talend

*open data solutions

Talend Open Studio

Version 2.2 b

Adapted for Talend Open Studio v2.2.x. Supersedes previous User Guide releases.

Copyright

Find a copy of the GNU Free Documentation License with the source files of this documentation.

i Talend Open Studio Copyright © 2007

Talend Open Studio

USEI’S GUITE ...ttt e et [
ADOUL TNIS QUITE... e 1
HISTOrY OF CRANGQES ..o e te e are s 1
Feedback and SUPPOIT ... et 2
Getting started with Talend Open StUAIO v 5
Accessing Talend OPen STUAIO wiiiiiiieiiee e e e ste e sre e s 5
Connecting to @ 10Cal FEPOSITONYccuiiiiiiciice e 6
Creating @ PrOJECT ..ouiiiiiieieie ettt b bbbt sb b ne e 8
DeSCrIDING The GUI ..ottt aeeaenres 9
R CT 00 LY 1 (0] Y SRS PSUSOUSSROIN 10
BUSINESS MOTEIS ...ttt sne e 10

B [0 oI LTS T | SR 10
CONEEXES .ttt h et e s h e e e b e s Re e et e e nhn e e b e e e R e e e Rt e nnn e neennne s 10

O oo SRS 11
ROULINES ..ttt bbbttt ettt b bt n et 11
S]] 011 SR 11
DOCUMENTALION ...eviiiieieciiec ettt e st et e e st e s be e aeaneesneeaeeneesneenee e 11
IMIBTATALR ... bbbttt 12
RECYCIE DN ettt ettt r et anee s 12
GraphiCal WOTKSPACE ...ttt bbb 12
PAIBTEE ...ttt bbbttt 13
Changing the palette POSITIONccooiiiiiiiie e 13
Changing the palette layout and SEttiNGSccoceiiririninieeee e 13
Properties, RUN and LOGS VIEWS ooieiiiiieieeie et ste e sae e sseenaesneennens 13
e 0] 0T =TT R TSP 13
00 ittt 13
RUN JOD bbb bbbt 14
Modules and SChEAUIETooii e 14
MOTUIES VIBW ...ttt sttt et et e nreesbeenaeeneenne e 14
OPEN SCNEAUIET ...t e e are e aeeneenneas 15
Outline and Code Summary panel ... 16

@ 111 1= SRR 16
COUR VIBWET ..ttt bbbt bbb bbbt bbbt 17
TOOIDAr @NA IMIBINUS ...ttt ettt e e e 17
QUICK ACCESS TOOIDANc.vieeeeiece et ae s 17
IVIBINUS .ttt e et n e n e 18
Configuring Talend Open Studio PreferenCes ... iieieee e 18
Perl/Java INterpreter Path ..o s 19

R ;LU TP P RSO TPR 20

Copyright © 2007 Talend Open Studio

External or USEr COMPONENESccviiieiiiie ittt sre et nae e e e 21

Designing a Business MOdelcooeoiiiiiiie e 23
ODJECTIVES ..ottt bbbttt bbbt b et e et 23
Opening or creating a busingss MOdelccoocveiiiieiii e 23

Opening a busiNgSS MOTEccoiiiiiiie e 24
Creating a business MOlcooiiiiii e 24
Modeling a business MOElcoviiiiii e 25
SIS bbbttt et re e e 26
CONNECTING SNAPES ...ttt 27
Commenting and arranging a MOAElcccvevivieiieiicec e 29
AddINg @ NOLE OF TrEE TEXE ...veieeiieieii e 29
Arranging the Model VIEWoooiiiiiii s 29
0] 0T =SSP SSRRSRSRN 30
RUIEIS @NA GO ..o ettt ae e 30

N o] o [=T U g [o PP PO PR PR 31

N [0 1 0T | SR 32
Assigning repository elements to a Business Model ..., 32
Editing @ BUSINESS MOTEIc.oiiiiiiiiiiiieeiee e 33
Renaming a busingss MOEloovviiriiic e 34
Copying and pasting a business MOElccooiiiiieiiie s 34
MoVving @ BUSINESS MOGEIccuiiiiiiiiiieee s 34
Deleting a business MOAEIoecuveiiiieiiee e 34
Saving a buSINESS MOGEIc..oiiiiiiiiie e 34

Designing @ JOb DESIGNcciiiiiieieiie e 35
(@] o] L1081 1Y TSR SSSRRSN 35
Opening or Creating @ JOD ..o 35

OPENING 8 JOD .ot b bbbttt 36
(@1 1= U T - [o USSR 36
Getting started With @ JOD DESINc.ccivieiiiiciecece e 37
Showing, hiding and moving the palette ..., 37
Click & drop components from the Palettecccoovvevieie i 38
Drag & Drop components from the Metadata Managerccccccveveiieevecceieececenn 38
Adding NOtES 10 @ JOD TESIGN ...viiiiiiiiiiieeie e 39
Changing panels POSITIONcccoiiiieiieie e es 40
Warnings and errors 0N COMPONENTccueiieiieieiieieeieseeste e e e sre e saesreene e esreaneens 41
Connecting cCoMPONENtS TOJETNETcoi i s 42
(O] g1 aT=Tod 10 0 R £ 1= OSSR 42
ROW CONNEBCLION ...ttt ettt bbbt enes 42
IVIBIN TOW .ottt ettt ettt e s et e s e et et e eneenne e teeneeeneenneaneenres 42
LLOOKUD FOW <.ttt st e e et ne et e e st e s ne et e eneeeneeneeneenres 43
OULPUL TOW <ottt sttt bt e e e e st e e nsb e e e nbb e e e bn e e s ne e e anneeens 44
ITErate CONNECTION ..o.viiiiiiieie ettt sttt be e e s neesre e e nnes 44

Bl 0T e oo g 1= od 1 o] oSS 44

iv Talend Open Studio Copyright © 2007

LMK CONMNMECTION ..ttt e e e e e e e e e e eeeeeeeeeeeeeeneeeeeneeeneneenees 45

MuUltiple INPUI/OULPULcoeeieeie et e e e sne e 45
Defining JOD PrOPEITIES ...c..ocieii ittt 46
- T o USSR 46
WIBWW ettt bbb bbb bbb bRt R £ bbbttt b bttt et e s 47
DOCUMENTALION ..itiiiiiieiieie ittt bbb e et ettt e b et e bt reeneenes 47
PROPEITIES ...ttt bbb bbb bt et et bbb bbb 48
Setting a built-in SChEMAcooviiecee e 49
Setting a repoSItory SChEMAcccoviiiiiciece e 49
Setting a field dynamically (Ctrl+Space bar) ..o, 50
Defining the Start COMPONENTcccviiiiiee e 51
Defining Metadata iteIMScocciiieiice et 51
Setting UP @ DB SCNEMA ..o 52
Step 1: general PrOPEITIESvccveiiieieeie e e e st e et e e e e sreeneesreeneeas 52
SEEP 2: CONNECLION ..oeuviiiiciiecie ettt et be et e re e s raereeseesbeeneesneesneas 53
Step 3:table UPIOAAoeieeeii s 55
Step 4: schema defiNItiONccooieiiieii i 55
Setting up a File Delimited SChemMaccceiiiiiiic e 56
Step 1: general PrOPEITIESooiiiiiiiiieieie e 56
SteP 2: FIle UPI0AAeevieieceee e e 56
Step 3: schema definitionc.ccoeiiiiiic e 57
Step 4: FiNal SCHEMA ... 60
Setting up a File Positional SCheMacccoviiiiiie e 61
Step 1: general PrOPEITIESccoveieeiieiiiie ettt sbe e 62
Step 2: connection and file upload ...t 62
Step 3: SChemMa FEFINING ...cveiieeciece e 63
Step 4: FINAL SCHEMA ... e 63
Setting up a File REGEX SCNEMAcouiiiiiiiee e 64
Step 1: general PrOPEITIESvccveiieieeie it re et e e esraesreeneenaeeneeas 64
SteP 2: File UPIOAAeeeeieeiee e 64
Step 3:5chema definitioN ..o 65
Step 4: FINAl SCHEMAc.evcieece e 65
Setting up @ FIIeLDIF SChEMA ..ooviiii e 66
Step 1: general PrOPEITIESooiiiiiiiiiei e 66
SteP 2: FIle UPI0AUeoeieeieceee e 66
Step 3: SChema defiNItIONccoieiiiiiie e 67
Step 4: fiNal SChEMA ... 68
Setting up @ FIIeXML SChEMA ...cviiie e 68
Step 1: general PrOPEITIESoccueiieiieieiie ettt sbe s 69
Step 2: Tl UPI0A ... 69
Step 3: SChema defiNItiONcccooveiieii e 69
Step 4: FINAL SCHEMA ... 72
Setting Up @ LDAP SCREMAoiuiiiiiiiiiieieeee e 73
Step 1: general PrOPEITIESvccveiiieiieeieseese ettt e e e e e e e e esreenreenaenneenneas 73
StEP 2: SEIVET CONNECTIONoiiiiiiiieieeie ettt sttt bbb sneenae s 73

Copyright © 2007 Talend Open Studio

Step 3: authentication and DN fetChing ... 74

Step 4: schema defiNIIONccoiiiiii e 75
Step 5: FINAl SCHEMAc.vviieeee e 76
Setting Up @ GENENIC SCNEIMAccviiiiiie et sre s 77
Step 1: general PrOPEITIESoocveieeiieiiiie ettt sa e sae e 78
Step 2: Schema defiNItiONcccooieiieii e 78
Creating queries using SQLBUIITETccccoveiiiiiieccecc e 78
Database StruCture COMPAIISONc.ooveriirieiieiesie e e e esbee e 79

= TU] o Tl - W [V 1] USSP SPSSRSS 80
Storing a query in the REPOSITONYccvviiiiici e 82
Mapping data flIowS iN @ JODccoiiiii 83
tMaP OPEratioN OVEIVIEWcccuieeieiieeiestiesieeiesee et e te e te e e taeteeneesnaenaeeneesreenee e 83
LAY T IR T =T o = Tot -SSP 84
Setting the input flow in the Mapper ... 86
Filling in Input tables With @ SChemMacccooviiieii e 86
Main and Lookup table CONENTccveiieiiiic s 86
VATTADIES ... r e 87
(0] 100 1 A o o SR 87
Unique MatCh (JAVA)ccveivieieiiciie ettt sne e 88

First or Last MatCh (JAVA)ooververiiiiiiiisieeeee e 89

All MALCNES (JAVA) .veiveeveeiiiieiie ettt e s ste e sreeaesneesnaenneas 89
LT T=T g T T SO SSPR 89
AlLTOWS (JAVA) .ottt bbbttt b bbb 90
Filtering an input FIOW (JAVA)ccveiveieiieiiec e 90
Removing Input entries from table ..., 90
MapPINg VariablEs ... 91
Accessing global or context variables ... 92
REMOVING VAIIADIESc.oeceieieicii ettt 92
OULPUL SEEEING .ttt bbbt b bbbt 92
Building cOMPIEX EXPrESSIONSccviivieiiieie et e see et sraesne e e 93
FIIEBIS bbb 93
REJECTIONS ..ottt bbbttt 94
INNEI JOIN REJECTION ...ttt e e nns 94
RemOVING OULPUL BNTIESeeviiiiiiecie ettt s sre e 95
EXPrESSION BUITOTveiiiieieieiee ittt bbbttt 95
SCREMA BAITON bbbt 95
Writing code using the Expression BUIlder ... 97
Activating/Disabling a job or sub-job ... 100
Disabling a Start COMPONENTociiiiieiiee e e e 101
Disabling a non-Start COMPONENTcccveiiiieieee e 101
Defining Contexts and VariabIes ... 101
Defining job context variableSccco oo 101
Short creation of context variables ... 101
SEOrESQLQUETY ettt ettt e b et e b e nb e et e sre e 102
CONEEXES VIBW ..ttt bbbttt bbb bbbt et e 103

Vi

Talend Open Studio Copyright © 2007

VaATTADIES T80 .o 103

Values as table taDooiiiie s 103
VAlUES S TrEE TAD ...vevieiieiieie e e 104
CONFIQUITNG CONTEXES ...tttk st bbbt 105
Creating @ CONTEXLoiieiieieeiec e e et e e e raennesneeneeenee e 106
Renaming or editing @ CONTEXLccvciieiiiiieii e 107
Storing contexts in the REPOSITONYcccoeiiiiiiiiiiiie s 107
Running a job in selected CONTEXEccccveiiiieiiee e 109
RUNNING @ JOD oottt et reeaesneenrs 109
RUNNING IN NOMAI MOGE ... 110
DiSPlaying StALISTICSccveiieiieieiieii et sre e ae e e nre s 110
DISPIAYING TFACES ..evveivieieitiecie ettt e e s e e sae s e e sbeenbesneenne s 111
RUNNING IN dEDUG MOTE ... 111
Saving or eXPOrting YOUL JODSccciiieiiieieiiie e see s sie e ee e nae e sre e 112
SAVING @ JOD oo 112
EXPOItiNg JOD SCIIPLS ..cvviiieiieieieite ettt aneas 112
Generating HTML documentationcccccoviieieiieneeie e 113
AUtoMating StAtS & 1005 USEccveiiiiieii et 113
SNOFTCULS AN @HASESeeveeieieieeee et nee e 115
COMPONENTS ottt e e st ee e s sbb e e e s snbeeee s 117
TACCESSINPUL ... e e e e et e e st e e e b e e e snae e e res 120
LACCESSINPUL PrOPEITIES .vvieieiieetieiee sttt ettt sre e enes 120
REIAEA SCENAMOSveiviieieieee ettt 120
TACCESSOULPUL ...t e e e b e e s sb e e e bb e e e nbeeeanses 122
tACCESSOULPUL PIOPEITIES ..veiieeieeiee ittt sttt st nrs 122
REIAEA SCENAMIOSveiviieiiieite ettt 123
TACCESSROW ...ttt he et e b e se e e be e sr e e ne e s nn e e nneeanne s 124
LACCESSROW PIOPEITIESviiieieieieeiie sttt sttt sttt sae e nres 124
REIAEA SCENAMOSveivieeiiieite ettt ettt eneas 125
TAQQIEgAtEROW ..o 126
tAQQregateROW PrOPEITIESoiveeiiiiieiieeie sttt 126
Scenario: Aggregating values and sorting datacccccoveveveiieii s 127
tAQOregateSOrtEAROWccviiiiiieiic et re et sre e 131
tAQQregateSOrtedROW PrOPEITIESccciiiieiieiiiie et eees 131
REIAEA SCENAMOiiiiiiiiieiee ettt ene s 132
TAAUCRCROW ...ttt b ettt ettt sbenbesbeaneeneas 133
tAJACRCROW PIrOPEITIES ..c.veiiieiieitie ittt sttt ettt sae et eneenns 133
Scenario: Adding a surrogate kKey to a filecccccvoveiieii i 133
TASAOOTNPUL .ottt e bbb e st et e e b e eneeneeee e 136
LASAOOINPUE PIOPEITIES ...vviiieieieieeie sttt sttt et nres 136
REIAEA SCENAMOSveiviiieieee ettt bbbt 137
TASAOOOULPUL .ottt bbbttt ettt st b et beaneene e e e nee e 138
tASAOOOULPUL PIOPEITIESvveeieieeeiiesieete sttt sttt sttt sbeenaeeneenrs 138
REIAEA SCENAMOSveevieiieieite ettt bt 139

Copyright © 2007 Talend Open Studio

vii

TASADOROW ..ot 140

LASAOOROW PrOPEITIES ..eouveiiieiieeiieiiesiee ettt e st ste b esbe e b sreesre e e nres 140
REIAEA SCENAMOSveevieiiieiee ettt bbbt eneas 141
TCENFICCRMINPUL ..o e te e ere s 142
tCentriCCRMINPUE PrOPEITIES ...c.viiiieiiieiesie et 142
REIAIEA SCENAIIO ..o bbbt 142
TCENFICCRMOULPUL ...t e be e ee e nne s 143
tCentriCCRMOULPUL PIOPEITIESocveiiieieiiieitieie et 143
REIAIEA SCENAIIO ...oviiiiiiieiee ettt 143
TCONTEXTIDUMP ittt s e e arb e e e s bb e e e nbb e e s nbeeeanses 144
tCONTEXTDUMP PrOPEITIES ..o.veieieeiieiee ittt sttt sttt sae et ers 144
RElated SCENAIO ...veiieeieee bbb 144
TCONTEXELOAAocveeiiiieie ettt bbb bbb ne e s et et e 145
tCONEXTLOAA PrOPEITIES ...eevieeieie ettt sttt sttt eeeneenrs 145
Scenario: Dynamic context use in MySQL DB INSertcccccovvevviieiveresieesesieseeninns 145
TCFRALETADIE ..ot 148
tCreateTable PrOPEITIESovi e e e 148
Scenario: Creating new table in a Mysgl Databasec.cccccvevevvevicieviece e, 149
(0] = 774 1 o] o 11 | S SO P PP PPPR 151
tDB2INPUL PrOPEITIES ...veeueiiieiieiie sttt sttt sttt se et e et esaeeaeeneenrs 151
REIAEA SCENATIOS ...ttt b bbb eneas 152
(412 724 @ 1 4 o1 1 SO P PP R PPRPI 153
tDB20ULPUL PrOPEITIES ..eveiiietieieeiie sttt sttt sttt sttt sbe et eneenrs 153
REIAEA SCENAMOSveiiiiiieieite ettt bbbt b et eneas 154
EDBZ2ROW ...ttt bbb bbbt s st s ettt bbb b n e ne et e 155
tDB2ROW PIOPEITIES ...veeuieiieieieeste sttt bbbttt 155
REIAEA SCENAMOSveiviieieieite ettt eneas 156
EDB2SCD .ttt bbbttt b e b b eres 157
tDB2SCD PIrOPEITIESoeiiiiiieiieieitesie sttt b bbbt 157
REIAEA SCENAMOSveiviiieiesie ettt bbbt 158
EDB2SP e bbbttt bbbt be e e 159
TDB2SP PrOPEITIESveiuiiiieieite ittt bbbttt bbbt n e 159
REIAEA SCENAMOSvviviiieieiee ettt bbbt 160
EDBINPUL oot r e nes 161
tDBINPUL PIOPEITIES ...eveiieeiete ettt ettt bbbt 161
Scenario 1: Displaying selected data from DB tablec.ccccooevviiiiieicic e, 162
Scenario 2: Using StoreSQLQuery variable ..o 163
EDBOULPUL .ottt b e b nneas 165
tDBOULPUL PIrOPEITIES ...vveuvieeieiiieie sttt ste ettt e e e sra e e e ne e seenaesneesreennenres 165
Scenario: Displaying DB OULPULc.coovviiiiicie et 166
EDBSQLIROW ..ottt s ettt e renrenreereaneeres 169
tDBSQLROW PrOPEITIES ...vecvveiieiieiiieiieeieseeste e stee e taeste e s e e e re e seenaesnaeseeeneenrs 169
Scenario 1: Resetting a DB auto-iNCremMentcoceiveiiiieii e 170
EDENOIMALIZE ...ttt e e te et e sreenteeneenreas 172
tDENOIMAlIZE PrOPEITIESocvveiveeieciee sttt sne e e eneenrs 172

viii Talend Open Studio Copyright © 2007

Scenario 1: Denormalizing on one column in Perl ... 172

Scenario 2: Denormalizing on multiple columns in Javacccocvevevieneeiesiececiennen 174
L4 SPRRRPR 177
TDHE PIOPEITIES ..ttt bbbttt e bbbttt ne e 177
REIAEA SCENAMOSveiveeiieieie ettt bbbt eneas 177
EDTDVAIIAALOL ...ttt bbbttt benneeneas 178
tDTDValidator PrOPEITIESccooiiiiiiiiiisiieee e 178
Scenario: Validating Xml FIlEScc.ooiiiieiieee e 178
TELTMYSOIINPUL .ottt et sre e s te e ereas 181
tELTMYSQUNPUL PIrOPEITIES ...voeetieiieeeiesieseee e 181
REIAEA SCENAMOSeeiveieieieie ettt eneas 181
TELTMYSOIMAP ..ottt et e re e te e e beenteeneenreas 182
tELTMYSQIMEP PIrOPEITIES ...vviieiieeiieeste sttt 182
Connecting ELT COMPONENTSc.oiieiiieieiieiie et 183
Mapping and JoOINING tADIEScccviiieiiiiece e 184
AddINg WHETE CIAUSES ... 184
Generating the SQL STAtEMENTcoooiiiiieee e e 184
Scenariol: Aggregating table columns and filteringccccooveviiic i, 185
Scenario 2: ELT using AHas table ..o 188
TELTMYSQIOULPUL ..ottt et enne e nneas 192
tELTMYSQIOULPUL PIrOPEITIES ...ecvvieicieeeee ettt 192
e Fo (=0 IS ot=] o - T oSSR 194
TELTOFACIEINPUL ...t e te e enteennenneas 195
tELTOTraclelNput PrOPEITIESooviiiieiieeieeie e e 195
[Fo (=0 IS ot=] o - T oSSR 195
L= I O T Tod (=] \V/ =T o USSR 196
tELTOracleMap PrOPErtiESoooviiieiieieiieiiee ettt 196
Connecting ELT COMPONENEScoiiiiiiiieiiesie ettt 197
Mapping and JOINING TADIESc.occveiieiiiece e 197
AdAING WHEIE CIAUSES ...ttt et 198
Generating the SQL StAteMENTcooiiiiiiiiieeee s 198
Scenario 1: Updating Oracle DB eNntrieSccccevvereiieieeiieseese e see e eee e sae e 198
TELTOFACIEOULPUL ..ottt st nne e 201
tELTOracleOULPUL PrOPEITIESocueiviriiiiiiiieiieieeeie et 201
REIAEA SCENAMOS ...ttt bbb bbbt eneas 203
TELTTeradatalNDULccooiiiie ettt bbb ne s 204
tELT Teradatalnput ProOPertiESocooeiiiiiieieieie e 204
REIAEA SCENAMOSvviviieieieite ettt bbbt 204
TELTTEradataMapccooouiiiieiiiie ettt sttt sbeene s 205
tELTTeradataMap PrOPEITIESoccviiiiiieieieieie ettt 205
Connecting ELT COMPONENTScvocieiiiiieieesie e se e 206
Mapping and JOINING tADIESc.oooiiiiiie e 206
AddINg WHETE CIAUSES ... 207
Generating the SQL STAtEMENTcoooiiiiiieie e 207
REIALEA SCENAITOSeiviieieiiie ittt ettt st e et re e be e e e 207

Copyright © 2007 Talend Open Studio

tELTTeradataOuULPULcccooiiiiieiece ettt nne s 208

tELTTeradataOutPUL PrOPEITIESoiieiiiieiieie ettt 208
REIAEA SCENAMOSveevieiieieiee et bbb bbbt 210
TEXTEIrNAISOITROW ...oviviiie ettt 211
tEXErNalSOrtROW PrOPEITIEScoviiiiiieeieiie ittt st 211
REIAEA SCENAMOiviiiiiiieieee bbb bbb ene s 212
LU (=10 4 o] o - | -SSR PROPRPRPRO 213
tFIleCOMPAre PrOPEITIESooveeeieieitie ettt nrs 213
Scenario: Comparing UNZIPPed FIlESecviiieiiee e 213
L (=T 0] o)V OSSSPOSPRRSI 216
tFIIECOPY PIOPEITIES ...ttt bbbt eres 216
Scenario: Restoring files from DIN ..o 216
EFTIEDERIETE ...t 218
tFIIEDEIELE PrOPEITIESeiueeiieiieee ettt ettt nrs 218
Scenario: Deleting FIlEScvviiiiiee e 218
L] LT =] (o o OSSP URRUSPRRRRI 221
tFIIEFELCN PIrOPEITIES ... et 221
Scenario: Fetching data through HTTPooiiiiiie e 221
tFIeINPUEDEIMITEA ..o 223
tFileInputDeliMited PrOPEITIEScooiiiiiiieiieie e 223
Scenario: Delimited file content displayccccooeiieie i 224
TFHEINPUEMAIL ..o re e ere s 226
tFIeINPUEMAIT PIrOPEITIESeiiiieieciie et 226
Scenario: Extracting key fields from emailcccoov i, 226
tFIeINPULPOSITIONAL ... 228
tFilelNpUEPOSITIONAl PrOPEITIESocviieiiiiiieieeee e 228
Scenario: From Positional to XML filecccocoiiiiiiiii e 229
TFHEINPULREGEX .ottt e e re e ste e e sbe e teaneenreas 232
tFIEINPUIREJEX PIrOPEITIES ...cveiviiiieiieesti ettt 232
Scenario: Regex to Positional filecccooveiiie i 233
TFHEINPUEXIMIL ..ottt re et esreente e e nre s 236
tFHEINPUEXIML PTOPEITIES ..ottt 236
Scenario: XML Street FINAErcviiiiiiieee s 237
EFTIELLIST ettt bbb bbb 239
TFTELIST PIOPEITIES ...t b e 239
Scenario: Iterating on a file direCLOrYccoiveiiiie e 239
TFIHEOULPULEXCEL ...t et ae e ereas 242
tFIeOULPULEXCE] PIOPEITIESc.eieieiiiiieieeiee e 242
REIAEA SCENAMOviveiiiiieie et sb bbbt 242
TFIHEOULPULLDIF ..ot re e te e eneas 243
tFIEOULPUILDIF PrOPEITIES ...ooveiiieiieeitistieieee et 243
Scenario: Writing DB data into an LDIF-type filecccoveiiiieiiie e 244
TFIHEOULPULXIMIL ..ottt re e be e sneenne s 246
tFHEOULPUIXIML PrOPEITIESo.viiieiieiiti ettt bbbt 246
Scenario: From Positional to XML file ... 247

Talend Open Studio Copyright © 2007

TRIEUNAICRIVE . 248

tFIleUNarchive PrOPEITIESccveieiieieee et 248
REIAIEA SCENAMO ...vviviiiiiieieite ettt st be s eneeneas 248
L 1T @] [F] o 1] ISP URSPURSRPS 249
tFIIterColumn PrOPEITIESoocieie ettt nrs 249
REIAIEA SCENAIIOevviveiiieieie bbbttt 249
TFIIEEIROW .ottt st e s te e e re e teeneesreenteaneenreas 250
tFIItErROW PrOPEITIES ...vveveceie ettt sne e enes 250
Scenario: Filtering and searching a list 0f NAMESccccvvviiiiicii e 251
TFIrEDIrdINPUL ..o 253
tFireDirdINPUL PrOPEITIES ...ocvveieieece e 253
REIAEA SCENAMOS ...eveiviirieie ittt bbb bbb neeneeneas 254
TFIrEDIFAOULPUL ... 255
tFireDirdOULPUL PIrOPEITIESccvveieceiecie et rs 255
REIAEA SCENAMOS ...eveiieirieieiie ittt sttt enenneeneas 256
TFIFEDINAROW .ottt enbe et e areenteeneenreas 257
tFIreDIrdROW PrOPEITIESocveeiieie et esna e e eneenrs 257
REIAEA SCENAMOS ...eveiviieieieiie ettt b ettt anesneeneas 258
TFIOWIMBTEE ...ttt e e e st e e be et e sneenteeneenreas 259
O TN Y ot e e 0] 0 =TS 259
REIAIEA SCENAMO ...vviviiiieieie ettt st bbb neeneeneas 259
TFIOWIMETEICAtCNEY ...t e e sne e e 260
tFIOWMeterCatCher PrOPEITIEScveiieieiieiee et 260
Scenario: Catching flow metrics from a Jobcccooviiiiiiiii e 261
L0 TSP PP PTPRPRP 265
L0 0] 1] 1= TS 265
Scenario: Job eXecution IN @ 100Dccoiiiiiiiiiie e 265

L 8 S RSSSSSSSPSRSRR 268
L0l I 0 (0] 1= =TS S 268
Ll I 2 o USRS 268

T TP QBT e 269
EFTP TEBNAIME ..ot r e nnne e 269
EFETP AEIBLE .ttt sb e nreas 269
Scenario: Putting files on a remote FTP SEIVENcccciiiiiiiiiieeee s 269
TFUZZYMALCR ..ottt re e nnes 271
tFUZZYMAECN PIOPEITIESviiviiieieiieee ettt enes 271
Scenario 1: Levenshtein distance of 0 in first NamMesccoccovveviiieviene s 272
Scenario 2: Levenshtein distance of 1 or 2 in first NamMescccccooevvveneninenisienenns 274
Scenario 3: Metaphonic distance in first NAME ..o 275
THSQLDDINPUL bbb 276
10 @ I B o] [] o0 o (] 1= 1= S 276
REIALEA SCENAITOSeiviieiiiiie ettt bt s be et et esbe e e e 277
THSQLDDOULPUL ... bbbt 278
tHSQLDDOULPUL PIrOPEITIES ...vverveeeieiieeiesiieste et e e te et te e e saeeneenrs 278
REIALEA SCENAIOS ... oottt sb e sb e steere e be e e e 279

Copyright © 2007 Talend Open Studio

Xi

THSQLDDROW .. bbbttt 280

tHSQLDDROW PIOPEITIESeiviiiiiiiieiieeie sttt ns 280
REIAEA SCENAMOSveevieiieieiee et bbb bbbt 281
EINFOrMIXINPUL ..ot re e te e nres 282
tINFOrMIXINPUL PrOPEITIESveieiieiiciie st 282
REIAEA SCENAMOSveeviiiiie ittt st bbbt eneas 283
EINFOrMIXOULPUL ...t re e te e ere s 284
tINFOrMIXOULPUL PIOPEITIES ..ottt et 284
REIAEA SCENAMOSveiviiieie ettt bbb eneas 285
EINTOIMIXROW .ot bbbttt 286
tINFOrMIXROW PIrOPEITIES ...ttt 286
REIAEA SCENAMOS ...ttt bbbt eneas 287
TINGEESINPUL .ot e e e nra e e e res 288
tINGreSINPUE PIOPEITIES ...uviieieiiieieeiie sttt ettt nrs 288
REIAEA SCENAMOSveiviiieie ittt bbbt eneas 289
TINGEESOULPUL ... bbb e et e e s be e e e nre e e ntes 290
tINQGreSOULPUL PIOPEITIESoveieieieeiiie ittt et eneenrs 290
REIAEA SCENAMIOSveiviiiieieite ettt bbbttt 291
TINGEESROW ..o e e e e e e ra e e nes 292
tINQGrESROW PrOPEITIES ...eouviiiieitieie ettt sttt sbe e sne e 292
REIAEA SCENAMOSveivieiiiieite ettt bbbt 293
TINGEESSCD ...t res 294
tINQrESSCD PrOPEITIES ...ecuviiiieiiieieeiie sttt sttt nbe e sne e e 294
REIAEA SCENAMOiviiiiiiiiieie et b bbb eneas 295
TINTErDASEINPUL ..ot n e e e eres 296
tINterbaseINPUL PrOPEITIESc.voiiieeie e 296
REIAEA SCENAMIOSveiviieiiieiee ettt bbbt eneas 297
TINTErDASEOULPUL ...t reente e sre e e 298
tINterbaseOULPUL PrOPEITIEScciiiiiiieieieee et 298
REIAEA SCENAMOSveieieiieieiee ettt bbb bbbt eneas 299
EINTEIDASEROW ... bbb 300
tINtErDASEROW PrOPEITIESovieeieieiitesie e 300
REIAEA SCENAMOSveevieiieieite ettt bbb bbb eneas 301
TIEFATETORIOW ..ottt ee s 302
tIterate TOFIOW PTOPEITIESoviieiieiceesi e 302
Scenario: Transforming a list of files as data flowc.cccoevvvieiiiic i 302
EJAVA .ot E e et R e e e e te et reearee s 305
TJAVE PTOPEITIES ...t bbbt 305
Scenario: Printing out a variable CONENtcccovveii i 305
TJAVADBINPUL ... 308
tJavaDBINPUL PIrOPEITIESc.eiuiiieieiteiie sttt 308
REIAEA SCENAMOSveiviieieieiee ettt bbbt eneas 309
TJAVADBOULPUL ..o bbb nraes 310
tJavaDBOULPUL PIrOPEITIESc.veeiiiieiiieitceieeiie ettt bbb 310
REIAEA SCENAMIOSveiviiiiieee ettt bbbt 311

xii Talend Open Studio Copyright © 2007

TJAVAD BROW ..o e ettt 312

tJAVADBROW PrOPEITIES ...veeveeiieeieeiesie ettt e e saeeneenns 312
REIAEA SCENAMOS ...eveiviirieieite ittt bbbt re s sneeneas 313
EIDBCINPUL ..ottt e et st e st e s tesreereeneeneese e e e neenes 314
L8] 21O] o LU o] (] o= 1 SRS 314
REIAEA SCENAMOS ...eveiveirieieiie sttt bbbt eneereeneas 314
EIDBCOULPUL ...ttt b e b n e nnees 316
L8] =T OL @ 10 1 o] U | o] o] 1= -1 316
REIAEA SCENAMOS ...eveiviiiieie ettt ettt b et bbb neeneeneas 317
EIDBCROW ..ottt et e et et st et ae e re e neene et e te e 318
tIDBCROW PrOPEITIES ..veeuviiiieiiieieeiiesteeiesteesteestesae e e e s e steesaessaesteeseesreesseeneesneesreeneenres 318
REIAEA SCENAMOSvveiierieieie ettt sbe st b reanenreeneas 319
EIDBCSP e ettt et eae e Reeneere et e te e 320
tIDBCSP PrOPEITIES ...ovieiiiiieiiiee ettt e e te e e e e sne e sneees 320
REIAIEA SCENAMO ...vvivieiieieierie ettt nesneeneas 321
ELDAPINPUL . 322
tLDAPINDUL PIOPEITIES ..ecvvivieiieeie ettt sttt sae e eneens 322
Scenario: Displaying LDAP directory’s filtered contentccccooceviveviiieiieiecienn, 323
ELDAPOULPUL ...t b e n e e nneas 326
tLDAPOULPUL PrOPEITIES ...evveiieieeiiesieeie ettt e st ste et e e e sneeneenrs 326
Scenario: Editing data in an LDAP direCtOrYcccccvivieiieieiiece e 327
TLOGCALCINET ...t 330
{010 (O (ol g Lo o] (0] o 1=T o A LSS 330
Scenariol: warning & 10g 0N ENLFESeeveiiiiiiie e 330
Scenario 2: 10g & Kill @ JODoc.oiiiiiiiic s 332
TLOGROW e e aes 334
TLOGROW PIOPEITIES ...ttt sttt ettt neenres 334
Scenario: Delimited file content diSplayccooeiiiiiiiinii 334
{10V, = 1 o PSP P RSP P PP 335
LAY Vol o (0] o1 4 (= USRS 335
Scenario 1: Mapping with filter and simple explicit join (Perl)cccocviiiiiiiniennn 335
Scenario 2: Mapping with Inner join rejection (Perl)cccocveveiiiii i 340
Scenario 3: Cascading JOIN MAPPING ...ooveeverirriiiieiierie et ee e eesree e 346
Scenario 4: Advanced mapping with filters, explicit joins and Inner join rejection 346
Scenario 5: Advanced mapping with filters and a check of all rowsc.cccccevvienen. 351
EMOMINPUL e 355
tIMOMINPUL PIOPEITIES ...ttt 355
Scenario: asynchronous communication via a MOM SEIVerccccevveveviveneeiiesnennn. 355
EMOMOUTPUL ...ttt et e s be e s nr e et e e s aneenbeeanneas 359
tMOMOULPUL PTOPEITIES ...vveeeeete sttt 359
REIAEA SCENAMOiviiiiiiiiiee e b e bbb ene s 359
EMSSOIBUIKEXEC ...ttt ettt 360
tMSSQIBUIKEXEC PrOPEITIES ...ttt 360
REIAEA SCENAMOSveivieeieieie ettt bbbt 362
EMISSOITNPUL .ottt sre e beeneenreas 363

Copyright © 2007 Talend Open Studio xiii

tMSSGINPUL PIrOPEITIES ...ttt sae e eneeeas 363

REIALEA SCENAIOSeivieiieiiie ittt b et b e e bt esbe e e e 364
EMISSIOULPUL ..ot e e et e e te e esra e aeeneenneas 365
tMSSQIOULPUL PrOPEILIES ...ttt sre e ers 365
REIALEA SCENAITOSeiviieieciie ittt ettt b e st e et reenbe e e e 366
IMSSIOULPULBUIK ... nneas 367
tMSSQIOULPULBUIK PrOPEILIESveveeivecc ettt 367
REIALEA SCENAIOSeivieiiiiiie sttt bt st e nte e sbe e e e 368
IMSSAIOULPULBUIKEXECvoveeiecie ettt 370
tMSSQIOULPULBUIKEXEC PIrOPEILIESveevviivieieeeie sttt 370
REIALEA SCENAITOSeivieiiiciie ettt sttt sb e et e e ste et e e e e 371
EMISSOIROW ..ttt e et e et et e e e e s reesteentesneenteeneenneas 372
tMSSQIROW PrOPEITIES ..ocvviieieiiieie ettt sre e e eneenas 372
REIALEA SCENAITOSeiviieiiiiie ittt sttt b et e st esbe e e e 373
EIMISSOISCD ...ttt bbbttt 374
tMSSQISCD PrOPEITIES ...cuvecvieieeie ettt ettt sae e e eneenas 374
Scenario: Slow Changing DIMENSION TYPE 3ooviiiiiieiieieeie et 376
EIMISSISP .ttt bbbttt 381
LAY SIS0 | K o o (0] 0= 4 (=TSP 381
[o1 (=T0 IS ot=] o - T o SRR 382
EMYSQIBUIKEXECvevieieeee ettt ettt e nteeteeneesneenaeeneenneas 383
tMYSQIBUIKEXEC PrOPEITIES ...c.vveieeviiiieeie sttt ettt sne e ers 383
REIALEA SCENAIOSeiviieiiiiie ittt b et s b e e b reesbe et e 384
EMYSOICOMIMIL ..ot e et e ste et e sseenteeneenreas 386
tMYSQICOMMIL PIOPEITIESooveeeiiciiciie ettt ens 386
e o= 0 IS ot=] o - T o ST SS 386
00V YAT0 | (@]] =T o1 {0 o USRS 387
tMySAICONNECTION PrOPEITIEScvicviiiiecie ettt 387
Scenario: Inserting data in mother/daughter tables ... 387
EMYSOIINPUL et re et e te et e aneenaeennenneas 392
tMYSQHNPUL PrOPEITIES ..evvieieieece ettt re e rs 392
e Fo (=0 IS ot=] o - T oSSR 393
L0V Y AT | L 10 o 11 | OSSR SUOSSRRS 394
tMYSQIOULPUL PIOPEITIES ...vveveeie ettt e e nas 394
Scenario: Adding new column and altering dataccccoovieieieieie s 396
IMYSQIOULPULBUIK ...ttt nae e e nneas 398
tMYSQIOULPULBUIK PIrOPEITIEScvviiviiieeee et 398
Scenario: Inserting transformed data in MySQL databaseccocoevvinininininienenn 400
tMYSQIOULPULIBUIKEXECc.vveieciie ettt nne s 404
tMySQIOUtPUtBUIKEXEC PIrOPEITIES ...ccvveveiiieiieeie et 404
Scenario: Inserting data in MySQL database ... 405
EMYSQIROIDACK ...t nneas 406
tMYSQIROIDACK PrOPEITIES ...ocvveeiiiiece e 406
Scenario: Rollback from inserting data in mother/daughter tablesccoceoeiennne 406
EMYSOIROW .ottt e st et e s e s te e e e ereesteenteaneenaeennenneas 407

