsY ou can override this by suppling your own strategy asan Aggr egat i onSt r at egy.
See the Came Website for the split aggregate request/reply sample. It uses the same strategy the

Section 2.2, “ Aggregator” supports. This Section 2.50, “ Splitter” can be viewed as having abuild in light
weight Section 2.2, “ Aggregator”.

2.50.1. Example

The following example shows how to take a request from the queue:a endpoint the split it into pieces using an
Expression, then forward each piece to queue:b

Using the Fluent Builders

Rout eBui | der bui |l der = new Rout eBui | der () {
public void configure() {
error Handl er (deadLet t er Channel (" nock: error"));

from("seda: a")

.split(body(String.class).tokenize("\n"))
.to("seda: b");

I

The splitter can use any Expression language so you could use any of the Languages Supported such as XPath,
XQuery, SQL or one of the Scripting Languages to perform the split. e.g.

Talend ESB Mediation Developer Guide 8l

http://camel.apache.org/splitter.html#Splitter-Splitaggregaterequest/replysample
http://camel.apache.org/expression.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/expression.html
http://localhost:8080/confluence/pages/viewpage.action?pageId=3244472
http://camel.apache.org/xpath.html
http://camel.apache.org/xquery.html
http://camel.apache.org/sql.html
http://camel.apache.org/scripting-languages.html

Exchange properties

from("activeng: ny. queue").split(xpath("//foo/bar")).convertBodyTo(
String.class).to("file://sone/directory")

Using the Spring XML Extensions

<canel Cont ext errorHandl er Ref =" error Handl er"
xm ns="http://canel . apache. or g/ schenma/ spri ng" >

<r out e>
<fromuri="seda: a"/ >
<split>

<xpat h>/i nvoi ce/ | i nel t ens</ xpat h>
<to uri="seda: b"/>
</split>
</ rout e>
</ canel Cont ext >

For further examples of this pattern in use see this JUnit test case.
Using Tokenizer from Spring XML Extensions
Y ou can use the tokenizer expression in the Spring DSL to split bodies or headers using atoken. Thisisacommon

use-case, so we provided a special tokenizer tag for this. In the sample below we split the body using a @ as
Separator. Y ou can of course use comma or space or even aregex pattern, also set regex=true.

<canel Cont ext xm ns="http://canel.apache. org/ schema/ spri ng">

<r out e>
<fromuri="direct:start"/>
<split>

<t okeni ze token="@/>
<to uri="nock:result"/>
</split>
</ rout e>
</ canel Cont ext >

Splitting the body in Spring XML is abit harder as you need to use the Simple language to dictate this

<split>
<si mpl e>${ body} </ si npl e>
<to uri="nock:result"/>
</split>

2.50.2. Exchange properties

The following propertiesis set on each Exchange that is split:

header type description

Canel Splitl ndex int A split counter that increases for each Exchange being
split. The counter starts from O.

Canel SplitSize int The total number of Exchanges that was splitted. This
header is not applied for stream based splitting.

Camel Spl it Conpl et e |boolean Whether or not this Exchange is the last.

82 Talend ESB Mediation Developer Guide

http://camel.apache.org/spring-xml-extensions.html
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/SplitterTest.java?view=markup
http://camel.apache.org/spring-xml-extensions.html
http://camel.apache.org/simple.html

Parallel execution of distinct 'parts

2.50.3. Parallel execution of distinct 'parts’

If you want to execute all partsin parallel you can use special notation of spl i t () with two arguments, where
the second one is a boolean flag if processing should be parallel. e.g.

XPat hBui | der xPat hBui | der = new XPat hBui | der ("//foo/ bar");
from("activeny: ny. queue") . split(xPat hBuil der, true).to(
"activeng: ny. parts");

In the boolean option has been refactored into a builder method par al | el Processi ng so it is easier to
understand what the route does when we use a method instead of truejfalse.

XPat hBui | der xPat hBui | der = new XPat hBui | der ("//foo/ bar");
from("activeng: ny. queue") . split(xPat hBuil der). parall el Processing().
to("activenq: my. parts");

2.50.4. Stream based

The XPath enginein Javaand XQuery will load the entire XML content into memory. And thus they are not well
suited for very big XML payloads. Instead you can use a custom Expression which will iterate the XML payload
in a streamed fashion. Alternatively, you can use the Tokenizer language which supports this when you supply
the start and end tokens.

Y ou can split streams by enabling the streaming mode using the st r eami ng builder method.

from("direct:stream ng").split(body().tokenize(",")).stream ng().
to("activenq: my.parts”);

Y ou can a'so supply your custom splitter to use with streaming like this:

import static org.apache. canel . buil der. Expressi onBui | der . beanExpr essi on;
from("direct:stream ng")
.split(beanExpressi on(new MyCustoml teratorFactory(), "iterator"))
.stream ng().to("activeng: ny. parts")

2.50.5. Streaming big XML payloads using Tokenizer
language

If you have abig XML payload, from afile source, and want to split it in streaming mode, then you can use the
Tokenizer language with start/end tokensto do thiswith low memory footprint. (Note the Camel StAX component
can also be used to split big XML filesin a streaming mode.) See the Camel Website for an example.

2.50.6. Specifying a custom aggregation strategy

Thisis specified similar to the Section 2.2, “ Aggregator”.

Talend ESB Mediation Developer Guide 83

http://camel.apache.org/splitter.html#Splitter-StreamingbigXMLpayloadsusingTokenizerlanguage

Specifying a custom ThreadPool Executor

2.50.7. Specifying a custom ThreadPoolExecutor

Y ou can customi ze the underlying ThreadPool Executor used in the parallel splitter. Inthe JavaDSL try something
like this:

XPat hBui | der xPat hBui | der = new XPat hBui | der ("//f oo/ bar");
Execut or Servi ce pool = ...
from("activeng: ny. queue")

.split(xPathBuil der). parall el Processing().executor Servi ce(pool)
.to("activenq: ny. parts");

2.50.8. Using a Pojo to do the splitting

As the Section 2.50, “ Splitter” can use any Expression to do the actual splitting we leverage this fact and use a
method expression to invoke a Section 3.3, “Bean” to get the splitted parts. The Section 3.3, “Bean” should return
avauethatisiterablesuchas:j ava. util . Col Il ection, java.util.lterator oranarray.

In the route we define the Expression as a method call to invoke our Section 3.3, “Bean” that we have registered
with the id mySplitterBean in the Registry.

from("direct: body")
/1 here we use a PQJO bean nySplitterBean to do split payl oad
.split().method("mySplitterBean", "splitBody")
.to("nmock:result");

from("direct: message")
/1 here we use a PQJO bean nySplitterBean to do split nessage
/1l with a certain header val ue
.split().method("mySplitterBean", "splitMessage")
.to("nmock:result");

And the logic for our Section 3.3, “Bean” is as simple as. Notice we use Camel Bean Binding to pass in the
message body as a String object.

84 Talend ESB Mediation Developer Guide

http://camel.apache.org/expression.html
http://camel.apache.org/expression.html
http://camel.apache.org/registry.html
http://camel.apache.org/bean-binding.html

Stop processing in case of exceptions

public class M/SplitterBean {

/**
* The split body method returns something that is iteratable
* such as a java.util.List.
*
* @aram body the payl oad of the inconmi ng nmessage
* @eturn a list containing each part splitted
*/
public List<String> splitBody(String body) {
/1 since this is based on an unit test you can of cause
/1 use different logic for splitting as Canel have out
/1 of the box support for splitting a String based on comma
// but this is for show and tell, since this is Java code
/1 you have the full power how you like to split your nessages
Li st<String> answer = new ArrayList<String>();
String[] parts = body.split(",");
for (String part : parts) {
answer . add(part);

}

return answer;

}

/**

* The split message nmethod returns sonmething that is iteratable
* such as a java.util.List.

@ar am header the header of the incom ng message
@ar am body the payl oad of the incom ng nessage
@eturn a list containing each part splitted
/
publ i c List<Message> splitMessage(@eader(val ue = "user")
String header, @ody String body) ({
/1l we can | everage the Paraneter Bindi ng Annotations
/1 http://camel .apache. org/ par anet er - bi ndi ng- annot at i ons. ht m
/1 to access the message header and body at sane tine,
/1 then create the nmessage that we want, splitter wll
/| take care rest of them
/1 *NOTE* this feature requires Canmel version >= 1.6.1
Li st <Message> answer = new ArraylLi st <Message>();
String[] parts = header.split(",");
for (String part : parts) {
Def aul t Message nmessage = new Def aul t Message() ;
nmessage. set Header ("user", part);
message. set Body(body) ;
answer . add(message) ;

L I

}

return answer;

2.50.9. Stop processing in case of exceptions

The Section 2.50, “Splitter” will by default continue to process the entire Exchange even in case of one of the
splitted message will throw an exception during routing. For example if you have an Exchange with 1000 rows
that you split and route each sub message. During processing of these sub messages an exception isthrown at the
17th. What Camel does by default is to process the remainder 983 messages. Y ou have the chance to remedy or
handle thisin the Aggr egat i onStr at egy.

Talend ESB Mediation Developer Guide 85

http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html

Sharing Unit of Work

But sometimes you just want Camel to stop and let the exception be propagated back, and let the Camel error
handler handleit. Y ou can do this by specifying that it should stop in case of an exception occurred. Thisis done
by the st opOnExcept i on option as shown below:

from"direct:start")
.split(body().tokenize(",")).stopOnException()
. process(new MyProcessor())
.to("rmock:split");

And using XML DSL you specify it asfollows:

<r out e>
<fromuri="direct:start"/>
<split stopOnException="true">
<t okeni ze token=",6"/>
<process ref="myProcessor"/>
<to uri="nock:split"/>
</split>
</ route>

2.50.10. Sharing Unit of Work

The Splitter will by default not share aunit of work between the parent exchange and each splitted exchange. This
means each sub exchange has its own individual unit of work. For example you may have an use case, where you
want to split a big message, and you want to regard that process as an atomic isolated operation that either is a
success or failure. In case of afailure you want that big message to be moved into a dead |etter queue. To support
this use case, you would have to share the unit of work on the Splitter. See the online example maintained on the
Apache Camel site for more information.

XPat hBui | der xPat hBui | der = new XPat hBui | der ("//f oo/ bar");
from("activeng: nmy. queue") . split(xPathBuil der). parall el Processing() .
to("activenmq: my.parts");

2.51. Throttler

The Throttler Pattern allows you to ensure that a specific endpoint does not get overloaded, or that we don't exceed
an agreed SL A with some externa service.

Options:

Name Default Value |Description

maxi munRequest sPer Peri od Maximum number of requests per period to throttle.
This option must be provided and a positive number.
Note, in the XML DSL, this option is configured using
an Expression instead of an attribute.

timePeriodM I Iis 1000 The time period in millis, in which the throttler will
alow at most maximumRequestsPerPeriod number of
messages.

asyncDel ayed false If enabled then any messages which is delayed happens
asynchronously using a scheduled thread pool.

86 Talend ESB Mediation Developer Guide

http://camel.apache.org/splitter.html#Splitter-Sharingunitofwork

Transactional Client

Name Default Value |Description

execut or Ser vi ceRef Refersto acustom Thread Pool to be used if asyncDelay
has been enabled.

cal | er RunsWhenRej ect ed true Isusedif asyncDelayed wasenabled. Thiscontrolsif the
caller thread should execute the task if the thread pool
rejected the task.

Using the Fluent Builders

from("seda:a").throttle(3).tinePeriodMIIis(10000).to("log:result"
"mock:result");

The above example will throttle messages all messages received on seda:a before being sent to mock:result
ensuring that a maximum of 3 messages are sent in any 10 second window. Note that typically you would often
use the default time period of a second. So to throttle requests at 100 requests per second between two endpoints

it would look more like this...

from("seda:a").throttl e(100).to("seda:b");

For further examples of this pattern in use see this JUnit test case.

Using the Spring XML Extensions

<r out e>
<fromuri="seda:a" />
<throttle tinmePeriodMII|is="10000"/>
<const ant >3</ const ant >
<to uri="nmock:result" />
</throttle>
</rout e>

Y ou can let the Section 2.51, “Throttler” use non-blocking asynchronous delaying, which means Camel will use
a scheduler to schedule a task to be executed in the future. The task will then continue routing. This allows the

caller thread to not block and be able to service other messages etc.

‘fron("seda:a").throttle(lOO).asyncEEIayed().to("seda:b");

2.52. Transactional Client

Camel recommends supporting the Transactional Client from the EIP patterns using Spring transactions.

transaction transaction

W/VF

—
Transactional Transactional
Message
Froducer Consurmer
sender Hecelver

Talend ESB Mediation Developer Guide 87

http://camel.apache.org/fluent-builders.html
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ThrottlerTest.java?view=markup
http://camel.apache.org/spring-xml-extensions.html
http://www.eaipatterns.com/TransactionalClient.html

Transaction Policies

Transaction Oriented Endpoints (Camel Toes) like Section 3.24, “JMS’ support using a transaction for both
inbound and outbound message exchanges. Endpoints that support transactions will participate in the current
transaction context that they are called from.

The redelivery in transacted mode is not handled by Camel but by the backing system (the transaction
¥ manager). In such cases you should resort to the backing system how to configure the redelivery.

Y ou should use the SpringRouteBuilder to setup the routes since you will need to setup the Spring context with
the TransactionTemplate s that will define the transaction manager configuration and policies.

For inbound endpoint to be transacted, they normally need to be configured to use a Spring
PlatformTransactionManager. In the case of the IMS component, this can be done by looking it up in the Spring
context.

Y ou first define needed object in the Spring configuration.

<bean i d="j nsTr ansacti onManager"
cl ass="org. spri ngfranmework. j ms. connecti on. JnsTr ansact i onManager " >
<property nane="connectionFactory" ref="jnsConnecti onFactory" />
</ bean>

<bean i d="j msConnecti onFact ory"
cl ass="org. apache. acti veng. Act i veMXonnect i onFact ory" >
<property nane="broker URL" val ue="tcp://Iocal host: 61616"/ >
</ bean>

Then you look them up and use them to create the JInsComponent.

Pl at f or mMTr ansact i onManager transacti onManager =
(Pl at f or milr ansact i onManager) spri ng. get Bean("j nsTr ansact i onManager") ;
Connect i onFact ory connecti onFactory = (Connecti onFactory)
spri ng. get Bean("j nsConnecti onFactory");
JnsConponent conponent = JnsConponent . j nsConponent Tr ansact ed(
connecti onFactory, transacti onManager);
conponent . get Confi gurati on(). set Concurrent Consuners(1);
ct x. addConponent ("acti venqg", conponent);

2.52.1. Transaction Policies

Outbound endpoints will automatically enlist in the current transaction context. But what if you do not want your
outbound endpoint to enlist in the same transaction as your inbound endpoint? The solution isto add a Transaction
Policy to the processing route. You first have to define transaction policies that you will be using. The policies
use a Spring TransactionTemplate under the covers for declaring the transaction demarcation to use. So you will
need to add something like the following to your Spring XML:

<bean i d=" PROPAGATI ON_ REQUI RED"

cl ass="org. apache. canel . spri ng. spi . Spri ngTr ansacti onPol i cy" >
<property nane="transacti onManager" ref="jnsTransacti onManager"/>

</ bean>

<bean i d="PROPAGATI ON_REQUI RES_NEW
cl ass="org. apache. canel . spri ng. spi . Spri ngTr ansacti onPol i cy" >
<property nane="transacti onManager" ref="jnsTransacti onManager"/>
<property nane="propagati onBehavi or Nange"
val ue=" PROPAGATI ON_REQUI RES NEW / >
</ bean>

88 Talend ESB Mediation Developer Guide

http://localhost:8080/confluence/pages/viewpage.action?pageId=3244447
http://camel.apache.org/maven/current/camel-spring/apidocs/org/apache/camel/spring/SpringRouteBuilder.html
http://www.springframework.org/docs/api/org/springframework/transaction/support/TransactionTemplate.html
http://www.springframework.org/docs/api/org/springframework/transaction/PlatformTransactionManager.html
http://www.springframework.org/docs/api/org/springframework/transaction/support/TransactionTemplate.html

OSGi Blueprint

Then in your SpringRouteBuilder, you just need to create new SpringTransactionPolicy objects for each of the
templates.

public void configure() {

Policy requried = bean(SpringTransactionPolicy. cl ass,
" PROPAGATI ON_REQUI RED")) ;

Pol i cy requi renew = bean(Spri ngTransacti onPolicy. cl ass,
" PROPAGATI ON_REQUI RES_NEW)) ;

}

Once created, you can use the Policy objectsin your processing routes:

/! Send to bar in a new transaction
from("activeny: queue: foo"). policy(requirenew).to("activenqg: queue: bar");

/1 Send to bar without a transaction.
from("activeny: queue: f 00") . poli cy(not supported).
to("activenq: queue: bar");

2.52.2. OSGi Blueprint

If you are using OSGi Blueprint then you most likely have to explicit declare apolicy and refer to the policy from
the transacted in the route.

<bean i d="required"
cl ass="org. apache. canel . spri ng. spi . Spri ngTr ansacti onPol i cy" >
<property nane="transacti onManager" ref="jnsTransacti onManager"/>
<property nane="propagati onBehavi or Nane"
val ue=" PROPAGATI ON_REQUI RED"/ >
</ bean>

And then refer to "required” from the route:

<rout e>
<from uri="acti veny: queue: f 00"/ >
<transacted ref="required"/>
<to uri="activenq: queue: bar"/ >
</rout e>

2.52.3. Database Sample

In this sample we want to ensure that two endpoints are under transaction control. These two endpointsinsert data
into a database. The sample appearsin full in a unit test.

First of all we setup the normal Spring configuration file. Here we have defined a DataSource to the HSQLDB
and amost importantly the Spring DataSource TransactionManager that is doing the heavy lifting of ensuring our
transactional policies. You are of course free to use any of the Spring based TransactionMananger, eg. if you are
in afull blown J2EE container you could use JTA or the WebL ogic or WebSphere specific managers.

As we use the new convention over configuration we do not need to configure a transaction policy bean, so we
do not have any PROPAGATI ON_REQUI RED beans. All the beans needed to be configured is standard Spring
beans only, eg. there are no Camel specific configuration at all.

Talend ESB Mediation Developer Guide 89

http://camel.apache.org/maven/current/camel-spring/apidocs/org/apache/camel/spring/SpringRouteBuilder.html
http://svn.apache.org/viewvc/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/interceptor/TransactionalClientDataSourceMinimalConfigurationTest.java?view=log

Database Sample

<I-- this exanple uses JDBC so we define a data source -->

<bean i d="dat aSour ce"
cl ass="org. spri ngfranmewor k. j dbc. dat asour ce. Dri ver Manager Dat aSour ce" >
<property nane="driverC assNanme" val ue="org. hsql db. j dbcDriver"/>
<property nane="url" val ue="j dbc: hsql db: mem canel "/ >
<property nane="usernanme" val ue="sa"/>
<property nane="password" val ue=""/>

</ bean>
<l-- Spring transaction nmanager -->
<l-- that Canel will use for transacted routes -->

<bean i d="t xManager"
cl ass="org. spri ngfranmewor k. j dbc. dat asour ce. Dat aSour ceTr ansact i onManager " >
<property nane="dat aSource" ref="dataSource"/>

</ bean>

<I'-- bean for book business logic -->

<bean i d="bookServi ce"
cl ass="org. apache. canel . spri ng. i nt er cept or . BookSer vi ce" >
<property nane="dat aSource" ref="dataSource"/>

</ bean>

Then we are ready to define our Camel routes. We have two routes: 1 for success conditions, and 1 for aforced
rollback condition. This is after all based on a unit test. Notice that we mark each route as transacted using the
transacted tag

<canel Cont ext xm ns="http://canel .apache. org/ schena/ spri ng">

<rout e>
<fromuri="direct:okay"/>
<I-- W mark this route as transacted. Canel will | ookup the

Spring transacti on nanager and use it by default. W can
optimal |y pass in argunents to specify a policy to use
that is configured with a Spring transacti on nanager of
choi ce. However Canel supports convention over
configuration as we can just use the defaults out of the
box suitable for nost situations -->

<transact ed/ >

<set Body>
<const ant >Ti ger in Action</constant>

</ set Body>

<bean ref ="bookService"/ >

<set Body>
<const ant >El ephant in Acti on</constant>

</ set Body>

<bean ref ="bookService"/>

</rout e>
<r out e>
<fromuri="direct:fail"/>
<I-- we mark this route as transacted. See comments above. -->
<transact ed/ >
<set Body>

<const ant >Ti ger in Action</constant>
</ set Body>
<bean ref ="bookServi ce"/>
<set Body>
<const ant >Donkey i n Acti on</constant >
</ set Body>
<bean ref ="bookServi ce"/>
</rout e>
</ canel Cont ext >

20 Talend ESB Mediation Developer Guide

JMS Sample

That is all that is needed to configure a Camel route as being transacted. Just remember to use the transacted
DSL. Therest is standard Spring XML to setup the transaction manager.

2.52.4. JIMS Sample

In this sample we want to listen for messages on a queue and process the messages with our business logic Java
code and send them along. Since it is based on a unit test the destination is a mock endpoint.

First we configure the standard Spring XML to declare a JM S connection factory, a JM S transaction manager and
our ActiveMQ component that we use in our routing.

<l-- setup JMS connection factory -->
<bean i d="j msConnecti onFact ory"
cl ass="org. apache. acti veng. Act i veMXonnect i onFact ory" >
<property nane="br oker URL"
val ue="vm / /| ocal host ?br oker. per si st ent =f al se&br oker. useJmx=f al se"/>
</ bean>

<l-- setup Spring jns TX manager -->
<bean i d="j nsTr ansacti onManager"
cl ass="org. spri ngfranmewor k. j ms. connecti on. JnsTr ansact i onManager " >
<property nane="connecti onFactory" ref="jnsConnectionFactory"/>
</ bean>

<I-- define our activenqg conponent -->

<bean id="activenmq"
cl ass="org. apache. acti veng. canel . conponent . Act i veMXonponent " >
<property nane="connecti onFactory" ref="jnsConnectionFactory"/>

<I-- define the jms consuner/producer as transacted -->
<property nane="transacted" value="true"/>

<l-- setup the transaction manager to use -->

<I-- if not provided then Camel will automatically use a

JnsTr ansacti onManager, however if you for instance use a JTA
transacti on manager then you nust configure it -->
<property nane="transacti onManager" ref="jnsTransacti onManager"/>
</ bean>

And then we configure our routes. Noticethat all we haveto doismark theroute astransacted using thetransacted
tag.

<canel Cont ext xm ns="http://canel.apache. org/ schema/ spri ng">
<!-- disable JMX during testing -->
<j nxAgent id="agent" disabl ed="true"/>

<r out e>
<l-- 1. fromthe jns queue -->
<fromuri="acti veny: queue: okay"/ >
<l-- 2: mark this route as transacted -->
<transact ed/ >
<l-- 3: call our business logic that is nmyProcessor -->
<process ref="myProcessor"/>
<I-- 4: if success then send it to the nock -->
<to uri="nock:result"/>
</rout e>

</ canel Cont ext >

<bean i d="nyProcessor"
cl ass="or g. apache. canel . conmponent . j ns. t x. JMSTr ansacti onal C i ent Test \\
$MyProcessor"/ >

Talend ESB Mediation Developer Guide 91

http://svn.apache.org/viewvc/camel/trunk/components/camel-jms/src/test/java/org/apache/camel/component/jms/tx/TransactionMinimalConfigurationTest.java?view=log

Validate

Which error handler? When aroute is marked as transacted using transacted, Camel will automatically
¥ use the TransactionErrorHandler as Error Handler. It supports basically the same feature set as the
DefaultErrorHandler, so you can for instance use Exception Clause as well.

2.53. Validate

Validate uses an expression or predicates to validate the contents of a message. It is useful for ensuring that
messages are valid before attempting to process them.

You can use the validate DSL with all kind of Predicates and Expressions. Validate evaluates the Predicate/
Expressionand if itisfalseaPr edi cat eVal i dat i onExcept i on isthrown. If it istrue message processing
continues.

2.53.1. Using from Java DSL

The route below will read the file contents and validate them against aregular expression.

from("file://inbox")
.val i dat e(body(String.class).regex(""\\w{10}\\ \\d{2}\\,\\w24}$"))
.to("bean: MyServi ceBean. processLi ne");

Vadlidate is not limited to the message body. Y ou can also validate the message header.

from("file://inbox")
.val i dat e(header ("bar").i sG eat er Than(100))
.to("bean: MySer vi ceBean. processLi ne");

Y ou can also use validate together with simple.

from("file://inbox")
.val i dat e(si npl e("${in. header. bar} == 100"))
.to("bean: MyServi ceBean. processLi ne");

2.53.2. Using from Spring DSL

To use validate in the Spring DSL, the easiest way isto use simple expressions.

<r out e>
<fromuri="file://inbox"/>
<val i dat e>
<si npl e>${ body} regex M\ \wW{10}\\,\\d{2}\\, \\ W 24} $</ si npl e>
</val i dat e>
<beanRef ref="myServi ceBean" net hod="processLine"/>
</route>

<bean i d="nyServi ceBean" cl ass="com myconpany. MyServi ceBean"/ >

92 Talend ESB Mediation Developer Guide

http://camel.apache.org/transactionerrorhandler.html
http://camel.apache.org/error-handler.html
http://camel.apache.org/defaulterrorhandler.html
http://camel.apache.org/exception-clause.html
http://camel.apache.org/simple.html
http://camel.apache.org/simple.html

Wire Tap

The XML DSL to validate the message header would looks like this:

<rout e>
<fromuri="file://inbox"/>
<val i dat e>
<si npl e>${i n. header. bar} == 100</ si npl e>
</val i dat e>
<beanRef ref="mnmyServi ceBean" nethod="processLine"/>
</rout e>

<bean i d="nyServi ceBean" cl ass="com myconpany. MyServi ceBean"/ >

2.54. Wire Tap

The Wire Tap from the EIP patterns allows you to route messages to a separate tap location while it is forwarded
to the ultimate destination.

Wire Tap

SoUrce —;— Destination

]

Options:

Name Default Value Description

uri The URI of the endpoint to which the wire-tapped
message will be sent. Y ou should use either uri or ref.

r ef Reference identifier of the endpoint to which the wire-
tapped message will be sent. Y ou should use either uri
or ref.

execut or Ser vi ceRef Reference identifier of a custom Thread Pool to use
when processing the wire-tapped messages. If not set,
Camel will use adefault thread pool.

processor Ref Reference identifier of a custom Processor to use for
creating anew message (e.g., the "send a new message”
mode).

copy true Whether to copy the Exchange before wire-tapping the
message.

onPr epar eRef Reference identifier of a custom Processor to prepare
the copy of the Exchangeto bewire-tapped. Thisallows
you to do any custom logic, such as deep-cloning the
message payload.

Talend ESB Mediation Developer Guide 93

http://www.eaipatterns.com/WireTap.html

WireTap node

2.54.1. WireTap node

Camd's WireTap node supports two flavors when tapping an Exchange.

» With the traditional Wire Tap, Camel will copy the original Exchange and set its Exchange Pattern to InOnly,
as we want the tapped Exchange to be sent in a fire and forget style. The tapped Exchange is then sent in a
separate thread so it can run in parallel with the original.

» Camel aso provides an option of sending a new Exchange allowing you to populate it with new values. Seethe
Camel Website for dynamically maintained examples of this pattern in use.

2.54.2. Sending a copy (traditional wire tap)

Using the Fluent Builders

from("direct:start")
.to("l og: foo")
.wireTap("direct:tap")
.to("nmock:result");

Using the Spring XML Extensions

<r out e>
<fromuri="direct:start"/>
<to uri="Ilog: foo"/>

<wi reTap uri="direct:tap"/>
<to uri="nock:result"/>
</ rout e>

94 Talend ESB Mediation Developer Guide

http://camel.apache.org/exchange.html
http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/wire-tap.html#WireTap-SendinganewExchange
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html

Chapter 3. Components

The following Camel components are discussed within this guide:

Component / Artifactld / URI

Description

Section 3.1, “ActiveMQ” / activemg-camel

activenqg: [topic:]destinati onNane

For IMS Messaging with Apache ActiveMQ

Section 3.2, “Atom” / camel-atom

atom uri

Working with Apache Abderafor atom integration, such
as consuming an atom feed.

Section 3.3, “Bean” / camel-core

bean: beanNane[?net hod=someMet hod]

Uses the Camel Bean Binding to bind message
exchanges to beans in the Camel Registry. Is aso
used for exposing and invoking POJO (Plain Old Java
Objects).

Section 3.4, “Cache’ / camel-cache

cache: // cachenane[?opti ons]

The cache component facilitates creation of caching
endpoints and processors using EHCache as the cache
implementation.

Section 3.5, “Class’ / camel-core

cl ass: cl assNane[?net hod=soneMet hod]

Uses the Camel Bean Binding to bind message
exchanges to beans in the Came Registry. Is also
used for exposing and invoking POJOs (Plain Old Java
Objects).

Section 3.6, “Context” / camel-context

cont ext : canel Cont ext | d:
| ocal Endpoi nt Nane

Used to refer to endpoints within a separate
CamelContext to provide a simple black box
composition approach so that routes can be combined
into a CamelContext and then used as a black box
component inside other routes in other Camel Contexts

Section 3.7, “Crypto (Digital Sgnatures)”

crypto: si gn: nane[?opti ons],
crypto:verify: nane[?opti ons]

Used to sign and verify exchanges using the Signature
Service of the Java Cryptographic Extension.

Section 3.8, “CXF” / camel-cxf

Working with Apache CXF for web servicesintegration

Talend ESB Mediation Developer Guide

http://activemq.apache.org/
http://incubator.apache.org/abdera/
http://ehcache.org/
http://apache.org/cxf/

Component / Artifactid / URI

Description

cxf: address[?servi ceC ass=...]

Section 3.9, “CXF Bean Component” / camel-cxf

cxf: bean nane

Process the exchange using a JAX WS or JAX
RS annotated bean from the registry. Requires less
configuration than the above CXF Component.

Section 3.10, “CXFRS’ / camel-cxf

cxfrs: address[?resourcesd asses=. ..]

Working with Apache CXF for REST services
integration

Section 3.11, “Direct” / camel-core

di rect: nane

Synchronous call to another endpoint from same
CamelContext

Section 3.12, “Event” / camel-spring

event://default,
def aul t

spring-event://

Working with Spring ApplicationEvents

Section 3.13, “Exec” / camel-exec

exec:// execut abl e[?opti ons]

For executing system commands

Section 3.14, “File’ / camel-core

file://nameOfFileOrDirectory

Sending messagesto afile or polling afile or directory.

Section 3.15, “Flatpack” / camel-flatpack

flatpack:[fixed|delim:configFile

Processing fixed width or delimited files or messages
using the FlatPack library

Section 3.16, “Freemarker” / camel-freemarker

freemar ker: soneTenpl at eResour ce

Generates aresponse using a Freemarker template

Section 3.17, “FTP” / camel-ftp

ftp://host[:port]/fil eNane

Sending and receiving files over FTP.

Section 3.17, “FTP” / camel-ftp (FTPS)

ftps://host[:port]/fil eName

Sending and receiving files over FTP Secure (TLS and
SSL).

Section 3.18, “HI7”

m na:tcp://hostname[: port]

For working with the HL7 MLLP protocol and the HL7
model using the HAPI library.

Section 3.19, “HTTP4” / camel-http4

htt p4://host nane[: port]

For calling out to external HTTP servers using Apache
HTTP Client 4.x

Section 3.30, “Mail” / camel-mail

i map: // host name[: port]

Receiving email using IMap

Section 3.20, “Jasypt” / camel-jasypt

jasypt: uri

Simplified on-the-fly encryption library, integrated with
Camel.

Section 3.21, “JCR’ / camel-jcr

jcr://luser: password@ epository/ path/
t o/ node

Storing a message in a JCR (JSR-170) compliant
repository like Apache Jackrabbit

Section 3.22, “JDBC” / camel-jdbc

j dbc: dat aSour ceNane?opt i ons

For performing JDBC queries and operations

Section 3.23, “ Jetty” / camel-jetty

For exposing servicesover HTTP

96

Talend ESB Mediation Developer Guide

http://apache.org/cxf/
http://flatpack.sourceforge.net
http://freemarker.org/
http://jackrabbit.apache.org

Component / Artifactid / URI

Description

jetty:url

Section 3.24, “IMS’ / camel-jms

jms:[topic:]destinati onNane

Working with IM S providers

Section 3.25, “JMX" / camel-jmx

jmx: //platfornoptions

For working with IMX notification listeners

Section 3.26, “JPA” / camel-jpa

jpa:/lentityNane

For using adatabase asaqueue viathe JPA specification
for working with OpenJPA, Hibernate or TopLink

Section 3.27, “Jsch” / camel-jsch

scp:/ /1 ocal host/desti nat

i on

Support for the scp protocol.

Section 3.28, “Log” / camel-core

| og: | oggi ngCat egor y[?l evel =ERRCR]

Uses Jakarta Commons Logging to log the message
exchange to some underlying logging system like log4j

Section 3.29, “Lucene” / camel-lucene

| ucene: sear cher Nane: i nsert [?

anal yzer =<anal yzer >]

Uses Apache Lucene to perform Java-based indexing
and full text based searches using advanced analysis/
tokenization capabilities

Section 3.30, “Mail” / camel-mail

mai | : //user-info@ost: port

Sending and receiving email

Section 3.31, “Mock” / camel-core

nock: nane

For testing routes and mediation rules using mocks

Section 3.30, “Mail” / camel-mail

pop3://user-info@ost: port

Receiving email using POP3 and JavaMail

Section 3.32, “MyBatis’ / camel-mybatis

mybati s:// st at enent Nanme

Performs a query, poll, insert, update or delete in a
relational database using MyBatis

Section 3.33, “Properties’ / camel-core

properties://key[?opti ons]

The properties component facilitates using property
placeholders directly in endpoint uri definitions.

Section 3.34, “Quartz’ / camel-quartz

quartz://groupNane/ti mer

Nanme

Provides a scheduled delivery of messages using the
Quartz scheduler

Section 3.35, “Ref” / camel-core

ref : nane

Component for lookup of existing endpoints bound in
the Camel Registry.

Section 3.36, “RMI” / camel-rmi

rm://host[:port]

Working with RMI

Section 3.37, “RSS’ / camel-rss

rss:uri

Working with ROME for RSS integration, such as
consuming an RSS feed.

Section 3.38, “SEDA” / camel-core

seda: nane

Asynchronous call to another endpoint in the same
Camel Context

Section 3.39, “Serviet” / camel-serviet

servl et:uri

For exposing services over HTTP through the servlet
which is deployed into the Web container.

Talend ESB Mediation Developer Guide 97

http://openjpa.apache.org/
http://www.hibernate.org/
http://mybatis.org/
http://www.opensymphony.com/quartz/
http://rometools.org/

Component / Artifactid / URI

Description

Section 3.17, “FTP” / camel-ftp (SFTP)

sftp://host[:port]/fil eNane

Sending and receiving filesover SFTP (FTP over SSH).

Section 3.30, “Mail” / camel-mail

sntp://user-info@ost[: port]

Sending email using SMTP and JavaMail

Section 3.41, “SMPP” / camel-smpp

snpp://user-info@ost[:port]?options

To send and receive SMS using Short Messaging
Service Center using the JISMPP library

Section 3.42, “SNMP” / camel-snmp

snnp:// host[: port] ?options

Polling OID values and receiving traps using SNMP via
SNMPA4J library

Section 3.43, “Spring Integration” / camel-spring-
integration

spring-integration:
def aul t Channel Nare

The bridge component of Camel and Spring Integration

Section 3.45, “ SQL Component” / camel-sql

sql:select * fromtable where id=#

Performing SQL queriesusing JDBC

Section 3.46, “SSH” / camel-ssh

ssh: [user nane[: passwor d] @ host
[:port][?options]

For sending commandsto a SSH server

Section 3.47, “ Stub”

st ub: sonreQ her Canel Uri

Allows you to stub out some physical middleware
endpoint for easier testing or debugging

Section 3.48, “Test” / camel-spring

test: expect edMessagesEndpoi nt Uri

Creates a Section 3.31, “Mock” endpoint which expects
to receive al the message bodies that could be polled
from the given underlying endpoint

Section 3.49, “Timer” / camel-core

tinmer://name

A timer endpoint

Section 3.50, “Velocity” / camel-velocity

vel oci ty: soneTenpl at eResour ce

Generates a response using an Apache Velocity
template

Section 3.51, “VM” / camel-core

vim nane

Asynchronous call to another endpoint in the same VM

Section 3.52, “XQuery Endpoint” / camel-saxon

xquery: someXQuer yResour ce

Generates aresponse using an XQuery template

Section 3.53, “XSLT" / camel-spring

xsl t: someTenpl at eResour ce

Generates aresponse using an XSLT template

Section 3.54, “ Zookeeper”

zookeeper:// host: port/path

Working with ZooK eeper cluster(s)

98

Talend ESB Mediation Developer Guide

http://code.google.com/p/jsmpp/
http://snmp4j.com
http://www.springframework.org/spring-integration
http://velocity.apache.org/
http://www.w3.org/TR/xslt
http://camel.apache.org/zookeeper.html

ActiveMQ

3.1. ActiveMQ

The ActiveM Q component allows messagesto be sent to aJM S Queue or Topic or messages to be consumed from
aJMS Queue or Topic using Apache ActiveMQ.

This component is based on IMS Component and uses Spring's IM S support for declarative transactions, using
Spring's Jnrs Tenpl at e for sending and a Messageli st ener Cont ai ner for consuming. All the options
from the Section 3.24, “JMS’ component also apply for this component.

Maven users will need to add the following dependency to their project:

<dependency>n
<gr oupl d>or g. apache. act i veng</ gr oupl d>
<artifactld>activenqg-canel </artifactld>
<versi on>5. 6. 0</ ver si on>

</ dependency>

3.1.1. URI format and Options

‘act i veny: [queue: | t opi c:] desti nati onNane ‘

where destinationName is an ActiveM Q gqueue or topic name. By default, the destinationNameisinterpreted as
a queue name. For example, to connect to the queue, FOO. BAR, use:

‘act i veny: FOO. BAR ‘

Y ou can include the optional queue: prefix, if you prefer:

‘act i veny: queue: FOO. BAR ‘

To connect to a topic, you must include the t opi c: prefix. For example, to connect to the topic,
St ocks. Pri ces, use

‘act i veny: t opi c: St ocks. Pri ces ‘

For options, see the Section 3.24, “JMS’ component as all these options also apply for this component.

3.1.2. Configuring the Connection Factory

Thistest case shows how to add an ActiveM QComponent to the Camel Context using the activeM QComponent()
method while specifying the brokerURL used to connect to ActiveM Q.

canel Cont ext . addConponent ("acti veng", activeMXonponent (
"vm / /| ocal host ?br oker. persi st ent =fal se"));

3.1.3. Configuring the Connection Factory using
Spring XML

Y ou can configure the ActiveMQ broker URL on the ActiveM QComponent as follows

Talend ESB Mediation Developer Guide 99

http://java.sun.com/products/jms/
http://activemq.apache.org/
http://svn.apache.org/repos/asf/activemq/trunk/activemq-camel/src/test/java/org/apache/activemq/camel/component/ActiveMQRouteTest.java
http://activemq.apache.org/configuring-transports.html

Using connection pooling

<beans xm ns="http://wwmv. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
Xsi : schenalLocat i on="
http://ww. spri ngframewor k. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 2. 0. xsd
http://canel . apache. or g/ schema/ spri ng
http://canel . apache. or g/ schena/ spri ng/ canel - spri ng. xsd" >

<canel Cont ext xm ns="http://canel.apache. org/ schema/ spring">
</ canel Cont ext >

<bean i d="activenq"
cl ass="org. apache. acti veny. canel . conponent . Act i veMConponent " >
<property name="broker URL" val ue="tcp://sonehost: 61616"/>
</ bean>
</ beans>

3.1.4. Using connection pooling

When sending to an ActiveMQ broker using Camel it is recommended to use a pooled connection factory to
efficiently handle pooling of JIMS connections, sessions and producers. This is documented on the ActiveMQ

Spring Support page.

You can grab ActiveMQ'sor g. apache. act i venq. pool . Pool edConnect i onFact or y with Maven:

<dependency>
<gr oupl d>or g. apache. act i veng</ gr oupl d>
<artifactld>activenqg-pool </artifactld>
<versi on>5. 6. 0</ ver si on>

</ dependency>

And then setup the activemq Camel component as follows:

<bean i d="j msConnect i onFact ory"
cl ass="org. apache. acti veng. Act i veMXonnect i onFact or y" >
<property nane="broker URL" val ue="tcp://I ocal host: 61616" />
</ bean>

<bean i d="pool edConnecti onFact ory"
cl ass="org. apache. act i veng. pool . Pool edConnect i onFact or y"
init-method="start" destroy-nethod="stop">
<property nane="naxConnections" val ue="8" />
<property nane="connectionFactory" ref="jnsConnecti onFactory" />
</ bean>

<bean i d="j msConfi g"
cl ass="org. apache. canel . conponent . j ms. JnsConf i gurati on" >
<property nane="connectionFactory" ref="pool edConnecti onFactory"/>
<property nane="concurrent Consuners"” val ue="10"/>

</ bean>

<bean id="activem"
cl ass="org. apache. acti veng. canel . conponent . Act i veMXonponent " >
<property nane="configuration" ref="jnsConfig"/>

</ bean>

Notice the init and destroy methods on the pooled connection factory. Thisisimportant to ensure the connection
pooal is properly started and shutdown.

100 Talend ESB Mediation Developer Guide

http://activemq.apache.org/spring-support.html
http://activemq.apache.org/spring-support.html

Invoking MessagelL istener POJOs in a Camel route

The PooledConnectionFactory will then create a connection pool with up to 8 connections in use at the same
time. Each connection can be shared by many sessions. Thereis an option maxAct i ve you can useto configure
the maximum number of sessions per connection; the default value is 500. From *ActiveMQ 5.7* onwards the
option has been renamed to maxAct i veSessi onPer Connect i on to better reflect its purpose. Notice the
concur r ent Consuner s isset to ahigher value than maxConnect i ons is. Thisis acceptable because each
consumer uses a session and sessions can share the same connection. In the above example we can have 8 * 500
= 4000 active simultaneous sessions.

3.1.5. Invoking MessageListener POJOs in a Camel
route

The ActiveMQ component also provides ahel per TypeConverter from aJM S M essagelistener to aProcessor. This
means that the Bean component is capable of invoking any JIMS MessageL istener bean directly inside any route.

So for example you can create a Messagel istener in IMSlike this:

public class M/Listener inplenments Messageli stener {
public void onMessage(Message j nsMessage)
/1
}

}

Then useit in your Camel route as follows

from("file://foolbar").bean(M/Li st ener. cl ass);

That is, you can reuse any of the Camel Components and easily integrate them into your JMS
Messageli st ener POJO.

3.1.6. Consuming Advisory Messages

ActiveMQ can generate Advisory messages which are put in topics that you can consume. Such messages can
help you send alerts in case you detect slow consumers or to build statistics (number of messages/produced per
day, etc.) The following Spring DSL example shows you how to read messages from atopic.

The below route starts by reading the topic ActiveMQ.Advisory.Connection. To watch another
topic, simply change the name according to the name provided in ActiveMQ Advisory
Messages documentation. The parameter mapJnsMessage=fal se alows for converting the
or g. apache. acti veny. comrand. Act i veMyMessage object from the IMS queue. Next, the body
received is converted into a String for the purposes of this example and a carriage return is added. Finally, the
string is added to afile:

<rout e>
<fromuri=
"activeny: topic: Acti veMQ Advi sory. Connecti on?mapJnsMessage=f al se"/ >
<convertBodyTo type="java.lang. String"/>
<transf or e
<si npl e>${i n. body}  </ si npl e>
</ transfornp
<to uri="file://datalactiveny/ ?fil eExi st =Append&anp; /1
fil eName=advi sor yConnect i on- ${dat e: now. yyyyMwdd} . t xt" />
</rout e>

If you consume a message on a queue, you should see the following files under the data/activemq folder:

Talend ESB Mediation Developer Guide 101

http://activemq.apache.org/advisory-message.html

Atom

advisoryConnection-20100312.txt advisoryProducer-20100312.txt

and containing string:

Acti veMQvessage {commandld = 0, responseRequired = fal se,

messageld = I D:dell-charl es-3258-1268399815140- 1: 0: 0: 0: 221

original Destination = null, original Transactionld = null, producerld = |ID
del | - char| es- 3258-1268399815140- 1: 0: 0: O, destination =
topic://ActiveM) Advi sory. Connecti on, transactionld = null,

expiration = 0, timestanp = 0, arrival = 0, brokerlnTine = 1268403383468,
br okerQut Ti me = 1268403383468, correlationld = null, replyTo = null
persistent = false, type = Advisory, priority = 0, grouplD = null,
groupSequence = 0, targetConsunerld = null, conpressed = fal se,

userI D = null, content = null

mar shal | edProperties = org. apache. activenqg. util.ByteSequence@7e2705,

dat aStructure = Connectionlnfo {commandld = 1, responseRequired = true,
connectionld = ID:dell-charl es-3258-1268399815140- 2: 50,
clientld = ID:dell-charl es-3258-1268399815140- 14: 0, user Nane
password = ***** phrokerPath = null, brokerMster Connect or
manageabl e = true, clientMaster = true}, redeliveryCounter
properties = {origi nBroker Name=nast er,

ori gi nBroker|d=ID: del | -charl es-3258-1268399815140- 0: 0,

ori gi nBroker URL=vm // master}, readOnlyProperties = true,
readOnl yBody = true, droppable = false}

fal se,
0, size = 0,

3.2. Atom

The atom: component is used for polling Atom feeds.