Xiv Talend Open Studio Copyright © 2007

tIMYSQIROW PIrOPEITIES ...veevieeeeeeiest ettt bbb 407

Scenario: Removing and regenerating a MySQL table indeXcccoocevveieiiieivciennnn, 408
EMYSQISCD ..ottt et a e ae et re e reaneenres 410
tIMYSQISCD PIOPEITIES ...ttt bbbt 410
Scenario: Tracking changes using Slowly Changing Dimensionccccccccevveiiennen. 411
EIMIYSISP et e te et areenreeneenre s 418
TIMYSQISP PIOPEITIES ...ttt 418
Scenario: Finding a State Label using a stored procedureccccoveviveveeieseeiesennnns 419
LR\ 50| =70) G ST PR PRPPR 423
tIMISGBOX PIOPEITIES ...ttt ettt bbbt 423
Scenario: “Hello world!” type teSToov e 423
ENOIMALIZE ...ttt b e bbb e e 425
tNOIMANIZE PIOPEITIES ..ottt 425
Scenario: NOrmalizing Gatacccceeiveiiiieieeiesiese e sre e 425
TOFACIEBUIKEXECvivieieie et 428
tOracleBUIKEXEC PIrOPEITIESoouiiiiiiiiiieiieiieie et 428
Scenario: Truncating and inserting file data into Oracle DBccccccvvvieiiieieiiennnnn 429
TOTACIECOMIMIL ...ttt bbbt bbb e b reeneas 432
tOracleComMMIT PIOPEITIEScoveiiieiiiiriieiieieeee ettt 432
REIAEA SCENAMOieiiiiieieiee ettt 432
TOraCIECONNECTIONiviiiiiecii ettt sb ettt e s e e 433
tOracleConnection PrOPEITIEScccooeiiiiiiiieieie e 433
REIAEA SCENAMOiieiiiiciieiee e bbbt ene s 433
TOTACIEINPUL ..ottt be et neenreas 434
tOraClelNPUE PrOPEITIESo.eiiiieieiec ettt 434
REIAEA SCENAMOSveeieiieieie ettt b bbbt eneas 435
TOTACIEOULPUL ...ttt st et sbe et neenneas 436
tOracleOULPUL PIOPEITIESoveiiieitiitesii sttt bbb 436
REIAEA SCENAMOS ...ttt b et eneas 438
tOracleOULPULBUIKo.ooiiiee e 439
tOracleOutpUtBUIK PrOPEITIESccoiiiiiiiiiieiee e 439
REIAEA SCENAMOSveivieiieieie ettt bbbt eneas 440
tOracleOULPULBUIKEXECcocuiiiiiiiiiiie e et 442
tOracleOUtPULBUIKEXEC PIrOPEITIESccuveieieieieiierie st 442
REIAEA SCENAMOS ...ttt bbbt eneas 443
TOraCIEROIDACKccveiiiee e 444
tOracleROIDACK PrOPEITIESc.ooiiiiiiiiieee e 444
REIAEA SCENAMOiviiiiiieee et b e bbb ene s 444
TOTACIEROW ...ttt ettt et st sbe et eneenneas 445
tOraClEROW PIOPEITIESveeiieieeitii bbbt 445
REIAEA SCENAMOS ...ttt bbbttt eneas 446
TOTACIESCD ...ttt sttt e et eesbe e e e sbe e besneenreas 447
TOraClESCD PrOPEITIESocueiieieiteite sttt bbbt 447
REIAEA SCENAMO ...viviiiieiieiee ettt bbb bbb ene s 448
TOTACIESP ...ttt st e be e be e beaneenre s 449

Copyright © 2007 Talend Open Studio

XV

(O =Tl [o o (0] 1= (=TSSP 449

Scenario: Checking number format using a stored procedurecocvveeverieeneniennnns 450
LL =T o TSP PRV PRUSPRRPPRI 455
L0 RdeT o 0T (0] o 1= (TSRS S 455
Scenario: Displaying number of processed lINeSccccovviirieniinie i 455
tPOSEGreSOIBUIKEXECvocvieieeeceee ettt nne s 458
tPOStgresqIBUIKEXEC PrOPEITIEScccveiviiieiieeie ettt 458
REIALEA SCENAITOSeivieiiiciie ettt ettt st et ne e be e e 459
TPOSEGreSOICOMMUL ..ot re e re e e e e nne s 460
tPostgresgICommIt PrOPEItIEScvciveieiiccie et 460
[oL (=0 IS ot=T o - T o PSP R TR 460
tPOStGresqICONNECTIONccveiiieieciee et re e e e sre e e 461
tPostgresgIConNection PrOPEITIESccciiveiieiieiiie e 461
[o1 C=To IS ot=] o - T o RS RUPRR 461
TPOSIGIESAIINPUL ...t e te e sreenaeeneenneas 462
tPOStgresglNPUL PrOPEILIESccviieiiieeie et sre e ens 462
REIALEA SCENAITOSeivieiieciie ettt b e st e teere e be e e e 463
TPOSEGrESAIOULPUL ..ottt te et ra e aeennenneas 464
tPOStgresqlOULPUL PrOPEITIESccvvceiieeiecie sttt sre e ens 464
REIALEA SCENAITOSeiviieiiciie ittt sttt b et s be et reesbe e e e 466
tPOStgresqlOULPULBUIKooviiieiee et 467
tPostgresqlOutputBulK Propertiesccccvciieieiie i 467
REIALEA SCENAITOSeivieiieiiie ittt et bt sb e steere e be e e e 469
tPostgresqlOULPULBUIKEXECc..cccveieiic et 470
tPostgresqlOutputBUIKEXEC PrOPErtiEScccvciveieiieiiecie et 470
[Fo (=0 IS ot=] o - T oSSR 470
tPOStGresqIROIIDACKc.ooieeee e 471
tPostgresgqIROIIDACK ProOPErtiesc.coiveiiiieiiee e 471

[C] Fo (=0 [T ot=] o - T o SRR 471
TPOSIGIESAIROW ...ttt e e e taeaeeneesreeteaneenreas 472
tPOStGreSQIROW PrOPEITIEScveeeieieec ittt ers 472

[E] Fo (=0 IS ot=] o - T oSSR 473

L =T 0] F= o SR SPSSRRS 474
tREPIACE PrOPEITIES ...veviciiceic ettt re e re e te e e saeeeas 474
Scenario: multiple replacements and column fIltering ..o 475
TROWGENETATON ..o e e nre e 479
tROWGENEIatOr PIrOPEITIESveivieiiieieiie ettt ettt e e be et saeesreenneers 479
Defining the SChEMA ..o 479
Defining the TUNCLIONc.ooiiieee e 480
Scenario: Generating random java datac.cccccveveiieiiciie s 481
TRUNJIOD .o ettt nre s 483
tRUNJOD PrOPEITIES ..o.vveieeiiceie ettt sttt ae e e nneenes 483
Scenario: Executing a remote JODcov i 483
ESAIESTOICEINPUL ... 487
tSalesforcelNPUL PrOPEITIESccviiiiieeie ettt ne 487

XVi Talend Open Studio Copyright © 2007

REIAIEA SCENAIIO ..oeeee e et e nnnna 487

ESAIESTOrCEOULPUL ...t este e e sreenneenneeneas 488
tSalesforceOULPUL PrOPEITIEScc.ecviiieieiie et 488
[E Fo (=0 [T ot=] o - T o USSR 488
ESENAIMAIL ...ttt bbbt 489
tSENAMAI] PrOPEITIES ...veeeeeceiciee ettt sre e ers 489
SCENArio: EMAIl ON BITON ...c.oiieiieiie ettt snee e 489
L] LT o LSS SUORRSS 492
6] Lot T 1] 1= (=TSR 492
[Fo (=0 IS ot=] o - T oSS TS 492
ESOFTROW ...ttt n e e e e neennee s 493
ESOMROW PrOPEITIES ...veveeieceieiie ettt s te e re et e e aesneesraenneeres 493
SCeNANIO: SOITING ENTIES ..o.viiiieiitiitieiei ettt 494
ESQLITEINPUL ...t e e re e te et eaneenteennenneas 496
tSQLILEINPUL PIOPEITIES ...veeeeieeie ettt re e ens 496
Scenario: Filtering SQIIE dataccooieiieiiiiieree s 496
ESQLITEOULPUL ..ot e e et e esreeste e e e sneenaeaneenneas 499
tSQLItEOULPUL PrOPEITIESveivieeieciic sttt sre e ers 499
[E Fo =T 0 BT =] - U o SRS 500
ESQLITEROW .ttt e st e e st e e st e e sbeesabeenbeesrneesreeareeas 501
tSQLITEROW PIOPEITIES ...vicvieieiciicc sttt sre e ens 501
Scenario: Updating SQLITE FOWScoiiieieiiieriesie e 502
TS S H bbb bbbttt 504
ESSH PIOPEITIESeviieieiiiiieeie sttt st e et be e sre e saeeneenres 504
Scenario: Remote system information display via SSHcccccoiiiiiiniince 504
ESTALCATCNIET ... bbbttt e e e 506
tStAtCatCNEr PrOPEITIES ...c..iiieiiiieiieee st st 506
Scenario: Displaying job StatS 10gcccooeiiiiiiiiiii s 506
TSUGArCRIMINPUL ...t 509
tSUGArCRMINPUL PIOPEITIESeeiveiiiieiiieie sttt e 509
Scenario: Extracting account data from SUGarCRMccccooeiiiiiiniieneeee 509
TSUGArCRMOUTPUL ..o ennnees 511
tSUGArCRMOULPUL PrOPEITIESviiviiiiieieiiie sttt st 511
[E] Fo =T 0 BT =] - U o SR SR 511
ESYDASEBUIKEXECvveeiieieciiesieeie ettt ettt e te e nneenneaneesneenne s 512
tSYDaSEBUIKEXEC PrOPEITIESc.coiiiiiiieiie ettt 512
[Fo (=0 IS ot=] o - T oSSR 512
ESYDASEINPUL ..ottt re e reennennes 514
tSYDASEINPUL PrOPEITIESooviiiiieiieiie et 514
[E Fo (=0 IS ot=] o - T o USSR 515
L5V 012 LT 11 | 1 o 11 | S USSUPRSPS 516
tSYDASEOULPUL PrOPEITIESeovieeiiiiieiieeee e et 516
[E Fo (=0 IS ot=] o - T oSSR 517
tSYDASEOULPULBUIKc.oveeieiee et reenae e nneas 518
tSybaseOUtPULBUIK PrOPEITIESoc.eiiiiiiiiieiieee e 518

Copyright © 2007 Talend Open Studio XVii

REIALEA SCENAIIOS ...ttt et et e e e e e e e e et e e e e e e ee e e eeeaaeeeeaans 520

tSYDASEOULPULIBUIKEXECooiiiiiiiie ettt 521
tSybaseOUtPULBUIKEXEC PIrOPEITIESvcveiveeieeieceese et 521
REIAEA SCENAMOS ...evviviirieieite ettt sbe bbb neeneeneas 522

ESYDASEROW ...ttt e bbbt neenreas 523
tSYDASEROW PrOPEITIES ...uviveeiiieie ettt e e 523
REIAEA SCENAMOS ...ovveiierieieiie ettt bbbt reanenreeneas 524

ESYDASESCD ... bbbt r et b e re et neenreas 525
)Y 01 eI O B o 0] o g =S 525
REIAEA SCENAMOS ...evviiieiieieiie ettt se et st sbe st ane s eneas 526

ESYDASESP ...ttt bbbt nre s 527
tSYDASESP PrOPEITIES ...vveeieeiieieee ettt sneenneeneenns 527
REIAEA SCENAMOS ...eveivierieieiie ittt bbbt e re s eneeneas 528

LI0) YA =] 10 ST POV O UURTUPPTOTRTPP 529
OS] G T 1] 1= TS 529
Scenario: ECho “Hello WOTIAY ..o 529

TTeradatalNPULooe et b e nreas 531
tTeradatalNPUL PrOPEITIEScccveiiieieiieie et sae e ens 531
REIAEA SCENAMOS ...evviviiieieite ettt bbbt e nenneeneas 532

TTEradataOUEIPULooiieieie ettt sttt e e sneenae s 533
tTeradataOuLPUL PrOPEITIESc.vcveiieiieieciesie ettt sae e nns 533
REIAEA SCENAMOS ...eveiviirieieiie ettt e e bbbt enenneeneas 534

TTErAdALAROW ..o ettt ettt e st nee e 535
tTeradataROW PrOPEITIEScccveiiieieiiesie et nae e e neenes 535
REIAIEA SCENAMOS ...eveiviirieieiie ettt bbbt b e eneeneeneas 536

TUNIGROW .ottt bbbt bbbttt e e e 537
tUNIGROW PrOPEITIES ...vveeeeciieieee ettt sttt e e e eneenns 537
Scenario: Unduplicating NtHEScccoviiiiieiciee e 537

L0 0 =SSR SPORPR 539
100 (=R 1] 1= TS 539
Scenario: Iterate on files and merge the contentcccoce e, 539

EVEHGErCRIMINPUL ..ottt 542
tVHIgErCRMINPUL PrOPEITIES ..vvevieeiiiiieiecie sttt ens 542
REIAIEA SCENAIIOevviiieiieieie ettt b et st 542

EVEUGErCRIMOULPUL ...t bbbt 543
tVtigerCRMOULPUL PrOPEITIES ...vvevieieeie sttt ns 543
REIAIEA SCENAIIOevvivieiieieie ettt bbb 543

L7472 o I T TP TP 544
LAAT LT 1] 1= =TSSR 544
REIAEA SCENAMOS ...evveiierieieiie ettt bbb e reanenreeneas 544

TVWEDSEIVICEINPUL ..o 545
tWebServicelNPUE PrOPEITIESccvvcveiieiecie e 545
Scenario: Extracting images through a WebServiceccoooovevviieiicvc e 546

IXIMILRPC e e e e e et e e s e e et e e e e na e e e ne e e e aneeeenes 548
10, QY o O o o] o T=T o £ TSRS 548

XViii Talend Open Studio Copyright © 2007

Scenario: Guessing the State name from an XMLRPCcccooiiiiiiiininnnee 549

EXSDVAIUALOT ...ttt nb bbb e 551
tDTDValidator PrOPEITIESccvcveiiiiieeie ettt ns 551

[C] Fo (=0 IS oT=] o - T o USSR 551
10, I PSSP PR URPRSPRRPTRIN 552
19,65 IR I (0] 1= (=TSRSS 552
Scenario: Transforming XML to html using an XSL stylesheetccccoovivieiennenn 552
Managing JObS & PrOJECES ...occcveiiiiiieie e 555
ol oTod @ t] g o o] o] =Tod £ SRR PS 555
Importing Job SaMPIES (DEMOS)cceeiiiiiiieieiie e 556
IMPOITING TTEIMS ..o sb bbbttt 557
[y d 0oL] o o] o] =Tod £ SR 560
EXPOrting JOD SCIIPES ...oviiiiiie it ettt 561
EXPOrting JODS IN JAVAoouviieiiiiiisiere e 562
EXporting Jobs @S POJOcocoiiiiiiece ettt 563
Exporting JObS as WEDSEIVICEcooiiiiiiiiiice s 563
EXPOrting JODS IN PEIT ..o 565
Deploying a job on SPagoBI SEFVELcccoiiiiieiieiece e 566
Creating a SPagoBI SEIVEN ENEIYoouiiiiiieieie et 567
Editing or removing a SpagoBl SEIVEr ENEIYccooiiiiiiinieieee e 568
Deploying your jobs on SPagoBl SEIVELSccveiueiieiieieiie e 568
MIGFAtioN TASKSooviiiiiie et besreens 569

Copyright © 2007 Talend Open Studio

XiX

XX

Talend Open Studio

Copyright © 2007

About this guide...
History of changes

About this guide...

This guide aims at administrators and users of Talend Open Studio.

History of changes

Find in the table below the changes made to this User’s guide.

Copyright © 2007 Talend Open Studio 1

About this guide...
Feedback and Support

Version
v 0.5
v05.1

v 0.6

v0.6.1

v0.7
v0.8

v0.8.1

v2.1.0

v2.1.1

v2.2_a

Date
10/4/2006
10/6/2006

1/5/2007

1/15/2007

3/5/2007
4/12/2007

5/26/2007

7/9/2007

7/16/2007

10/10/07

Feedback and Support

History of Change
Release of Talend Open Studio version 1.0.0

Added GNU Free Documentation License to source archive.
Added changes history section.

Release of Talend Open Studio version 1.1.0
Update of User’s Guide to version 0.6

Added missing v1.0 components

Added new v1.1 components

Fixed documentation bugs reported.

Updated Variable information
Added some components

Updated template and component information relating to v1.1.1

Release of Talend Open Studio version 2.0.0
New v2.0 components added

Refurbishing of existing chapters

Added information for Perl and Java

New Managing Projects chapter added

Release of User’s Guide Html repurposed version v0.8.1 based on
User’s Guide v0.8.0.

Synchronization of Documentation release number with application
releases.

Release of Talend Open Studio v2.1.0. Update of User guide includes:
New components added

Added new information of mapping in Java

Reorganisation of information

See Release Notes.

Release of Talend Open Studio v2.1.1. Update of User guide includes:
New components information

Changed versioning for simplification.
Updates in:

- Components chapter

- Designing Jobs chapter

- Managing Projects chapter

Your feedback is valuable. Do not hesitate to give your input, make suggestions or requests regarding
this documentation or product and find support from the Talend team, on Talend’s Forum website at:

http://talendforge.org/forum

Find more information about what’s new in the current release of the documentation on the wiki at:

http://talendforge.org/wiki/doku.php?id=doc:release_notes_userguide

Talend Open Studio Copyright © 2007

http://talendforge.org/wiki/doku.php?id=doc:release_notes_userguide
http://talendforge.org/forum

—Getting started with Talend Open Studio—

Getting started with Talend Open Studio

Accessing Talend Open Studio

The Setup wizard helps you to install Talend Open Studio application. If you unzip it manually, then
follow the installation instructions provided.

Read and accept the terms of the license agreement to continue.

A Talend Open Studio Registration window prompts you for your email address and location. This

information is optional. Click Cancel, if you do not wish to be informed for future enhancements of
Talend Open Studio.

Registration

@
To get Talend Open Studio lakest news, provide wour email and, if need be, your proxy details, |:I‘
O else, click Cancel, to skip this step.

Email | talend@talend. com |

Zounkry | Guatemala w |

By submitting this information, I agree that Talend may send me, From time ko time, email communications
regarding Talend's products and services, I will be able to opt out of these communications at any time by
sending an email ko unsubscribe@talend. com or by Following the link provided in the emails,

Talend respects your privacy and will not communicate this information ko third parties,

Prowey Parameters
Enable HTTP Proxy Parameters

HTTP proxy host address | proey kalend, com |
HTTP Proxy host port | 8080 [|

[Yalidate H Cancel]

If needed, check the box to enable HTTP Proxy parameters and fill in the fields with your proxy
details. Make sure you filled in the email address field if you provide proxy details.

Copyright © 2007 Talend Open Studio 5

Getting started with Talend Open Studio
Connecting to a local repository

You can fill in or edit the registration information at any time, through Window > Preference > Talend
> |nstall/Update.

WARNING—Be ensured that any personal information you may provide to Talend will never be
transmitted to third parties nor used for another purpose than to inform you about Talend and Talend’s
products.

Talend Open Studio opens up with the Login window.

Connecting to a local repository

On the Login window you can connect to Talend Open Studio.

% Talend Open Studio

@ & connection is needed ‘ta en -

connection | I | |

E-rail | |

Passward | |

Project
Existing

Mew

Cancel

+ Select the relevant entry on the Connection list if your username and connection details are
already configured.

» When logging in for the first time, click the three-dot button to configure the Connection
information.

6 Talend Open Studio Copyright © 2007

Getting started with Talend Open Studio
Connecting to a local repository

% Talend Open Studio

Connections

Repository | Local " |
Local

Marne | Local |

Ciescripkion | Defaul: connection |

E-mnail | Mylser@iame, com |

Password | |

I Ok] [Cancel

» To add a new Repository information, click the plus (+) button on the left panel

» Type in the email address that will be used as user login. This field is compulsory to be able to
use Talend Open Studio. Be aware that the email entered is never used for other purpose than
login use.

« Fill in the Password field, if needed. This field is greyed out when the connection is local.
» Click OK to validate.

Click Refresh to update the list of projects if needed. Then choose the relevant project name and click
OK to open it.

If you already created projects with previous releases of Talend Open Studio, you can import them into
your current Talend Open Studio workspace using the Import function.

Related topic: Importing projects on page 555

When creating a project for the first time, there are no default project listed. Click Create to launch the
Creation wizard.

Related topic: Creating a project on page 8

You can discover Talend Open Studio based on job samples. Install the demos project, in one click,
through the Import demos button. The Demos project folder is automatically installed in your
workspace. And the project is directly accessible from the login window.

Copyright © 2007 Talend Open Studio 7

Getting started with Talend Open Studio
Creating a project

When creating a new project, a folder tree is automatically created in the Workspace directory on your
repository server. This will correspond to the Repository folder tree displaying on Talend Open Studio
main window.

Creating a project

When you create a project, you need first to fill in a name for this project. This field is mandatory.

% New project @

Project 1.’
4 y
.
L
Praject name | Perl_Project1 |
Technical Mame | |
Project description | description goes here.. |
meneration language () perl
{:} java
[Finish l [Zancel]

A contextual message pops up at the top of the window, according to the location of your cursor. It
informs you about the nature of data to be filled in, such as forbidden characters.

Note: Note that numbers are not allowed to be used to start a project name.The name is not case
sensitive, therefore, YourProject or YOURPROJECT are the same.

The Technical name is used by the application as file name of the actual project file. The read-only
name usually corresponds to the project name, upper-cased and concatenated with underscores if
needed.

Select the Generation language between Perl and Java. From then, you will be required to use the
relevant code, i.e. Perl code in perl projects and java code in Java projects.

If you want to switch from one to another projects go through File > Switch Projects...

Note: We advise you though to keep Perl projects and Java projects in separate locations and
workspaces to avoid language conflicts.

8 Talend Open Studio Copyright © 2007

Getting started with Talend Open Studio
Describing the GUI

If you already used Talend Open Studio and want to import projects from a previous release,
see Importing projects on page 555.

In the Login window, select the project you’ve created. Click OK to launch Talend Open Studio.
Note: A generation initialization window comes up when launching the application. Wait until
the initialization is complete.

Describing the GUI

Talend Open Studio opens on a multi-panel window.

File Edit Miew wWindow Help

B ey
=

Rep... &5 o Mawi..

Palette
Select
i Masterlob 0.1 ~)))) . : : . [é

S :
£ Outputs 0.1 @ note
== Database

Eb PerlMrLines 0,1

e S /m/cgcmatmN- '/M/'final_ﬁlé CELT
0 Faw aiMain) aggr_dakdMain) final a (Main
£ Pos2uML 0.1 a(Main) aggr_dat) Fin aMain) (= Fil

'% prior 0.1 3 %ﬂ & =
Inkernet
£ Readrile 0.1 = . . . _ . L=

|
0
s - O

S RegexZiML 0.1 calculation sorting ¥ | = Log & error
< | = Micr b
£ StatsCatch 0.1 — = -
Designer | Code
% TopZountries 0. h
£ | > El properties 53 PerlDoc | RegExp | Tasks | Run job | Problemss... | Modules | Scheduler = B8
EE Outline 25 cod.. — O =
|E| F Main =
. — — tFileInputCsY_1
tFileOutpukDelimited _1 Properties
tFilelnpubcsy 1 T -
tAggregaterow_1 il Praperty Type Bl b
ESortRow_1 Sl i e) File Marme | 'CAImpUt Countries oy
R.ow Separator Field Separator I:l Escape char | ™
Header | 1 |Fu:uoter | a |Lirr =
Schema Type Built-In | Edit schema (-] [¥]Skip empty =
< | 3

Talend Open Studio window is composed of the following panels:
* Repository
 Graphical workspace
* Properties, Run and Logs views
* Outline and Code Viewer

The various panels and their respective features are detailed hereafter.

Copyright © 2007 Talend Open Studio 9

Getting started with Talend Open Studio
Describing the GUI

Repository

B

ﬂ Repository XX Mavigator béh =0

The Repository is a toolbox gathering all technical items that can be used either to describe business
models or to design job designs.It gives access to the Business models, the job designs, as well as
resusable routines or documentation.

The Repository centralizes and stores on the file system all necessary elements for any job design
and business modeling contained in a project.

B < The Toolbar includes the following functions: Run Job,
Export Project, Import Project

¥ Business Models
EE Job Designs The refresh button allows you to update the tree with the last

Contexts —changes made
Code \
i Metadat . .
& Metadata Store in the relevant folders of the Repository all your data

r_==" Documentation

2} Recycle bin

(BMs and JDs) and metadata (Routines, snippets, DB/File
connections, any meaningful Documentation...)

The repository gathers together the following components in a folder tree view:

Business Models

Under the Business Models node, are grouped all business models of the project. Double-click
on the name of the model to open it on the graphical modeling workspace.

Related topic: Designing a Business Model on page 23

Job Designs

The Job designs folder shows all job flowcharts designed for the current project. Double-click
on the name of the flowcharts to open it on the modeling workspace.

Related topic: Designing a Job Design on page 35

Contexts

The Context folder groups files holding the context-related data sets you want to reuse in
various jobs, such as filepaths or DB connection details.

Related topic: Defining Contexts and variables on page 101

10

Talend Open Studio Copyright © 2007

Getting started with Talend Open Studio
Describing the GUI

Code

The Code library groups the routines available for this project as well as snippets (to come) and
other pieces of code that could be reused in the project.

Click on the relevant tree entry to develop the appropriate code piece.

Related topic: Designing a Job Design on page 35

Routines

A Routine is a piece of code which can be iterative in a technical job hence is likely to be
reused several times within the same project.

Under Routines, a System folder groups all Talend pre-defined routines. Developing this
node again in the repository, various routine files display such as Dates, Misc and String
gathering default pieces of codes according to their nature.

Double-click on one of the file. The Routines editor opens up as a new tab and can be
moved around the modeling workspace by simply holding down the mouse and releasing
at the target location.

Use these routines as reference for building your own or copy the one you need into the
relevant properties field of your job.

To create a new routine, right-click on the Routines entry of the Repository, and select
Create a routine in the pop-up menu. The routine editor opens up on a template file
containing a default piece of code such as:

sub printTalend {
print "Talend\n"

Replace it with your own and when closing it, the routine is saved as a new node under
Routines.

You can also create directories to classify the user’s routines.

Note: The System folder, along with its content is read-only.

Snippets
Snippets are small pieces of code that can be duplicated accross components or jobs to
automate transformation for example. This feature will be available soon.
Documentation

The Documentation directory gathers all types of documents, of any format. This could be, for
example, specification documents or a description of technical format of a file. Double-click to
open the document in the relevant application.

Related topic: Generating HTML documentation on page 113

Copyright © 2007 Talend Open Studio 11

Getting started with Talend Open Studio
Describing the GUI

Metadata

The Metadata folder bundles files holding redundant information you want to reuse in various
jobs, such as schemas and property data.

Related topic: Defining Metadata items on page 51

Recycle bin

Drag and drop elements from the Repository tree into the recycle bin or press del key to get rid
of irrelevant or obsolete items

Note that the deleted elements are still present on your filesystem, in the recycle bin, until you
right-click on the recycle bin icon and select Empty Recycle bin.

Graphical workspace

The Graphical workspace is Talend Open Studio’s single flowcharting editor, where both
business models as well as job designs can be laid out.

|.'||J *Job TopCountries X = O
Palette L4
% .
Select nete
" |[= Database
= ELT

@ = Fie

' " _~"ralculation ' ' ' : Final_file " | = File Management
Fat a(Main) agar_dak aimy final a (Main [-= Internet
B %j [Log | error

! a . il - | = Misi
calculation sorking
[Processing

-*
X5
' Lagareg... tMap
-

S Sackarn 1

Designer | Code

You can open and edit both job designs and business models in this single graphical editor.
Flowcharts you open display in a handy tab system.

A Palette is docked at the top of the workspace to help you draw the model corresponding to your
workflow needs.

12 Talend Open Studio Copyright © 2007

Getting started with Talend Open Studio
Describing the GUI

Palette

From the Palette, depending on whether you’re designing a job or modeling a business model, click
and drop shapes, branchs, notes or technical components to the workspace, then define and format
them using the various tools offered in the Properties panel.

Related topics:
+ Designing a Business Model on page 23

« Designing a Job Design on page 35

Changing the palette position

If the Palette doesn’t show or if you want to set it apart in a panel, go to Window > Show
view...> General > Palette. The Palette opens in a separate view that you can move around
wherever you like within Talend Open Studio’s window.

Changing the palette layout and settings

You can change the layout of the component list to display components in column or in list, as
icons only or with short description.

You can also enlarge the component icons for better readability of the component list.
To do so, right-click and select the option in the list or click Settings to open the configuration
window and fine-tune the layout.

Properties, Run and Logs views

The Properties, Run Jobs and Logs tabs gather all information relative to the graphical elements
in selection in the modeling workspace or the actual execution of a complete job.

See also: Modules and Scheduler on page 14

Properties
The content of the Properties tab varies according to the selected item in the workspace.

For instance, when inserting a shape in the modeling workspace, the Properties tab offers a
range of formatting tools to help you customize your business model and improve the
readability of the whole business model.

In the case, you are working on a job design, the Properties tab offers you to set the operating
parameters of the component and hence set this way each step of the technical job.

Logs

The Logs are mainly used for job designs. They show the results or errors of particular job
design.

Copyright © 2007 Talend Open Studio 13

Getting started with Talend Open Studio
Describing the GUI

Note: However note that the log tab has also an informative function for Perl component
operating progress for example

Run Job

The Run Job tab obviously shows the current job execution. This tab becomes a log console at
the end of an execution.

For details about the job execution, see Running a job on page 109.

Modules and Scheduler

The Modules and Scheduler tabs are located in the same tab system as the Properties, Logs and
Run Job tabs. Both views are independent from the active or inactive jobs open on the workspace.
Modules view

The use of some components requires specific Perl modules to be installed, check the Modules
view, what modules you have or should have to run smoothly your jobs.

If the Modules tab doesn’t show on the tab system of your workspace, go to Window > Show
View... > Talend, and select Modules in the developed Talend node.

N $ 79

Skatus Zontexk Module Cescription Required -
| Installed EwebServicel,.. S0OAP::Like Required For using this component, vl
@ Mot installed tFileInputExcel Spreadsheet::,.. Required for using this component, vl
@ Mot installed tFileCukputExcel Spreadsheet::... Required Far using this component, o

I Mok installed tMsgBox Texk::ASCIIT... Reqguired for using this component.,

| Installed kFileInputCSy Tewxk: 23 _KS Required For using this component, w

| Installed File delimited ... Text;iZ3v_xs Required to use this wizard with csv files {n...

| Installed EMsgBox Win3z Required For using this component,

| Installed FFileInpuk XML #ML: i LibEraL Required For using this component, vl

| Installed File xml wizard #ML: i LibEraL Required to use this wizard vl w

The view shows if a module is necessary and required for the use of a referenced component.

The Status column points out if the modules are yet or not yet installed on your system. The
warning triangle icon indicates that the module is not necessarily required for this component.

For example, the DBD::Oracle module is only required for using tDBSQLRow if the latter is
meant to run with Oracle DB. The same way, DBD::Pg module is only required if you use
PostgreSQL. But all of them can be necessary.

The red crossed circle means the module is absolutely required for the component to run.

If the component field is empty, the module is then required for the general use of Talend Open
Studio.

When building your job, if a component misses a module that is absolutely required, an error is
generated and displays on the Problems tab.

14

Talend Open Studio Copyright © 2007

Getting started with Talend Open Studio
Describing the GUI

Properties | PerlDoc | RegExp | Tasks EF'rn:-l:nlern::l::Jn:nl:-... b Run job | Modules | Scheduler =08

Marne Description
fa- warnings (00
=t Errors (2)
@ rFileInputExcel_1 Mo schema has been defined yet,
@ tFileOutputPositional 1 Parameter (Formats) must have at least one value,

To install any missing Perl module, refer to the relevant installation manual on
http://talendforge.org/wiki/

Open Scheduler

The Open Scheduler is based on the crontab command, found in Unix and Unix-like operating
systems. This cron can be also installed on any Windows system.

Open Scheduler generates cron-compatible entries allowing you to launch periodically a job via
the crontab program.

If the Scheduler tab doesn’t display on the tab system of your workspace, go to Window >
Show View... > Talend, and select Scheduler in the developed Talend node.

Copyright © 2007 Talend Open Studio 15

http://talendforge.org/wiki/

Getting started with Talend Open Studio
Describing the GUI

Open Scheduler - Add a task

“Talend Jobs | Command |

Project |ETLPr0ject1 ¥| Jab |,|'C0nnectinns VI Conkext |DeFauIt Vl‘

Dav of month Month

[E @ l_ January] [February] [March] [April] [May]
@ [June] [July] [August] [September] [October]
l_ Mowvember] [December]

]
Day of week Hours{minutes
[Manday] [Tuesday] [‘Wednesday]
[Thursda] [Frida] [Saturdar] Hours - E] E] E] E]
V : ; e (12] (1] (14] (15] (1e] (] [ie] [19] (0] 2] (2] (2]
T
e [2) (3] (1) () (@) (&) (@) (=) (=) (&) () (&)
Minute Hour Month Day weekday Command
(%) Generated crontab entry | 0 |o,13 |6 [[* [[1 [| C:\Petlibinipertl. exe -ICAT |
(:)Custom crontab entry ! [it fin32-ri7az-y |
[.C\dd this entry] [Cancel]

Set the time and comprehensive date details to schedule the task.

Open Scheduler automatically generates the corresponding task command that will be added to
the crontab program.

Outline and Code Summary panel

The Information panel is composed of two tabs, Outline and Code Viewer, which provide
information regarding the displayed diagram (either job design or business model).

Outline

The Outline tab offers a quick view of the business model or job design open on the modeling
workspace and a tree view of variables. As the workspace, like any other window area can be
resized upon your needs. The QOutline view is convenient to check out where about on your
workspace, you are located.

16 Talend Open Studio Copyright © 2007

Getting started with Talend Open Studio
Describing the GUI

o= Cutline £ 5 |=F|= O This graphical representation of the diagram
— highlights in a blue rectangle the diagram part
showing in the workspace.

FilelrputoiF_t Click on the blue-highlighted view and hold down
the mouse button. Then, move the rectangle over
the job.

_ ;_ o The view in the workspace moves accordingly.

bl A The Outline view can also be displaying a folder

tree view of components in use in the current
diagram. Expand the node of a component, to show
= Code Viewsr &3 “ 7 O the list of variables available for this component.

¢ To switch from the graphical outline view to the
* ':m? - { tree view, click on either icon docked at the top

print { right of the panel.
et

{

map { Code viewer

SRS ST B 5 . . .

= kgt g The Code viewer tab provides lines of code

=/ banp. g generated for the selected component, behind the
1 < active job design view, as well the run menu

¥, ' including Start, Body and End elements.
T w
i — ' ' I~ Note: Note that this view only concerns the job
design code, as no code is generated from

business models.

Using a graphical colored code view, the tab shows the code of the component selected in the
workspace. This is a partial view of the primary Code tab docked at the bottom of the
workspace, which shows the code generated for the whole job.

Toolbar and Menus

At the top of Talend Open Studio main window, a tool bar as well as various menus gather Talend
commonly features along with some Eclipse functions.

Quick access toolbar

The toolbar allows you to access quickly the most commonly used functions. It slightly differs
if you work at a Job or a Business Model.

LN TR R IT

The toolbar allows a quick access to the following actions:

* Run Job: Executes the job currently shown on the design workspace. For more
information about job execution, see Running a job on page 109.

Copyright © 2007 Talend Open Studio 17

Getting started with Talend Open Studio
Configuring Talend Open Studio preferences

» Export project: Launches the Export project wizard. For more information about
project export, see Exporting projects on page 560.

* Import project: Launches the Import project wizard. For more information about
project import, see Importing projects on page 555.

» Undo/Redo: Allows you to redo or undo the last action you performed.

» Zoom infout: Select the zoom percentage to zoom in or zoom out on your Job.

Menus
Talend Open Studio’s menus include :

« some standard functions, such as Save, Print, Exit, which are to be used at the
application level.

» some Eclipse native features to be used mainly at the Job Designer level.
 as well as specific Talend Open Studio functions.

Although standard Job or Business Model creation and edition are only available through
right-click on the relevant view, some Talend Open Studio features are offered in Menus.

In Window > Preferences > Talend, you can set your preferences. For more information about
preferences, see Configuring Talend Open Studio preferences on page 18.

In Window > Show views, you can manage the different views to display at the bottom of
Talend Open Studio.

Configuring Talend Open Studio preferences

Talend Open Studio opens up on a multiple panel window.

You can define various properties of Talend Open Studio main workspace according to your needs and
preferences.

First, click on the Window menu of your Talend Open Studio, then select Preferences.

18 Talend Open Studio Copyright © 2007

Getting started with Talend Open Studio
Configuring Talend Open Studio preferences

Perl/Java Interpreter path

In the preferences, you might need to let Talend Open Studio pointing to the right interpreter path.
* If needed, click on the Talend node on the Preferences tree (left).

 Enter a path to the Perl/Java interpreter if the default directory does not display the right path.

¥ Preferences

| bvpe Filber bext Talend =l
General
Cannectivity Temporary files |E:'|,Ta|en|:| buildsilicense\ TOS-Win32-r3034-v2.0 | [Browse, .,]
Help Petl interpreter |C:'|,Per|'|,|:uin'l,per|.exe | [Browse, .,]
InskalliUpdate
Java Java interpreter : |C:'|,Pr|:u;|ram FiIes'l,Java'l,jrel.S.D_ll'l,bin'l,java.exe| [Browse, .,]
Maodel Walidation
Perl EPIC Presvie limit | 50 |
Run/Debug Local languageineed restart)
ot RSN
anglais W
Code Viewer colors | Ll |
Carnponents
Designer
Skakus
Tearn
[Restu:ure DeFauIts] [apply]
) [(04] [Cancel]

On the same view, you can also change the preview limit and the path to the temporary files or the
OS language.

Copyright © 2007 Talend Open Studio 19

Getting started with Talend Open Studio
Configuring Talend Open Studio preferences

Status

Under the Talend node, you can also define the Status.

» Expand the Talend node, and click on Status to define the main properties of your
Repository elements.

» The main properties panel of a Repository item gathers information data such as Name,
Purpose, Description, Author, Version and Status of the selected item. Most properties are
free text fields, but the Status field, which is a drop-down list.

* Populate the Status list with the most relevant values, according to your needs. Note that the
Code can not be more than 3-character long and the Label is required.

% Create new status E'

Code:

Label: | Cuality Assurance| |

[Ok H Cancel]

Talend makes a difference between two status types: Technical status and Documentation status.

The Technical status list displays classification codes for elements which are to be running on
stations, such as jobs, metadata or routines.

20 Talend Open Studio Copyright © 2007

¥ Preferences

Getting started with Talend Open Studio
Configuring Talend Open Studio preferences

| byvpe filker bext

General
Conneckivity
Help
InstalljUpdate
Model Yalidation
Perl EPIC
FunfDebug
Talend
Code Viewer colors
Designer
Servers
Stakus
IIsers
Tean

o-&-E-E-E-B-E-E

Status

Technical skatus

Code
Pro
QuA
Tsk

Label
Praduction

Quality Assurance

Test

Daocumentation skatus

Code

EMa
Dac
Spc

Label

Business Model
Design Support
Specifications

=

e
[Restnre Defaulks] [Apply]
[oK] [Cancel]

The Documentation status list helps classifying the elements of Repository which can be used to
document processes (Business Models or documentation).

Once you completed the status setting, click OK to save.

The Status list will offer the status levels you defined here when defining the main properties of your
job designs and business models.

External or User components

You can create/develop your own components and use them in Talend Open Studio.

For more information about the creation and development of user components, refer to our wiki
Component creation tutorial section.

In the Preferences folder tree, expand the Talend node, then select Components.

Copyright © 2007

Talend Open Studio 21

http://www.talendforge.org/wiki/

Getting started with Talend Open Studio
Configuring Talend Open Studio preferences

Components =T

ser components folder: |E:'|,Llser_|:|:|m|:u'l, | [Browse, .,]

« Fill in the User components folder path to the components to be added to the Palette of
Talend Open Studio.

» Restart Talend Open Studio for the components to show in the Palette in the location that
you defined.

22 Talend Open Studio Copyright © 2007

—Designing a Business Model—

Designing a Business Model

Talend Open Studio offers the best tool to put in place the Top/Down approach allowing high

stakeholders to get the grip on analytics of a project from the most general business model to the most
precise details in its technical application.

This chapter aims at business managers, decision makers or developers who want to model their flow
management needs at a macro level.

Objectives

A Business model is a non technical view of a business workflow need.

Generally, a typical business model will include the strategic systems or process steps already up and
running in your company as well as new needs. You can symbolise these systems, steps and needs using
multiple shapes and create the connections among them. Likely, all of them can be easily described using
repository attributes and formatting tools.

In the Graphical workspace of Talend Open Studio, you can use multiple tools in order to:
* draw your business needs
* create and assign numerous repository items to your model objects

* define appearance properties of your model objects.

Opening or creating a business model

Open Talend Open Studio following the procedure as detailed in the paragraph Accessing Talend Open
Studio on page 5.

From the main page of Talend Open Studio, click on the Business Models node of the Repository
panel to expand the business models tree.

Copyright © 2007 Talend Open Studio 23

Designing a Business Model
Opening or creating a business model

Mavigator r;-;;fh -

= iﬂ' Business

(T DiwFeec E & Busi
4 Job Desigi % Create Folder
[Contexts Expand)Collapse

Code L5z Impart items

@ Metadata
E Documentation
& Recycle bin

Select the Expand/Collapse option of the right-click
menu, to display all existing business models (if any).

Opening a business model

Double-click on the name of the model to be opened.

The workspace opens up on the selected business model
view.

Creating a business model

Right-click on the Business Models node and select
Create Business Model.

The Creation wizard guides through the steps to create a new business model.

Select the Location folder where you want the new model to be stored in.

And fill ina Name for it. The name you allocate to the file shows as a label on the tab of the model

designer.

The Modeler opens up on the empty design workspace.

You can create as many models as you want and open them all, they will display in a tab system on

your workspace.

24

Talend Open Studio Copyright © 2007

Designing a Business Model
Modeling a business model

p— Eg:‘bi - D% - ?T:‘_, - 5 E -
=08
Palette — *
[,‘\3 Select
%, Zoom
[= Moke -

Reporting name ackion PBlciness

| *Model DiFeeding &2

CRA

r s
Lo

D ﬂ Input
[List
[FjDatabase
DE Reportingz namesz Decision _% Bickar

(_) Ellipse
%:} Gear

" Relationship
3 -

<
mmmc RegExp | Tasks | Problems(Job TopCountries) | Run job | Modules | Scheduler =8
I oy

&3

Appearance

Rulers & Grid Faonts and Calors:

Advanced w IEI v |

8] a) 2] (2]

The Modeler is made of the following panels:
» Talend Open Studio’s graphical workspace
* a Palette of shapes and lines specific to the Business modeling

« the Properties panel showing specific information about all or part of the model.

Modeling a business model

If you have multiple tabs opened on your designer workspace, click on the relevant tab in order to show
the appropriate model information.

Note: Properties panel and Menus’ items display indeed information relative to the active
model.

Use the Palette to click and drop the relevant shapes and connect them together with branches and
arrange or improve the model visual aspect by zooming in or out.

Copyright © 2007 Talend Open Studio 25

Designing a Business Model
Modeling a business model

This Palette offers graphical representations for objects interacting within a business model.

The objects can be of different types, from strategic system to output document or decision step. Each
one having a specific role in your business model according to the description, definition and assignment

you give to it.

Palette

[,‘\3 Select

=+
A Zoom

[= Make
[== business

<_» Decision
D Ackion
(_) Terminal
Q Daka

m Drocurment
] Input

[List

Ej Database
$ Actor

O Ellipse
ﬁ:} EEar

/ Relationship

Direckional
Relationship

Bidirectional
Relationship

All objects are represented in the Palette as shapes, and can be included in the
model.

Note: If the shapes do not show on the Palette, click on the business folder
symbol to roll down the library of shapes.

Shapes

Select the shape corresponding to the relevant object you want to include in your
business model. Double-click on it or click on the shape in the Palette and drop
it in the modeling area.

Alternatively, for a quick access to the shape library, keep your cursor still on the
modeling area for a couple of seconds to display the quick access toolbar:

DDEI@EIDCli_t?.._E*iDQ

For instance, if your business process includes a decision step, select the
diamond shape in the Palette to add this decision step to your model.

Note: When you mouse over the quick access toolbar, a tooltip helps you to
identify the shapes.

Then a simple click will do to make it show on the modeling area.

[—

The shape is placed in a dotted black frame. Pull the corner dots to resize it at
your own convenience.

Also, a blue-edged input box allows you to add a label to the shape. Give an
expressive name in order for you to be able to identify at a glance the role of this
shape in the model.

Two arrows from and to the added shape allow you to create connections with other shapes. You
can hence quickly define sequence order or dependencies between shapes.

Related topic: Connecting shapes on page 27.

The available shapes include:

26

Talend Open Studio Copyright © 2007

Callout

Decision

Action

Terminal
Data
Document
Input

List
Database
Actor

Ellipse

Gear

Connecting shapes

Designing a Business Model
Modeling a business model

Details

The diamond shape generally represents an if condition
in the model. Allows to take context-sensitive actions.

The square shape can be used to symbolize actions of
any nature, such as transformation, translation or
formatting.

The rounded corner square can illustrate any type of
output terminal

A parallelogram shape symbolize data of any type.

Inserts a Document object which can be any type of
document and can be used as input or output for the data
processed.

Inserts an input object allowing the user to type in or
manually provide data to be processed.

forms a list with the extracted data. The list can be
defined to hold a certain nature of data

Inserts a database object which can hold the input or
output data to be processed.

This schematic character symbolizes players in the
decision-support as well technical processes

Inserts an ellipse shape

This gearing piece can be used to illustrate pieces of code
programmed manually that should be replaced by a
Talend job for example.

When designing your business model, you want to implement relations between a source shape and

a target shape;

There are two possible ways to connect shapes in your workspace:

/ R.elationship
" Directional Relationship
I/' Bidirectional Relationship

Either select the relevant Relationship tool in the Palette. Then, in the modeling workspace, pull
a link from one shape to the other to draw a connection between them.

Copyright © 2007

Talend Open Studio 27

Designing a Business Model
Modeling a business model

Or, you can implement both the relationship and the element to be related to or from, in few clicks.

+ Simply mouse over a shape that you already dropped on your design workspace, in order to
display the double connection arrows.

« Select the relevant arrow to implement the correct directional connection if need be.

» Drag a link towards an empty area of the design workspace and release to display the
connections popup menu.

« Select the appropriate connection among the list of relationships to or from. You can choose
among simple relationship, directional relationship or bidirectional relationship.

* Then, select the appropriate element to connect to, among the items listed.

& Create Mote Attachment To r
/ Create Relationship To L
CRA Create Directional Relationship To L4 D Mew Element; Ackion
/ Create Bidirectional Relationship To L O Mew Element: Terminal
Oy | Q Mew Element: Document
E] Mew Element: Database
g é a Mews Element: Lisk
OB Repoarting= ar Q Mew Element: Data
- ﬂ Mews Elernent: Input
Checkf‘-qstadata <> Mew Element: Decision

'* Mew Element: Ackor

O Mew Element: Elipse

{:} Mew Element: Gear
Existing Element

m]

You can create a connection to an existing element of the model. Select Existing Element in the
popup menu and choose the existing element you want to connect to in the displaying list box.

% Select domain model element |:|@@

Available domain model elements:

| ~.ction Business Ttem Action Mo
D.ﬂ.ction Business Ikem Action Yes K
aDatahase Business Item DE
filDatabase Business Tkern DA
<>Decisiu:un Business Ikem Yes or Mo
DTerminaI Business Ikem Terminal

)] I [a]8 H Cancel]

The connection is automatically created with the selected shape.

28 Talend Open Studio Copyright © 2007

Designing a Business Model
Modeling a business model

The nature of this connection can be defined using Repository elements, and can be formatted and
labelled in the Properties panel, see Properties on page 30.

When creating a connection, an input box allows you to add a label to the connection you’ve created.
Choose a meaningful name to help you identify the type of relationship you created.

Note: You can also add note and comment to your model in order to identify elements or
connections at a later stage.

Related topic: Commenting and arranging a model on page 29

Commenting and arranging a model

The tools of the Palette allow you to customize your model:

Callout Details

Select Select and move the shapes and lines around in
Designer’s modeling area.

Zoom Zoom in to a part of the model. To watch more
acurately part of the model. To zoom out, press Shift
and click on the modeling area.

Note/Text/Note | Allows comments and notes to be added in order to
attachment store any useful information regarding the model or
part of it.
Adding a note or free text

To add a note, select the Note tool in the Palette, docked at the right of the workspace.

Alternatively right-click on the model or the shape you want to link the note to, and select Add
Note

A sticky note displays on the modeling area. If the note is linked to a particular shape, a line is
automatically drawn to the shape.

Type in the text in the input box or, if the latter doesn’t show, type in directly on the sticky note.

If you want to link your notes and specific shapes of your model, click on the
down arrow next to the Note tool on the Palette and select Note attachment.

i (Y
Pull the black arrow towards an empty area of the design workspace, and
release. The popup menu offers you to attach a new Note to the selected g é
shape. |
You can also select the Add Text feature to type in free text directly in the N

modeling area. You can access this feature in the Note drop-down menu of
the Palette or via a shortcut located next to the Add Note feature on the quick access toolbar.

Arranging the model view

You can also rearrange the look and feel of your model via the right-click menu.

Copyright © 2007 Talend Open Studio 29

Designing a Business Model
Modeling a business model

Add
Mavigate
File

Edit

o3 arrange Al

Filkers

Wi

'®, Zoom
Load Resaurce, ..

=] Shaw Properties Yiew

Tan Al

: o F'|" '_:ll'I-EIFIES

r /" &l Conneckars

Properties

Place your cursor in the design area, right-click to
display the menu and select Arrange all. The shapes
automatically move around to give the best possible
reading of the model.

Alternatively, you can select manually the whole
model or part of it.

To do so, right-click on any part of the modeling
area, and click Select.

You can select :

« All shapes and connectors of the model,

« All shapes used in the design workspace,

« All connectors branching together the shapes.

From this menu you can also zoom in and out to part
of the model and change the view of the model.

The Properties information corresponds to the current selection, if any. This can be the whole model
if you selected all shapes of it or more specifically one of the shapes it is made of. If nothing is
selected, the Properties give general formatting information about the workspace.

The Properties tab contains different type of information regarding:

e Rulers and Grid

* Appearance

* Assignment

Rulers and Grid

To display the Rulers & Grid tab, select the Select tool on the Palette, then click on any empty
area of the design workspace to deselect any current selection.

Click on the Rulers & Grid tab to access the ruler and grid setting panels.

30

Talend Open Studio Copyright © 2007

Designing a Business Model
Modeling a business model

=
A
Appearance) b
Display
; Measurement
Rulers & Grid “how Ruler
Advanced Fuler Uniks
Shiow Grid
Grid Spacin 0,125
arid In Fronk pacing !
arid Line
Color anap To Grid
Restore Defaulks
akvle Spaced Dot a4
v

Check the boxes to show the Ruler, the Grid or both.

Grid in front sends to the back all shapes of the model. Select the ruling unit among
Centimeters, inches or pixels.

You can also choose the color as well as the style of the grid lines or restore the default settings.

Pl *Model Demaol X =08
1 2 1 E] 1 = !] -.i.-
=
R data Mo Ernail =
=1

B Yesor Mo Action ™o Terminal

_ O olsgoadoe
; YES %
Check metadata it

Actionyes CE

Appearance

From the Appearance tab you can apply filling or border colours, change the appearance of

shapes and lines in order to customize your business model or make it easier to read.
The Properties tab includes the following formats:
« fill the shape with selected colour.

* color the shape border

Copyright © 2007 Talend Open Studio

31

Designing a Business Model
Assigning repository elements to a Business Model

* insert text above the shape

* insert gradient colours to the shape

* insert shadow to the shape

You can also move and manage shapes of your model using the edition tools. Right-click on the

relevant shape to access these editing tools.

Assignment

The Assignment table displays details of the Repository attributes you allocated to a shape or a
connection.

To display any assignment information in the table, select a shape or a connection in the active
model.

You can modify some information. Also, if you update data from the Repository tree,

assignment information gets automatically updated.

MW {Jo... | Modules | PerlDoc | RegExp | Tasks | Prablem... | Scheduler | Error Log =08

Appearance
Adwvanced

Assignment

e

Type
@Ducumentatinn
['] File Delimited Metadata

Mame

FReqgex. bxk
Cars

Carment

For further information about how to assign elements to a Business Model, see Assigning
repository elements to a Business Model on page 32.

Assigning repository elements to a Business Model

The Assignment table lists the components from the Repository panel of the main window.

32

Talend Open Studio

Copyright © 2007

ﬁ Repository X Mavigatar =

=l-{1# Business Models
i DWieeding 0.1
Eb Job Designs
Contexts
Code
= Eﬂ Metadata
ﬂ-l Db Connections
[File delimited
E File positional
@ File regex
File xmil
File Idif
=B
Z tRegex.txk 0.1
(&) recycle bin

Component

Job designs

Metadata

Business Models

Documentation

Routines (Code)

Designing a Business Model
Editing a Business model

You can define or describe a particular object of your Business
Model, by associating to it, various types of information .

You can set the nature of the data to be assigned, thus facilitating the
job design phase.

The same way as with shapes and connecting lines, simply drag and
drop an item from the Repository panel to assign it to the relevant
shape in the modeling workspace.

Alternatively, you can use the Un/Assign button to carry out this
operation.

The Assignment table, located underneath the workspace gets
automatically updated accordingly with the assigned information of
the selected object.

You can remove assignments through the Un/Assign button.

The Repository offers the following types of items that you can
assign:

Details

If any available job designs developed for other
projects in the same repository can be reused in the
active business model

Any describing data about any of the objects used in
the model. It can be connection information to a
database for example.

If other business model of this repository have been
designed, they can be reused in the active model.

Any type of documentation in any format. It can be
a technical documentation, some guidelines in text
format or a simple description of your databases.

If some routines have been developed in a previous
project, to automate tasks for example, they can be
reused in the active model. Routines are stored in the
Code folder of the Repository

For more information about the Repository Components, see Designing a Job Design on page 35

Editing a Business model

Follow the relevant procedure according to your needs:

Copyright © 2007

Talend Open Studio 33

Designing a Business Model
Saving a business model

Renaming a business model

Click on the current business model label on the Repository panel, to display the corresponding
Main properties information.

Then make your edits on the Name field. The label is changed automatically on the Repository and
will be reflected on the Model tab of the workspace, the next time you open it.

Copying and pasting a business model

In Repository > Business model, right-click on the business model name to be copied and select
Copy in the popup menu, or press Ctrl+c.

Then right-click where you want to paste your business model, and select Paste.

Moving a business model

To move a business model from a location to another in your business models project folder, select
a business model in the Repository > Business Models tree.

Then simply drag and drop it to the new location.

Alternatively, right-click on the relevant business model and select Move in the popup menu.

Deleting a business model

Right-click on the name of the model to be deleted and select Delete in the popup menu.

Alternatively, simply select the relevant business model, then drag and drop it into the Recycle bin
of the Repository panel.

Saving a business model

To save a business model, click on File > Save or press Ctrl+s. The model is saved under the name you
gave during the creation process.

An asterisk displays in front of the business model name tab when changes have been made to the model
but not yet saved.

FI Model Demol X

34 Talend Open Studio Copyright © 2007

—Designing a Job Design—

Designing a Job Design

This chapter aims at programmers or IT managers who are ready to implement technical aspects of a
business model (designed or not in Talend Open Studio’s Business Modeler). Talend Open Studio
helps you to develop the job design that will allow you to put in place an up and running dataflow
management.

Objectives

A job design is the runnable layer of a business model. It translates business needs into code, routines
and programs, in other words it technically implements your data flow.

The Job design is the graphical and functional view of a technical process.
From Talend Open Studio, you can:
 put in place actions in your job design using a library of technical components.

* change the default setting of components or create new components or family of components to
match your exact needs.

* set connections and relationships between components in order to define the sequence and the
nature of actions

* access code at any time to edit in Perl or document your job components.
* create and add items to the Repository for reuse and sharing purposes (in other projects or jobs
or with other users).

Opening or Creating a job

Open Talend Open Studio following the procedure as detailed in chapter Accessing Talend Open Studio
on page 5.

In Talend Open Studio Repository panel, click on the Job Designs node to expand the technical job
tree.

You can create folders via the right-click menu to gather together families of jobs. Right-click on the Job
Designs node, and choose Create folder. Give a name to this folder and click OK.

If you have already created jobs that you want to move in this new folder, simply drag and drop them
into the folder.

Copyright © 2007 Talend Open Studio 35

Designing a Job Design
Opening or Creating a job

Mavigator béh =

Opening a job

Double-click on the label of the job you want to open.
The Designer opens up on the selected job last view.

Note: You can open as many job designs as you need. They

Docu Ra Generate Doc as HTML) - .
will all display in a tab system on your workspace.

5 tRe (53 Irport ikems
[l ReCyCrms

Creating a job

Right-click on the Job Designs node and select Create job in the
pop-up menu. The Creation wizard helps you to define the new job main properties.

& New job

New job

add a job in the repositary ﬁ

Marme | DECuskam |

Purpose | |

Descriphion | description goes here. .,

Authar | My LUser@Marne, com |
Version | 0.1 ||E]
Skaktus || » |
Path | " Select]
@ [Finish J [Cancel

36 Talend Open Studio Copyright © 2007

Designing a Job Design
Getting started with a Job Design

Field Description
Name Enter a name for your new job. A message comes up if you enter prohibited
characters.
Purpose Enter the job purpose or any useful information regarding the job use.
Description Enter a description if need be for the job created.
Author The Author field is read-only as it shows by default the current user login.
\ersion The Version is also read-only. You can manually increment the version using

the M and m button

Status You can define the status of a job in your preferences. By default none is
defined. To define them, go to Window > Preferences > Talend >Status.

The Designer opens an empty tab, on the workspace, showing only the job name as tab label.

Note: You can create as many job designs as you want and open them all, they will display
in a tab system on your workspace.

The Designer is made of the following panels:
+ Talend Open Studio’s Graphical workspace
 a Palette of components and connections specific to the Job Designer

* aProperties panel which can be edited to change or set parameters related to a particular part
or component of the model.

Getting started with a Job Design

Until a job is created, the design workspace as well as the palette of components are greyed out.

If you’re designing a job for the first time, the workspace opens on an empty area. If you’re opening an
already existing job, it opens on the last view it was saved on.

Showing, hiding and moving the palette

The Palette contains all basic elements to create the most complex jobs in the design workspace.
These components are gathered in families and sub-families.

By default, the palette is hidden on the right side of your design workspace.

‘[: If you want the Palette to show permanently, click on the left arrow, at the right top corner
of the designer, to make it visible at all time.
= For specific component properties, see chapter Components on page 117.

You can also move around the Palette outside the workspace within Talend Open Studio’s window.
To enable the standalone Palette view, click on Window menu > Show View... > General > Palette.

Copyright © 2007 Talend Open Studio 37

Designing a Job Design
Getting started with a Job Design

Click & drop components from the Palette

Click on a Component or a Note to start with, on the Palette. Then click again to drop it on the
workspace and add it to your job design.

If the Palette doesn’t show, see Showing, hiding and moving the palette on page 37.

.-_.! *lob DECustom X = H
Palette k
[}3 Select
note

[X]
. . . - - - [Database
m = ELT al
RELTMysqlmput_t o Mys oL
=2, tELTMysglInput
FiF EELTMysgiMap
et : : A EELTMysglOutput
. _@)))] . [Oracle
@| == File:
. o
EELTMysgllnput_2 [= Internet
[Log & error
[Misc
[Processing
[= Svstem

Designer | Code

Multiple information or warnings may show next to the component. Browse over the component

icon to display the information tooltip. This will display until you fully completed your job design
and defined each component properties.

WARNING—you will be required to use the relevant code, i.e. Perl code in perl jobs and java code in
Java jobs.

Related topics:
» Connecting components together on page 42
» Warnings and errors on component on page 41

 Defining job Properties on page 46

Drag & Drop components from the Metadata Manager

For recurrent use of files and DB connections in various jobs, we recommend you to store the
connection and schema metadata in the Repository. For more information about the Metadata
Manager wizards, see Defining Metadata items on page 51.

38 Talend Open Studio Copyright © 2007

Designing a Job Design
Getting started with a Job Design

Once the relevant metadata are stored in the Metadata Manager of the Repository, you will be able
to drag & drop elements directly onto the design workspace.

 Open the relevant node of the Metadata area in the Repository.
* Then select the relevant connection to a file or a DB table

« Select a schema if more than one is stored under the same connection

[} Repositary £2 TS Navigator | — O || *Job Jobhew 53

’::-{h
Code -
= Eﬂ Metadata
= [ﬁl Db Connections . : : [@3 comprehensive
= ﬂl mysql-talendl 0.1
o Queries

(] Synonym schemas
B0 Table schemas

B clients Designer | Code

2220 -omprehensive

= III i £ Proper 22 B Peria | Ky Regex
E flowmeterz10

H logz10

- H Metadata schema
[J Yiew schemas

[File delimited
@ File positional
[Fila sanau
According to the type of component (Input or Output) that you want to use, perform one of the
following operations:

Main

Version

 Input: Drag & drop the selection towards the design workspace to include it in the active job.

* Output: Press Ctrl on your keyboard while you drag & drop the component onto the
designer to include it in the active job.

The Properties tab shows the selected connection details as well as the selected schema
information.

Note: Ifyou selected the connection without selecting a schema, then the first encountered
schema will be filling the properties.

Adding Notes to a job design

Select the relevant note tool in the list among Note, Text or Note attachment.These various note
options are also available through a right-click.

Copyright © 2007 Talend Open Studio 39

Designing a Job Design
Getting started with a Job Design

[}5 Select
1+, Zoam

= Mote Attachment =

EText

v = Mote Attachment

Click and drop the Note element onto the workspace to add a note to a particular component or to
the whole job.

The Note shows as a sticky note on the design workspace.
The Text note allows you to type in directly onto the workspace.

The Note attachment allows you to bind the sticky note to particular element of the workspace.

Changing panels position

All panels can be moved around according to your needs.

40 Talend Open Studio Copyright © 2007

Designing a Job Design
Getting started with a Job Design

% Talend Open Studio (2.0.0.r3034) | Mylser@Mame.com, | Perl-project1 |'._||'E|[z|
File Edit Miew Window Help
B d 0% v
Repositary &2 Mavigator =g ’EE *Job DECustom ."'! Job Contextload XX =B
el Palette 'y
- [:3 Select e 1
= E, wis s —
— noke ol ,\f
£ Cars 2 0.1 - e B
(Main) Lok
’% Contextload 0.1 v L= Database ' " tConkexfload 1 3
< | > CELT E
— File » ' ' ook
[E Code Yiewer &2 v =g||e &
[Input . . . =
A (™ i
x4 = = EFileInpukCs B | 3 -
| [tContextload_1 main _ — = s
4 Designer | Code
v|||[Eepr. I Pe... |Re... |Tasks |Pr.. |Ru.. Mo.. Sc.. | — O
< | > -
0= outline 52 = | Iﬂ| =g Y, .
_ Main LZJ»J tContextLoad 1
= "“____'ff__ . Properties
-1 : | e Wigw Inique Marne | kContextload_1 |
- o Documentation Family | Mist |
Fa sl
— —_— Ackivate 2
kStatCatcher Statistics hat

Click on the border or on a tab, hold down the mouse button and drag the panel to the target
destination. Release to change the panel position.

Click on the cross to close one view. To get a view back on display, click Window > Show View >
Talend, then click on the name of the panel you want to add to your current view or see Shortcuts
and aliases on page 115.

If the Palette doesn’t show or if you want to set it apart in a panel, go to Window > Show view...>
General > Palette. The Palette opens in a separate view that you can move around wherever you
like within Talend Open Studio’s window.

Warnings and errors on component

When a component is not properly defined or if the link to the next component does not exist yet, a
red checked circle or a warning sign is docked at the component icon.

Mouse over the component, to display the tooltip messages or warnings along with the label. This
context-sensitive help informs you about any missing data or component status.

Copyright © 2007 Talend Open Studio 41

Designing a Job Design
Connecting components together

3 tFileInputCSY_1

EFileInputC3Y Harmngs:
This component should have outputs linked.

- Erraes

Mo schema has been defined vek,

Connecting components together

There are various types of connections which define either the data to be processed, the data output, or
else the job logical sequence.

N On your workspace, when dragging the link away from your source component towards the
@ destination component, a graphical plug indicates if the destination component is valid or not.
' The black crossed circle only disappears once you reached a valid target component.

Connection types

Only the connections authorized for the selected component are listed on the right-click pop-up
menu.

Row N The types of connections proposed are different for each

component according to its nature and role within the job, if

the connection is meant to transfer data (from a defined

< Undo Move Node Run if schema) or if no data is handled.

R if Ol

Run iF Error The types of connections available depend also if the data
= Copy come from one or multiple input files and get transferred

towards one or multiple outputs.
Select a component on the workspace, and right-click to display the pop-up menu. All links
available for the selected component display.
Row connection

The Row connection handles actual data transfer. The Row links can be main, lookup or output
according to the nature of the flow processed.

Main row

The Main row is the most commonly used connection. It passes on data flows from one
component to the other, iterating on each row and reading input data according to the
component properties setting (schema).

Data transferred through main rows are characterized by a schema definition which
describes the data structure in the input file.

42 Talend Open Studio Copyright © 2007

Designing a Job Design
Connecting components together

Note: Note that you cannot connect two Input components together using a main
Row connection.

Note: Note also that only one incoming Row connection is possible per component.
You will not be able to link twice the same target component using a main
Row connection.

" tFileInpukCs

a a

L# B Fowl (Main) =§®
tFileList_1 ' ' tFileInputDelimited_Z ' " bFileCurpRNML 1

To be able to use multiple Row connections, see Multiple Input/Output on page 45.

Lookup row

The Lookup row is a Row connecting a sub-flow component to a main flow component.
This connection is used only in the case of multiple input flows.

T
L
" tFileInptLOIF 1

— A
~ bowz (L <2 Undo Property Change

L* . - B rn:n-;\ll (Maén} =-$

tFilelist_1 tFileInputDelimited_2 EMa % Delete

Select Al

Set this connection as Main

-y

A Lookup row can be changed into a main row at any time (and in reverse, a main row can
be changed to a lookup row). To do so, right-click on the row to be changed, and on the
pop-up menu, click on Set this connection as Main.

Related topic: Multiple Input/Output on page 45.

Copyright © 2007 Talend Open Studio 43

Designing a Job Design
Connecting components together

Output row

The Output row is a Row connecting a component to the final output component. As the
job output can be multiple, you get prompted to give a name for each output row created.

Note: Note that the system remembers also deleted output link names (and
properties if they were defined) to avoid you to fill in again name and property
data in case you want to reuse them.

Related topic: Multiple Input/Output on page 45.

lterate connection

The Iterate connection can be used to loop on files contained in a directory, on rows contained
in a file or on DB entries.

A component can be the target of only one Iterate link. The Iterate link is mainly to be
connected to the Start component of a flow (either main or secondary).

Some components are meant to be connected through an iterate link with the next component,
such as tFilelist component.

Note that the Iterate link name is read-only unlike the other connections.

Trigger connections

The trigger connections define the processing sequence. No data is handled through trigger
connections.

The connection in use will create a dependency between jobs or sub-jobs which therefore will
trigger one after the other according to the trigger nature.

Flow ¥
< Undn Move Mode Fun if
Run if Ok,
Run if Error
=| Copy

There are two kinds of triggers: chronological trigger and contextual triggers.

ThenRun (previously Run Before and Run after) is a chronological trigger, in the way, that you
run the first component and then run the next component. This connection is to be used only with
Start components.

Related topic: Defining the Start component on page 51.

Run if, Run if OK and Run if Error are contextual triggers. They can be used with any source
component but are to be connected to Start component of a main or secondary job flow.

* Run if OK will only trigger the target component once the execution of the source
component is complete. Its main use could be to trigger notification sub-jobs for
example.

44

Talend Open Studio Copyright © 2007

Designing a Job Design
Connecting components together

* Run if Error will trigger the sub-job or component as soon as an error is encountered
in the primary job.

* Runiftriggers a sub-job or component in case the condition defined is met. Click on the
connection to display the If trigger Properties panel and set the condition in Perl or in
Java according to the generation language you selected. The Ctrl+Space bar allows to
access all global and contect variables.

El Properties &2 PerlDoc | RegExp | Contextsid... | Tasks Funjob | Problems(]... | Modules | Scheduler =0

=

[Main = If

Condition 2

Link connection

The Link connection can only be used with ELT components. The Links transfer table schema
information to the ELT mapper component in order to be used in specific DB query statements.

Related topics: Components on page 117

The Link connection therefore does not handle actual data but only the metadata regarding the
table to be queried on.

When right-clicking on the ELT component to be connected, select Link > New Output.
WARNING—Be aware that the name you provide to the link MUST reflect the actual table name.
In fact, the link name will be used in the SQL statement generated through the ETL Mapper,

therefore the same name should never be used twice.

Multiple Input/Output

For the time being, if you need to handle data through multiple input points and/or multiple outputs
and integrate a transformation in one flow, you want to use the tMap component, which is dedicated
to this use.

For further information regarding data mapping , see Mapping data flows in a job on page 83.

For properties regarding the tMap component as well as use case scenarios, see tMap on page 335.

Copyright © 2007 Talend Open Studio 45

Designing a Job Design
Defining job Properties

Defining job Properties

The Properties information shows detailed data. The Main tab thus recalls information relative to the
author and job name as filled in at creation stage as well as other general information. And the other tabs
show more specific information about the job or the component selected.

Main

The properties panel shows the Main properties of the selected component. The values of
information data are filled in automatically by the component itself and will be used in the code.
Therefore all fields are read-only, but the Activate box.

mm&:ﬂ: RegExp | Tasks | Problems{Job [... | Runjob | Modules | Scheduler =0

=

Main . tMysqglinput_1

Properties

Wiew Inique Mame | EMysqgllnput_1 |

Documentation Farmnily | Database/MySCL |
Ackivake

[]tstatCatcher Skatiskics

Field Description

Unique Name Unique identifier, allocated automatically by the
system in order for it to be reused in the code.

\ersion Component version, independant from the version of
the whole product version.

Family Group of components relative to the same function.
This field is read-write and new family can be created
here.

Activate Check this box to activate the selected component and

the directly linked job.

tStatCatcher Statistics Check this box to allow the tStatCatcher component to
aggregate processing data as defined in the properties
of tStatCatcher on page 506

The Activate box enables the component function in the job or the sub-job it belongs to, hence code
related to its properties will be generated.

If the Activate box is unchecked, obviously no code will be generated for the component itself but
also for all directly related branches in the job.

For further information regarding the enabling/disabling job feature, see Activating/Disabling a job
or sub-job on page 100.

46

Talend Open Studio Copyright © 2007

Designing a Job Design
Defining job Properties

View

The View tab of the Properties panel allows you to change the default display format of components
on the workspace.

Field Description

Label format Free text label showing on the workspace. Variables can be set to retrieve and
display values from other fields. The field tooltip usually shows the
corresponding variable where the field value is stored.

Hint format Hidden tooltip, showing only when you mouse over the component.
Show hint Check this box to enable the tooltip feature.
You can graphically highlight both Label and Hint text with HTML formatting tags:
+ Bold: YourLabelOrHint
« ltalic: <i> YourLabelOrHint </i>
* Return carriage: YourLabelOrHint
 ContdOnNextLine
 Color: YourLabelOrHint

To change your preferences of this View panel, click Window>Preferences>Talend>Designer.

Documentation

Feel free to add any useful comment or chunk of text or documentation to your component.

Copyright © 2007 Talend Open Studio 47

Designing a Job Design
Defining job Properties

136 -~
137

135

139==headl tDEOutput tDEOutput 1

140 Here goes the chunk of text documenting the component selected.
141 This comment displays as POD code in the Code panel.

142 =cut

143

144 § globals{tDEOutput 1} {CK!: = false:
14K

Designer | Code

E Properties i3 PerlDoc | ReqgExp | Tasks | Run {Job DEoutput) | Problems (Job DE... | Modules | Scheduler = B8

=

s

M :@ tDBOutput

Properties
Wigw Commenk Here goes the chunk of text documenting the
Docurentation Thi=s comment dis=plays a= POD code in the Cod

v
£ b

The content of this Comment field will be formatted using Pod markup and will be integrated in the
generated code. You can view your comment in the Code panel.

You can show the Documentation in your hint tooltip using the associated variable (COMMENT)
For advanced use of Documentations, you can use the Repository Documentation area in order to
store and reuse any type of documentation.

Properties

Each component has specific properties shown on the Properties tab of the Properties panel. See
Components on page 117 for details about how to fill in the fields.

& Make sure you use the relevant code, i.e. Perl code in perl properties and java code in Java
properties.

For all components you can centralize Properties information in metadata files located in the
Repository Metadata directory. Select Repository as Property type and choose the metadata file
holding the relevant information. Related topic: Defining Metadata items on page 51.

For all Input-type components, you can define the schema to follow in order to select data to be
processed. Like the Properties data, this schema is either built-in or stored remotely in the
Repository in a metadata file that you created.

48 Talend Open Studio Copyright © 2007

Designing a Job Design
Defining job Properties

Setting a built-in schema

A schema created as built in the job is meant for a single use in a job, hence cannot be reused
in another job nor station.

Select Built-in in the list, and click on Edit Schema and create your built-in schema by adding
columns and describing their content, according to the input file definition.

Schema of Cars @

EFileInputCsy_1

Zolumn Keyw | Type Length Precision = Mullable Comment
L Y 1D_Owners (8t Jz Jo | @ | |
Reqgistration [1 string 10 0
Make [1 string 10 0
Color [1 string & 0
ID_Reseller 1 int 2 0

B30 EIENE)

[Ok H Cancel]

In all Output Properties also, you also have to define the schema of the output. To retrieve the
schema defined in the Input schema, click on Sync columns button.

Note: InJava, some extra information is required. For more information about Date
pattern for example, check out:
http://java.sun.com/j2se/1.5.0/docs/api/index.html

Setting a repository schema

You can avoid redundancy of schema metadata and hold them together in a central place, by
creating metadata files and store them in the Repository Metadata directory.

To recall a metadata file into your current job, select the Schema type Repository and select the
relevant metadata file in the list. Then click on Edit Schema to check the data are appropriate.

Copyright © 2007 Talend Open Studio 49

http://java.sun.com/j2se/1.5.0/docs/api/index.html

Designing a Job Design
Defining job Properties

@ tDBInput

Property Type Repositary w || Repository | DB:Sales e |[*

Database Driver My SOL k

Huosk ‘talend-dbms’ | Port | '3308° D les i Database | talend ;
sername 'root! ; Password | "toor! ;
Schema Tvpe Repository s« || Repository | DB:Sales - salespershop w ¥ Edit schema E]
Query Tyvpe Repository |+ | Repaositary | DBiCrders - SelectCalor w|*

Query 'z=elect 1d, name from employes' * E]
Encoding '150-8359-15' *

You are free to edit a repository schema used for a job. However, note that the schema hence
becomes built-in to the current job.

You cannot change the remotely stored schema from this window.

Related topics: Defining Metadata items on page 51

Setting a field dynamically (Ctrl+Space bar)

On any field of your job/component Properties view, you can use Ctrl+Space bar to access
the global and context variable list and set the relevant field value dynamically.

 Place the cursor on any field of the Properties view.
 Press Ctrl+Space bar to access the proposal list.

« Select on the list the relevant parameters you need. Appended to the Variable list, a
information panel provides details about the selected parameter.

Description: Error Message

Global variable, property of component tMap [tMap_1].
Type: Skring

Awailability: After

Yariable Name: ({String)globalMap. gek{"tMap_1_ERROR_MESSAGE™)

kFileInputDelimited_2 ERROR_MESSAGE
kFileInputDelimited_2 ME_LINE

tMap_1 . ERROR_MESSAGE
kFileCukputDelimited_1 ERROR_MESSAGE
EFileCukputDelimited_1.ME_LIMNE

kFile QukputDelimited_2 ERROR_MESSAGE
tFileCutputDelimited_2.ME_LIME
kFileInputDelimited_3, ERROR_MESSAGE
kFileInputDelimited_3,ME_LINE
FFlowMeter 1, ERROR_MESSAGE
EFlovaMeter 2. ERROR_MESSAGE

This can be any parameter including: error messages, number of lines processed, or else... The
list varies according to the component in selection or the context you’re working in.

50

Talend Open Studio

Copyright © 2007

Designing a Job Design
Defining the Start component

Defining the Start component

The Start component is the trigger of a job. There can be several Start components per job design if there
are several flows running in parallel. But for one flow and its connected subflows, only one component
can be the Start component.

Click and drop a component onto the workspace, all possible start components take a distinctive bright
green background colour. Notice that most of the components, can be Start components.

Only components which don’t make sense to trigger a flow, will not be proposed as Start components,
such as tMap component for example.

" tFilelnputlDIF 1

rowe {Lookup)

: Iy w X
Lﬁ @ rod (Tain) 'E gli output (Main)
kFileLisk_1 tFileInputDelimited_2 EMap_1 EFileCutpubsML_1

To distinguish which component is to be the Start component of your job, identify the main flow and
the secondary flows of your job

» The main flow should be the one connecting a component to the next component using a Row
type link. The Start component is then automatically set on the first component of the main flow
(icon with green background).

» The secondary flows are also connected using a Row-type link which is then called Lookup row
on the workspace to distinguish it from the main flow. This Lookup flow is used to enrich the
main flow with more data.

Be aware that you can change the Start component hence the main flow by changing a main Row into
a Lookup Row, simply through a right-click on the row to be changed.

Related topics:
 Connecting components together on page 42

« Activating/Disabling a job or sub-job on page 100

Defining Metadata items

Talend Open Studio is a metadata-driven solution, and can therefore help you ensure the whole job
consistency and quality, through a centralized metadata manager.

Copyright © 2007 Talend Open Studio 51

Designing a Job Design
Defining Metadata items

Use the Repository to store, in the Metadata area, the recurrent information on files used to build your
job and retrieve them easily from the Properties panel of any component. These metadata generally
include: DB connections, File path and schemas.

Follow two main steps to setup schemas either from a DB or a File-type connection.

First step is to setup a connection to the File or to the DB. Then second step is to define the schema based
on DB table or File metadata.

ﬂ Repositary X

Mavigastar . OJ | This procedure differs slightly depending on the type of

= | connection chosen. Below are the respective procedures to set up
_ = various connections and define multiple schemas.
@ Business Models
4 Job Designs Click on Metadata in the Repository to expand the folder tree.
EZ:ZEHH Each of the connection nodes will gather the various connections
= Eg Metadata you setup.
ﬂ-l Db Connections
[File delimited Setting up a DB schema
E File positional
[File regex For DB table based schemas, the creation procedure is in two
File xml separate but closely related operations. First Right-click on Db
File Idif Connections and select Create connection on the pop-up menu.
% Documentation
(8 Recycle bin Step 1: general properties

A connection wizard opens up. Fill in the generic Schema properties such as Schema Name and
Description. The Status field is a customized field you can define in Window > Preferences.