Camel will poll the feed every 60 seconds by default. Note: The component currently only supports polling
(consuming) feeds.

Maven users will need to add the following dependency to their pom xm for this component:

<dependency>
<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactld>canel -atonk/artifactld>
<l-- use the sane version as your Canel core version -->
<ver si on>x. Xx. X</ ver si on>
</ dependency>

See the Apache Camel website for examples of this component in use.

3.2.1. URI format and options

‘atonlllatontki[?options]

where atomUri isthe URI to the Atom feed to poll.

Options

Property Default Description

splitEntries true Ift r ue Camel will poll the feed and for the subsequent
polls return each entry poll by poll. For example, if the

102 Talend ESB Mediation Developer Guide

http://camel.apache.org/atom.html

Exchange data format

Property Default

Description

feed contains seven entries then Camel will return the
first entry on the first poll, the second entry on the next
poll, until no more entrieswhere as Camel will do anew
update on the feed. If f al se then Camel will poll a
fresh feed on every invocation.

filter true

is only used by the split entries to filter the
entries to return. Camel will default use the
Updat eDat eFi | t er that only returns new entries
from the feed. So the client consuming from the feed
never receives the same entry more than once. Thefilter
will return the entries ordered by the newest last.

| ast Updat e nul |

Is only used when filter=true. It defines the
starting timestamp for selecting newer entries
(uses the entry.updated timestamp). Syntax
format is. yyyy- Mi ddTHH MM ss. Example:
2007- 12- 24T17: 45: 59.

throttl eEntries true

Sets whether al entries identified in a single feed
poll should be delivered immediately. If t rue, only
one entry is processed per consuner . del ay. Only
applicablewhensplitEntri esissettotrue.

f eedHeader true

Sets whether to add the Abdera Feed object as aheader.

sortEntries fal se

If splitEntries istrue, this sets whether to sort
those entries by updated date.

consurner . del ay 60000

Delay in milliseconds between each poll.

consuner.initial Del ay 1000

Millis before polling starts.

consuner . user Fi xedDel ay fal se

Ift r ue, usefixed delay between pools, otherwisefixed
rate is used. See ScheduledExecutorService in JDK for
details.

Y ou can append query options to the URI in the following format, ?opt i on=val ue&opti on=val ue&. . .

3.2.2. Exchange data format

Camel will set the In body on the returned Exchange with the entries. Depending onthespl i t Entri es flag
Camel will either returnone Ent ry or aLi st <Ent ry>.

Option Value Behavior

splitEntries true Only asingle entry from the currently being processed feed is
set: exchange. i n. body(Ent ry)

splitEntries fal se |The entire list of entries from the feed is set:
exchange. i n. body(Li st <Entry>)

Camel can set the Feed object on the In header (seef eedHeader option to disable this).

3.2.3. Message Headers

Camel atom uses these headers:

Talend ESB Mediation Developer Guide 103

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html

Bean

Header

Description

Canel At onfFeed

When consuming the
or g. apache. abder a. nodel . Feed abject is set
to this header.

3.3. Bean

The bean: component binds beans to Camel message exchanges.

3.3.1. URI format and options

‘bean: beanl D[?opt i ons]

where beanl D can be any string which is used to look up the bean in the Camel Registry.

Options

Name Type Default Description

met hod String nul | The method name from the bean that will be invoked.
If not provided, Camel will try to pick the method
itself. In case of ambiguity an exception will be thrown.
You can specify type qualifiers to pin-point the exact
method to use for overloaded methods, as well as
specify parameter values directly in the method syntax.
See more details at "Bean Binding" below.

cache bool ean fal se If enabled, Camel will cache the result of the first
Registry look-up. Cache can be enabled if the bean in
the Registry is defined as a singleton scope.

mul ti - bool ean fal se How to treat the parameters which are passed from the

Par anet er - message body; if itist r ue, the In message body should

Array be an array of parameters.

Y ou can append query optionsto the URI in the following format, ?opt i on=val ue&opt i on=val ueé&. ..

3.3.2. Usage

The object instance that is used to consume messages must be explicitly registered with the Camel Registry. For
example, if you are using Spring you must define the bean in the Spring configuration, spri ng. xm ; or if you
don't use Spring, by registering the bean in INDI, as described here:

cont ext . bi nd("bye",

Canel Cont ext canel Cont ext

/1 let's populate the context with the services we need

/1 note that we could just use a spring.xm file to avoid this step
Jndi Cont ext context = new Jndi Cont ext () ;

new SayServi ce(" Good Bye!"));

new Def aul t Canel Cont ext (cont ext) ;

Once an endpoint has been registered, you can build Camel routes that use it to process exchanges.

104

Talend ESB Mediation Developer Guide

Bean as endpoint

/1 let's add a sinple route
canel Cont ext . addRout es(new Rout eBui | der () {
public void configure() {
from("direct:hello").to("bean: bye");
}
1)

Note: A bean: endpoint cannot be defined as the input to the route; that is you cannot consume from it, you can
only route from some inbound message endpoint to the bean endpoint as output. So consider using a direct: or
gueue: endpoint as the input.

You can usethecr eat ePr oxy() methods on ProxyHelper to create a proxy that will generate BeanExchanges
and send them to any endpoint:

Endpoi nt endpoi nt = canel Cont ext . get Endpoi nt ("di rect: hell 0");
| Say proxy = ProxyHel per.createProxy(endpoint, |Say.class);
String rc = proxy.say();

assert Equal s(" Good Bye!", rc);

And the same route using Spring DSL :

<r out e>
<fromuri="direct: hello">
<to uri ="bean: bye"/ >
</rout e>

3.3.3. Bean as endpoint

Camel also supports invoking Section 3.3, “Bean” as an Endpoint. In the route below:

<canel Cont ext xm ns="http://canel.apache. org/ schema/ spri ng">
<rout e>
<fromuri="direct:start"/>
<to uri="nyBean"/>
<to uri="nock:results"/>
</rout e>
</ canel Cont ext >

<bean i d="nyBean" cl ass="org. apache. canel . spring. bi nd. Exanpl eBean"/ >

What happensis that when the exchange is routed to the myBean Camel will use the Bean Binding to invoke the
bean. The source for the bean is just a plain POJO:

public class Exanpl eBean {
public String sayHel lo(String name) {
return "Hello " + nanme + "!";
}

}

Camel will use the Bean Binding to invoke the sayHel | o method, by converting the Exchange's In body to the
St ri ng type and storing the output of the method on the Exchange Out body.

3.3.4. Java DSL bean syntax

Java DSL comes with syntactic sugar for the [Bean] component. Instead of specifying the bean explicitly as the
endpoint (i.e.t o(" bean: beanNanme")) you can use the following syntax:

Talend ESB Mediation Developer Guide 105

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/bean/ProxyHelper.html

Bean Binding

/1 Send nmessage to the bean endpoi nt
/1 and invoke nethod resol ved usi ng Bean Bi ndi ng.
from("direct:start"). beanRef ("beanNane");

/1 Send nmessage to the bean endpoi nt
/1 and invoke given mnethod.
from("direct:start"). beanRef ("beanNane", "methodNane");

Instead of passing name of the reference to the bean (so that Camel will lookup for it in the registry), you can
specify the bean itself:

/1 Send nessage to the given bean instance
from"direct:start"). bean(new Exanpl eBean());

/1l Explicit selection of bean method to be invoked
from("direct:start"). bean(new Exanpl eBean(), "nmethodNane");

/1 Canmel will create the instance of bean and cache it for you
from("direct:start"). bean(Exanpl eBean. cl ass) ;

3.3.5. Bean Binding

How bean methods to be invoked are chosen (if they are not specified explicitly through the method parameter)
and how parameter values are constructed from the Message are all defined by the Bean Binding mechanism. This
is used throughout all of the various Bean Integration mechanismsin Camel.

3.4. Cache

The cache component enables you to perform caching operations using EHCache as the Cache Implementation.
The cache itself is created on demand or if a cache of that name already exists then it is simply utilized with its
original settings.

This component supports producer and event based consumer endpoints.

The Cache consumer is an event based consumer and can be used to listen and respond to specific cache activities.
If you need to perform selections from a pre-existing cache, use the processors defined for the cache component.

Maven users will need to add the following dependency to their pom xm for this component:

<dependency>
<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactld>canel -cache</artifactld>
<l-- use the same version as your Canel core version -->
<ver si on>x. x. X</ ver si on>
</ dependency>

3.4.1. URI format and Options

‘cache:/lcachehhnﬁ[?options]

106 Talend ESB Mediation Developer Guide

URI format and Options

Y ou can append query options to the URI in the following format, ?opt i on=val ue&opti on=val ue&. . .

Options

Name

Default Value

Description

maxEl ement sl nMenory

1000

The numer of elementsthat may be stored in the defined
cache

menor y St or e-
Evi ctionPol i cy

Menor y St or e-
Evi cti on-
Policy. LFU

The number of elements that may be stored in the
defined cache. Optionsinclude

« MemoryStoreEvictionPolicy.LFU - Least frequently
used

* MemoryStoreEvictionPolicy.LRU - Least recently
used

« MemoryStoreEvictionPolicy.FIFO - first in first out,
the oldest element by creation time

over f | owToDi sk

true

Specifies whether cache may overflow to disk

et er nal

fal se

Sets whether elements are eterna. If eternal, timeouts
areignored and the element never expires.

ti meToLi veSeconds

300

The maximum time between creation time and when
an element expires. Is used only if the element is not
eternal.

ti meTol dl eSeconds

300

The maximum amount of time between accesses before
an element expires

di skPer si st ent

fal se

Whether the disk store persists between restarts of the
Virtual Machine.

di skExpi ryThr ead-
I nt er val Seconds

120

The number of seconds between runs of the disk expiry
thread.

cacheManager Fact ory

nul |

If you want to wuse a custom factory
which instantiates and crestes the EHCache
net. sf. ehcache. CacheManager. Use type
of abstract or g. apache. camel .
component . cache. CacheManager Factory.

event Li stener Regi stry

nul |

Sets a list of EHCache
net.sf.ehcache.event.CacheEventListener for all new
caches - no need to define it per cache in
EHCache xml config anymore. Use type of
or g. apache. canel . conponent. cache.
CacheEvent Li st ener Regi stry.

cachelLoader Regi stry

nul |

Sets a list of org.apache.camel. component.cache.
CacheLoaderWrapper that extends EHCache
net.sf.ehcache.loader.Cachel. oader for all new caches
- no need to define it per cache in EHCache xml
config anymore. Use type of or g. apache. canel .
conponent . cache. CachelLoader Regi stry

key

nul |

To configure using a cache key by default. If akey is
provided in the message header, then the key from the
header takes precedence.

operati on

nul |

To configure using an cache operation by default. If an
operation in the message header, then the operation from
the header takes precedence.

Talend ESB Mediation Developer Guide 107

Sending/Receiving Messages to/from the cache

3.4.2. Sending/Receiving Messages to/from the cache

3.4.2.1. Message Headers

Header Description

Camel CacheQper ati on The operation to be performed on the cache. These headers are removed
from the exchange after the cache operationis performed. Valid optionsare

+ CamelCacheGet

» CamelCacheCheck
» CamelCacheAdd

» CamelCacheUpdate
» CamelCacheDelete

» CamelCacheDéleteAll

Canel CacheKey The cache key used to store the Message in the cache. The cache key is
optiona if the Camel CacheOperation is Camel CacheDeleteAll.

Starting with Camel 2.11, the Camel CacheAdd and Camel CacheUpdate operations support additional headers:

Header Type Description

Camel CacheTi neToli ve Integer Timeto live in seconds
Canel CacheTi neTol dl e Integer Timetoidlein seconds
Canel CachekEt er nal Integer Whether the content is eternal

3.4.2.2. Cache Producer

Sending data to the cache involves the ability to direct payloads in exchanges to be stored in a pre-existing or
created-on-demand cache. The mechanics of doing thisinvolve

* setting the Message Exchange Headers shown above.

* ensuring that the Message Exchange Body contains the message directed to the cache

3.4.2.3. Cache Consumer

Receiving data from the cache involves the ability of the CacheConsumer to listen on a pre-existing or created-
on-demand Cache using an event Listener and receive automatic notifications when any cache activity take place
(i.e., Add, Update, Delete, or DeleteAll). Upon such an activity taking place

* an exchange containing M essage Exchange Headers and a M essage Exchange Body containing the just added/
updated payload is placed and sent.

* incase of aCamel CacheDeleteAll operation, the M essage Exchange Header Camel CacheK ey and the Message
Exchange Body are not populated.

108 Talend ESB Mediation Developer Guide

Cache Usage Samples

3.4.2.4. Cache Processors

Thereare aset of nice processorswith the ability to perform cache lookups and selectively replace payload content
at the

* body
» token

» xpath level

3.4.3. Cache Usage Samples

3.4.3.1. Example: Configuring the cache

from("cache:// My/Appl i cati onCache" +
"?maxEl enent sl nMenor y=1000" +
" &renor ySt or eEvi cti onPol i cy=" +
"MenorySt or eEvi cti onPol i cy. LFU' +
"&over f | owToDi sk=t rue" +
"&eternal =true" +
"&t i meToLi veSeconds=300" +
" &t i meTol dl eSeconds=true" +
" &di skPer si stent=true" +
" &di skExpi ryThr eadl nt er val Seconds=300")

3.4.3.2. Example: Adding keys to the cache

Rout eBui | der bui | der = new Rout eBui |l der () {
public void configure() {
from("direct:start")

. set Header (CacheConst ant s. CACHE_OPERATI ON,
const ant (CacheConst ant s. CACHE_OPERATI ON_ADD))

. set Header (CacheConst ant s. CACHE_KEY,
const ant (" Ral ph_Wal do_Enerson"))

.to("cache:// Test Cachel")

3.4.3.3. Example: Updating existing keys in a cache

Rout eBui | der bui | der = new Rout eBui |l der () {
public void configure() {
from("direct:start")

. set Header (CacheConst ant s. CACHE _OPERATI ON,
const ant (CacheConst ant s. CACHE_OPERATI ON_UPDATE))

. set Header (CacheConst ant s. CACHE_KEY,
const ant (" Ral ph_Wal do_Enerson"))

.to("cache:// Test Cachel")

Talend ESB Mediation Developer Guide 109

Cache Usage Samples

3.4.3.4. Example: Deleting existing keys in a cache

Rout eBui | der bui |l der = new Rout eBui | der () {
public void configure() {
from("direct:start")

. set Header (CacheConst ant s. CACHE_OPERATI ON,
const ant (CacheConst ant s. CACHE_DELETE))

. set Header (CacheConst ant s. CACHE_KEY,
const ant (" Ral ph_Wal do_Enerson"))

.to("cache:// Test Cachel")

3.4.3.5. Example: Deleting all existing keys in a cache

Rout eBui | der bui | der = new Rout eBui |l der () {
public void configure() {
from("direct:start")
. set Header (CacheConst ant s. CACHE_OPERATI ON,
const ant (CacheConst ant s. CACHE_DELETEALL))
.to("cache:// Test Cachel");

3.4.3.6. Example: Notifying any changes registering in a Cache to
Processors and other Producers

Rout eBui | der bui | der = new Rout eBui |l der () {
public void configure() {
from("cache:// Test Cachel") . process(new Processor () ({
publ i c void process(Exchange exchange) throws Exception {
String operation =
(String) exchange.getln().get Header (
CacheConst ant s. CACHE_OPERATI ON) ;
String key = (String)
exchange. get I n() . get Header (CacheConst ant s. CACHE_KEY) ;
Ooj ect body = exchange. get |l n() . get Body();
/1 Do sonet hing
}
})
}
};

110 Talend ESB Mediation Developer Guide

Cache Usage Samples

3.4.3.7. Example: Using Processors to selectively replace payload
with cache values

Rout eBui | der bui | der = new Rout eBui |l der () {
public void configure() {
/I Message Body Repl acer
from("cache:// Test Cachel")
.filter(header(CacheConst ants. CACHE KEY) . i sEqual To("greeting"))
. process(new CacheBasedMessageBodyRepl acer (
"cache:// Test Cachel", "farewel | "))
.to("direct:next");
/I Message Token repl acer
from("cache:// Test Cachel")
.filter(header(CacheConst ants. CACHE KEY). i sEqual To(" quote"))
. process(new CacheBasedTokenRepl acer (
"cache: // Test Cachel", "novel ", "#novel #"))
. process(new CacheBasedTokenRepl acer (
"cache:// Test Cachel", "aut hor ", "#aut hor #"))
. process(new CacheBasedTokenRepl acer (
"cache:// Test Cachel", "nunber", "#nunber #"))
.to("direct:next");

/I Message XPath repl acer
from("cache:// Test Cachel")
.filter(header (CacheConst ants. CACHE _KEY)
. i sEqual To(" XM__FRAGVENT"))
. process(new CacheBasedXPat hRepl acer (
"cache: // Test Cachel", "book1", "/ books/ book1"))
. process (new CacheBasedXPat hRepl acer (
"cache: // Test Cachel", "book2", "/ books/ book2"))
.to("direct:next");

3.4.3.8. Example: Getting an entry from the Cache

from("direct:start")
[l Prepare headers
. set Header (CacheConst ant s. CACHE_OPERATI ON, const ant (
CacheConst ant s. CACHE_OPERATI ON_GET))
. set Header (CacheConst ant s. CACHE_KEY, const ant (" Ral ph_Wal do_Emer son"))
.to("cache:// Test Cachel").
/1 Check if entry was not found
. choi ce() . when(header (
CacheConst ant s. CACHE_ELEMENT_WAS FOUND) . i sNul | ()) .
/1 1f not found, get the payload and put it to cache
.to("cxf: bean: someHeavywei ght Oper ati on")
. set Header (CacheConst ant s. CACHE_OPERATI ON, const ant (
CacheConst ant s. CACHE_OPERATI ON_ADD))
. set Header (CacheConst ant s. CACHE_KEY,
const ant (" Ral ph_Wal do_Enerson"))
.to("cache:// Test Cachel")
.end()
.to("direct: next Phase");

Talend ESB Mediation Developer Guide 111

Management of EHCache

3.4.3.9. Example: Checking for an entry in the Cache

Note: The CHECK command tests existence of an entry in the cache but doesn't place a message in the body.

from("direct:start")
/'l Prepare headers
. set Header (CacheConst ant s. CACHE_OPERATI ON,
const ant (CacheConst ant s. CACHE_OPERATI ON_CHECK))
. set Header (CacheConst ant s. CACHE_KEY, const ant (" Ral ph_Wal do_Emer son™"))
.to("cache:// Test Cachel").
/1 Check if entry was not found
. choi ce() . when(header (
CacheConst ant s. CACHE_ELEVENT_WAS FOUND) . i sNul I ())
/1 1f not found, get the payload and put it to cache
.to("cxf: bean: someHeavywei ght Oper ati on").
. set Header (CacheConst ant s. CACHE_OPERATI ON,
const ant (CacheConst ant s. CACHE_OPERATI ON_ADD))
. set Header (CacheConst ant s. CACHE_KEY,
const ant (" Ral ph_Wal do_En®erson"))
.to("cache:// Test Cachel")
.end();

3.4.4. Management of EHCache

EHCache has its own statistics and management from JM X.

Here's a snippet on how to expose them viaJM X in a Spring application context:

<bean i d="ehCacheManagenent Ser vi ce"
cl ass="net . sf. ehcache. managenent . Managenent Ser vi ce"
init-method="init" lazy-init="fal se">
<constructor - ar g>
<bean cl ass="net. sf. ehcache. CacheManager"
fact ory- net hod="get | nst ance"/ >
</ constructor - ar g>
<const ructor - ar g>
<bean cl ass="org. spri ngframework. j nx. support.JmxUtils"
fact ory- net hod="1 ocat eMBeanSer ver"/ >
</ const ructor - ar g>

<constructor-arg val ue="true"/>

<constructor-arg
<constructor-arg

val ue="true
val ue="true
val ue="true

">
">
">

<constructor-arg
</ bean>

Of course the same thing can be done in straight Java:

Managenent Ser vi ce. r egi st er MBeans(CacheManager . get | nst ance(),
nbeanServer, true, true, true, true);

You can get cache hits, misses, in-memory hits, disk hits, size stats this way. You can aso change
CacheConfiguration parameters on the fly.

112 Talend ESB Mediation Developer Guide

http://ehcache.org/
http://camel.apache.org/camel-jmx.html

Class

3.5. Class

3.5.1. Class Component

The class. component binds beans to Camel message exchanges. It works in the same way as the Section 3.3,
“Bean” component but instead of looking up beans from a Registry it creates the bean based on the class name.

3.5.1.1. URI format

‘cl ass: cl assNane[?opti ons]

where className is the fully qualified class name to create and use as bean.

3.5.1.2. Options

Name Type Default Description

met hod String nul | The method name that bean will beinvoked. If not
provided, Camel will try to pick the method itself.
In case of ambiguity an exception is thrown. See
Bean Binding for more details.

mul ti- bool ean fal se How to treat the parameters which are passed from
Par anet er - the message body; if it ist r ue, the In message
Array body should be an array of parameters.

Y ou can append query options to the URI in the following format, ?opt i on=val ue&opti on=val ue&. . .

3.5.1.3. Using Class

Y ou simply usethe class component just asthe Section 3.3, “Bean” component but by specifying thefully qualified
classname instead. For example to use the My FooBean you have to do as follows:

from("direct:start")
.to("cl ass: org. apache. canel . conponent . bean. M\yFooBean")
.to("nmock:result");

Y ou can also specify which method to invoke on the My FooBean, for examplehel | o :

from("direct:start")
.to("cl ass: org. apache. canel . conponent . bean. M/FooBean?net hod=hel | 0")
.to("nmock:result");

3.5.2. Setting properties on the created instance

In the endpoint uri you can specify propertiesto set on the created instance, for example, if ithasaset Pr ef i x
method:

Talend ESB Mediation Developer Guide 113

http://camel.apache.org/registry.html
http://camel.apache.org/bean-binding.html

Context

from"direct:start")
.to("cl ass: or g. apache. canel . conponent . bean. MyPr ef i xBean?pr ef i x=Bye")
.to("nmock:result");

You can also use the # syntax to refer to properties to be looked up in the Registry .

from("direct:start")
.to("cl ass: org. apache. canel . conponent . bean. MyPr ef i xBean?cool =#f 00")
.to("nmock:result");

Thiswill lookup abean from the Registry withtheidf oo andinvoketheset Cool method onthe createdinstance
of the MyPr ef i xBean class.

See more details at the Section 3.3, “Bean” component as the class component works in much the same

3.6. Context

The context component allows you to create new Camel Components from a CamelContext with a number of
routes which is then treated as a black box, alowing you to refer to the local endpoints within the component
from other Camel Contexts.

It is similar to the Routebox component in idea, though the Context component tries to be really simple for end
users; just a simple convention over configuration approach to refer to local endpoints inside the Camel Context
Component.

Maven users will need to add the following dependency to their pom xm for this component:

<dependency>
<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactld>canel -context</artifactld>
<l-- use the sanme version as your Canel core version -->
<ver si on>x. x. X</ ver si on>
</ dependency>

3.6.1. URI format

‘context:canelCbntextld:localEndpointhbne[?options]

Or you can omit the "context:" prefix.

‘canelentextld:IocaIEndpointhbne[?options]

» camelContextld isthe ID you used to register the Camel Context into the Registry.

 localEndpointName can be a valid Came URI evaluated within the black box CamelContext. Or it can
be a logical name which is mapped to any local endpoints. For example if you locally have endpoints like
direct:invoices and seda: purchaseOrders inside a Camel Context of id supplyChain, then you can just use
the URIs supplyChain:invoices or supplyChain:purchaseOr der s to omit the physical endpoint kind and use
purelogica URIs.

114 Talend ESB Mediation Developer Guide

http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://camel.apache.org/routebox.html
http://camel.apache.org/registry.html

Example

Y ou can append query options to the URI in the following format, ?opt i on=val ue&opti on=val ue&. . .

3.6.2. Example

In this example we'll create a black box context, then we'll use it from another Camel Context.

3.6.2.1. Defining the context component

First you need to create a Camel Context, add some routes in it, start it and then register the CamelContext into
the Registry (JNDI, Spring, Guice or OSGi €tc).

Thiscan be donein the usual Camel way from thistest case (see the createRegistry() method); this example shows
Java and JNDI being used:

/] let's create our black box as a Canel context and a set of routes
Def aul t Canel Cont ext bl ackBox = new Def aul t Canel Cont ext (regi stry);
bl ackBox. set Nanme(" bl ackBox") ;
bl ackBox. addRout es(new Rout eBui | der () {
@verride
public void configure() throws Exception {
/'l receive purchase orders, let's process it in sone way then send
/1 an invoice to our invoice endpoint
from("direct: purchaseOrder")
. set Header ("recei ved")
.constant ("true")
.to("direct:invoice");
}
1)
bl ackBox. start ();

regi stry. bi nd("accounts", bl ackBox);

Notice in the above route we are using pure local endpoints (direct and seda). Also note we expose this
Camel Context using the accounts ID. We can do the same thing in Spring via

<canel Cont ext id="accounts" xm ns="http://canel.apache. org/schena/spring">
<rout e>
<fromuri="direct: purchaseC der"/>

<to uri="direct:invoice"/>
</ rout e>
</ canel Cont ext >

3.6.2.2. Using the context component

Then in another CamelContext we can then refer to this "accounts black box" by just sending to
accounts: purchaseOrder and consuming from accounts:invoice .

If you prefer to be more verbose and explicit you could use context:accounts:purchaseOrder or even
context:accounts:direct://purchaseOrder if you prefer. But using logical endpoint URIsis preferred asit hides
the implementation detail and provides asimple logical naming scheme.

Talend ESB Mediation Developer Guide 115

http://camel.apache.org/registry.html
http://svn.apache.org/viewvc/camel/trunk/components/camel-context/src/test/java/org/apache/camel/component/context/JavaDslBlackBoxTest.java?revision=1069442&view=markup

Crypto (Digital Signatures)

For example, if we wish to subsequently expose this accounts black box on some middleware (outside of the black
box) we can do things like:

<canel Cont ext xm ns="http://canel.apache. org/ schema/ spri ng">
<rout e>
<I-- consune froman ActiveM) into the black box -->
<fromuri="activeny: Accounts. PurchaseOrders"/>
<to uri="accounts: purchaseOrders"/>
</ rout e>
<rout e>
<l-- |et's send invoices fromthe black box -->
<l-- to a different ActiveM) Queue -->
<fromuri ="accounts:invoi ce"/>
<to uri="activenq: UK. Accounts. | nvoi ces"/ >
</rout e>
</ canel Cont ext >

3.6.2.3. Naming endpoints

A context component instance can have many public input and output endpoints that can be accessed from outside
its CamelContext. When there are many it is recommended that you use logical names for them to hide the
middleware as shown above.

However when there is only one input, output or error/dead letter endpoint in a component we recommend using
the common posix shell namesin, out and err

3.7. Crypto (Digital Signatures)

Using Camel cryptographic endpoints and Java's Cryptographic extension it is easy to create Digital Signatures
for Exchanges. Camel provides a pair of flexible endpoints which get used in concert to create a signature for an
exchange in one part of the exchange's workflow and then verify the signature in alater part of the workflow.

Maven users will need to add the following dependency to their pom xm for this component:

<dependency>
<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactld>canel -crypto</artifactld>
<l-- use the same version as your Canel core version -->
<ver si on>x. x. X</ ver si on>
</ dependency>

3.7.1. Introduction

Digital signatures make use of Asymmetric Cryptographic techniques to sign messages. From a (very) high level,
the algorithms use pairs of complimentary keys with the special property that data encrypted with one key can
only be decrypted with the other. One, the private key, is closely guarded and used to 'sign' the message while the
other, public key, is shared around to anyone interested in verifying the signed messages. Messages are signed
by using the private key to encrypting a digest of the message. This encrypted digest is transmitted along with
the message. On the other side the verifier recal culates the message digest and uses the public key to decrypt the
the digest in the signature. If both digests match the verifier knows only the holder of the private key could have
created the signature.

116 Talend ESB Mediation Developer Guide

URI Format

Camd uses the Signature service from the Java Cryptographic Extension to do all the heavy cryptographic lifting
required to create exchange signatures.

3.7.2. URI Format

As mentioned Camel provides a pair of crypto endpoints to create and verify signatures:

crypt o: si gn: nane[?opti ons]
crypto: verify: nanme[?opti ons]

* crypto:sign creates the signature and storesit in the Header keyed by the constant Exchange.SIGNATURE, i.e.
"CamelDigital Signature”.

* crypto:sign creates the signature and storesit in the Header keyed by the constant Exchange.SIGNATURE, i.e.
"CamelDigital Signature”.

In order to correctly function, the sign and verify process needs a pair of keys to be shared, signing requiring a
PrivateK ey and verifying aPublicKey (or a Certificate containing one). Using the JCE it is very simpleto generate
these key pairs but it is usually most secure to use a KeyStore to house and share your keys. The DSL is very
flexible about how keys are supplied and provides a number of mechanisms.

The most basic way to way to sign an verify an exchange is with a KeyPair as follows:

from("direct: keypair").to("crypto:sign://basic?privat eKey=#nyPri vat eKey",
"crypto:verify://basic?publi cKey=#nyPubl i cKey", "nock:result");

The same can be achieved with the Spring XML Extensions using referencesto keys:

<r out e>
<fromuri="direct: keypair"/>
<to uri="crypto:sign://basic?privat eKey=#nyPrivat eKey"/>

<to uri="crypto:verify://basi c?publicKey=#nyPubl i cKey"/>
<to uri="nock:result"/>
</rout e>

See the Camel Website for the most up-to-date examples of more advanced usages of this component.

3.7.3. Options

Name Type Default Description

al gorithm String DSA The name of the JCE Signature algorithm that will
be used.

alias String null An alias name that will be used to select akey from
the keystore.

bufferSize Integer 2048 The size of the buffer used in the signature process.

certificate Certificate null A Certificate used to verify the signature of the
exchange's payload. Either this or a Public Key is
required.

keystore KeyStore null A reference to a JCE Keystore that stores keys and
certificates used to sign and verify.

Talend ESB Mediation Developer Guide 117

http://camel.apache.org/crypto-digital-signatures.html#Crypto%28DigitalSignatures%29-Using

CXF

Name Type Default Description

provi der String null The name of the JCE Security Provider that should
be used.

pri vat eKey PrivateKey null The private key used to sign the exchange's payload.

publ i cKey PublicKey null The public key used to verify the signature of the
exchange's payload.

secur eRandom secureRandom | null A reference to a SecureRandom object that will be
used to initialize the Signature service.

password char(] null The password for the keystore.

cl ear Header s String true Remove camd crypto headers from Message after a

verify operation (value can be "true"/"false").

3.8. CXF

When using CXF as a consumer, the Section 3.9, “CXF Bean Component” allows you to factor out how
7 message payloads are received from their processing as a RESTful or SOAP web service. This has the
potential of using amultitude of transportsto consume web services. The bean component's configuration

isalso simpler and provides the fastest method to implement web services using Camel and CXF.

The cxf: component provides integration with Apache CXF for connecting to JAX-WS services hosted in CXF.

Maven users will need to add the following dependency to their pom xm for this component:

<dependency>

<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactld>canel -cxf</artifactld>

<l-- use the sane version as your Canel

<ver si on>x. X. X</ ver si on>

</ dependency>

core version -->

To learn about CXF dependenciesthe VWHI CH- JARS text file can be viewed.

3.8.1. URI format

There are two scenarios:

‘ cxf : bean: cxf Endpoi nt [?opt i ons]

where cxfEndpoint represents abean 1D that references a bean in the Spring bean registry. With this URI format,

most of the endpoint details are specified in the bean definition.

‘ cxf://soneAddr ess[?opti ons]

where someAddr ess specifies the CXF endpoint's address. With this URI format, most of the endpoint details

are specified using options.

For either style above, you can append options to the URI as follows:

118

Talend ESB Mediation Developer Guide

http://cxf.apache.org
http://svn.apache.org/repos/asf/cxf/trunk/distribution/src/main/release/lib/WHICH_JARS

Options

‘cxf : bean: cxf Endpoi nt 2wsdl URL=wsdl / hel | o_wor | d. wsdl &at aFor mat =PAYLQAD

3.8.2. Options

Name

Required

Description

wsdl URL

No

Thelocation of the WSDL.. It is obtained from endpoint address by
defaullt.

Example: file://local/wsdl/hello.wsdl or wsdl/
hel | 0. wsdl

servi ced ass

Yes

The name of the SEI (Service Endpoint Interface) class. This class
can have, but does not require, JSR181 annotations.

This option is only required by POJO mode. If the wsdlURL
option is provided, serviceClass is not required for PAYLOAD
and MESSAGE mode. When wsdlURL option is used without
serviceClass, the serviceName and portName (endpointName for
Spring configuration) options MUST be provided. It is possible
to use # notation to reference aser vi ced ass object instance
from the registry. For example, ser vi ced ass=#beanNane.
The serviceClass for a CXF producer (that is, the t o endpaint)
should be a Javainterface.

It is possible to omit both wsdlURL and serviceClass options
for PAYLOAD and MESSAGE mode. When they are omitted,
arbitrary XML elements can be put in CxfPayload's body in
PAYLOAD modeto facilitate CXF Dispatch Mode.

Please be advised that the referenced object cannot be
a Proxy (Spring AOP Proxy is OK) as it relies on
hj ect . get A ass() . get Name() method for non Spring
AOP Proxy.

Example: or g. apache. canel . Hel | o

servi ced assl nst ance

Yes

Useeither ser vi ceCl ass or servi ced assl nst ance.

Deprecated in 2x. In 1.6x serviceC asslnstance
works like servi ceCd ass=#beanNane, which looks up a
servi ceQbj ect instance from the registry.

Example: servi ced assl nst ance= beanNane

servi ceName

No*

The service name this service is implementing, it maps to the
wsdl : servi ce@ane

*Required for camel-cxf consumer since camel-2.2.0 or if more
than one serviceName is present in WSDL.

Example: { http:-//org.apache.camel} ServiceName

port Nanme

No*

The port name this service is implementing, it maps to the
wsdl : port @ane

*Required for camel-cxf consumer since camel-2.2.0 or if more
than one portName is present under serviceName. Example:
{ http:-//org.apache.camel} PortName

Talend ESB Mediation Developer Guide 119

Options

Name

Required

Description

dat aFor mat

No

The data type messages supported by the CXF endpoint.
Default: POJO

Example: PQJ OPAYL OAD,MESSACE

rel ayHeader s

No

Please see the Description of r el ayHeader s option section for
this option in 2.0. Should a CXF endpoint relay headers along the
route. Currently only available when dat aFor mat =PQJO

Default: true

Exampleit rue,fal se

wr apped

No

Which kind of operation that CXF endpoint producer will invoke.
Default:f al se

Exampleit rue,fal se

wr appedSt yl e

No

New in 2.5.0 The WSDL style that describes how parameters are
represented in the SOAP body. If the valueisfalse, CXF will chose
the document-literal unwrapped style. If the valueistrue, CXF will
chose the document-literal wrapped style.

Default: Nul |

Exampleit rue,f al se

set Def aul t Bus

No

This will set the default bus when CXF endpoint create a bus by
itself.

Default: f al se

Example:it rue,fal se

bus

No

New in 2.0. A default bus created by CXF Bus Factory. Use #
notation to reference a bus object from the registry. The referenced
object must be an instance of or g. apache. cxf . Bus .

Example: bus=#busName

cxf Bi ndi ng

No

New in 2.0, use # notation to reference a CXF binding object
from the registry. The referenced object must be an instance of
or g. apache. canel . conponent . cxf. Cxf Bi ndi ng (use
an instance of org.apache. canel.conponent. cxf.

Def aul t Cxf Bi ndi ng).

Example: cxf Bi ndi ng=#bi ndi ngNane

header Fil ter St rat egy

No

New in 2.0, use# notation to reference aheader filter strategy object
from the registry. The referenced object must be an instance of
org. apache. canel . spi . Header Fi | ter St r at egy (use
an instance of org.apache. canel.conponent. cxf.

Cxf Header Fi l ter- Strat egy). .

Example: header Fi | t er St r at egy=#st r at egyNane

| oggi ngFeat ur eEnabl ed

No

New in 2.3, this option enables CXF L ogging Feature which writes
inbound and outbound SOAP messages to log.

Default: false

120

Talend ESB Mediation Developer Guide

Options

Name

Required

Description

Example:l oggi ngFeat ur eEnabl ed=t r ue

def aul t Oper at i onName

No

New in 2.4, this option will set the default operationName that will
be used by the CxfProducer which invokes the remote service.

Default: null

Example:def aul t Qper ati onNanme=gr eet Me

def aul t Oper at i onNane-
space

No

New in 2.4, this option will set the default operationNamespace that
will be used by the CxfProducer which invokes the remote service.

Default: null

Example:def aul t Oper ati onNanmespace= http://
apache. org/hell o worl d_soap_http

synchr onous

No

New in 2.5, this option will let cxf endpoint decide to use sync or
async APl to do the underlying work. The default value is false
which means camel-cxf endpoint will try to use async APl by
default. Default: false

Example: synchronous=true

publ i shedEndpoi nt Ur |

No

New in 2.5, this option can override the endpointUrl that published
from the WSDL which can be accessed with service address url
plus 2wsdl.

Default: null

Exampl e: publ shedEndpoi ntUrl=http://example.com/service

properties. XXX

No

Allows for setting custom properties to CXF in the endpoint URI.
For example setting propertiesmtom-enabled = true to enable
MTOM.

al | owSt r eani ng

No

This option controls whether the CXF component, when running
in PAYLOAD mode, will parse the incoming messages into DOM
Elements or keep the payload as a javax.xml.transform.Source
object that would allow streaming in some cases.

ski pFaul t Loggi ng

No

Starting in 211, this option controls whether the
Phasel nterceptorChain skips logging Faults that it catches.

The servi ceNane and port Nane are QNames, so if you provide them, be sure to prefix them with their
{ namespace} as shown in the examples above.

3.8.2.1. The descriptions of the dataformats

DataFor mat Description

PQIO POJOs (Plain old Java objects) are the Java parameters to the method being invoked
on the target server. Both Protocol and Logical JAX-WS handlers are supported.

PAYLQAD PAYLQAD is the message payload (the contents of the soap: body) after message
configuration in the CXF endpoint is applied. Only Protocol JAX-WS handler is
supported. Logical JAX-WS handler is not supported.

MESSAGE MESSAGE is the raw message that is received from the transport layer. JAX-WS
handler is not supported.

Talend ESB Mediation Developer Guide 121

http://en.wikipedia.org/wiki/QName

Options

You can determine the data format mode of an exchange by retrieving the
exchange property, Canel CXFDat aFormat. The exchange key constant is defined in
or g. apache. canel . conmponent . cxf . Cxf Const ant s. DATA_ FORMAT _PROPERTY .

3.8.2.2. Logging Messages

CXF'sdefault logger isj ava. uti | . 1 oggi ng . If you want to change it to log4j, proceed as follows. Create a
file, intheclasspath, named META- | NF/ cxf / or g. apache. cxf. | ogger . Thisfileshould containthefully-
qualified name of the class, or g. apache. cxf . common. | oggi ng. Log4j Logger , with no comments, on
asingleline.

Note CXF's Loggi ngQut | nt er cept or outputs outbound messages that are sent on the wire to the
logging system (Java Util Logging). Since the Loggi ngQut | nt er cept or isin PRE_STREAM phase (but
PRE_STREAMphase is removed in MESSAGE mode), you have to configure Loggi ngQut | nt er cept or to
be run during the WRI TE phase. The following is an example:

<bean i d="1 oggi ngQut I nt er cept or "
cl ass="or g. apache. cxf.interceptor. Loggi ngQut | nterceptor">

<l-- it really should have been user-prestream -->
<!-- but CXF does have such phase! -->
<constructor-arg value="wite"/>

</ bean>

<cxf: cxf Endpoi nt i d="servi ceEndpoi nt"
address="http://| ocal host: 9002/ hel | owor | d"
servi ceCl ass="or g. apache. canel . conponent . cxf. Hel | oSer vi ce" >
<cxf:outl nterceptors>
<ref bean="| oggi ngQut I nt erceptor"/>
</ cxf:outl nterceptors>
<cxf: properties>
<entry key="dataFormat" val ue="MESSAGE"/ >
</ cxf: properti es>
</ cxf: cxf Endpoi nt >

3.8.2.3. Description of relayHeaders option

There are in-band and out-of-band on-the-wire headers from the perspective of a JAXWS WSDL -first developer.

Thein-band headers are headers that are explicitly defined as part of the WSDL binding contract for an endpoint
such as SOAP headers.

The out-of-band headers are headers that are serialized over the wire, but are not explicitly part of the WSDL
binding contract.

Headers relaying/filtering is bi-directional.

When a route has a CXF endpoint and the developer needs to have on-the-wire headers, such as SOAP headers,
be relayed along the route to be consumed say by another JAXWS endpoint, then r el ayHeader s should be
settot r ue, which isthe default value.

Ther el ayHeader s=t r ue express an intent to relay the headers. The decision on whether a given header is
relayed is del egated to apluggable instance that implementsthe MessageHeader sRel ay interface. A concrete
implementation of MessageHeader sRel ay will be consulted to decide if a header needsto be relayed or not.
Thereisalready an implementation of SoapMessageHeader sRel ay which bindsitself to well-known SOAP

122 Talend ESB Mediation Developer Guide

Options

name spaces. Currently only out-of-band headers are filtered, and in-band headers will aways be relayed when
r el ayHeader s=t r ue . If there is a header on the wire, whose name space is unknown to the runtime, then a
fall back Def aul t MessageHeader sRel ay will be used, which simply allows all headers to be relayed.

Ther el ayHeader s=f al se setting asserts that al headers in-band and out-of-band will be dropped.

» PQJO and PAYLQAD modes are supported. In PQJ O mode, only out-of-band message headers are available
for filtering as the in-band headers have been processed and removed from header list by CXF. The in-band
headers are incorporated into the MessageCont ent Li st in POJO mode. If filtering of in-band headersis
required, please use PAYLOAD mode or plug in a (pretty straightforward) CXF interceptor/JAXWS Handler
to the CXF endpoint.

» The Message Header Relay mechanism has been merged into Cxf Header Fil ter Strategy . The
rel ayHeader s option, its semantics, and default value remain the same, but it is a property of
Cxf Header Fi | t er St r at egy . Hereisan example of configuring it:

<bean i d="dropAl | MessageHeader sStr at egy"
cl ass="org. apache. canel . conponent . cxf. Cxf Header Fi | t er St r at egy" >

<I-- Set relayHeaders to false to drop all SOAP headers -->
<property nane="rel ayHeaders" val ue="fal se"/>
</ bean>

Then, your endpoint can reference the Cxf Header Fi | t er St r at egy .

<r out e>
<from uri ="cxf: bean: r out er NoRel ayEndpoi nt ?header Fi | t er St r at egy I
#dr opAl | MessageHeader sStrat egy"/ >
<to uri ="cxf:bean: servi ceNoRel ayEndpoi nt ?header Fi | t er St r at egy /1
#dr opAl | MessageHeader sStrat egy"/ >
</ rout e>

e The MessageHeadersRel ay interfface has changed dightly and has been renamed to
MessageHeader Fi |l t er . It is a property of Cxf Header Fi | t er St r at egy . Here is an example of
configuring user defined Message Header Filters:

<bean i d="cust omvessageFi |l ter Strat egy”
cl ass="org. apache. canel . conponent . cxf . Cxf Header Fi | t er St r at egy" >
<property nanme="nessageHeaderFilters">

<list>
<I-- SoapMessageHeaderFilter is the built in filter. -->
<I-- It can be renmoved by omtting it. -->

<bean cl ass=
"org. apache. canel . conponent . cxf . SoapMessageHeader Fil ter"/ >

<l-- Add customfilter here -->
<bean cl ass=
"org. apache. canel . conponent . cxf . soap. Cust onHeader Fil ter"/ >

</list>
</ property>
</ bean>

e Other than relayHeaders, there ae new properties that can be configured in
Cxf Header Fi |l t er St r at egy.

Name Description type Required? |Default value
rel ayHeaders All message headers will be|bool ean No true
processed by Message Header Filters
rel ayAll - All message headers will be|/bool ean No fal se
MessageHeader s |propagated (without processing by
Message Header Filters)

Talend ESB Mediation Developer Guide 123

Configure the CXF endpoints with Spring

Name Description type Required? |Default value

allowFilter- If two filters overlap in activation|bool ean No fal se
NanespaceCl ash |namespace, the property control how
it should be handled. If the value is
true, last one wins. If the value is
f al se, it will throw an exception

3.8.3. Configure the CXF endpoints with Spring

You can configure the CXF endpoint with the Spring configuration file shown below, and you can also embed
the endpoint into the canel Cont ext tags. When you are invoking the service endpoint, you can set the
oper ati onNare and oper at i onNanmespace headersto explicitly state which operation you are calling.