52 Talend Open Studio Copyright © 2007

Designing a Job Design
Defining Metadata items

% Database Connection

Mew Database Connection on repository - Step 1/2

Cefine the properties ‘Q?‘

Marne | CuskomersDBschemas |

Purpose | |

Deschiphion | Here goes my description of Customers DB schema, or DB connection, ..,

Author | |
Version | "E]
Skatus | ol |
Path | " Select]

Click Next when completed, the second step requires you to fill in DB connection data.

Step 2: connection

Select the type of Database you want to connect to and some fields will be greyed out or enabled
according to the DB connection detail requirements.

Copyright © 2007 Talend Open Studio 53

Designing a Job Design
Defining Metadata items

¥ Database Connection E

New Database Connection on repository - Step 2,/2
@ vou must press the Check Button to check the Database Setting ﬁi

Database Settings

DE Type | MysoL v

| jdbcirmysqgl: [ftalend-dbms; 3306/ alend

Login | roak
Password | T
Port | 3306
Database | talend|

| Browse, ..

|
|
|
SErver | kalend-dbms |
|
|
|
|

| Check, |

Database Properties

S0L Svntax
Skring Quoke |I| mull Char

':?:' Mext = [Einish l [Zancel

Fill in the connection details and, check your connection by clicking on Check.

Fill in if need be, the database properties information. That’s all for the first operation on DB
connection setup, click Finish to validate.

The newly created DB connection is now available in the Repository and displays four folders
including Queries for SQL queries you save and Table schemas that will gathers all schema
linked to this DB connection.

54

Talend Open Studio Copyright © 2007

Designing a Job Design
Defining Metadata items

ﬁ Repository X Mavigatar O
téh
= EE Metadata A
=l Db Connections
[ClientDE 0.1
[l ooBC 0.1
=l W‘ Edit connection
ueries
(3 Synonym | &7 Edit queries

"3 Tahle sche 59" Open queties
3 view schel [TG =T k
Il Orders 0.1 | 3¢ Delete Delete:
ﬂ'l Sales 0.1 =) Copy ChrlC
] Talend-DEMS 0, s gy

< ¥

Now right-click on the newly created connection, and select Retrieve schema on the pop-up
menu.

Step 3: table upload

A new wizard opens up on the first step window. The List offers all tables present on the DB
connection. It can be any type of DBs.

Select one or more tables on the list, to load them on your Repository filesystem.You will base
your repository schemas on these tables.

If no schema is visible on the list, click Check connection, to verify the DB connection status.
Click Next. On the new window, four setting panels help you define the schemas to create.

In Java, make sure the data type is correctly defined. For more information regarding data types,
including date pattern, check out http://java.sun.com/j2se/1.5.0/docs/api/index.html.

Step 4: schema definition

By default, the schema displayed on the Schema panel is based on the first table selected in the
list of schemas loaded (left panel). You can change the name of the schema and according to
your needs, you can also customize the schema structure in the schema panel.

Indeed, the tool bar allows you add, remove or move column in your schema. And, you can load
an xml schema or export the current schema as xml.

To retrieve a schema based on one of the loaded table schemas, select the DB table schema name
in the drop-down list and click on Retrieve schema. Note that the retrieved schema then
overwrites any current schema and doesn’t retain any custom edits.

Click Finish to complete the DB schemas creation. All created schemas display under the
relevant DB connection node.

Copyright © 2007 Talend Open Studio 55

http://java.sun.com/j2se/1.5.0/docs/api/index.html

Designing a Job Design
Defining Metadata items

Setting up a File Delimited schema

File delimited metadata can be used for both InputFileDelimited and InputFileCSV design
components as both csv and delimited files are based on the same structure.

WARNING—The File schema creation is very similar for all types of File connections: Delimited,
Positional, Regex, Xml, or Ldif.

On the Repository, right-click on File Delimited tree node, and select Create file delimited on the
pop-up menu.

ikory X Mavigakor béh = B
H-] Orders 0,1 .

ﬂ] Sales 0.1
Jl Talend-DEMS 0.1

ERNFile delimjuec

R File positi i Create file delimited h
[# File regex [Create folder
@ File xml Expand/Collapse

File Idif | [Tmpart items
E Documentation
3 Recycle bin a

Unlike the DB connection wizard, the Delimited File wizard gathers both file connection and
schema definition in a four-step procedure.

Step 1: general properties
On the first step, fill in the schema generic information, such as Schema Name and Description.

For further information, see Step 1: general properties on page 52.

Step 2: file upload

Define the Server IP address where the file is stored. And click Browse... to set the File path.

56 Talend Open Studio Copyright © 2007

Designing a Job Design
Defining Metadata items

New Delimited File X

File - Step 2 of 4

Add a Metadata File on repository D
Define the path of the file and the format settings

File Settings

Server | ocalhost 127,0.0.1 v|

File | o InputfCars, cav | [Eiru:uwse...]

Format | LNIE b4

File Wigwer

ID_Cwwners;Reg_Car;Make; Caolor ID_Reseler
1;1301 DO 05;Citroen;gold; 35

22300 ZP 14;Citroen; blue; 66

3;4122 11 74;Renault;velow; 66

413395 QP 05; Citroen; vellow; 51

50029 OF 61;Tayota;red; 37

64287 YU 44;Citroen;blue; 43

77119 T 97;Honda; vellow; 99

3;3764 PA 47;Renault;orange; 100

39,9939 1 58;Mercedes;red; 71

3

£

@ [< Back ” Mext = l

Select the OS Format the file was created in. This information is used to prefill subsequent step
fields. If the list doesn’t include the appropriate format, ignore it.

The File viewer gives an instant picture of the file loaded. It allows you to check the file
consistency, the presence of header and more generally the file structure.

Click Next to Step3.

Step 3: schema definition

In this view, you can refine your data description and file settings. Click on the squares below,
to zoom in and get more information.

Copyright © 2007 Talend Open Studio 57

Designing a Job Design
Defining Metadata items

#* Hew Delimited File @

File - Step 3 of 4
Add a Metadata File on repository _Fj
Define the setting of the parse job
File Settings Rows To Skip
Encoding | US-A5CTT If any rows must be ignored, specify the following parameters
— —_— vl|e hd
Field length |Semicolon w | Catresponding Character | i Fo=t L |
e =
Row Separator |Standard EQL % rrespondi r E. | el Dl |
[5kip empty rove
Escape Char Settings Lirit OF Fioms
Cicav (%) Delimited If the number of lines must be limited, specify this number
Frrne G imit [| v
Previem
Set heading row as column names | Refresh Preview
id = Customerfame Customerfddress idReseller Make RegTime Column 6 Calurm #
1 Griffith Paving and Sealcoatin 355 Golf Rd. 7 1 03/11/1991 0%:20 1973-01-17 06:26:40.000 67852,
2 Bil's Dive Shop 511 Maple Ave. Apt, 1B 35 1 19/11/1954 15:48 2010-06-07 09:40:00.000 S5792,
3 Childress Child Day Care 662 Lyons Circle 39 1 16/02/1981 03:27 1990-04-01 21:00:00.000 35340,
4 Facelift kitchen and Bath 220 Vine fve., 41 1 22/08/201009:55 1972-04-23 15:00:00,000 &097.8
5 Tetrinmi & Son Auto and Truck 770 Exrmoor Rd. 5 1 28/06/1995 09:15 1982-04-19 10:26:40,000 5146.5
& Kermit the Pet Shop 1560 Parkside Ln, 25 1 17/08/2009 10:07 1991-05-27 17:00:00.000 16087,
7 Tub's Furniture Store 807 2Id Trail Rd. 15 1 27I08/1976 03:13 1970-03-27 23:056:16.000 53216,
& Toggle & Myerson Led 618 Sheriden rd.] 1 24/03/2008 23:07 1981-08-02 01:26:40.000 74168, -
A i i i aag S, o = ; T e s e e T e e
&5 | e
@ [< Back][Hext =]
Set the Encoding, as well as Field and Row separators in the Delimited File Settings.
58 Talend Open Studio Copyright © 2007

Designing a Job Design
Defining Metadata items

File Settings

Encoding L5-ASCII 3
Field length Semicalan % | Corresponding Character |

Row Separator | Standard EOL w N

Escape Char Settings
(%) cay) Delimited
Escape Char |Emphy W

Text Enclosure | Empky w

Depending on your file type (csv or delimited), you can also set the Escape and Enclosure
characters to be used.

If the file preview shows a header message, you can exclude the header from the parsing. Set
the number of header rows to be skipped. Also, if you know that the file contains footer
information, set the number of footer lines to be ignored.

Rows To Skip

If anw rows must be ignored, specify the Following parameters
He:ader 3 L
Footer [b
[]5kip empty raw

Lirnit ©F Rows

If the number of lines must be limited, specify this number

Lirmit [w

The Limit of rows allows you to restrict the extend of the file being parsed.
In the File Preview panel, you can view the new settings impact.

Check the Set heading row as column names box to transform the first parsed row as labels
for schema columns. Note that the number of header rows to be skipped is then incremented
of 1.

Copyright © 2007 Talend Open Studio 59

Designing a Job Design
Defining Metadata items

Preview
Set heading row as column names | Refresh Preview
ID Registration Make Color Reseler ID Mame Insurance
1 5777094 Volkswagen gold 7 mankmont KAWZ2E44
2580 TT 77 Renault orange 1 bouhnan BMU9147
A 170 wE 11 ke, il im ivkl- TEWUS2SM

Click Refresh on the preview panel for the settings to take effect and view the result on the
viewer.

Step 4: final schema

The last step shows the Delimited File schema generated. You can customize the schema using
the toolbar underneath the table.

60 Talend Open Studio Copyright © 2007

Designing a Job Design
Defining Metadata items

New Delimited File X

File - Step 4 of 4
] 1
add a Schema on repository ; |
Define the Schema
Marme | metadata
Carmrmenkt |
Schema
Click to update sch i
ick o update schema preview | Cless |
Description of the Schema
Zolumn kew | Type mullable | Length Preci. . v ZOmm,,
I D_Ovrers IZI__--_
Req_Car Skring
Make |:| Skring 1III
Color [1 string &
ID_Reseller 1 int 3
BB EE0E
'i':’:' Mexk = [Finish] [Cancel]

If the Delimited file which the schema is based on is changed, use the Guess button to generate
again the schema. Note that if you customized the schema, the Guess feature doesn’t retain these

changes.

Click Finish. The new schema displays on the Repository, under the relevant File Delimited

connection node.

Setting up a File Positional schema

On the Repository, right-click on File Positional tree node, and select Create file positional on the

pop-up menu.

Copyright © 2007

Talend Open Studio 61

Designing a Job Design
Defining Metadata items

i1 Talend-DEMS 0.1 -
[File delimited

File Idif (53! Import items
% Document droeoses
@ Recycle bin e

Proceed the same way as for the file delimited connection. Right-click on Metadata on the
Repository and select Create file positional.

Step 1: general properties

Fill in the schema generic information, such as Schema Name and Description.

Step 2: connection and file upload

Then define the positional file connection settings, by filling in the Server IP address and the
File path fields.

Like for Delimited File schema creation, the format is requested for prefill purpose of next step
fields. If the file creation OS format is not offered in the list, ignore this field.
New Positional File

File - Step 2 of 4

Add a Metadata File on repository

Define the path of the file and the Format setkings

File Location Setkings

Server | ocalhosk 127.0.0.1 v|

File | C:Input)raw, head | [Bru:uwse...]

Farmat | UNIX W

The file viewer shows a file preview and allows you to place your position markers.

62 Talend Open Studio Copyright © 2007

File Migwer

10 15

A I IR ERN PO I IO, 1 I I

Designing a Job Design
Defining Metadata items

Z0 5 30 35 40 45 a0 a5

25

13 11 | R

Field length

O00043Z0050320307085847016-0000007649306-0000079000 -
O00108Z005033597670011292-0000000%6:000-0000065000
O00017Z0050320307085846752-000005140270-0000043000
O00043Z0050320307085847759-000003993560-0000035000
O00032Z0050320307086845274-000001032030-0000020000
O0010Z2Z0050320307086845311-000001248220-0000018000
O00104Z0050320307085847063-000000103%10-0000015000

ANAOnAOnCA2N2N7NooACd o nnonnonCnncn aonnnd2nnn

25,13,11,*

Marker position | 25,35,49

Click on the file preview and set the marker against the ruler. The orange arrow helps you refine
the position.

The Field length lists a series of figures separated by commas, these are the number of
characters between markers. The asterisk symbol means all remaining characters on the row,
from the preceding marker position.

The Marker Position shows the exact position of the marker on the ruler. You can change it to
refine the position.

You can add as many markers as needed. To remove a marker, drag it towards the ruler.

Click Next to continue.

Step 3: schema refining

The next step opens the schema setting window. As for the Delimited File schema, you can
refine the schema definition by precising the field and row separators, the header message
number of lines and else...

At this stage, the preview shows the file delimited upon the markers’ position. If the file contains
column labels, check the box Set heading row as column names.

Step 4: final schema

Step 4 shows the final generated schema. Note that any characters which could be
misinterpreted by the program are replaced by neutral characters, like underscores replace
asterisks.

You can add a customized name (by default, metadata) and make edits to it using the tool bar.

You can also retrieve or update the Positional File schema by clicking on Guess. Note however
that any edits to the schema might be lost after “guessing” the file-based schema.

Copyright © 2007 Talend Open Studio 63

Designing a Job Design
Defining Metadata items

Setting up a File Regex schema

Regex file schemas are used for files containing redundant information, such as log files.

#i Reposiary X Mavigator | w0 — O
K8 Talend-DEMS 0.1 ~

B File delimited

¥ File positional
2
Eile xmil B Create file regex
File Idif 9 Create Fu:-l
& Documentati [z Import items
(3 Recycle bin o}

BH-E

Proceed the same way as for the file delimited or positional connection. Right-click on Metadata on
the Repository and select Create file regex.

Step 1: general properties

Fill in the schema generic information, such as Schema Name and Description.

Step 2: file upload

Then define the Regex file connection settings, by filling in the Server IP address and the File
path fields.

File Settings

Server | ocalhosk 127,0.0,1 vl

File | A\ Input\Eclipse. log| | [Brn:nwse...]

Faormat | LINIX w

File Wigwer

Test

Test
IEMTRY org.talend. designer.runprocess 1 0 2006-09-07 10:38:55.050
IEMTRY arg.kalend. designer.runprocess 1 0 2006-09-07 10:39:25,537
IEMTRY arg.kalend, designer.runprocess 1 0 2006-09-07 10:39:28,430
IEMTRY org.talend. designer.runprocess 1 0 2006-09-07 10:39:51.377

Like for Delimited File schema creation, the format is requested for prefill purpose of next step
fields. If the file creation OS format is not offered in the list, ignore this field.

64 Talend Open Studio Copyright © 2007

Designing a Job Design
Defining Metadata items

The file viewer gives an instant picture of the loaded file. Click Next to define the schema
structure.

Step 3: schema definition

This step opens the schema setting window. As for the other File schemas, you can refine the
schema definition by precising the field and row separators, the header message number of lines
and else...

In the Regular Expression settings panel, enter the regular expression to be used to delimit the
file.

Reqular Expression settings

SEMTRY s (w020 b 1) s i s d s+ Od-ddz-1d42h

& Take care to use the correct Regex syntax according to the generation language in use as
the syntax is different in Java/Perl, and to include the regexp in single or double quotes
accordingly.

Then click Refresh preview to take into account the changes. The button changes to Wait until
the preview is refreshed.

Presview
[|5et heading row as column names | Refresh Preview
Colurnn 0 Colurnn 1

arg.kalend, designer . runprocess 2007-02-07
arg.kalend, designer runprocess 2007-02-07
org.talend. designer.runprocess 2007-02-07
arg.kalend. designer . runprocess 2007-02-07

Click next when setting is complete. The last step generates the Regex File schema.

Step 4: final schema
You can add a customized name (by default, metadata) and make edits to it using the tool bar.

You can also retrieve or update the Regex File schema by clicking on Guess. Note however that
any edits to the schema might be lost after guessing the file based schema.

Click Finish. The new schema displays on the Repository, under the relevant File regex
connection node.

Copyright © 2007 Talend Open Studio 65

Designing a Job Design
Defining Metadata items

Setting up a FileLDIF schema

LDIF files are directory files described by attributes. FileLDIF metadata centralize these LDIF type
files and their attribute description.

ﬂ Repository X MNavigatar béh =0
Jill Talend-DEMS 0.1 A
[File delimited
El File positional
E] File regex
@ File ®xml
Filf
E Docun
(3] Recyc

reake file [dif

9 Create folder
Expand/Collapse
L5 Import itemns [

< |

Proceed the same way as for other file connections. Right-click on Metadata on the Repository and
select Create file Ldif.

Note: Make sure that you installed the relevant Perl module as described in the Installation
guide. For more info, check out http://talendforge.org/wiki/doku.php

Step 1: general properties

On the first step, fill in the schema generic information, such as Schema name and description.

Step 2: file upload
Then define the Ldif file connection settings, by filling in the File path field.

66 Talend Open Studio Copyright © 2007

Designing a Job Design
Defining Metadata items

#* New Ldif File X

File - Step 2 of 4

#dd a Metadata File on repository

Define the path of the file and the Format sektings

File Settings

Server | ocalhost 127.0.0.1 vl

File | C:Inpukfgoy [dif | [Brnwse...]
File Wigwer

extended LDIF Y

A =

LDAPws

base <dc=demo,dc=net = with scope subkres
Filter: {objectclass="*)

reqguesking: ALL

*

*

demo.net

dn: dc=demo,dc=net

[£

Note: The connection functionality to a remote server is not in operation yet for LDIF
file collection.

The File viewer provides a preview of the file’s first 50 rows.

Step 3: schema definition

The list of attributes of the description file displays on the top of the panel. Select the attributes
you want to extract from the LDIF description file, by checking the relevant boxes.

Copyright © 2007 Talend Open Studio 67

Designing a Job Design
Defining Metadata items

New Ldif File X

File - Step 3 of 4

add a Metadata File on repository
Define the setting of the parse job

Lisk aktributes of LdiF File

Aktribukes

[] passwaord
nae

lastname

[] changetvpe

Preview

Fefresh Prewview

dn narne
jbzy jhay
fFlked Fled
beyy bewy
kskb kskh
fpfc Fpfc
dogp dogp
Pt jpe

lastname

Laus

kzni
whigi
WL,
iy
e
ocnb

Click Refresh Preview to include the selected attributes into the file preview.

Note: DN isomitted inthe list of attributes as this key attribute is automatically included

Step 4: final schema

in the file preview hence in the generated schema.

The schema generated shows the columns of the description file. You can customize it upon

your needs and reload the original schema using the Guess button.

Click Finish. The new schema displays on the Repository, under the relevant File LDif
connection node.

Setting up a FileXML schema

Centralize your XPath query statements over a defined XML file and gather the values fetched from

It.

Proceed the same way as for other file connections. Right-click on Metadata on the Repository and

select Create file XML.

68

Talend Open Studio

Copyright © 2007

Designing a Job Design
Defining Metadata items

Step 1: general properties

On the first step, fill in the schema generic information, such as Schema name and description.
Click Next when you’re complete.

Step 2: file upload

Browse to the XML File to upload and fill in the Encoding if the system didn’t detect it
automatically.

The file preview shows the XML node tree structure.

Mew Xml File @

File - Step 2 of 4

Add a Metadata File on repository @
Define the path of the file and the Format settings

File Settings

ML | CifInputfTPOZ_Q3. sl | [Browse... |

Encading | (50 b |

Schema Viewer

@label
[=)- book,

@id

= title

@subTitle

author

[=- sections
[=- section

@nbPages

[>

< Back ” Mexk = Finish

Click Next to the following step.

Step 3: schema definition

Set the parameters to be taken into account for the schema definition.

Copyright © 2007 Talend Open Studio 69

Designing a Job Design
Defining Metadata items

New Xml File X

File - Step 3 of 4

&dd a Metadata File on repository
Define the setting of the parse job

Source Schema Target Schema
= library » wpath loop expression
@si:noMamespaceschenmal ; .
Absolute ¥Path expression Loop limit
mlabel
[=- book,
@id
- title — Fields ko extract
@subTitle Relative or absolute ¥Path expression Tag Name
author
[=- sections
(=) seckion w
-
< | =
Presigi File: Yiewer

Refresh Preview =7xml wersion="1.0" encoding="130-3859-1"7 >

<library xminsxosi="htkp: [e, w3, org) 2001 EMLSC
<book id="1"=
<kitle subTitle="ah" =
<author =Cédric Carbone </author =
<seckions >
<gection nbPages="22"[=
< /sections=
<infosPublisher =
<publisher =evrolles </publisher =
<countryPublisher =France < countrwPubli
<rounkryPrink =Italie = counkryPrink =

|

':':’:' [< Back ” Mext = l

The schema definition window is divided into four panels:

» Source Schema: Tree view of the uploaded XML file structure

Target Schema: Extraction and iteration information
* Preview: Target schema preview

* File viewer: Raw data viewer

70 Talend Open Studio Copyright © 2007

Designing a Job Design
Defining Metadata items

In the Xpath loop expression field, enter the absolute xpath expression leading to the structure
node which the iteration should apply on. You can type in the entire expression or press
Ctrl+Space to get the autocompletion list.

Source Schema Target schema
@xsinolNamespaceschemalocation L ®path loop expression
iDlabel
. baok absolute ¥Path expression Loop limit
@id Mibrary fhook itle z
= title
@subTitle Fields to extract
author Relative or absolute ¥Path expre... | Tag Mame
= sections
=|- seckion F 3
@nbPages
=l infosPublisbier
publisher v

Or else, drag and drop the node from the source structure towards the target schema Xpath field.
Note: The Xpath loop expression field is compulsory.

You can also define a Loop limit to restrict the iteration to a number of nodes. A green link is
then created.

Then define the fields to extract. Simply drag and drop the relevant node to the Relative or
absolute XPath expression field.

Source Schema Target Schema
i@csi;nokamespaceSchemalocation - wpath loop expression
@label
~ book Absolute ¥Path expression Loop limit
@id Mibrary Mook itle z
= title
@subTite Fields to extract
autl-!cur _"'-1 Relative or absolute ¥Path expre... | TagMa **
= sections ~-—% .. Jauthor Author ¥
= seckion < 3
@nbPages
= infasPublisher
publisher b

Use the plus sign to add rows to the table and select as many fields to extract, as you need. Press
the Ctrl or the Shift keys for multiple selection of grouped or separate nodes, and drag & drop
them to the table.

Copyright © 2007 Talend Open Studio 71

Designing a Job Design
Defining Metadata items

Source Schema Target Schema
= library ~ ¥path loop expression
@i nokamespaceschemalocation : o
@label Absolute XPath expression Loop limit
= hook Hlibr ary bk, Z
@id
- title Fields to extract
@subTitle Relative or absoluke ¥Path ex... Tag Mame
autl‘!Dr j author Author
=I- sections =} Litle/@subTitle Title
=|- seckion

= inFDsPljll?ulf?IsTﬁiprages w

In the Tag name field, give a name the column header that will display on the schema preview
(bottom left panel).

The selected link is blue, and all other links are grey. You can prioritize the order of fields to
extract using the up and down arrows.

Click Refresh preview to display the schema preview. The fields will then be displayed in the
schema preview in the order given (top field on the left).

Presig File Wiewer

Refresh Preview =7xml version="1.0" encoding="150-3853-1"7 > ~

<library xmins:osi="htkp: w3, org) 2001 ¥MLSchema-instar
<hook id="1"=
<title subTitle="ab"{ =

'ﬁ'UthDr : Uiz <author =Cédric Carbone < author =
i”edric Carbonei My Life <seckions =
Chris Antoine My Career <section nbPages="22"/>

< fsections =
<inFosPublisher =
<publisher =evraolles < /publisher =
<counkryPublisher =France < fcountryPublisher = W

Step 4: final schema

The schema generated shows the selected columns of the XML file. You can customize it upon
your needs or reload the original schema using the Guess button.

Click Finish. The new schema displays on the Repository, under the relevant File XML
connection node.

72 Talend Open Studio Copyright © 2007

Designing a Job Design
Defining Metadata items

Setting up a LDAP schema

On the Repository, right-click on LDAP tree node, and select Create LDAP schema on the pop-up
menu.

E File HlT_Il

File Idif

B Create LDAP schema
% Documer L Create Folder
15l Recycle | (5 Import items

Unlike the DB connection wizard, the LDAP wizard gathers both file connection and schema
definition in a four-step procedure.

Step 1: general properties

On the first step, fill in the schema generic information, such as Schema Name and Description.

For further information, see Step 1: general properties on page 52.

Step 2: server connection

Fill the connection details.

File -Step 2 of 5
Add a Metadata File on repository D

Define the path of the file and the format settings

Metwork Parameter

Hostname: | Your-LDAP-TP 3 |
Port: | 389 W |
Encryption method: |LD.C'.F' v|

Cilck the butkon to check connection status,

[Check MNetwark Parameter]

Then check your connection using Check Network Parameter to verify the connection and
activate the Next button.

Copyright © 2007 Talend Open Studio 73

Designing a Job Design
Defining Metadata items

Field Description
Host LDAP Server IP address
Port Listening port to the LDAP directory
Encryption method LDAP : no encryption is used

LDAPS: secured LDAP
TLS: certificate is used

Click Next to validate this step and continue.

Step 3: authentication and DN fetching

In this view, set the authentication and data access mode.

Create new LDAP schema

File - Step 3 of 5

Add a Metadata File on repository
Define the setting of the parse job

Base DM
Get base DMs From Rook DSE

Base DM:
Aliases Dereferencing Referrals Handling
() Finding (%) Ignore
() Searching () Fallow
() Mever
(%) always
@ [< Back ” Mext =]

Authentication Method

Simple Authentication W |

Authentication Parameter

Bind DM or user: | cn=Directory Manager w |

Eind password: | YT YY) |
Save passward [Check Authentication]

Fetch Base Dhs

Lirnits
Count Lirit: | 100

Zancel

Click Check authentication to verify your access rights.

74 Talend Open Studio

Copyright © 2007

Field

Authentication method

Authentication Parameters

Get Base DN from Root DSE /
Base DN

Alias Dereferencing

Referral Handling

Limit

Designing a Job Design
Defining Metadata items

Description

Simple authentication: requires Authentication Parameters
field to be filled in

Anonymous authentication: does not require authentication
parameters

Bind DN or User: login as expected by the LDAP authentication
method

Bind password: expected password

Save password: remembers the login details.

Path to user’s authorised tree leaf
Fetch Base DNSs button retrieves the DN automatically from Root.

Never allows to improve search performance if you are sure that no
aliases is to be dereferenced. By default, Always is to be used.
Always: Always dereference aliases

Never: Never dereferences aliases.

Searching:Dereferences aliases only after name resolution.
Finding: Dereferences aliases only during name resolution

Redirection of user request:
Ignore: does not handle request redirections
Follow:does handle request redirections

Limited number of records to be read

Click Fetch Base DNs to retrieve the DN and click the Next button to continue.

Step 4: schema definition

Select the attributes to be included in the schema structure.

Add a filter if you want selected data only.

Copyright © 2007

Talend Open Studio 75

Designing a Job Design
Defining Metadata items

% Create new LDAP schema

File - Step 4 of 5

Add a Metadata File on repository D
Define the setting of the parse job

List attribukes of LDWP Schema Filker

Aktribuktes ~ (BobjectClass=*1)

[] description

[] userpassward

uid =
[]sn

[]cn
=

[y R p— R

[%

Presview

Refresh Previgw

wid rnail givenname | telephonenumber

PIERRE DUPOMT Pierre.Duponti@talend.com PIERRE 00149534750
PIERRE DUPCHM, ., mhirk78@talend, com PIERRE
mhirt

greg

®@ | <Back || mext» | Fnien

Click Refresh Preview to display the selected column and a sample of the data.

Then click Next to continue.

Step 5: final schema

The last step shows the LDAP schema generated. You can customize the schema using the
toolbar underneath the table.

76 Talend Open Studio Copyright © 2007

Designing a Job Design
Defining Metadata items

¥ Create new LDAP schema

File - Step S of 5

] 1
#dd a Metadata File on repasitory ; |
Define the setting of the parse job

Mame | metadata

Cornment |

schema

Click ko update schema preview

Guess
Description of the Schema
Colurmn key Tvpe Mullable = Date ... Length Precision
uid [] string 15
il [] string 24
givennanme [] string £
telephonenumber [] string 11

8368 B

If the LDAP directory which the schema is based on has changed, use the Guess button to
generate again the schema. Note that if you customized the schema, your changes won’t be
retained after the Guess operation.

Click Finish. The new schema displays on the Repository, under the relevant LDAP
connection node.

Setting up a Generic schema

Talend Open Studio allows you to create any schema from scratch if none of the specific metadata
wizards matchs your need or if you don’t have any source to take the schema from. The creation
procedure is made of two steps.

First right-click on Generic Schema on the Repository and select Create generic schema.

Copyright © 2007 Talend Open Studio 77

Designing a Job Design
Creating queries using SQLBuilder

Step 1: general properties

A connection wizard opens up. Fill in the generic Schema properties such as Schema Name and
Description. The Status field is a customized field you can define in Window > Preferences.

Click Next when completed.

Step 2: schema definition
There is no default schema displaying as there is no source to take it from.

* You can give a name to the schema or use the default name (metadata) and add a
comment if you feel like.

» Then, customize the schema structure in the schema panel, based on your needs.

¢ Indeed, the tool bar allows you add, remove or move columns in your schema. Also, you
can load an xml schema or export the current schema as xml.

 Click Finishto complete the generic schema creation. All created schemas display under
the relevant Generic Schemas connection node.

Creating queries using SQLBuilder

SQLBuilder helps you build your SQL queries and monitor the changes between DB tables and metadata
tables. This editor is available in all DBInput and DBSQLRow components (specific or generic).

You can build a query using SQLbuilder whether your database table schema is stored in the repository
or built-in directly in the job component.

Fill in the DB connection details and select the appropriate repository entry if you defined it.

Remove the default query statement in the Query field of the component Properties panel. Then click
on the three-dot button to open the SQL Builder.

78 Talend Open Studio Copyright © 2007

SOL Builder

Designing a Job Design
Creating queries using SQLBuilder

Database Struckure SRS
Databases Repository Diff
= B talend ClientDE
= E client client
B ID_CLIENT ID_CLIENT

talend{ClientDE). sql

X =26 4

B CLIENT_MNAME CLIEMT_MAME
H CLIENT_BIRTHICLIENT _BIRTHDA&Y
£ CLIENT_ACCOLCLIEMT ACCOLMT

1 client_contract

client-conkract

SGL - Limik Rows | 100

< |

Execute a guery ko see the results || «olumns . Praview | Fow Count | Primary Kevs | Exported Keys | 7
COLUMM_MAME DATA_TYPE TYPE_MAME COLUMM_SIZE DECIME
ID_CLIEMT 4 ink 11]
CLIENT _MAME 12 warchar 150]
CLIEMT BIRTH... 91 date 10 u]
CLIENT _ACZo,,, & double 5 2
< | *

Colurnns Far “kalend™, " client”
K,] [Zancel

The SQL Builder editor is made of the following panels:

+ Database structure
* Query editor made of editor and designer tabs
* Query execution view

* Schema view

The Database structure shows the tables for which a schema was defined either in the repository database

entry or in your built-in connection.

The schema view, in the bottom right corner of the editor, shows the column description.

Database structure comparison

On the database structure panel, are shown all the tables stored in the DB connection metadata entry
(Repository) or in case of built-in schema, the tables of the database itself.

Copyright © 2007

Talend Open Studio 79

Designing a Job Design
Creating queries using SQLBuilder

Note: the connection to the database, in case of built-in schema or in case of refreshing
operation of a repository schema, might take quite some time.

Click the refresh icon to display the differences found between the DB metadata tables and the actual

DB tables.
Database Structure SIS
Dakabases Repository DifF M
= W talend ClientDE Y
= E dient client f{}@

B CLIENT_ACCOUNT CLIENT _ACCOUNT
B CLIENT_BIRTHDAYCLIENT_BIRTHDAY
A ID_CLIEMT ID_CLIENT

= E client_contract client-conkrack ®
] COMNTRACT _TYPE CONTRACT_TYPE
] COMTRACT _WALUE CONTRACT _WALUE
B ID_CLIENT I0_CLIENT
g ID_COMTRACT ID COMTRACT

= [axeltablel axeltablel
B ID_MOMTH I0_MONTH
g 1o TYRE 1D_TFE
B MONTH MONTH

§ ID_USER
£ sales W

The Diff icons point out that the table contains differences or gaps. Develop the table node to show
the exact column containing the differences.

The red highlight shows that the content of the column contains differences or that the column is
missing from the actual database table.

The blue highlight shows that the column is missing from the table stored in the repository metadata.

Building a query

The Query editor is a multiple-tab system allowing you to write or graphically design as many
queries as you want.

To create a new query, right-click on the table or on the table column and select Generate Select
Statement on the pop-up list.

Click on the empty tab showing by default and type in your SQL query or press Ctrl+Space to
access the autocompletion list. The tooltip bubble shows the whole path to the table or table section
you want to search in.

80 Talend Open Studio Copyright © 2007

Designing a Job Design
Creating queries using SQLBuilder

kalend(Talend-DEMS), 5l
X &G 4 E

=zelect cars.Reg_Car.owners.Hame_Customer, owners. ID _Ins
from cars.owhers.resellers

"talend”."resellers"."ID_Reseller”

IO Cwwrner b
MName_Cuskormer

E resellers

Address_Reseller

Ciby

Name%eseller

H ZipCode
{? absolute
& add
&l

A

:
B

OIN 00 OI0 O008

£ >

[*]30L - Limit Pows | 100
Edit | Designer

Alternatively the graphical query designer allows you to handle tables easily and have real-time
generation of the corresponding query in the edit tab.

Click on Designer tab to switch from manual Edit mode to graphical mode.

Note: You may get a message while switching from one view to the other, as some SQL
statements cannot be interpreted graphically.

If you selected a table, all columns are selected by default. Uncheck the box facing the relevant
columns to exclude them from the selection.

Add more tables in a simple right-click. On the designer tab, right-click and select Add tables in
the pop-up list then select the relevant table to be added.

If joins between these tables already exist, these joins are automatically set up graphically in the
editor.

You can also very easily create a join between tables. Right-click on the first table columns to be
linked and select Equal on the pop-up list, to join it with the relevant field of the second table.

Copyright © 2007 Talend Open Studio 81

Designing a Job Design
Creating queries using SQLBuilder

talend(Talend-DBMS).sql | balend{Talend-DEBMS) . sgl &3
* = LGJ GB & il Talend-DEMS w

* * *
ﬁ 10_Cwmier [w 10_Owners [10_Resellar
[Marne_Custormer [Req_Car [Mamme_Reseller
[w 10_Insurance [v Make [fddress_Reseller
[w Color [ZFipCode
[w I10_Reseller [w City

seleck awners, ID_Cwnetr, awners, Name_Cuskamet, owners,ID_Insurance,cars, ID_Owners.
From owners,cars, resellers
where owners, ID_Owner=cars,ID_Cwners and cars,ID_Reseller=resellers. ID_Reseller

£ >
Edit | Designer

The SQL statement corresponding to your graphical handlings is also displayed on the viewer part
of the editor or click on the edit tab to switch back to manual Edit mode.

Note: In Designer mode, you cannot include graphically filter criteria. These need to be
added in Edit mode.

Once your query is complete, execute it by clicking on the running man button.

The toolbar above the query editor allows you to access quickly usual commands such as: execute,
open, save and clear.

On the Query results view, are displayed the results of the active tab’s query.

The status bar at the bottom of this panel provides information about execution time and number of
rows retrieved.

Storing a query in the Repository

To be able to retrieve and reuse queries, we recommend you to store them in the Repository.

In the SQL Builder editor, click on Save (floppy disk icon on the tool bar) to bind the query with
the DB connection and schema in case these are also stored in the Repository.

The query can then be accessed from the Database structure view, on the left-hand side of the
editor.

82

Talend Open Studio Copyright © 2007

Designing a Job Design
Mapping data flows in a job

Mapping data flows in a job

For the time being, the way to handle multiple input and output flows including transformations and data
re-routing is to use the tMap component. The following section gives details about the usage principles
of this component, for further information or scenario and use cases, see tMap on page 335.

tMap operation overview

tMap allows the following types of operations:

+ data multiplexing and demultiplexing

data transformation on any type of fields

fields concatenation and interchange

field filtering using constraints

data rejecting

As all these operations of transformation and/or routing are carried out by tMap, this component
cannot be a Start or End component in the job design.

t':‘lwné'hé

]EI'ISLII’E‘-'I:]

Dwners_daEE! fLoakop)

1 . DeFir!

B -:e!rs_l:lal:_a {Mailj]l =Eq

Cars I:'Map_l'

3 (Main, order:0)

Fejected_data {Main, order: 1) " @

MotInsured

" Rejecked_TnnerJoin_ ain, order:2)

Nl:n_'Owner'_ID

tMap uses incoming connections to pre-fill input schemas with data in the Mapper. Therefore, you
cannot create new input schemas straight in the Mapper. Instead, you need to implement as many
Row connections incoming to tMap component as required, in order to create as many input
schemas as needed.

The same way, create as many output row connections as required. However, you can fill in the
output with content straight from the Mapper through a convenient graphical editor.

Note that there can be only one Main incoming rows. All other incoming rows are of Lookup type.
Related topic: Row connection on page 42

Copyright © 2007 Talend Open Studio 83

Designing a Job Design
Mapping data flows in a job

Lookup rows are incoming connections from secondary (or reference) flows of data. These
reference data might depend directly or indirectly on the primary flow. This dependency relationship
is translated with an graphical mapping and the creation of an expression key.

Although the mapper requires the connections to be implemented in order to define Input and Output
flows, you also need to create the actual mapping in order for the Preview to be available in the
Properties panel of the workspace.

% tMap_1
Map Editar D

Prewiew 5 ¥ N & sunnm!
caes_debe fu} Delimesd it & S O
ok Exprsson Cokmn
D v Sos_dun{ID e 0 _Chrwans:
Fsgeivadion | Sous_cain{Bageiration] Resgesivadion
buda | o danMsls] buda
ok | fows_dan{iok] ok
T Ao | fows_dun{ID_feseb] D Resabr
Soemers_dualtisne] Wy
Soerers Al e e] I0_kesamran
ity s Flinarjan | &
Exqr. Cohann X
o . . 5 Lr—— T
Harsa Eqraisan ohann
I0_lsanca | fearn_clatalID_Cwanars] 0 _Cwvrsrn
§oarn_clatalFagivtration] Fagintrad
Jowrarn_duku(flara] Harsa &4

Double-click the tMap icon or click on the Map editor three-dot button to open the Mapping editor
in a new window.

tMap interface

tMap is an advanced component which requires more information than other components. Indeed,
the Mapper is an “all-in-one” tool allowing you to define all parameters needed to map, transform
and route your data flows via a convenient graphical interface.

For all tables and the Mapper window, you can minimize and restore the window using the window
icon.