<beans xm ns="http://ww. spri ngfranework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: cxf="http://canel . apache. or g/ schema/ cxf"
XsSi : schenalLocat i on="
http://ww. spri ngfranmewor k. or g/ schenma/ beans
http://ww. spri ngfranmewor k. or g/ schema/ beans/ spri ng- beans- 2. 0. xsd
http://canel . apache. or g/ schena/ cxf
http: //canel . apache. or g/ schema/ cxf/ canel - cxf. xsd
http://canel . apache. or g/ schena/ spri ng
http://canel . apache. or g/ schenma/ spri ng/ canel - spri ng. xsd" >

<cxf: cxf Endpoi nt i d="r out er Endpoi nt"
address="http://| ocal host: 9003/ Canel Cont ext / Rout er Port"
servi ceC ass="org. apache. hel | o_worl d_soap_http. Geeterlnpl"/>

<cxf: cxf Endpoi nt i d="servi ceEndpoi nt"
address="http://| ocal host: 9000/ SoapCont ext / SoapPort"
wsdl URL="testutils/hello_world. wsdl"
servi ceC ass="org. apache. hel | o_worl d_soap_http. Geeter"
endpoi nt Nane="s: SoapPort"
servi ceNane="s: SOAPSer vi ce"
xm ns:s="http://apache. org/hell o _world soap_http" />

<canel Cont ext id="canel"
xm ns="http://activeny. apache. or g/ canel / schema/ spri ng" >
<r out e>
<from uri ="cxf: bean: rout er Endpoi nt" />
<to uri ="cxf:bean: servi ceEndpoint" />
</rout e>
</ canel Cont ext >
</ beans>

Be sure to include the JAX-WS schenalLocati on attribute specified on the root beans element. This
allows CXF to validate the file and is required. Also note the namespace declarations at the end of the
<cxf: cxf Endpoi nt/ > tag--these are required because the combined { nanespace} | ocal Nane syntax is
presently not supported for this tag's attribute values.

Thecxf : cxf Endpoi nt element supports many additional attributes:

Name Value

Por t Name The endpoint name this service is implementing, it maps to the
wsdl : port @ane . In the format of ns: PORT_NAME where ns is a
namespace prefix valid at this scope.

124 Talend ESB Mediation Developer Guide

Configure the CXF endpoints with Spring

Name

Value

servi ceNane

The service name this service is implementing, it maps to the
wsdl : servi ce@ane . In the format of ns: SERVI CE_NAME where
ns isanamespace prefix valid at this scope.

wsdl URL The location of the WSDL. Can be on the classpath, file system, or be
hosted remotely.

bi ndi ngl d The bi ndi ngl d for the service model to use.

addr ess The service publish address.

bus The bus name that will be used in the JAX-WS endpoint.

servi ced ass

The class name of the SEI (Service Endpoint Interface) class which could
have JSR181 annotation or not.

It also supports many child elements:

Name Value

cxf:inlnterceptors Theincoming interceptors for this endpoint. A list of <bean> or <r ef >.

cxf:inFaul tlnterceptors |Theincoming fault interceptors for this endpoint. A list of <bean> or
<ref>.

cxf:outlnterceptors The outgoing interceptors for this endpoint. A list of <bean> or <r ef > .

cxf:out Faul t 1 nterceptors |The outgoing fault interceptors for this endpoint. A list of <bean> or
<ref>.

cxf:properties A properties map which should be supplied to the JAX-WS endpoint. See
below.

cxf: handl ers A JAX-WS handler list which should be supplied to the JAX-WS endpoint.
See below.

cxf : dat aBi ndi ng Y ou can specify thewhich Dat aBi ndi ng will beuseintheendpoint. This
can be supplied using the Spring<bean cl ass=" MyDat aBi ndi ng"/
> syntax.

cxf: bi ndi ng Y ou can specify the Bi ndi ngFact or y for thisendpoint to use. Thiscan
besupplied usingthe Spring<bean cl ass="MyBi ndi ngFact ory"/
> syntax.

cxf:features The features that hold the interceptors for this endpoint. A list of
{{<bean>}}sor {{<ref>}}s

cxf:schemalLocati ons Theschemalocationsfor endpoint touse. A list of {{ <schemal ocation>}} s

cxf:serviceFactory The service factory for this endpoint to use. This can be supplied using the

Spring <bean cl ass="MySer vi ceFact ory"/ > syntax

Y ou can find more advanced examples which show how to provide interceptors, properties and handlers here.

NOTE Y ou can use cxf:properties to set the camel-cxf endpoint's dataFormat and setDefaultBus properties from
Spring configuration file.

<cxf: cxf Endpoi nt id="test Endpoi nt" address="http://| ocal host: 9000/ rout er"
servi ceCl ass="or g. apache. canel . conponent . cxf. Hel | oSer vi ce"

endpoi nt Nane="s: Por t Nane"

servi ceName="s: Servi ceNane"

xm ns: s="http://ww. exanpl e. com t est" >

<cxf: properties>
<entry key="dat aFormat" val ue="MESSAGE"/ >
<entry key="set Def aul t Bus" val ue="true"/>

</ cxf: properties>

</ cxf: cxf Endpoi nt >

Talend ESB Mediation Developer Guide 125

http://cwiki.apache.org/CXF20DOC/jax-ws-configuration.html

How to consume a message from a camel-cxf endpoint in POJO data format

3.8.4. How to consume a message from a camel-cxf
endpoint in POJO data format
The canel - cxf endpoint consumer POJO data format is based on the cxf invoker, so the message header has

a property with the name of Cxf Const ant s. OPERATI ON_NANME and the message body is a list of the SEI
method parameters.

public class PersonProcessor inplenents Processor {

private static final transient Logger LOG =
Logger Fact ory. get Logger (Per sonPr ocessor . cl ass) ;

@uppr essWar ni ngs(" unchecked")
publ i c void process(Exchange exchange) throws Exception {
LOG i nfo("processi ng exchange in canel");

Bi ndi ngOperati onl nfo boi =

(Bi ndi ngQper at i onl nf 0) exchange. get Propert y(

Bi ndi ngOper ati onl nfo.class.toString());
if (boi !'=null) {

LOG i nfo("boi .isUnw apped” + boi.isUnw apped());
}

[/l Get the paraneters |ist which elenent is the hol der.
MessageCont ent sLi st nmsgLi st = (
MessageCont ent sLi st) exchange. get I n() . get Body() ;

Hol der <Stri ng> personld = (Hol der<String>)nsgLi st. get(0);
Hol der<String> ssn = (Hol der<String>) nsgLi st.get(1);
Hol der<Stri ng> nane = (Hol der<String>)nsgLi st. get(2);

if (personld.value == null || personld.value.length() == 0) {
LOG i nfo("person id 123, so throw ng exception");
/1 Try to throw out the soap fault nessage
or g. apache. canel . wsdl _first.types. UnknownPer sonFault personFault =
new or g. apache. canel . wsdl _first.types. UnknownPer sonFaul t () ;
per sonFaul t . set Personl d("");
org. apache. canel . wsdl _first. UnknownPersonFault fault =
new or g. apache. canel . wsdl _first. UnknownPer sonFaul t (
"CGet the null value of person name", personFault);
/1 Since Canel has its own exception handler franework, we can't
/1 throw the exception to trigger it. W set the fault nessage
/1 in the exchange for canel -cxf conponent handling and return
exchange. get Qut (). set Faul t (true);
exchange. get Qut (). set Body(faul t);

return;
}
nane. val ue = "Bonjour";
ssn.val ue = "123";

LOG i nfo("setting Bonjour as the response");

/1 Set the response nessage, first elenent is the return val ue of

/1 the operation, the others are the hol ders of nethod paraneters
exchange. get Qut () . set Body(new Cbject[] {null, personld, ssn, nane});

126 Talend ESB Mediation Developer Guide

http://cwiki.apache.org/CXF20DOC/invokers.html

How to prepare the message for the camel-cxf endpoint in POJO data format

3.8.5. How to prepare the message for the camel-cxf
endpoint in POJO data format
Thecamel - cxf endpoint producer isbased on the CXF client API. First you need to specify the operation name

in the message header, then add the method parametersto alist, and initialize the message with this parameter list.
The response message's body is a messageContentsList; you can get the result from that list.

Note: the message body is a MessageCont ent sLi st . If you want to get the object array from the message
body, you can get the body using message. get body(Obj ect[] . cl ass), asfollows:

Exchange sender Exchange = new Def aul t Exchange(cont ext,
ExchangePattern. | nQut) ;
final List<String> parans = new ArrayList<String>();

/'l Prepare the request nessage for the canel-cxf procedure

par ans. add(TEST_MESSAGE) ;

sender Exchange. get I n() . set Body(par ans) ;

sender Exchange. get | n() . set Header (Cxf Const ant s. OPERATI ON_NANME,
ECHO_OPERATI ON) ;

Exchange exchange = tenpl ate. send("di rect: Endpoi nt A", sender Exchange);
or g. apache. canel . Message out = exchange. get Qut () ;

/1 The response nessage's body is a MessageContentsLi st whose first
/! element is the return value of the operation. If there are sone hol der
/| paraneters, the hol der parameter will be filled in the rest of List.
/1l The result will be extracted fromthe MessageContentsList with the
/1 String class type
MessageCont entsLi st result = (MessageContentsLi st)out. get Body();
LOG i nfo("Received output text: " + result.get(0));
Map<String, Object> responseContext =
Cast Uti | s. cast ((Map)out. get Header (O i ent . RESPONSE_CONTEXT)) ;
assert Not Nul | (r esponseCont ext) ;

assert Equal s("We shoul d get the response context here", "UTF-8",
r esponseCont ext . get (or g. apache. cxf. nessage. Message. ENCODI NG)) ;
assert Equal s("Reply body on Canel is wong", "echo " +

TEST_MESSAGE, result.get(0));

3.8.6. How to deal with the message for a camel-cxf
endpoint in PAYLOAD data format

PAYLQOAD means that you process the payload message from the SOAP envelope. You can use the
Header . HEADER LI ST as the key to set or get the SOAP headers and use the Li st <El enent > to set or
get SOAP body elements.

We use the common Camel Def aul t Messagel npl underlayer. Message. get Body() will return an
or g. apache. canel . conponent . cxf. Cxf Payl oad object, which has getters for SOAP message
headers and Body elements. This change enables decoupling the native CXF message from the Camel message.

Talend ESB Mediation Developer Guide 127

https://svn.apache.org/repos/asf/cxf/trunk/api/src/main/java/org/apache/cxf/endpoint/Client.java

How to get and set SOAP headersin POJO mode

prot ect ed Rout eBui |l der creat eRout eBuil der() {
return new Rout eBuil der () {
public void configure() ({
from(SI MPLE_ENDPO NT_URI + " &dat aFor mat =PAYLOAD")
.to("log:info").process(new Processor() {
@uppr ess\War ni ngs(" unchecked")
public void process(final Exchange exchange)
t hrows Excepti on{
Cxf Payl oad<SoapHeader > r equest Payl oad =
exchange. get I n() . get Body(Cxf Payl oad. cl ass) ;
Li st <El ement > i nEl ements = request Payl oad. get Body() ;
Li st <El ement > out El enents = new Arrayli st <El ement >();
/1 You can use a custoner toStringConverter to turn a
/| CxfPayLoad message into String as you want
String request = exchange.getln().getBody(String.class);
Xm Converter converter = new Xnml Converter();
String docString = ECHO RESPONSE;
if (inEl enments. get(0).getLocal Nane() .
equal s("echoBool ean")) {
docString = ECHO BOOLEAN RESPONSE;
assert Equal s("Get a wong request",
ECHO BOOLEAN REQUEST, request);

} else {
assert Equal s("Get a wong request", ECHO REQUEST,
request);
}

Document out Document = converter.toDOVDocunent (docString);
out El ement s. add(out Docunent . get Docunent El enent ()) ;
/'l set the payl oad header with null
Cxf Payl oad<SoapHeader > r esponsePayl oad =

new Cxf Payl oad<SoapHeader >(nul |, out El enents);
exchange. get Qut () . set Body(r esponsePayl oad) ;

3.8.7. How to get and set SOAP headers in POJO mode

PQJ O means that the data format is a "list of Java objects’ when the Camel-cxf endpoint produces or consumes
Came exchanges. Even though Camel expose message body as POJOs in this mode, Camel-cxf still provides
access to read and write SOAP headers. However, since CXF interceptors remove in-band SOAP headers from
Header list after they have been processed, only out-of-band SOAP headers are available to Camel-cxf in POJO
mode.

The following example illustrate how to get/set SOAP headers. Suppose we have a route that forwards from one
Camel-cxf endpoint to another. That is, SOAP Client -> Camel -> CXF service. We can attach two processors
to obtain/insert SOAP headers at (1) before request goes out to the CXF service and (2) before response comes
back to the SOAP Client. Processor (1) and (2) in this example are InsertRegquestOutHeaderProcessor and
I nsertResponseOutHeaderProcessor. Our route looks like this:

<r out e>
<from uri ="cxf: bean: rout er Rel ayEndpoi nt Wt hl nserti on"/>
<process ref="Insert Request Qut Header Processor" />
<to uri ="cxf:bean: servi ceRel ayEndpoi nt Wt hl nsertion"/>
<process ref="Insert ResponseQut Header Processor" />
</rout e>

128 Talend ESB Mediation Developer Guide

How to get and set SOAP headers in POJO mode

In 2x SOAP headers are propagated to and from Camel Message headers. The Camel
message header name is "org.apache.cxf.headers.Header.list" which is a constant defined in CXF
(org.apache.cxf.headers.Header. HEADER _LIST). The header value is a List of CXF SoapHeader objects
(org.apache.cxf.binding.soap.SoapHeader). The following snippet is the InsertResponseOutHeaderProcessor
(that inserts a new SOAP header in the response message). The way to access SOAP headers in both
I nsertResponseOutHeaderProcessor and InsertRequestOutHeaderProcessor is the same. The only difference
between the two processors is setting the direction of the inserted SOAP header.

public static class |InsertResponseCQut Header Processor i nplements Processor {

@uppr essWar ni ngs(" unchecked")
public void process(Exchange exchange) throws Exception {
Li st <SoapHeader > soapHeaders =
(Li st)exchange. getln() . get Header (Header . HEADER LI ST) ;

/1 Insert a new header
String xm =
"<?xm version=\"1.0\" encodi ng=\"utf-8\"?><out of bandHeader "
+ "xm ns=\"http://cxf.apache. or g/ out of band/ Header\" "
"hdrAttribute=\"testHdrAttri bute\" "
"xm ns: soap=\"http://schemas. xm soap. or g/ soap/ envel ope/\" "
"soap: nmust Under st and=\ "1\ " ><nane>"
"New_t est CobHeader </ name><val ue>New_t est CobHeader Val ue"
"</ val ue></ out of bandHeader >";

+ + + + o+

SoapHeader newHeader = new SoapHeader (soapHeaders. get (0).
get Name(), DOMUils.readXm (new StringReader (xm)).
get Docunent El enent ()) ;

/1 make sure direction is QUT since it is a response nessage.
newHeader . set Di recti on(Direction. DI RECTI ON_OUT) ;

/ I newHeader . set Must Under st and(f al se) ;

soapHeader s. add(newHeader) ;

In 1.x SOAP headers are not propagated to and from Camel Message headers. Users have to go deeper into CXF
APIsto access SOAP headers. Also, accessing the SOAP headersin arequest message is dlight different thanin a
response message. The | nsertRequestOutHeaderProcessor and | nsertResponseOutHeader Processor are asfollows:

Talend ESB Mediation Developer Guide 129

How to get and set SOAP headersin POJO mode

public static class |InsertRequest Qut Header Processor inpl ements Processor {

public void process(Exchange exchange) throws Exception {
Cxf Message nmessage = exchange. getl n(). get Body(Cxf Message. cl ass) ;
Message cxf = nessage. get Message();
Li st <SoapHeader > soapHeaders = (List)cxf.get(Header. HEADER LI ST);

/1 Insert a new header
String xm =
"<?xm version=\"1.0\" encodi ng=\"utf-8\"?><out of bandHeader "
+ "xm ns=\"http://cxf.apache. or g/ out of band/ Header\" "
"hdrAttribute=\"testHdrAttri bute\" "
"xm ns: soap=\"http://schemas. xm soap. or g/ soap/ envel ope/\
" soap: nust Under st and=\ " 1\ " ><name>"
"New_t est CobHeader </ nane><val ue>New t est CobHeader Val ue"
"</ val ue></ out of bandHeader >" ;

+ + + + +

SoapHeader newHeader = new SoapHeader (soapHeaders. get (0) . get Name(),
DOMUti | s. readXm (new StringReader (xm)). get Docunent El ement ()) ;

/1 make sure direction is INsince it is a request nessage.
newHeader . set Di recti on(Direction. DI RECTION_IN);

/ I newHeader . set Must Under st and(f al se) ;

soapHeader s. add(newHeader) ;

}

public static class |InsertResponseCut Header Processor
i mpl ements Processor {

public void process(Exchange exchange) throws Exception {
Cxf Message nmessage = exchange. getln(). get Body(Cxf Message. cl ass) ;
Map responseCont ext =
(Map) message. get Message() . get (C i ent . RESPONSE_CONTEXT) ;
Li st <SoapHeader > soapHeaders =
(Li st)responseCont ext . get (Header . HEADER LI ST) ;

/1 Insert a new header

String xm = "<?xm version=\"1.0\" encodi ng=\"utf-8\"?>"
+ "<out of bandHeader xm ns="

"\"http://cxf.apache. or g/ out of band/ Header\ "

"hdrAttribute=\"testHdrAttri bute\" "

"xm ns: soap=\"http://schemas. xm soap. or g/ soap/ envel ope/\ "

"soap: must Under st and=\ " 1\ " >"

"<name>New_t est CobHeader </ name><val ue>"

"New_t est CobHeader Val ue</ val ue></ out of bandHeader >";

+ + + + + o+

SoapHeader newHeader = new SoapHeader (soapHeaders. get (0).
get Name() ,
DOMUti | s. readXm (new Stri ngReader (xm)) . get Docunent El enent ()

DK

/1 make sure direction is OQUT since it is a response nessage.
newHeader . set Di recti on(Di recti on. DI RECTI ON_QUT) ;

/ I newHeader . set Must Under st and(f al se) ;

soapHeader s. add(newHeader) ;

130 Talend ESB Mediation Developer Guide

How to get and set SOAP headersin PAYLOAD mode

3.8.8. How to get and set SOAP headers in PAYLOAD
mode

We've aready shown how to access SOAP message (CxfPayload object) in PAY LOAD mode (See "How to deal
with the message for a camel-cxf endpoint in PAYLOAD data format").

In 2.x Once you obtain a CxfPayload object, you can invoke the CxfPayload.getHeaders() method that returns a
List of DOM Elements (SOAP headers).

f ron{ get Rout er Endpoi nt URI ()) . process(new Processor () {
@uppr essWar ni ngs(" unchecked")
publ i c void process(Exchange exchange) throws Exception {
Cxf Payl oad<SoapHeader > payl oad =
exchange. get I n() . get Body(Cxf Payl oad. cl ass) ;
Li st <El ement > el enents = payl oad. get Body() ;
assertNot Nul | ("We shoul d get the el ements here", el enents);
assert Equal s("Get the wong el enents size", 1, elenents.size());
assert Equal s("Get the wong nanespace URl",
"http://canel . apache. org/ pi zza/ t ypes",
el enent s. get (0) . get NamespaceURI ()) ;

Li st <SoapHeader > headers = payl oad. get Headers() ;
assert Not Nul | ("We shoul d get the headers here", headers);
assert Equal s("Get the wong headers size", headers.size(), 1);
assert Equal s("Get the wong nanespace URl ",
((El ement) (headers. get (0). get Obj ect())). get NanespaceURI (),
"http://canel .apache. org/ pi zza/ types") ;

}
})
.to(get Servi ceEndpoi nt URI ());

3.8.9. SOAP headers are not available in MESSAGE
mode

SOAP headers are not available in MESSAGE mode as SOAP processing is skipped.

3.8.10. How to throw a SOAP Fault from Camel

If you areusing acamel - cxf endpoint to consume the SOAP request, you may need to throw the SOAP Fault
from the Camel context. Basically, you can usethet hr owfFaul t DSL to do that; it works for PQJ O, PAYLQAD
and MESSAGE data format. Y ou can define the soap fault like this

SOAP_FAULT = new SoapFaul t (EXCEPTI ON_MESSAGE, SoapFaul t. FAULT_CODE CLI ENT);
El ement detail = SOAP_FAULT. getOrCreateDetail ();

Docunent doc = detail.get Omer Docunent () ;

Text tn = doc. creat eText Node(DETAI L_TEXT) ;

det ai | . appendChi I d(tn);

Then throw it asyou like:

fron(r out er Endpoi nt URI) . set Faul t Body(const ant (SOAP_FAULT)) ;

Talend ESB Mediation Developer Guide 131

How to propagate a camel-cxf endpoint's request and response context

If your CXF endpoint is working in the MESSACGE data format, you could set the SOAP Fault message in the
message body and set the response code in the message header.

fronm(rout er Endpoi nt URI') . process(new Processor () {

public void process(Exchange exchange) throws Exception {
Message out = exchange. get Qut();
/1 Set the nessage body with the
out . set Body(this.getC ass().
get Resour ceAsSt r ean(" SoapFaul t Message. xm ")) ;
/1 Set the response code here
out . set Header (
or g. apache. cxf . nessage. Message. RESPONSE CODE,
new | nt eger (500));
}
1)

Same for using POJO data format. Y ou can set the SOAPFault on the out body and also indicate it is a fault by
calling M essage.setFault(true):

from("direct:start").onException(SoapFaul t. cl ass)
. maxi munRedel i veri es(0). handl ed(true)
. process(new Processor () {
public void process(Exchange exchange) throws Exception {
SoapFault fault = exchange
. get Propert y(Exchange. EXCEPTI ON_CAUGHT, SoapFault.cl ass);
exchange. get Qut (). set Faul t (true);
exchange. get Qut (). set Body(fault);
}
}
).end().to(SERVICE URI);

3.8.11. How to propagate a camel-cxf endpoint's
request and response context
CXF client API provides a way to invoke the operation with request and response context. If you are using a

canel - cxf endpoint producer toinvokethe outsideweb service, you can set the request context and get response
context with the following code:

132 Talend ESB Mediation Developer Guide

https://svn.apache.org/repos/asf/cxf/trunk/api/src/main/java/org/apache/cxf/endpoint/Client.java

Attachment Support

Cxf Exchange exchange =
(Cxf Exchange) t enpl at e. send(get JaxwsEndpoi nt Uri (), new Processor() {
public void process(final Exchange exchange) {
final List<String> paranms = new Arraylist<String>();
par ans. add(TEST_MESSAGE) ;
/1 Set the request context to the i nMessage
Map<String, Object> request Context =
new HashMap<String, Object>();
r equest Cont ext . put (Bi ndi ngPr ovi der . ENDPO NT_ADDRESS PROPERTY,
JAXWS_SERVER_ADDRESS) ;
exchange. get I n() . set Body(par ans) ;
exchange. get I n() . set Header (Cl i ent . REQUEST_CONTEXT , request Cont ext);
exchange. get I n() . set Header (
Cxf Const ant s. OPERATI ON_NAVE, GREET_ME_OPERATI ON) ;
}
1)

or g. apache. canel . Message out = exchange. get Cut () ;

/1 The output is an object array,

/1l the first element of the array is the return val ue

Ooj ect\[\] output = out.getBody(Object\[\].class);

LOG i nf o(" Recei ved output text: " + output\[O\]);

/1l CGet the response context form out Message

Map<String, bject> responseContext =
Cast Uti | s. cast ((Map) out . get Header (Cl i ent . RESPONSE_CONTEXT)) ;

assert Not Nul | (r esponseCont ext) ;

assert Equal s("Get the wong wsdl opertion nane",
"{http://apache. org/ hel |l o_worl d_soap_http}greet Me",
responseCont ext . get ("j avax. xm . ws. wsdl . operation").toString());

3.8.12. Attachment Support

POJO Mode: Both SOAP with Attachment and MTOM are supported (see examplein Payload Modefor enabling
MTOM). However, SOAP with Attachment is not tested. Since attachments are marshalled and unmarshalled into
POJOs, userstypically do not need to deal with the attachment themselves. Attachments are propagated to Camel
message's attachments since 2.1. So, it is possible to retrieve attachments by Camel Message API

Dat aHandl er Message. get Attachnment (String id)

Payload M ode: MTOM is supported since 2.1. Attachments can be retrieved by Camel Message API's mentioned
above. SOAP with Attachment (SwA) is supported and attachments can be retrieved since 2.5. SwA isthe default
(same as setting the CXF endpoint property "mtom_enabled" to false).

To enable MTOM, set the CXF endpoint property "mtom_enabled” to true.

Talend ESB Mediation Developer Guide 133

Attachment Support

<cxf: cxf Endpoi nt i d="r out er Endpoi nt "
address="http://| ocal host: 9091/ axws- nt om hel | 0"
wsdl URL="nt om wsdl "
servi ceName="ns: Hel | oSer vi ce"
endpoi nt Name="ns: Hel | oPort"
xm ns: ns="http://apache. org/ canel / cxf/ m om f eat ure" >

<cxf: properties>
<I-- enable ntomby setting this property to true -->
<entry key="m om enabl ed" val ue="true"/>

<I-- set the canel-cxf endpoint data fromat to PAYLOAD node -->
<entry key="dataFormat" val ue="PAYLOAD"/ >
</ cxf: properties>

<cxf: cxf Endpoi nt >

Y ou can produce a Camel message with attachment to send to a CXF endpoint in Payload mode.

134 Talend ESB Mediation Developer Guide

Attachment Support

Exchange exchange = context. creat eProducer Tenpl at e() . send(
"direct:test Endpoi nt", new Processor() {

public void process(Exchange exchange) throws Exception {
exchange. set Pat t er n(ExchangePattern. | nQut) ;
Li st <El ement > el enents = new Arrayli st <El ement >();

el ement s. add(DOMUt i | s. readXm (
new Stri ngReader (M onfTest Hel per. REQ MESSAGE)) .
get Docunent El emrent ()) ;

Cxf Payl oad<SoapHeader > body = new Cxf Payl oad<SoapHeader >(
new ArraylLi st <SoapHeader >(), el enents) ;

exchange. get I n() . set Body(body) ;
exchange. get I n() . addAt t achment (M onTest Hel per . REQ PHOTO Cl D,
new Dat aHandl er (new Byt eAr r ayDat aSour ce(
M onTest Hel per . REQ PHOTO DATA, "application/octet-streant)));

exchange. get I n() . addAt t achment (M onTest Hel per. REQ | MAGE_Cl D,
new Dat aHandl er (new Byt eAr r ayDat aSour ce(
M onTest Hel per . request Jpeg, "image/jpeg")));
}
1)

/| process response

Cxf Payl oad<SoapHeader > out = exchange. get Cut () . get Body(Cxf Payl oad. cl ass);
Assert.assert Equal s(1, out.getBody().size());

Map<String, String> ns = new HashMap<String, String>();
ns. put ("ns", M ontest Hel per. SERVI CE_TYPES_NS) ;
ns. put ("xop", M oniest Hel per. XOP_NS) ;

XPathUtils xu = new XPat hUtil s(ns);

El enent el e = (El enent) xu. get Val ue(
"/l ns: Det ai | Response/ ns: phot o/ xop: | ncl ude",
out . get Body() . get (0), XPat hConst ant s. NODE) ;

String photold = ele.getAttribute("href").substring(4); // skip "cid:"
el e = (El enent) xu. get Val ue(

"/l ns: Det ai | Response/ ns: i mage/ xop: | ncl ude",
out . get Body() . get (0), XPat hConst ant s. NODE) ;

String i magel d ele.getAttribute("href").substring(4); // skip "cid:"
Dat aHandl er dr = exchange. get Qut (). get Att achment (phot ol d) ;
Assert. assert Equal s("application/octet-streani, dr.getContentType());
M onTest Hel per . assert Equal s(

M onTest Hel per . RESP_PHOTO_DATA,

I QUtils. readByt esFronttream(dr. getl nputStream()));

dr = exchange. get Qut (). get Attachment (i magel d);
Assert. assert Equal s("i nage/j peg", dr.getContentType());

Buf f er edl mage i mage = | magel O read(dr. getlnputStrean());
Assert. assert Equal s(560, image.getWdth());
Assert. assert Equal s(300, image. get Height());

Y ou can aso consume a Camel message received from a CXF endpoint in Payload mode.

Talend ESB Mediation Developer Guide 135

Attachment Support

public static class MyProcessor inplenments Processor ({

@uppr essWar ni ngs(" unchecked")
public void process(Exchange exchange) throws Exception {
Cxf Payl oad<SoapHeader > i n = exchange. get | n(). get Body(
Cxf Payl oad. cl ass) ;

/1 verify request
Assert. assert Equal s(1, in.getBody().size());

Map<String, String> ns = new HashMap<String, String>();
ns. put ("ns", M onfest Hel per. SERVI CE_TYPES_NS) ;
ns. put ("xop", M oniest Hel per. XOP_NS) ;

XPathUtils xu = new XPat hUtil s(ns);

El enent ele = (El enent)
xu. get Val ue("// ns: Det ai | / ns: phot o/ xop: | ncl ude",
i n. get Body() . get (0), XPat hConst ant s. NODE) ;

/1 skip "cid:"
String photold = ele.getAttribute("href").substring(4);
Assert . assert Equal s(M onilest Hel per. REQ PHOTO CI D, phot ol d);

el e = (El enent) xu. get Val ue("//ns: Detail/ns:imge/ xop: | ncl ude",
i n. get Body().get(0), XPathConstants. NCDE);

/1 skip "cid:"
String imageld = ele.getAttribute("href").substring(4);
Assert. assert Equal s(M onilest Hel per. REQ | MAGE_CI D, i nagel d);

Dat aHandl er dr = exchange. getln(). get Attachnent (phot ol d);
Assert. assert Equal s("application/octet-streani, dr.getContentType());
M onTest Hel per. assert Equal s(M onmTest Hel per. REQ PHOTO DATA,

I OUtils. readByt esFronttreamn(dr. getl nputStream()));

dr = exchange. getln().get Attachment (i magel d);

Assert . assert Equal s("i nage/j peg", dr.getContentType());

M onTest Hel per . assert Equal s(M onTest Hel per. r equest Jpeg,
I OUtils.readByt esFronttrean(dr. getl nputStream()));

/'l create response
Li st <El ement > el enents = new Arrayli st <El ement >();
el ement s. add(DOMUt i | s. readXm (new St ri ngReader (
M onTest Hel per . RESP_MESSAGE)) . get Docunent El emrent ()) ;
Cxf Payl oad<SoapHeader > body = new Cxf Payl oad<SoapHeader >(
new ArraylLi st <SoapHeader >(), el enents) ;
exchange. get Qut () . set Body(body) ;
exchange. get Cut () . addAt t achnent (M onTest Hel per . RESP_PHOTO CI D,
new Dat aHandl er (new Byt eAr r ayDat aSour ce(
M ontest Hel per . RESP_PHOTO DATA, "application/octet-streani)));

exchange. get Qut () . addAt t achnent (M onTTest Hel per . RESP_I MAGE_CI D,
new Dat aHandl er (new Byt eAr r ayDat aSour ce(
M onTest Hel per. responsedpeg, "inage/jpeg")));

M essage M ode: Attachments are not supported as it does not process the message at all.

136 Talend ESB Mediation Developer Guide

CXF Bean Component

3.9. CXF Bean Component

The cxfbean: component allows other Camel endpoints to send exchange and invoke Web service bean objects.
(Currently, it only supports JAXRS and JAXW S annotated service beans.)

Note : Cxf BeanEndpoi nt isaProcessor Endpoi nt so it has no consumers. It works similarly to a Bean
component.

3.9.1. URI format

‘ cxf bean: servi ceBeanRef

where serviceBeanRef is a registry key to ook up the service bean object. If ser vi ceBeanRef references a
Li st object, elements of the Li st are the service bean objects accepted by the endpoaint.

3.9.2. Options

Name Required | Description

cxf BeanBi ndi ng No CXF bean binding specified by the # notation.
The referenced object must be an instance
of or g. apache. canel . conponent . cxf . cxf bean.

Cxf BeanBi ndi ng.
Default: Def aul t Cxf BeanBi ndi ng

Example: cxf Bi ndi ng=#bi ndi ngNane

bus No CXF bus reference specified by the # notation. The referenced
object must be an instance of or g. apache. cxf. Bus.

Default: Def aul t bus created by CXF Bus Factory

Example: bus=#busName

headerFilterStrategy |No Header filter dstrategy specified by the # notation.
The referenced object must be an instance of
org. apache. canel . spi . Header Fi | ter Strat egy.

Default: Cxf Header Fi | t er St r at egy

Example: header Fi | t er St r at egy=#st r at egyNane

set Def aul t Bus No This will set the default bus when CXF endpoint create a bus by
itself.

Default: f al se

Example: t rue,f al se

popul at eFronC ass No Since 2.3, the wsdlLocation annotated in the POJO is ignored
(by default) unless this option is set to f al se. Prior to 2.3, the
wsdl L ocation annotated in the POJO isalways honored and it is not
possible toignore.

Talend ESB Mediation Developer Guide 137

Headers

Name Required | Description
Default: t r ue

Example: t rue,f al se
provi ders No Since 2.5, setting the providers for the CXFRS endpoint.

Default: nul |

Example: provi der s=#pr ovi der Ref 1, #pr ovi der Ref 2

3.9.3. Headers

Currently, CXF Bean component has (only) been tested with Jetty HT TP component -- it can understand
headers from Jetty HT TP component without requiring conversion.

Name Required | Description
Camel H t p- None Character encoding
Char act er Encodi ng

Type:String

In/Out:In

Default: None

Example: 1SO-8859-1
Canel Cont ent Type No Content type

Type: String
Type: String
Default: */*

Example: t ext / xmi

Canel Ht t pBaseUr i Yes The value of this header will be set in the CXF message as
the Message. BASE_PATH property. It is needed by CXF
JAX-RS processing. Basically, it isthe scheme, host and port
portion of the request URI.

Type: String
In/Out:In

Default: The Endpoint URI of the source endpoint in the
Camel exchange

Example: http://localhost:9000
Canel Ht t pPat h Yes Request URI's path

Type: String
In/Out: In

Default: None

Example: consumer/123

138 Talend ESB Mediation Developer Guide

A Working Sample

Name Required | Description

Camel Ht t pMet hod Yes RESTful request verb
Type: String
In/Out:In
Default: None

Example: GET,PUT,POST,DELETE
Camel Ht t pResponseCode No HTTP response code

Type: | nt eger
In/Out: Out

Default: None

Example: 200

3.9.4. A Working Sample

This sample shows how to create aroute that starts a Jetty HT TP server. The route sends requests to a CXF Bean
and invokes a JAXRS annotated service.

First, create aroute asfollows. Thef r omendpoint isa Jetty HT TP endpoint that is listening on port 9000. Notice
that the mat chOnUr i Pr ef i x option must be set to t r ue because RESTful request URI will not match the
endpoint's URI http:-//localhost:9000 exactly.

<r out e>
<fromuri="jetty: http://| ocal host: 9000?mat chOnUri Prefi x=true" />
<t o uri ="cxfbean: cust oner Servi ceBean" />

</rout e>

Thet o endpoint is a CXF Bean with bean name cust oner Ser vi ceBean . The name will be looked up from
the registry. Next, we make sure our service bean isavailablein Spring registry. We create abean definition in the
Spring configuration. In this example, we create a List of service beans (of one element). We could have created
just asingle bean without a List.

<util:list id="custonerServiceBean">
<bean cl ass="org. apache. canel . conponent . cxf. t est bean. Cust oner Servi ce"/ >
<futil:list>

<bean cl ass="org. apache. canel . wsdl _first. Personl npl" id="jaxwsBean" />

That's it. Once the route is started, the web service is ready for business. A HTTP client can make a request and
receive response.

url = new URL(
"http://1ocal host: 9000/ cust omer ser vi ce/ or der s/ 223/ pr oduct s/ 323") ;

in = url.openStrean();

assert Equal s("{\"Product\": {\"description\":\"product 323\",\"id\":323}}",
Cxf Uil s.getStringFron nputStrean(in));

Talend ESB Mediation Developer Guide 139

CXFRS

3.10. CXFRS

When using CXF as a consumer, the Section 3.9, “CXF Bean Component” allows you to factor out how
¥ message payloads are received from their processing as a RESTful or SOAP web service. This has the

potential of using amultitude of transportsto consume web services. The bean component's configuration

isalso simpler and provides the fastest method to implement web services using Camel and CXF.

The cxfrs. component provides integration with Apache CXF for connecting to JAX-RS services hosted in CXF.

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactld>canel -cxf</artifactld>
<I-- use the sanme version as your Canel core version -->
<ver si on>x. x. X</ ver si on>
</ dependency>

3.10.1. URI format

‘cxfrs://address?options

where addr ess represents the CXF endpoint's address

‘cxfrs:bean:rsEndpoint

where r sEndpoint represents the Spring bean's name which presents the CXFRS client or server

For either style above, you can append options to the URI as follows:

‘cxfrs:bean:cxfEndpoint?resourced asses=or g. apache. canel . rs. Exanpl e

3.10.2. Options

Name Required | Description

resour ced asses No The resource classes which you want to export as REST service.
Multiple classes can be separated by comma.

Default: None

Example: resour ceC asses=
or g. apache. canel . rs. Exanpl el,
or g. apache. canel . rs. Exchange2

htt pd i ent API No If true, the CxfRsProducer will use the HttpClientAPI to invoke the
service If false, the CxfRsProducer will use the ProxyClientAPI to
invoke the service

Default: true

Example: httpClientAPl=true

140 Talend ESB Mediation Developer Guide

http://incubator.apache.org/cxf/

Direct

Name

Required

Description

synchronous

No

New in 2.5, this option will let CxfRsConsumer decide to use sync
or async API to do the underlying work. The default value is false
which means it will try to use async API by default.

Default:false

Example: synchronous=true

throwExceptionOnFailure No New in 2.6, this option tells the CxfRsProducer to inspect return
codes and will generate an Exception if the return code is larger
than 207.
Default:true
Example: throwExceptionOnFailure=true

maxC i ent CacheSi ze No New in 26, you can set a IN message header
Camel DestinationOverrideUrl to dynamically override the target
destination Web Service or REST Service defined in your routes.
The implementation caches CXF clients or ClientFactoryBean
in CxfProvider and CxfRsProvider. This option allows you to
configure the maximum size of the cache.
Default: 10
Example:maxClientCacheSize=5

set Def aul t Bus false If true, will set the default bus when CXF endpoint create a bus by

itself.

bus

A default bus created by CXF Bus Factory. Prefix bus namewith a
to reference a bus object from the registry. The referenced object
must be an instance of org.apache.cxf.Bus.

Y ou can al so configurethe CXF REST endpoint through the Spring configuration. Sincethere arelotsof difference
between the CXF REST client and CXF REST Server, we provides different configuration for them. Please check
out the schema file and CXF REST user guide for more information.

See the Camel Website for the latest examples of this component in use.

3.11. Direct

The direct: component provides direct, synchronous invocation of any consumers when a producer sends a
message exchange. This endpoint can be used to connect existing routes in the same Camel context.

The Section 3.38, “SEDA” component provides asynchronous invocation of any consumers when a

¥ producer sends a message exchange.

The Section 3.51, “VM” component provides connections between Camel contexts as long they run in

2 the same JVM .

3.11.1. URI format

‘di rect: someNaneg[?opt i ons]

Talend ESB Mediation Developer Guide 141

http://svn.apache.org/repos/asf/camel/trunk/components/camel-cxf/src/main/resources/schema/cxfEndpoint.xsd
http://cwiki.apache.org/CXF20DOC/jax-rs.html
http://camel.apache.org/cxfrs.html

Samples

where someName can be any string to uniquely identify the endpoint.

3.11.2. Samples

In the route below we use the direct component to link the two routes together:

from("activeny: queue: order.in")
.to(" bean: or der Ser ver ?net hod=val i dat e")
.to("direct:processOrder");

from("direct: processOrder")
.to(" bean: or der Servi ce?met hod=pr ocess")
.to("activenq: queue: order.out");

and the sample using Spring DSL.:

<rout e>
<from uri="activeny: queue: order.in"/>

<t o uri ="bean: order Servi ce?net hod=val i dat e"/ >
<to uri="direct: processOder"/>

</ rout e>

<r out e>

<fromuri="direct: processOder"/>

<to uri ="bean: order Servi ce?net hod=pr ocess"/ >

<to uri="activenq: queue: order. out"/>
</rout e>

See also samples from the Section 3.38, “ SEDA” component, how they can be used together.

3.12. Event

The event: component provides access to the Spring ApplicationEvent objects. This allows you to publish
ApplicationEvent objects to a Spring ApplicationContext or to consume them. You can then use Enterprise
Integration Patterns to process them such as Section 2.28, “Message Filter” .

3.12.1. URI format

‘spring-event://default

3.13. Exec

The exec component can be used to execute system commands. For this component, Maven users will need to
add the following dependency to their pom xmi file:

<dependency>
<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactld>canel -exec</artifactld>
<ver si on>%${ canel - ver si on} </ ver si on>
</ dependency>

142 Talend ESB Mediation Developer Guide

URI options

replacing ${ canel - ver si on} with the precise version used.

This component has URI format of:

exec: // execut abl e[?opti ons]

where execut abl e isthe name, or file path, of the system command that will be executed. If executable name
isused (for example, exec: j ava), the executable must be in the system path.

3.13.1. URI options

Name Default value Description

args nul | The arguments of the executable- they may
be one or many whitespace-separated tokens,
that can be quoted with ", for example,
args="arg 1" arg2 will use two
arguments arg 1 and ar g2. To include the
quotes, enclose them in another set of quotes;
for example, args=""arg 1"" arg2 will
usethearguments"arg 1" andar g2.

wor ki nghi r nul | The directory in which the command should be
executed. If nul | , theworking directory of the
current process will be used.

ti meout Long. MAX_VALUE The timeout, in milliseconds, after which the
executable should be terminated. If execution
has not completed within this period, the
component will send a termination request.

outFile nul | The name of afile, created by the executable,
that should be considered as output of the
executable. If no out Fi | e is set, the standard
output (stdout) of the executable will be used

instead.
bi ndi ng a Defaul t ExecBi ndi ng|A reference to an or g. apache. conmons.
instance exec. ExecBi ndi ng inthe Registry .
comrandExecut or a Def aul t Command- |A reference to an or g. apache. conmons.
Execut or instance exec. ExecCommandExecut or in the

Registry, that customizes the command
execution. The default command executor
utilizes the commons-exec library. which adds
a shutdown hook for every executed command.

useSt derr OnEnpt y- fal se A boolean which dictates when stdin is

St dout empty, it should fallback and use st derr in
the Camel Message Body. Thisoption isdefault
fal se.

3.13.2. Message headers

The supported headers are defined in or g. apache. canel . conponent . exec. ExecBi ndi ng .

Talend ESB Mediation Developer Guide 143

http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://commons.apache.org/exec/

M essage body

Name Message |Description

ExecBi ndi ng. in The name of the system command that will be

EXEC_COVMAND EXECUTABLE executed. Overridestheexecut abl e inthe URI.
Type: String

ExecBi ndi ng. EXEC_COVMMAND_ARGS in The arguments of the executable. The arguments

are used literally, no quoting is applied. Overrides
existing ar gs inthe URI.

Type: java.util.List<String>

ExecBi ndi ng. EXEC_COMVAND ARGS in The arguments of the executable as a single string
where each argument is whitespace separated (see
args in URI option). The arguments are used
literally, no quoting is applied. Overrides existing
ar gs inthe URI.

Type: String
ExecBi ndi ng. in The name of afile, created by the executable, that
EXEC_COVWAND QUT_FI LE should be considered as output of the executable.
Overrides existing out Fi | e inthe URI.
Type: String
ExecBi ndi ng. in The timeout, in milliseconds, after which the
EXEC_COWWAND Tl MEQUT executable should be terminated. Overrides
existingt i meout inthe URI.
Type: | ong
ExecBi ndi ng. in The directory in which the command should be
EXEC_COVMAND WORKI NG DI R executed. Overrides existing wor ki ngDi r in the
URI.
Type: String
ExecBi ndi ng. EXEC EXI T_VALUE out The value of this header is the exit value of the

executable. Non-zero exit values typically indicate
abnormal termination. Note that the exit value is
OS-dependent.

Type: i nt

ExecBi ndi ng. EXEC_STDERR out Thevalue of this header pointsto the standard error
stream (stderr) of the executable. If no stderr is
written, thevalueisnul | .

Type: java.io. |l nput Stream

ExecBi ndi ng. in Indicates when the st di n is empty, should we
EXEC_USE_STDERR_ON_EMPTY_STDOUT fallback and use st der r asthe body of the Camel
message. By default thisoptionisf al se.

Type: bool ean

3.13.3. Message body

If thei n message body, that the Exec component receivesisconvertibletoj ava. i 0. | nput St r eamitisused
to feed theinput of the executableviaits stdin. After the execution, the message body isthe result of the execution,

144 Talend ESB Mediation Developer Guide

http://camel.apache.org/exchange.html

File

thatisor g. apache. canel . conponent s. exec. ExecResul t instance containing the stdout, stderr, exit
value and out file. The component supports the following ExecResul t type converters for convenience:

From To

ExecResul t java.io. | nput Stream
ExecResul t String

ExecResul t byte []

ExecResul t or g. w3c. dom Docunent

If out file is wused (the endpoint is configured with outFile, or there is
ExecBi ndi ng. EXEC_COMVAND_ QUT_FI LE header) the converters return the content of the out file. If no
out file is used, then the converters will use the stdout of the process for conversion to the target type.

For an example, the below executes we (word count, Linux) to count the words in file/ usr/ shar e/ di ct/
wor ds . Theword count (output) is written in the standard output stream of wc.

from("direct:exec")
.to("exec: w?args=--words /usr/share/dict/words")
. process(new Processor () {
public void process(Exchange exchange) throws Exception {
/1 By default, the body is ExecResult instance
assertl sl nstanceO (ExecResul t. cl ass, exchange. getln(). getBody());

/1 Use the Canel Exec String type

/] converter to convert the ExecResult

/1l to String. In this case, the stdout is considered as output.
String wordCount Qut put = exchange. getln().getBody(String.cl ass);

/! do something with the word count

1)

3.14. File

The File component provides access to file systems. The main functionality that this facilitatesis:

« files may be processed by other Camel Components. A typical pattern is that files are written to a directory
(or subdirectories) by one or more components (producers). Other components (consumers) may subsequently
read, process (and move or delete) these files. Consumers may generate new files based on templates or filters
being applied to the existing files. Temporary subdirectories or files may be created or used by consumers or
producers as part of the processing.

» messagesfrom other components may be saved to disk, and thismay also involve applying filtersto the contents,
logging information in the messages, and so on.

You need to avoid reading files currently being written by another application. Beware the JDK File

& 10 API is somewhat limited in detecting whether another application is currently writing or copying a
file. The implementation semantics can also vary, depending on the OS platform. This could lead to the
situation where Camel thinks the fileis not locked by another process and starts consuming it. Y ou may
need to check how thisisimplemented for your specific environment.

If needed, to assist you with this issue, Camel provides different r eadLock options and a
doneFi | eNane option that you can use. See al so the section Consuming files fromfolderswhere others
drop files directly.

Talend ESB Mediation Developer Guide 145

http://camel.apache.org/type-converter.html

URI format

Should you ever need to activate debugging for this component it logs at level t r ace.

3.14.1. URI format

‘fi | e: di rect or yName[?opt i ons]

or

‘fi | e://directoryNane[?opti ons]

where dir ectoryName represents the underlying file directory.
Y ou can append query options to the URI in the following format, ?opt i on=val ue&opt i on=val ue&. . .
Endpoints (dir ectoryName) must be a directory.

If you want to consume asinglefile only, specify the starting directory, and then use the fileName option,
for example by setting f i | eNanme=i nf 0. xm .

Note: the starting directory must not contain dynamic expressions with ${ } placeholders; again, use the
fi | eNanme option to specify the dynamic part of the filename.

3.14.2. URI Options

3.14.2.1. Common

Name Default Value Description

aut oCreat e true Automatically create missing directoriesin thefile's pathname. For
the file consumer, that means creating the starting directory. For
the file producer, it means creating the directory the files should be

written to.
bufferSize 128kb Write buffer, sized in bytes.
fil eNane nul | Use Expression such as File Language to dynamically set the

filename. For consumers, it is used as a filename filter. For
producers, it is used to evauate the filename to write. If an
expression is set, it take precedence over the Canel Fi | eNane
header. (Note: The header itself can also be an Expression).

The expression options support both St r i ng and Expr essi on
types. If the expression isa St ri ng type, it is always evaluated
using the File Language.

If the expression is an Expression type, the specified
Expressi on type is used; this allows you, for instance,
to use OGNL expressions. For the consumer, you can use
it to filter filenames, so you can for instance consume
today's file using the File Language syntax: mydat a-
${ dat e: now yyyyMwid} . t xt .

flatten fal se Flatten isused to flatten thefile name path to strip any leading paths,
soitispurely thefilename. Thisallowsyou to consumerecursively

146 Talend ESB Mediation Developer Guide

http://camel.apache.org/expression.html
http://camel.apache.org/file-language.html
http://camel.apache.org/expression.html
http://camel.apache.org/file-language.html
http://camel.apache.org/ognl.html
http://camel.apache.org/file-language.html

URI Options

Name

Default Value

Description

into sub-directories. However, for example, if you writethefilesto
another directory they will be written in a (flat) single directory.

Setting this to t r ue on the producer ensures that any file name
received in Canel Fi | eName header will be stripped of any
leading paths.

char set

nul |

This option is used to specify the encoding of the file, and camel
will set the Exchange property with Exchange. CHARSET _NAME
with the value of this option. Y ou can use this on the consumer, to
specify the encodings of the files, which allow Camel to know the
charset it should load thefile content in case thefile content isbeing
accessed. Likewise when writing a file, you can use this option to
specify which charset to write the file as well.

copyAndDel et e
OnRenaneFai |

true

Whether to fallback and do a copy and delete file, in case the file
could not be renamed directly. This option is not available for the
[FTPFTP2] component.

3.14.2.2. Consumer

Name Default Value |Description

i nitial Del ay 1000 Milliseconds before polling the file or directory starts.

del ay 500 Milliseconds before the next poll of the file or directory.

useFi xedDel ay true Controls if fixed delay or fixed rate is wused. See
ScheduledExecutorService in JDK for details.

runLoggi ngLevel |TRACE The consumer logs a start/complete log linewhen it polls. Thisoption
allows you to configure the logging level for that.

recursive fal se if it is consuming a directory, it will look for files in al the sub-
directories as well.

del ete fal se If t r ue, thefilewill be deleted after it is processed

noop fal se If true, the file is not moved or deleted in any way. This
option is good for readonly data, or for ETL type requirements. If
noop=t r ue, Camel will seti denpot ent =t r ue aswell, to avoid
consuming the same files over and over again.

preMove nul | If afileisto be moved before processing, use Expression such as
File Language to dynamically specify the target directory name. For
example to move in-progress files into the or der directory set this
valueto or der.

nove . canel If afileisto be moved after processing, use Expression such as File
Language to dynamically set the target directory name. To movefiles
into a. done subdirectory just enter . done.

noveFai | ed nul | Expression (such asFile Language) used to dynamically set adifferent
target directory when moving files after processing (configured via
nove setting defined above) failed. For example, to move files into
a. error subdirectory use: . err or . Note: When moving the files
tothe“fail” location Camel will handle the error and will not pick up
the file again.

i ncl ude nul | Isused to include files, if filename matches the regex pattern.

excl ude nul | Is used to exclude files, if filename matches the regex pattern.

Talend ESB Mediation Developer Guide

147

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://camel.apache.org/etl.html
http://camel.apache.org/expression.html
http://camel.apache.org/file-language.html
http://camel.apache.org/expression.html
http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html
http://camel.apache.org/expression.html
http://camel.apache.org/file-language.html

URI Options

Name

Default Value

Description

ant | ncl ude

null

Ant style filter inclusion, for example {{antInclude=**/*.txt}}.
Multiple inclusions may be specified in comma-delimited format.

ant Excl ude

null

Ant style filter exclusion. If both ant | ncl ude and ant Excl ude
the latter takes precedence. Multiple exclusions may be specified in
comma-delimited format.

i denpot ent

fal se

Option to use the Section 2.19, “Idempotent Consumer” EIP pattern
to let Camel skip already processed files. This will by default use a
memory based LRUCache that holds 1000 entries. If noop=t r ue
then idempotent will be enabled aswell to avoid consuming the same
files over and over again.

i denpot ent -
Repository

nul |

Pluggable repository as a org.apache.camel.
processor.idempotent.Messagel dRepository class. This will by
default use Menor yMessagel dReposi t ory if noneis specified
andi denpot ent istrue.

i nProgress-
Repository

menor y

A pluggable in-progress repository org.apache.camel.spi.
|dempotentRepository. The in-progress repository is used to account
the current in-progress files being consumed. By default a memory
based repository is used.

filter

nul |

Pluggable filter asaor g. apache. canel . conponent . fi |l e.
Generi cFil eFil ter class. This will skip files if filter returns
fal seinitsaccept () method.

sorter

nul |

Pluggable sorter as a java.util.Comparator
<org.apache.camel .component.file.GenericFile> class.

sort By

nul |

Built-in sort using the File Language. Supports nested sorts, so you
can have a sort by file name and as a second group sort by modified
date. See sorting section below for details.

r eadLock

mar ker -
File

Used by consumer, to only poll the files if it has exclusive read-lock
onthefile (that is, thefileis not in-progress or being written). Camel
will wait until the file lock is granted. This option provides the build
in strategies:

mar ker Fi | e Camel creates a marker file and then holds alock on
it. Thisoption is*not* available for the FTP component.

changed is using file length/modification timestamp to detect
whether the file is currently being copied or not. This will at least
use 1 sec. to determine this, so this option cannot consume files as
fast as the others, but can be more reliable asthe JDK 10 API cannot
always determine whether a file is currently being used by another
process. The option r eadLockCheckl nt er val can be used to
set the check frequency. Note the FTP option f ast Exi st sCheck
can be enabled to speed up this readLock strategy, if the FTP server
supports the LIST operation with a full file name (some servers may
not). not avail for the FTP component.

fileLockisforusingj ava. ni 0. channel s. Fi | eLock. This
option is not available for the FTP component. This approach should
be avoided when accessing a remote file system via a mount/share
unless that file system supports distributed file locks.

r enane is for using a try to rename the file as atest if we can get
exclusive read-lock.

148

Talend ESB Mediation Developer Guide

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/idempotent/MessageIdRepository.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/idempotent/MessageIdRepository.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/spi/IdempotentRepository.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/spi/IdempotentRepository.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Comparator.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Comparator.html
http://camel.apache.org/file-language.html

URI Options

Name

Default Value

Description

none is for no read locks at all. Note the read locks changed,
fil eLock and r ename will also use amar ker Fi | e aswell, to
ensure not picking up files that may be in process by another Camel
consumer running on another node (eg cluster). Thisissupported only
by the file component (not the ftp component).

readLockTi meout

10000

Optional timeout in milliseconds for the read-lock, if supported by
the read-lock. If the read-lock could not be granted and the timeout
triggered, then Camel will skip the file. At next poll Camel, will try
the file again, and this time maybe the read-lock could be granted.
Use avalue of 0 or lower to indicate forever. Currently fi | eLock,
changed and r ename support the timeout. Note: for the FTP
component the default value is 20000.

readLockCheck-
I nt erval

1000

Interval in milliseconds for the read-lock, if supported by the read
lock. Thisinterval is used for sleeping between attempts to acquire
the read lock. For example when using the changed read lock, you
can set a higher interval period to cater for ow writes . The default
of 1 sec. may betoo fast if the producer is very slow writing thefile.

readLock-
M nLengt h

This option applied only for r eadLock=changed. This option
allows you to configure a minimum file length. By default Camel
expects the file to contain data, and thus the default value is 1. You
can set this option to zero to allow consuming zero-length files.

di rect or yMust -
Exi st

fal se

Similar to startingDi rect oryMust Exi st but this applies
during polling recursive sub-directories.

doneFi | eNane

nul |

If provided, Camel will only consume files if a done file exists. This
option configureswhat file nameto use. Either you can specify afixed
name, or you can use dynamic placeholders. The done file is always
expected in the same folder as the original file. See using done file
and writing done file sections for examples.

excl usi veRead-
LockStr at egy

nul |

Pluggable read-lock as a
or g. apache. canel . conponent .. file.

Generi cFi | eExcl usi veReadLockSt r at egy
implementation.

maxMessages-
Per Pol |

An integer that defines the maximum number of messages to gather
per poll. By default, no maximumis set. It can be used to set alimit of,
for example, 1000 to avoid having the server read thousands of files
asit starts up. Set avalue of 0 or negative to disable it. You can use
the eager MaxMessagesPer Pol | option and set thisto f al se
to allow to scan al filesfirst and then sort afterwards.

eager Max-
MessagesPer Pol |

true

Allows for controlling whether the limit from
maxMessagesPer Pol | is eager or not. If eager then the limit is
during the scanning of files. Whereas f al se would scan al files,
and then perform sorting. Setting thisoptiontof al se alowsto sort
all filesfirst, and then limit the poll. Note that this requires a higher
memory usage as all file details are in memory to perform the sorting.

m nDept h

The minimum depth to start processing when recursively processing
a directory. Using minDepth=1 means the base directory. Using
minDepth=2 means the first sub directory.

max Dept h

Integer.
MAX_VALUE

The maximum depth to traverse when recursively processing a
directory.

processStrat egy

nul |

A pluggable org. apache. canel . conponent . file.
Generi cFi |l eProcessStrat egy alowing you to implement

Talend ESB Mediation Developer Guide 149

URI Options

Name

Default Value

Description

your own r eadLock option or similar. Can also be used when
special conditions must be met before a file can be consumed, such
asaspecia ready file exists. If this option is set then ther eadLock
option does not apply.

startingDirect-
or yMust Exi st

fal se

whether the starting directory must exist. Keep in mind that the
aut oCr eat e option is default enabled, which means the starting
directory is normally auto created if it doesn't exist. You can disable
aut oCr eat e and enable this to ensure the starting directory must
exist. It will then throw an exception if the directory doesn't exist.

pol | St rat egy

null

A pluggable
or g. apache. canel . Pol | i ngConsurer Pol | Str at egy
allowing you to provide your custom implementation to control error
handling usually occurred during the poll operation *before* an
Exchange has been created and routed in Camel. In other words
the error occurred while the polling was gathering information, for
instance access to a file network failed so Camel cannot access it
to scan for files. The default implementation will log the caused
exception at WARN level and ignoreit.

sendEnpt y-
MessageWhenl dl e

false

If the polling consumer did not poll any files, you can enable this
option to send an empty message (no body) instead.

consuner . bri dge-
Er r or Handl er

false

Allowsfor bridging the consumer to the Camel routing Error Handler,
which mean any exceptions occurred while trying to pickup files,
or the likes, will now be processed as a message and handled by
the routing Error Handler. By default the consumer will use the
org.apache.camel .spi.ExceptionHandler to deal with exceptions, that
by default will be logged at WARN/ERROR level and ignored.

schedul ed-
Execut or Servi ce

null

Allows for configuring a custom/shared thread pool to use for the
consumer. By default each consumer has its own single threaded
thread pool. This option allows you to share a thread pool among
multiple file consumers.

3.14.2.3. Default behavior for file consumer

. groovy.

3.14.2.4. Producer

By default the file islocked for the duration of the processing.
After the route has completed, filesare moved into the . camel subdirectory, so that they appear to be del eted.

The File Consumer will always skip any file whose name starts with a dot, such as ., . canmel , . n2 or

Only files (not directories) are matched for valid filename, if optionssuch as: i ncl ude or excl ude are used.

Name Default Value |Description

fileExist Overri de What to do if a file already exists with the same name. The
following values can be specified: Override, Append, Fail, Ignore
and Move
e Overri de, whichisthe default, replaces the existing file.

150 Talend ESB Mediation Developer Guide

URI Options

Name

Default Value

Description

« Append adds content to the existing file.

e Fail throws a CGenericFil eQperation- Excepti on,
indicating that thereis already an existing file.

* | gnor e silently ignores the problem and does not override the
existing file, but assumes everything is okay. The Move option
will move any existing files, before writing the target file. The
correspondingnmoveExi st i ng option must be configured. The
option eager Del et eTar get Fi | e can be used to control
what to do if an moving the file, and there exists already an
existing file, otherwise causing the move operation to fail.

tenpPrefix

nul |

This option is used to write the file using a temporary name and
then, after the writeis complete, renameit to the real name. Can be
used to identify files being written and also avoid consumers (not
using exclusive read locks) reading in-progress files. |s often used
by FTP when uploading big files.

t enpFi | eNare

nul |

Thesameast enpPr ef i x option but offering amorefine grained
control on the naming of the temporary filename asit uses the File
Language .

noveExi sting

nul |

Expression used to compute file name to use when
fil eExi st=Move is configured. To move files into
a backup subdirectory just enter backup. This option
supports only the following File Language tokens:
"filename”, "filename.ext”, "filename.noext", "file:onlyname”,
"fileonlyname.noext”, "file:ext", and "file:parent”. Notice the
"filezparent” is not supported by the FTP component, as the FTP
component can moveexisting filesonly to arelative directory based
on the current directory.

keepLast Modi fi ed

fal se

If enabled, will keep the last modified timestamp from
the source file (if any). This will use the Exchange.

FI LE_LAST_MODI FI ED header to located the timestamp. This
header can contain either aj ava. uti | . Dat e or | ong with the
timestamp. If the timestamp exists and the option is enabled it will
set thistimestamp on thewritten file. Note: Thisoption only applies
to the file producer. Y ou cannot use this option with any of the ftp
producers.

eager Del et eTar get -
File

true

Whether or not to eagerly delete any existing target file. (This
option only applieswhenyou usef i | eExi st s=Overri de and
thet enpFi | eNane option). Y ou can use this to disable deleting
the target file before the temp file is written. For example you may
have large files and want the target file to persist while the temp
fileisbeingwritten. Settingeager Del et eTar get Fi | e tofalse
ensures the target file is only deleted until the very last moment,
just before the temp file is being renamed to the target filename.
This option is also used to control whether to delete any existing
fileswhen fi | eExi st =Move is enabled and an existing file is
present. If this option is false, then an exception will be thrown if
an existing file existed, if it's true, then the existing file is deleted
before the move operation.

doneFi | eNane

nul |

If provided, then Camel will write a second done file when the
origina file has been written. The done file will be empty. This
option configures what file name to use. Either you can specify a
fixed name. Or you can use dynamic placeholders. The done file

Talend ESB Mediation Developer Guide 151

http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html

Move and Delete operations

Name Default Value |Description

will always be written in the same folder as the original file. See
writing done file section for examples.

al | omNul | Body fal se Used to specify if a null body is alowed during file writing.
If set to true then an empty file will be created, when set to
false, and attempting to send a null body to the file component, a
GenericFileWriteException of " Cannot writenull body tofile" will
be thrown. If the "fileExist" option is set to "Override™, then the
file will be truncated, and if set to "append"” the file will remain
unchanged.

3.14.2.5. Default behavior for file producer

By default it will override any existing file, if one exist with the same name.

Overri de is the default for the file producer. This is also the default file operation using
¥ java.io. Fi | e - and aso the default for the FTP library we use in the camel-ftp component.

3.14.3. Move and Delete operations

Any move or delete operation is executed after the routing has completed (post command); so during processing
of the Exchange thefileis still located in the inbox folder.

Let'sillustrate this with an example:

from("file://inbox?nmve=. done").to("bean: handl eOrder");

When afileis dropped in thei nbox folder, the file consumer notices this and creates anew Fi | eExchange
that isrouted to thehandl eOr der bean. The bean then processesthe Fi | e object. At thispoint in timethefile
isdtill located in thei nbox folder. After the bean completes, and thus the route is completed, the file consumer
will perform the move operation and move thefileto the . done sub-folder.

The move and preM ove options should be a directory name, which can be either relative or absolute. If relative,
the directory is created as a sub-folder from within the folder where the file was consumed.

By default, Camel will move consumed files to the . camel sub-folder relative to the directory where the file
was consumed.

If you want to delete the file after processing, the route should be:

‘fron("fi | e://inobox?del ete=true").to("bean: handl eOrder");

We haveintroduced a pre move operation to move files befor e they are processed. Thisallowsyou to mark which
files have been scanned as they are moved to this sub folder before being processed.

‘frorr("file://inbox?preMyve=i nprogress").to("bean: handl eOrder");

Y ou can combine the pre move and the regular move:

‘fron("file://inbox?preMyve=i nprogress&rmve=. done").to("bean: handl eOrder");

152 Talend ESB Mediation Developer Guide

Message Headers

So in this situation, the file isin the i npr ogr ess folder when being processed and after it is processed, it is

moved to the . done folder.

3.14.3.1. Fine grained control over Move and PreMove option

The move and preMove option is Expression -based, so we have the full power of the File Language to do
advanced configuration of thedirectory and name pattern. Camel will, infact, internally convert the directory name
you enter into a File Language expression. So, for example, when we enter nove=. done Camel will convert
thisinto: ${file: parent}/.done/ ${fil e: onl ynane}. Thisonly happensif Camel detects that you
have not provided a ${ } in the option vaue. So when you enter a${ } Camel will not convert it and thus you

have full control.

So, if we want to move the file into a backup folder with today's date as the pattern, we can do:

‘ nove=backup/ ${ dat e: now: yyyyMwvid}/ ${fi | e: nane}

3.14.3.2. About moveFailed

ThenoveFai | ed option allows you to move files that could not be processed successfully to another location
such as a error folder of your choice. For example to move the files in an error folder with a timestamp
youcanuse noveFail ed=/error/${fil e: nane. next}- ${dat e: now yyyyMdHHMBSsSSS} .

${file:ext}.

See more examplesin File Language

3.14.4. Message Headers

The following headers are supported by this component:

3.14.4.1. File producer only

Header

Description

Canel Fi | eNane

Specifies the name of the file to write (relative to the endpoint
directory). The name can bea String ; a St ri ng with a File
Language or Simple expression; or an Expression object. If it
isnul I then Camel will auto-generate a filename based on the
message unique 1D.

Canel Fi | eNanmePr oduced

The absolute filepath (path + name) for the output file that was
written. This header is set by Camel and its purpose is providing
end-users with the name of the file that was written.

3.14.4.2. File consumer only

Header

Description

Canel Fi | eNanme

Name of the consumed file as a relative file path with offset from
the starting directory configured on the endpoint.

Talend ESB Mediation Developer Guide 153

http://camel.apache.org/expression.html
http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html
http://camel.apache.org/simple.html
http://camel.apache.org/expression.html

Batch Consumer

Header Description
Camel Fi | eNameOnl y Just the file name (the name with no leading paths).
Canel Fi | eAbsol ute A bool ean option specifying whether the consumed file denotes

an absolute path or not. It should normally be f al se for relative
paths. Absolute paths should normally not be used but we added to
the move option to allow moving files to absolute paths; it can also

be used elsawhere.

Canel Fi | eAbsol ut ePat h The absolute path to the file. For relative files this path holds the
relative path instead.

Canel Fi | ePat h The file path. For relative files this is the starting directory + the
relative filename. For absolute files this is the absolute path.

Camel Fi | eRel ati vePath The relative path.

Canel Fi | ePar ent The parent path.

Canel Fil eLengt h A'| ong vaue containing thefile size.

Canel Fi | eLast Modi fi ed A Dat e vaue containing the last modified timestamp of thefile.

3.14.5. Batch Consumer

This component implements the Batch Consumer .

3.14.5.1. Exchange Properties, file consumer only

Asthefile consumer isBat chConsuner it supports batching thefilesit polls. By batching it means that Camel
will add some properties to the Exchange so you know the number of files polled, and the current index, in that
order.

Property Description

Canel Bat chSi ze The total number of files that was polled in this batch.

Canel Bat chl ndex The current index of the batch. Starts from 0.

Canel Bat chConpl et e A bool ean valueindicating thelast Exchangein the batch. Isonly
t r ue for the last entry.

Thiswould allow you, for example, to know how many files exist in the batch and use that information to let the
Section 2.2, “Aggregator” aggregate that precise number of files.

3.14.6. Common gotchas with folder and filenames

When Camel is producing files (writing files) there are a few gotchas affecting how to set a filename of your
choice. By default, Camel will use the message ID as the filename, and since the message ID isnormally aunique
generated 1D, you will end up with filenames such as: | D- MACHI NENAME- 2443-1211718892437-1-0 . If
such afilenameis not desired, then you must provide a filename in the Carrel Fi | eNane message header. The
constant, Exchange. FI LE_NAME, can aso be used.

The sample code below produces files using the message ID as the filename:

154 Talend ESB Mediation Developer Guide

http://camel.apache.org/batch-consumer.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html

Filename Expression

from("direct:report").to("file:target/reports");

Tousereport.txt asthefilename you haveto do:

from("direct:report").set Header (Exchange. FI LE NAME, constant ("report.txt"))
.to("file:target/reports");

... the same as above, but with Canel Fi | eNane :

from("direct:report").set Header (" Canel Fi | eName", constant("report.txt"))
.to("file:target/reports");

An example of a syntax where we set the filename on the endpoint with the fileName URI option:

‘frorr("di rect:report").to("file:target/reports/?fil eName=report.txt");

3.14.7. Filename Expression

Filename can be set either using the expression option or as a string-based File Language expression in the
Canel Fi | eNarre header. See the File Language for syntax and samples.

3.14.8. Consuming files from folders where others
drop files directly

Warning: there may be difficulties if you consume files from a directory where other applications directly write
files. Please look at the different r eadLock optionsto seeif they can help.

If you are writing files to the folder, then the best approach is to write to another folder and after the write, move
thefilein the drop folder.

However if you need to writefiles directly to the drop folder then the option changed could better detect whether
afileis currently being written/copied. changed uses a file changed algorithm to see whether the file size or
modification changes over a period of time. The other r eadLock options rely on Java File APl which is not
always good at detecting file changes. Y ou may aso want to look at the doneFi | eNane option, which uses a
marker file (done) to signal when afileis done and ready to be consumed.

3.14.9. Using done files

See also section writing done files below.

If you want only to consume files when a done file exists, then you can use the doneFi | eNane option on the
endpoint.

fronm("fil e: bar ?doneFi | eNane=done") ;

Talend ESB Mediation Developer Guide 155

http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html

Writing done files

Thiswill only consumefiles from the bar folder, if afile name done existsin the same directory asthetarget files.
For versions prior to 2.9.3, Camel will automatically delete the done file when it is finished consuming the files.

However it's more common to have one done file per target file. This meansthereisa 1:1 correlation. To do this
you must use dynamic placeholdersin thedoneFi | eNane option. Currently Camel supports the following two
dynamictokens: file:name and file:nane. noext which mustbeenclosedin ${ }. The consumer
only supports the static part of the done file name as either prefix or suffix (not both).

from("fil e: bar ?doneFi | eName=${fi | e: nane}. done") ;

In this example only fileswill be polled if there exists a done file with the name file name .done. For example
* hel | 0. t xt isthefileto be consumed
* hel | 0.t xt. done isthe associated done file

You can aso use a prefix for the done file, such as:

from("fil e: bar 2doneFi | eName=r eady- ${fi |l e: name}") ;

* hel |l 0.t xt isthefileto be consumed

» ready-hel | 0.t xt istheassociated donefile

3.14.10. Writing done files

After you have written a file you may want to write an additional done file as a kind of marker, to indicate to
others that the file is finished and has been written. To do that you can use the doneFi | eNane option on the
file producer endpoint.

.to("fil e: bar?doneFi | eNane=done") ;

Thiswill simply create afile named done in the same directory as the target file.

However it's more common to have one done file per target file. This meansthereis a 1:1 correlation. To do this
you must use dynamic placeholdersin thedoneFi | eNane option. Currently Camel supports the following two
dynamictokens. file:name and file:nane. noext whichmustbeenclosedin${}.

.to("fil e: bar?doneFi | eNane=done- ${fil e: nane}");

Thiswill for example create afile named done- f 0o. t xt if thetarget filewasf 00. t xt in the same directory
asthetarget file.

.to("file:bar?doneFi | eNane=${fi | e: name}. done") ;

Thiswill for example create afilenamed f 00. t xt . done if thetarget filewasf 00. t xt in the same directory
asthetarget file.

.to("file:bar?doneFi | eName=${fi | e: nane. noext}. done");

156 Talend ESB Mediation Developer Guide

Samples

This will for example create a file named f 00. done if the target file was f 00. t xt in the same directory as
the target file.

3.14.11. Samples

3.14.11.1. Read from a directory and write to another directory

‘fron("file://i nputdir/ ?del ete=true").to("file://outputdir")

Listen on adirectory and create a message for each file dropped there. Copy the contentsto the out put di r and
deletethefileinthei nputdir .

3.14.11.2. Reading recursively from a directory and writing to
another

‘frorr("fi le://inputdir/?recursive=true&del ete=true").to("file://outputdir")

Listen on adirectory and create a message for each file dropped there. Copy the contentsto the out put di r and
delete thefileinthei nput di r . Thiswill scan recursively into sub-directories, and lay out the filesin the same
directory structure in the out put di r asthei nput di r, including any sub-directories.

i nputdir/foo.txt
i nput di r/ sub/ bar . t xt

Thiswill result in the following output layout:

out putdi r/f oo. t xt
out put di r/ sub/ bar . t xt

Using flatten

If you want to store the files in the outputdir directory in the same directory, disregarding the source directory
layout (for example to flatten out the path), you add thef | at t en=t r ue option on the file producer side:

from("file://inputdir/?recursive=true&del ete=true")
.to("file://outputdir?flatten=true")

Thiswill result in the following output layout:

out putdir/foo.txt
out putdir/bar. txt

Talend ESB Mediation Developer Guide 157

Samples

3.14.11.3. Reading from a directory and the default move
operation

Camél will by default move any processed fileintoa. camel subdirectory in the directory the file was consumed
from.

from("file://inputdir/?recursive=true&del ete=true").to("file://outputdir")

Affectsthe layout asfollows:

before

i nputdi r/foo.txt
i nput di r/ sub/ bar . t xt

after

i nputdir/.canel/foo.txt

i nput di r/ sub/ . canel / bar . t xt
out put di r/f oo. t xt

out put di r/ sub/ bar . t xt

3.14.11.4. Read from a directory and process the message in java

from("file://inputdir/").process(new Processor() {
public void process(Exchange exchange) throws Exception {
Ooj ect body = exchange. getl n(). get Body();
/'l do sone business logic with the input body

}
1)

The body will beaFi | e object that points to the file that was just dropped into thei nput di r directory.

3.14.11.5. Writing to files

Camel is of course also able to writefiles, that is, produce files. In the sample below we receive some reports on
the SEDA queue that we process before the reports are written to adirectory.

158 Talend ESB Mediation Developer Guide

Samples

public void testToFile() throws Exception {
MockEndpoi nt nock = get MockEndpoi nt (" nmock: result");
nmock. expect edMessageCount (1) ;
nmock. expect edFi | eExi sts("target/test-reports/report.txt");

tenpl at e. sendBody("direct:reports”, "This is a great report");

assert MockEndpoi nt sSati sfied();
}

prot ected Jndi Regi stry createRegistry() throws Exception {
/1 bind our processor in the registry with the given id
Jndi Regi stry reg = super. createRegistry();
reg. bi nd(" processReport", new ProcessReport());
return reg;

}

prot ect ed Rout eBui | der creat eRout eBuil der() throws Exception {
return new Rout eBuil der () {
public void configure() throws Exception {
/1 the reports fromthe seda queue are processed by our
/| processor before they are witten to files in the
/1 target/reports directory
from "direct:reports").processRef ("processReport")
.to("file://target/test-reports”, "nock:result");
}
}
}

private class ProcessReport inplements Processor ({

public void process(Exchange exchange) throws Exception {
String body = exchange. getln().getBody(String.class);
/1 do sone business |ogic here

/] set the output to the file
exchange. get Qut () . set Body(body) ;

/1 set the output filename using java code |logic, notice that this
/1 is done by setting a special header property of the out exchange
exchange. get Qut () . set Header (Exchange. FI LE_NAME, "report.txt");

3.14.11.6. Write to subdirectory using Exchange.FILE_ NAME

Using asingleroute, it is possible to write afile to any number of subdirectories. If you have aroute setup as such:

<rout e>

<from uri ="bean: nyBean"/ >

<to uri="file:/rootDirectory"/>
</rout e>

You can have nyBean set the header Exchange. FI LE_NAME to values such as:

Exchange. FI LE_NAVE
Exchange. FI LE_NAVE

hello.txt => /rootDirectory/hello.txt
f oo/ bye.txt => /rootDirectory/fool bye. txt

This allows you to have a single route to write files to multiple destinations.

Talend ESB Mediation Developer Guide

159

Avoiding reading the same file more than once (idempotent consumer)

3.14.11.7. Using expression for filenames

In this sample we want to move consumed files to a backup folder using today's date as a sub-folder name:

from("file://inbox?move=backup/ ${dat e: now. yyyyMwd}/
${file:nane}").to("...");

See File Language for more samples.

3.14.12. Avoiding reading the same file more than
once (idempotent consumer)

Camel supports Section 2.19, “Idempotent Consumer” directly within the component so it will skip already
processed files. This feature can be enabled by setting thei denpot ent =t r ue option.

‘frorr("file://i nbox?i dempotent=true").to("...");

By default Camel uses ain memory based store for keeping track of consumed files, it uses a least recently
used cache holding up to 1000 entries. You can plugin your own implementation of this store by using the
i denpot ent Reposi t ory option using the # sign in the value to indicate it is a referring to a bean in the
Registry with the specifiedi d .

<I-- Define our store as a plain Spring bean -->
<bean i d="nyStore" class="com nyconpany. M/l denpot ent Store"/>

<rout e>
<fromuri="file://inbox?i denpotent =t rue&anp; i denpot ent Reposi t or y=#nySt ore"/ >
<to uri ="bean: processl nbox"/ >

</rout e>

Camel will log at DEBUG level if it skips afile because it has been consumed before:

DEBUG Fi | eConsuner is idenpotent and the file has been consuned before.
This will skip this file: target\idenpotent\report.txt

3.14.13. Filter using
org.apache.camel.component.file.GenericFileFilter

Camd supports pluggabl efiltering strategies. Y ou can then configure the endpoint with such afilter to skip certain
files being processed.

In the sample we have built our own filter that skipsfiles starting with ski p in the filename:

public class M/FileFilter inplenents CGenericFileFilter {
publ i ¢ bool ean accept (GenericFil e pat hname) {
/1l we don't accept any files starting with skip in the nane
return ! pat hname. get Fi |l eName().startsWth("skip");
}
}

Then we can configure our route using the filter attribute to reference our filter (using # notation) that we have
definesin the Spring XML file;

160 Talend ESB Mediation Developer Guide

http://camel.apache.org/file-language.html
http://camel.apache.org/registry.html

Sorting using Comparator

<I-- define our sorter as a plain Spring bean -->
<bean id="nyFilter" class="com nyconpany. MyFi | eSorter"/>

<r out e>
<fromuri="file://inbox?filter=#nyFilter"/>
<to uri ="bean: processl| nbox"/ >

</rout e>

3.14.13.1. Filtering using ANT path matcher

Thereareaso ant | ncl ude and ant Excl ude options to make it easy to specify ANT style include/
¥ exclude without having to define the filter. See the URI options above for more information.

The ANT path matcher is shipped out-of-the-box in the camel-spring jar. So you need to depend on camel-spring
if you are using Maven. The reason is that we leverage Spring's AntPathMatcher to do the matching.

The file paths is matched with the following rules:
* ? matches one character

* * matches zero or more characters

» ** matches zero or more directoriesin a path

The sample below demonstrates how to useit:

<camel Cont ext xm ns="http://canel .apache. org/ schena/ spri ng">
<tenpl ate i d="canel Tenpl ate"/ >

<I-- use nyFilter as filter to allow setting
ANT paths for which files to scan for -->
<endpoi nt i d="nyFi | eEndpoi nt" uri=
"file://target/antpat hmat cher ?recursive=true&filter=#nmyAntFilter"/>

<rout e>
<from ref="nyFi | eEndpoi nt"/>
<to uri="nock:result"/>
</ rout e>
</ canel Cont ext >

<I-- we use the antpath file filter to use Ant paths -->
<I'-- for includes and excludes -->
<bean id="nmyAntFilter"
cl ass="org. apache. canel . conponent . fil e. Ant Pat hMat cher GenericFil eFilter">

<I-- include and file in the subfolder that has 'day' in the name -->
<property nane="incl udes" val ue="**/subfol der/**/*day*"/>
<I-- exclude all files with "bad' in name or .xm files. -->
<l-- Use comma to separate nultiple excludes -->
<property nane="excl udes" val ue="**/*bad*, **/*.xm "/ >
</ bean>

3.14.14. Sorting using Comparator

Camel supports pluggable sorting strategies. This strategy it to use the built inj ava. uti | . Conpar at or in
Java. You can then configure the endpoint with such a comparator and have Camel sort the files before being
processed.

In the sample we have built our own comparator that sorts by file name:

Talend ESB Mediation Developer Guide 161

http://static.springsource.org/spring/docs/3.0.x/api/org/springframework/util/AntPathMatcher.html

Sorting using sortBy

public class M/FileSorter inplenents Conparator<GenericFile> {
public int conpare(CenericFile ol, GenericFile 02) {
return ol. getFi |l eName() . conpar eTol gnor eCase(02. get Fi | eNane());

}

}

Then we can configure our route using the sorter option to referenceto our sorter (my Sor t er) we have defined
in the Spring XML file:

<I-- Define our sorter as a plain Spring bean -->
<bean id="nySorter" class="com nyconpany. MyFi |l eSorter"/>

<rout e>
<fromuri="file://inbox?sorter=#mySorter"/>
<to uri ="bean: processl nbox"/ >

</rout e>

URI options can reference beans using the # syntax. In the Spring DSL route, notice that we can refer to
¥ beans in the Registry by prefixing the id with #. So writing sor t er =#ny Sor t er , will instruct Camel
to go look in the Registry for abean with the ID, nySor t er .

3.14.15. Sorting using sortBy

Camdl supports pluggable sorting strategies. This strategy it to use the File Language to configure the sorting. The
sort By option is configured as follows:

‘sort By=group 1;group 2;group 3;... ‘

where each group is separated with semi colon. Inthe simple situationsyou just use one group, so asimple example
could be:

‘sort By=fil e: nanme ‘

This will sort by file name, you can reverse the order by prefixing r ever se: to the group, so the sorting is
now Z..A:

‘sort By=reverse: fil e: nane ‘

As we have the full power of File Language we can use some of the other parameters, so if we want to sort by
filesizewedo:

‘sortBy:fiIe:Iength ‘

Y ou can configureto ignorethe case, usingi gnor eCase: for string comparison, so if you want to usefile name
sorting but to ignore the case then we do:

‘sort By=i gnor eCase: fil e: nane ‘

Y ou can combine ignore case and reverse, however reverse must be specified first:

‘sort By=r everse: i gnoreCase: fil e: nane ‘

In the sample below we want to sort by last modified file, so we do:

‘sortByzfiIe:m)difed ‘

Then we want to group by name as a second option so files with same modification is sorted by name:

‘sortBy:fiIe:m)difed;file:narre ‘

162 Talend ESB Mediation Developer Guide

http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html

Using GenericFileProcessStrategy

Now there is an issue here, can you spot it? Well the modified timestamp of the file is too fine as it will bein
milliseconds, but what if we want to sort by date only and then subgroup by name? Well aswe have the true power
of File Language we can use the its date command that supports patterns. So this can be solved as:

‘sortBy:date:fiIe:yynyWUd;fiIe:nane

That is powerful. You can also use reverse per group, so we could reverse the file names:

‘sort By=date: fil e:yyyyMd; reverse: fil e: nane

3.14.16. Using GenericFileProcessStrategy

Theoption pr ocessSt r at egy can beused to useacustom Generi cFi | eProcessStr at egy that alows
you to implement your own begin, commit and rollback logic. For instance let's assume a system writes afilein
a folder you should consume. But you should not start consuming the file before another ready file have been
written as well.

So by implementing our own Gener i cFi | eProcessSt r at egy we can implement this as:

* Inthebegi n() method we can test whether the special ready file exists. The begin method returnsabool ean
to indicate if we can consume the file or not.

* Intheabort () special logic can be executed in case the begin operation returned fal se, for exampleto cleanup
resources, etc.

* inthecommi t () method we can move the file and also delete the ready file.

3.15. Flatpack

3.15.1. Flatpack Component

The Flatpack component supports fixed width and delimited file parsing via the FlatPack library.

This component only supports consuming from flatpack files to Object model. Y ou can not (yet) write
¥ from Object model to flatpack format.

Maven users will need to add the following dependency to their pom xmi for this component:

<dependency>
<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactld>canel -fl at pack</artifactld>
<l-- use the sane version as your Canel core version -->
<ver si on>x. X. X</ ver si on>

</ dependency>

3.15.1.1. URI format

‘flatpack:[delin1fixed]:flatPackanfig.pznap.xni[?options]

Or for adelimited file handler with no configuration file use

Talend ESB Mediation Developer Guide 163

http://camel.apache.org/file-language.html
http://flatpack.sourceforge.net

Flatpack Component

f | at pack: soneNane[?opt i ons]

Y ou can append query options to the URI in the following format, ?opt i on=val ue&opt i on=val ue&. . .

3.15.1.2. URI Options

Name Default Value |Description

deliniter , The default character delimiter for delimited files.

textQualifier " Thetext qualifier for delimited files.

i gnor eFi r st Record true Whether the first line is ignored for delimited files (for
the column headers).

spl it Rows true The component can either process each row one by one
or the entire content at once.

al | owsShort Li nes fal se Allowsfor linesto be shorter than expected and ignores
the extra characters.

i gnor eExt r aCol unms fal se Allows for lines to be longer than expected and ignores
the extra characters.

3.15.1.3. Examples

« flat pack: fixed: foo. pzmap. xm creates a fixed-width endpoint using the f 0o. pzmap. xm file
configuration.

» flat pack: del i m bar. pznmap. xm creates a delimited endpoint using the bar. pzmap. xm file
configuration.

« fl at pack: f oo creates a delimited endpoint called f oo with no file configuration.

3.15.1.4. Message Headers

Camel will store the following headers on the IN message:

Header Description

canel Fl at packCount er The current row index. For spl i t Rows=f al se the
counter isthe total number of rows.

3.15.1.5. Message Body

The component delivers the data in the IN message as a
or g. apache. canel . conponent . f | at pack. Dat aSet Li st object that has converters for

e java.util.Mp
e java.util . List

Usually you want the Map if you process one row at atime (spl i t Rows=true). Use Li st for the entire
content (spl i t Rows=f al se), where each element in the list isa Map . Each Map contains the key for the
column name and its corresponding value.

164 Talend ESB Mediation Developer Guide

Flatpack Component

For example to get the firstname from the sample below:

Map row = exchange. get I n(). get Body(Map. cl ass) ;
String firstName = row get (" Fl RSTNAVE") ;

However, you can also always get it asalLi st (evenfor spl i t Rows=t r ue). The same example:

Li st data = exchange. getln().get Body(List.class);
Map row = (Map)dat a. get (0);
String firstName = row get (" Fl RSTNAME") ;

3.15.1.6. Header and Trailer records

The header and trailer notionsin Flatpack are supported. However, you must use fixed record 1Ds:
» header for the header record (must be lowercase)
e trail er forthetrailer record (must be lowercase)

The example below illustrates this fact that we have a header and a trailer. You can omit one or both of them
if not needed.

<RECORD i d="header" startPosition="1" endPosition="3" indicator="HBT">
<COLUWN name="1 NDI CATOR" | engt h="3"/>
<COLUWN name="DATE" | engt h="8"/>

</ RECORD>

<COLUWN nane="Fl RSTNAME" | engt h="35" />
<COLUWN nane="LASTNAME" | engt h="35" />
<COLUWN nane="ADDRESS" | engt h="100" />
<COLUWN nanme="Cl TY" | engt h="100" />
<COLUWN nanme=" STATE" | ength="2" />
<COLUWN nane="ZI P* | engt h="5" />

<RECORD id="trailer" startPosition="1" endPosition="3"
i ndi cat or =" FBT" >
<COLUMWN name="1 NDI CATOR" | engt h="3"/>
<COLUWN name="STATUS" | engt h="7"/>

</ RECORD>

3.15.1.7. Using the endpoint

A common use case is sending afile to this endpoint for further processing in a separate route. For example:

<camel Cont ext xm ns="http://activeny. apache. or g/ canel / schema/ spri ng" >
<rout e>
<fromuri="file://sonebirectory"/>
<to uri="fl at pack: foo"/ >
</ rout e>

<rout e>
<fromuri="fl at pack: f 00"/ >
</ rout e>
</ canel Cont ext >

Y ou can aso convert the payload of each message created to a Map for easy Bean Integration

Talend ESB Mediation Developer Guide 165

http://camel.apache.org/bean-integration.html

Flatpack DataFormat

3.15.2. Flatpack DataFormat

The Section 3.15, “Flatpack” component ships with the Flatpack data format that can be used to format between
fixed width or delimited text messagestoalLi st of rowsasMap .

e marsha =fromLi st <Map<String, Object>>toCQutput Stream(canbeconvertedtoStri ng)

» unmarsha =fromj ava.io. | nput Stream(suchasaFileorString)toajava.util.List asan
or g. apache. canel . conponent . f | at pack. Dat aSet Li st instance. Theresult of the operation will
contain all the data. If you need to process each row one by one you can split the exchange, using Section 2.50,
“Splitter” .

Notice: The Flatpack library does currently not support header and trailers for the marshal operation.

3.15.2.1. Options

The dataformat has the following options:

Option Default Description

definition nul | The flatpack pzmap configuration file. Can be omitted in
simpler situations, but it is preferred to use the pzmap.

fixed fal se Delimited or fixed.

i gnor eFi r st Record true Whether the first line is ignored for delimited files (for the
column headers).

textQualifier " If thetext is qualified with achar suchas” .

delinmter , The delimiter char (could be; , or similar)

par ser Factory nul | Uses the default Flatpack parser factory.

3.15.2.2. Usage

To use the data format, simply instantiate an instance and invoke the marhsal or unmarshal operation in the route
builder:

Fl at packDat aFormat fp = new Fl at packDat aFor mat () ;
fp. setDefinition(new C assPat hResource("| NVENTORY-Del i m t ed. pzmap. xm ")) ;

from("file:order/in").unmarshal (df).to("seda: queue: newor der") ;

The sample above will read files from the or der/i n folder and unmarshal the input using the Flatpack
configuration file] NVENTORY- Del i mi t ed. pzmap. xm that configures the structure of the files. The result
isaDat aSet Li st object we store on the SEDA queue.

Fl at packDat aFor mat df = new Fl at packDat aFor mat () ;

df . set Defi ni ti on(new Cl assPat hResour ce(" PEOPLE- Fi xedLengt h. pzmap. xm ")) ;
df . set Fi xed(true);

df . set | gnor eFi r st Recor d(f al se);

fron("seda: peopl e") . mar shal (df). convertBodyTo(String. cl ass)
.to("j ms: queue: peopl e");

In the code above we marshal the data from a Object representation as a Li st of rows as Maps. The rows as
Map containsthe column name as the key, and the corresponding value. This structure can be created in Java code

166 Talend ESB Mediation Developer Guide

Freemarker

(for example from a processor). We marshal the data according to the Flatpack format and convert the result as
aSt ri ng object and storeit on a JMS queue.

3.15.2.3. Dependencies

To use Flatpack in your Camel routes, you need to add the a dependency on camel-flatpack which implements
this data format.

If you use Maven you could add the following to your pom.xml, substituting the version number for the latest
release (see the download page for the latest versions).