84

Talend Open Studio Copyright © 2007

Designing a Job Design
Mapping data flows in a job

* i Talend Open Studio - tMap -

o CI JL B Auto map!
-
cars_data | Defined_data G > ey L]
Calurmn Expression Calurn
A ID_Cwners $rars_data[ID_Owners) ID_Cwners
Registration $rars_data[Feqistration] Registration
Make $rars_data[Make] Make
Color $rars_data[iColor] Colar
I0_Reseller $rars_data[ID_Reseller] I _Reseller
$owners_data[Mame] Mame
$owners_data[ID_Insu... I _Insura...
uwners_dal:a| Innet join |
Expr. kew Column i Ir, [da 1
Rejected_data i
¥ $cars_data[lD ... C% 0. ¥ |i|#
Mame Expression Calurnn
I 1., $rars_data[ID_Cwners) ID_Cwners
$rars_data[Feqistration] Registration
$owners_data[Mame] Mame hl
Schema editar . Expression editar
cars_data Defined_data
Colurnn key | T.. | MNullable L. P Column | key | T..| Mullable L P C
Io_... [] int z . [] int z
Re... [s 10 r.. [] 5. 1., E
Make [5. 10 — M.. [] 5. 1
Color [] 5. £ 3 co. [s.. £ 3
< IS It
[+](x])(2](](E)
':':’:' [Ok,] [Cancel]

The Mapper is made of several panels:

» The Input panel is the top left panel on the window. It offers a graphical representation of
all (main and lookup) incoming data flows. The data are gathered in various columns of input
tables. Note that the table name reflects the main or lookup row from the job design on the

workspace.

» The Variable panel is the central panel on the Mapper window. It allows the centralization
of redundant information through the mapping to variable and allows you to carry out

transformations.

» The Output panel is the top right panel on the window. It allows mapping data and fields
from Input tables and Variables to the appropriate Output rows.

Copyright © 2007

Talend Open Studio

85

Designing a Job Design
Mapping data flows in a job

 Both bottom panels are the Input and Output schemas description. The Schema editor tab
offers a schema view of all columns of input and output tables in selection in their respective

panel.

» Expression editor is the edition tool for all expression keys of Input/Output data, variable

expressions or filtering conditions.

The name of Input/Output tables in the mapping editor reflects the name of the incoming and

outgoing flows (row connections).

Setting the input flow in the Mapper

The order of the Input tables is essential. The top table reflects the Main flow connection, and for
this reason, is given priority for reading and processing through the tMap component.

For this priority reason, you are not allowed to move up or down the Main flow table. This ensures

that no Join can be lost.

ir 8
Resellers ..'. o
Column
ID_Reseller
rame_Reseller
Address_Reseller
ZipCode
ity
(]
Cars All matches = Inner join | " &)
Expr. kew Colurnn
— ID_Owiners
Reg_Car
@, Erw Make
Color
& Resellers, ID_Reseler ID0_Reseller
Dwners Al matches - Inner join ..'. &
Expr. key Column
“—P‘ Cars, ID_Owners id_owner
narne
id_insurance

Children_kr

[::Owners.children_r'-.lr = 1 & Owners, Children_Mr <

&

Although you can use the up and down arrows to
interchange Lookup tables order, be aware that
the Joins between two lookup tables may then be
lost.

Related topic: Explicit Join on page 87.

Filling in Input tables with a schema

To fill in input tables, you need to define first the
schemas of all input components connected to
the tMap component on your Job Designer.

Main and Lookup table content
The order of the Input tables is essential.

The Main Row connection determines the Main
flow table content. This input flow is reflected in
the first table of the Mapper’s Input panel.

The Lookup connections’ content fills in all
other (secondary or subordinate) tables which
displays below the Main flow table. If you
haven’t define the schema of an input component
yet, the input table displays as empty in the Input
area.

The key is also retrieved from the schema
defined in the Input component. This Key
corresponds to the key defined in the input
schema where relevant. It has to be distinguished
from the hash key that is internally used in the
Mapper, which displays in a different color.

86

Talend Open Studio

Copyright © 2007

Designing a Job Design
Mapping data flows in a job

Variables

You can use global or context variables or reuse the variable defined in the Variables zone.
Press Ctrl+Space bar to access the list of variables. This list gathers together global,

context and mapping variables.

The list of variables changes according to the context and grows along new variable
creation. Only valid mappable variables in the context show on the list.

Expr, key Colurmn
LRt cars data[ID Cwners Cl, ID_Cwner

Bl =

$rars_data[ID_Cwners]
$rars_daka[Reqgiskration]
$rcars_data[Make]
$rars_data[Color]

P 4rars_data[ID_Reseller]
tFileInputDelimited_2 ERROR_MESSAGE
tFileInputDelimited_2 PERL_ERROR_MESSAGE
tFileInputDelimited_2.PERL_ERROR_CODE
tFileInpukDelimited_2 ME_LINE
tFileInputC3Y_1 ERROR_MESSAGE
tFileInputCSY 1 PERL_ERROR_MESSAGE

Metadata colurmn 'I0_Cwners' properties
- Column 1D _Cwners

- Key :false

- Twpe int

- Length :2

- Precision :0

- Default

- izomment

- Expression key

Docked at the Variable list, a metadata tip box display to provide information about the
selected column.

Related topic: Mapping variables on page 91

Explicit Join

In fact, Joins let you select data from a table depending upon the data from another table. In the
Mapper context, the data of a Main table and of a Lookup table can be bound together on
expression keys. In this case, the order of table does fully make sense.

Simply drag and drop column names from one table to a subordinate one, to create a Join
relationship between the two tables. This way, you can retrieve and process data from multiple
inputs.

The join displays graphically as a violet link and creates automatically a key that will be used
as a hash key to speed up the match search.

You can create direct joins between the main table and lookup tables. But you can also create
indirect joins from the main table to a lookup table, via another lookup table. This requires a
direct join between one of the Lookup table to the Main one.

Note: You cannot create a Join from a subordinate table towards a superior table in the
Input area.

The Expression key field which is filled in with the dragged and dropped data is editable in the
input schema or in the Schema editor panel, whereas the column name can only be changed
from the Schema editor panel.

You can either insert the dragged data into a new entry or replace the existing entries or else
concatenate all selected data into one cell.

Copyright © 2007

Talend Open Studio 87

Designing a Job Design
Mapping data flows in a job

Owners all matches - Inner join .|'. &
Expr. ke Zolurnn
‘ Cars. ID_Cwners id_owner
name
id_insurance
Childrern_Mr

Cwners, Children_Mr = 1 88 Owners, Children_Mr < 6

For further information about possible types of drag & drops, see Output setting on page 92.

Note: If you have a great number of input tables, note that you can use the
minimize/maximize icon to reduce or restore the table size in the Input area. The
Join binding two tables remain visible eventhough the table is minimized.

Creating a join automatically assigns a hash key onto the joined field name. The key symbol
displays in violet on the input table itself and is removed when the join between the two tables
is removed.

Related topics:
» Schema editor on page 95
* Inner join on page 89

Along with the explicit Join you can select whether you want to filter down to a unique match
of if you allow several matches to be taken into account. In this last case, you can choose to only
consider the first or the last match or all of them.

&l matches -

IJnique match

First match
Lask match
All matches

Unique Match (java)

This is the default selection when you implement an explicit Join. This means that zero or
one match from the Lookup will be taken into account and passed on to the output.

If more matches are available, a warning notification displays.

88 Talend Open Studio Copyright © 2007

Designing a Job Design
Mapping data flows in a job

First or Last Match (java)

This selection implies that several matches can be expected in the lookup. The First or Last
Match selection means that in the lookup only the first encountered or the last encountered
match will be taken into account and passed onto the main output flow.

The other matches will then be ignored.

All Matches (java)
This selection implies that several matches can be expected in the lookup flow. In this case,
all matches are taken into account and passed on to the main output flow.
Inner join

The Inner join is a particular type of Join that distinguishes itself by the way the rejection is
performed.

This option avoids that null values are passed on to the main output flow. It allows also to pass
on the rejected data to a specific table called Inner Join Reject table.

If the data searched cannot be retrieved through the explicit join or the filter (inner) join, in other
words, the Inner Join cannot be established for any reason, then the requested data will be
rejected to the Output table defined as Inner Join Reject table if any.

Basically check the Inner Join box located at the top a lookup table, to define this table as Inner
Join table.

Cars all matches = Inmer join -il &

Expr. key Colurmn
—d ID_Cwiners
Reqg_Car
"BMW" Make
Color
‘ Resellers.ID_Reseller ID_Reseller

Owners Al matches = | [+] Inner join 'il &

Expr. kew Colurmn
“—F‘ Cars ID_Owners id_owner
narne
id_insurance

Children_Mr
Cuwners, Children_Mr = 1 &8 Owners, Children_Mr <
(=]

On the Output area, click on the Inner Join Reject button to define the Inner Join Reject
output.

Copyright © 2007 Talend Open Studio 89

Designing a Job Design
Mapping data flows in a job

Note: An Inner Join table should always be coupled to an Inner Join Reject table

RejectInnetJoin b =0 | L
Expression Colurmn
$rars_data[ID_Owners) ID_Cwners

You can also use the filter button to decrease the number of rows to be searched and improve
the performance (in java).

Related topics:
 Inner Join Rejection on page 94

* Filtering an input flow (java) on page 90

All rows (java)

When you check the All rows box , the Inner Join feature gets automatically greyed out. This
All rows option means that all the rows are loaded from the Lookup flow and searched against

the Main flow.

The output corresponds to the Cartesian product of both table (or more tables if need be).

Filtering an input flow (java)

Click the Filter button next to the Inner join button to add a Filter area.

Owners Al matches = | [+] Inner join ..I. &

Expr. kew Colurnn
‘ Cars, ID_Cwners id_owner
name
id_insurance

Children_Rr
Cwners, Children_Mr = 1 82 Owners, Children_MNre <
[a]

In the Filter area, type in the condition to be applied. This allows to reduce the number of rows
parsed against the main flow, enhancing the performance on long and heterogeneous flows.

You can use the Autocompletion tool via the Ctrl+Space bar keystrokes in order to reuse
schema columns in the condition statement.

& This feature is only available in Java therefore the filter condition needs to be written in Java.

Removing Input entries from table

To remove Input entries, click on the red cross sign on the Schema Editor of the selected table.
Press Ctrl or Shift and click on fields for multiple selection to be removed.

90 Talend Open Studio Copyright © 2007

Designing a Job Design
Mapping data flows in a job

Note: Note that if you remove Input entries from the Mapper schema, this removal also
occurs in your component schema definition.

Mapping variables

The Variable table regroups all mapping variables which are used numerous times in various places.

You can also use the Expression field of the Var table to carry out any transformation you want to,
using Perl code or Java Code.

Variables help you save processing time and avoid you to retype many times the same data.

¥ar e ¥ ¢ L 4

Expression ariable
warl

There are various possibilities to create variables:

+ Type in freely your variables in Perl. Enter the strings between quotes or concatenate
functions using a dot as coded in Perl.

» Add new lines using the plus sign and remove lines using the red cross sign. And press
Ctrl+Space to retrieve existing global and context variables.

 Drag and drop one or more Input entries to the Var table.

¥Yar |:::::| Q
Dragging 2 entries,)
= Insert all selected entries Yariable
e F_ars_daka[Make] warl “
1]

Select an entry on the Input zone or press Shift key to select multiple entries of one Input table.

Press Ctrl to select either non-appended entries in the same input table or entries from various tables.
When selecting entries in the second table, notice that the first selection displays in grey. Hold the
Ctrl key down to drag all entries together. A tooltip shows you how many entries are in selection.

Then various types of drag and drops are possible depending on the action you want to carry out.

Copyright © 2007 Talend Open Studio 91

Designing a Job Design
Mapping data flows in a job

How to... Associated actions

Insert all selected entries as separated Simply drag & drop to the Var table. Arrows show you
variables. where the new Var entry can be inserted. Each Input is
inserted in a separate cell.

Concatenate all selected input entries Drag & drop onto the Var entry which gets
together with an existing Var entry highlighted. All entries gets concatenated into one
cell. Add the required operators using Perl/Java
operations signs. The dot concatenates string

variables.
Overwrite a Var entry with selected Drag & drop onto the relevant Var entry which gets
concatenated Input entries highlighted then press Ctrl and release. All selected
entries are concatenated and overwrite the highlighted
Var.

Concatenate selected input entries with | Drag & drop onto an existing Var then press Shift
highlighted Var entries and create new | when browsing over the chosen Var entries. First
Var lines if needed entries get concatenated with the highlighted Var
entries. And if necessary new lines get created to hold
remaining entries.

Accessing global or context variables
Press Ctrl+Space to access the global and context variable list.

Appended to the Variable list, a metadata list provides information about the selected column.

Removing variables

To remove a selected Var entry, click on the red cross sign. This removes the whole line as well
as the link.

Press Ctrl or Shift and click on fields for multiple selection then click the red cross sign.

Output setting

On the workspace, the creation of a Row connection from the tMap component to the output
components adds Output schema tables to the Mapper window.

You can also add an Output schema in your Mapper, using the plus sign from the tool bar of the
Output zone.

Unlike the Input zone, the order of output schema tables does not make such a difference, as there
is no subordination relationship between outputs (of Join type).

Once all connections, hence output schema tables, are created, you can select and organize the
output data via drag & drops.

You can drag and drop one or several entries from the Input zone straight to the relevant output table.

Press Ctrl or Shift, and click on entries to carry out multiple selection.

92 Talend Open Studio Copyright © 2007

Designing a Job Design
Mapping data flows in a job

Or you can drag expressions from the Var zone and drop them to fill in the output schemas with the

appropriate reusable data.

Note that if you make any change to the Input column in the Schema Editor, a dialog prompts you

to decide to propagate the changes throughout all Input/Variable/Output table entries, where

concerned.

Action

Result

Drag & Drop onto existing expressions

Concatenates the selected expression with the existing
expressions.

Drag & Drop to insertion line

Inserts one or several new entries at start or end of
table or between two existing lines.

Drag & Drop + Ctrl

Replaces highlighted expression with selected
expression.

Drag & Drop + Shift

Adds to all highlighted expressions the selected fields.
Inserts new lines if needed.

Drag & Drop + Ctrl + Shift

Replaces all highlighted expressions with selected
fields. Inserts new lines if needed.

You can add filters and rejection to customize your outputs.

Building complex expressions

If you have complex expressions to build, or advanced changes to be carried out on the output
flow, then the Expression Builder interface can help in this task.

Click on the Expression field of your input or output table to display the three-dot button. Then
click on this three-dot button to open the Expression Builder.

For more information regarding the Expression Builder, see Writing code using the Expression

Builder on page 97.

Filters

Filters allow you to make a selection among the input fields, and send only the selected fields

to various outputs.

Click the plus button at the top of the table to add a filter line.

-u'#b » O
-'='| CO0
Add filker row
You can enter freely your filter statements using Perl operators and function.

Drag and drop expressions from the Input zone or from the Var zone to the Filter row entry of
the relevant Output table.

Copyright © 2007 Talend Open Studio 93

Designing a Job Design
Mapping data flows in a job

Owners_dat: Innet join &

Insured o = L[]

Expr. key Calurnn Filters conditions (A0
$Cars_data[l... C%: ID_Chwner $wners_data[ID_Insurance]lme " 36
Marme)
1D Insurance Expression Calurnn
$Cars_data[ID_Cwn... I _Cwn...

An orange link is then created. Add the required Perl/Java operator to finalize your filter
formula.

You can create various filters on different lines. The AND operator is the logical conjunction of
all stated filters.

Rejections

Reject options define the nature of an output table.

It groups data which do not satisfy one or more filters defined in the regular output tables. Note
that as regular output tables, are meant all non-reject tables.

This way, data rejected from other output tables, are gathered in one or more dedicated tables,
allowing you to spot any error or unpredicted case.

The Reject principle concatenates all non Reject tables filters and defines them as an ELSE
statement.

Create a dedicated table and click the Output reject button to define it as Else part of the regular
tables.

Reject b o0 L]

You can define several Reject tables, to offer multiple refined outputs. To differenciate various
Reject outputs, add filter lines, by clicking on the plus arrow button.

Once atable is defined as Reject, the verification process will be first enforced on regular tables
before taking in consideration possible constraints of the Reject tables.

Note that data are not exclusively processed to one output. Although a data satisfied one
constraint, hence is routed to the corresponding output, this data still gets checked against the
other constraints and can be routed to other outputs.

Inner Join Rejection

The Inner Join is a Lookup Join. The Inner Join Reject table is a particular type of Rejection
output. It gathers rejected data from the main row table after an Inner Join could not be
established.

To define an Output flow as container for rejected Inner Join data, create a new output
component on your job that you connect to the Mapper. Then in the Mapper, click on the Inner
Join Reject button to define this particular Output table as Inner Join Reject table.

94

Talend Open Studio Copyright © 2007

Designing a Job Design
Mapping data flows in a job

RejectInnerJoin ..I #|$| Q‘

Removing Output entries

To remove Output entries, click on the cross sign on the Schema Editor of the selected table.

Expression editor

All expressions (Input, Var or Output) and constraint statements can be viewed and edited from the
Expression editor. This editor provides visual comfort to write any functions or transformation in a
handy dedicated window.

Select the expression to be edited. Click on Expression editor.

& v XGOS E
Expression ‘ariable -

uc $Cars_data[Make] warl
Column -

(>

Cars_data [

ID_Owners
Reqistration
Make

Color
ID_Reseller

(%
(%

Schema editor | Expression edikar
e $Cars_data[Make]

Enter the Perl code or Java code according to your needs. The corresponding table expression is
synchronized.

Note: Refer to the relevant Perl or Java documentation for more information regarding
functions and operations.

The Expression Builder can help you address your complex expression needs. For more
informationWriting code using the Expression Builder on page 97.

Schema editor

The Schema Editor details all fields of the selected table.

Copyright © 2007 Talend Open Studio 95

Designing a Job Design
Mapping data flows in a job

Schema editor ™ Expression editor

owners_data

olurmn Key Twpe | Length Precision = Mullable Comment
N e ik z 0
R O
Marne |:| String & 1]
ID_Insurance |:| Skring 7 0

[+)(x)(2])(e])(E)

Use the tool bar below the schema table, to add, move or remove columns from the schema.

You can also load a schema from the Repository or export it into a file.

Metadata Description

Column Column name as defined on the Mapper schemas and on the Input or
Output component schemas

Key The Key shows if the expression key data should be used to retrieve
data through the Join link. If unchecked, the Join relation is disabled.

Type Type of data. String or Integer.

Note: Thiscolumn should always be defined in Java
version.
Length -1 shows that no length value has been defined in the schema.

Precision precises the length value if any is defined.

Nullable Uncheck this box if the field value should not be null

Default Shows any default value that may be defined for this field.

Comment | Free text field. Enter any useful comment.

Note: Note that Input metadata and Output metadata are independent from each other. You
can for instance change the label of a column on the Output side without the column
label of the Input schema being changed.

However, any change made to the metadata are immediately reflected in the corresponding schema
on the tMap relevant (Input or Output) zone, but also on the schema defined for the component itself
on the workspace.

A Red colored background shows that an invalid character has been entered. Most special characters
are prohibited in order for the job to be able to interpret and use the text entered in the code.
Authorized characters include lower-case, upper-case, figures except as start character.

Browse the mouse over the red field, a tooltip displays the error message.

96 Talend Open Studio Copyright © 2007

Designing a Job Design
Writing code using the Expression Builder

Writing code using the Expression Builder

Some jobs require pieces of code to be written in order to provide components with parameters. In the
Properties view of some components, an Expression Builder interface can help you build these pieces

of code (in Java or Perl generation language).

The following example shows the use of the Expression Builder in a tMap component.
EFiIeInﬁut[?eIirhited_?

FoZ {Lén:n:nkup]l

¥

. row (Mair) =E 4 namesandstates (Main) QZ@

HMysglnput_1 ' tMap_1 HLogRow_1

Two input flows are connected to the tMap component.

» From the DB input, comes a list of names made of a first name and a last name separated by a
space char.

* From the File input, comes a list of US states, in lower case.

In the tMap, use the expression builder to: First, replace the blank char separating the first and last
names with an underscore char, and second, change the states from lower case to upper case.

* In the tMap, set the relevant inner join to set the reference mapping. For more information
regarding the use of the tMap, see Mapping data flows in a job on page 83.

» Drag and drop the Names column from the main (row1) input to the output area, and the State
column from the lookup (row2) input towards the same output area.

» Then click on the first Expression field (rowl.Name) to display the three-dot button.

o X L auto map!
namesAndstates e = e L

Expression Colurmn

o1, Mame . [: Mame
rowz, Skake Fandomstates

The Expression Builder window opens up.

Copyright © 2007 Talend Open Studio 97

Designing a Job Design
Writing code using the Expression Builder

% Expression Builder E]

Expression

Test

[Llndcn{ctrl +)] [Clear]

StringHandling.EREPLACE (rowl.Nawe,™ ", " ™)

UMY (HEE -

Category
Mathematical
Datalperation
Relational
TalendDate
Murneric

TaIendStrinE

1A

Wat Yalue A |Torm_Jones
rowl . Mame Tom Jones
rowl,Sta,., nul
rowZ, Postal null v
| =
Functions Help
CHANGE =
DWW RIZASE = .
LPCASE Sulbsntultes an element of a
DgUOTE — ||| string with a replacement
LEFT Elemeﬂt.
RIGHT 3

(@) (@]

Ck H Cancel]

* In the Category area, select the relevant action you want to perform. In this example, select
StringHandl ing and select the EREPLACE function.

* In the Expression area, paste rowl.Name in place of the text expression, in order to get:
StringHandling.EREPLACE(rowl.Name,™ ", ').Thisexpression will replace the
separating space char with an underscore char in the char string given.

» Now check that the output is correct, by typing in the relevant Value field of the Test area, a
dummy value, e.g:Tom Jones.

» Then click Test! and check that the correct change is carried out, e.g: Tom_Jones

* Click OK to validate.

 Carry out the same operation for the second column (State).

* In the tMap output, select the row2.State Expression and click the three-dot button to open the

Expression builder again.

98

Talend Open Studio

Copyright © 2007

Designing a Job Design
Writing code using the Expression Builder

% Expression Builder @

Expression Tesk
[Undo(CtrI + Z)] [Clear]
FtringHandling. UPCA3SE (rowZ.3tate) Var value ~ IMNDIANS
rowz, Skake indiana
rowz . Capital rill =—
rowz, MostPopul,.. null b
g = 3

|

Cateqgary
Mathermatical
DataDperation
Relational
TalendDate
Mumeric

Functions

CHAMGE
DO NCASE

>

LFCASE
DOUGTE
EREPLACE

TalendStrin LEFT
MM&_ ¥ | |RIGHT

Help

>

Converts all lowercase letters
in an expression to
uppercase.

[ok

H Cancel]

 This time, the StringHandl ing function to be used is UPCASE. The complete expression
says: StringHandl ing.UPCASE(row2_State).

» Once again, check that the expression syntax is correct using a dummy Value in the Test area,

e.g.: indiana.

 The Test! result should display INDIANA for this example.
+ Click OK to validate.

Both expressions now display on the tMap Expression field.

g 3K L1 auto map!
namesAndstates ..'. # # i
Expression Colurmn
StringHandling. EREPLACE(raw 1, Marm, . . Mame
StringHandling, UPCASE(rowz, Skake) Randomsta..,

These changes will be carried out along the flow processing. The output of this example is as shown

below.

Copyright © 2007

Talend Open Studio

99

Designing a Job Design
Activating/Disabling a job or sub-job

Srarérng job NapssdndSistos & 1008 T00 0 FTEF

tLogRow_1
Hame | FandomStates
William_Grant TOWA
William_ Hoover HEW YORK
Grover_Lincoln HORTH DAKOTA
Lyndon_Jef ferson QHIO
Gerald_Haves WASHINGTON
Benjamin_Grant MATHE
George_Fierce CONNECTICUT
Jimmy_Reagan ALASEA
Hartin_Hawve= WASHINGTOH
Franklin Jefferson |IOWA
Andrew_Nizxon HEW HAMPFSHIRE

Activating/Disabling a job or sub-job

You can enable or disable the whole job or a sub-job directly connected to the selected component. By
default, a component is activated.

In the Main properties of the selected component, check or uncheck the Activate box.

e) A .,Q

‘tRowGenerator 1 tFileOutputDelimited 1 tDie 1

— {]_“) IUndo Desactivate component

=] Copy

3 Delete
Select Al

Add hreakpu:uig

Alternatively, right-click on the component and select the relevant Activate/Deactivate command
according to the current component status.

If you disable a component, no code will be generated, you will not be able to add or modify links from
the disabled component to active or new components.

Related topic: Defining the Start component on page 51.

100 Talend Open Studio Copyright © 2007

Designing a Job Design
Defining Contexts and variables

Disabling a Start component

In the case the component you deactivated is a Start component, components of all types and links
of all nature connected directly and indirectly to it will get disabled too.

Disabling a non-Start component

When you uncheck the Activate box of a regular (non Start) component, are deactivated only the
selected component itself along with all direct links.

If a direct link to the disabled component is a main Row connection to a sub-job. All components
of this sub-job will also get disabled.

Defining Contexts and variables

Depending on the circumstances the job is being used in, you might want to manage it differently for
various execution types (Prod and Test for example). For instance, there might be various stages of test,
you want to perform and validate before a job is ready to go live for production use.

Talend Open Studio offers you the possibility to create multiple context data sets. Furthermore you can
either create context data sets on a one-shot basis, from the context tab of a job or you can centralize
the context data sets in the Contexts area of the repository in order to reuse them in different jobs.

Defining job context variables

In any Properties field defining a component, you can use an existing global variable or a context
variables.

Press Ctrl+Space bar to display the whole list of global and context variables used in various
predefined Perl functions. The context variables are created by the user for a particular context,
whereas the global variables are a system variables.

The list grows along with new user-defined variables (context variables).

Related topic: Contexts view on page 103

Short creation of context variables
Create quickly your context variables via the F5 keystroke:

* Place your cursor on the field that you want to parameterize in the current context
(possibly the default one).

 Press F5 to display the context parameter dialog box:

Copyright © 2007 Talend Open Studio 101

Designing a Job Design
Defining Contexts and variables

¥ Mew Context Parameter,

Context parameter

—
Creake a new conkext parameter, D

Marme kalendDB |

Carmnrnenk

Type |STRING v|

Prampk | Is 'talend-dbms' a walid database host connection Faor this session? |
Promet for value:

() [Firish H Cancel]

» Give a Name to this new variable, fill in the Comment zone and choose the Type.

» Enter a Prompt to be displayed to confirm the use of this variable in the current job
execution (generally used for test purpose). And check the Prompt for value box to
display the field as editable value.

« If you filled in a value already in the corresponding properties field, this value is
displayed in the Default value field. Else, type in the default value you want to use for
one context.

« Click Finish to validate.

» Go to the Contexts tab. Notice that the context variables tab lists the newly created
variables.

If this is the first ever context created, note that the default context cannot be changed.

Note: Note that the variable name should follow some typing rules and should not
contain any forbidden characters, such as space char.

StoreSQLQuery
StoreSQLQuery is a user-defined variable and is dedicated to debugging mainly.

StoreSQLQuery is different from other context variables in the fact that its main purpose is to
be used as parameter of the specific global variable called Query. It allows you to dynamically
feed the global query variable.

102 Talend Open Studio Copyright © 2007

Designing a Job Design
Defining Contexts and variables

The global variable Query, is available on the proposals list (Ctrl+Space bar) for couple of DB
input components.

For further details on StoreSQLQuery settings, see the Components chapter, in particular
tDBInput Scenario 2: Using StoreSQLQuery variable on page 163.

Contexts view

The Contexts view is positioned on the lower part of the Job Designer and is made of three tabs:
Variables, Values as tree and Values as table.

Note: If you cannot find the Contexts view on the tab system of Talend Open Studio, go
to Window > Show view > Talend, and select Contexts.

Variables tab

A context is characterized by parameters. These parameters are mostly context-sensitive
variables which will be added to the list of variables available for reuse in the
component-specific properties through the Ctrl+Space bar keystrokes.

The Variables tab shows all variables that have been defined for each component of the current
job. For further information regarding variable definition, see Defining job context variables on
page 101.

If needed, add a parameter line to the table by clicking on Plus (+), and fill in with the required
information.You can add as many entries as you need. Make sure that the corresponding variable

Fields Description
Name Name of the variable.
Type Select the type of data being handled. This is required in Java.
Script Code corresponding to the variable value. It depends on the

Generation language you selected (Java or Perl) such as in Perl:
$_context{YourParameterName. This Script code is
automatically generated when you define the variable in the
Properties view of a component.

Comment Add any useful comment

Note that you cannot configure the contexts from the Variables tab, but only from the Values
as table or as tree tabs.

Values as table tab

This Values as table tab shows the context and variable settings in the form of a table.

Copyright © 2007 Talend Open Studio 103

Designing a Job Design
Defining Contexts and variables

Fields Description
Name Name of the variable.

YourContextName Corresponding value for the variable.

You can manage your contexts from this tab, through the small down arrow button placed on the
top right hand side of the Contexts panel. See Configuring contexts on page 105 for further
information regarding the context management.

For more information regarding variable definition, see Defining job context variables on page
101 and Storing contexts in the Repository on page 107.

Values as tree tab

This tab shows the variables as well as their defined values in the form of a tree.

Fields Description
Context Name of the contexts.
Variable Name of the variables.
Prompt Check this box, if you want the variable to be editable in the

Confirmation dialog box at execution time.

If you asked for a prompt to popup, fill in this field to define the message
to show on the dialog box.

Value Value for the corresponding variable. Through this field you can update
the value of the variable and hence define various.

Comment Add any useful comment
You can manage your contexts from this tab, through the small down arrow button placed on the

top right hand side of the Contexts panel. See Configuring contexts on page 105 for further
information regarding the context management.

For more information regarding variable definition, see Defining job context variables on page
101 and Storing contexts in the Repository on page 107.

On the Values as tree tab, you can display the values based on the contexts or on the variables
for more clarity.

104 Talend Open Studio Copyright © 2007

Designing a Job Design
Defining Contexts and variables

v
aroup by Mariable Context Presentation *
® Sroup by Conkext Configure Contexts, .,

To change the way the values are displayed on the tree, click on the small down arrow button
and select Context Presentation, then click on the group by option you want.

Configuring contexts

You can only manage your contexts from the Values as table or Values as tree tabs. A small down
arrow button shows up on the top right hand side of the Contexts panel.

J/r'_r!, Contexts £ ¥ Tasks} (B pun (Ju:ul:q = F'ru:ul:ulems} =, Mu:udules} B Schedule} = 5|

Access to the
Default Context | Default w Context

configuration

Prampk Yalue Carment Conkext Presentakion k

Configure Contexts, .

[|| sERvER? talend-test
] DEMNAME? talend
[] TABLE? STORE_DMTEST

|

Select Configure Contexts... on the pop-up menu.

Copyright © 2007 Talend Open Studio 105

Designing a Job Design
Defining Contexts and variables

Configure Contexts @

Configure Contexts For Job
Felocraut ™
FA Prod
Select Al
Deselect Al
Mew, ., Edit. .. Rernove
@ [[9]4 l [Cancel

Note: The default context cannot be edited nor removed, therefore the Edit and Remove
buttons are greyed out. To make it editable, select another context on the Default
Context list of the Contexts tab.

Creating a context
Based on the default context you set, you can create as many context as you need.
» To create a new context, click on New on the Configure Contexts window.

* Type in a name for the new context.

%* New Context E'

Give a name for the new conkexk

| Prod| |

04 H Cancel]

Click OK to validate the creation.

When you create a new context, the entire default context legacy is copied over to the new
context.You hence only need to edit the relevant fields to customize the context according to
your use.

The drop-down list Default Context shows all the contexts you created .

106 Talend Open Studio Copyright © 2007

Designing a Job Design
Defining Contexts and variables

You can switch default context by simply selecting the new default context on the Default
Context list on the Contexts tab.

Note that the Default context can never be edited nor removed. There should always be a context
to run the job. This context being called Default or any other name.
Renaming or editing a context

To change the name of an existing context, click on Edit and enter the new context name in the
dialog box showing up.

Click OK to validate the change.

To carry out changes on the actual values of the context variables, go to the Values as tree or
Values as table tabs. For more information about these tabs, see Contexts view on page 103.

Storing contexts in the Repository

You can store centrally all contexts if you need to reuse them accross various jobs.
Right-click on the Contexts entry in the repository and select Create new context group in the list.

[rs |

Code .5; Creakte Conkext
L‘iﬂ Meta 7 Create folder

& pocu (53 Impart iterns
E‘j Recycreom

A 2-step wizard helps you to define the various contexts and context parameters, that you’ll be able
to select on the Contexts view of the Job Designer.

» On the Step 1, type in a name for the context group to be created.
» Add any general information such as a description.
* Click Next.

The Step 2 allows you to define the various contexts and variables that you need.

Copyright © 2007 Talend Open Studio 107

Designing a Job Design
Defining Contexts and variables

Default Context | Default s

Template | Tree Walues | Table values

rame Tvpe Scripk code
SEFVErname Skring [String({Stringicontext, getProperty'servername"T)
Skring (Skring){{String)context. getProperty{"dbname"))

First define the default context’s variable set that will be used as basis for the other contexts.
« On the Variables tab, define the name of the variables to be used in the Name field.
« Select the Type of variable on the list.

» The Script code varies according to the type of variable you selected (and the generation
language). It will be used in the generated code.

On the Tree or Table views, define the various contexts and the values of the variables.

Default Context | Default

Template | Tree Values | Table values

=
Mame Default Praod
SerYername test%ervername Prodservername
dbname testdbname proddbname

« Define the values for the default (first) context variables.

 Then create a new context that will be based on the variables values that you just set. For
more information about how to create a new context, see Configuring contexts on page 105.

On the Values as tree tab, you can also add a prompt if you want the variable to be editable in a
Confirmation dialog box at execution time.

108 Talend Open Studio Copyright © 2007

Designing a Job Design
Running a job

Default Conkext | Default v

Template | Tree Yalues | Table Values

=
Contexk Yariable Prompk YWalue Comment
[= Defaulk
_ SErVErName Confirm or Change server name? kestservername _
dbname [] newi? testdbname
= Prod
SEFYErmame [] newi? Prodservernane
dbname [] newi? proddbnane
< | =

» To add a prompt message, check the facing box
* And type in the message you want to display at execution time.

Once you created and adapted as many context sets as you want, click Finish to validate. The group
of contexts thus set display under the Contexts node on the Repository.

To apply a context to a job, click on the Contexts tab, select Repository as Context type.

Then select the relevant Context from the repository. The selected context’s parameters show as
read-only values.

Running a job in selected context

You can select the context you want the job design to be executed in.

Context e ET oy Click on Run Job tab, and in the Context area, select the relevant context
Test +| | among the various ones you created.
Narme Valug If you didn’t create any context, only the Default context shows on the
hiost 'talend-dbms-test' list.
pork ‘a0s0’) .
db "Talend-test’ All the context variables you created for the selected context display,

along with their respective value, in a table underneath. If you checked
the Prompt box next to some variables, you will get a dialog box allowing
you to change the variable value for this job execution only.

To make a change permanent in a variable value, you need to change it on the context parameter
setup panel either . Related topic: Contexts view on page 103

Running a job

You can execute a job in several ways. This mainly depends on the purpose of your job execution and
on your user level.

Copyright © 2007 Talend Open Studio 109

Designing a Job Design
Running a job

If you are an advanced Perl/Java user and want to execute your project step by step to check and possibly
modify it on the run, see Running in debug mode on page 111.

If you don’t have advanced Perl knowledge and want to execute and monitor your job in normal mode,
see Running in normal mode on page 110.

Running in normal mode

Make sure you saved your job before running it in order for all properties to be taken into account.
 Click on the Run Job tab to access the panel.

* Inthe Context zone, select the right context for the job to be executed in. You can also check
the variable values

If you haven’t defined any particular execution context, the context parameter table is empty and the
context is the default one. Related topic: Defining Contexts and variables on page 101

* Click on Run to start the execution.

» On the same panel, the log displays the progress of the execution. The log includes any error
message as well as start and end messages. It also shows the job output in case of tLogRow
component is used in the job design.

Before running again a job, you might want to remove the log content from the execution panel.
Check the Clear before run box, for the log to be cleared each time you execute again a job.

If for any reason, you want to stop the job in progress, simply click on Kill button. You’ll need to
click the Run button again, to start again the job.

Talend Open Studio offers various informative features, such as statistics and traces, facilitating the
job monitoring and debugging work.
Displaying Statistics

The Statistics feature displays each component performance rate, underneath the component
icon on the design workspace.

@- -rcuwl I::Main]l .':-%ZE I::lutput:{r'-“lain]l- .':-@-

tFileInputDelimited 1 tMap_1 tFileCutputDelimited 2
BESE04 rows - 31,965 BESE0I rows - 31,965
2092956 roinsis - 2092429 roinsis -

It shows the number of rows processed and the processing time in row per second, allowing you
to spot straight away any bottleneck in the data processing flow.

Note: Exception is made for external components which cannot offer this feature if their design
doesn’t include it.

Check the Statistics box to activate the stats feature and click again to disable it.

The Stats calculation only starts along with the job execution launchs, and stops at the end of it.

110

Talend Open Studio Copyright © 2007

Designing a Job Design
Running a job

Click Clear to remove the calculated stats displayed. Check the Clear before Run box to reset
the Stats feature before each execution.

Note: The statistics thread slows down sensibly the time performance of a job execution
as the job must send these stats data to the Designer in order to be displayed.

Displaying Traces

The tracking feature is relatively basic in Talend Open Studio for the time being. But it should
be enhanced in a near future.

It provides a row by row view of the component behaviour and displays the dynamic result next
to the row link.

E. . r-:ul.-:vl (Maén]l " % . I:Dutput:{Main]l: . " @

tFileInputDelimited 1 tMap 1 ' tFileOutputDelimited
rowl (Main) Current row ;109 | Output {(Main} Current row ;109
ID ID
MName Mame
Registrat... Registrat...

This feature allows you to monitor all components of a job, without switching to Debug mode,
hence without requiring advanced Perl/Java knowledge.

The Traces function displays the content of processed rows in a table.

Note: Exception is made for external components which cannot offer this feature if their
design doesn’t include it.

Click on Traces button to activate the tracking feature and click again to disable it.
The trace only launches along with the job launches, and stops at the end of it.
Click on Clear to remove the tracking data displayed.

Note: Note thatthe table is limited horizontally, however mouse over the table to display
the whole data table. On the other hand, the table does not have any vertical
limitation. This might become an issue for very long data tables.

Running in debug mode

Note that to run a job in Debug mode, you need the EPIC module to be installed.

Before running your job in Debug mode, add breakpoints to the major steps of your job flow.

This will allow you to get the job to automatically stop at each breakpoint. This way
I} . . components and their respective variables can be verified individually and debugged

B_ if required.

" Cortracts Ref To add breakpoints to a component, right-click on it on the Job Design workspace,
and select Add breakpoint on the popup menu.

Copyright © 2007 Talend Open Studio 111

Designing a Job Design
Saving or exporting your jobs

A pause icon displays next to the component where the break is added.

To switch to debug mode, click on the Debug button on the Run Job panel. Talend Open Studio’s
window gets reorganised for debugging.

You can then run the job step by step and check each breakpoint component for the expected
behaviour and variable values.

To switch back to Talend Open Studio designer mode, click on Window, then Perspective and
select Talend Open Studio.

Saving or exporting your jobs

Saving a job

When closing a job or Talend Open Studio, a dialog box prompts you to save the currently open
jobs if not already done.

In case several jobs were unsaved, check the box facing the jobs you want to save. The Job is stored
in the relevant project folder of your workspace directory.

Alternately, click File > Save or press Ctrl+S.

Exporting job scripts

For detailled procedure for exporting jobs outside Talend Open Studio, see Exporting job
scripts on page 561.

112

Talend Open Studio Copyright © 2007

Designing a Job Design
Generating HTML documentation

Generating HTML documentation

Talend Open Studio allows you to produce detailed documentation in HTML of the jobs selected.
» On the Repository, right-click on a Job entry or select several Job Designs to produce multiple
documentations.

+ Select Generate Doc as HTML on the pop-up menu.

¥ Generate Documentation @

Archive file
Generate job information to an archive file on the local file syskem, L |
1=

To archive File: | i Job_doc.zip V| [Browse. ..]