<dependency>
<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactld>canel -fl at pack</artifactld>
<ver si on>1. 5. 0</ ver si on>

</ dependency>

3.16. Freemarker

The freemarker component allows for processing amessage using a FreeMarker template. This can be ideal when
using Templating to generate responses for requests.

Maven users will need to add the following dependency to their pom xm for this component:

<dependency>
<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactld>canel -freemarker</artifactl|d>
<I-- use the same version as your Canel core version -->
<ver si on>x. x. X</ ver si on>
</ dependency>

3.16.1. URI format

‘freerrar ker :t enpl at eNane[?opt i ons]

where templateName is the classpath-local URI of the template to invoke; or the complete URL of the remote
template (for example: file://folder/myfile.ftl").

Y ou can append query options to the URI in the following format, ?opt i on=val ue&opti on=val ue&. . .

3.16.2. Options

Option Default Description

cont ent Cache true Cache for the resource content when it is loaded. Note:
Cached resource content can be cleared viaJMX using
the endpoint'scl ear Cont ent Cache operation.

encodi ng nul | Character encoding of the resource content.

t enpl at eUpdat eDel ay 5 Character encoding of the resource content.

Talend ESB Mediation Developer Guide 167

http://localhost:8080/confluence/pages/viewpage.action?pageId=3244313
http://freemarker.org/
http://camel.apache.org/templating.html

Headers

3.16.3. Headers

Headers set during the FreeMarker evaluation are returned to the message and added as headers. This provides a
mechanism for the FreeMarker component to return values to the Message.

An example: Set the header value of f r ui t in the Freemarker template:

${request.setHeader (' fruit', 'Apple')}

The header, f r ui t , isnow accessible from themessage. out . headers .

3.16.4. Freemarker Context

Camel will provide exchange information in the Freemarker context (just aMap). The Exchange istransferred
as.

key value

exchange The Exchange itself.

exchange. properties The Exchange properties.

headers The headers of the In message.

canel Cont ext The Camel Context.

request The In message.

body The In message body.

response The Out message (only for InOut message exchange pattern).

3.16.5. Hot reloading

The Freemarker template resource is by default not hot reloadable for both file and classpath resources (expanded
jan).lf youset cont ent Cache=f al se,then Camel will not cachetheresource and hot reloading isthus enabl ed.
This scenario can be used in devel opment.

3.16.6. Dynamic templates

Camel provides two headers by which you can define a different resource location for atemplate or the template
content itself. If any of these headersis set then Camel usesthis over the endpoint configured resource. Thisallows
you to provide a dynamic template at runtime.

Header Type Description

FreemarkerConstants. String A URI for the template resource to use instead of the
FREEMARKER _RESOURCE_URI endpoint configured.

FreemarkerConstants. String The template to use instead of the endpoint configured.
FREEMARKER_TEMPLATE

3.16.7. Samples

For example you could use something like:

168 Talend ESB Mediation Developer Guide

FTP

from("activeny: My. Queue")
.to("freemarker: conl acne/ M\yResponse. ftl");

to use a FreeMarker template to formulate a response for a message for InOut message exchanges (where there
isaJVMSRepl yTo header).

If you want to use InOnly and consume the message and send it to another destination you could use:

from("activeny: My. Queue")
.to("freemarker: conl acne/ MyResponse. ftl")
.to("activeny: Anot her. Queue") ;

Todisablethe content cache, for example, for development usagewherethe. f t | template should be hot rel oaded:

from("activeny: My. Queue")
.to("freenarker: conml acne/ MyResponse. ft| ?cont ent Cache=f al se")
.to("activeny: Anot her. Queue") ;

A file-based resource:

from("activeny: My. Queue")
.to("freemarker:file://nmyfol der/ MyResponse. ft| ?cont ent Cache=f al se")
.to("activeny: Anot her. Queue") ;

Initispossible to specify what template the component should use dynamically via a header, so for example:

from("direct:in").setHeader (Freenarker Const ant s. FREEMARKER RESOQURCE_URI) .
constant ("path/to/ my/tenplate.ftl").to("freenmarker: dunmmy");

3.17. FTP

This component provides access to remote file systems over the FTP and SFTP protocols.

Maven users will need to add the following dependency to their pom xm for this component:

<dependency>
<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactld>canel -ftp</artifactld>
<l-- use the sanme version as your Canel core version -->
<ver si on>x. x. X</ ver si on>
</ dependency>

1 FTPS (also known as FTP Secure) is an extension to FTP that adds support for the Transport Layer
— Security (TLS) and the Secure Sockets Layer (SSL) cryptographic protocols.

1 This component uses two different libraries for the FTP work. FTP and FTPS uses Apache Commons
: Net while SFTP uses JCraft JSSCH .

3.17.1. URI format and Options

ftp://[username@ host name[: port]/directorynanme[?2opti ons]
sftp://[username@ host name[: port]/direct orynane[?opti ons]
ftps://[usernane@ host name[: port]/directorynanme[?2opti ons]

where dir ector yname represents the underlying directory, which can contain nested folders.

Talend ESB Mediation Developer Guide 169

http://commons.apache.org/net/
http://commons.apache.org/net/
http://www.jcraft.com/jsch/

URI format and Options

If no username is provided, then anonynous login is attempted using no password. If no port number is
provided, Camel will provide default values according to the protocol (ftp = 21, sftp = 22, ftps = 2222).

Y ou can append query options to the URI in the following format, ?opt i on=val ue&opti on=val ue&. . .

Note besides those listed below, all options from the File are inherited and hence available to the FTP component.

URI Options

Name

Default
Value

Description

user nane

nul |

Specifies the username to use to log into the remote file
system.

password

nul |

Specifies the password to use to log into the remote file
system.

bi nary

fal se

Specifies the file transfer mode, BINARY or ASCII.
DefaultisASCII (f al se).

di sconnect

fal se

Whether or not to disconnect from remote FTP server right
after use. Can be used for both consumer and producer.
Disconnect will only disconnect the current connection to
the FTP server. If you have a consumer which you want to
stop, then you need to stop the consumer/route instead.

| ocal Wor kDi rectory

nul |

When consuming, a local work directory can be used to
store the remote file content directly in local files, to avoid
loading the content into memory. This is beneficial if you
consume a very big remote file and thus can conserve
memory. See below for more details.

passi veMbde

fal se

FTP and FTPS only : Specifies whether to use passive
mode connections. Default is active mode (f al se).

securityProtocol

TLS

FTPS only: Sets the underlying security protocol. The
following values are defined: TLS : Transport Layer
Security SSL : Secure Sockets Layer

di sabl eSecur eDat a-
Channel Def aul t s

fal se

FTPSonly : Whether or not to disable using default values
for execPbsz and execPr ot when using secure data
transfer. You can set thisoptiontot r ue if you want to be
in absolute full control what the options execPbsz and
execPr ot should be used.

downl oad

true

Starting with Camel 2.11, whether the FTP consumer
should download the file. If this option is set to false, then
the message body will be null, but the consumer will still
trigger a Camel Exchange that has details about the file
such asfile name, file size, etc. It'sjust that the file will not
be downloaded.

execPr ot

nul |

FTPS only : This will use option P by default, if secure
data channel defaults hasn't been disabled. Possible values
are: C: Clear S: Safe (SSL protocol only) E : Confidential
(SSL protocol only) P : Private

execPbsz

nul |

FTPS only This option specifies the buffer
size of the secure data channel. If option
useSecur eDat aChannel has been enabled and this
option has not been explicit set, then value O is used.

islmplicit

fal se

FTPS only: Sets the security mode(implicit/explicit).
Default isexplicit (f al se).

170

Talend ESB Mediation Developer Guide

URI format and Options

Name

Default
Value

Description

knownHost sFi |l e

nul |

SFTP only: Setstheknown_host s file, sothat the SFTP
endpoint can do host key verification.

privat eKeyFil e

nul |

SFTP only: Set the private key file to that the SFTP
endpoint can do private key verification.

pri vat eKeyFi | ePassphrase

nul |

SFTP only: Set the private key file passphrase to that the
SFTP endpoint can do private key verification.

ci phers

nul |

A comma separated list of ciphers that will
be used in order of preference. Possible cipher
names are defined by JCraft JSCH. Some
examples include: aes128-ctr,aes128-cbc,3des-ctr,3des-
cbc,blowfish-cbc,aes192-che,aes256-cbe. If not specified
the default list from JSCH will be used.

f ast Exi st sCheck

fal se

If true, camel-ftp will usethelist filedirectly to check if the
file exists. Since some FTP servers may not support listing
the file directly, if the option is false, camel-ftp will use
the old way to list the directory and check if thefile exists.
Note this option aso influences r eadLock=changed
to control whether it performs a fast check to update file
information or not. This can be used to speed up the process
if the FTP server hasalot of files.

strict Host KeyChecki ng

no

SFTP only: Sets whether to use strict host key checking.
Possiblevaluesare: no, yes andask. Note: ask doesnot
make sense to use as Camel cannot answer the question for
you asit is meant for human intervention.

maxi mumrReconnect Att enpt s

Specifies the maximum reconnect attempts Camel
performswhen it tries to connect to the remote FTP server.
Use 0 to disable this behavior.

reconnect Del ay

1000

Delay in milliseconds Camel will wait before performing
areconnect attempt.

connect Ti neout

10000

the connect timeout in milliseconds. This corresponds
tousing ft pCl i ent. connect Ti meout for the FTP/
FTPS. For SFTP this option is aso used when attempting
to connect.

soTi neout

nul |

FTP and FTPS Only: the
Socket Opti ons. SO _TI MEQUT valuein milliseconds.
Note SFTP will automatic use the connect Ti meout as
thesoTi meout .

ti meout

30000

FTP and FTPS Only: the data timeout in milliseconds.
This corresponds to using f t pdl i ent . dat aTi neout
for the FTP/FTPS. For SFTP there is no data timeout.

t hr owExcept i onOnConnect -
Fail ed

fal se

Whether or not to throw an exception if a successful
connection and login could not be established. This allows
acustom pol | St r at egy to dea with the exception, for
example to stop the consumer.

si t eCommand

nul |

FTP and FTPS Only: To execute site commands after
successful login. Multiple site commands can be separated
using a new line character (\n). Use hel p site to see
which site commands your FTP server supports.

stepw se

true

Whether or not stepwise traversing directories should be
used or not. Stepwise means that it will 'cd' one directory

Talend ESB Mediation Developer Guide 171

http://www.jcraft.com/jsch/

URI format and Options

Name Default Description
Value

at atime. See more details below. You can disable thisin
case you can't use this approach.

separ at or Aut o Dictates what path separator char to use when uploading
files. Aut o = Use the path provided without altering it.
UNI X = Use unix style path separators. W ndows = Use
Windows style path separators.

ftpdient nul | FTP and FTPS Only: Allows you to use a custom
or g. apache. cormons. net . ftp. FTPA i ent
instance.

ftpdientConfig nul | FTP and FTPS Only: Allows you to use a custom
org.apache.commons. net.ftp.FTPClientConfig instance.

ftpldient.trustStore.file |null FTPSOnly: Setsthetrust storefile, so that the FTPS client
can look up for trusted certificates.

ftpdient.trustStore.type |JKS FTPS Only: Setsthetrust storetype.

ftpdient.trustStore. SunX509 |FTPSOnly: Setsthetrust store algorithm.

al gorithm

ftpdient.trustStore. nul | FTPS Only: Setsthe trust store password.

password

ftpdient.keyStore.file nul | FTPS Only: Setsthe key storefile, so that the FTPS client
can look up for the private certificate.

ftplient. keyStore.type JKS FTPSOnly: Setsthe key store type.

ftpdient. keyStore. SunX509 |FTPSOnly: Setsthe key store algorithm.

al gorithm

ftpdient. keyStore. nul | FTPS Only: Setsthe key store password.

password

ftpdient. keyStore. nul | FTPS Only: Setsthe private key password.

keyPasswor d

By default, the FTPS component trust store accepts all certificates. If you only want to trust selective
certificates, you have to configure the trust storewiththef t pCl i ent . t r ust St or e. xxx options or
by configuring acustomft pd i ent .

Y ou can configure additional optionson theft pCli ent andft pd i ent Confi g from the URI directly by
usingtheftpClient. orftpdientConfig. prefix.

For exampleto set the set Dat aTi meout onthe FTPC i ent to 30 seconds you can do:

from("ftp://foo@ryserver ?passwor d=secr et & t pCl i ent . dat aTi neout =30000")
.to("bean: foo");

Y ou can mix and match and have use both prefixes, for example to configure date format or timezones.

from("ftp://foo@ryserver ?passwor d=secr et &' +
"ftpdient. dataTi meout =30000&f t pCl i ent Confi g. server LanguageCode=fr")
.to("bean: foo");

Y ou can have as many of these options as you like.

See the documentation of the Apache Commons FTP FTPClientConfig for possible options and more details, and
also Apache Commons FTP FTPClient.

172 Talend ESB Mediation Developer Guide

http://commons.apache.org/net/api/org/apache/commons/net/ftp/FTPClientConfig.html
http://commons.apache.org/net/api/org/apache/commons/net/ftp/FTPClient.html

More URI options

If you do not like having complex configurations inserted in the url you can use ftpdient or
ft pd i ent Confi g by letting Camel look in the Registry for it. For example:

<bean i d="nyConfi g" class="org. apache. commons. net.ftp. FTPC i ent Confi g">
<property nane="| eni ent Fut ur eDat es" val ue="true"/>
<property nane="server LanguageCode" val ue="fr"/>

</ bean>

And then let Camel lookup this bean when you use the # notation in the url.

from("ftp://foo@yserver?passwor d=secr et & t pd i ent Conf i g=#nyConfi g")
.to("bean: foo0");

3.17.2. More URI options

1 See Section 3.14, “File’ as al the options there also apply to this component.

3.17.3. Stepwise changing directories

Camel FTP can operate in two modes in terms of traversing directories when consuming files (for example,
downloading) or producing files (for example, uploading)

o stepwise
* not stepwise

Y ou may want to pick either one depending on your situation and security issues (some Camel end users can only
download filesif they use stepwise, while others can only download if they do not). Y ou can usethe st epwi se
option to control the behavior. See the online Camel documentation for examples of both techniques.

3.17.4. Examples

ftp://someone@oneft pserver. con public/upl oad/i nmages/ hol i day2008?
passwor d=secr et &i nary=t rue

ftp://someoneel se@oneot herftpserver. co. uk: 12049/ r eport s/ 2008/ passwor d=
secr et &i nar y=f al se

ftp://publicftpserver.com downl oad

The FTP consumer (with the same endpoint) does not support concurrency (the backing FTP client is not
thread safe). You can use multiple FTP consumers to poll from different endpoints. It is only a single
endpoint that does not support concurrent consumers.

The FTP producer does not have thisissue, it supports concurrency.

In the future we will add consumer pooling to Camel to allow this consumer to support concurrency as
well.

This component is an extension of the Section 3.14, “File” component, and there are more samples and
¥ details on the Section 3.14, “File” component page.

Talend ESB Mediation Developer Guide 173

http://camel.apache.org/registry.html
http://camel.apache.org/ftp2.html#FTP2-Stepwisechangingdirectories
https://issues.apache.org/activemq/browse/CAMEL-1682

Default when consuming files

3.17.5. Default when consuming files

The FTP consumer will by default leave the consumed files untouched on the remote FTP server. You have to
configure it explicitly if youwant it to del ete the files or move them to another location. For example, you can use
del et e=t r ue to delete thefiles, or use nove=. done to move the files into a hidden done subdirectory.

The regular File consumer is different as it will (by default) move filesto a. canel sub directory. The reason
Camel does not do this by default for the FTP consumer is that it may lack permissions by default to be able to
move or delete files.

3.17.5.1. limitations

The option readL ock can be used to force Camel not to consume files that is currently in the progress of being
written. However, this option isturned off by default, asit requires that the user has write access. Thereareonly a
few options supported for FTP. There are other solutionsto avoid consuming filesthat are currently being written
over FTP; for instance, you can write thefile to atemporary destination and move the file after it has been written.

When moving filesusing move or pr eMbv e optionthefilesarerestricted tothe FTP_ROOT folder. That prevents
you from moving files outside the FTP area. If you want to move files to another area, you can use soft links and
move files into a soft linked folder.

3.17.6. Message Headers

The following message headers can be used to affect the behavior of the component

Header Description

Canel Fi | eNane Specifies the output file name (relative to the endpoint directory)
to be used for the output message when sending to the endpoint.
If neither Camrel Fi | eNane or an expression are specified, then a
generated message ID is used as the filename instead.

Canel Fi | eNanePr oduced The absolute filepath (path + name) for the output file that was
written. This header is set by Camel and its purpose is providing
end-users the name of the file that was written.

Canel Fi | eBat chl ndex Current index out of total number of files being consumed in this
batch.

Canel Fi | eBat chSi ze Total number of files being consumed in this batch.

Camel Fi | eHost The remote hostname.

Canel Fi | eLocal Wor kPat h Path to the local work file, if local work directory is used.

3.17.7. About timeouts

Thetwo set of libraries (seetop) hasdifferent API for setting timeout. Y ou can usetheconnect Ti neout option
for both of them to set atimeout in milliseconds to establish a network connection. An individua soTi meout
can aso be set on the FTP/FTPS, which corresponds to using ft pCl i ent . soTi nmeout . Notice SFTP will
automatically use connect Ti meout asitssoTi neout. Theti neout option only applies for FTP/FTSP
as the data timeout, which corresponds to the ft pCl i ent . dat aTi neout vaue. All timeout values are in
milliseconds.

174 Talend ESB Mediation Developer Guide

Using Local Work Directory

3.17.8. Using Local Work Directory

Camel supports consuming from remote FTP servers and downloading thefilesdirectly into alocal work directory.
This avoids reading the entire remote file content into memory asit is streamed directly into the local file using
Fi | eCut put St ream.

Camd will storeto alocal file with the same name as the remote file, though with . i npr ogr ess as extension
while the file is being downloaded. Afterwards, the file is renamed to remove the . i npr ogr ess suffix. And
finally, when the Exchange is complete the local fileis deleted.

So if you want to download files from a remote FTP server and store it as files then you need to route to afile
endpoint such as:

from("ftp://someone@oneserver. con?passwor d=secr et
& ocal WrkDirectory=/tmp").to("file://inbox");

Renaming the work file facilitates optimization. The route above is ultra efficient as it avoids reading

¥ the entire file content into memory. It will download the remote file directly to alocal file stream. The
java.io. Fil e handleis then used as the Exchange body. The file producer leverages this fact and
can work directly on the work filej ava. i 0. Fi | e handleand perform aj ava. i o. Fi | e. r enane
to the target filename. As Camel knowsiit is alocal work file, it can optimize and use a rename instead
of afile copy, asthe work fileis meant to be deleted anyway.

3.17.9. Samples

In the sample below we set up Camel to download al the reports from the FTP server once every hour (60 min)
as BINARY content and store it asfiles on thelocal file system.

prot ect ed Rout eBui |l der createRout eBuil der() throws Exception {
return new Rout eBuil der () {
public void configure() throws Exception {
/1l we use a delay of 60 mi nutes
/I (for exanple, once per hour we poll the FTP server)
long delay = 60 * 60 * 1000L;

/1 fromthe given FTP server we poll (= download) all the files
/1 fromthe public/reports folder as Bl NARY types and store this as

/I files in a local directory. Canel will use the filenanmes from
/1l the FTPServer. Notice that the FTPConsumer properties nust be
/1 prefixed with "consunmer."”. In the URL the delay paraneter is

/1l fromthe FileConsuner conponent so we shoul d use consuner. del ay
/1 as the URI paraneter nanme. The FTP Conponent is an extension of
/1l the File Conponent.
from("ftp://tiger:scott@ocal host/ public/reports?binary=true&
consuner . del ay=" + delay).to("file://target/test-reports");
}
}
}

And the route using Spring DSL:

<r out e>
<fromuri="ftp://scott @ ocal host/ public/reports?password=
ti ger &np; bi nar y=t r ue&anp; del ay=60000"/ >

<to uri="file://target/test-reports"/>
</ rout e>

Talend ESB Mediation Developer Guide 175

http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html

Filter using org.apache.camel.component.file.GenericFileFilter

3.17.9.1. Consuming a remote FTPS server (implicit SSL) and
client authentication

from

"ftps://adm n@ ocal host: 2222/ publ i c/ canel ?passwor d=adni n
&securityProtocol =SSL& sl nplicit=true
&ftpClient.keyStore.file=./src/test/resources/server.jks
&ft pdient. keySt or e. passwor d=passwor d

&f t pd i ent. keySt or e. keyPasswor d=password") .t o("bean: f 00");

3.17.9.2. Consuming a remote FTPS server (explicit TLS) and a
custom trust store configuration

from("ftps://adm n@ ocal host: 2222/ publ i c/ canel ?passwor d=adm n&ft pd i ent.
trustStore.file=./src/test/resources/server.jks& tpdient.trustStore.
passwor d=passwor d").to("bean: foo");

3.17.10. Filter using
org.apache.camel.component.file.GenericFileFilter

Came supports pluggable filtering strategies. This strategy it to use the built in
or g. apache. canel . component . file. GenericFil eFilter in Java You can then configure the
endpoint with such afilter to skip certain filters before being processed.

In the sample we have build our own filter that only accepts files starting with report in the filename.

public class M/FileFilter inplenents CenericFileFilter {
publ i ¢ bool ean accept(GenericFile file) {
/1 we only want report files
return file.getFileName().startsWth("report");
}
}

And then we can configure our route using the filter attribute to reference our filter (using # notation) that we
have defined in the Spring XML file:

<!-- define our sorter as a plain Spring bean -->
<bean id="nyFilter" class="com nyconpany. M/FileFilter"/>

<rout e>
<fromuri="ftp://soneuser @oneft pserver. con?passwor d=secr et I
&anp; filter=#nyFilter"/>
<to uri ="bean: processl nbox"/ >
</rout e>

3.17.11. Filtering using ANT path matcher

The ANT path matcher isafilter that is shipped out-of-the-box in the camel-spring jar. So you need to depend on
camel-spring if you are using Maven. Thereason isthat we leverage Spring's AntPathM atcher to do the matching.

176 Talend ESB Mediation Developer Guide

http://static.springsource.org/spring/docs/3.0.x/api/org/springframework/util/AntPathMatcher.html

Debug logging

The file paths are matched with the following rules:
* ? matches one character

* * matches zero or more characters

e ** matches zero or more directoriesin a path

The sample below demonstrates how to useit:

<canel Cont ext xm ns="http://canel.apache. org/ schema/ spri ng">
<tenpl ate i d="canel Tenpl ate"/ >
<l-- use nyFilter as filter to allow setting ANT paths for which -->
<l-- filesto scan for -->
<endpoi nt i d="myFTPEndpoi nt"
uri="ftp://adm n@ ocal host: 20123/ ant pat h?passwor d=adm n&
recur si ve=t rue&del ay=10000&i ni ti al Del ay=2000&f i | t er =#nyAntFilter"/>

<r out e>
<from r ef =" nyFTPEndpoi nt "/ >
<to uri="nock:result"/>
</rout e>
</ canel Cont ext >

<I-- we use the AntPat hMatcherRenoteFileFilter to use ant paths for -->
<!-- includes and excludes -->
<bean id="nyAntFilter"

cl ass="org. apache. canel . conponent. fil e. Ant Pat hMat cher GenericFil eFilter">

<I-- include and file in the subfolder that has day in the nane -->
<property nane="incl udes" val ue="**/subfol der/**/*day*"/>
<I-- exclude all files with bad in name or .xm files. -->
<l-- Use comm to separate nultiple excludes -->
<property nane="excl udes" val ue="**/*bad*, **/*. xm "/ >
</ bean>

3.17.12. Debug logging

This component has log level TRACE that can be helpful if you have problems.

3.18. HI7

The hI7 component is used for working with the HL7 MLLP protocol and HL7 v2 messages using the HAPI
library. This component supports the following:

* HL7 MLLP codec for Mina

» Agnostic dataformat using either plain String objects or HAPI HL7 model objects.
» Type Converter from/to HAPI and String

e HL7 DataFormat using HAPI library

e Even more ease-of-use as it's integrated well with the Camel-Mina and Camel-Mina2 (for Camel 2.11+)
components.

Maven users will need to add the following dependency to their pom xm for this component:

Talend ESB Mediation Developer Guide 177

http://www.hl7.org/
http://hl7api.sourceforge.net/
http://hl7api.sourceforge.net/
http://mina.apache.org/

HL7 MLLP protocol

<dependency>
<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactld>canel -hl 7</artifactld>
<I-- use the sanme version as your Cane
<ver si on>x. x. X</ ver si on>

</ dependency>

core version -->

3.18.1. HL7 MLLP protocol

HL7 is often used with the HL7 MLLP protocol that is atext based TCP socket based protocol. This component
shipswith aMina Codec that conformsto the MLLP protocol so you can easily expose aHL 7 listener that accepts
HL 7 requestsover the TCPtransport. To expose aHL 7 listener service we reuse the existing Camel Minaor Mina2
components where we just use HL7M_LPCodec as codec.

The HL7 MLLP codec has the following options:

Name Default Value Description

startByte 0x0b The start byte spanning the HL 7 payload.

endByt el Ox1c Thefirst end byte spanning the HL7 payload.

endByt e2 0x0d The 2nd end byte spanning the HL 7 payload.

char set JVM Default The charset name encoding to use for the codec.

convert LFt oCR Will convert \n to \r (OxOd, 13 decimal) as HL7
usually uses\r as segment terminators. The HAPI library
requires the use of \r. Default value of true pre-Camel
2.11, false starting with Camel 2.11.

val i dat e true Whether HAPI Parser should validate or not.

par ser cauhn. hl7v2. parser.|Starting with Camel 2.11, to use a custom parser. Must

PipeParser be of type ca.uhn.hl7v2.parser.Parser.

3.18.1.1. Exposing a HL7 listener

In our Spring XML file, we configure an endpoint to listen for HL7 requests using TCP:

<endpoi nt id="hl7listener"
uri ="mna:tcp://| ocal host: 8888?sync=t r ue&codec=#hl 7codec"/ >
<l-- for Canel 2.11: use uri="mna2:tcp..." instead -->

Notice that we use TCP on localhost on port 8888. We use sync=tr ue to indicate that this listener is
synchronous and therefore will return aHL 7 response to the caller. Then we setup Minato use our HL7 codec with
codec=#hl7codec. Notice that hl7codec is just a Spring bean 1D, so we could have named it mygreatcodecforhl 7
or whatever. The codec is aso set up in the Spring XML file:

<bean i d="hl 7codec" cl ass="or g. apache. canel . conponent . hl 7. HL7M_LPCodec" >
<property nane="charset" val ue="i so-8859-1"/>
</ bean>

And here we configure the charset encoding to use, and is0-8859-1 is commonly used.

The endpoint hi7listener can then be used in aroute as a consumer, asthisjava DSL exampleillustrates:

from("hl 7listener").to("pati ent LookupService");

178 Talend ESB Mediation Developer Guide

http://docs.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html

HL7 Model using java.lang.String

Thisis avery simple route that will listen for HL7 and route it to a service named patientLookupService that is
also a Spring bean 1D we have configured in the Spring XML as:

<bean i d="pati ent LookupServi ce"
cl ass="com myconpany. heal t car e. servi ce. Pat i ent LookupServi ce"/ >

Another powerful feature of Camel isthat we can have our businesslogic in POJO classesthat isnot tied to Camel
as shown here:

i mport ca. uhn. hl 7v2. HL7Except i on;
i mport ca. uhn. hl 7v2. nodel . Message;
i mport ca. uhn. hl 7v2. nodel . v24. segnment . QRD;

public class PatientLookupService {
publ i c Message | ookupPati ent (Message input) throws HL7Exception {
QRD grd = (QRD)i nput . get (" QRD");
String patientld =
grd. get WhoSubj ect Fi | t er (0) . get | DNunber () . get Val ue() ;

// find patient data based on the patient id and

/1 create a HL7 nodel object with the response
Message response = ... create and set response data
return response;

}

Notice that this class uses imports from the HAPI library and not from Camel.

3.18.2. HL7 Model using java.lang.String

The HL7MLLP codec uses plain Strings as its data format. Camel uses its Type Converter to convert to/from
strings to the HAPI HL7 model objects. However, you can use plain String objects if you prefer, for instance if
you wish to parse the data yourself.

3.18.3. HL7 Model using HAPI

The HL7v2 model uses Java objects from the HAPI library. Using this library, we can encode and decode from
the EDI format (ER7) that is mostly used with HL 7v2. With this model you can code with Java objects instead of
the EDI based HL7 format that can be hard for humans to read and understand.

The sample below is arequest to lookup a patient with the patient ID, 0101701234.

MBH| ~~\ \ & MYSENDER| MYRECE!I VER| MYAPPLI CATI ON| | 200612211200
| | QRYAA19| 1234| P| 2. 4
QRD| 200612211200| R| | | Get Pati ent| | | 1°RD| 0101701234| DEM |

Using the HL7 model we can work with the data as a ca.uhn.hl7v2.model .M essage.M essage object. To retrieve
the patient ID in the message above, you can do thisin Java code:

Message nsg = exchange. get | n() . get Body(Message. cl ass);
QRD qrd = (QRD)nsg. get ("QRD");
String patientld = qrd. get WhoSubj ect Fi | t er (0) . get | DNunber () . get Val ue() ;

Camdl has built-in type converters, so when this operation isinvoked:

Message nsg = exchange. get | n() . get Body(Message. cl ass);

Talend ESB Mediation Developer Guide 179

Message Headers

If you know the message type in advance, you can be more type-safe:

QRY_A19 nsg = exchange. getln(). get Body(QRY_A19. cl ass);
String patientld = nsg. get QRD() . get WhoSubj ect Fi | t er (0) . get | DNunber () . get Val ue() ;

Camd will convert the received HL7 datafrom String to Message. Thisis powerful when combined with the HL7
listener, then you as the end-user don't have to work with byte[], String or any other simple object formats. Y ou
can just use the HAPI HL7 model objects.

3.18.4. Message Headers

The unmarshal operation adds these M SH fields as headers on the Camel message:

Key MSH field Example

Canel HL7Sendi ngAppl i cati on MSH-3 MY SERVER
Camel HL7Sendi ngFaci lity MSH-4 MY SERVERAPP
Camel HL7Recei vi ngAppl i cati on MSH-5 MY CLIENT
Camel HL7Recei vi ngFaci lity MSH-6 MY CLIENTAPP
Canel HL7Ti nest anp MSH-7 20071231235900
Camel HL7Security MSH-8 null

Camel HL7MessageType MSH-9-1 ADT

Camel HL7Tri gger Event MSH-9-2 AO01

Canel HL7MessageCont r ol MSH-10 1234

Camel HL7Pr ocessi ngl d MSH-11 P

Camel HL7Ver si onl d MSH-12 24

3.18.5. Options

The HL7 Data Format supports the following options:

Option Default Description

val i dat e true Whether the HAPI Parser should validate using the
default validation rules. Camel 2.11: better use the
{{parser}} option and initialize the parser with the
desired HAPI {{ValidationContext} }

par ser cauhn. hl7v2. parser.|Starting with Camel 2.11, to use a custom parser.
GenericParser Must be of type ca.uhn.hl7v2.parser.Parser. Note that
GenericParser also alows for parsing XML-encoded

HL7v2 messages.

3.18.6. Dependencies

To use HL7 in your Camel routes you'll need to add a Maven dependency on camel-hl7 listed above, which
implements this data format. The HAPI library is split into a base library and several structures libraries, one for
each HL 7v2 message version.

180 Talend ESB Mediation Developer Guide

http://repo1.maven.org/maven2/ca/uhn/hapi/hapi-base
http://repo1.maven.org/maven2/ca/uhn/hapi

HTTP4

By default camel-hl7 only references the HAPI base library. Applications are responsible for including structures
libraries themselves. For example, if a application works with HL7v2 message versions 2.4 and 2.5 then the
following dependencies must be added:

<dependency>
<gr oupl d>ca. uhn. hapi </ gr oupl d>
<artifactld>hapi-structures-v24</artifactld>
<I'-- use your hapi-base version bel ow->
<ver si on>1. 2</ ver si on>

</ dependency>

<dependency>
<gr oupl d>ca. uhn. hapi </ gr oupl d>
<artifactld>hapi-structures-v25</artifactld>
<I'-- use your hapi-base version bel ow->
<versi on>1. 2</ ver si on>

</ dependency>

Alternatively, an OSGi bundle containing the base library, all structure libraries and required dependencies (on
the bundle classpath) can be downloaded from the central Maven repository:

<dependency>
<gr oupl d>ca. uhn. hapi </ gr oupl d>
<artifactl d>hapi - osgi - base</artifact!d>
<ver si on>1. 2</ ver si on>

</ dependency>

Note that the version number must match the version of the hapi-base library that is transitively referenced by
this component.

See the Camel Website for examples of this component in use.

3.19. HTTP4

The http4: component provides HTTP based endpoints for consuming external HTTP resources (as a client to
call external serversusing HTTP).

Maven users will need to add the following dependency to their pom xm for this component:

<dependency>
<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactld>canel -http4</artifactld>
<I-- use the sanme version as your Canel core version -->
<ver si on>x. x. X</ ver si on>
</ dependency>

3.19.1. URI format and Options

‘http4:hostnane[:port][/resourceLki][?options]

Thiswill by default use port 80 for HTTP and 443 for HTTPS.

Talend ESB Mediation Developer Guide 181

http://repo1.maven.org/maven2/ca/uhn/hapi/hapi-osgi-base/1.2/
http://camel.apache.org/hl7.html
http://camel.apache.org/endpoint.html

URI format and Options

Y ou can append query options to the URI in the following format, ?opt i on=val ue&opti on=val ue&. . .
Should you use camel-http4 or camel-jetty? Y ou can produce only to endpoints generated by the HTTP4

component. Therefore it should never be used as input into your Camel routes. To bind/expose an HTTP
endpoint viaaHTTP server asinput to a Camel route, use the Jetty Component instead.

HttpComponent Options

Name Default Description
Value
maxTot al Connecti ons 200 The maximum number of connections.
connecti onsPer Rout e 20 The maximum number of connections per route.
htt pd i ent Confi gurer nul | Reference to aor g. apache. canel . conponent .
http. Htpdient Configurer intheRegistry.
cl i ent Connecti onManager |nul | To use a custom org. apache. http. conn.
d i ent Connect i onManager .
ht t pBi ndi ng nul | To use a custom HttpBinding.
ht t pCont ext nul | To use a custom HttpContext when executing requests.
ssl Cont ext Par anet er s nul | To use a custom org.apache. camel.util. jsse.

SSL ContextParameters reference.

x509Host naneVeri fi er See Default value: or g. apache. http. conn. ssl .
Description |Br owser Conpat Host naneVeri fi er

You can refer to a different org. apache.

http. conn. ssl. X509Host naneVeri fi er
instance in the Registry such as org. apache.
http. conn. ssl. StrictHost nameVerifier
or or g. apache. http. conn. ssl .

Al | owAl | Host naneVeri fier .

HttpEndpoint Options

Name Default Description
Value
t hr owExcepti onOnFail ure |[true Option to disable throwing the

Ht t pQper at i onFai | edExcept i on in case of failed
responses from the remote server. This allows you to get
all responses regardless of the HTTP status code.

bri dgeEndpoi nt fal se If true, HttpProducer will ignore the Exchange.HTTP_URI
header, and use the endpoint's URI for requests. Y ou may
also set thethrowExceptionOnFailuretobefasetolet the
HttpProducer send all the fault response back. Also if set
to true HttpProducer and Camel Servlet will skip the gzip
processing if the content-encoding is"gzip".

di sabl eSt reanCache fal se DefaultHttpBinding will copy the request input stream
into a stream cache and put it into message body if
this option is false to support multiple reads, otherwise
DefaultHttpBinding will set the request input stream
directly in the message body.

header Fil ter Strat egy nul | Starting with Camel 2.11, reference to a instance
of org.apache. camel.spi. HeaderFilterStrategy in the
Registry. It will be used to apply the custom
headerFilterStrategy on the new create HttpEndpoint.

182 Talend ESB Mediation Developer Guide

URI format and Options

Name

Default
Value

Description

ht t pBi ndi ngRef

nul |

Reference to a Camel Htt pBi ndi ng object in the
Registry . Recommendedto usetheht t pBi ndi ng option
instead.

ht t pBi ndi ng

nul |

See definition in HttpComponent option list.

htt pC i ent Confi gur er Ref

nul |

Reference to a Camel Httpd i ent Confi gurer
object in the Registry . Recommended to use the
htt pC i ent Confi gur er option instead.

ht t pCont ext

nul |

See definition in HttpComponent option list.

ht t pCont ext Ref

nul |

Reference to a custom
org.apache.http.protocol .HttpContext in the Registry.
Recommended to use the httpContext option instead.

htt pd i ent Confi gurer

nul |

See definition in HttpComponent option list.

htt pdient. XXX

nul |

Setting options on the BasicHttpParams . For
instance httpC ient.soTi meout =5000 will set
the SO TI MEQUT to 5 seconds. Look on the setter
methods of the following parameter beans for a
complete reference: AuthParamBean, ClientParamBean,
ConnConnectionParamBean, ConnRouteParamBean,
CookieSpecParamBean, HttpConnectionParamBean and
HttpProtocol ParamBean

cl i ent Connect i onManager

nul |

See definition in HttpComponent option list.

transf er Excepti on

fal se

If enabled and an Exchange failed processing on the
consumer side, and if the caused Except i on was send
back serialized in the response as a appl i cati on/
X-j ava-serial i zed- obj ect content type (for
example using Section 3.23, “Jetty” or Section 3.39,
“Serviet” Camel components). On the producer side the
exception will be deserialized and thrown as is, instead of
theHt t pOper at i onFai | edExcept i on . Thecaused
exception isrequired to be serialized.

ssl Cont ext Par anet er sRef

nul |

Reference to a org.apache.camel. util.jsse.
SSL ContextParameters object in the Registry. This
reference overrides any configured SSL ContextParameters
at the component level.

x509Host naneVeri fi er

See
Description

See definition in HttpComponent option list.

The following authentication options can also be set on the HttpEndpoint:

3.19.1.1. Setting Basic Authentication and Proxy

Name Default Description

Value
user name nul | Username for authentication.
password nul | Password for authentication.
domai n nul | The domain name for authentication.
host nul | The host name authentication.

Talend ESB Mediation Developer Guide 183

http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://hc.apache.org/httpcomponents-core-ga/httpcore/apidocs/org/apache/http/params/BasicHttpParams.html
http://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/auth/params/AuthParamBean.html
http://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/client/params/ClientParamBean.html
http://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/conn/params/ConnConnectionParamBean.html
http://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/conn/params/ConnRouteParamBean.html
http://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/cookie/params/CookieSpecParamBean.html
http://hc.apache.org/httpcomponents-core-ga/httpcore/apidocs/org/apache/http/params/HttpConnectionParamBean.html
http://hc.apache.org/httpcomponents-core-ga/httpcore/apidocs/org/apache/http/params/HttpProtocolParamBean.html
http://camel.apache.org/exchange.html

Message Headers

Name Default Description
Value
pr oxyHost nul | The proxy host name
pr oxyPor t nul | The proxy port number
pr oxyUser nane nul | Username for proxy authentication
pr oxyPassword nul | Password for proxy authentication
pr oxyDomai n nul | The proxy domain name
pr oxy Nt Host nul | The proxy Nt host name

3.19.2. Message Headers

Name Type Description

Exchange. HTTP_URI String |URItocal. Thiswill override existing URI set directly onthe
endpoint.

Exchange. HTTP_PATH String |Regquest URI'spath, the header will be usedto build therequest
URI with the HTTP_URI.

Exchange. HTTP_QUERY String |URI parameters. This will override existing URI parameters
set directly on the endpoint.

Exchange. i nt The HTTP response code from the external server. Is 200 for

HTTP_RESPONSE_CODE OK.

Exchange. String |Character encoding.

HTTP_CHARACTER_ENCODI NG

Exchange. CONTENT_TYPE String |The HTTP content type. Is set on both the IN and OUT
message to provide a content type, suchast ext/ ht ml .

Exchange. String |TheHTTP content encoding. Is set on both the IN and OUT
CONTENT_ENCODI NG message to provide a content encoding, such asgzi p .

3.19.3. Message Body

Camd will storethe HTTP response from the external server on the OUT body. All headers from the IN message
will be copied to the OUT message, so headers are preserved during routing. Additionally Camel will add the
HTTP response headers as well to the OUT message headers.

3.19.4. Response code

Camd will handle according to the HT TP response code:
» Response code isin the range 100..299, Camel regardsit as a success response.

» Response code is in the range 300..399, Camel regards it as a redirection response and will throw a
Ht t pOper at i onFai | edExcept i on with theinformation.

* Response code is 400+, Camel regards it as an externa server failure and will throw a
Ht t pOper at i onFai | edExcept i on with theinformation.

184 Talend ESB Mediation Developer Guide

HttpOperationFailedException

The option, throwExceptionOnFailure, can be set to false to prevent the
¥ Ht t pOper ati onFai | edExcept i on from being thrown for failed response codes. This allows
you to get any response from the remote server. There is a sample below demonstrating this.

3.19.5. HttpOperationFailedException

This exception contains the following information:
* The HTTP status code

» The HTTP status line (text of the status code)

* Redirect location, if server returned aredirect

* Responsebody asaj ava. | ang. Stri ng, if server provided a body as response

3.19.6. Calling using GET or POST

The following agorithm is used to determine whether the GET or POST HTTP method should be used: 1. Use
method provided in header. 2. GET if query string is provided in header. 3. GET if endpoint is configured with a
query string. 4. POST if thereis datato send (body is not null). 5. GET otherwise.

3.19.7. How to get access to HttpServletRequest and
HttpServletResponse

Y ou can get access to these two using the Camel type converter system using NOTE Y ou can get the request and
response not just from the processor after the camel-jetty or camel-cxf endpoint.

Ht t pSer vl et Request request = exchange. getln(). get Body(
Ht t pSer vl et Request . cl ass) ;

Ht t pSer vl et Request response =
exchange. get I n() . get Body(Ht t pSer vl et Response. cl ass) ;

3.19.8. Configuring URI to call

You can set the HTTP producer's URI directly form the endpoint URI. In the route below, Camel will call out to
the external server, ol dhost , using HTTP.

‘frorr("di rect:start").to("http4://ol dhost");

And the equivalent Spring sample:

<canel Cont ext xm ns="http://activeny. apache. or g/ canel / schema/ spri ng" >
<r out e>
<fromuri="direct:start"/>
<to uri="http4://ol dhost"/>
</rout e>
</ canel Cont ext >

Talend ESB Mediation Developer Guide 185

Configuring URI Parameters

Y ou can override the HTTP endpoint URI by adding a header with the key, Ht t pConst ant s. HTTP_URI , on
the message.

from"direct:start")
. set Header (Ht t pConst ants. HTTP_URI, constant ("http:// newhost"))
.to("http4://ol dhost");

In the sample above Camel will call the http://newhost despite the fact the endpoint is configured with http4://
oldhost. where Constantsisthe class, or g. apache. canel . conponent . htt p4. Const ant s .

3.19.9. Configuring URI Parameters

The http producer supports URI parametersto be sent to the HTTP server. The URI parameters can either be set
directly on the endpoint URI or as a header with the key Exchange. HTTP_QUERY on the message.

from("direct:start").to("http4://ol dhost ?order =123&det ai | =short");

Or options provided in a header:

from"direct:start")
. set Header (Exchange. HTTP_QUERY, constant (" order=123&det ai | =short"))
.to("http4://ol dhost");

3.19.10. How to set the http method (GET/POST/
PUT/DELETE/HEAD/OPTIONS/TRACE) to the HTTP
producer

The HTTP4 component provides a way to set the HTTP request method by setting the message header. Here is
an example;

from"direct:start")
. set Header (Exchange. HTTP_METHOD,
const ant (org. apache. canel . conponent . htt p4. Ht t pMet hods. POST))
.to("http4://ww.googl e. cont')
.to("nock:results");

The method can be written a bit shorter using the string constants:

. set Header (" Canel Ht t pMet hod", constant (" POST"))

And the equivalent Spring sample:

<canel Cont ext xm ns="http://activeny. apache. or g/ canel / schenma/ spri ng" >
<r out e>
<fromuri="direct:start"/>
<set Header header Nane="Canel Ht t pMet hod" >
<const ant >POST</ const ant >
</ set Header >
<to uri="http4://ww. googl e. conl'/ >
<to uri="nock:resul ts"/>
</ rout e>
</ canel Cont ext >

186 Talend ESB Mediation Developer Guide

Configuring a Proxy

3.19.11. Configuring a Proxy

The HTTP4 component provides away to configure a proxy.

from("direct:start")
.to("http4://ol dhost ?pr oxyHost =www. mypr oxy. com&pr oxyPort =80") ;

Thereis also support for proxy authentication viathe pr oxyUser name and pr oxyPasswor d options.

3.19.11.1. Using proxy settings outside of URI

To avoid System properties conflicts, you can set proxy configuration only from the Camel Context or URI. Java
DSL:

cont ext.get Properties().put("http.proxyHost", "172.168.18.9");
cont ext. get Properties().put("http.proxyPort" "8080");

Spring XML

<canel Cont ext >
<properties>
<property key="http.proxyHost" val ue="172. 168. 18. 9"/ >
<property key="http.proxyPort" val ue="8080"/>
</ properties>
</ canel Cont ext >

Camd will first set the settings from Java System or Camel Context Properties and then the endpoint proxy options
if provided. So you can override the system properties with the endpoint options.