7 [Finish H Cancel

» Browse to the location where the generated documentation archive should be stored.

» On the same field, type in a Name for the archive gathering all generated documents.

 Click Finish to validate the generation operation.
The archive file contains all required files along with the Html output file. Open the html file in your
favourite browser.

Automating stats & logs use

If you have a great need of log, statistics and other measurement of your data flows, you are facing the
issue of having too many log-related components loading your job designs. You can automate the use
of tFlowMeterCatcher, tStatCatcher, tLogCatcher functionalities without using the components in

your job thanks to the Stats & Logs tab.

Copyright © 2007 Talend Open Studio 113

Designing a Job Design
Automating stats & logs use

The Stats & Logs tab is located underneath the Design workspace and prevents overloading your jobs
designs by superseding the log-related components with a general log configuration.

 Click anywhere on your Job design but on the component.

 Select the Stats & Logs tab to display the configuration view.

1 Job Designs

Use statistics (kSkatCatcher) IJze logs (FLogCatcher) IJ=e wolumetrics (tMeter Catcher)

[]on Consale

[Jon Files

on Databases

Property Tvpe Repository « | Repository | DB (MYSOL:MySqlTalend « |*

Db Tyvpe MywS0L +|* Host | "Talend-dbms" Pork | "3308"

Db Mame "Talend"

ser "root" * password | "boor” *
Stats Table "Staks210" Logs Table | "Logz210" Meker Table | "FlowmMeter210"

Catch runkime errars Catch user errors Zatch user warnings Catch user statiskics (ESkabCatcher Statistics)

« Set the relevant details depending on the output you prefer (console, file or database).

» Check the relevant Catch option according to your needs.

114 Talend Open Studio Copyright © 2007

Designing a Job Design
Shortcuts and aliases

Shortcuts and aliases

Below is a table gathering all keystrokes currently in use:

Shortcut
F3
F4
F6

Ctrl + F2

Ctrl + F3

Ctrl + H

Ctrl + G

Ctrl + Shift + F3

F7
F5

F8
F5
Ctrl+Space bar

Operation
Show Properties view
Show Run Job view

Run current job or Show Run Job view if no job
is open.

Show Module view

Show Problems view

Switch to current Job Design view
Show Code tab of current Job

Synchronize components perljet templates and
associated java classes

Switch to Debug mode

Create a context variable from any properties
field

Kill current job
Refresh Modules install status

Access global and user-defined variables. It can
be error messages or line number for example,
depending on the component selected.

Context
Global application
Global application
Global application

Global application
Global application
Global application
Global application
Global application

From Run Job view

From any job Properties tab view

From Run Job view
From Modules view

From any component field in
Properties view

Copyright © 2007

Talend Open Studio

115

Designing a Job Design
Shortcuts and aliases

116 Talend Open Studio Copyright © 2007

—Components—

Components

This chapter details the main components’ properties provided in the Palette of Talend Open Studio.
Each component has a specific list of properties and parameters, editable through the Properties tab of
the Properties panel.

o
In the component properties section, an icon =2 or N points out whether the component is

available in Java and/or in Perl.

Click on one of the following link to jump to the relevant component datasheet:

Families Components
Business Salesforce tSalesforcelnput tSalesforceOutput
Connectors
SugarCRM tSugarCRMiInput tSugarCRMOutput
CentricCRM tCentricCRMInput tCentricCRMOutput
VtigerCRM tVtigerCRMInput tVtigerCRMOutput
Data quality tFuzzyMatch tAddCRCRow
Databases tCreateTable
AS400 tAS400Input tAS4000utput tAS400Row
Access tAccesslinput tAccessOutput tAccessRow
DB Generic tDBInput tDBOutput tDBSQLRow
DB2 tDB2Input tDB20utput tDB2Row
tDB2SCD tDB2SP
Firebird tFirebirdInput tFirebirdOutput tFirebirdRow
HSQLDb tHSQLDbInput tHSQLDbOutput tHSQLDbRow
Informix tinformixinput tinformixOutput tinformixRow
Ingres tingresinput tingresOutput tiIngresRow
tingresSCD
Interbase tinterbaselnput tinterbaseOutput tinterbaseRow
JDBC tJDBClInput tJDBCOutput tJDBCRow
tJDBCSP

Copyright © 2007 Talend Open Studio 117

Components

Families Components
LDAP tLDAPInput tLDAPOutput
MSSqlServer tMSSqllnput tMSSqlOutput tMSSqlRow
tMSSqISCD tMSSqlBulkExec tMSSqlOutputBulk
tMSSqlOutputBulkE | tMSSqISP
Xec
MySQL tMysqglinput tMysqlQutput tMysqlRow
tMysqlOutputBulk tMysqlBulkExec tMysqlOutputBulk
Exec
tMysqglConnection tMysglCommit tMysqISCD
tMysqlSP
Oracle tOraclelnput tOracleOQutput tOracleRow
tOracleBulkExec tOracleSCD tOracleSP
tOracleCommit tOracleConnection tOracleOutputBulk
tOracleOutputBulkE | tOracleRollback
xec
PostgresSQL tPostgresqlinput tPostgresqlOutput tPostgresqlRow
tPostgresqlBulkExe | tPostgresqlCommit tPostgresqlConne
G ction
tPostgresqlOutputB | tPostgresqlOutputBulk | tPostgresqlRollba
ulk Exec ck
SQLite tSQLitelnput tSQLiteOutput
Sybase tSybaselnput tSybaseOutput tSybaseRow
tSybaseBulkExec tSybaseOutputBulk tSybaseOutputBul
kExec
tSybaseSCD tSybaseSP
Teradata tTeradatalnput tTeradataOutput tTeradataRow
ELT MySQL tELTMysqglinput tELTMysqlMap tELTMysqlOutput
Oracle tELTOraclelnput tELTOracleMap tELTOracleOutput
Teradata tELTTeradatalnput tELTTeradataMap tELTTeradataOutp
ut
File Input tFilelnputDelimited | tFilelnputPositional tFilelnputRegex
tFilelnputXML tFilelnputMail
Management tFileList tFileCompare tFileUnarchive
tFileCopy tFileDelete
Output tFileOutputXML tFileOutputLDIF tFileOutputExcel
Internet tSendMail tWebServicelnput tMomInput
118 Talend Open Studio Copyright © 2007

Components

Families Components
tMomOutput tXMLRPC
FTP tFTP
Log/Error tLogRow tStatCatcher tLogCatcher
tWarn tDie tFlowMeter

tFlowMeterCatcher

Misc tMsgBox tRowGenerator tContextLoad
tContextDump titerateToFlow

Processing tPerl tMap tAggregateRow
tSortRow tUnigRow tNormalize
tDenormalize tJava tFilterRow
tReplace tFilterColumn tExternalSortRow
tAggregateSortedR | tUnite
ow

System tSystem tRunJob tSSH

XML tDTDValidator tXSDValidator tXSLT

Copyright © 2007 Talend Open Studio 119

Components
tAccessInput

tAccessinput

®

tAccesslinput properties

Component family

Function

Purpose

Properties

Usage

Related scenarios

Databases/Access

tAccessinput reads a database and extracts fields based on a query.

tAccessinput executes a DB query with a strictly defined statement which
must correspond to the schema definition. Then it passes on the field list to the
next component via a Main row link.

Property type

Database

Username and
Password

Schema type and Edit
Schema

Query type and Query

Encoding

Either Built-in or Repository
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Name of the database

DB user authentication data.

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.

For related topic, see tDBInput scenarios:

120

Talend Open Studio

Copyright © 2007

Components
tAccessinput

 Scenario 1: Displaying selected data from DB table on page 162
 Scenario 2: Using StoreSQLQuery variable on page 163

Related topic in tContextLoad Scenario: Dynamic context use in MySQL DB insert on page 145.

Copyright © 2007 Talend Open Studio 121

Components
tAccessOutput

tAccessOutput

<)

tAccessOutput properties

Component family Databases/Access ¢
¥ <
Function tAccessOutput writes, updates, makes changes or suppresses entries in a
database.
Purpose tAccessOutput executes the action defined on the table and/or on the data

contained in the table, based on the flow incoming from the preceding
component in the job.

Properties Property type Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Database Name of the database

Username and DB user authentication data.

Password

Table Name of the table to be written. Note that only one

table can be written at a time

Action on data On the data of the table defined, you can perform:
Insert: Add new entries to the table. If duplicates are
found, job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing
ones.

Update or insert: Update existing entries or create it
if non existing

Delete: Remove entries corresponding to the input
flow.

Clear data in table Wipes out data from the selected table before action.

Schema type and Edit | A schema is a row description, i.e., it defines the

Schema number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

122 Talend Open Studio Copyright © 2007

Encoding

Additional Columns

Commit every

Die on error

Usage

Components
tAccessOutput

Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

This option is not offered if you create (with or
without drop) the Db table. This option allows you to
perform actions on columns, which are not insert, nor
update or delete actions or requires a particular
preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After, following
the action to be performed on the reference column.

Reference column: Type in a column of reference
that the tDBOutput can use to place or replace the new
or altered column.

Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Uncheck this box to skip the row on error and
complete the process for non-error rows.

This component offers the flexibility benefit of the DB query and covers all

possibilities of SQL queries.

Related scenarios

For related topics, see

» tDBOutput Scenario: Displaying DB output on page 166

* tMySQLOutput Scenario: Adding new column and altering data on page 396.

Copyright © 2007

Talend Open Studio 123

&

Components
tAccessRow

tAccessRow

tAccessRow properties

Component family

Function

Purpose

Properties

Databases/Access (
=

tAccessRow is the specific component for this database query. It executes the
SQL query stated onto the specified database. The row suffix means the
component implements a flow in the job design although it doesn’t provide
output.

Depending on the nature of the query and the database, tAccessRow acts on
the actual DB structure or on the data (although without handling data). The
SQLBuilder tool helps you write easily your SQL statements.

Property type Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Database Name of the database
Username and DB user authentication data.
Password

Schema type and Edit | A schema is a row description, i.e., it defines the

Schema number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build
it graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

124

Talend Open Studio Copyright © 2007

Components
tAccessRow

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.

Related scenarios

For related topics, see:
» tDBSQLRow Scenario 1: Resetting a DB auto-increment on page 170
» tMySQLRow Scenario: Removing and regenerating a MySQL table index on page 408.

Copyright © 2007 Talend Open Studio 125

Components
tAggregateRow

e tAggregateRow

tAggregateRow properties

Component family Processing ?@ ¢
Function tAggregateRow receives a flow and aggregates it based on one or more

columns. For each output line, are provided the aggregation key and the
relevant result of set operations (min, max, sum...).

Purpose Helps to provide a set of metrics based on values or calculations.
Properties Schema type and A schema is a row description, i.e., it defines the
Edit Schema number of fields that will be processed and

passed on to the next component. The schema is
either built-in or remote in the Repository.
Click Edit Schema to make changes to the
schema. Note that if you make changes, the
schema automatically becomes built-in.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is
stored in the Repository, hence can be reused in
various projets and job flowcharts. Related topic:
Setting a repository schema on page 49

Group by Define the aggregation sets, the values of which
will be used for calculations.

Output Column: Select the column label in the
list offered based on the schema structure you
defined. You can add as many output columns as
you wish to make more precise aggregations.
Ex: Select Country to calculate an average of
values for each country of a list or select Country
and Region if you want to compare one country’s
regions with another country’ regions.

Input Column: Match the input column label
with your output columns, in case the output label
of the aggregation set needs to be different.

Operations Select the type of operation along with the value
to use for the calculation and the output field.

Output Column: Select the destination field in
the list.

Function: Select the operator among: count, min,
max, avg, first, last.

126 Talend Open Studio Copyright © 2007

Components
tAggregateRow

Input column: Select the input column from
which the values are taken to be aggregated.

Usage This component handles flow of data therefore it requires input and
output, hence is defined as an intermediary step. Usually the use of
tAggregateRow is combined with the tSortRow component.

Limitation n/a

Scenario: Aggregating values and sorting data

The following scenario describes a four-component job. As input component, a CSV file contains
countries and notation values to be sorted by best average value. This component is connected to a
tAggregateRow operator, in charge of the average calculation then to a tSortRow component for
the ascending sort. The output flow goes to the new csv file.

..'IH Job TopCountries = O
Palette k
[Select -~
nioke
[== Database
[ELT
FE @ [File +

' ' calculation ' ' ' ' final_file ' saInput
raw_gddta (Main) agor_dat3Main) final_aata (Main) = tFileInpubCSY
: ' ' ' ' 1 : ' ' ' ' 123 tFileInputDelimited
B % B FRileTAn bR rel T
. -

countries ' ' sorking
[== Inkernet

[~ Log & error b

Designet | Code

* From the File folder in the Palette, click and drop a tFilelnputCSV component.
+ Click on the label and rename it as Countries. Or rename it from the View tab panel

 In the Properties tab panel of this component, define the filepath and the delimitation
criteria. Or select the metadata file in the repository if it exists.

 Click on Edit schema... and set the columns: Countries and Points to match the file
structure. If your file description is stored in the Metadata area of the Repository, the schema
is automatically uploaded when you click on Repository in Schema type field.

» Then from the Processing folder in the Palette, click and drop a tAggregateRow
component. Rename it as Calculation.

» Connect Countries to Calculation via a right-click and select Row > Main.

Copyright © 2007 Talend Open Studio 127

Components
tAggregateRow

» Double-click on Calculation (tAggregateRow component) to set the properties. Click on
Edit schema and define the output schema. You can add as many columns as you need to
hold the set operations results in the output flow.

kAaggregateRow_1 (Output)

Calurnn Key | Twpe Length Precision = Mullable = Com...
C% Counkry -1 -1 |:|
Average |:| -1 -1 |:|
Max] -1 -1]
Min] 1 1]

* In this example, we’ll calculate the average notation value and we will display the max and
the min notation for each country, given that each country holds several notations. Click OK
when the schema is complete.

 To carry out the various set operations, back in the Properties panel, define the sets holding
the operations in the Group By area. In this example, select Country as group by column.
Note that the output column needs to be defined a key field in the schema. The first column
mentioned as output column in the Group By table is the main set of calculation. All other
output sets will be secondary by order of display.

» Choose the input column which the values will be taken from.

» Then fill in the various operations to be carried out. The functions are average, min, max for
this use case. Select the Input columns, where the values are taken from.

128 Talend Open Studio Copyright © 2007

Components
tAggregateRow

11111

Schema Type Bultln % | Editschema [

Group by Cutput column Input column position
Caunkry Cauntry
Cperakions .
Cutput calurn Funckian Input column, ..
Average avg Painks
Maz ma Paints
Min i Paints

¢ Click and drop a tSortRow component from the Palette onto the modeling workspace. For
more information regarding this component , see tSortRow properties on page 493.

» Connect the tAggregateRow to this new component using a row main link.

» Onthe Properties tab of the tSortRow component, define the column the sorting is based on,
the sorting type and order.

@: tSortRow

Schema Type Bult-n s | Edit schema [

Criteria

Schema column
Counkry

sort num ou alpha?
alpha

COrder asc or desc?
asc

* Inthis case, the column to be sorted by is Country, the sort type is alphabetical and the order

is ascending.

Copyright © 2007

Talend Open Studio

129

Components
tAggregateRow

* Add a last component to your job, to set the output flow. Click and drop a
tFileOutputDelimited and define it.

» Connect the tSortRow component to this output component.

* Inthe Properties panel, enter the output filepath. Edit the schema if need be. In this case the

delimited file is of csv type. And check the Include Header box to reuse the schema column
labels in your output flow.

 Press F6 to execute the job. The csv file thus created contains the aggregating result.

2 Countries.csv - Bloc-notes |'._ E'E'
Fichier Edition Format Affichage 7

Country; Average;Max; Min
England; 51.8125;587;1
France;43.3846153846154;87;1
Germany; 49, 785714 2857143;100,; 3
Ireland;42.0952380052381; 96; 3
Italy;42. 9411764 705882; 75;13

Spain; 60, 5263157804737, 05,11

130 Talend Open Studio Copyright © 2007

Components
tAggregateSortedRow

tAggregateSortedRow properties

Component family

Function

Purpose

Properties

Processing

S

tAggregateSortedRow receives a sorted flow and aggregates it based
on one or more columns. For each output line, are provided the
aggregation key and the relevant result of set operations (min, max,

sum...).

Helps to provide a set of metrics based on values or calculations. As the
input flow is meant to be sorted already, the performance are hence

greatly optimized.

Schema type and
Edit Schema

Group by

Operations

A schema is a row description, i.e., it defines the
number of fields that will be processed and
passed on to the next component. The schema is
either built-in or remote in the Repository.
Click Edit Schema to make changes to the
schema. Note that if you make changes, the
schema automatically becomes built-in.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is
stored in the Repository, hence can be reused in
various projets and job flowcharts. Related topic:
Setting a repository schema on page 49

Define the aggregation sets, the values of which
will be used for calculations.

Output Column: Select the column label in the
list offered based on the schema structure you
defined. You can add as many output columns as
you wish to make more precise aggregations.
Ex: Select Country to calculate an average of
values for each country of a list or select Country
and Region if you want to compare one country’s
regions with another country’ regions.

Input Column: Match the input column label
with your output columns, in case the output label
of the aggregation set needs to be different.

Select the type of operation along with the value
to use for the calculation and the output field.

Output Column: Select the destination field in
the list.

Copyright © 2007

Talend Open Studio

131

Components

tAggregateSortedRow

Function: Select the operator among: count, min,
max, avg, first, last.
Input column: Select the input column from
which the values are taken to be aggregated.

Usage This component handles flow of data therefore it requires input and

output, hence is defined as an intermediary step.
Limitation n/a

Related scenario

For related use case, see tAggregateRow Scenario: Aggregating values and sorting data on page
127.

132 Talend Open Studio Copyright © 2007

Components

tAddCRCRow
L+
CRC
tAddCRCRow properties
Component family Data quality iﬁ ({
Function Calculates a surrogate key based on one or several columns and adds it
to the defined schema
Purpose Providing a unique ID helps improving the quality of processed data.
Properties Schema type and A schema is a row description, i.e., it defines the

Edit Schema number of fields that will be processed and
passed on to the next component. The schema is
either built-in or remote in the Repository. In this
component, a new CRC column is automatically
added.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is
stored in the Repository, hence can be reused in
various projects and job designs. Related topic:
Setting a repository schema on page 49

Implication Tick the checkbox facing the relevant columns to
be used for the surrogate key checksum.

CRC type Select the CRC type length. The longer the CRC,
the least overlap.

Usage This component is an intermediary step, and requires an input flow as
well as an output.

Limitation n/a

Scenario: Adding a surrogate key to afile

This scenario describes a job adding a surrogate key to a delimited file schema.

. Rece _. .
: p rowl (Main) . rowZ (Main) 'E@

tFileInputDelimited 1 ' ' " taddCRCRow 1 " tLogRow 1

* Click and drop the following components: tFilelnputDelimited, tAddCRCRow and
tLogRow.

Copyright © 2007 Talend Open Studio 133

Components
tAddCRCRow

» Connect them using a Main row connection.

* In the tFilelnputDelimited Properties view, set the File Name path and all related
properties in case these are not stored in the Repository.

;<P tFileInputDelimited_1

Property Type i | Repository |DELIM:Cars o |I*

. e, " *
File Marme [InputCars, csy o E]
Row Separatar "in" - Field Separator | ;" |
Header 1 pFooter |0 i Limit I
Schema Tyvpe Repository + | | DELIM:Cars - metadata w [* Edit scherma E] [skip empty rows 7

[]Extract lines at random

Encoding Type [S0-8859-15

+ Create the schema through the Edit Schema button, in case the schema is not stored already
in the Repository. In Java, mind the data type column and in case of Date pattern to be filled
in, check out http://java.sun.com/j2se/1.5.0/docs/api/index.html.

* Inthe tAddCRCRow Properties view, check the Input flow columns to be used to calculate
the CRC.

Fll taddcrorow 1
ChC

Schema Type Bult-n ~ | Edischema [

Implication calumn se in CRC
ID_Cwiners
Req_Car
Make
Colar
ID_Reseler
CRiC

* Notice that a CRC column (read-only) has been added at the end of the schema.

» Select CRC32 as CRC Type to get a longer surrogate key.

134 Talend Open Studio Copyright © 2007

http://java.sun.com/j2se/1.5.0/docs/api/index.html
http://java.sun.com/j2se/1.5.0/docs/api/index.html

Components
tAddCRCRow

DET tLogRow_1

Schems Type v Edtschens ()

Prink walues in cells of a table

 Inthe tLogRow Properties view, check the Print values in cells of a table option to display
the output data in a table on the Console.

* Then save your job and run it.

Starting jofl oo S8 FF 5T BEERSEER Y
tLogRow_1

ID Owners|Reg Car | Hake |[Color |ID _Reseller|CRC

1 1301 DD 05| Citroen gold a8 27510715125

2 2300 ZP 14 |Citroen blue 1c 33211434545

K] 4122 JI 74 |Fenault vellow| 36 11525215315

4 3395 QP 05 |Citroen vellow |51 14306204562

5 0029 OF 61 |Tovota red a7 10711350076

B 4287 YU 44 |Citroen blue 43 25561510712

7 7119 CQ 97 |Honda vellow|6E 10136571035

g 3764 PA 47 |Renault orange | 30 31723253034

9 9939 CJ 88 |Hercedes red 41 27451544441

10 7476 EV 09 |Citroen grey a4 27775721061

11 5287 BF 14 |Tovota green |27 2716661270

12 0750 OF 65| Tovota green |8 23p3elaonza

13 7577 Z0 59| Vollkswagen |purple|Lh 37277337005 il

An additional CRC Column has been added to the schema calculated on all previouly selected
columns (in this case all columns of the schema).

Copyright © 2007 Talend Open Studio 135

®

Components
tAS400Input

tAS400Input

tAS400Input properties

Component family

Function

Purpose

Properties

Usage

Databases/AS400

tAS4001Input reads a database and extracts fields based on a query.

tAS400SInput executes a DB query with a strictly defined statement which
must correspond to the schema definition. Then it passes on the field list to the
next component via a Main row link.

Property type

Host
Port
Database

Username and
Password

Schema type and Edit
Schema

Query type and Query

Encoding

Either Built-in or Repository
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Database server IP address
Listening port number of DB server.
Name of the database

DB user authentication data.

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.

136

Talend Open Studio Copyright © 2007

Components
tAS400Input

Related scenarios

For related topic, see tDBInput scenarios:
» Scenario 1: Displaying selected data from DB table on page 162
 Scenario 2: Using StoreSQLQuery variable on page 163

Related topic in tContextLoad Scenario: Dynamic context use in MySQL DB insert on page 145.

Copyright © 2007 Talend Open Studio 137

<)

Components
tAS4000utput

tAS4000utput

tAS4000utput properties

Component family

Function

Purpose

Properties

Databases/DB2

tAS4000utput writes, updates, makes changes or suppresses entries in a

database.

tAS4000utput executes the action defined on the table and/or on the data
contained in the table, based on the flow incoming from the preceding

component in the job.

Property type

Host
Port
Database

Username and
Password

Table

Action on data

Clear data in table

Schema type and Edit
Schema

Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Database server IP address
Listening port number of DB server.
Name of the database

DB user authentication data.

Name of the table to be written. Note that only one
table can be written at a time

On the data of the table defined, you can perform:
Insert: Add new entries to the table. If duplicates are
found, job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing
ones.

Update or insert: Update existing entries or create it
if non existing

Delete: Remove entries corresponding to the input
flow.

Wipes out data from the selected table before action.

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

138

Talend Open Studio Copyright © 2007

Components
tAS4000utput

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Additional Columns | This option is not offered if you create (with or
without drop) the Db table. This option allows you to
perform actions on columns, which are not insert, nor
update or delete actions or requires a particular
preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After, following
the action to be performed on the reference column.

Reference column: Type in a column of reference
that the tDBOutput can use to place or replace the new
or altered column.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.

Related scenarios

For related topics, see
» tDBOutput Scenario: Displaying DB output on page 166
* tMySQLOutput Scenario: Adding new column and altering data on page 396.

Copyright © 2007 Talend Open Studio 139

Components
tAS400Row

¢ 1AS400Row

="
.’}L‘:__

tAS400Row properties

Component family Databases/AS400 ¢
i <
Function tAS400Row is the specific component for this database query. It executes the

SQL query stated onto the specified database. The row suffix means the
component implements a flow in the job design although it doesn’t provide
output.

Purpose Depending on the nature of the query and the database, tAS400Row acts on the
actual DB structure or on the data (although without handling data). The
SQLBuilder tool helps you write easily your SQL statements.

Properties Property type Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.
Database Name of the database

Username and DB user authentication data.
Password

Schema type and Edit | A schema is a row description, i.e., it defines the

Schema number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build
it graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

140 Talend Open Studio Copyright © 2007

Components
tAS400Row

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.

Related scenarios

For related topics, see:
» tDBSQLRow Scenario 1: Resetting a DB auto-increment on page 170
» tMySQLRow Scenario: Removing and regenerating a MySQL table index on page 408.

Copyright © 2007 Talend Open Studio 141

@

Components
tCentricCRMInput

tCentricCRMInput

tCentricCRMInput Properties

Component family
Function

Purpose

Properties

Usage

Limitation

Related Scenario

Business/CentricCR
M

Connects to a module of a Centric CRM database via the relevant webservice.

Allows to extract data from a Centric CRM DB based on a query.

CentricCRM URL

Module
Server
UserID and Password

Schema type and Edit
Schema

Query condition

Type in the webservice URL to connect to the
CentricCRM DB.

Select the relevant module in the list
Type in the IP address of the DB server.
Type in the Webservice user authentication data.

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either built-in
or remote in the Repository.

Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema
automatically becomes built-in.

In this component the schema is related to the
Module selected.

Type in the query to select the data to be extracted.

Usually used as a Start component. An output component is required.

n/a

No scenario is available for this component yet.

142

Talend Open Studio

Copyright © 2007

Components

tCentricCRMOutput
Ey tCentricCRMOutput
tCentricCRMOutput Properties
Component family Business/CentricCR ¢
M ‘..-._":)
Function Writes data in a module of a CentricCRM database via the relevant
webservice.
Purpose Allows to write data into a CentricCRM DB.
Properties CentricCRM URL Type in the webservice URL to connect to the
CentricCRM DB.
Module Select the relevant module in the list
Server IP address of the DB server
Username and Type in the Webservice user authentication data.
Password
Action Insert, Update or Delete the data in the CentricCRM

module.

Schema type and Edit | A schema is a row description, i.e., it defines the
Schema number of fields that will be processed and passed on
to the next component. The schema is either built-in
or remote in the Repository.
Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema
automatically becomes built-in.
Click Sync columns to retrieve the schema from the
previous component connected in the job.

Usage Used as an output component. An Input component is required.

Limitation n/a

Related Scenario

No scenario is available for this component yet.

Copyright © 2007 Talend Open Studio 143

Components
tContextDump

tContextDump

=

tContextDump properties

Component family

Function

Purpose

Properties

Usage

Limitation

Related Scenario

Misc

S

tContextDump makes a dump copy the values of the active job context.

tContextDump can be used to transform the current context parameters
into a flow that can then be used in a tContextL oad. This feature is very
convenient in order to define once only the context and be able to reuse
it in numerous jobs via the tContextLoad..

Schema type and
Edit Schema

Print operations

In the tContextDump use, the schema is read
only and made of two columns, Key and Value,
corresponding to the parameter name and the
parameter value to be copied.

A schema is a row description, i.e., it defines the
fields that will be processed and passed on to the
next component. The schema is either built-in or
remote in the Repository.

Click Edit Schema to make changes to the
schema. Note that if you make changes, the
schema automatically becomes built-in.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is
stored in the Repository, hence can be reused in
various projets and job flowcharts. Related topic:
Setting a repository schema on page 49

Check this box to display the context parameters
set in the Run job view.

This component creates from the current context values, a data flow,
therefore it requires to be connected to an output component.

tContextDump does not create any non-defined context variable.

No scenario is available for this component yet.

144

Talend Open Studio

Copyright © 2007

o

Components

tContextLoad
tContextLoad
tContextLoad properties
Component family Misc ¢
Function tContextLoad modifies dynamically the values of the active context.
Purpose tContextLoad can be used to load a context from a flow.

This component performs also two controls. It warns when the
parameters defined in the incoming flow are not defined in the context,
and the other way around, it also warns when a context value is not
initialized in the incoming flow.

But note that this does not block the processing.

Properties Schema type and In the tContextLoad use, the schema must be
Edit Schema made of two columns, including the parameter

name and the parameter value to be loaded.
A schemais a row description, i.e., it defines the
fields that will be processed and passed on to the
next component. The schema is either built-in or
remote in the Repository.
Click Edit Schema to make changes to the
schema. Note that if you make changes, the
schema automatically becomes built-in.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is
stored in the Repository, hence can be reused in
various projets and job flowcharts. Related topic:
Setting a repository schema on page 49

Print operations Check this box to display the context parameters
set in the Run job view.

Usage This component relies on the data flow to load the context values to be
used, therefore it requires a preceding input component and thus cannot
be a start component.

Limitation tContextLoad does not create any non-defined variable in the default
context.

Scenario: Dynamic context use in MySQL DB insert

This scenario is made of two subjobs. The first subjob aims at dynamically load the context
parameters, and the second subjob uses the loaded context to display the content of a DB table.

Copyright © 2007 Talend Open Studio 145

Components
tContextLoad

: p row] (Main) i = 1

tFileList_1 ' tFileInputDelimited 1 ' " bContexfload 1
Raly o3
. Fow2 (Pain) =E@|
EMyvsqllnput_1 ' ' ' " tLogRow 1

+ Click and drop a tFilelist, tFileInputDelimited, tContextLoad for the first subjob.
* And click and drop the tMysgllnput and a tLogRow for the second subjob.
+ Connect all the components together.

» Create as many delimited files as there are different contexts and store them in a specific
directory, named Contexts. In this scenario, test.txt contains the local database connection
details for testing purpose. And prod.txt holds the actual production db details.

 Each file is made of two fields, contain the parameter name and the corresponding value,
according to the context.

I Prod.txt - Bloc-notes E|@|E|

Fichier Edition Faormak Affichage 7

host;talend-dbms
port; 3306

database;talend
username; root
password; toor

* In the tFileList component Properties panel, select the directory where both context files,
test and prod, are held.

* In the tFilelnputDelimited component Properties panel, press Ctrl+Space bar to access
the global variable list. Select $_globals{tFileList_1}{CURRENT_FILEPATH} to loop on
the context files’ directory.

* Define the schema manually (Built-in). It contains two columns defined as: Key and Value.
» Accept the defined schema to be propagated to the next component (tContextLoad).

« For this scenario, check the Print operations box in order for the context parameters in use
to be displayed on the Run Job panel.

» Then double-click to open the tMySQL Input component Properties.

146 Talend Open Studio Copyright © 2007

Components
tContextLoad

 Foreach of the field values being stored in a context file, press F5 and define the user-defined
context parameter. For example: The Host field has for value parameter $_context{host}, as
the parameter name is host in the context file. Its actual value being talend-dbms.

& tMysqlinput

Property Tvpe w

Hosk $_context{host: |Park | $_contexk{port} Database | $_context{database} *
I=ername $_conkext{username: * Ppassword | $_contextdpassword} *
Schema Tvpe Repository s || | DB (MYSQLY: Talend-DEMS - comprehensivel + ¥ Edit schema E]
Cuery Twpe Built-In "

Cuery 'zelect ID. Registration. Make from comprehensive’ * [:]
Encoding Type [SO-8859-15

» Then fill in the Schema information. If you store the schema in the Repository Metadata,
then you can retrieve by selecting Repository and the relevant entry in the list.

» And type in the SQL Query to be executed on the DB table specified. In this case, a simple
select of three columns of the table, which will be displayed on the Run Job tab, through the
tLogRow component.

 Eventually, press F6 to run the job.

Job ContextLoad

Context . Target execution Execution
Defaul: v -
[f} Debug] [= Run] B
Marme Value
host ‘talend-dbms' Clear before run [Exec time LI
port: '3308"
database ‘talend Starting job Gontestioad at 17,57 Fo-fi 7007,
UsErname ImDE tContextload s=t key host with walus talend-dbms
password 'toor tContextload ==t kevy port with walues 3306
tContextload ==t key databaze with wvalus talend
tContextload =et key username with wvalue root
tContextload ==t key password with wvalus toor
124322 DF 76 |BHW]| |||
15|0142 CB 08 |BMW]| |||
18|8545 GF 25 |Hercede=| || |
245382 KC 94 |Volkswagen| | | |
40|8386 GH 71 |Mercede=]|| ||
L4 > =
The context parameters as well as the select values from the DB table are all displayed on the Run
Job view.

Copyright © 2007 Talend Open Studio 147

IE;

Components
tCreateTable

tCreateTable

tCreateTable Properties

Component family

Function
Purpose

Properties

Databases

%

tCreateTable creates, drops and creates or clear the specified table.

This Java specific component helps create or drop any database table

DB Type

Special Action

Use existing
connection

Property type

Host
Port
Database

Username and
Password

New table name

Schema type and Edit
Schema

Select the DBMS type in the List offered.

Select the action to be carried out on the database
among:

Create table: when you know already that the table
doesn’t exist.

Create table when not exists: when you don’t know
whether the table is already created or not

Drop and create table: when you know that the table
exists already and needs to be replaced.

Check this box in case you use tMysglConnection or
tOracleConnection component.

Either Built-in or Repository
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Database server IP address
Listening port number of DB server.
Name of the database

DB user authentication data.

Type in between quotes a name for the newly created
table.

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

& Reset the DB type by clicking the relevant
button, to make sure data type is correct

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Talend Open Studio

Copyright © 2007

Components
tCreateTable

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Mapping Select the correct mapping according to your Db type.
This allows a check of DB type in the schema defined.
If the DB type standards do not match, they will
display in a different color in the Edit Schema.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries. More scenarios are available for specific DB
Input components

Scenario: Creating new table in a Mysql Database

The job described below aims at creating a table in a database, made of a dummy schema taken from
a delimited file schema stored in the Repository. This job is composed of a single component.

+ —i—“'
tCreateTable_1

» Click and drop a tCreateTable component from the Databases family in the Palette.

* In the Properties view, define the Database type on MySQL for this use case.

E tCreateTable_1

DE Type w || Special Ackion | Create table "

|:| IJse Existing Connection

Property Type Repositary w | Repository | DB (MYSOLEMYSOL s *

Host "talend-dbms" | Part | "3306" Database | "talend" 3
User Name "ront" E Password | "toor" E
Mew Table Mame "MewCarsTable" *
Schema Type Built-In % || Edit schema E]

Mapping Mapping Mysq| s || Encoding Type |IS0O-E859-15 s

* In the Special Action list, select Create table.

» Check Use Existing Connection only in the case, you are using a dedicated connection
component, see tMysglConnection on page 387. In this use case, we won’t use this option.

Copyright © 2007 Talend Open Studio 149

Components
tCreateTable

* Inthe Property type field, select Repository so that all following connection fields are
automatically filled in. If you didn’t define a Metadata DB connection entry for your Db
connection, fill in manually the details as Built-in.

* In the New Table Name field, fill in a name for the table to be created.

* If you want to retrieve the Schema from the Metadata (it doesn’t need to be a DB connection
Schema metadata), select Repository then the relevant entry.

* Inany case (Built-in or Repository) click Edit Schema to check the Data type mapping.

Schema of tCreateTable_1

kCreateTable_1
Zolumn Key | Type OB Type | Mullable DatePa... Le... Pr... [Du.
ID_Owiners |:| Inkeger z2
Feq_Car |:| Skring 10
Make [] string 10
Color [] string &
ID_Reseler [Integer 3
< X
[04] [Zancel]

 Click the Reset DB Types button in case the DB type column is empty or shows
discrepancies marks (orange colour). This allows to map any data type to the relevant DB
data type.

+ Click OK.
e Then press F6 to run the job.

The table is created empty but with all columns defined in the Schema.

: SELECT * FROH "newcarstable™ ; :

Refrash Execute »

| € Resultzet 1

ID_Owrners FAeg_Car b ake Color ID_Reseler

150 Talend Open Studio Copyright © 2007

Components
tDB2Input

tDB2Input

®

tDB2Input properties

Component family Databases/DB2 Qﬁ ¢
Function tDB2Input reads a database and extracts fields based on a query.
Purpose tDB2Input executes a DB query with a strictly defined order which must

correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Properties Property type Either Built-in or Repository
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.
Database Name of the database

Username and DB user authentication data.
Password

Schema type and Edit | A schema is a row description, i.e., it defines the

Schema number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type and Query | Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Usage This component covers all possibilities of SQL queries onto a DB2 database.

Copyright © 2007 Talend Open Studio 151

Components
tDB2Input

Related scenarios

For related topics, see tDBInput scenarios:
 Scenario 1: Displaying selected data from DB table on page 162
 Scenario 2: Using StoreSQLQuery variable on page 163

See also the related topic in tContextLoad Scenario: Dynamic context use in MySQL DB insert on
page 145.

152 Talend Open Studio Copyright © 2007

<)

tDB20utput

Components
tDB20utput

tDB20utput properties

Component family Databases/DB2

S

tDB20utput writes, updates, makes changes or suppresses entries in a

tDB20utput executes the action defined on the table and/or on the data

contained in the table, based on the flow incoming from the preceding

Function

database.
Purpose

component in the job.
Properties Property type

Host

Port

Database

Username and
Password

Table

Action on table
& In Java, use
tCreateTable as
substitute for this
function..

Action on data

Clear data in table

Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Database server IP address
Listening port number of DB server.
Name of the database

DB user authentication data.

Name of the table to be written. Note that only one
table can be written at a time

On the table defined, you can perform one of the
following operations:

None: No operation carried out

Drop and create the table: The table is removed and
created again

Create a table: The table doesn’t exist and gets
created.

Clear a table: The table content is deleted

On the data of the table defined, you can perform:
Insert: Add new entries to the table. If duplicates are
found, job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing
ones.

Update or insert: Update existing entries or create it
if non existing

Delete: Remove entries corresponding to the input
flow.

Wipes out data from the selected table before action.

Copyright © 2007

Talend Open Studio 153

Components
tDB20utput

Schema type and Edit | A schema is a row description, i.e., it defines the

Schema number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Additional Columns | This option is not offered if you create (with or
without drop) the Db table. This option allows you to
perform actions on columns, which are not insert, nor
update or delete actions or requires a particular
preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After, following
the action to be performed on the reference column.

Reference column: Type in a column of reference
that the tDBOutput can use to place or replace the new
or altered column.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.

Related scenarios

For tDB20utput related topics, see
» tDBOutput Scenario: Displaying DB output on page 166
* tMySQLOutput Scenario: Adding new column and altering data on page 396.

154 Talend Open Studio Copyright © 2007

tDB2Row

Components
tDB2Row

&

tDB2Row properties

Component family

Function

Purpose

Properties

Databases/DB2

S

tDB2Row is the specific component for this database query. It executes the
SQL query stated onto the specified database. The row suffix means the
component implements a flow in the job design although it doesn’t provide

output.

Depending on the nature of the query and the database, tDB2Row acts on the
actual DB structure or on the data (although without handling data). The
SQLBuilder tool helps you write easily your SQL statements.

Property type

Host
Port
Database

Username and
Password

Schema type and Edit
Schema

Query type

Query

Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Database server IP address
Listening port number of DB server.
Name of the database

DB user authentication data.

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Either Built-in or Repository.

Built-in: Fill in manually the query statement or build
it graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Copyright © 2007

Talend Open Studio 155

Components
tDB2Row

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.

Related scenarios

For tDB2Row related topics, see:
» tDBSQLRow Scenario 1: Resetting a DB auto-increment on page 170
» tMySQLRow Scenario: Removing and regenerating a MySQL table index on page 408.

156 Talend Open Studio Copyright © 2007

-
S,

' ¢
Y

Components
tDB2SCD

tDB2SCD

tDB2SCD properties

Component family Databases/DB2

Function

Purpose

%

tDB2SCD reflects and tracks changes in a dedicated DB2 SCD table.
tDB2SCD addresses Slowly Changing Dimension needs, reading regularly a

source of data and logging the changes into a dedicated SCD table

Properties Property type

Host
Port
Database

Username and
Password

Table

Schema type and Edit
Schema

. Surrogate key
= Java only for the

time being.

Creation

Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Database server IP address
Listening port number of DB server.
Name of the database

DB user authentication data.

Name of the table to be written. Note that only one
table can be written at a time

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Select the column where the generated surrogate key
will be stored. A surrogate key can be generated based
on a method selected on the Creation list.

Select the method to be used for the key generation:
input field: key is provided in an input field
routine: you can access the basic functions through
Ctrl+ Space bar combination.

table max +1: the maximum value from the SCD
table is incremented to create a surrogate key
sequence/identity: auto-incremental key

Copyright © 2007

Talend Open Studio

157

Components
tDB2SCD

Java only for the
time being.

Usage

Related scenarios

Source Keys

Use SCD Type 1 fields

Use SCD Type 2 fields

Use SCD Type 3 fields

Debug Mode

Select one or more columns to be used as key, to
ensure the unicity of incoming data.

Use the type 1if change tracking is not necessary.
SCD Type 1 should be used for typos corrections for
example. Select the columns of the schema, that will
be checked for changes.

Use type 2 if changes need to be tracked down. SCD
Type 2 should be used to trace updates for example.
Select the columns of the schema, that will be
checked for changes.

Start date: Adds a column to your SCD schema to
hold the start date. You can select one of the input
schema column as Start Date in the SCD table.
End Date: Adds a column to your SCD schema to
hold the end date value for the record. When the
record is currently active, the End date show a null
value or you can select Fixed Year value and fill in
with a fictive year to avoid having a null value in the
End date field.

Log Active Status: Adds a column to your SCD
schema to hold the true or false status value. This
column helps to spot easily the active record.

Log versions: Adds a column to your SCD schema to
hold the version number of the record.

Use type 3 when you want to keep track of the
previous value of a changing column

Current value field: Select the column where the
changing value is tracked down..

Previous value field: Select the column where the
previous value should be stored.

Check this box to display each step of the SCD log
process.

This component is used as Output component. It requires an Input component
and Row main link as input.

For related topics, see the following scenarios:

» tMysqISCD Scenario: Tracking changes using Slowly Changing Dimension on page 411.

» tMSSqISCD Scenario: Slow Changing Dimension type 3 on page 376

158

Talend Open Studio

Copyright © 2007

Components
tDB2SP

o tDB2SP

p
L3

tDB2SP properties

Component family Databases/DB2

tDB2SP offers a convenient way to centralize multiple or complex queries in

Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Database server IP address

Listening port number of DB server.

Function tDB2SP calls the database stored procedure.
Purpose

a database and call them easily.
Properties Property type

Host

Port

Database

Username and
Password

Schema type and Edit
Schema

SP Name

Is Function / Return
result in

Name of the database

DB user authentication data.

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Type in the exact name of the Stored Procedure

Check this box, if a value only is to be returned.
Select on the list the schema column, the value to be
returned is based on.

Copyright © 2007

Talend Open Studio

159

Components
tDB2SP

Usage

Limitation

Related scenarios

Parameters Click the Plus button and select the various Schema
Columns that will be required by the procedures.
Note that the SP schema can hold more columns than
there are paramaters used in the procedure.
Select the Type of parameter:
IN: Input parameter
OUT: Output parameter/return value
IN OUT: Input parameters is to be returned as value,
likely after modification through the procedure
(function).

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

This component is used as intermediary component. It can be used as start
component but only input parameters are thus allowed.

The Stored Procedures syntax should match the Database syntax.

For related topic, see tMysqlISP Scenario: Finding a State Label using a stored procedure on page

4109.

160

Talend Open Studio Copyright © 2007

Components
tDBInput

tDBInput

(&

tDBInput properties

Component family Databases/DB ¢

Generic Q@ =..;__.£
Function tDBInput reads a database and extracts fields based on a query.
Purpose tDBInput executes a DB query with a strictly defined order which must

correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Note: Forperformance reasons, a specific Input component
(e.g.: tMySQL Input for MySQL database) should
always be preferred to the generic component.

Properties Property type Either Built-in or Repository
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Connection type Drop-down list of available DBMS drivers.
Database Name of the database

Username and DB user authentication data.

Password

Schema type and Edit | A schema is a row description, i.e., it defines the

Schema number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries using a generic ODBC connection.

Copyright © 2007 Talend Open Studio 161

Components
tDBInput

Scenario 1: Displaying selected data from DB table

The following scenario creates a two-component job, reading data from a database using a DB query
and outputting delimited data into the standard output (console).

[}. . r':"u';'-']. {Maén} - .;-D&l-

tDBInput_1 " tLogRow 1
Click and drop a tDBInput and tLogRow component from the Palette to the design
workspace.

Right-click on the tDBInput component and select Row > Main. Drag this main row link
onto the tLogRow component and release when the plug symbol displays.

Select the tDBInput again so the properties tab shows up, and define the properties:

[} tDBInput
Froperty Tvpe Repository s | Repository DE: Orders v *

Dratabase Driver | My 3oL o |'D
Host | ‘talend-dbms' |.3F‘|:|rt | "3306" |.3Datal:|ase | 'talend' |$
Isername | ‘ront! |$ Passwiord | ko’ 3

Schema Tvpe Repository v Repasitary |DB:Orders - comprehensive v |* Edit schema E]

Query Tyvpe Repository + | Repositary | DB:Orders - SeleckColor w |*
Cuery 'zelect Color., Registration from comprehensive’ * D
Encoding | 150-5855-15 ¥

The component property data are Built-In for this scenario.

Select Mysql as database driver.

Fill in the DB connection data in Host, Port, Database name, User name and password fields.
The schema is Built-In.This means that it is available for this job and on this station only.
Click on Edit Schema and create a 2-column description including shop code and sales

Type in the query making sure it includes all columns in the same order as defined in the
Schema. In this case, as we’ll select all columns of the schema, the asterisk symbol makes
sense.

Enter the Encoding for information only. And click on the second component to define it.

162

Talend Open Studio Copyright © 2007

Components
tDBInput

 Enter the fields separator. In this case, a pipe separator.
* Now go to the Run Job tab, and click on Run to execute the job.

The DB is parsed and queried data is extracted and passed on to the Job log console. You can view
the output file straight on the console.

Execution

Skats & Traces

[ﬁDEbug] ’ [E= Run] Ej:ii:;ics

Clear before run [Exer time

UZd |3/ &/ 003y
045 | 0573565414
091]1592849081
0871085890132
037]8313533186
no9|anzio41521
058 |4628116754
018]9925876363
ne7| 7705131361
0236891797657
0727507976951
061 |8165006775
0579159275074
Sl rppeefafnde andes 6 F5 48 GEE-FEER fasr s oodesiy

< *

Scenario 2: Using StoreSQLQuery variable

StoreSQLQuery is a variable that can be used to debug a tDBInput scenario which does not operate
correctly. It allows you to dynamically feed the SQL query set in your tDBInput component.

 Use the same scenario as scenario 1 above and add a third component, tPerl.

» Connect tDBInput component to tPerl component using a trigger connection of ThenRun
type. In this case, we want the tDBInput to run before the tPerl component.

[} ru:uwi I{Main:]l " E@I

EDBInput 1 tLogRow 1

o
EPerl 1

» Set both tDBInput and tLogRow component as in tDBInput scenario 1.

 Click anywhere on the design workspace to display the Context property panel.

» Create a new parameter called explicitly StoreSQLQuery. Enter a default value of 1. This
value of 1 means the StoreSQLQuery is “true” for a use in the QUERY global variable.

Copyright © 2007 Talend Open Studio 163

Components
tDBInput

 Click on the tPerl component to display the Properties. Enter the command Print to display
the query content, press Ctrl+Space bar to access the variable list and select the global
variable QUERY.

Code print "wn"

+ Go to your Run tab and execute the job.

* The query entered in the tDBInput component shows at the end of the job results, on the log:

El1lver|ddbs oM 41|
orange | 6398 UJ 08

=e=lect Color., Fegistration from comprehensiwve
Joafr FEgdmftadar anded a6 JE T J4e0Se SRS fesr b o oodesET

164 Talend Open Studio Copyright © 2007

<)

tDBOutput

Components
tDBOutput

tDBOutput properties

Component family Databases

S

tDBOutput writes, updates, makes changes or suppresses entries in a database.

tDBOutput executes the action defined on the table and/or on the data

contained in the table, based on the flow incoming from the precedin

Note: Specific Output component should always be
preferred to generic component.

Function
Purpose

component in the job.
Properties Property type

Connection type
Database

Username and
Password

Table

i Action on table
= |n Java, use

tCreateTable as

substitute for this

function..

Action on data

Clear data in table

Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

List of available drivers.
Name of the database

DB user authentication data.

Name of the table to be written. Note that only one
table can be written at a time

On the table defined, you can perform one of the
following operations:

None: No operation carried out

Drop and create the table: The table is removed and
created again

Create a table: The table doesn’t exist and gets
created.

Clear a table: The table content is deleted

On the data of the table defined, you can perform:
Insert: Add new entries to the table. If duplicates are
found, job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing
ones.

Update or insert: Update existing entries or create it
if non existing

Delete: Remove entries corresponding to the input
flow.

Wipes out data from the selected table before action.

Copyright © 2007

Talend Open Studio 165

Components
tDBOutput

Schema type and Edit | A schema is a row description, i.e., it defines the

Schema number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Additional Columns | This option is not offered if you create (with or
without drop) the Db table. This option allows you to
perform actions on columns, which are not insert, nor
update or delete actions or requires a particular
preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After, following
the action to be performed on the reference column.

Reference column: Type in a column of reference
that the tDBOutput can use to place or replace the new
or altered column.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.

Scenario: Displaying DB output

This following scenario is a three-component job aiming at creating a new table in the database
defined and filling it with data. The tFileInputdelimited passes on the Input flow to the tDBoutput
component. As the content of a DB is not viewable as such, a tLogRow component is used to display
the main flow on the Run Job console.

166 Talend Open Studio Copyright © 2007

Components
tDBOutput

B. .rnwlli:r'-“lain]l. =.@. run-;JZ I{Maén]l gzal.

kFileInputDelimited_1 " rDECutput 1 kLogRow 1

* First click and drop the three components required for this job.

* Onthe Properties tab of tFileInputDelimited, define the input flow parameters. In this use
case, the file contains cars’ owner id, makes, color and registration references organised as
follows: semi-colon as field separator, carriage return as row separator. The input file
contains a header row to be considered in the schema. If this file is already described in your
metadata, you can retrieve the properties by selecting the relevant repository entry list.

B tFileInputDelimited

Property Type R || Repository |DELIM:CDmprehensive o |*
File Mame | A Inputt comprehensive, Ext! |$ E]
Fow Separakor | "in" |5\Field Separator | ny |-:.\

He:ader Fu:u:uter |IZI |.3Limit | |'i‘
Schema Tyvpe Built-In v Edit schema E] [skip emply rows 7

Extract a random number of lines | 10 |*

Encoding | 'US-ASCIT .

* And also, if your schema is already loaded in the Repository, select Repository as Schema
type and choose the relevant metadata entry in the list. If you haven’t defined the schema
already, define the data structure in the built-in schema you edit.

* Restrict the extraction to 10 lines, for this example.

» Then define the tDBOutput component to configure the output flow. Select the database to
connect to. Note that you can store all the database connection details in different context
variables. For more information about how to create and use context variables , see Defining
Contexts and variables on page 101.

Copyright © 2007 Talend Open Studio 167

Components

tDBOutput

C@ tDBOutput

Property Tyvpe

Database Driver

Hiosk

User

name

Table

Action on kable

Schema Tvpe

Encoding

v

My 5L w

$_context{talendDBr |Port | '3306"

'ront!

omprehensive'

Drop and create table + | Action on data

Builk-In

150-3559-15'

b d
Password | toar'

Insert

* || Edit schema E]

Database

'talend'

Fill in the table name in the Table field. Then select the operations to be performed:

As Action on table, select Drop and create table in the list. This allows you to overwrite
the possible existing table with the new selected data. Alternately you can insert only extra
rows into an existing table, but note that duplicate management is not supported natively. See
tUnigRow Properties on page 537 for further information.

As Action on data, select Insert. The data flow incoming as input will be thus added to the
selected table.

To view the output flow easily, connect the DBOuput component to an tLogRow component.
Define the field separator as a pipe symbol. Press F6 to execute the job.

As the processing can take some time to reach the tLogRow component, we recommend you
to enable the Statistics functionality on the Run Job console.

Execution

ﬁ Debug

[T

Clear before run [Exec bime

Skats & Traces

Skatiskics
[]Traces

Stareimy robh DRoutpne 6 JECFF JEAELSTES
ThreadStat
Connecting

24
32
35
47
54
5L
63
64

£

£aaz2
9591
3129
4080
6945
Ce28
£a78

EC
OE
VH
1=
UH
YE
FG

started. . .

to talendStudio on port 3334 ..

94
79
61
44
26
93
10

Vollswagen |grev |10
Honda |grey | &
Yollkswagen |purple| 4
Renault |red|?
Honda |bBlack |1
Honda |blu=| 3
Citroen|red|bs
HDndalgyeenll

Related topic: tMysqlOutput properties on page 394

.conhected .

3¢ Clear

168

Talend Open Studio

Copyright © 2007

tDBSQLRow

Components
tDBSQLRow

&

tDBSQLRow properties

Component family

Function

Purpose

Properties

Databases/DB (
Generic a@ _=._;___£;

tDBSQLRow is the generic component for database query. It executes the
SQL query stated onto the specified database. The row suffix means the
component implements a flow in the job design although it doesn’t provide
output.

Note: For performance reasons, specific DB component
should always be preferred to the generic component.

Depending on the nature of the query and the database, tDBSQLRow acts on
the actual DB structure or on the data (although without handling data). The
SQLBuilder tool helps you write easily your SQL statements.

Property type Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Database Name of the database
Username and DB user authentication data.
Password

Schema type and Edit | A schema is a row description, i.e., it defines the

Schema number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build
it graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Copyright © 2007

Talend Open Studio 169

Components
tDBSQLRow

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.

Use the relevant DBRow component according to the DB type you use. Most
of the databases have their specific DBRow component.

Scenario 1: Resetting a DB auto-increment

This scenario describes a single component job which aims at reinitializing the DB auto-increment
to 1. This job has no output and is generally to be used before running a script.

Ed

tDESQLRowW_1

 Drag and drop a tDBSQLRow component from the Palette to the Job designer.

» On the Properties panel, fill in the DB connection properties.

170 Talend Open Studio Copyright © 2007

Components

tDBSQLRow
[j? tDBSOLRoW
Property Tvpe W | Repository |DB (QDBC):ODBC o [|*
Database Driver | Generic ODBC |

[}
Database "Talend' o
Username ‘root’ ?Passwurd ‘toor! i
schema Twpe Built-In w | Edit schema E]
Cuery Type Built-In "
Query "Alter table client auto_incremsnt = 1° D
Encoding Type [S0-8859-15 a4

The general connection information to the database is stored in the Repository. The
Database Driver is a generic ODBC driver.

The Schema type is built-in for this job and describes the Talend database structure. The
schema doesn’t really matter for this particular instance of job as the action is made on the
table auto-increment and not on data.

The Query type is also built-in. Click on the three dot button to launch the SQLbuilder
editor, or else type in directly in the Query area:
Alter table <TableName> auto_increment = 1

Then click OK to validate the Properties. Then press F6 to run the job.

The database autoincrement is reset to 1.

Related topics: tMysglRow properties on page 407.

Copyright © 2007 Talend Open Studio 171

Components
tDenormalize

tDenormalize

G008

tDenormalize Properties

Component family Processing Qﬁ ({

Function Denormalizes the input flow based on one column.

Purpose tDenormalize helps synthesize the input flow.

Properties Schema type and A schema is a row description, i.e., it defines the
Edit Schema number of fields that will be processed and

passed on to the next component. The schema is
either built-in or remote in the Repository. In this
component, the schema is read-only.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

: Column to Select the column from the input flow which the
Perl feature denormalize normalization is based on (included in key)

: Group by Select one or several columns to be grouped. We
Java feature recommend to remove unused columns from the

schema before processing.

Separator Enter the separator which will delimit data in the
denormalized flow.

Deduplicate items | Removes duplicates when concatenating
denormalized values.

Usage This component can be used as intermediate step in a data flow.

Limitation n/a

Scenario 1: Denormalizing on one column in Perl

This scenario illustrates a Perl job denormalizing one column in a delimited file.

. h.;d Y f . . . h. .
: p Fonad (Main] i - PO (Main) o

tFileInputDelimited_1 " tDenormalize_1 tLogRow 1

 Click and drop the following components: tFileInputDelimited, tDenormalize, tLogRow.
 Connect the components using Row main connections.

» On the tFilelnputDelimited properties panel, set the filepath to the file to be denormalized.

172 Talend Open Studio Copyright © 2007

Components
tDenormalize

1< tFileInputDelimited_1

Property Type v

File Mame "y Input/Fathers&sons' * E]
Row Separator “in" Field Separator | '

Header 1 Fooker |0 Lirnit

Schema Type Built-In | Editschema [] []Skip empty rows

[]Extract lines at random

Encoding Type 150-3859-15 «

 Define the Header, Row Separator and Field Separator parameters.

» The input file schema is made of two columns, Fathers and Children.

[= FatherstSons

g

Fathers;Children:
Pierrick:Erwann;
Fabrice:Martin:
Stéphane; Lgathe;
Pierrick:Tiphaine:
Fobert:Manon;
Stéphane;Clémence;
Richard; Roméo;

W om -] om0 o L

Mickaesl:Océane;

iy
o

* In the Properties of tDenormalize, define the column that contains multiple values to be
grouped.

« In this use case, the column to denormalize is Children.

ﬂ‘f tDenormalize_1

achema Type Edit schema E]

+

Column to denormalize | Children s+ | Item separator |,

[]oeduplicate items
+ Set the Item Separator to separate the grouped values. Beware as only one column can be
denormalized.

» Check the Deduplicate items, if you know that some values to be grouped are strictly
identical.

¢ Save your job and run it.

Copyright © 2007 Talend Open Studio 173

Components
tDenormalize

S¢Eréing jof fenoraslioe a6 SECFF GRoRSCFHES
Richard| Romeo

Stéphane| Agathe. Clémence

Mickasl| Ocgane

FPierricl| Erwann. Tiphaine

Fobert| Manon

Fabrice| Martin

Jaf fapareslise amded 36 S0 FF GEOESoSES fesy

All values from the column Children (set as column to denormalize) are grouped by their Fathers
column. Values are separated by a comma.

Scenario 2: Denormalizing on multiple columns in Java

This scenario illustrates a Java job denormalizing two columns from a delimited file.

| h.. 4 '.‘. P
B rowL (Main) 1 rowz (Main) o Ci

tFileInputDelimited_1 " tDenormalize_1 " tLogRow 1

 Click and drop the following components: tFileInputDelimited, tDenormalize, tLogRow.
» Connect all components using a Row main connection.

» Onthe tFilelnputDelimited Properties panel, set the filepath to the file to be denormalized.

5= tFileInputDelimited_1

Property Type Built-In v

File Marne | "CifInputDenarmalize” |* E]

Ruow Separator | "in" |FiE|'I| Separator | " |

Header F-:u:uter | 1] |Limit | |
Schema Type Built-In v Edit schema E] [v] skip empby rows

[Extract lines at random

Encoding Twpe 150-3559-15 v

 Define the Row and Field separators, the Header and other information if required.

» The file schema is made of four columns including: Name, FirstName, HomeTown,
WorkTown.

174

Talend Open Studio Copyright © 2007

Components
tDenormalize

[= Denarmalize
1 MName:FirstMWamme:Homelity: WorkCity
2 Pitt;EBrad;Eeverly Hills:Los Angeles
3 Pitt;Brad:;Paris;:London
4 Joliringelina;BerlinsEBerlin
5 Jolij;hingelina:Berlin:;Los Angeles
5 Joli;Angelina;Los Angeles:Los Angeles
T Willis:;EBruce:;Paris:Los Angeles
S Willis:;Bruce:;Pari=s;Madrid
S Willis:;EBruce;Madrid:Madrid
10 Willis;Bruce;Roma:;Dublin
11 Moore:;Demi;WNew York:Paris
12 Moore:Demi:Rio de Janeiro:Loz Angeles
13

 In the tDenormalize component Properties, select the columns that contain the repetition.
These are the column which are meant to occur multiple times in the document. In this use
case, FirstName and Name are the columns against which the denormalization is performed.

» Add as many line to the table as you need using the plus button. Then select the relevant
columns in the drop-down list.

Group by Input column

Marne
FirstMame

« Define the delimiter for concatenated values. In this case, the comma is used.

¢ Save your job and run it.

Stareimy rof Jamrasiine a6 S 0F SBFERFEGF

Pitt |Brad|Beverly Hills,Paris|los Angeles. London
Willi=|Bruce|Pari=.Pari=.Hadrid.Fomna|los=s
Angeles, Madrid. Madrid.Dublin

Moore |Demi |Hew York.Rio de Janeiro|Paris.los Angeles
Joli|Angelina|Berlin.Berlin.lo=s Angele=|Berlin.los Angeles, los

Angeles
Jabh danorasiise anded s¢ S 8F SfERCGFCSRER farr b mode=i;

 The result shows the denormalized values concatenated using a comma.

Copyright © 2007 Talend Open Studio 175

Components
tDenormalize

» Back to the tDenormalize components Properties, check the Deduplicate box to remove the

duplicate occurences.

» Save your job again and run it.

StarfIny fobh Jamorasiime a8 S SR SRR SEEF

Fitt |Brad|Pari=.Beverly Hill=s|Llo=s Angele=s.Llondon
Willi=s|Bruce|HMadrid, Paris, Foma |Madrid, Los Angeles, Dublin
Moore |Demi |Fio de Janeiro.Hew York|Los Angeles.Paris
Joli|Angelina|Llos Angeles.Berlin|los Angeles,.Berlin

Job Janorwalise anded af S SF GERAFFOSGES fasr b oodes8T

This time, the console shows the results with no duplicate instances.

176

Talend Open Studio

Copyright © 2007

Components
tDie

tDie

(%

tDie properties

Both tDie and tWarn components are closely related to the tLogCatcher component. They
generally make sense when used alongside a tLogCatcher in order for the log data collected to be
encapsulated and passed on to the output defined.

Component family Log & Error ¢
¥ <
Function Kills the current job. Generally used with a tCatch for log purpose.
Purpose Triggers the tLogCatcher component for exhaustive log before killing the
job.
Die message Enter the message to be displayed before the job is
killed.
Error code Enter the error code if need be, as an integer
Priority Set the level of priority, as an integer
Usage Cannot be used as a start component.
Limitation nla

Related scenarios

For uses cases in relation with tDie, see tLogCatcher scenarios:
» Scenariol: warning & log on entries on page 330

 Scenario 2: log & kill a job on page 332

Copyright © 2007 Talend Open Studio 177

Components
tDTDValidator

tDTDValidator

tDTDValidator Properties

Component family XML ¢
¥ <
Function Validates the XML input file against a DTD file and sends the validation
log to the defined output.
Purpose Helps at controlling data and structure quality of the file to be processed
Properties Schema type and A schema is a row description, i.e., it defines the
Edit Schema number of fields to be processed and passed on to

the next component. The schemais either built-in
or remotely stored in the Repository but in this
case, the schema is read-only. It contains standard
information regarding the file validation.

DTD file Filepath to the reference DTD file.

XML file Filepath to the XML file to be validated.

If XML is valid, Type in a message to be displayed in the Run Job
display console based on the result of the comparison.

If XML is not valid
detected, display

Print to console Check the box to display the validation message

Usage This component can be used as standalone component but it is usually
linked to an output component to gather the log data.

Limitation n/a

Scenario: Validating xml files

This scenario describes a job that validates several files from a folder and outputs the log
information for the invalid files into a delimited file.

Lqru:uwl l{:Main]l =E>\E£E Iu%ug_erru%ursnnl';.f: I{Main]; =.@.

tFilelist 1 ' " tDTDWalidator 1 tMap_1 tFileCutputDelimited 1

* Click and drop the following components from the Palette: tFileList, tDTDValidator,
tMap, tFileOutputDelimited.

 Connect the tFileList to the tDTDValidator with an Iterate link and the remaining
component using a main row.

178 Talend Open Studio Copyright © 2007

Components
tDTDValidator

* Set the tFileList component Properties, to fetch an XML file from a folder.

‘g3, tRilelist_1

Directory " Input! * E]
Filerask, "* ol
[]case sensitive

» Change the Filemask to *.xml. Mind the quotes depending on the Perl or Java version you
are using.

e Uncheck the Case Sensitive box.

 Inthe tDTDValidate component Properties, the schema is read-only as it contains standard
log information related to the validation process.

« Set the DTD file to be used as reference.

tDTDValidator_1

Schema Type Edit schemna [:I
Citd File "o InputyTalend_rb/DTD)test, ded' *
sl File $_globals{tFileList_1-CURRENT FILEPATH}

IF =ML is walid, display | "[job " . jobMame . "]".$_globals{tFileList_1}+{CURREMT_FILE} . " is ¥alidin"

oo

IF %ML is invalid, display | "[job " . jobMame . "]".$_globals{tFileList_1-{CURRENT _FILE:." is Inwalidin®
Prink ko console

» Press Ctrl+Space bar to access the variable list. In the XML file field, select the current
filepath global variable : $_globals{tFileList_1}{CURRENT_FILEPATH} (in Perl)

« In the various messages to display in the Run Job tab console, use the jobName to recall the
job name tag. Recall the filename using the relevant global variable:
$_globals{tFileList_1}{CURRENT_FILE}. Mind the Perl or Java operators such as the dot
or the plus sign to build your message.

« Check the Print to Console box.

* In the tMap component, drag and drop the information data from the standard schema that
you want to pass on to the output file.

Copyright © 2007 Talend Open Studio 179

Components
tDTDValidator

| = 5 L1 auto map!
rowl | errorsOnly + > wp [
Colurmn Filters conditions (BRI
dtdFile 0== $rowl[validate] 4
xrnfile X Expressian Colurnn
Memen $rowl [dedFile] didFile
job . '
$row] [xmlfile] wmifile
camponent
i $row][moment] roment
validate i i
$row][validate] wvalidate
message
$row][message] message
error
$rowl[errar] error

» Once the Output schema is defined as required, add a filter condition to only select the log
information data when the XML file is invalid.

» Follow the best practice by typing first the wanted value for the variable, then the operator
based on the type of data filtered then the variable that should meet the requirement. In this
case (in Java and Perl): 0 == $row1[validate]

» Then connect (if not already done) the tMap to the tFileOutputDelimited component using
a main row. Name it as relevant, in this example: errorsOnly.

¢ In the tFileOutputDelimited Properties, Define the destination filepath, the field
delimiters and the encoding.

+ Save your job and press F6 to run it.

SEFrfing ol SN EI TS te g I505F SloUESSEES

[job jobHame]lte=st ®Zml i= Inwalid

[job jobHame]lte=t? ®Zml i= Inwalid

[1ob jobHame]testd . =mml i1s Invalid

[job jobHame]ltestd ®Zml i=s Inwalid

[job jobHame]lte=th =ml is Inwalid

[1ob jobHame]testt . mml 1= Invalid

Joab SRR rgare andaed s 15 0FF FlefEesSEEF fasr e oodesis

On the Run Job console the messages defined display for each of the invalid files. At the same time
the output file is filled with log data.

180 Talend Open Studio Copyright © 2007

tELTMysqlinput

Components
tELTMysqlInput

=

tELTMysqglinput properties

All three ELT MySQL components are closely related together in regard to their operating

condition. These components should be used to handle MySQL DB schemas to generate Insert

statements including clauses, which are to be executed to the DB output table defined.

Component family

Function

Purpose

Properties

Usage

Related scenarios

ELT

S

Provides the table schema to be used for the SQL statement to execute.

Allows to add as many Input tables as required for the most complicated Insert

statement.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
nature and number of fields to be processed. The
schema is either built-in or remotely stored in the
Repository. The Schema defined is then passed on to
the ELT Mapper to be included to the Insert SQL
statement.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

tELTMysqllnput is to be used along with the tELTMysqlMap. Note that the
Output link to be used with these components has to reflect faithfully the name

of the table

Note: Note that the ELT components do not handle actual
data flow but only schema information.

For uses cases in relation with tELTMysqllnput, see tELTMysqglMap scenarios:

+ Scenariol: Aggregating table columns and filtering on page 185

» Scenario 2: ELT using Alias table on page 188

Copyright © 2007

Talend Open Studio

181

Components
tELTMysqlMap

tELTMysqlMap

-H
ELT

tELTMysqglMap properties

All three ELT MySQL components are closely related together in regard to their operating
condition. These components should be used to handle MySQL DB schemas to generate Insert
statements including clauses, which are to be executed to the DB output table defined.

182 Talend Open Studio Copyright © 2007

Components
tELTMysqglMap

Component family ELT ¢
Function Helps to graphically build the SQL statement using the table provided as input.
Purpose Uses the tables provided as input, to feed the parameter in the built statement.

The statement can include inner or outer joins to be implemented between
tables or between one table and its aliases.

Properties Property type Either Built-in or Repository.
Built-in: No property data stored centrally.
Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and DB user authentication data.

Password

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Preview The preview is an instant shot of the Mapper data. It
becomes available when Mapper properties have
been filled in with data. The preview synchronization
takes effect only after saving changes.

Map editor The ELT Map editor allows you to define the output
schema as well as build graphically the SQL
statement to be executed.

Usage tELTMysqlMap is used along with a tELTMysglInput and

tELTMysqlOutput. Note that the Output link to be used with these
components has to reflect faithfully the name of the tables.

Note: Note that the ELT components do not handle actual

Connecting ELT components

data flow but only schema information.

The ELT components do not handle any data as such but table schema information that will be

used to build the SQL query to execute.

Therefore the only connection required to connect these components together is a simple link.

Note: The output name you give to this link when creating it should always be the exact
name of the table to be accessed as this parameter will be used in the SQL

statement generated.

Related topic: Link connection on page 45

Copyright © 2007

Talend Open Studio 183

Components
tELTMysqlMap

Mapping and joining tables

Inthe ELT Mapper, you can select specific columns from input schemas and include them in the
output schema.

» As you would do it in the regular Mapper editor, simply drag & drop the content from
the input schema towards the output table defined.

 Use the Ctrl and Shift keys for multiple selection of contiguous or non contiguous table
columns.

You can implement explicit joins to retrieve various data from different tables.
« Click on the Join drop-down list and select the relevant explicit join.

 Possible joins include: Inner Join, Left Outer Join, Right Outer Join or Full Outer
Join and Cross Join.

By default the Inner Join is selected.

You can also create Alias tables to retrieve various data from the same table.
* In the Input area, click on the plus (+) button to create an Alias.
* Define the table to base the alias on.

+ Type in a new name for the alias table, preferrably not the same as the main table.

Adding where clauses

You can also restrict the Select statement based on a Where clause. Click on the Add filter row
button at the top of the output table and type in the relevant restriction to be applied.

Make sure that all input components are linked correctly to the ELT Map component to be able
to implement all inclusions, joins and clauses.

Generating the SQL statement

The mapping of elements from the input schemas to the output schemas create instantly the
corresponding Select statement.

Schema editor | Expression editor | Generated SOL Select query For 'tablel' oukbput
SELECT

owners, ID_Owner, owners, Mame_Customer, owners, ID_Insurance, cars Req_Car, cars.Make, cars.Color,
resellers.Mame_Reseler, resellers, Ciky

FROM

owners INMER 10IM cars QR cars, ID_Owiners = owners ID_Cwner)

IMMER, JOIMN resellers ORQ resellers,ID_Reseller = cars. ID_Reseler)

WHERE resellers, City ="West Coast City'

The clause are also included automatically.

184 Talend Open Studio Copyright © 2007

Components
tELTMysqglMap

Scenariol: Aggregating table columns and filtering

This scenario describes a job gathering together several Input DB table schemas and implementing
a clause to filter the resulting output using an SQL statement.

=

awners

resuls (kablel, order:0) * Ci

ap_1 results

resellers

 Click and drop the following components: tELTMysqglIntput, tELTMysqglMap,
tELTMysqlOutput.

 Three input components are required for this job.

» Connect the three ELT input components to the ELT mapper using links named following
strictly the actual DB table names: owners, cars and resellers.

» Then connect the ELT mapper to the ELT Output component using another link that you call
results.

« All three Input schemas are stored in the Metadata area of the Repository. They can
therefore be easily retrieved.

@ tELTMysqlinput_2

Schema Type epasitory !| |DB [MYSOLY: Talend-DEMS - cars \:|* Edit schema [

+ Click on the ELT mapper component to define the Database connection details.

» The Database connection details are stored in the Repository again

Copyright © 2007 Talend Open Studio 185

Components
tELTMysqlMap

tELTMysgiMap_1
ELT

ELT Mysql Map Editor D

Property Tyvpe Repository + || Repository |DE {M¥SQLY: Talend-DEMS _,|*

£y
Huost | ‘talend-dbrms' |.;\F‘|:|rt | ‘3308 LaDatabase | ‘talend' |.;.
] ' +] ' +
lsername | rook |.;. Passwiord | boor o
" +
Encoding | '150-8859-15" |
Prewview : | &+ 5 + 59 futa gt
[L Ireracs - .
pEgUits Qralded) + &
_ tsddiinal chmses [Whereyprounoen, ..
LB FEEAIH = rannlur Ciby ="Mk Crast Oy b
Exphzit Dol [rgidiisesr R Db | Sieeds Enpeession Db
F G Eownes - s 10_Cwes s (D Bl XW_twrer
O B feg iy v, Hres_Ciones Fa Ot
O P anann [I1_Wensras K [re s
O Coks cuiz Aty C &, Aeg iw
O K _Frsediey s Mk M
o Kok oo
e e _Paler Pl sy
resrlem FMERIH v L peilers Ry y
Ecplici ... Caurm IrpuifistaM... Paorsign colrn | axprem...
= O, T pair - care. ID_Pasaller
[Plasrar_Foar...
[Arami_F...
[Iprods
[iy

 The default encoding for Mysql database is retained.
 Launch the ELT Map editor to set up the join between Input tables

» Drag & drop the ID_Owner column from the Owners table to the corresponding column of
the cars table.

» Select INNER JOIN in the Cars table join list, and check Explicit Join, in front of the
ID_Owners.

» Drag the ID_Resellers column from the Cars table to the Resellers table to set up the second
join. Select here again INNER JOIN in the list of the Resellers table and check the Explicit
Join box of the relevant column.

» Then select the columns to be aggregated into the output.

 Select all columns from the Cars and Owners table and only the Reseller_Name and City
columns from the Resellers table.

* Drag & drop them to the Results output table.
» The mapping displays in yellow and the joins display in dark violet.

» Click on the Generated SQL Select query tab to display the corresponding SQL Statement.

186 Talend Open Studio Copyright © 2007

Components
tELTMysqglMap

Schema editor | Expression editar | Generaked 0L Select query For ‘tablel’ oukput

SELECT

owners, ID_Owner, awners,Mame_Custamer, awners, ID_Insurance, cars.Reg_Car,
cars.Make, cars,Color, resellers.Mame_Reseler, resellers, Ciky
FRICM

owners INMER J0IM cars QM cars, ID_Owners = awners, ID_Cwner)
IMMER JCIM resellers O resellers,ID_Reseller = cars, ID_Reseller)

» Then implement a filter on the output table.

» Click on the Add filter row button of the output table.

results (tablel) B &

Additional clauses (Where/groupords
(faroup! Add Filker row

Expressian Colurmn
owners, ID_Owner C%, ID_Cwner
owners,MName_Custamer Marne_Cu...
owners, ID_Insurance ID_Insura...
cars.Req_Car C%, Req_Car
cars,Make Make
cars, Color Colar
resellers.Mame_Reseler Mame_Re...
resellers, Ciky Ciky

* Restrict the Select using a Where clause such as: resellers.City ='West Coast City'

+ See the reflected where clause on the Generated SQL Select query tab.

Schema editar | Expression editar | Generated 3L Select guery For tablel’ oukput

SELECT

owners, ID_Owner, owners,Name_Customer, owners, ID_Insurance, cars,Req_Car, cars.Make, cars,Color,
resellers.Mame_Reseler, resellers, Ciky

FR.CM

owners INMER J0IN cars ORI cars, ID_Owiners = owners, ID_Cwner)

IMMER JOIM resellers ON{ resellers. ID_Reseller = cars.ID_Reseller)

WHERE resellers, Ciky ="West Coast Ciky!

» Click OK to save the ELT Map setting.
* Define the ELT Output in the Properties Panel of the tELTMysqlOutput component.

» The Action on table is Drop and create table for this use case and the only action available
on data in MySQL is Insert.

» The schema is to be synchronised with the tELTMysqlMap component as it aggregates
several source schemas.

Copyright © 2007 Talend Open Studio 187

Components
tELTMysqlMap

» -

Q Bezultzet 1

ID...

16
K
33
34
39
E2
ES
76
7
a8
a3

Mame_Customer
hirtk.en
kennan
atitken
hirtk.en
nanant
hanheng
gallken
ninele
hengle
bt
carbo
bobouh

ID_Insur...
EM+I366
RTAS530
QoGO8
MTATETS
*BrMZ2459
C5Pas47
LLP1021

AMX995E
SLGESAR3
[IFSE344
EHM 3338
LpTO348

Reg_Car
E225 GT &7
0EO1 S0 E7
57290 52
0427 LR 72
7RG B 28
8402 JE 03
3840 2w 19
E523 DY 26
2087 I 01
3795 G 95
7752 0B 29
0462 P 53

b ake

Renault
Renault
Renault

Topata
Bkdvs

Yolkawa. .

B
Mercedes
Toyaota
Topata
Mercedes
Topata

Calor
greeh
blue
blue
qold
purple
blue
greeh
gold
gold
blue
blue
purple

Mame_Reszeller
Best Carz Shop
Carz & Pickup Re..
Carz & Pickup Sp...
Best Cars Specialist
Best Carz Rezale
Carz & Pickup Re..
All pou need Outlet
Best Carz Shop
Best Cars Outlet

All pau need Outlet
Carz & Pickup Re...
Best Cars Outlet

City

West Coast City
West Coast City
Wiest Coast City
West Coast City
Whest Coast City
West Coast City
West Coast City
"Whest Coast City
West Coast City
West Coast City
Wiest Coast City
West Coast City

All selected data are inserted in the results table as specified in the SQL statement defined respecting
the clause.

Scenario 2: ELT using Alias table

This scenario describes a job that uses an Alias table. The employees table contains all employees
details as well as the ID of their respective manager, which are also considered as employees and
hence included in the employees table. The dept table contains location and department information

about the employees.

empluyem\\b

" EELTMysgiMap_1

z

dept

ELT

results I{tablez u:uru:ler IZI]I * Cﬁ

resulks

» Drag and drop tELTMysqglInput components to retrieve respectively the employees and
dept table schemas.

* In this use case, both schemas are stored in the Repository and can therefore be easily

retrieved.

188

Talend Open Studio

Copyright © 2007

Components
tELTMysqglMap

i, tELTMysqlinput_1

Schema Type Repository « || | DB (M¥SOLY): Talend-DBMS - emplovees w ¥ Edit schema E]

* Then select the tELTMysqlMap and define the Mysql database connection details.