3.19.12. Configuring charset

If you are using POST to send data you can configure the char set using the Exchange property:

‘exchange. set Propert y(Exchange. CHARSET _NAME, "I SO 8859-1");

3.19.12.1. Sample with scheduled poll

This sample polls the Google homepage every 10 seconds and write the pageto thefile message. ht mi :

from("tinmer://foo?fi xedRat e=t r ue&del ay=0&peri 0od=10000")
.to("http4://ww. googl e. cont')
. set Header (Fi | eConponent . HEADER _FI LE_NAME, "nessage. htm ")
.to("file:target/google");

3.19.12.2. URI Parameters from the endpoint URI

In this sample we have the complete URI endpoint that is just what you would have typed in a web browser.
Multiple URI parameters can of course be set using the & character as separator, just as you would in the web
browser. Camel does no tricks here.

Talend ESB Mediation Developer Guide 187

Disabling Cookies

/1l we query for Canel at the Googl e page
tenpl at e. sendBody(" ht t p4: // www. googl e. coni sear ch?g=Canel ", null);

3.19.12.3. URI Parameters from the Message

Map headers = new HashMap();

header s. put (Ht t pPr oducer. QUERY, "q=Canel & r=Il ang_en");

/'l we query for Camel and English | anguage at Googl e

tenpl at e. sendBody(" htt p4: // ww. googl e. conl search”, null, headers);

In the header value above notice that it should not be prefixed with ? and you can separate parameters as usual
with the & char.

3.19.12.4. Getting the Response Code

You can get the HTTP response code from the HTTP4 component by getting the value from the Out message
header with Ht t pPr oducer . HTTP_RESPONSE CCDE .

Exchange exchange =
tenpl ate. send("htt p4://ww. googl e. com search", new Processor() {
public void process(Exchange exchange) throws Exception {
exchange. get I n() . set Header (
Ht t pPr oducer . QUERY, constant ("hl =en&q=activenqg"));
}
1)
Message out = exchange. get Qut ();
int responseCode = out. get Header (Ht t pProducer. HTTP_RESPONSE CODE,
I nt eger. cl ass) ;

3.19.13. Disabling Cookies

To disable cookies you can set the HTTP Client to ignore cookies by adding this URI option:
htt pd i ent. cooki ePol i cy=i gnor eCooki es

3.19.14. Advanced Usage

If you need more control over the HT TP producer you should usethe Ht t pConponent whereyou can set various
classes to give you custom behavior.

3.19.14.1. Setting up SSL for HTTP Client

Basicaly camel-http4 component is built on the top of Apache HTTP client.
Please refer to SSL/TLS customization for detals or have a look into the
or g. apache. canel . conponent . htt p4. Ht t psSer ver Test Support unit test base class. You can
also implement a custom or g. apache. canel . conponent. htt p4. Ht t pCl i ent Confi gurer to do
some configuration on the http client if you need full control of it.

188 Talend ESB Mediation Developer Guide

http://hc.apache.org/
http://hc.apache.org/httpcomponents-client-ga/tutorial/html/connmgmt.html#d4e537

Jasypt

However if you just want to specify the keystore and truststore you can do this with Apache HTTP
Ht t pCl i ent Confi gurer, for example:

KeyStore keystore = ...;
KeyStore truststore = ...;

ScheneRegi stry registry = new ScheneRegi stry();
regi stry. register(new Schene("https", 443, new SSLSocket Fact ory(
keystore, "mypassword", truststore)));

And then you need to create a class that implements Ht t pCl i ent Conf i gur er, and registers https protocol
providing a keystore or truststore per example above. Then, from your Camel route builder class you can hook
it up like so:

Ht t pConponent htt pConponent = get Cont ext (). get Conponent (
"http4", HttpConponent. class);
ht t pConponent . set Ht t pCl i ent Confi gurer (new MyHtt pd i ent Configurer());

If you are doing this using the Spring DSL, you can specify your Ht t pCl i ent Conf i gur er using the URI.
For example:

<bean id="nyHtt pd i ent Confi gurer”
class="ny. https. H t pC i ent Confi gurer">
</ bean>

<to uri="https4://nyhost nane. com 443/ myURL?htt pCl i ent Confi gurer= \\
nyH t pd i ent Confi gurer™/>

Aslong asyou implement the HttpClientConfigurer and configure your keystore and truststore as described above,
it will work fine.

3.20. Jasypt

Jasypt isasimplified encryption library which makes encryption and decryption easy. Camel integrateswith Jasypt
to allow sensitive information in Section 3.33, “Properties’ filesto be encrypted. By dropping canel - j asypt
on the classpath those encrypted values will automatic be decrypted on-the-fly by Camel. This ensuresthat human
eyes can't easily spot sensitive information such as usernames and passwords.

Maven users will need to add the following dependency to their pom xmi for this component:

<dependency>
<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactld>canel -jasypt</artifactld>
<l-- use the sane version as your Canel core version -->
<ver si on>x. X. X</ ver si on>
</ dependency>

Jasypt 1.7 onwards is fully standalone so no additional JARs are needed.

3.20.1. Tooling

The Section 3.20, “Jasypt” component provides alittle command line tooling to encrypt or decrypt values.

Talend ESB Mediation Developer Guide 189

http://www.jasypt.org/

URI Options

The console output the syntax and which options it provides:

Apache Canel Jasypt takes the follow ng options

-h or -help = Displays the hel p screen

-c or -command <command> = Command either encrypt or decrypt
-p or -password <password> = Password to use

-i or -input <input> = Text to encrypt or decrypt

-a or -algorithm <algorithm = Optional algorithmto use

For example to encrypt the value t i ger you run with the following parameters. In the apache Camel kit, you
cd into the lib folder and run the following java cmd, where <CAMEL_HOME> is where you have downloaded
and extract the Camel distribution.

$ cd <CAVEL_HOVE>/ i b
$ java -jar canel-jasypt-2.5.0.jar -c encrypt -p secret -i tiger

Which outputs the following result

Encrypted text: gaEEacuWBUt i 8LcMyyj Kw==

This means the encrypted representation gaEEacuW/BUt | 8LcMyyj Kw== can be decrypted back to t i ger if
you know the master password whichwassecr et . If you run the tool again then the encrypted value will return
adifferent result. But decrypting the value will always return the correct original value.

So you can test it by running the tooling using the following parameters:

$ cd <CAMEL_HOVE>/li b
$ java -jar canel-jasypt-2.5.0.jar -c decrypt -p secret
-i gqaEEacuW/BUt i 8LcMyyj Kw==

Which outputs the following result:

Decrypted text: tiger

Theideaisthen to use those encrypted values in your Section 3.33, “Properties’ files. Notice how the password
value is encrypted and the value has the tokens surrounding ENC(val ue her e)

refer to a nock endpoi nt nane by that encrypted password
cool . resul t =nock: {{cool . passwor d} }

here is a password which is encrypted
cool . passwor d=ENC(bs WAuV37gQ0CQHFu7KO03Wh==)

3.20.2. URI Options

The options below are exclusive for the Section 3.20, “ Jasypt” component.

Name Default Value Type Description

password nul | String Specifies the master password to use for
decrypting. This option is mandatory. See
below for more details.

190 Talend ESB Mediation Developer Guide

Protecting the master password

Name Default Value Type Description
al gorithm nul | String Name of an optional algorithm to use.

3.20.3. Protecting the master password

The master password used by Section 3.20, “Jasypt” must be provided, so it is capable of decrypting the values.
However having this master password out in the open may not be an ideal solution. Therefore you could for
example provide it as a VM system property or as a OS environment setting. If you decide to do so then the
passwor d option supports prefixes which dictates this. sysenv: meansto lookup the OS system environment
with the given key. sys: meansto lookup a JVM system property.

For example you could provided the password before you start the application

$ export CAMEL_ENCRYPTI ON_PASSWORD=secr et

Then start the application, such as running the start script.

When the application is up and running you can unset the environment

$ unset CAMEL_ENCRYPTI ON_PASSWORD

The password option is then a matter of defining as follows:
passwor d=sysenv: CAMEL_ENCRYPTI ON_PASSWORD.

3.20.4. Example with Java DSL

In Java DSL you need to configure Section 3.20, “Jasypt” asaJasypt Properti esPar ser instance and set
it on the Section 3.33, “Properties’ component as shown below:

/] create the jasypt properties parser

Jasypt Properti esParser jasypt = new Jasypt Properti esParser();
// and set the naster password

j asypt . set Password("secret");

/1 create the properties conponent
Properti esConponent pc = new PropertiesConponent () ;
pc. set Locati on(
"cl asspat h: or g/ apache/ canel / conponent/ j asypt/
myproperties. properties");
/'l and use the jasypt properties parser so we can decrypt val ues
pc. set Properti esParser (j asypt);

// add properties conponent to Canel context
cont ext . addConponent (" properties", pc);

The properties file mypr operti es. properti es then contain the encrypted value, such as shown below.
Notice how the password value is encrypted and the value has the tokens surrounding ENC(val ue her e)

refer to a nock endpoi nt nane by that encrypted password
cool . resul t =nock: {{cool . passwor d} }

here is a password which is encrypted
cool . passwor d=ENC(bs WuV37gQ0CQHFu7KO03Wh==)

Talend ESB Mediation Developer Guide 191

Example with Spring XML

3.20.5. Example with Spring XML

In Spring XML you need to configuretheJasypt Pr oper t i esPar ser whichisshown below. Thenthe Camel
Section 3.33, “Properties’ component istold to usej asypt asthe properties parser, which means Section 3.20,
“Jasypt” have its chance to decrypt values looked up in the properties.

<I-- define the jasypt properties parser with the given password -->
<bean id="j asypt"
cl ass="org. apache. canel . conponent . j asypt . Jasypt Properti esParser" >
<property nane="password" val ue="secret"/>
</ bean>

<I-- define the Canel properties conponent -->
<bean i d="properties"
cl ass="org. apache. canel . conponent . properti es. Properti esConponent " >
<I-- the properties file is in the classpath -->
<property nane="| ocati on" val ue=
"cl asspat h: or g/ apache/ canel / conponent / j asypt/ nyprops. properties"/>

<I-- and let it |everage the jasypt parser -->
<property nane="propertiesParser" ref="jasypt"/>
</ bean>

The Section 3.33, “Properties’ component can also beinlined inside the <camel Cont ext > tag which is shown
below. Notice how we use the pr oper t i esPar ser Ref attributeto refer to Section 3.20, “Jasypt” .

<I-- define the jasypt properties parser with the given password -->
<bean id="j asypt"
cl ass="org. apache. canel . conponent . j asypt . Jasypt Properti esParser" >
<I-- password is mandatory, you can prefix it with sysenv: or sys
to indicate it should use an OS environnent or JVM system property
val ue, so you don't have the master password defined here -->
<property nane="password" val ue="secret"/>
</ bean>

<canel Cont ext xm ns="http://canel.apache. org/ schema/ spri ng">
<I-- define the Canel properties placehol der to use jasypt -->
<propertyPl acehol der id="properties" |ocation=
"cl asspat h: or g/ apache/ canel / conponent / j asypt / \\
myproperties. properties”
properti esParser Ref ="j asypt"/ >
<r out e>
<fromuri="direct:start"/>
<to uri="{{cool.result}}"/>
</ rout e>
</ canel Cont ext >

3.21. JCR

The j cr component allows you to add nodes to a JCR (JSR-170) compliant content repository (for example,
Apache Jackrabbit) using a producer, or listen for changes with a consumer.

Maven users will need to add the following dependency to their pom xm for this component:

<dependency>
<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactld>canel -jcr</artifactld>
<l-- use the sane version as your Canel core version -->
<ver si on>x. x. x</ ver si on>
</ dependency>

192 Talend ESB Mediation Developer Guide

http://jackrabbit.apache.org/

URI format

3.21.1. URI format

‘j cr://user: passwor d@ eposi t ory/ pat h/ t o/ node

3.21.2. Usage

See the Camel website for the most up-to-date examples of this component in use.

Ther eposi t ory element of the URI is used to look up the JCR Reposi t or y object in the Camel context

registry.

3.21.2.1. Producer

Name

Default Value

Description

Canel Jcr Qper ati on

Canel Jcrl nsert

Camel Jerlnsert or Camel JerGetByld operation to use

Canel Jcr NodeNane

nul |

Used to determine the node name to use.

When amessage is sent to a JCR producer endpoint:

« If the operation is CamelJerinsert: A new node is created in the content repository, all the message properties
of the IN message are transformed to JCR Vaue instances and added to the new node and the node's UUID
isreturned in the OUT message.

* |If the operation is CamelJcrGetByld: A new node is retrieved from the repository using the message body as

node identifier.

» Thenode's UUID isreturned in the OUT message.

3.21.2.2. Consumer

The consumer will connect to JCR periodically and return a List<javax.jcr.observation.Event> in the message

body.
Name Default Description
Value

event Types 0 A combination of one or more
event types encoded as a hit mask
vaue such as javax.jcr.observation.Event.
NODE_ADDED, javax.jcr.observation.Event.
NODE_REMOVED, etc.

deep fal se When it is true, events whose associated parent
node is at current path or within its subgraph are
received.

uui ds nul | Only events whose associated parent node has
one of theidentifiersinthe commaseparated uuid
list will be received.

nodeTypeNanes nul | Only events whose associated parent node has

one of the node types (or a subtype of one of the
node types) in thislist will be received.

Talend ESB Mediation Developer Guide 193

http://camel.apache.org/jcr.html

JDBC

Name Default Description
Value
nolLocal fal se If noLocal is true, then events generated by the

session through which the listener was registered
are ignored. Otherwise, they are not ignored.

sessi onLi veCheckl nt er val 60000 Interval in milliseconds to wait before each
session live checking.
sessi onLi veCheckl nterval OnSt art 3000 Interval in milliseconds to wait before the first

session live checking.

3.22. JDBC

The jdbc component enables you to access databases through JDBC, where SQL queries and operations are sent
in the message body. This component uses the standard JDBC API, unlike the Section 3.45, “SQL Component”
component, which uses spring-jdbc.

Maven users will need to add the following dependency to their pom xm for this component:

<dependency>
<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactld>canel -jdbc</artifactld>
<l-- use the sane version as your Canel core version -->
<ver si on>X. X. X</ ver si on>
</ dependency>

A This component can only be used to define producer endpoints, which means that you cannot use the
#5 IDBC componentinaf ron() statement.

This component can not be used as a Transactional Client. If you need transaction support in your route,
¥ you should use the Section 3.45, “SQL Component” component instead.

3.22.1. URI format

‘jdbc:dataSourcehbne[?options]

This component only supports producer endpoints.

Y ou can append query options to the URI in the following format, ?opt i on=val ue&opti on=val ue&. ..

3.22.2. Options

Name Default Description
Value
readSi ze 0 The default maximum number of rows that can be read by a
polling query.
st at ement . <xxx> nul | Sets additional optionsonthej ava. sqgl . St at ement that

is used behind the scenes to execute the queries. For instance,
st at emrent . maxRows=10 . For detailed documentation,
seethe j ava. sql . St at ement javadoc documentation.

194 Talend ESB Mediation Developer Guide

http://camel.apache.org/transactional-client.html
http://docs.oracle.com/javase/7/docs/api/java/sql/Statement.html

Result

Name Default Description

Value
useJDBCACol utmNameAnd- true Sets whether to use JDBC 4/3 column label/name semantics.
Label Sermanti cs You can use this option to turn it f al se in case you have

issues with your JDBC driver to select data. This only applies
when using SQL SELECT using aliases (for example, SQL
SELECT id as identifier, name as gi ven_name
from persons).

reset Aut oCommi t true Camel will set the autoCommit on the JDBC connection to
be false, commit the change after executing the statement
and reset the autoCommit flag of the connection at the end,
if the resetAutoCommit is true. If the JDBC connection
doesn't support resetting the autoCommit flag, you can set the
resetAutoCommit flag to be false, and Camel will not try to
reset the autoCommit flag.

3.22.3. Result

Theresultisreturnedinthe OUT body asan Ar r ayLi st <HashMap<Stri ng, Obj ect>>.TheLi st object
contains the list of rows and the Map objects contain each row with the St r i ng key as the column name.

Note: This component fetches Resul t Set Met aDat a to be able to return the column name as the key in the
Map .

3.22.3.1. Message Headers

Header Description

Canel JdbcRowCount If the query is a SELECT, query the row count is returned in this OUT
header.

Camel JdbcUpdat eCount If the query is an UPDATE, query the update count is returned in thisOUT
header.

Canel Gener at edKeysRows Rows that contain the generated keys. If you insert data using SQL
INSERT, setting this value to true causes the generated keysto be returned
in headers.

Canel Cener at edKeys- The number of rowsin the header that contains generated keys.
RowCount

3.22.4. Samples

In the following example, we fetch the rows from the customer table.

First we register our datasource in the Camel registry ast est db :

Jndi Regi stry reg = super.createRegistry();
reg. bi nd("testdb", ds);
return reg;

Then we configure a route that routes to the JDBC component, so the SQL will be executed. Note how we refer
tothet est db datasource that was bound in the previous step:

Talend ESB Mediation Developer Guide 195

Samples

/1 let's add a sinple route
public void configure() throws Exception {
from "direct:hello").to("jdbc:testdb?readSi ze=100") ;

}

Or you can create a Dat aSour ce in Spring like this:

<camel Cont ext id="canel" xm ns="http://canel.apache. org/schena/spring">
<rout e>
<fromuri="tiner://Kkickoff?peri od=10000"/ >
<set Body>
<const ant >sel ect * from cust onmer </ const ant >
</ set Body>
<to uri="jdbc:testdb"/>
<to uri="nock:result"/>
</rout e>
</ canel Cont ext >

<l-- Just add a denop to show how to
bind a date source for Canel in Spring-->
<bean id="t est db"
cl ass="org. spri ngfranewor k. j dbc. dat asour ce. Dri ver Manager Dat aSour ce" >
<property nane="driverC assName" val ue="org. hsql db. j dbcDri ver"/>
<property nanme="url" val ue="j dbc: hsql db: mem canel _j dbc" />
<property nane="usernane" val ue="sa" />
<property nane="password" val ue="" />
</ bean>

We create an endpoint, add the SQL query to the body of the IN message, and then send the exchange. The result
of the query isreturned in the OUT body:

/1 first we create our exchange using the endpoint

Endpoi nt endpoi nt cont ext . get Endpoi nt ("direct: hell0");
Exchange exchange endpoi nt . cr eat eExchange() ;

/1 then we set the SQL on the in body
exchange. get I n().set Body("sel ect * from custoner order by ID");

/1 now we send the exchange to the endpoint, and recei ve Canel response
Exchange out = tenpl ate. send(endpoi nt, exchange);

/| assertions of the response

assert Not Nul | (out);

assert Not Nul | (out.getQut());

ArraylLi st <HashMap<Stri ng, Object>> data = out.get Qut (). get Body(
Arrayli st.cl ass);

assert Not Nul | ("out body coul d not be converted to an Arraylist - was:
+ out.getQut().getBody(), data);

assert Equal s(2, data.size());

HashMap<String, Cbject> row = data.get(0);

assert Equal s("cust1", row. get("1D"));

assert Equal s("j bl oggs", row. get("NAVE"));

row = data. get (1)

assert Equal s("cust2", row. get("1D"));

assert Equal s("nsandhu", row. get ("NAVE"));

If you want to work on the rows one by oneinstead of the entire ResultSet at once you need to use the Section 2.50,
“Splitter” EIP such as:

from("direct: hello")
/1l here we split the data fromthe testdb i nto new nessages
/'l one by one so the nock endpoint will receive a nessage
/1 per rowin the table
.to("jdbc:testdb").split(body()).to("nmock:result");

196 Talend ESB Mediation Developer Guide

3.23. Jetty

Thejetty component provides HT TP-based endpoints for consuming HTTP requests. That is, the Jetty component
behaves as a simple Web server. Jetty can also be used as a http client which mean you can also use it with Camel

as a Producer.

Note Jetty is stream based, which means the input it receives is submitted to Camel as a stream. That means you
will only be able to read the content of the stream once. If you find a situation where the message body appears
to be empty or you need to access the data multiple times (for example,: doing multicasting, or redelivery error
handling) you should use Stream Caching or convert the message body to a St r i ng which is safe to be re-read

multiple times.

3.23.1. URI format

‘j etty:http://hostnane[:port][/resourceUri][?options]

Y ou can append query optionsto the URI in the following format, ?opt i on=val ue&opt i on=val ueé&. ..

3.23.2. Options

Name

Default
Value

Description

sessi onSupport

fal se

Specifies whether to enabl e the session manager on the server
side of Jetty.

htt pdient. XXX

nul |

Configuration of Jetty's HttpClient . For example,
settinght t pCl i ent . i dl eTi meout =30000 setstheidle
timeout to 30 seconds.

ht t pBi ndi ngRef

nul |

Referenceto an Camel Ht t pBi ndi ng object in the Registry
. Ht t pBi ndi ng can be used to customize how a response
should be written for the consumer.

j ettyHt t pBi ndi ngRef

nul |

Reference to a Camel Jett yHt t pBi ndi ng object in the
Registry . Jett yHt t pBi ndi ng can be used to customize
how a response should be written for the producer.

mat chOnUri Prefi x

fal se

Whether or not the Camel Ser vl et shouldtry tofind atarget
consumer by matching the URI prefix if no exact match is
found. See here How do | let Jetty match wildcards .

handl er s

nul |

Specifies a comma-delimited set of
org.nortbay.jetty. Handl er instances in your
Registry (such as your Spring Appl i cati onCont ext).
These handlers are added to the Jetty serviet context (for
example, to add security).

chunked

true

If this option is false Jetty servlet will disable the HTTP
streaming and set the content-length header on the response

enabl eJnx

fal se

If thisoptionistrue, Jetty IMX support will be enabled for this
endpoint. See Jetty IM X support for more details.

di sabl eSt reantCache

fal se

Determines whether or not the raw input stream from Jetty is
cached or not (Camel will read the stream into ain memory/

Talend ESB Mediation Developer Guide 197

http://camel.apache.org/endpoint.html
http://camel.apache.org/stream-caching.html
http://wiki.eclipse.org/Jetty/Tutorial/HttpClient
http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://localhost:8080/confluence/pages/viewpage.action?pageId=3244612
http://camel.apache.org/registry.html

Message Headers

Name Default Description
Value

overflow to file, Stream Caching) cache. By default Camel
will cache the Jetty input stream to support reading it multiple
timesto ensure it Camel can retrieve all data from the stream.
However you can set this option to t rue when you for
example need to access the raw stream, such as streaming it
directly to afile or other persistent store. DefaultHttpBinding
will copy the request input stream into a stream cache and put
it into message body if thisoptionisf al se to support reading
the stream multiple times. If you use [Jetty] to bridge/proxy
an endpoint then consider enabling this option to improve
performance, in case you do not need to read the message
payload multiple times.

bri dgeEndpoi nt fal se If the option is true, HttpProducer will ignore the
Exchange.HTTP_URI header, and use the endpoint's URI for
request. You may also set the throwExceptionOnFailure to
be false to let the HttpProducer send all the fault response
back. If the optionistrue, HttpProducer and Camel Servlet will
skip the gzip processing if the content-encodingis"gzip". Also
consider setting *disableStreamCache* to true to optimize
when bridging.

enabl eMul tipartFilter true Whether Jetty org. ecli pse. jetty.servlets.
Mul ti Part Filter isenabled or not. You should set this
valueto f al se when bridging endpoints, to ensure multipart
requestsis proxied/bridged as well.

nmul tipartFilterRef nul | Allows wusing a custom multipart filter. Note
setting nmul tipartFilterRef forces the value of
enabl eMul tipartFilter totrue.

Fi |l t er sRef nul | Allows using a custom filter which is put into alist and can be
found in the Registry

ssl Cont ext Par anet er sRef |nul | Reference to an org.apache.camel.util.jsse.
SSL ContextParameters object in the Camel Registry. This
reference overrides any configured SSL ContextParameters at
the component level.

traceEnabl ed fal se Specifies whether to enable HTTP TRACE for this Jetty
consumer. By default TRACE isturned off.
conti nuati onTi neout nul | Allows to set a timeout in milliseconds when using

Section 3.23, “Jetty” as consumer (server). By default Jetty
uses 30000. You can useavaue of <= 0 to never expire. If a
timeout occurs then the request will be expired and Jetty will
return back a http error 503 to the client. Thisoptionisonly in
use when using Section 3.23, “ Jetty” with the Asynchronous
Routing Engine.

useConti nuati on true Whether or not to use Jetty continuations for the Jetty Server.

3.23.3. Message Headers

Camed uses the same message headers as the Section 3.19, “HTTP4” component. It also uses
(Exchange.HTTP_CHUNKED,CamelHttpChunked) header to turn on or turn off the chunked encoding on the
camel-jetty consumer.

198 Talend ESB Mediation Developer Guide

http://camel.apache.org/stream-caching.html
http://camel.apache.org/asynchronous-routing-engine.html
http://camel.apache.org/asynchronous-routing-engine.html
http://wiki.eclipse.org/Jetty/Feature/Continuations

Usage

Camd also populatesall request.parameter and request.headers. For example, given aclient request withthe URL,
http://nyserver/ nmyserver ?orderi d=123 ,theexchangewill contain aheader named or der i d with
the value 123.

You can get the request.parameter from the message header not only from Get Method, but also other HTTP
methods.

3.23.4. Usage

The Jetty component only supports consumer endpoints. Therefore a Jetty endpoint URI should be used only as
the input for a Camel route (in af ron() DSL cal). To issue HTTP requests against other HTTP endpoints,
use the HTTP4 Component

3.23.5. Component Options

TheJet t yHt t pConponent provides the following options:

Name Default Description
Value

enabl eJnx fal se If thisoptionistrue, Jetty IM X support will be enabled for this
endpoint. See Jetty IMX support for more details.

ssl KeyPasswor d nul | Consumer only : The password for the keystore when using
SSL.

ssl Password nul | Consumer only : The password when using SSL.

ssl Keyst ore nul | Consumer only : The path to the keystore.

m nThr eads nul | Consumer only : To set a value for minimum number of
threads in server thread pool.

max Thr eads nul | Consumer only : To set a value for maximum number of
threads in server thread pool.

t hr eadPool nul | Consumer only : To use a custom thread pool for the server.

ssl Socket Connect ors nul | Consumer only: A map which contains per port number
specific SSL connectors. See section SIS support for more
details.

socket Connectors nul | Consumer only: A map which contains per port humber

specific HTTP connectors. Uses the same principle as
ssl Socket Connect ors and therefore see section SSL
support for more details.

ssl Socket Connect or - nul | Consumer only. A map which contains general SSL
Properties connector properties. See section S support for more details.
socket Connect or - nul | Consumer only. A map which contains general HTTP
Properties connector properties. Uses the same principle as

ssl Socket Connect or Properti es and therefore see
section SSL support for more details.

httpd i ent nul | Producer only : Touseacustom Ht t pCl i ent withthejetty
producer.

htt pdient M nThreads nul | Producer only : To set avaluefor minimum number of threads
inHt t pCl i ent thread pool.

htt pC i ent MaxThr eads nul | Producer only : To set a value for maximum number of

threadsin Ht t pd i ent thread pool.

Talend ESB Mediation Developer Guide 199

Sample

Name Default Description
Value
htt pd i ent Thr eadPool nul | Producer only : To use a custom thread pool for the client.
ssl Cont ext Par anet er s nul | To configure a custom SSL/TL S configuration options at the
component level.

3.23.6. Sample

In this sample we define a route that exposes a HTTP serviceat http://1 ocal host: 8080/ nyapp/
nyservice

from("jetty: http://1ocal host: {{port}}/ myapp/ nyservice"). process(
new MyBookService());

When you specify | ocal host inaURL, Camel exposesthe endpoint only onthelocal TCP/IP network
¥ interface, so it cannot be accessed from outside the machine it operates on.

If you need to expose a Jetty endpoint on a specific network interface, the numerical |P address of this
interface should be used as the host. If you need to expose a Jetty endpoint on al network interfaces, the
0. 0. 0. 0 address should be used.

Our businesslogicisimplemented inthe MyBook Ser vi ce class, which accessesthe HTTP request contents and
then returns aresponse. Note: Theassert call appearsin this example, because the code is part of an unit test.

public class MyBookService inplements Processor {

public void process(Exchange exchange) throws Exception {
/1 just get the body as a string
String body = exchange. getln().getBody(String.class);
/1 we have access to the HttpServl et Request here and we
/[l can grab it if we need it
Ht t pSer vl et Request req =

exchange. get I n() . get Body(Htt pServl et Request . cl ass) ;

assertNot Nul | (req);

/1 for unit testing
assert Equal s("booki d=123", body);

/1l send a htm response

exchange. get Qut () . set Body(
" <ht m ><body>Book 123 is Factory Patterns</body></htm >");

}

The following sample shows a content-based route that routes all requests containing the URI parameter, one, to
the endpoint, nock: one, and all othersto nock: ot her .

from("jetty:" + serverUri)
. choi ce()
.when() . sinple("in.header.one").to("nock:one")
.ot herw se()
.to("nmock: ot her");

So if aclient sendsthe HTTPrequest, http://serverUri ?one=hel | o , the Jetty component will copy
the HTTP request parameter, one to theexchange'si n. header . We canthen usethe Si npl e languageto route
exchanges that contain this header to a specific endpoint and all others to another. If we used a language more
powerful than Simple -- such as EL or OGNL --we could also test for the parameter value and do routing based
on the header value as well.

200 Talend ESB Mediation Developer Guide

http://camel.apache.org/simple.html
http://camel.apache.org/el.html
http://camel.apache.org/ognl.html

Session Support

3.23.7. Session Support

The session support option, sessi onSuppor t , can be used to enableaHt t pSessi on object and access the
session object while processing the exchange. For example, the following route enables sessions:

<rout e>
<fromuri="jetty: http://0.0.0.0/ myapp/ nyservi ce/ ?sessi onSupport=true"/>
<pr ocessRef ref="nmyCode"/>

<rout e>

The ny Code Processor can be instantiated by a Spring bean element:

<bean i d="nyCode" cl ass="com nyconpany. MyCodePr ocessor "/ >

where the processor implementation can accessthe Ht t pSessi on asfollows:

public void process(Exchange exchange) throws Exception {
Ht t pSessi on session = exchange. get| n(Htt pMessage. cl ass) . get Request ()
. get Sessi on();

3.23.8. SSL Support (HTTPS)

The Jetty component supports SSL/TL S configuration through the Camel JSSE Configuration Utility This utility
greatly decreases the amount of component specific code you need to write and is configurable at the endpoint
and component levels. The following examples demonstrate how to use the utility with the Jetty component.

Programmatic configuration of the component:

KeySt or ePar anet ers ksp = new KeySt or ePar anmet ers() ;
ksp. set Resource("/ user s/ honme/ server/ keystore.jks");
ksp. set Passwor d(" keyst or ePasswor d") ;

KeyManager sPar anmet ers knmp = new KeyManager sPar amet ers() ;
kmp. set Key St or e(ksp) ;
knp. set KeyPasswor d(" keyPasswor d") ;

SSLCont ext Par amet ers scp = new SSLCont ext Par anet ers() ;
scp. set KeyManager s(knp) ;

Jet t yConmponent j ettyConponent = get Context (). get Conmponent ("jetty",
Jet t yConponent . cl ass) ;
j ett yConponent . set Ssl Cont ext Par anet er s(scp) ;

Spring DSL based configuration of endpoint

<canel : ssl Cont ext Par anet ers i d="ssl Cont ext Par anet ers" >
<canel : keyManager s keyPasswor d="keyPasswor d" >
<canel : keySt ore resource="/users/ home/server/keystore.jks"
passwor d="keyst or ePasswor d"/ >
</ canel : keyManager s>
</ canel : ssl Cont ext Par anet ers>. . .

<to uri="jetty:https://127.0.0. 1/ nui |/ ?ssl| Cont ext ParanetersRef=... \
ssl Cont ext Par amet ers"/ >

Talend ESB Mediation Developer Guide 201

http://camel.apache.org/processor.html
http://camel.apache.org/camel-configuration-utilities.html

SSL Support (HTTPS)

Y ou can also configure Jetty for SSL directly. In this case, simply format the URI withtheht t ps: // prefix---
for example:

<fromuri="jetty: https://0.0.0.0/ myapp/ nyservicel/"/>

Jetty also needs to know where to load your keystore from and what passwords to use in order to load the correct
SSL certificate. Set the following VM System Properties:

e org.eclipse.jetty. ssl. keyst or e specifiesthelocation of the Javakeystorefile, which containsthe
Jetty server's own X.509 certificate in a key entry . A key entry stores the X.509 certificate (effectively, the
public key) and also its associated private key.

* org.eclipse.jetty.ssl. password the store password, which is required to access the keystore file
(thisis the same password that is supplied to thekeyst or e command's - st or epass option).

 org.eclipse.jetty. ssl.keypasswor d thekey password, whichisused to accessthe certificate'skey
entry in the keystore (this is the same password that is supplied to the keyst or e command's - keypass
option).

For details of how to configure SSL on a Jetty endpoint, read the Jetty documentation here.

The value you use as keys in the above map is the port you configure Jetty to listen on.

3.23.8.1. Configuring general SSL properties

Instead of a per port number specific SSL socket connector (as shown above) you can now configure general
properties which applies for all SSL socket connectors (which is not explicit configured as above with the port
number as entry).

<bean id="jetty"
cl ass="or g. apache. canel . conponent . jetty. JettyHt t pConponent " >
<property nane="ssl Socket Connect or Properties">
<properties>

<property nane="password"val ue="..."/>
<property nane="keyPassword"val ue="..."/>
<property nane="keystore"value="..."/>
<property nane="needd i ent Aut h"val ue="..."/>
<property nane="truststore"val ue="..."/>

</ properties>
</ property>
</ bean>

3.23.8.2. Configuring general HTTP properties

Instead of a per port number specific HTTP socket connector (as shown above) you can now configure general
properties which applies for all HTTP socket connectors (which is not explicit configured as above with the port
number as entry).

<bean id="jetty"
cl ass="or g. apache. canel . conponent . jetty. JettyHtt pConponent " >
<property nane="socket Connect or Properties">
<properties>
<property name="acceptors" val ue="4"/>
<property nane="maxl dl eTi ne" val ue="300000"/ >
</ properties>
</ property>
</ bean>

202 Talend ESB Mediation Developer Guide

http://docs.codehaus.org/display/JETTY/How+to+configure+SSL

JMS

3.23.8.3. Default behavior for returning HTTP status codes

The default behavior of HTTP status codes is defined by the
or g. apache. canel . conponent . ht t p. Def aul t Ht t pBi ndi ng class, which handles how a response
iswritten and also setsthe HTTP status code.

If the exchange was processed successfully, the 200 HTTP status code is returned. If the exchange failed with an
exception, the 500 HTTP status code is returned, and the stacktrace is returned in the body. If you want to specify
which HTTP status code to return, set the code in the Ht t pPr oducer . HTTP_RESPONSE_CODE header of
the OUT message.

3.23.8.4. Jetty JMX support

Camel-jetty supportsthe enabling of Jetty's IMX capabilities at the component and endpoint level with the endpoint
configuration taking priority. Note that IMX must be enabled within the Camel context in order to enable IMX
support in this component as the component provides Jetty with a reference to the MBeanServer registered with
the Camel context. Because the camel-jetty component caches and reuses Jetty resources for a given protocol/
host/port pairing, this configuration option will only be evaluated during the creation of the first endpoint to use
a protocol/host/port pairing.

For example, given two routes created from the following XML fragments, IMX support would remain enabled
for all endpoints listening on "https://0.0.0.0".

‘<fr0n1uri="jetty:https://0.0.0.0/nyapp/nyservicel/?enabIeJnx:true"/> ‘

‘<from uri="jetty:https://0.0.0.0/ nyapp/ nyservi ce2/ ?enabl eJnx=f al se"/ > ‘

The camel-jetty component also provides for direct configuration of the Jetty MBeanContainer. Jetty creates
MBean names dynamically. If you are running another instance of Jetty outside of the Camel context and sharing
the same MBeanServer between the instances, you can provide both instances with a reference to the same
MBeanContainer in order to avoid name collisions when registering Jetty MBeans.

3.24. IMS

1 If you are using Apache ActiveMQ, you should prefer the Section 3.1, “ActiveMQ” component as it
: has been optimized for it. All of the options and samples on this page are also valid for the ActiveMQ
component.

The M S component allows messagesto be sent to (or consumed from) aJM S Queue or Topic. Theimplementation
of the IMS Component uses Spring's IM S support for declarative transactions, using Spring'sJns Tenpl at e for
sending and aMessageli st ener Cont ai ner for consuming.

Maven users will need to add the following dependency to their pom xm for this component:

<dependency>
<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactld>canel -jns</artifactld>
<l-- use the sane version as your Canel core version -->
<ver si on>x. x. x</ ver si on>
</ dependency>

Talend ESB Mediation Developer Guide 203

http://activemq.apache.org/
http://java.sun.com/products/jms/

URI format

3.24.1. URI format

‘j nms: [queue: | t opi c:] desti nati onNane[?opti ons] ‘

wheredest i nat i onNare isaJMS queue or topic name. By default, thedest i nat i onNane isinterpreted
as a queue name. For example, to connect to the queue, FOO.BAR, use;

‘j ms: FOD. BAR ‘

Y ou can include the optional queue: prefix, if you prefer:

‘j ns: queue: FOO. BAR ‘

To connect to a topic, you must include the t opi c: prefix. For example, to connect to the topic,
St ocks. Pri ces, use

‘jrrs:topic:Stocks.Prices ‘

Append query optionsto the URI using the following format, ?opt i on=val ue&opti on=val ueé&. ..

3.24.2. Notes

1 If you are using ActiveM Q, note that the IMS component reuses Spring 2's Jns Tenpl at e for sending
— messages. This is not ideal for use in a non-J2EE container and typically requires some caching in the
JMS provider to avoid poor performance.

If you intend to use Apache ActiveMQ as your Message Broker, then we recommend that you either:

¢ Usethe Section 3.1, “ActiveMQ” component, which isaready configured to use ActiveMQ efficiently,
or

e UsethePool i ngConnect i onFact ory in ActiveMQ.

If you are consuming messages and using transactions (transacted=true) then the default settings for cache level
can impact performance. If you are using XA transactions then you cannot cache asit can cause the XA transaction
not to work properly. If you are not using XA, then you should consider caching asit speeds up performance, such
as setting cachel evelName=CACHE _ CONSUMER.

The default setting for cacheL evelName is CACHE_AUTO. This default auto detects the mode and sets the cache
level accordingly to: CACHE _CONSUMERf transacted isfalse, or CACHE NONE if transacted istrue. So you can
say the default setting is conservative. Consider using cachel evelName=CACHE _CONSUMER if you are using
non-XA transactions.

If you wish to use durabl e topic subscriptions, you need to specify both clientld and durableSubscriptionName.
The value of thecl i ent | d must be unique and can only be used by a single IM S connection instance in your
entire network. Y ou may prefer to use Virtual Topicsinstead to avoid thislimitation. More background on durable
messaging is available on the ActiveMQ site.

When using message headers, the IM S specification states that header names must be valid Javaidentifiers. So try
to name your headersto be valid Javaidentifiers. One benefit of doing thisis that you can then use your headers
inside aJMS Selector (whose SQL 92 syntax mandates Java identifier syntax for headers).

A simple strategy for mapping header names is used by default. The strategy is to replace any dots in the header
name with the underscore character and to reverse the replacement when the header name isrestored fromaJM S
message sent over the wire. What does this mean? No more losing method names to invoke on a bean component,
no more losing the filename header for the File Component, and so on.

The current header name strategy for accepting header namesin Camel is asfollows:

204 Talend ESB Mediation Developer Guide

http://activemq.apache.org/jmstemplate-gotchas.html
http://activemq.apache.org/
http://activemq.apache.org/virtual-destinations.html
http://activemq.apache.org/how-do-durable-queues-and-topics-work.html

Options

e Dotsarereplacedby DOT _ and the replacement isreversed when Camel consumes the message. (for example,
or g. apache. canel . Met hodName becomesor g_DOT_apache_DOT_canel _DOT_Met hodNane).

» Hyphenisreplaced by HYPHEN and the replacement is reversed when Camel consumes the message.

Are you using transactions? If you are consuming messages, and have transacted=true, then the default

. settings for cache level can impact performance. The default setting is aways CACHE_CONSUMER.
However, with the CACHE_AUTO setting, when you use transactions the cache level is effectively set
to CACHE_NONE, appropriate for transactions.

3.24.3. Options

You can configure many different properties on the JMS endpoint which map to properties on the
JM SConfiguration POJO. Note: Many of these properties map to properties on Spring IM S, which Camel usesfor
sending and receiving messages. Y ou can get more information about these properties by consulting the relevant
Spring documentation.

Theoptionsisdivided into two tables, thefirst one with the most common optionsused. Thelatter containstherest.

3.24.3.1. Most commonly used options

Option Default Value Description

clientld nul | Sets the IMS client ID to use. Note that this
value, if specified, must be unique and can only
be used by a single JMS connection instance.
It is typically only required for durable topic
subscriptions. You may prefer to use Virtua

Topicsinstead.

concurr ent Consurmer s 1 Specifies the default number of concurrent
CONSUMES.

di sabl eRepl yTo fal se If t rue, a producer will behave like a InOnly

exchange with the exception that JMSRepl yTo
header issent out and not be suppressed likeinthe
caseof | nOnl y. Likel nOnl y the producer will
not wait for areply. A consumer with thisflag will
behavelike | nOnl y. Thisfeature can be used to
bridge | nQut requests to another queue so that
aroute on the other queue will send its response
directly back to the original JMSRepl yTo.

dur abl eSubscri pti onNanme |nul | The durable subscriber name for specifying
durable topic subscriptions. The clientld
option must be configured as well.

maxConcur r ent Consumner s 1 Specifies the maximum number of concurrent
consumers.
maxMessagesPer Task -1 The number of messages per task, -1 for

unlimited. If you use a range for concurrent
consumers (e.g. min < max), then this option can
be used to set a value to e.g. 100 to control how
fast the consumers will shrink when lesswork is
required.

preser veMessageQos fal se Set to true, if you want to send message
using the QoS settings specified on the message,

Talend ESB Mediation Developer Guide 205

http://camel.apache.org/maven/current/camel-jms/apidocs/org/apache/camel/component/jms/JmsConfiguration.html
http://activemq.apache.org/virtual-destinations.html
http://activemq.apache.org/virtual-destinations.html

Options

Option

Default Value

Description

instead of the QoS settings on the IMS endpoint.
The following three headers are considered
JVSPriority, JMmsDeliveryhMde, and
JNVBEXpi rati on. You can provide all or only
some of them. If not provided, Camel will
fal back to use the values from the endpoint
instead. So, when using this option, the headers
override the values from the endpoint. The
explicit QsEnabl ed option, by contrast,
will only use options set on the endpoint, and not
values from the message header.

replyTo

nul |

Provides an explicit ReplyTo destination,
which overrides any incoming vaue of
Message. get IMSRepl yTo() . If you do
[Request Reply] over IMS then read the Camel
Request-reply over IM S section for more details.

repl yToType

nul |

Allows to explicit specify which kind of
strategy to use for replyTo queues when doing
request/reply over JMS. Possible values are:
{{Temporary}}, {{Shared}}, or {{ Exclusive}}.
By default Camel will use temporary queues.
However if {{replyTo}} has been configured,
then {{ Shared}} is used by default. This option
allows you to use exclusive instead of shared
gueues. Check the Camel website for more about
this option.

r equest Ti meout

20000

(Producer only) The timeout for waiting for
a reply when using the InOut Exchange
Pattern (in milliseconds). See also the
requestTimeoutCheckerlInterval option.

sel ect or

nul |

Sets the JIMS Selector, which is an SQL 92
predicate that is used to filter messages within
the broker. You may have to encode special
characters such as = as %3D.

ti meTolLi ve

nul |

When sending messages, specifies the time-to-
live of the message (in milliseconds).

transact ed

fal se

Specifies whether to use transacted mode for
sending/receiving messages using the InOnly
Exchange Pattern.

t est Connecti onOnStart up

fal se

Specifies whether to test the connection on
startup. This ensures that when Camel starts
that all JMS consumers and producers have
a vaid connection to the JMS broker. If a
connection cannot be granted then Camel throws
an exception on startup. This ensures that Camel
is not started with failed connections.

All the other options

Option

Default Value

Description

accept MessagesWi | e-
St oppi ng

fal se

Specifies whether the consumer accept messages
while it is stopping. You may consider enabling
this option, if you start and stop JMS routes at
runtime, while there are still messages enqued on

206

Talend ESB Mediation Developer Guide

http://camel.apache.org/jms.html#JMS-RequestreplyoverJMS
http://camel.apache.org/jms.html#JMS-RequestreplyoverJMSandusinganexclusivefixedreplyqueue
http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/exchange-pattern.html

Options

Option

Default Value

Description

the queue. If thisoption isf al se, and you stop
the JVS route, then messages may be rejected,
and the JMS broker would have to attempt
redeliveries, which yet again may berejected, and
eventually the message may be moved at a dead
letter queue on the IM S broker. To avoid thisits
recommended to enable this option.

acknow edgenent ModeNare

AUTO_
ACKNOW.EDGE

The JIMS acknowledgement name, which
is one of: SESSI ON_ TRANSACTED,
CLI ENT_ ACKNOW.EDGE,
AUTO_ACKNOW.EDGE,

DUPS_ OK_ ACKNOW.EDGE

acknow edgenent Mode

The JMS acknowledgement mode defined as
an Integer. Allows you to set vendor-specific
extensions to the acknowledgment mode. For
the regular modes, it is preferable to use the
acknow edgemnent ModeNane instead.

al | owNul | Body

true

Whether to all ow sending messageswith no body.
If thisoption isfal se and the message body isnull,
then an JM SException is thrown.

al waysCopyMessage

fal se

Ift r ue, Camel will always makeaJM S message
copy of the message when it is passed to
the producer for sending. Copying the message
is needed in some situations, such as when
a replyToDestinationSel ect or Nane
is set (incidentally, Camel will set the
al waysCopyMessage option to true, if
arepl yToDest i nati onSel ect or Nane is
Set)

asyncStartLi stener

fal se

Whether to startup the JmsConsumer message
listener asynchronously, when starting a route.
For example if a JmsConsumer cannot get a
connection to a remote JMS broker, then it may
block while retrying and/or failover. This will
cause Camel to block while starting routes. By
setting this option to t r ue, you will let routes
startup, while the JnsConsuner connects to
the JMS broker using a dedicated thread in
asynchronous mode. If this option is used, then
beware that if the connection could not be
established, then an exceptionislogged at WARN
level, and the consumer will not be ableto receive
messages; Y ou can then restart the route to retry.

asyncSt opli st ener

fal se

Whether to stop the JmsConsumer message
listener asynchronously, when stopping a route.

autoStartup

true

Specifies whether the consumer container should
auto-startup.

asyncConsuner

fal se

Whether the JmsConsumer processes
the Exchange asynchronously using the
Asynchronous Routing Engine. If enabled then
the JmsConsumer may pick up the next message
from the IMS queue, while the previous message
is being processed asynchronously. This means

Talend ESB Mediation Developer Guide 207

Options

Option

Default Value

Description

that messages may be processed not 100%
strictly in order. If disabled (as default) then
the Exchange is fully processed before the
JmsConsumer will pickup the next message from
the IMS queue. Note if transactions have been
enabled, then asyncConsumer=true does not run
asynchronously, as transactions must be executed
synchronously.

cachelLevel Name

CACHE_CONSUMER

Sets the cache level by name for the
underlying JMS resources. Possible values
are. CACHE_AUTO, CACHE_CONNECTI ON,
CACHE_CONSUMER, CACHE_NONE, and
CACHE_SESSI ON. See the Spring
documentation and see the warning above.

cachelLevel

nul |

Setsthe cachelevel by ID for the underlying IMS
resources. See cachelLevel Nane for more
details.

consuner Type

Def aul t

The consumer type to use, which can be one of:
Si npl e, Def aul t or Cust om The consumer
type determineswhich Spring IM Slistener to use.

e Defaul t will use
org. spri ngframewor k.
jms.listener. Def aul t Message
Li st ener Cont ai ner

» Simple will use
org. spri ngframewor k.
jms.listener. Si npl eMessage
Li st ener Cont ai ner

e« When Custom is specified, the
M essageL i stenerContainerFactory defined
by the messagel istener-ContainerFactoryRef
option will determine what AbstractMessage-
ListenerContainer to use.

connecti onFactory

nul |

The default JMS connection factory to use
forthel i st ener Connecti onFact ory and
t enpl at eConnect i onFact ory, if neither
is specified.

del i veryPer si st ent

true

Specifies whether persistent delivery is used by
default.

desti nation

nul |

Specifies the IMS Destination object to use on
this endpoint.

desti nati onNane

nul |

Specifiesthe IM S destination name to use on this
endpoint.

desti nati onResol ver

nul |

A pluggable
org. springframework. j ns. support.
desti nati on. Desti nati onResol ver
that allows you to use your own resolver (for
example, to lookup the real destinationin a JNDI

registry).

208

Talend ESB Mediation Developer Guide

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/jms/listener/DefaultMessageListenerContainer.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/jms/listener/DefaultMessageListenerContainer.html

Options

Option

Default Value

Description

di sabl eTi neTolLi ve

fal se

Use this option to force disabling time to
live. For example when you do request/reply
over IMS, then Camel will by default use the
{{requestTimeout}} value as time to live on the
message being sent. The problem is that the
sender and receiver systems have to have their
clocks synchronized, so they are in sync. This
is not aways so easy to archive. So you can
use {{disableTimeToLive=true}} to *not* set a
time to live value on the send message. Then the
message will not expire on the receiver system.

eager Loadi ngOr Properties |fal se

Enables eager loading of JM S properties as soon
as a message is received, which is generaly
inefficient, because the JMS properties might
not be required. However, this feature can
sometimes catch any issues with the underlying
JMS provider and the use of JMS properties at
an early stage. This feature can also be used for
testing purposes, to ensure IM S properties can be
understood and handled correctly.

exceptionLi st ener

nul |

Specifiesthe IM S Exception Listener that isto be
notified of any underlying JMS exceptions.

error Handl er

nul |

Specifies a
org.springframework.util.ErrorHandler to be
invoked in case of any uncaught exceptions
thrown while processing a message. By default
these exceptions will be logged at the WARN
level, if no errorHandler has been configured.
You can configure logging level and whether
stack traces should be logged using the below two
options. This makes it much easier to configure,
than having to code a custom errorHandler.

error Handl er Loggi ngLevel

Allows for configuring the default errorHandler
logging level for logging uncaught exceptions.

error Handl er LogSt ack-
Trace

true

Allows to control whether stacktraces should be
logged or not, by the default errorHandler.

explicit QosEnabl ed

fal se

Set if the deliveryMode, priority or
ti meToLi ve qualitiesof serviceshould be used
when sending messages. This option is based on
Spring'sJnsTenpl at e. Thedel i ver yMode,
priority and timeTolLive options are
applied to the current endpoint. This contrasts
with the preserveMessageQos option,
which operates at message granularity, reading
QoS properties exclusively from the Camel In
message headers.

exposeli st ener Sessi on

true

Specifies whether the listener session should be
exposed when consuming messages.

forceSendOri gi nal Message |f al se

When using mapJmsMessage=f al se Camel
will create a new JMS message to send to a new
JMS destination if you touch the headers (get or
set) during the route. Set this optiontot r ue to

Talend ESB Mediation Developer Guide 209

Options

Option

Default Value

Description

force Camel to send the original IMS message
that was received.

i dl eConsunerLimt

Specify thelimit for the number of consumersthat
are allowed to be idle at any given time.

i dl eTaskExecutionLimt

Specifiesthe limit for idle executions of areceive
task, not having received any message within its
execution. If this limit is reached, the task will
shut down and leave receiving to other executing
tasks (in the case of dynamic scheduling; see the
maxConcur r ent Consuner s setting).

i dl eConsuner Li m t

Specify thelimit for the number of consumersthat
are alowed to beidle at any given time.

i ncl udeSent JMsMessagel D

fal se

Only applicable when sending to JM S destination
using InOnly (eg fire and forget). Enabling this
option will enrich the Camel Exchange with the
actual IM SMessagel D that was used by the IMS
client when the message was sent to the JIMS
destination.

j msMessageType

nul |

Allows you to force the use of a specific
j avax.j nms. Message implementation for
sending JMS messages. Possible values are:
Byt es, Map, bj ect, Stream Text. By
default, Camel would determine which JMS
message type to use from the In body type. This
option allows you to specify it.

j msKeyFor mat St r at egy

defaul t

Pluggable strategy for encoding and decoding
JMS keys so they can be compliant with
the JMS specification. Camel provides two
implementations out of the box: defaul t
and passt hrough. The def aul t strategy
will safely marshal dots (.) and hyphens
(-) The passt hrough strategy leaves the
key as is. Can be used for JMS brokers
which do not care whether IJMS header
keys contain illegal characters. You can
provide your own implementation of the
or g. apache. canel . component . j ns.
JnsKeyFormat Strategy and refer to it
using the # notation.

j meQper ati ons

nul |

Allows you to use your own implementation of
the org.springfranework.jns. core.
JnsQperations intefacee Camel uses
JnsTenpl at e as default. Can be used for
testing purpose (rarely used, as stated in the
Spring API docs) .

| azyCr eat eTr ansact i on-
Manager

true

If true, Came will create a
JnsTransacti onManager, if there is no
transacti onManager injected when option
transact ed=t r ue.

| i st ener Connecti on-
Factory

nul |

The JM S connection factory used for consuming
messages.

mapJnsMessage

true

Specifies whether Camel should auto map the
received JMS message to an appropiate payload

210

Talend ESB Mediation Developer Guide

Options

Option

Default Value

Description

type, such asj avax. j ns. Text Message to
aString etc. See section about how mapping
works below for more details.

maxi munBr owseSi ze

Limits the number of messages fetched at most,
when browsing endpoints using Browse or IMX
API.

messageConvert er

nul |

To use a custom Spring
org. springframework. j ms. support.
converter. MessageConverter so you
can betotally in control how to map to and from
aj avax. j ms. Message.

nmessagel dEnabl ed

true

When sending, specifies whether message 1Ds
should be added.

messageli st ener -
Cont ai ner Fact or yRef

nul |

Registry ID of the
MessagelistenerContainerFactory used to
determine what
AbstractMessagelistenerContainer to use to
consume messages. Setting this will

automatically set consuner Type to Cust om

nmessageTi mest anpEnabl ed

true

Specifies whether timestamps should be enabled
by default on sending messages.

password

nul |

The password for the connector factory.

priority

Vauesgreater than 1 specify the message priority
when sending (where 0 is the lowest priority and
9isthe highest). Theexpl i ci t QosEnabl ed
option must also be enabled in order for this
option to have any effect.

pubSubNoLocal

fal se

Specifies whether to inhibit the déivery of
messages published by its own connection.

recei veTi neout

None

The timeout for

milliseconds).

receiving messages (in

recoveryl nterval

5000

Specifiesthe interval between recovery attempts,
that is, when a connection is being refreshed, in
milliseconds. The default is 5000 ms, that is, 5
seconds.

r epl yToCacheLevel Nane

CACHE_CONSUMER

Sets the cache level by name for the reply
consumer when doing request/reply over JMS.
This option only applies when using fixed
reply queues (not temporary). Camel will by
default use: CACHE _CONSUMER for exclusive
or shared w/ {{replyToSelectorName}}.
And CACHE SESSI ON for shared without
repl yToSel ect or Narre. Some JMS brokers
such as IBM WebSphere may require to set
the replyToCachel evel Name=CACHE_NONE to
work.

repl yToDest i nati on-
Sel ect or Nane

nul |

Sets the JIMS Selector using the fixed name to be
used so you can filter out your own replies from
the others when using a shared queue (that is, if
you are not using atemporary reply queue).

Talend ESB Mediation Developer Guide

211

Options

Option Default Value Description

repl yToDel i very- true Specifies whether to use persistent delivery by

Per si st ent default for replies.

request Ti meout - 1000 Configures how often Camel should check for

Checker I nterval timed out Exchanges when doing request/reply
over JMS. By default Camel checks once per
second. But if you must react faster when
a timeout occurs, then you can lower this
interval, to check more frequently. Thetimeout is
determined by the requestTimeout option.

subscri pti onDurabl e fal se @deprecated: Enabled by default, if you
specify a dur abl eSubscri ber Nanme and a
clientld.

t askExecut or nul | Allows you to specify a custom task executor for
consuming messages.

t askExecut or Spri ng2 nul | To use when using Spring 2.x with Camel.
Allows you to specify a custom task executor for
consuming messages.

t enpl at eConnect i on- nul | The JMS connection factory used for sending

Factory messages.

transact edl nQut fal se @deprecated: Specifies whether to use
transacted mode for sending messages using
the InOut Exchange Pattern. Applies only to
producer endpoints. See Enabling Transacted
Consumption on the Camel website for more
details.

transacti onManager nul | The Spring transaction manager to use.

transacti onNane JmsConsuner The name of the transaction to use.

[destination-
Nane]

transacti onTi meout

nul |

The timeout value of the transaction, if using
transacted mode.

transf er Excepti on

fal se

If enabled and you are using Section 2.41,
“Request Reply” messaging (InOut) and an
Exchange failled on the consumer side, then
the caused Excepti on will be send back in
responseasaj avax. j ns. Obj ect Message.
If the client is Camel, the returned Except i on
is rethrown. This alows you to use Camel
Section 3.24, “JMS’ as a bridge in your routing;
for example, using persistent queues to enable
robust routing. Notice that if you aso have
transfer Exchange enabled, this option takes
precedence. The caught exception is required
to be seridizable. The origind Excepti on
on the consumer side can be wrapped in an
outer exception suchasor g. apache. canel .
Runt i neCanel Except i on when returned to
the producer.

t ransf er Exchange

fal se

You can transfer the exchange over the wire
instead of just the body and headers. The
following fields are transferred: In body, Out
body, Fault body, In headers, Out headers,

212

Talend ESB Mediation Developer Guide

http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/jms.html#JMS-EnablingTransactedConsumption
http://camel.apache.org/jms.html#JMS-EnablingTransactedConsumption
http://camel.apache.org/exchange.html

Message format when sending

Option Default Value Description

Fault headers, exchange properties, exchange
exception. This requires that the objects are
seridizable. Camel will exclude any non-
serializable objectsand log it at WARN level. You
must enable this option on both the producer
and consumer side, so Camel knows the payloads
form an Exchange and not a regular payload.

user nane nul | The username for the connector factory.

useMessagel DAs- fal se Specifies whether JMSMessagel D should

Correlationl D always be used as JMSCorrel ati onl D for
INOut messages.

Message Mapping between JIMS and CamelCamel automatically maps messages between
javax.j ns. Message and or g. apache. canel . Message. When sending a JMS message, Camel
converts the message body to the following JM S message types:

Body Type JM S M essage Comment

String j avax. j ms. Text Message

org. w3c. dom Node j avax. j ms. Text Message The DOM will be converted to
String.

Map j avax. j nms. MapMessage

java.io. Serializable j avax.j nms. Obj ect Message

byt e[] j avax. j ns. Byt esMessage

java.io.File j avax. j nms. Byt esMessage

j ava.i o. Reader j avax. j ns. Byt esMessage

java.io. | nput Stream j avax. j ns. Byt esMessage

j ava. ni o. Byt eBuf f er j avax. j ns. Byt esMessage

When receiving a JIM S message, Camel converts the IM'S message to the following body type:

JM S Message Body Type

j avax. j ns. Text Message String

j avax. j ns. Byt esMessage byt e[]

j avax. j ns. MapMessage Map<String, bject>
j avax. j ns. Obj ect Message bj ect

3.24.4. Message format when sending

The exchange that is sent over the IMS wire must conform to the IM S M essage spec.
For theexchange. i n. header thefollowing rules apply for the header keys:
» Keysstarting with JMS or JMSX are reserved.

* exchange. i n. header s keys must be literals and all be valid Java identifiers (do not use dots in the key
name).

» Camel replaces dots and hyphens with underscores in key names (." isreplaced by DOT_and' ' isreplaced
by HYPHEN). Thisreplacement is reversed when Camel consumes JM 'S messages.

Talend ESB Mediation Developer Guide 213

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html

Message format when receiving

» See aso the option j neKeyFor mat St r at egy, which alows you to use your own custom strategy for
formatting keys.

For theexchange. i n. header , the following rules apply for the header values:

» The values must be primitives or their counter objects (such as| nt eger, Long, Char act er). The types,
String,Char Sequence, Dat e, Bi gDeci nal andBi gl nt eger areall convertedtotheirt oSt ri ng()
representation. All other types are dropped.

Camd will log with category or g. apache. canel . conponent . j ns. JnsBi ndi ng at DEBUG level if it
drops a given header value. For example:

2008-07-09 06:43: 04,046 [main] DEBUG JmsBi ndi ng

- lgnoring non primtive header: order of class: org.apache. canel .conponent
.jms.issues. DummyOrder with val ue: DummyOrder{order| d=333, itemnl d=4444,
quant i ty=2}

3.24.5. Message format when receiving

Camel adds the following properties to the Exchange when it receives a message:

Property Type Description

org. apache. canel . j ns. javax.jns. Destination The reply destination.
repl yDestination

Came adds the following JM S properties to the In message headers when it receives a JM S message:

Header Type Description

JMSCorrel ationl D String The IMS correlation ID.

JMsDel i ver yMode i nt The IMS delivery mode.

JMBDest i nati on javax.jns. Destination The IM S destination.

JMBExpi ration | ong The IMS expiration.

JMSMessagel D String The IMS unique message ID.

JMSPriority i nt The IMS priority (with O as the
lowest priority and 9 as the highest).

JMSRedel i ver ed bool ean the IMS message redelivered.

JVSRepl yTo javax.jns. Destination The IMS reply-to destination.

JMSTi nmest anp | ong The IM S timestamp.

JMSType String The IMStype.

JMBXG oupl D String The IMS group ID.

As all the above information is standard JM S you can check the IMS documentation for further details.

Using Camel JM Sto send and receive messages, the JM S component iscomplex and you haveto pay close
¥ attention to how it worksin some cases. So thisisashort summary of some of the areas/pitfallsto look for.

When Camel sends a message using its JMSPr oducer , it checks the following conditions:
« The message exchange pattern,
« Whether aJMSRepl yTo was set in the endpoint or in the message headers,

* Whether any of the following options have been set on the JMS endpoint; di sabl eRepl yTo,
preser veMessageQos, expl i ci t QosEnabl ed.

214 Talend ESB Mediation Developer Guide

http://java.sun.com/javaee/5/docs/api/javax/jms/Message.html

Configuring different IMS providers

All this can be complex to understand and configure to support your use case.

3.24.6.1. ImsProducer

The JnmsPr oducer behaves as follows, depending on configuration:

Exchange Pattern Other options Description

InOut - Camel will expect a reply, set a temporary
JMSRepl yTo, and after sending the message, it will
start to listen for the reply message on the temporary
queue.

InOut JVSRepl yTo isset Camel will expect a reply and, after sending the
message, it will start to listen for the reply message on
the specified JMSRepl y To queue.

InOnly - Camel will send the message and not expect areply.

INOnly JVSRepl yTo isset By default, Camel discards the JMBRepl yTo
destination and clears the JMSRepl yTo header
before sending the message. Camel then sends the
message and does not expect a reply. Camel logs
this in the log aa DEBUG level. You can use
preserveMessageQuo=true to instruct Camel
to keep the JVMSRepl yTo. In al situations the
JnsProducer does not expect any reply and thus
continue after sending the message.

3.24.6.2. ImsConsumer

The JnsConsuner behaves asfollows, depending on configuration:

Exchange Pattern |Other options Description

InOut - Camel will send the reply back to the JMSRepl yTo
gueue.

INOnly - Camel will not send a reply back, as the pattern is
InOnly.

- di sabl eRepl yTo=t rue This option suppresses replies.

Thus, pay attention to the message exchange pattern set on your exchanges.

If you send amessage to aJM S destination in the middle of your route you can specify the exchange pattern to use,
seemore at Section 2.41, “Request Reply”. Thisisuseful if you want to send an| nOnl y messageto aJM Stopic:

from("activeny: queue:in")
.to("bean: val i dat eOr der ")
.to(ExchangePattern. | nOnly, "activenq:topic:order")
.to("bean: handl eOrder");

3.24.7. Configuring different JMS providers

Y ou can configure your JIMS provider in Spring XML as follows:

Talend ESB Mediation Developer Guide 215

http://camel.apache.org/spring.html

Samples

<canel Cont ext id="canel" xm ns="http://canel.apache. org/schenma/spring">
<j nxAgent id="agent" disabl ed="true"/>
</ canel Cont ext >

<bean id="activem"
cl ass="org. apache. acti veng. canel . conponent . Act i veMXonponent " >
<property nane="connecti onFactory">
<bean cl ass="or g. apache. acti veng. Acti veMXonnect i onFact ory" >
<property nane="broker URL" val ue=
"vm / /| ocal host ?br oker . per si st ent =f al se&br oker . useJnx=f al se"/ >
</ bean>
</ property>
</ bean>

Basically, you can configure as many JMS component instances as you wish and give them a unique name
using thei d attribute . The preceding example configures an act i venty component. You could do the same
to configure MQSeries, TibCo, BEA, Sonic and so on.

Once you have a named JM S component, you can then refer to endpoints within that component using URIs.
For example for the component name, act i vent, you can then refer to destinations using the URI format,
activenqg: [queue: | topic:]destinati onNanme. You can use the same approach for al other IMS
providers.

Thisworks by the SpringCamel Context lazily fetching components from the Spring context for the scheme name
you use for Endpoint URIs and having the Component resolve the endpoint URIs.

3.24.8. Samples

JMSis used in many examples for other components as well. But we provide afew samples below to get started.

3.24.8.1. Receiving from JMS

In the following sample we configure aroute that receives IM S messages and routes the message to a POJO:

‘fron("jns:queue:foo").to("bean:nyBusinessLogic");

Y ou can of course use any of the EIP patterns so the route can be context based. For example, here's how to filter
an order topic for the big spenders:

from("jns:topic: OrdersTopic")
.filter().method("nyBean", "isGol dCustoner")
.to("]j ms: queue: Bi gSpender sQueue") ;

3.24.8.2. Sending to a JMS

In the sample below we poll afile folder and send the file content to a IMS topic. As we want the content of the
fileasaText Message instead of aByt esMessage, we need to convert thebody toaSt ri ng :

from(“file://orders")
.convert BodyTo(Stri ng. cl ass).
.to("jnms:topic:OrdersTopic");

216 Talend ESB Mediation Developer Guide

http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html

JMX

3.24.8.3. Using Annotations

Camdl also has annotations so you can use POJO Consuming and POJO Producing.

3.24.8.4. Spring DSL sample

The preceding examples usethe JavaDSL . Camel also supports Spring XML DSL. Hereisthe big spender sample
using Spring DSL:

<rout e>
<fromuri="jns:topic: OdersTopic"/>
<filter>
<nmet hod bean="nyBean" method="i sCol dCust oner"/ >
<to uri="j ms: queue: Bi gSpender sQueue"/ >
</filter>
</ rout e>

3.24.8.5. Other samples

JM S appearsin many of the examplesfor other components and EIP patterns, aswell in the online Apache Camel
documentation. A recommended tutorial is this one that uses JIM S but focuses on how well Spring Remoting and
Camel work together Tutorial-JmsRemoting.

3.25. IMX

Component allows consumers to subscribe to an mbean's Notifications. The component supports passing the
Notification object directly through the Exchange or serializing it to XML according to the schemaprovided within
this project. Thisis aconsumer only component. Exceptions are thrown if you attempt to create a producer for it.

Maven users will need to add the following dependency to their pom xm for this component:

<dependency>
<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactld>canel -jnx</artifactld>
<l-- use the sane version as your Canel core version -->
<ver si on>x. X. X</ ver si on>
</ dependency>

3.25.1. URI Format and Options

The component can connect to the local platform mbean server with the following URI:

‘j mx: // pl at f or mPopt i ons

A remote mbean server url can be provided following theinitial IMX scheme like so:

Talend ESB Mediation Developer Guide 217

http://camel.apache.org/pojo-consuming.html
http://camel.apache.org/pojo-producing.html
http://camel.apache.org/tutorial-jmsremoting.html

ObjectName Construction

jm:service:jnmx:rm :///jndi/rm://|ocal host: 1099/ mxrm ?opti ons

Y ou can append query options to the URI in the following format, ?options=value& option2=value&...

URI Options

Property Required |Default | Description

format no xml Format for the message body. Either "xml" or "raw". If xml, the
notification is serialized to xml. If raw, then the raw java object is
set as the body.

user no Credentials for making a remote connection.

password no Credentials for making a remote connection.

objectDomain yes The domain for the mbean you're connecting to.

objectName no The name key for the mbean you're connecting to. This value is
mutually exclusive with the object properties that get passed. (see
below)

notificationFilter no Reference to a bean that implements the
NotificationFilter. The #ref syntax should be used to
reference the bean via the Registry.

handback no Value to handback to the listener when a notification is received.
This value will be put in the message header with the key
"jmx.handback™

testConnection- true Starting with Camel 2.11, if true, the consumer will throw an

OnStartup exception when unable to establish the JMX connection upon
startup. If false, the consumer will attempt to establish the IMX
connection every 'x' seconds until the connection is made — where
'X" isthe configured using ther econnect Del ay option.

reconnectOn- fase Starting with Camel 2.11, if true, the consumer will attempt to

ConnectionFailure reconnect to the IMX server when any connection failure occurs.
The consumer will attempt to re-establish the JIMX connection
every 'X' seconds until the connection is made-- where X' is the
configured using ther econnect Del ay option.

reconnectDelay 10 Starting with Camel 2.11, the number of seconds to wait before

seconds |retrying creation of theinitial connection or before reconnecting a

lost connection.

3.25.2. ObjectName Construction

The URI must always have the objectDomain property. In addition, the URI must contain either objectName or
one or more properties that start with "key."

3.25.3. Domain with Name property

When the objectName property is provided, the following constructor is used to build the ObjectName? for the
mbean:

Ooj ect Name(String domain, String key, String val ue)

The key value in the above will be "name" and the value will be the value of the objectName property.

218 Talend ESB Mediation Developer Guide

http://camel.apache.org/registry.html

Domain with Hashtable

3.25.4. Domain with Hashtable

‘ijecthbne(String donmi n, Hashtabl e<String, String> table)

The Hashtable is constructed by extracting properties that start with "key." The properties will have the "key."
prefixed stripped prior to building the Hashtable. This alows the URI to contain a variable number of properties
to identify the mbean.

3.25.5. Example

from("j nx: pl at f or mM?obj ect Domai n=j nkExanpl e&key. name=si npl eBean") .
to("l og:j mEvent");

A full exampleis here.

3.26. JPA

The jpa component enables you to store and retrieve Java objects from persistent storage using EJB 3's Java
Persistence Architecture (JPA), which is a standard interface layer that wraps Object/Relational Mapping (ORM)
products such as OpenJPA, Hibernate, TopLink, and so on.

Maven users will need to add the following dependency to their pom xm for this component:

<dependency>
<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactld>canel -jpa</artifactld>
<l-- use the sane version as your Canel core version -->
<ver si on>x. x. X</ ver si on>
</ dependency>

3.26.1. Sending to the endpoint

You can store a Java entity bean in a database by sending it to a JPA producer endpoint. The body of the In
message is assumed to be an entity bean (that is, a POJO with an @Entity annotation on it) or a collection or
array of entity beans.

If the body does not contain one of the previous listed types, put a Section 2.31, “Message Trandlator” in front
of the endpoint to perform the necessary conversion first.

3.26.2. Consuming from the endpoint

Consuming messages from a JPA consumer endpoint removes (or updates) entity beans in the database. This
allows you to use a database table as a logical queue: consumers take messages from the queue and then del ete/
update them to logically remove them from the queue.

If you do not wish to delete the entity bean when it has been processed, you can specify
consuneDbel et e=f al se onthe URI. Thiswill result in the entity being processed each poll.

Talend ESB Mediation Developer Guide 219

http://camel.apache.org/jmx-component-example.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/Entity.html

URI format

If you would rather perform some update on the entity to mark it as processed (such asto exclude it from afuture
guery) then you can annotate a method with @Consumed which will be invoked on your entity bean when the

entity bean is consumed.

3.26.3. URI format

‘j pa: [entityC assNane] [?opti ons]

For sending to the endpoint, the entityClassName is optional. If specified, it helps the Type Converter to ensure

the body is of the correct type.

For consuming, the entityClassName is mandatory.

Y ou can append query options to the URI in the following format, ?opt i on=val ue&opti on=val ue&. . .

3.26.4. Options

Name

Default Value

Description

entityType

entityClassName

Overrides the entityClassName from the URI.

per si stenceUni t

canel

The JPA persistence unit used by default.

consuneDel et e

true

JPA consumer only: If true, the entity is
deleted after it is consumed; if f al se, the entity
is not deleted.

consuneLockEntity

true

JPA consumer only: Specifieswhether or not to
set an exclusive lock on each entity bean while
processing the results from polling.

fl ushOnSend

true

JPA producer only: Flushes the EntityManager
after the entity bean has been persisted.

maxi munResul t s

JPA consumer only: Set the maximum number
of results to retrieve on the Query.

transacti onManager

nul |

It specifies the transaction manager to
use. If none provided, Camel will use a
JpaTransacti onManager by default. Can
be used to set a JTA transaction manager
(for integration with an EJB container). This
option is Registry-based which requires the #
notation so that the given transactionManager
being specified can be looked up
properly, e.g. transacti onManager =
#myTr ansact i onManager .

consuner . del ay

500

JPA consumer only: Delay in milliseconds
between each poll.

consuner.initial Del ay

1000

JPA consumer only: Millisecondsbefore polling
starts.

consumer . useFi xedDel ay

fal se

JPA consumer only: Settot r ue to use fixed
delay between polls, otherwise fixed rate is
used. See ScheduledExecutorService in JDK for
details.

220

Talend ESB Mediation Developer Guide

http://camel.apache.org/maven/current/camel-jpa/apidocs/org/apache/camel/component/jpa/Consumed.html
http://camel.apache.org/type-converter.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/Query.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html

Message Headers

Name

Default Value

Description

maxMessagesPer Pol |

0

JPA consumer only: An integer value to define
the maximum number of messages to gather per
poll. By default, no maximum is set. Can be used
to avoid polling many thousands of messages
when starting up the server. Set a value of 0 or
negative to disable.

consuner.

query

JPA consumer only: To use a custom query
when consuming data.

consuner.

nanedQuery

JPA consumer only: Touseanamed query when
consuming data.

consuner.

nati veQuery

JPA consumer only: To use a custom native
guery when consuming data.

consuner.

resul tCl ass

JPA consumer only: Defines the type
of the returned payload (we will call
entityManager. creat eNati veQuery
(nativeQuery, resultd ass) instead
ofenti tyManager. creat eNati veQuery
(nativeQuery)). Without this option, we
will return an object array. Only has an affect
when using in conjunction with native query
when consuming data.

usePer si st

fal se

JPA producer only: Indicates to
use entityManager. persist(entity)
instead of
entityManager. merge(entity). Note
entityManager. persist(entity)
doesn't work for detached entities (where the
EntityManager has to execute an UPDATE
instead of an INSERT query)!

3.26.5. Message Headers

Camé adds the following message headers to the exchange:

Header

Type

Description

Canel JpaTenpl at e

JpaTenpl at e

TheJpaTenpl at e object that is used to access
the entity bean. You need this object in some
situations, for instancein atype converter or when
you are doing some custom processing.

3.26.6. Configuring EntityManagerFactory

It is strongly advised to configure the JPA component to use a specific Ent i t yManager Fact ory instance. If
failed to do so each JpaEndpoi nt will auto create their own instance of Ent i t yManager Fact ory which

most often is not what you want.

For example, you can instantiate a JPA component that references the myEMFact or y entity manager factory,

asfollows:

Talend ESB Mediation Developer Guide 221

Configuring TransactionManager

<bean id="j pa" cl ass="org. apache. canel . conponent . j pa. JpaConponent " >
<property nane="entityManager Factory" ref="myEMractory"/>
</ bean>

In Camel 2.3 the JpaConponent will auto lookup the Ent i t yManager Fact or y from the Registry which
means you do not need to configure this on the JpaConponent as shown above. Y ou only need to do so if there
isambiguity, in which case Camel will log a WARN.

3.26.7. Configuring TransactionManager

It is strongly advised to configure the Tr ansact i onManager instance used by the JPA component. If failed
to do so each JpaEndpoi nt will auto create their own instance of Tr ansact i onManager which most often
is not what you want.

For example, you can instantiate a JPA component that references the ny Tr ansact i onManager transaction
manager, as follows:

<bean i d="j pa" cl ass="org. apache. canel . conponent. j pa. JpaConponent " >
<property nane="entityManager Factory" ref="nmyEMractory"/>
<property nane="transacti onManager" ref="nyTransacti onManager"/>
</ bean>

In Camd 2.3 the JpaConponent will auto lookup the Tr ansact i onManager from the Registry which
means you do not need to configure thison the JpaConponent as shown above. Y ou only need to do so if there
isambiguity, in which case Camel will log a WARN.

3.26.8. Using a consumer with a named query

For consuming only selected entities, you can use the consuner . namedQuer y URI query option. First, you
have to define the named query in the JPA Entity class:

@ntity
@\anmedQuery(nane = "stepl",
query = "select x fromMiltiSteps x where x.step = 1")
public class Milti Steps {
}

After that you can define a consumer uri like this one:

from("jpa://org. apache. canel . exanpl es. Mul ti St eps?consuner . namedQuer y=st ep1")
.to("bean: myBusi nessLogi c");

3.26.9. Using a consumer with a query

For consuming only selected entities, you can use the consuner . quer y URI query option. Y ou only have to
define the query option:

from("jpa://org. apache. canel . exanpl es. Mul ti St eps?consumner. query=
sel ect o from org. apache. canel . exanpl es. Mul ti Steps o where o.step = 1")
.t o(" bean: nyBusi nessLogi c");

222 Talend ESB Mediation Developer Guide

http://camel.apache.org/registry.html
http://camel.apache.org/registry.html

Using a consumer with a native query

3.26.10. Using a consumer with a native query

For consuming only selected entities, you can usetheconsuner . nat i veQuery URI query option. You only
have to define the native query option:

from("jpa://org. apache. canel . exanpl es. Mul ti St eps?consuner. nati veQuery=
select * from Milti Steps where step = 1")
.t o("bean: nyBusi nessLogi c");

If you use the native query option, you will receive an object array in the message body.

3.26.11. Example

See Tracer Example for an example using Section 3.26, “ JPA” to store traced messages into a database.

3.27.Jsch

The camel-jsch component supports the SCP protocol using the Client API of the Jsch project. Jschisaready used
in Camel by the FTP component for the sftp: protocol. Maven users will need to add the following dependency
to their pom.xml for this component:

<dependency>
<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactld>canel -jsch</artifactld>
<I-- use the same version as your Canel core version -->
<ver si on>x. x. X</ ver si on>
</ dependency>

3.27.1. URI format and options

‘scp: //host[:port]/destination[?options]

Y ou can append query options to the URI in the following format: ?option=value& option=value& ...

Thefile name can be specified either in the <path> part of the URI or asa" CamelFileName" header on the message
(Exchange.FILE_NAME if used in code).

Options

Name Default Description

user name null Specifiesthe usernameto useto log in to theremotefile
system.

password null Specifiesthe password to useto log in to the remotefile
system.

knownHost sFi | e null Sets the known_hosts file, so that the scp endpoint can
do host key verification.

stri ct Host KeyChecki ng no Sets whether to use strict host key checking. Possible
values are: no, yes

Talend ESB Mediation Developer Guide 223

http://camel.apache.org/tracer-example.html
http://en.wikipedia.org/wiki/Secure_copy
http://www.jcraft.com/jsch/

Limitations

Name Default Description
chnod null Allowsyou to set chmod on the stored file. For example
chmod=664.

3.27.2. Limitations

Currently camel-jsch only supports a Producer (i.e. copy filesto another host). The reason is that the scp protocol
does not offer the possibility to scan (list) the content of adirectory. As such apolling consumer cannot watch for
changes and trigger events on changes. It is possible however to use camel-jsch in sink mode for one time copy
from aremote host using a Consumer Template (see Polling Consumer for more details). If continuous monitoring
of adirectory on aremote host and secure transfer is required, you can consider using the sftp protocol.

3.28. Log

Thelog: component logs message exchanges to the underlying logging mechanism.
Camel uses commons-logging which allows you to configure logging via

* Logd

» JDK 1.4 logging

* Avaon

» SimpleLog - asimple provider in commons-logging

Refer to the commons-logging user guide for a more complete overview of how to use and configure commons-
logging.

3.28.1. URI format and Options

‘I 0g: | oggi ngCat egor y[?opt i ons]

where loggingCategory is the name of the logging category to use. Y ou can append query options to the URI in
the following format, ?opt i on=val ue&opt i on=val ueé&. . .

For example, alog endpoint typically specifiesthe logging level using thel evel option, asfollows:

| 0og: or g. apache. canel . exanpl e?l evel =DEBUG

The default logger logs every exchange (regular logging). But Camel also shipswith the Thr oughput logger,
which is used whenever the gr oupSi ze option is specified.

Thereisalso al og directly in the DSL, but it has a different purpose. It is meant for lightweight and
’ human logs. See more details at Section 2.21, “Log”.

Options

Option Default Type Description

| evel I NFO String Logging level to use. Possible values. ERROR,
WARN, | NFO, DEBUG, TRACE, OFF

marker nul | String An optiona Marker name to use.

224 Talend ESB Mediation Developer Guide

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Producer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/ConsumerTemplate.html
https://cwiki.apache.org/confluence/display/CAMEL/Polling+Consumer
http://commons.apache.org/logging/
http://logging.apache.org/log4j/
http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/package-summary.html
http://commons.apache.org/logging/commons-logging-1.1.1/guide.html
http://www.slf4j.org/api/org/slf4j/Marker.html

Formatting

Option Default Type Description

groupSi ze nul | I nt eger An integer that specifies a group size for
throughput logging.

groupl nt erval nul | I nt eger If specified will group message stats by this time
interval (in milliseconds)

groupDel ay 0 I nt eger Set the initial delay for stats (in milliseconds)

groupActiveOnly true bool ean If true, will hide stats when no new messages have

been received for a time interval, if false, show
stats regardless of message traffic.

Note: groupDelay and groupActiveOnly are only applicable when using groupl nterval

3.28.2. Formatting

The log formats the execution of exchangesto log lines. By default, the log uses LogFor mat t er to format the
log output, where LogFor mat t er hasthe following options:

Option Default Description

showAl | fal se Quick option for turning al options on. (multiline, maxChars
has to be manually set if to be used)

showExchangel d fal se Show the unique exchange ID.

showExchangePat t ern true Shows the Message Exchange Pattern (or MEP for short).

showPr operti es fal se Show the exchange properties.

showHeader s fal se Show the In message headers.

showBodyType true Show the In body Javatype.

showBody true Show the In body.

showQut fal se If the exchange has an Out message, show the Out message.

showExcepti on fal se If the exchange has an exception, show the exception message

(no stack trace).

showCaught Excepti on fal se If the exchange has a caught exception, show the
exception message (no stack trace). A caught exception
is stored as a property on the exchange (using the
key Exchange.EXCEPTION_CAUGHT) and for instance a
doCat ch can catch exceptions. See Try Catch Finally.

showSt ackTr ace fal se Show the stack trace, if an exchange has an exception.
Only effective if one of showAl | , showExcepti on or
showCaught Except i on are enabled.

showFi | es fal se Whether Camel should show file bodies or not (eg such as
javaio.File).
showFut ur e fal se Whether Came should show

java.util.concurrent. Future bodies or not. If
enabled Camel could potentially wait until the Fut ur e task
isdone. By default, thiswill not wait.

showSt r eans fal se Whether Camel should show stream bodies or not (eg such
asjava.io.lnputStream). Beware if you enable this option then
you may not be able later to access the message body as the
stream have already been read by this logger. To remedy this
you will have to use Stream Caching.

Talend ESB Mediation Developer Guide 225

http://camel.apache.org/try-catch-finally.html
http://camel.apache.org/stream-caching.html

Regular logger sample

Option Default Description
multiline fal se If t r ue, each piece of information islogged on anew line.
maxChar s Limits the number of characterslogged per line.

3.28.3. Regular logger sample

In the route below we log the incoming orders at DEBUG level before the order is processed:

from("activeny: orders")
.to("l og: com myconpany. or der ?| evel =DEBUG")
.to("bean: processOrder");

Or using Spring XML to define the route:

<rout e>
<fromuri="activeny: orders"/>

<to uri ="l og: com myconpany. or der ?| evel =DEBUG'/ >
<to uri ="bean: processOrder"/>
</ rout e>

3.28.4. Regular logger with formatter sample

In the route below we log the incoming orders at | NFOlevel before the order is processed.

from("activeny: orders")
.to("l og: com myconpany. or der ?showAl | =t rue&mul til i ne=true")
.to("bean: processOrder");

3.28.5. Throughput logger with groupSize sample

In the route below we log the throughput of the incoming orders at DEBUG level grouped by 10 messages.

from("activeny: orders")
.to("1 og: com myconpany. or der ?l evel =DEBUG?gr oupSi ze=10")
.to("bean: processCOrder");

3.28.6. Throughput logger with grouplnterval sample

Thisroute will result in message stats logged every 10s, with an initial 60s delay and stats displayed even if there
isn't any message traffic.

from("activeny: orders")

.to("1 og: com myconpany. or der ?| evel =DEBUG?gr oupl nt er val =10000&gr oup
Del ay=60000&gr oupActi veOnl y=f al se")

.to("bean: processOrder");

The following will be logged:

226 Talend ESB Mediation Developer Guide

Lucene

"Recei ved: 1000 new nessages, with total 2000 so far. Last group took
10000 mllis which is: 100 nmessages per second. average: 100"

3.29. Lucene

The lucene component is based on the Apache Lucene project. Apache Lucene is a powerful high-performance,
full-featured text search engine library written entirely in Java. For more details about Lucene, please see the
following links

« http://lucene.apache.org/java/docs/
* http://lucene.apache.org/java/docs/features.html

Thelucene component in Camel facilitatesintegration and utilization of L ucene endpointsin enterpriseintegration
patterns and scenarios. The lucene component does the following

* builds a searchable index of documents when payloads are sent to the Lucene Endpoint
« facilitates performing of indexed searchesin Camel
This component only supports producer endpoints.

Maven users will need to add the following dependency to their pom xm for this component:

<dependency>
<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactld>canel -1 ucene</artifactld>
<l-- use the sane version as your Canel core version -->
<ver si on>x. x. x</ ver si on>

</ dependency>

3.29.1. URI format

| ucene: sear cher Nane: i nsert[?opti ons]
| ucene: sear cher Nane: quer y[?opti ons]

Y ou can append query options to the URI in the following format, ?opt i on=val ue&opti on=val ue&. . .

3.29.2. Insert Options

Name Default Value Description

anal yzer St andar dAnal yzer An Anayzer builds TokenStreams, which analyze
text. It thus represents a policy for extracting
index terms from text. The vaue for analyzer
can be any class that extends the abstract
class org.apache.lucene.analysis.Analyzer. Lucene also
offersarich set of analyzers out of the box

i ndexDi r ./lindexDirectory A file system directory in which index files are created
upon analysis of the document by the specified analyzer

Talend ESB Mediation Developer Guide 227

Query Options

Name Default Value

Description

srcDir nul |

An optional directory containing files to be used to be
analyzed and added to the index at producer startup.

3.29.3. Query Options

Description

An Anayzer builds TokenStreams, which anayze
text. It thus represents a policy for extracting
index terms from text. The vaue for analyzer
can be any class that extends the abstract
class org.apache.lucene.analysis.Analyzer. Lucene also
offersarich set of analyzers out of the box

A file system directory in which index files are created
upon analysis of the document by the specified analyzer

Name Default Value

anal yzer St andar dAnal yzer
i ndexDi r ./indexDirectory
maxHi t s 10

An integer value that limits the result set of the search
operation

3.29.4. Sending/Receiving Messages to/from the cache

3.29.4.1. Message Headers

Header Description

QUERY The Lucene Query to performed on the index. The query may include
wildcards and phrases

3.29.4.2. Lucene Producers

This component supports two producer endpoints.

 insert: the insert producer builds a searchable index by analyzing the body in incoming exchanges and

associating it with atoken ("content").

» query: the query producer performs searches on a pre-created index. The query uses the searchable index
to perform score & relevance based searches. Queries are sent via the incoming exchange contains a header
property name called 'QUERY . The value of the header property 'QUERY ' isa L ucene Query. For more details
on how to create Lucene Queries check out http://lucene.apache.org/javal3_0_0/queryparsersyntax.html

3.29.4.3. Lucene Processor

There is a processor called LuceneQueryProcessor available to perform queries against lucene without the need

to create a producer.

228 Talend ESB Mediation Developer Guide

Lucene Usage Samples

3.29.5. Lucene Usage Samples

3.29.5.1. Example: Creating a Lucene index

Rout eBui | der bui | der = new Rout eBui |l der () {
public void configure() {
from("direct:start")
.to("l ucene: whi t espaceQuot esl ndex: i nsert ?anal yzer =
#whi t espaceAnal yzer & ndexDi r =#whi t espace&srcDi r=#| oad_dir")
.to("nmock:result");
}

}s

3.29.5.2. Example: Loading properties into the JNDI registry in the
Camel Context

@verride

prot ected Jndi Regi stry createRegistry() throws Exception {
Jndi Regi stry registry = new Jndi Regi stry(createJndi Context());
regi stry. bi nd("whitespace”, new File("./whitespacel ndexDir"));
registry.bind("load_dir", new File("src/test/resources/sources"));
regi stry. bi nd("whitespaceAnal yzer", new Wi tespaceAnal yzer());
return registry;

}

Canel Cont ext context = new Def aul t Canmel Cont ext (creat eRegi stry());

Talend ESB Mediation Developer Guide 229

Lucene Usage Samples

3.29.5.3. Example: Performing searches using a Query Producer

Rout eBui | der bui |l der = new Rout eBui | der () {
public void configure() {
from("direct:start").
set Header (" QUERY", constant("Seinfeld")).
to("l ucene: sear chl ndex: query?
anal yzer =#whi t espaceAnal yzer & ndexDi r =#whi t espace&raxHi t s=20").
to("direct: next");

from("direct:next").process(new Processor () {
publ i c void process(Exchange exchange) throws Exception {
Hits hits = exchange. getln().getBody(Hits.class);
printResul ts(hits);

}

private void printResults(Hts hits) {
LOG debug(" Number of hits: " + hits.getNunberOHits());
for (int i =0; i < hits.getNunberOHits(); i++) {
LOG debug("Hit " + i + " Index Location:"
+ hits.getHit().get(i).getHitLocation());
LOG debug("Ht " + i + " Score:"
+ hits.getHit().get(i).getScore());
LOG debug("Ht " + i + " Data:"
+ hits.getHit().get(i).getData());
}
}

}).to("nock: searchResul t");

230 Talend ESB Mediation Developer Guide

Mail

3.29.5.4. Example: Performing searches using a Query Processor

Rout eBui | der bui | der = new Rout eBui |l der () {
public void configure() {
try {
from"direct:start").
set Header (" QUERY", constant ("Rodney Dangerfiel d")).
process(new LuceneQuer yProcessor (
"target/stdindexDir", analyzer, null, 20)).
to("direct:next");
} catch (Exception e) {
e. print StackTrace();

}

from("direct:next").process(new Processor() {
public void process(Exchange exchange) throws Exception {
Hits hits = exchange.getln().getBody(Hits.class);
printResul ts(hits);

}

private void printResults(Hts hits) {
LOG debug(" Number of hits: " + hits.getNunmberOfHits());
for (int i =0; i < hits.getNunberOHits(); i++) {
LOG debug("Ht " + i + " Index Location:" +
hits.getH t().get(i).getHitLocation());
LOG debug("Hit " + i + " Score:" +
hits.getH t().get(i).getScore());
LOG debug("Hit " + i + " Data:" +
hits.getH t().get(i).getData());
}
}

}).to("nmock: searchResul t");

3.30. Mail

The mail component provides access to Email via Spring's Mail support and the underlying JavaMail system.

Maven users will need to add the following dependency to their pom xm for this component:

<dependency>
<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactld>canel -mail </artifactld>
<l-- use the same version as your Canel core version -->
<ver si on>x. x. X</ ver si on>
</ dependency>

3.30.1. URI format

Mail endpoints can have one of the following URI formats (for the protocols, SMTP, POP3, or IMAP,
respectively):

smtp://[username@ host[: port][?opti ons]
pop3://[username@ host [: port] [?opti ons]
i map: //[usernanme@ host [: port] [?opti ons]

Talend ESB Mediation Developer Guide 231

Options

Themail component al so supports secure variants of these protocols (layered over SSL). Y ou can enable the secure
protocols by adding s to the scheme:

sntps://[usernane@ host[: port][?opti ons]
pop3s://[username@ host[: port][?opti ons]
i maps://[username@ host[: port][?options]

Y ou can append query options to the URI in the following format, ?opt i on=val ue&opti on=val ueé&. ..

3.30.1.1. Sample endpoints

Typically, you specify a URI with login credentials as follows (taking SMTP as an example):

‘ snt p: //[username@ host [: port] [?passwor d=sonmepwd]

Alternatively, it is possible to specify both the user name and the password as query options:

‘sm p://host[: port] ?passwor d=sonepwd&user nane=soneuser

For example:

‘sm p: // myconpany. mai | server: 30?passwor d=t i ger &user nane=scot t

3.30.1.2. Default ports

Default port numbers are supported. If the port number is omitted, Camel determines the port number to use based
on the protocol.

Protocol Default Port Number
SMIP 25

SMIPS 465

POP3 110

POP3S 995

| VAP 143

| MAPS 993

3.30.2. Options

Property Default Description

host The host name or | P address to connect to.

port See DefaultPorts The TCP port number to connect on.

user nane The user name on the email server.

password nul | The password on the email server.

i gnorelri Schene fal se If fal se, Camé uses the scheme to determine the
transport protocol (POP, IMAP, SMTP etc.)

def aul t Encodi ng nul | The default encoding to use for Mime Messages.

cont ent Type text/plain The mail message content type. Uset ext/ ht m for
HTML mails.

232 Talend ESB Mediation Developer Guide

Options

Property

Default

Description

f ol der Nanme

I NBOX

The folder to poll.

desti nati on

user nanme@ost

@deprecated Use the t o option instead. The TO
recipients (receivers of the email).

to

user nane@ost

The TO recipients (the receivers of the mail). Separate
multiple email addresses with acomma.

replyTo

al i as@ost

The Reply-To recipients (the receivers of the response
mail). Separate multiple email addresses with acomma.

CcC

nul |

The CC recipients (the receivers of the mail). Separate
multiple email addresses with acomma.

BCC

nul |

The BCC recipients (the receivers of the mail). Separate
multiple email addresses with acomma.

from

canel @ ocal host

The FROM email address.

subj ect

The Subject of the message being sent. Note: Setting the
subject in the header takes precedence over this option.

del et e

fal se

Deletes the messages after they have been processed.
This is done by setting the DELETED flag on the
mail message. If f al se, the SEEN flag is set instead.
Y ou can override this configuration option by setting a
header withthekey del et e to specify whether the mail
should be deleted.

unseen

true

Is used to fetch only unseen messages (that is, new
messages). Note that POP3 does not support the SEEN
flag; use IMAP instead.

copyTo

nul |

Consumer only. After processing amail message, it can
be copied to amail folder with the given name. Y ou can
override this configuration value with a header with the
key copyTo, allowing you to copy messages to folder
names configured at runtime.

fetchSi ze

This option sets the maximum number of messages
to consume during a poll. This can be used to avoid
overloading amail server, if amailbox folder containsa
lot of messages. Default value of - 1 meansno fetch size
and all messages will be consumed. Setting the value to
Oisaspecial corner case, where Camel will not consume
any messages at all.

al t ernati veBody-
Header

Canel Mai | Al t er nat -
i veBody

Specifiesthe key to an IN message header that contains
an alternative email body. For example, if you send
emailsint ext/ ht m format and want to provide an
aternative mail body for non-HTML email clients, set
the alternative mail body with this key as a header.

debugMode fal se It is possible to enable debug mode on the underlying
mail framework. The SUN Mail framework logs the
debug messagesto Syst em out by default.

connecti onTi meout |30000 The connection timeout can be configured in
milliseconds. Default is 30 seconds.

consuner. 1000 Milliseconds before the polling starts.

initial Del ay

consurer . del ay 60000 The default consumer delay is now 60 seconds. Camel

will therefore only poll the mailbox once a minute to
avoid overloading the mail server.

Talend ESB Mediation Developer Guide

233

Options

Property

Default

Description

consuner .
useFi xedDel ay

fal se

Set to true to use a fixed delay between
polls, otherwise fixed rate is wused. See
ScheduledExecutorService in JDK for details.

di sconnect

fal se

Whether the consumer should disconnect after polling.
If enabled this forces Camel to connect on each poll.

mai | . XXX

nul |

You can set any additional java mail properties.
For instance if you want to set a specid
property when using POP3 you can now
provide the option directly in the URI such
as.mai | . pop3. forgettopheader s=true.You
can set multiple such options, for example:
mai | . pop3. f or gett opheader s=true&

mai | . mi ne. encodefi | enane=tr ue.

mapMai | Message

true

Specifies whether Camel should map the received mail
message to Camel body/headers. If set to true, the body
of the mail message is mapped to the body of the
Camel IN message and the mail headers are mapped
to IN headers. If this option is set to false then the
IN message containsaraw j avax. mai | . Message.
You can retrieve this raw message by caling
exchange. get I n(). get Body(j avax. mai l .
Message. cl ass).

maxMessagesPer Pol |

0

Specifies the maximum number of messages to gather
per poll. By default, no maximum is set. Can be used to
set alimit of, for example, 1000 to avoid downloading
thousands of files when the server starts up. Set avalue
of 0 or negative to disable this option.

j avaMai | Sender

nul |

Specifies a pluggable
org. springframework. mail.javamil .
JavaMai | Sender instance in order to
use a custom email implementation. If
none provided, Camel uses the default,
org. springframework. mail.javamail .
JavaMai | Sender | npl .

i gnor eUnsupport ed-
Char set

fal se

Option to let Camel ignore unsupported charset in
the loca JVM when sending mails. If the charset
is unsupported then char set =XXX (where XXX
represents the unsupported charset) isremoved from the
cont ent -t ype and it relies on the platform default
instead.

ssl| Cont ext -
Paraneters

nul |

Reference to a org. apache. canel .
util. jsse. SSLCont ext Paranet ers in
the Registry. This reference overrides any configured
SSL ContextParameters at the component level. See
Using the JSSE Configuration Utility for more
information.

searchTerm

nul |

Starting with Camel 2.11, refersto a SearchTerm which
alows for filtering mails based on search criteria such
as subject, body, from, sent after a certain date, etc.

searchTer m xxx

nul |

Starting with Camel 211, to configure search
terms directly from the endpoint URI, which
supports a limited number of terms defined by the
SimpleSearchTerm class.

234

Talend ESB Mediation Developer Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://java.sun.com/products/javamail/javadocs/index.html
http://camel.apache.org/registry.html
http://camel.apache.org/http4.html#HTTP4-UsingtheJSSEConfigurationUtility
http://camel.apache.org/mail.html#Mail-UsingcustomSearchTerm
http://camel.apache.org/mail.html#Mail-UsingcustomSearchTerm

SSL support

3.30.3. SSL support

The underlying mail framework isresponsible for providing SSL support. Camel uses SUN JavaMail, which only
trusts certificates issued by well known Certificate Authorities. So if you issue your own certificate, you have to
import it into the local Java keystore file (see SSLNOTES. t xt in JavaMail for details).

3.30.4. Mail Message Content

Camel uses the message exchange's IN body as the MimeMessage text content. The body is converted to
String. cl ass.

Camdl copies al of the exchange's IN headers to the MimeM essage headers.

The subject of the MimeMessage can be configured using a header property on the IN message. The code below
demonstrates this:

from("direct:a").set Header ("subj ect"”, constant(subject))
.to("sntp://joe2@ ocal host");

The same applies for other MimeM essage headers such as recipients, so you can use a header property as To :

Map<String, Object> map = new HashMap<String, Object>();

map. put ("To", "jenshansen@nail .cont);
map. put ("Front', "j bl oggs@nui |l . cont');
map. put (" Subj ect”, "Canel rocks");

String body = "Hell o Jens.\nYes it does.\n\nRegards Joe.";
t enpl at e. sendBodyAndHeader s("snt p: //j enshansen@nui | . cont', body, nmap);

3.30.5. Headers take precedence over pre-configured
recipients

The recipients specified in the message headers always take precedence over recipients pre-configured in the
endpoint URI. The idea is that if you provide any recipients in the message headers, that is what you get. The
recipients pre-configured in the endpoint URI are treated as a fallback.

In the sample code below, the email messageissenttoj enshansen@mai | . com becauseit takes precedence
over the pre-configured recipient, i nf o@ryconpany. com Any CC and BCC settings in the endpoint URI are
alsoignored and those recipientswill not receiveany mail. The choi ce between headers and pre-configured settings
isall or nothing: the mail component either takes the recipients exclusively from the headers or exclusively from
the pre-configured settings. It is hot possible to mix and match headers and pre-configured settings.

Map<String, Object> headers = new HashMap<String, Object>();
headers. put ("to", "jenshansen@nmuil .cont);

t enpl at e. sendBodyAndHeader s(
"snt p: // adm n@ ocal host ?t o=i nf o@nyconpany. cont',
"Hell o Worl d", headers);

Talend ESB Mediation Developer Guide 235

http://java.sun.com/javaee/5/docs/api/javax/mail/internet/MimeMessage.html
http://java.sun.com/javaee/5/docs/api/javax/mail/internet/MimeMessage.html
http://java.sun.com/javaee/5/docs/api/javax/mail/internet/MimeMessage.html

Multiple recipients for easier configuration

3.30.6. Multiple recipients for easier configuration

It is possible to set multiple recipients using a comma-separated or a semicolon-separated list. This applies both
to header settings and to settingsin an endpoint URI. For example:

Map<String, Cbject> headers = new HashMap<String, OCbject>();
headers. put ("to", "jenshansen@nuil.com; jbloggs@nmeil.com ; janedoe@muail.conl);

The preceding example uses asemicolon, ; , asthe separator character.

3.30.7. Setting sender name and email

You can specify recipients in the format, name <enai | >, to include both the name and the email address of
the recipient.

For example, you define the following headers on the a Section 2.23, “Message” :

Map headers = new HashMap();

map. put ("To", "Jens Hansen <j enshansen@nui |l .com");
map. put ("Front, "Joe Bl oggs <jbl oggs@nail .conm>");
map. put (" Subj ect", "Canel is cool");

3.30.8. SUN JavaMail

SUN JavaMail is used under the hood for consuming and producing mails. We encourage end-users to consult
these references when using either POP3 or IMAP protocol. Note particularly that POP3 has amuch more limited
set of features than IMAP, so end users are recommended to use IMAP where possible.

* SUN POP3 API
* SUN IMAP API

» And generally about the MAIL Flags

3.30.9. Samples

We start with a simple route that sends the messages received from a JMS queue as emails. The email account is
theadm n account onmynai | server. com

from("jms://queue: subscription")
.to("smtp://adm n@rymai | server. con?passwor d=secret");

Inthe next sample, we poll amailbox for new emails once every minute. Notice that we usethe special consuner
option for setting the poll interval, consuner . del ay, as 60000 milliseconds = 60 seconds.

from("imap://adnm n@rymai | server. com&passwor d=secr et
&unseen=t r ue&consuner . del ay=60000")
.to("seda://mails");

In this sample we want to send amail to multiple recipients.

236 Talend ESB Mediation Developer Guide

http://java.sun.com/products/javamail/
http://java.sun.com/products/javamail/javadocs/com/sun/mail/pop3/package-summary.html
http://java.sun.com/products/javamail/javadocs/com/sun/mail/imap/package-summary.html
http://java.sun.com/products/javamail/javadocs/javax/mail/Flags.html

Mock

/1 all the recipients of this mail are:

/1 To: canmel @iders.org , easy@iders.org

/1l CC. nme@ou.org

/1 BCC:. someone@onewhere. org

String recipients = "&To=canel @i ders. org, easy@i ders. or g&
CC=nme@ou. or g&BCC=soneone@onewher e. or g";

from("direct:a")
.to("smp://you@rynuail server. conPpasswor d=secr et &r omryou@pache. or g"
+ recipients);

Check the Apache Camel website for several more examples, including handling mail attachments and SSL
configuration.

3.31. Mock

Testing of distributed and asynchronous processing is notorioudy difficult. The Section 3.31, “Mock”,
Section 3.48, “Test” and DataSet endpoints work great with the Camel Testing Framework to simplify your unit
and integration testing using Enterprise | ntegration Patterns and Camel's large range of Components together with
the powerful Bean Integration.

The Mock component provides a powerful declarative testing mechanism, which is similar to jMock in that it
allows declarative expectations to be created on any Mock endpoint before a test begins. Then the test is run,
which typically fires messages to one or more endpoints, and finally the expectations can be asserted in atest case
to ensure the system worked as expected.

This allows you to test various things like:

» The correct number of messages are received on each endpoint,

» The correct payloads are received, in the right order,

» Messages arrive on an endpoint in order, using some Expression to create an order testing function,

» Messages arrive match some kind of Predicate such as that specific headers have certain values, or that parts of
the messages match some predicate, such as by evaluating an XPath or XQuery Expression.

Note that there is also the Test endpoint which is a Mock endpoint, but which uses a second endpoint to provide
the list of expected message bodies and automatically sets up the Mock endpoint assertions. In other words, it is
aMock endpoint that automatically sets up its assertions from some sample messages in a Section 3.14, “File”
or database, for example.

Remember that Mock is designed for testing; Mock endpoints keep received Exchanges in memory
indefinitely. When you add Mock endpoints to a route, each Exchange sent to the endpoint will be
stored (to allow for later validation) in memory until explicitly reset or the VM is restarted. If you are
sending high volume and/or large messages, this may cause excessive memory use. If your god is to
test deployable routesinline, consider using NotifyBuilder or AdviceWith in your testsinstead of adding
Mock endpoints to routes directly.

There are two options r et ai nFi rst and r et ai nLast that can be used to limit the number of
messages the Mock endpoints keep in memory.

3.31.1. URI format

‘ nock: someNamne[?opt i ons]

Talend ESB Mediation Developer Guide 237

http://camel.apache.org/mail.html#Mail-Sendingmailwithattachmentsample
http://camel.apache.org/testing.html
http://camel.apache.org/dataset.html
http://camel.apache.org/testing.html
http://camel.apache.org/bean-integration.html
http://jmock.org
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/xpath.html
http://camel.apache.org/xquery.html
http://camel.apache.org/expression.html
http://camel.apache.org/notifybuilder.html
http://camel.apache.org/advicewith.html

Options

where someName can be any string that uniquely identifies the endpoint.

Y ou can append query options to the URI in the following format, ?opt i on=val ue&opt i on=val ue&. . .

3.31.2. Options

Option Default Description
report Group nul | A sizeto use athroughput logger for
reporting

3.31.3. Simple Example

Here's a simple example of Mock endpoint in use. First, the endpoint is resolved on the context. Then we set an
expectation, and then, after the test has run, we assert that our expectations have been met.

MockEndpoi nt resul t Endpoi nt =
cont ext . resol veEndpoi nt (" nock: f 00", MockEndpoi nt. cl ass);

r esul t Endpoi nt . expect edMessageCount (2) ;
/'l send sone nessages

/1l now let's assert that the nock:foo endpoint received two nessages
resul t Endpoi nt. assertlsSatisfied();

You typicaly aways call the assertl sSatisfied() method to test that the expectations were met after running atest.

Camel will by default wait 10 seconds whentheassert | sSati sfi ed() isinvoked. This can be configured
by setting theset Resul t Vi t Ti ne(mi | | i seconds) method.

When the assertion is satisfied then Camel will stop waiting and continue from the assert|sSati sfi ed
method. That meansif a new message arrives on the mock endpoint, just abit later, that arrival will not affect the
outcome of the assertion. Suppose you do want to test that no new messages arrives after a period thereafter, then
you can do that by setting the set Asser t Per i od method.

3.31.3.1. Using assertPeriod

When the assertion is satisfied then Camel will stop waiting and continue from the assert | sSati sfi ed
method. That meansif a new message arrives on the mock endpoint, just abit later, that arrival will not affect the
outcome of the assertion. Suppose you do want to test that no new messages arrives after a period thereafter, then
you can do that by setting the set Asser t Per i od method, for example:

MbckEndpoi nt resul t Endpoi nt = cont ext.resol veEndpoi nt (" nock: f 00",
MockEndpoi nt . cl ass) ;

resul t Endpoi nt . set Assert Peri od(5000) ;

resul t Endpoi nt . expect edMessageCount (2) ;

/] send some nmessages

/1l now let's assert that the nock:foo endpoi nt recei ved two nessages
resul t Endpoi nt . assert|sSatisfied();

238 Talend ESB Mediation Developer Guide

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#assertIsSatisfied()

Setting expectations

3.31.4. Setting expectations

Y ou can see from the javadoc of MockEndpoint the various hel per methods you can use to set expectations. The
main methods are as follows:

Method Description

expectedM essageCount(int) To define the expected message count on the endpoint.

expectedMinimumM essageCount(int) To define the minimum number of expected messages on the
endpoint.

expectedBodiesReceived(...) To define the expected bodies that should be received (in order).

expectedHeaderReceived(...) To define the expected header that should be received

expectsAscending(Expression) To add an expectation that messages are received in order, using

the given Expression to compare messages.

expectsDescending(Expression) To add an expectation that messages are received in order, using
the given Expression to compare messages.

expectsNoDuplicates(Expression) To add an expectation that no duplicate messages are received;
using an Expression to calculate a unique identifier for each
message. This could be something like the JMSMessagel D if
using IMS, or some unique reference number within the message.

Here's another example:

resul t Endpoi nt . expect edBodi esRecei ved("first MessageBody",
"secondMessageBody", "thirdMessageBody");

3.31.4.1. Adding expectations to specific messages

In addition, you can use the message(int messagel ndex) method to add assertions about a specific message that
isreceived.

For example, to add expectations of the headers or body of the first message (using zero-based indexing like
java. util.List), youcan usethefollowing code:

resul t Endpoi nt . mressage(0) . header ("fo00") . i sEqual To("bar");

There are some examples of the Mock endpoint in use in the camel-core processor tests .

3.31.5. Mocking existing endpoints

Camel now allows you to automatically mock existing endpointsin your Camel routes.
1 The endpoints are till in action, what happens is that a Section 3.31, “Mock” endpoint is injected and
receives the message first, and then it delegates the message to the target endpoint. Y ou can view this as
akind of intercept and delegate or endpoint listener.

Suppose you have the given route below:

Talend ESB Mediation Developer Guide 239

httphttp://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedMessageCount(int)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedMinimumMessageCount(int)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedBodiesReceived(java.lang.Object...)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedHeaderReceived(java.lang.String,%20java.lang.String)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsAscending(org.apache.camel.Expression)
http://camel.apache.org/expression.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsDescending(org.apache.camel.Expression)
http://camel.apache.org/expression.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsNoDuplicates(org.apache.camel.Expression)
http://camel.apache.org/expression.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#message(int)
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/

Mocking existing endpoints

@verride
prot ect ed Rout eBui |l der creat eRout eBuil der() throws Exception {
return new Rout eBui |l der () {
@verride
public void configure() throws Exception {
from"direct:start").to("direct:foo").to("log:foo0").to(
"mock:result");

from "direct:foo").transform constant("Bye Wrld"));

}
s
}

You can then use the advi ceW t h feature in Camel to mock all the endpoints in a given route from your unit
test, as shown below:

public void testAdvi sedMockEndpoi nts() throws Exception {
/] advice the first route using the inlined AdviceWth route buil der
/'l which has extended capabilities than the regul ar route buil der
cont ext . get Rout eDefi ni ti ons(). get (0)
.advi ceWth(context, new Advi ceWt hRout eBui | der () {
@verride
public void configure() throws Exception {
/] nock all endpoints
nockEndpoi nt s() ;
}
1)

get MockEndpoi nt ("nock: direct:start").
expect edBodi esRecei ved("Hel | o Worl d");
get MockEndpoi nt (" nock: di rect: foo").
expect edBodi esRecei ved("Hel l o Worl d");
get MockEndpoi nt (" nmock: | og: f 00") . expect edBodi esRecei ved("Bye Worl d");
get MockEndpoi nt (" nmock: resul t") . expect edBodi esRecei ved("Bye Worl d");

tenpl at e. sendBody("direct:start”, "Hello World");
assert MockEndpoi nt sSati sfied();

/] additional test to ensure correct endpoints in registry
assert Not Nul | (cont ext . hasEndpoi nt ("direct:start"));

assert Not Nul | (cont ext . hasEndpoi nt ("di rect:fo0"));

assert Not Nul | (cont ext . hasEndpoi nt ("l og: f 00")) ;

assert Not Nul | (cont ext . hasEndpoi nt ("nock: result"));

/] all the endpoints were nocked

assert Not Nul | (cont ext . hasEndpoi nt (" nmock: di rect:start"));
assert Not Nul | (cont ext . hasEndpoi nt (" nmock: di rect: foo"));
assert Not Nul | (cont ext . hasEndpoi nt (" nock: | og: f00")) ;

}

Notice that the mock endpointsisgiven theuri nock: <endpoi nt >, for examplenock: di r ect : f 0o. Camel
logs at | NFOlevel the endpoints being mocked:

I NFO Adviced endpoint [direct://foo] with nock endpoint [nock: direct:foo]

1 Endpoints which are mocked will have their parameters stripped off. For example the endpoint "log:foo?
showAll=true" will be mocked to the following endpoint "mock:log:foo". Notice the parameters have
been removed.

It is aso possible to mock only certain endpoints using a pattern. For example to mock all | og endpoints you
can do as shown:

240 Talend ESB Mediation Developer Guide

Limiting the number of messages to keep

public void testAdvi sedvMbckEndpoi nt sWthPattern() throws Exception {
/1 advice the first route using the inlined AdviceWth route buil der
/1 which has extended capabilities than the regul ar route buil der
cont ext . get Rout eDefi ni ti ons(). get (0)
.advi ceWth(context, new Advi ceWt hRout eBui | der () {
@verride
public void configure() throws Exception {
/1 mock only | og endpoints
nmockEndpoi nts("1 og*");
}
IOF

/1 now we can refer to log:foo as a nock and set our expectations
get MockEndpoi nt (" nmock: | og: f 00") . expect edBodi esRecei ved("Bye World");

get MockEndpoi nt (" nmock: resul t") . expect edBodi esRecei ved("Bye Worl d");

/1 rest of code as previous exanple

}

The pattern supported can be awildcard or aregular expression. See more details about this functionality on the
Apache Camel website.

1 Mind that mocking endpoints causes the messages to be copied when they arrive on the mock. That means
Camel will use more memory. This may not be suitable when you send in alot of messages.

3.31.6. Limiting the number of messages to keep

The Mock endpoints will by default keep a copy of every Exchange that it received. So if you test with a lot
of messages, then it will consume memory. There are two options retainFirst and retainLast that can be used to
specify to only keep N'th of the first and/or last Exchanges. For example in the code below, we only want to retain
acopy of thefirst 5 and last 5 Exchanges the mock receives.

MockEndpoi nt nmock = get MockEndpoi nt (" nock: data") ;
nock. set Ret ai nFi rst(5);

nock. set Ret ai nLast (5) ;

nock. expect edMessageCount (2000) ;

nock. assert|sSatisfied();

Using this has some limitations. The getExchanges() and getReceivedExchanges() methods on the M ockEndpoint
will return only the retained copies of the Exchanges. So in the example above, thelist will contain 10 Exchanges,
the first five, and the last five. The retainFirst and retainLast options also have limitations on which expectation
methods you can use. For example the expectedX XX methods that work on message bodies, headers, etc. will
operate only on the retained messages. In the example above they can test only the expectations on the 10 retained

messages.

3.31.7. Testing with arrival times

The Section 3.31, “Mock” endpoint stores the arrival time of the message as a property on the Exchange.

‘ Date ti nme = exchange. get Property(Exchange. RECEI VED TI MESTAMP, Date. cl ass);

Talend ESB Mediation Developer Guide 241

http://camel.apache.org/mock.html#Mock-Mockingexistingendpoints
http://camel.apache.org/exchange.html

MyBatis

You can use this information to know when the message arrived on the mock. But it also provides foundation
to know the time interval between the previous and next message arrived on the mock. You can use this to set
expectationsusing thear ri ves DSL on the Section 3.31, “Mock” endpoint.

For example to say that the first message should arrive between 0-2 seconds before the next you can do:

‘ nock. nessage(0). arrives().noLater Than(2).seconds(). beforeNext ();

Y ou can also define this as that the second message (0 index based) should arrive no later than 0-2 seconds after
the previous:

‘ nock. nessage(1).arrives().noLater Than(2).seconds(). afterPrevious();

Y ou can a'so use between to set alower bound. For example suppose that it should be between 1-4 seconds:

‘ nock. nessage(1l).arrives().between(1l, 4).seconds().afterPrevious();

Y ou can aso set the expectation on all messages, for example to say that the gap between them should be at most
1 second:

‘ nmock. al | Messages(). arrives().noLaterThan(1).seconds() . beforeNext();

In the example above we use seconds as the time unit, but Camel offers mi | | i seconds, and
s mi nut es aswell.

3.32. MyBatis

The MyBatis component allows you to query, poll, insert, update and delete data in a relational database using
MyBatis.

Maven users will need to add the following dependency to their pom xm for this component:

<dependency>
<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactld>canel - nybati s</artifactld>
<l-- use the same version as your Canel core version -->
<ver si on>x. x. X</ ver si on>
</ dependency>

3.32.1. URI format and Options

‘ mybati s: st at enent Name[?opt i ons]

Where statementName is the statement name in the MyBatis XML configuration file which maps to the query,
insert, update or delete operation you wish to evaluate.

Y ou can append query options to the URI in the following format, ?opt i on=val ue&opti on=val ue&. . .

This component will by default load the MyBatis SglMapConfig file from the root of the classpath with the
expected name of Sql MapConfi g. xm . If thefileislocated in another location, you will need to configure the
configurationUri option on the MyBatisComponent component.

242 Talend ESB Mediation Developer Guide

http://mybatis.org/

Message Headers

Options

Option Type Default Description

consuner . onConsurmne String nul | Statements to run after consuming. Can
be used, for exampl e, to update rows after
they have been consumed and processed
in Camel. Multiple statements can be
separated with commas.

consumer. uselterator |bool ean true If t r ue each row returned when polling
will be processed individudly. If f al se
the entire Li st of datais set as the IN
body.

consurmer . bool ean fal se Sets whether empty result sets should be

r out eEnpt yResul t Set

routed.

st at enent Type

St at enent Type |nul |

Mandatory to specify for the Producer
to control which kind of operation
to invoke. The enum vaues are
Sel ect One, Sel ect Li st, I nsert,
I nsertList,Update,Del ete.

maxMessagesPer Pol |

i nt

An integer to define the maximum
messages to gather per poll. By default,
no maximum is set. Can be used to set
a limit of, for example, 1000 to avoid
when starting up the server that there are
thousands of files. Set a value of O or
negative to disableit.

3.32.2. Message Headers

Camel will populate the result message, either IN or OUT with a header with the statement used:

Header Type Description

Canmel MyBat i s- String |ThestatementName used (for example: insertAccount).

St at ement Nane

Camel MyBat i sResul t hj ect | Theresponsereturned from MyBatisin any of the operations.
For instance an | NSERT could return the auto-generated key,
or number of rows etc.

3.32.3. Message Body

The response from MyBatis will only be set as body if it is a SELECT statement. That means, for example, for
| NSERT statements Camel will not replace the body. This allows you to continue routing and keep the original
body. The response from MyBatis is always stored in the header with the key Canel MyBat i sResul t .

3.32.4. Samples

For example if you wish to consume beans from a JMS queue and insert them into a database you could do the

following:

Talend ESB Mediation Developer Guide 243

Using StatementType for better control of MyBatis

from("activeny: queue: newAccount ")
.to("mybatis:insertAccount ?st at enent Type=Il nsert");

Noticewe haveto specify thest at ement Type, aswe need to instruct Camel which kind of operation to invoke.
TheinsertAccount value given above isthe MyBatis ID in the SQL map file:

<I-- Insert exanple, using the Account paraneter class -->
<insert id="insertAccount" paraneterC ass="Account">
insert into ACCOUNT (
ACC | D,
ACC_FI RST_NANE,
ACC_LAST_NAME,
ACC_EMAI L
) val ues (
#i d#, #firstNanme#, #l astName#, #email| Address#
)

</insert>

3.32.5. Using StatementType for better control of
MyBatis
When routing to an MyBatis endpoint you will want more fine grained control so you can control whether the

SQL statement to be executed is a SELECT, UPDATE, DELETE or | NSERT etc. So for instance if we want to
route to an MyBatis endpoint in which the IN body contains parametersto a SELECT statement we can do:

from("direct:start")
.to("mybati s: sel ect Account Byl d?st at enent Type=Quer yFor Cbj ect ")
.to("nmock:result");

In the code above weinvoke the MyBatis statement sel ect Account Byl d and the IN body should contain the
account id we want to retrieve, such asan | nt eger type.

We can do the same for some of the other operations, such as Sel ect Li st :

from("direct:start")
.to("mybati s: sel ect Al | Account s?st at enent Type=Sel ect Li st")
.to("nmock:result");

And the same for UPDATE, where we can send an Account object asthe IN body to MyBatis:

from("direct:start")
.to("nmybatis: updat eAccount ?st at enent Type=Updat e")
.to("nmock:result");

3.32.5.1. Using onConsume

This component supports executing statements after data have been consumed and processed by Camel. This
allows you to do post updates in the database. Notice all statements must be UPDATE statements. Camel supports
executing multiple statements whose names should be separated by commas.

The route below illustrates executing the consumeAccount statement after the data is processed. This allows us
to change the status of the row in the database to " processed"”, so we avoid consuming it twice or more.

244 Talend ESB Mediation Developer Guide

Properties

from("nmybatis: sel ect Unpr ocessedAccount s?consurer .
onConsume=consunmeAccount ") .to("nock: resul ts");

And the statements in the sgimap file:

<sel ect id="sel ect UnprocessedAccounts" resultMp="Account Result">
sel ect * from ACCOUNT where PROCESSED = fal se

</ sel ect >

<updat e i d="consuneAccount" paraneterd ass="Account" >
updat e ACCOUNT set PROCESSED = true where ACC_ | D = #id#

</ updat e>

3.33. Properties

3.33.1. Properties Component

3.33.1.1. URI format

‘propert i es: key[?opti ons]

where key isthe key for the property to lookup

3.33.1.2. Options

Name Type Default Description
cache bool ean true Whether or not to cache loaded properties.
| ocati ons String nul | A list of locations to load properties.

You can use comma to separate multiple
locations. This option will override any
default locations and only use the locations
from this option.

3.33.2. Using PropertyPlaceholder

Camel now provides a new Properti esConponent in camel-core which allows you to use property
placeholders when defining Camel Endpoint URIs. This works much like you would do if using Spring's
<pr operty- pl acehol der > tag. However Spring have alimitation which prevents 3rd party frameworksto
leverage Spring property placeholders to the fullest. See more at How do | use Spring Property Placeholder with
Camel XML .

The property placeholder is generally in use when doing:

* lookup or creating endpoints

Talend ESB Mediation Developer Guide 245

http://camel.apache.org/endpoint.html
http://localhost:8080/confluence/pages/viewpage.action?pageId=3244150
http://localhost:8080/confluence/pages/viewpage.action?pageId=3244150

Using PropertyPlacehol der

* lookup of beansin the Registry
* additional supported in Spring XML (see below in examples)

» using Blueprint PropertyPlaceholder with Camel Section 3.33, “Properties’ component

3.33.2.1. Syntax

The syntax to use Camel's property placeholder is to use {{ key }} for example {{ file.uri }} where
file.uri isthe property key. You can use property placeholders in parts of the endpoint URI's which for
example you can use placeholders for parametersin the URIs.

3.33.2.2. PropertyResolver

As usuad Camel provides a pluggable mechanism which alows 3rd pat to provide
their own resolver to lookup properties. Camel provides a default implementation
or g. apache. canel . conmponent . properti es. Def aul t Properti esResol ver which is capable
of loading properties from the file system, classpath or Registry. Y ou can prefix the locations with either:

» ref: tolookup inthe Registry
e file: toloadthefrom file system
» cl asspat h: toload from classpath (thisis also the default if no prefix is provided)

* bl ueprint: touseaspecific OSGi blueprint placeholder service

3.33.2.3. Defining location

The Properti esResol ver need to know a location(s) where to resolve the properties. Y ou can define one
to many locations. If you define the location in a single String property you can separate multiple locations with
comma such as:

pc. set Locati on(
"conl nyconpany/ mypr op. properti es, conl nyconpany/ ot her. properti es");

Using system and environment variables in locations

The location now supports using placeholders for VM system properties and OS environments variables.

For example:

I ocation=file: ${karaf.honme}/etc/foo.properties

In the location above we defined a location using the file scheme using the VM system property with key
kar af . hone.

To use an OS environment variable instead you would have to prefix with env:

| ocation=file:${env: APP_HOVE}/ et c/fo0o0. properties

246 Talend ESB Mediation Developer Guide

http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://camel.apache.org/registry.html

Using PropertyPlaceholder

where APP_HOME is an OS environment.

Y ou can have multiple placeholders in the same location, such as:

‘Iocation:fiIe:${env:APP_FEWE}/etc/${prop.nane}.properties

3.33.2.4. Configuring in Java DSL

Y ou have to create and register the Pr oper t i esConponent under the name pr operti es such as.

Properti esConmponent pc = new PropertiesConmponent () ;
pc. set Locati on("cl asspat h: coml nyconpany/ mypr op. properties");
cont ext . addConponent (" properties", pc);

3.33.2.5. Configuring in Spring XML

Spring XML offers two variations to configure. You can define a Spring bean asa Pr oper t i esConponent
which resembles the way donein JavaDSL. Or you can usethe <pr oper t yPlI acehol der > tag.

<bean i d="properties"
cl ass="org. apache. canel . conponent . properti es. Properti esConponent" >
<property nane="| ocati on"
val ue="cl asspat h: conl myconpany/ mypr op. properti es"/>
</ bean>

Using the<pr oper t yPl acehol der > tag makes the configuration a bit more fresh such as:

<canel Context ...>
<propertyPl acehol der id="properties"
| ocati on="com myconpany/ nyprop. properties"/>
</ canel Cont ext >

3.33.2.6. Using a Properties from the Registry

For example in OSGi you may want to expose a service which returns the properties as a
java.util.Properties object.

Then you could setup the Section 3.33, “Properties’ component as follows:

<propertyPl acehol der id="properties" |ocation="ref: myProperties"/>

where nyPr operti es istheid to use for lookup in the OSGi registry. Notice we use ther ef : prefix to tell
Camedl that it should lookup the properties for the Registry.

3.33.2.7. Examples using properties component

When using property placeholders in the endpoint URIs you can either use the pr operti es: component or
define the placeholders directly in the URI. We will show example of both cases, starting with the former.

Talend ESB Mediation Developer Guide 247

http://camel.apache.org/registry.html

Using PropertyPlacehol der

/'l properties
cool . end=nobck: resul t

/] route
from("direct:start").to("properties:{{cool.end}}");

Y ou can al'so use placeholders as a part of the endpoint uri:

/'l properties
cool . foo=resul t

/'l route
from("direct:start").to("properties: nock: {{cool.foo0}}");

In the example above the to endpoint will be resolved to nock: resul t .

Y ou can a'so have properties with refer to each other such as:

/'l properties
cool . foo=resul t
cool . concat =nock: {{cool . foo}}

/] route
from("direct:start").to("properties: nock: {{cool.concat}}");

Notice how cool . concat refer to another property.

The properti es: component also offers you to override and provide a location in the given uri using the
| ocat i ons option:

from"direct:start")
.to("properties: bar.end?l ocati ons=coni myconpany/ bar. properties");

3.33.2.8. Examples

Y ou can a'so use property placeholders directly in the endpoint uris without having to use pr operti es: .

/| properties
cool . foo=resul t

/'l route
from"direct:start").to("nock:{{cool.foo}}");

And you can use them in multiple wherever you want them:

/'l properties

cool .start=direct:start
cool . show d=true

cool .resul t=result

/'l route

from("{{cool .start}}")
.to("log:{{cool .start}}?showBodyType=f al se"
+ " &showExchangel d={{cool . show d}}")
.to("nmock: {{cool .result}}");

Y ou can a'so your property placehol ders when using ProducerTemplate for example:

248 Talend ESB Mediation Developer Guide

http://camel.apache.org/producertemplate.html

Using PropertyPlaceholder

‘terrpl ate. sendBody("{{cool .start}}", "Hello World");

3.33.2.9. Example with Simple language

The Simple language now also support using property placeholders, for example in the route below:

/| properties
cheesy. quot e=Canel rocks

/1 route
from("direct:start")
.transforn(). sinpl e(
"H ${body} do you think ${properties: cheesy. quote}?");

Y ou can a so specify the location in the Simple language for example:

/| bar.properties
bar . quot e=Beer tastes good

/] route
from"direct:start")
.transform)
. si npl e(
"H ${body}. ${properties:com nyconpany/bar.properties:bar.quote}.");

3.33.2.10. Additional property placeholder supported in Spring
XML

The property placeholders is also supported in many of the Camel Spring XML tags such as <package>,
<packageScan>, <cont ext Scan>, <j nxAgent >, <endpoi nt >, <r out eBui | der >,
<pr oxy> and the others.

The example below has property placeholder in the <jmxAgent> tag:

<canel Cont ext xm ns="http://canel.apache. org/ schema/ spri ng">
<propertyPl acehol der id="properties"
| ocati on="or g/ apache/ canel / spri ng/j mx. properties"/>

<I-- we can use propery placehol ders when we define the JMX agent -->
<j nxAgent i d="agent"

regi stryPort="{{nyjnmx.port}}" disabl ed="{{nyjnx.di sabl ed}}"

usePl at f or mvBeanSer ver =" {{ nyj nx. usePl at forn} }"

creat eConnect or ="t rue"

statisticsLevel =" RoutesOnl y"/ >

<route id="foo" autoStartup="fal se">
<fromuri="seda:start"/>
<to uri="nock:result"/>
</ rout e>
</ canel Cont ext >

You can also define property placeholders in the various attributes on the <camelContext> tag such ast r ace
as shown here:

Talend ESB Mediation Developer Guide 249

http://camel.apache.org/simple.html
http://camel.apache.org/simple.html

Using PropertyPlacehol der

<canel Cont ext trace="{{foo.trace}}"
xm ns="http://camel . apache. or g/ schema/ spri ng" >
<propertyPl acehol der
i d="properties"
| ocati on="or g/ apache/ canel / spri ng/ processor/ myprop. properties"/>

<tenpl ate i d="canel Tenpl at e" def aul t Endpoi nt="{{fo00.cool }}"/>

<r out e>
<fromuri="direct:start"/>
<set Header header Name="{{f oo. header}}">

<si npl e>${i n. body} Worl d! </ si npl e>

</ set Header >
<to uri="nock:result"/>

</rout e>

</ canel Cont ext >

3.33.2.11. Overriding a property setting using a JVM System
Property

It is possible to override a property value at runtime using a VM System property without the need to restart
the application to pick up the change. This may a so be accomplished from the command line by creating aJVM
System property of the same name as the property it replaces with anew value. An example of thisis given below

Properti esConponent pc =
cont ext . get Conponent (" properties”, PropertiesConponent. cl ass);
pc. set Cache(f al se);

Syst em set Property("cool . end", "nock:override");
System set Property("cool .result", "override");

cont ext . addRout es(new Rout eBui | der () {

@verride

public void configure() throws Exception {
from"direct:start").to("properties:cool.end");
from "direct:foo").to("properties: nock:{{cool.result}}");

}
1)
context.start();
get MockEndpoi nt (" nmock: overri de"). expect edMessageCount (2) ;

tenpl at e. sendBody("direct:start", "Hello World");
tenpl at e. sendBody("di rect: foo", "Hello Foo");

Syst em cl ear Property("cool . end");
System cl ear Property("cool .result");

assert MockEndpoi nt sSati sfied();

3.33.2.12. Using property placeholders for any kind of attribute in
the XML DSL

Previoudly it was only the xs: st ri ng type attributesin the XML DSL that support placeholders. For example
often atimeout attribute would be axs: i nt type and thus you cannot set a string value as the placeholder key.
Thisis possible using a special placeholder namespace.

250 Talend ESB Mediation Developer Guide

Using PropertyPlaceholder

In the example below we use the pr op prefix for thenamespace htt p: // canel . apache. or g/ schena/
pl acehol der by which we can use the pr op prefix in the attributes in the XML DSLs. Notice how we use
that in the Section 2.34, “Multicast” to indicate that the option st opOnExcept i on should be the value of the
placeholder with the key "stop".

<beans xm ns="http://wwmv. spri ngfranmework. org/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: prop="http://canel . apache. or g/ schena/ pl acehol der"
Xsi : schenalLocat i on="
http://ww. spri ngframewor k. or g/ schena/ beans
http://wwmv. spri ngfranmewor k. or g/ schenma/ beans/ spri ng- beans. xsd
http://canel . apache. or g/ schenma/ spri ng
http://canel . apache. or g/ schena/ spri ng/ canel - spri ng. xsd" >

<I-- Notice in the declaration above, we have defined the prop -->

<I-- prefix as the Canel placehol der nanmespace -->

<bean i d="dam" cl ass="j ava.l ang. ||| egal Argunent Excepti on" >
<constructor-arg index="0" val ue="Dam"/ >

</ bean>

<canel Cont ext xm ns="http://canel.apache. org/ schema/ spri ng">

<propertyPl acehol der id="properties" |ocation=
"cl asspat h: or g/ apache/ canel / conponent / pr operti es/ nyprop. properties”
xm ns="http://canel . apache. or g/ schema/ spri ng"/ >

<rout e>
<fromuri="direct:start"/>
<l-- use prop nanespace, to define a property pl acehol der,

whi ch maps to option stopOnException={{stop}} -->
<mul ti cast prop: stopOnExcepti on="stop">
<to uri="nock:a"/>
<t hr owExcepti on ref="dam"/>
<to uri="nock:b"/>
</mul ticast>
</rout e>

</ canel Cont ext >

</ beans>

In our properties file we have the value defined as

‘st op=t rue

3.33.2.13. Using property placeholder in the Java DSL

Likewise we have added support for defining placeholders in the Java DSL using the new pl acehol der DSL
as shown in the following equivalent example:

from("direct:start")
/1 use a property placehol der for the option stopOnException on the
/1 Milticast ElIP which should have the val ue of {{stop}}
/'l key being | ooked up in the properties file
.mul ticast()
. pl acehol der (" st opOnExcepti on", "stop")
.to("nock: a")
.throwExcepti on(new ||| egal AccessExcepti on(" Dam"))
.to("nock: b");

Talend ESB Mediation Developer Guide 251

Using PropertyPlacehol der

3.33.2.14. Using Blueprint property placeholder with Camel routes

Camel supports Blueprint which also offers a property placeholder service. Camel supports convention over
configuration, so al you have to do isto define the OSGi Blueprint property placeholder in the XML file as shown
below:

<bl ueprint xm ns="http://ww. osgi.org/xm ns/ bl ueprint/vi1.0.0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: cne"http://aries. apache. or g/ bl ueprint/xm ns/ bl ueprint-cm v1. 0. 0"
xsi : schemaLocati on="http://ww. osgi . or g/ xm ns/ bl ueprint/v1.0.0
http://ww. osgi . or g/ xm ns/ bl ueprint/vl. 0.0/ bl ueprint.xsd">

<I-- OSGE blueprint property placehol der -->

<cm property-pl acehol der id="mybl ueprint. pl acehol der"
persi stent-id="canel . bl ueprint">

<I-- list sone properties for this test -->

<cm def aul t - properties>
<cm property name="result" val ue="nock:result"/>

</ cm def aul t - properties>

</ cm property-pl acehol der >

<camel Cont ext xm ns="http://canel.apache. org/ schema/ bl ueprint">

<I-- in the route we can use {{ }} placeholders which we'll -->
<I-- lookup in blueprint as Canel will auto detect the CSG -->
<I-- blueprint property placehol der and use it -->

<rout e>

<fromuri="direct:start"/>
<to uri="nock:foo"/>
<to uri="{{result}}"/>
</ rout e>
</ canel Cont ext >
</ bl uepri nt >

By default Camel detects and uses OSGi blueprint property placeholder service. You can disable this by setting
the attribute useBl uepri nt Pr opert yResol ver tofalseonthe <canel Cont ext > definition.

Notice how we can use the Camel syntax