* Here again the connection information is stored in the Repository’s Metadata.

E%\E tELTMysqiMap_1

ELT Mysql Map Editor D

Property Type Repositary + | Repository | DB (MYSOL): Talend-DBMS [

Host ‘talend-dbms' o Port | '3308' pDatabase | 'talend'
sernanme 'ront! E Password | 'toor!

Encading T90-3359-15"

Preview : | + = B | [+ = B | sutmraml

 Click on the button to launch the ELT Map editor.

« First make sure the correct input table is positioned at the top of the Input area, as the Joins
are highly dependent on this position.

* In this example, the employees table should be on top.

employees i
Explicit ... Calurmn Cperakaor Fareign colurmn | expression
~ [1D
~] DERTHO
] MAME
] ID_MANAGER.
dept INMER 10N ~ L
Explicit ... | Column Operakor Foreign column | expression
-4 DERTHO = emplovess DEPTHO
] DMNAME
] Lo

» Drag and drop the DeptNo column from the employees table to the dept table to set up the
join between both input tables.

» Check the Explicit Join box and define the join as an Inner Join.

* Then create the Alias table based on the employees table

Copyright © 2007 Talend Open Studio 189

Components
tELTMysqlMap

¥ Add a new alias

Type a valid alias ;

x]

| Managers

for this table ;

employess W

employees

04 H Cancel]

* Name it Managers and click OK to display it as a new Input table in the ELT mapper.

newly added Managers table.

Drag & drop the ID column from the employees table to the ID_Manager column of the

» Check the Explicit Join box and define it as Left Outer Join, in order for results to be output

eventhough they contain a Null value.

employees i
Explicit ... Column Cperakor Foreign column | expression
—~ [ID
A] DEPTHO
] MAME
] ID_MAMNAGER
dept INMER J0IN ~ L
Explicit ... Column Cperator Foreign column | expression
-4 DERTHO = emplovess DEPTHO
] DMNAME
] Lo
Managers (alias of table "employees") LEFT QUTER 30N ~ L
Explicit ... Calurmn Cperakaor Fareign colurmn | expression
] D
] DERTHO
] MAME
- ID_MANAGER = employvess, 1D

» Drag and drop the content of both Input tables, employees and dept, as well as the Name
column from the Manager table to the Output table.

 Click on the Generated SQL Select query tab to display the query to be executed.

190

Talend Open Studio

Copyright © 2007

Components
tELTMysqglMap

Schema editor | Expression editar | Generated 0L Select query For 'tablez’ oukput

SELECT

emplovees. 1D, employees DEPTMO, employees, MAME, emplovess, ID_MAMAGER, dept, DMAME, depk, Lo,

Managers, NAME
FRCM

employees INMER 1010 depkt ORI dept,DEPTMNC = employees, DEPTHO)

CIJTER J0IM emplovees Managers OR{ Managers. ID_MANAGER = emplovees. ID)

» Then click on the Output component and define the Action on data on Insert.

* Make sure the schema is synchronized with the Output table from the ELT mapper before
running the job through F6 or via the toolbar.

@ Besultset 1

I DEPTMO
10
10
20
10
10
10
10
10
10

w
ﬂmmmm-ﬁ-mm!

MAME
&EL
FIERRICE
MICHAEL
STEPHAME
CEDRIC
CEDRIC
CEDRIC
CEDRIC
FABRICE

ID_MAMAGER DMAME

ACCOUNTING
ACCOUMTING
RESEARCH

ACCOUNTING
ACCOUMTING
ACCOUNTING
ACCOUMTING
ACCOUMTING
ACCOUNTING

S R R R = =

Loc

NEW ORK
NEW Y ORK
DaLLAS
NEW ORFK
KNEW S ORK
NEW ORK
MNEW Y ORK
MNEW ORK
NEW “ORF.

MAME_1

STEPHANE

AxEL
FIERRICE,
MICHAEL
CHRISTOPHE
CEDRIC

The Department information as well as the Employees entries are coupled in the output, and the
Manager Name could be retrieved via the explicit join.

Copyright © 2007

Talend Open Studio

191

Components
tELTMysqlOutput

tELTMysqlOutput

o1

tELTMysqlOutput properties

All three ELT MySQL components are closely related together in regard to their operating
condition. These components should be used to handle MySQL DB schemas to generate Insert
statements including clauses, which are to be executed to the DB output table defined.

192 Talend Open Studio Copyright © 2007

Components
tELTMysqglOutput

Component family ELT ¢

Function Carries out the action on the table specified and inserts the data according to
the output schema defined the ELT Mapper.

Purpose Executes the SQL Insert statement to the Mysqgl database

Properties Action on table On the table defined, you can perform one of the

® In Java, use
tCreateTable as
substitute for this
function.

Action on data

Schema type and Edit
Schema

Encoding

following operations:

None: No operation carried out

Drop and create the table: The table is removed and
created again

Create a table: The table doesn’t exist and gets
created. If the table exists, an error is generated and
the job is stopped.

Create table if doesn’t exist: Create the table if
needed and carries out the action on data anyway.
Clear a table: The table content is deleted

On the data of the table defined, you can perform the
following operation:

Insert: Add new entries to the table. If duplicates are
found, job stops.

Note that in Mysgl ELT, only Insert operation is
available.

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Usage tELTMysqlOutput is to be used along with the tELTMysqlMap. Note that
the Output link to be used with these components has to reflect faithfully the

name of the table.

Note: Note that the ELT components do not handle actual
data flow but only schema information.

Copyright © 2007 Talend Open Studio

193

Components
tELTMysqlOutput

Related scenarios

For uses cases in relation with tELTMysqlOutput, see tELTMysqglMap scenarios:
e Scenariol: Aggregating table columns and filtering on page 185

+ Scenario 2: ELT using Alias table on page 188

194 Talend Open Studio Copyright © 2007

=

Components
tELTOraclelnput

tELTOraclelnput

tELTOraclelnput properties

All three ELT Oracle components are closely related together in regard to their operating condition.
These components should be used to handle Oracle DB schemas to generate Insert, Update or Delete
statements including clauses, which are to be executed to the DB output table defined.

Component family ELT ¢

Function Provides the table schema to be used for the SQL statement to execute.

Purpose Allows to add as many Input tables as required for the most complicated Insert
statement.

Properties Schema type and Edit | A schema is a row description, i.e., it defines the
Schema nature and number of fields to be processed. The

schema is either built-in or remotely stored in the
Repository. The Schema defined is then passed on to
the ELT Mapper to be included to the Insert SQL
statement.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Usage tELTOraclelnputisto be used along with the tELTOracleMap. Note that the
Output link to be used with these components has to reflect faithfully the name
of the table

Note: Note that the ELT components do not handle actual
data flow but only schema information.

Related scenarios

For uses cases in relation with tELTOraclelnput, see tELTOracleMap Scenario 1: Updating
Oracle DB entries on page 198.

Copyright © 2007 Talend Open Studio 195

Components
tELTOracleMap

tELTOracleMap

-H
ELT

tELTOracleMap properties

All three ELT Oracle components are closely related together in regard to their operating condition.
These components should be used to handle Oracle DB schemas to generate Insert, Update or Delete
statements including clauses, which are to be executed to the DB output table defined.

196 Talend Open Studio Copyright © 2007

Components
tELTOracleMap

Component family ELT ¢
Function Helps to graphically build the SQL statement using the table provided as input.
Purpose Uses the tables provided as input, to feed the parameter in the built statement.

The statement can include inner or outer joins to be implemented between
tables or between one table and its aliases.

Properties Property type Either Built-in or Repository.
Built-in: No property data stored centrally.
Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and DB user authentication data.

Password

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Preview The preview is an instant shot of the Mapper data. It
becomes available when Mapper properties have
been filled in with data. The preview synchronization
takes effect only after saving changes.

Map editor The ELT Map editor allows you to define the output
schema as well as build graphically the SQL
statement to be executed.

Usage tELTOracleMap is used along with a tELTOraclelnput and

tELTOracleOutput. Note that the Output link to be used with these
components has to reflect faithfully the name of the tables.

Note: Note that the ELT components do not handle actual

Connecting ELT components

data flow but only schema information.

For detailed information regarding ELT component connections, see Connecting ELT

components on page 183.

Related topic: Link connection on page 45

Mapping and joining tables

In the ELT Mapper, you can select specific columns from input schemas and include them in the

output schema.

Copyright © 2007

Talend Open Studio 197

Components
tELTOracleMap

For detailed information regarding the table schema mapping and joining, see Mapping and
joining tables on page 197.
Adding where clauses

For details regarding the clause handling, see Adding where clauses on page 198.

Generating the SQL statement

The mapping of elements from the input schemas to the output schemas create instantly the
corresponding Select statement.

The clause defined internally in the ELT Mapper are also included automatically.

Scenario 1: Updating Oracle DB entries

This scenario relies on the job described in ELT MySQL components, Scenariol: Aggregating table
columns and filtering on page 185. As the update action on the data is available in Oracle DB, this
scenario describes a job updating particular entries of the results table, adding a model to the make
column of the cars table.

LELTOraclelnput_ 1™

e resulks (kablez, order:) =C§

racleMap_1 ELTOracleCutput_1

LELTOraclelnput_2
resellss (Table)

LELTOraclelnput_3
 Define all three Input components as described in Scenariol: Aggregating table columns
and filtering on page 185.

* When connecting the ELT Input components to the ELT mapper, make sure you use the
relevant table names as these table names will be used as parameters in the SQL statement
generated in the ELT mapper.

* Remove the additional clause used to filter the output columns.

* Add a new filter row to the output table in the ELT mapper to setup a relationship between
input and output tables : owners.ID_OWNER=results.ID_OWNER

198 Talend Open Studio Copyright © 2007

Components
tELTOracleMap

results {tablez) rep |
additional clauses (Wherefgroupforder.,.)

awners, ID_OWRER=results, ID_OWHER 4
Expression Colurnn

cars,MAKE || ' C-Class' MAKE

cars REG_CAR || 'sold by ' |||resellers. MAME_RE: MAME_RESELLER. 1

* Remove also all the columns unused for the Update action on the output table.

Then apply the update to the Make column adding the mention C-Class preceding by a
double-pipe.

And also add the mention Sold by in front of the reseller name column from the resellers
table.

Check the Generated SQL select query to be executed.

Schema editor | Expression editar | Generaked S0L Select query For ‘tablez’ oukput

SELECT

cars,MAKE || ' C-Class', cars, REG_CAR || ' sold by || resellers, NAME_RESELLER.
FRCIM

awners , cars , resellers

‘“WHERE

cars. ID_CAWNERS = owners ID_OWHNER
KD resellers. ID_RESELLER = cars,ID_RESELLER
AMD owners, ID_OWHNER=results, ID_OWHER

» Click OK to validate the changes in the ELT mapper. And make sure the Oracle DB
connection details are filled in in the tELTOracleMap component properties.

+ Select the tELTOracleOutput component to define the Action on data to be carried out.

,:5 tELTOracleOutput_1

&ckion on kable Mome s« | Action ondata |Update s
Schema Type Built-In « | Editschema [
Where clauses "results HAKE= 'Hercedes'"|

(For UPDATE and DELETE only)

» There is no action on the table, and the Action on data is set to Update.

Check that the Schema type corresponds to the output table from the ELT Mapper.

In the Where clause area, add an additional clause: results. MAKE= ‘Mercedes’.

Then press F6 to run the job and check the results table in a DB viewer.

Copyright © 2007 Talend Open Studio 199

Components
tELTOracleMap

Staréang job ELracdlelindate af 15585 11048750087,
Tpdating with

UFDATE results . SET (HMAKE WAME REESELLER) = (SELECT cars.MAKE ||
C—Class', cars REG_CAR || ' =old by ' || resellers. HAME_RESELLER

FREOM owners . cars . resellers WHEFE cars. ID_OWHERS

owners. ID_OWHER AND resellers.ID_RESELLEERE = car=.ID REESELLER

AND owners. ID_OWHER=re=zult=. ID_OWNEE) WHERE re=ult=. MAKE=

'Mercede=s'

—>» 2 rows updated.

Jobh ELNracisliindate andad a¢ 150855 11-ofd-P007 fesr b codesET

The job executes the query generated and updates the relevant rows.

By green YE Al you need Outlet West Coast City
Mercedes C-Class gold 36523 DY 26 sold by Best Cars Shop West Coast City
Toyota gold 24 |Best Cars Qutlet West Coast City
Toyota hlue 93| Al you need Outlet West Coast City
Mercedes C-Class hlue ag|7752 OB 89 sold by Cars & Pickup Resale West Coast City
200 Talend Open Studio Copyright © 2007

Components
tELTOracleOutput

tELTOracleOutput

3

tELTOracleOutput properties

All three ELT Oracle components are closely related together in regard to their operating condition.
These components should be used to handle Oracle DB schemas to generate Insert, Update or Delete
statements including clauses, which are to be executed to the DB output table defined.

Copyright © 2007 Talend Open Studio 201

Components
tELTOracleOutput

Component family

Function

Purpose

Properties
% In Java, use
tCreateTable as

substitute for this
function.

Usage

ELT

Carries out the action on the table specified and inserts the data according to
the output schema defined the ELT Mapper.

Executes the SQL Insert statement to the Mysgl database

Action on table

Action on data

Schema type and Edit
Schema

Encoding

On the table defined, you can perform one of the
following operations:

None: No operation carried out

Drop and create the table: The table is removed and
created again

Create a table: The table doesn’t exist and gets
created. If the table exists, an error is generated and
the job is stopped.

Create table if doesn’t exist: Create the table if
needed and carries out the action on data anyway.
Clear a table: The table content is deleted

On the data of the table defined, you can perform the
following operation:

Insert: Add new entries to the table. If duplicates are
found, job stops.

Update: updates entries in the table.

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

tELTOracleOutput is to be used along with the tELTOracleMap. Note that
the Output link to be used with these components has to reflect faithfully the

name of the table.

Note: Note that the ELT components do not handle actual
data flow but only schema information.

202

Talend Open Studio

Copyright © 2007

Components
tELTOracleOutput

Related scenarios

For uses cases in relation with tELTOracleOutput, see tELTOracleMap Scenario 1: Updating
Oracle DB entries on page 198.

Copyright © 2007 Talend Open Studio 203

e

Components
tELT Teradatalnput

tELTTeradatalnput

tELTTeradatalnput properties

All three ELT Teradata components are closely related together in regard to their operating
condition. These components should be used to handle Teradata DB schemas to generate Insert
statements including clauses, which are to be executed to the DB output table defined.

Component family ELT ¢
¥ <
Function Provides the table schema to be used for the SQL statement to execute.
Purpose Allows to add as many Input tables as required for the most complicated Insert
statement.
Properties Schema type and Edit | A schema is a row description, i.e., it defines the
Schema nature and number of fields to be processed. The

schema is either built-in or remotely stored in the
Repository. The Schema defined is then passed on to
the ELT Mapper to be included to the Insert SQL
statement.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Usage tELT Teradatalnput is to be used along with the tELT TeradataMap. Note
that the Output link to be used with these components has to reflect faithfully
the name of the table

Note: Note that the ELT components do not handle actual
data flow but only schema information.

Related scenarios

For uses cases in relation with tELT Teradatalnput, see tELTMysqglMap scenarios:
» Scenariol: Aggregating table columns and filtering on page 185

+ Scenario 2: ELT using Alias table on page 188

204 Talend Open Studio Copyright © 2007

Components
tELTTeradataMap

tELTTeradataMap

e
ELT

tELTTeradataMap properties

All three ELT Teradata components are closely related together in regard to their operating
condition. These components should be used to handle Teradata DB schemas to generate Insert
statements including clauses, which are to be executed to the DB output table defined.

Copyright © 2007 Talend Open Studio 205

Components

tELT TeradataMap
Component family ELT ¢
Function Helps to graphically build the SQL statement using the table provided as input.
Purpose Uses the tables provided as input, to feed the parameter in the built statement.
The statement can include inner or outer joins to be implemented between
tables or between one table and its aliases.
Properties Property type Either Built-in or Repository.
Built-in: No property data stored centrally.
Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and DB user authentication data.

Password

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Preview The preview is an instant shot of the Mapper data. It
becomes available when Mapper properties have
been filled in with data. The preview synchronization
takes effect only after saving changes.

Map editor The ELT Map editor allows you to define the output
schema as well as build graphically the SQL
statement to be executed.

Usage tELTTeradataMap is used along with a tELT Teradatalnput and

tELT TeradataOutput. Note that the Output link to be used with these
components has to reflect faithfully the name of the tables.

Note: Note that the ELT components do not handle actual
data flow but only schema information.
Connecting ELT components

For detailed information regarding ELT component connections, see Connecting ELT
components on page 183.

Related topic: Link connection on page 45

Mapping and joining tables

In the ELT Mapper, you can select specific columns from input schemas and include them in the
output schema.

206 Talend Open Studio Copyright © 2007

Components
tELTTeradataMap

For detailed information regarding the table schema mapping and joining, see Mapping and
joining tables on page 197.

Adding where clauses

For details regarding the clause handling, see Adding where clauses on page 198.

Generating the SQL statement

The mapping of elements from the input schemas to the output schemas create instantly the
corresponding Select statement.

The clause defined internally in the ELT Mapper are also included automatically.

Related scenarios

For uses cases in relation with tELT TeradataMap, see tELTMysqlMap scenarios:
e Scenariol: Aggregating table columns and filtering on page 185

+ Scenario 2: ELT using Alias table on page 188

Copyright © 2007 Talend Open Studio 207

Components
tELTTeradataOutput

tELTTeradataOutput

S

tELTTeradataOutput properties

All three ELT Teradata components are closely related together in regard to their operating
condition. These components should be used to handle Teradata DB schemas to generate Insert
statements including clauses, which are to be executed to the DB output table defined.

208 Talend Open Studio Copyright © 2007

Components

tELTTeradataOutput
Component family ELT ¢
Function Carries out the action on the table specified and inserts the data according to
the output schema defined the ELT Mapper.
Purpose Executes the SQL Insert statement to the Teradata database
Properties Action on table On the table defined, you can perform one of the

® In Java, use
tCreateTable as
substitute for this
function.

Action on data

Schema type and Edit
Schema

Encoding

following operations:

None: No operation carried out

Drop and create the table: The table is removed and
created again

Create a table: The table doesn’t exist and gets
created. If the table exists, an error is generated and
the job is stopped.

Create table if doesn’t exist: Create the table if
needed and carries out the action on data anyway.
Clear a table: The table content is deleted

On the data of the table defined, you can perform the
following operation:

Insert: Add new entries to the table. If duplicates are
found, job stops.

Note that in Teradata ELT, only Insert operation is
available.

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Usage tELT TeradataOutput is to be used along with the tELT TeradataMap. Note
that the Output link to be used with these components has to reflect faithfully

the name of the table.

Note: Note that the ELT components do not handle actual
data flow but only schema information.

Copyright © 2007 Talend Open Studio

209

Components
tELTTeradataOutput

Related scenarios

For uses cases in relation with tELT TeradataOutput, see tELTMysqlMap scenarios:
» Scenariol: Aggregating table columns and filtering on page 185

 Scenario 2: ELT using Alias table on page 188

210 Talend Open Studio Copyright © 2007

=]

Components
tExternalSortRow

tExternalSortRow

tExternalSortRow properties

Component family Processing ¢
% ' S
Function Uses an external sort application to sort input data based on one or
several columns, by sort type and order
Purpose Helps creating metrics and classification table.
Properties Schema type and A schema is a row description, i.e., it defines the
Edit Schema number of fields that will be processed and

passed on to the next component. The schema is
either built-in or remote in the Repository.
Click Edit Schema to make changes to the
schema. Note that if you make changes, the
schema automatically becomes built-in.

Click Sync columns to retrieve the schema from
the previous component connected in the job.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is
stored in the Repository, hence can be reused in
various projets and job flowcharts. Related topic:
Setting a repository schema on page 49

Criteria Click + to add as many lines as required for the
sort to be complete. By default the first column
defined in your schema is selected.

Schema column: Select the column label from
your schema, which the sort will be based on.
Note that the order is essential as it determines the
sorting priority.

Sort type: Numerical and Alphabetical order are
proposed. More sorting types to come.

Order: Ascending or descending order.

Maximum memory | Type in the size of physical memory you want to
allocate to the sort processing.

Temporary directory | Set the location where the temporary files should

be stored in.
Add a dummy EOF | Check this box when using the
line tAggregateSortedRow component.
Usage This component handles flow of data therefore it requires input and

output, hence is defined as an intermediary step.

Copyright © 2007 Talend Open Studio 211

Components
tExternalSortRow

Limitation n/a

Related scenario

For related use case, see tSortRow Scenario: Sorting entries on page 494.

212

Talend Open Studio

Copyright © 2007

Components
tFileCompare

tFileCompare

tFileCompare properties

Component family File/Management ¢
i &
Function Compares two files and provides comparison data (based on a read-only
schema)
Purpose Helps at controlling the data quality of files being processed.
Properties Schema type and A schema is a row description, i.e., it defines the
Edit Schema number of fields to be processed and passed on to

the next component. The schemais either built-in
or remotely stored in the Repository but in this
case, the schema is read-only.

File to compare Filepath to the file to be checked.

Reference file Filepath to the file, the comparison is based on.
If differences are Type in a message to be displayed in the Run Job
detected, display console based on the result of the comparison.

If no difference
detected, display

Print to console Check the box to display the cumessage

Usage This component can be used as standalone component but it is usually
linked to an output component to gather the log data.

Limitation n/a

Scenario: Comparing unzipped files

This scenario describes a job unarchiving a file and comparing it to a reference file to make sure it
didn’t change. The output of the comparison is stored into a delimited file and a message displays
in the console.

== row [Mair * @

" tFilelnarchive_1 ' ' " tFileCompare_1 tFileCutputDelimited 1

» Drag and drop the following components: tFileUnarchive, tFileCompare, and
tFileOutputDelimited.

¢ Link the tFileUnarchive to the tFileCompare with Iterate connection.

Copyright © 2007 Talend Open Studio 213

Components
tFileCompare

» Connect the tFileCompare to the output component, using a Main row link.
* In the tFileUnarchive component properties, fill in the path to the archive to unzip.
* In the Extraction Directory field, fill in the destination folder for the unarchived file.

* In the tFileCompare Properties, set the File to compare. Press Ctrl+Space bar to display
the list of global variables. Select $_globals{tFileUnarchive_1}{CURRENT_FILEPATH} or
"((String)globalMap.get("tFileUnarchive_1 CURRENT_FILEPATH"))" according to the
language you work with, to fetch the file path from the tFileUnarchive component.

% tFileCompare_1
Schema Type Edit schiemna B

File to compare | $_globals{tFileUnarchive_{ HCURREMT_FILEPATH} |

*

alo

Reference file | "o InputfSunmyevale_accounts. csy' |

*

If differences detected, displa';.-'l "[job . $_globals{job_name}t."] Files differ’

— =

If no differences detected, displa';.f| ‘Tiob '.%_alobals{iob_narme}."] Files are identical’

Prink to console

» And set the Reference file to base the comparison on it.

* Inthe messages fields, set the messages you want to see in case the files differ or in case the
files are identical, for example: '[job ".$_globals{job_name}."] Files differ" if you work with
Perl or "[job " + jobName + "] Files differ" if you work in Java.

» Check the Print to Console box, for the message defined to display at the end of the
execution.

» The schema is read-only and contains standard information data. Click Edit schema to have
a look to it.

% Schema of tFileCompare_1

tFileCompare_1

Zolumn Key | Twpe mullable | Length Precision Comment

* Then set the output component as usual with semi-colon as data separators.

 Save your job and press F6 to run it.

214 Talend Open Studio Copyright © 2007

Components
tFileCompare

SEartIing fof Sompsrafries g6 F4 000 FFoTESSTEES
[1ob CompareFiles] Files differ
Jabh fompsrefifes andas ¢ I8 07 T8eRESSEET fasr e oodes=iT

The message set is displayed to the console and the output shows the schema information data.

F11e; file_ref;moment; job; component; differ;message
CinInputhAccountshsunmywale_accounts_new. x15; C Tnput /Sunmywale_accounts. osw;

5?2;_%_19 14:11:59; CompareFiles; tFilecompare_1;1; [Jjob Compareriles] Files
iffer

Copyright © 2007 Talend Open Studio 215

Components
tFileCopy

tFileCopy

tFileCopy Properties

Component family File/Management iﬁ ({

Function Copies a source file into a target directory and can remove the source
file if so defined.

Purpose Helps to streamline processes by automating recurrent and tedious tasks
such as copy.

Properties File Name Path to the file to be copied or moved
Destination Path to the directory where the file is

copied/moved to.
Remove source file | Check this box to move the file to the destination.

Replace existing file | Check this box to overwrite any existing file with
the newly copied file.

Usage This component can be used as standalone component .

Limitation n/a

Scenario: Restoring files from bin

This scenario describes a job that iterates on a list of files, copies each file from the defined source
directory to a target directory. It then removes the copied files from the source directory.

EFileList 1 ' ' " tFileCopy 1

+ Click and drop a tFileList and a tFileCopy.
 Link both components using an Iterate link.

* In the tFileList Properties, set the directory for the iteration loop.

216 Talend Open Studio Copyright © 2007

Components
tFileCopy

‘e tRileList_1

Direckory " output/Bin® [:I
Filernask. il

Case Sensitive Moo

« Set the Filemask to ““*.txt™ to catch all files with this extension. For this use case, the case
IS not sensitive.

» Then select the tFileCopy to set its Properties.

%E tFileCopy_1

File Mame {fstringglobalMap. get{"tFilelist_1 CURREMT FILEPATH"Y [* [:I

Destination "/ Inputf/Popyahoo” * E]
Femove source File Replace existing File

* Inthe File Name field, press Ctrl+Space bar to access the list of variables.

« Selectthe global variable ((String)globalMap.get("tFileList 1 CURRENT_FILEPATH™)) if
you work in Java, or $_globals{tFileList_1}{CURRENT_FILEPATH} if you work in Perl.
This way, all files from the source directory can be processed.

» Check the Remove Source file box to get rid of the file that have been copied.

» Check the Replace existing file to overwrite any file possibly present in the destination
directory.

 Save your job and press F6.

The files are copied onto the destination folder and are removed from the source folder.

Copyright © 2007 Talend Open Studio 217

Components
tFileDelete

tFileDelete

EL

tFileDelete Properties

Component family File/Management 3@ ({

Function Suppresses a file from a defined directory.

Purpose Helps to streamline processes by automating recurrent and tedious tasks
such as delete..

Properties File Name Path to the file to be copied or moved

Usage This component can be used as standalone component.

Limitation n/a

Scenario: Deleting files

This very simple scenario describes a job deleting files from a given directory.

Lq l% Onok g

tFileList 1 ' ' " tFileDelete 1 ' Flava_i

 Click and drop the following components: tFileList, tFileDelete, tlava.

* In the tFileList Properties, set the directory to loop on in the Directory field.

‘w trleList_1

Direckory I"C:,I'Output,l'Bin" | E]
Filernask: | " b |
Zase Sensitive |_ND h |

» The filemask is “*.txt” and no case check is to carry out.

* In the tFileDelete Properties panel, set the File Name field in order for the current file in
selection in the tFileList component be deleted. This allows to delete all files contained in
the directory defined earlier on.

218 Talend Open Studio Copyright © 2007

Components
tFileDelete

@ tFileDelete_1

File Mame | ({String)globalMap. get{"tFileList_{_CURRENT_FILEPATH"}) |

Copyright © 2007 Talend Open Studio 219

Components
tFileDelete

 press Ctrl+Space bar to access the list of global variables. In Java, the relevant variable to
collect the current file is: ((String)globalMap.get("tFileList_1_CURRENT_FILEPATH")).

» Theninthe tJava component, define the message to be displayed in the standard output (Run
Job console). In this Java use case, type in the Code field, the following script:
System.out.printin(((String)globalMap.get("tFileList 1 CURRENT_FILE"))

+ " has been deleted!");

» Then save your job and press F6 to run it.

Stareing jabh Friafal 3¢ J&8 55 Fioidss = iigs.
16.
15.
14.
13,
12.
11.
10.
ne.
na.
nz.
NG .
ns.
n4 .
n3.
nz.

01

Lkﬁ?f}jfihj amias & I8 ST SRR SEEE fasr b oonde =iy

Lt
L=t
L=t
Lt
L=t
L=t
L=t
L=t
Lt
L=t
L=t
Lt
L=t
L=t
L=t
L=t

ha=
ha=
ha=
ha=
ha=
ha=
ha=
ha=
ha=
ha=
ha=
ha=
ha=
ha=
ha=
ha=

been
been
been
been
been
been
been
been
been
been
been
been
been
been
been
been

delsted!
del=sted!
del=eted!
deleted!
del=eted!
deleted!
del=sted!
delseted!
delsted!
del=sted!
del=eted!
deleted!
del=eted!
deleted!
del=sted!
delseted!

The message set in the tJava component displays in the log, for each file that has been deleted
through the tFileDelete component.

220

Talend Open Studio

Copyright © 2007

Components

tFileFetch
a tFileFetch
tFileFetch properties

Component family Internet ¢

Function tFileFetch retrieves a file from HTTP

Purpose tFileFetch allows to fetch data contained in a file through HTTP
protocol.

Properties URI Type in the URI of the HTTP site where the file

is to be fetched from.

Destination Browse to the destination folder where the file
Directory fetched will be placed.
Destination Type in a new name for the file fetched, if need
Filename be.

Usage This component is generally used as a start component to feed the input

flow of a job and is often connected to the job through a ThenRun link.

Limitation n/a

Scenario: Fetching data through HTTP

This scenario describes a three-component job which retrieves data from an HTTP website and
select data that will be stored into a delimited file.

N

tFileFatch_1
RunEgfore
@ row 1 (Mair) =@
‘tFileInputRegex_ 1 ' ' ' " rFile0utputDelimited 1

 Click and drop a tFileFetch, a tFilelnputRegex and a tFileOutputDelimited onto your
workspace.

 Inthe tFileFetch Properties panel, type in the URI where the file to be fetched can retrieved
from.

* Inthe Destination directory field, browse to the folder where the fetched file is to be stored.

Copyright © 2007 Talend Open Studio 221

Components
tFileFetch

* In the Filename field, type in a new name for the file if you want it to be changed. In this
example, filefetch.txt.

» Select the tFilelnputRegex, set the File name so that it corresponds to the file fetched
earlier.

 Using a regular expression, in the Regex field, select the relevant data from the fetched file.
In this example: <td(?: class="leftalign")?> \s* (t\w+) \s* </td>

@ Take care to use the correct Regex syntax according to the generation language in use as the syntax
is different in Java/Perl, and to include the regexp in single or double quotes accordingly.

« Define the header, footer and limit if need be. In this case, we’ll ignore these fields.
 Define also the schema describing the flow to be passed on to the final output.

» The schema should be automatically propagated to the final output, but to be sure, check the
schema in the Properties panel of the tFileOutputDelimited component.

» Then press F6 to run the job.

222 Talend Open Studio Copyright © 2007

P

tFilelnputDelimited

Components
tFilelnputDelimited

tFileinputDelimited properties

Component family | File/Input

S

Function tFilelnputDelimited reads a given file row by row with simple separated fields.
Purpose Opens a file and reads it row by row to split them up into fields then sends fields as
defined in the Schema to the next job component, via a Row link.
Properties Property type Either Built-in or Repository.
Built-in: No property data stored centrally.
Repository: Select the Repository file where Properties are
stored. The following fields are pre-filled in using fetched
data.
File Name Name of the file to be processed.

Field separator
Row separator
Header

Footer

Limit

Schema type and Edit
Schema

Skip empty rows

Extract lines at random/
Number of lines

Related topic:Defining job context variables on page 101
Character, string or regular expression to separate fields.
String (ex: “\n”on Unix) to distinguish rows.

Number of rows to be skipped in the beginning of file
Number of rows to be skipped at the end of the file.

Maximum number of rows to be processed. If Limit=0, no
row is read or processed.

A schema is a row description, i.e., it defines the number of
fields that will be processed and passed on to the next
component. The schema is either built-in or remote in the
Repository.

Click Edit Schema to make changes to the schema. Note that
if you make changes, the schema automatically becomes
built-in.

Click Sync columns to retrieve the schema from the
previous component connected in the job.

Built-in: The schema will be created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projets and job
flowcharts. Related topic: Setting a repository schema on
page 49

Check this box to skip empty rows.

Check this box to set the number of lines to be extracted
randomly.

Copyright © 2007 Talend Open Studio 223

Components
tFilelnputDelimited

Encoding Select the encoding from the list or select Custom and define
it manually. This field is compulsory for DB data handling.

Usage Use this component to read a file and separate fields contained in this file using a
defined separator.

Scenario: Delimited file content display

The following scenario creates a two-component job, which aims at reading each row of a file,
selecting delimited data and displaying the output in the Run Job log console.

Ia. . u:-:ulm:'nns {M:ain} ;D@{

" Client_bulk_file display

Click and drop a tFilelnputDelimited component from the Palette to the design workspace.

Click and drop a tLogRow component the same way.

Right-click on the tFilelnputDelimited component and select Row > Main. Then drag it
onto the tLogRow component and release when the plug symbol shows up.

Select the tFilelnputDelimited component again, and define its properties:

@ tFileInputDelimited_1

Froperty Type i + | Repository | DELIM:Cwners w

File Mame ' InpukfCwiners, csy'

Fow Separator "In" i Field Separator | '}

Header 1 pFocter | 0 i Limit

Schema Twpe Repository s || | DELIM: Owners - mekadata w * Edit schema E] d
[]Extract lines at random

Encoding Type [S0-8859-15 4

« Fill in a path to the file in the File Name field. This field is mandatory.

» Define the Row separator allowing to identify the end of a row. Then define the Field
separator used to delimit fields in a row.

« Inthis scenario, the header and footer limits are not set. And the Limit number of processed
rows is set on 50.

+ Select either a local (Built-in) or a remotely managed (Repository) Schema type to define
the data to pass on to the tLogRow component.

224 Talend Open Studio Copyright © 2007

Components
tFilelnputDelimited

* You can load and/or edit the schema via the Edit Schema function.

Related topics: Setting a built-in schema and Setting a repository schema on page 49

As selected, the empty rows will be ignored.

Enter the encoding standard the input file is encoded in. This setting is meant to ensure
encoding consistency throughout all input and output files.

Select the tLogRow and define the Field separator to use for the output display. Related
topic: tLogRow properties on page 334.

Check the Print schema column name in front of each value box to retrieve the column

labels in the output displayed.

Go to Run Job tab, and click on Run to execute the job.

The file is read row by row and the extracted fields are displayed on the Run Job log as defined in
both components Properties.

Stareimy jabh Frigafad s Ji- 45 15004805007

ID Owner:
ID_Cwner:
ID_Cwner
ID Owner:
ID_COwner

.

2 |Hane
3| Hame:
4 |Hame:
E |Hame
6 |Hame:

1T

lebouh | ID Insurance: PEIZ906
bouhnan | ID_Insurance: BHU9147
hirtle|ID In=surance: TEVE360
bobouh | ID Insurance: WPM3I1G51
carbone | ID_Insurance: IFYY9885

Ll T TalrAe s -

The Log sums up all parameters in a header followed by the result of the job.

Copyright © 2007

Talend Open Studio 225

Components
tFilelnputMail

tFilelnputMail

tFilelnputMail properties

Component family

Function
Purpose

Properties

Usage

Limitation

File/Input

S

reads the header and content parts of an email file defined

helps to extract standard key data from emails

File name

Schema type and
Edit Schema

Mail parts

Browse to the source email file

A schema is a row description, i.e., it defines the
number of fields that will be processed and
passed on to the next component. The schema is
either built-in or remote in the Repository.
Click Edit Schema to make changes to the
schema. Note that if you make changes, the
schema automatically becomes built-in.

Click Sync columns to retrieve the schema from
the previous component connected in the job.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is
stored in the Repository, hence can be reused in
various projets and job flowcharts. Related topic:
Setting a repository schema on page 49

Column: This field is automatically populated
with the columns defined in the schema that you
propagated.

Mail part: Type in the label of the header part or
body to be displayed on the output.

This component handles flow of data therefore it requires input and
output, hence is defined as an intermediary step.

n/a

Scenario: Extracting key fields from email

This two-component scenario is aimed at extracting some key standard fields and displaying the

values on the Run Job console.

226

Talend Open Studio

Copyright © 2007

Components

tFilelnputMail
rowl (Mair " &
FFileInputMail_1 FLogRow_1
 Click and drop a tFilelnputMail and a tLogRow component
+ On the Properties tab, define the email parameters:
ﬁ tFileInputMail
File Mame '\ Input 1600° * [ainl
Schema Type Built-In % || Edit schema [:I
Mail parts Colurmn Mail part
Author "Fram'
Topic "Subject’
DeliveryDate 'Delivery-date
LinesMr 'Lines'

Browse to the mail File to be processed. Define the schema including all columns you want
to retrieve on your output.

Once the schema is defined, click OK to propagate it into the Mail parts table

On the Mail part column of the table, type in the actual header or body standard keys that
will be used to retrieve the values to be displayed.

Define the tLogRow in order for the values to be separated by a carriage return. On Windows
OS, type in \n between double quotes.

Press F6 to run the job and display the output flow on the execution console.

Sedrfing ol Frileinpuelsrd ¢ 11045 J8-GLTTES

"Brice 1" <Brice. l@technologies fr:

Fe: Gestion de transactions

Tue, 16 Jan 2007 16:30:02 +0100

111

SJabh Frlefnpueari o anded a6 18045 J8CFLSTRS ST b oodesiyg

The header key values are extracted as defined in the Mail parts table. Indeed, the author, topic,
delivery date and number of lines are part of the output displayed.

Copyright © 2007 Talend Open Studio 227

L

Components
tFilelnputPositional

tFilelnputPositional

tFilelnputPositional properties

Component family

File/Input

b IS

Function tFilelnputPositional reads a given file row by row and extracts fields based on a pattern.
Purpose Opens a file and reads it row by row to split them up into fields then sends fields as defined
in the Schema to the next job component, via a Row link.
Properties Property type Either Built-in or Repository.
Built-in: No property data stored centrally.
Repository: Select the Repository file where Properties are
stored. The following fields are pre-filled in using fetched
data.

File Name Name of the file to be processed. Related topic:Defining job
context variables on page 101

Field separator Character, string or regular expression to separate fields.

Row separator String (ex: “\n”on Unix) to distinguish rows.

Header Number of rows to be skipped in the beginning of file

Footer Number of rows to be skipped at the end of the file.

Limit Maximum number of rows to be processed. If Limit =0, no
row is read or processed.

Schema type and Edit A schema is a row description, i.e., it defines the number of

Schema fields that will be processed and passed on to the next
component. The schema is either built-in or remote in the
Repository.

Built-in: The schemawill be created and stored locally for this
component only. Related topic: Setting a built-in schema on
page 49

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projets and job
flowcharts. Related topic: Setting a repository schema on page
49

Skip empty rows Check this box to skip empty rows.

Pattern Length values separated by commas, interpreted as a string
between quotes. Make sure the values entered in this fields are
consistent with the schema defined.

Encoding Select the encoding from the list or select Custom and define
it manually. This field is compulsory for DB data handling.

Usage Use this component to read a file and separate fields using a position separator value.
228 Talend Open Studio Copyright © 2007

Components
tFilelnputPositional

Scenario: From Positional to XML file

The following scenario creates a two-component job, which aims at reading data of an Input file and
outputting selected data (according to the data position) into an XML file.

@. . :rcuwl I::Main]l - " %

Contracts Ref Contracks_Ref kML

 Click and drop a tFilelnputPositional component from the Palette to the design workspace.
The file contains raw data, in this case, contract nr, customer references and insurance
numbers.

 Click and drop a tFileOutputXML component. This file is meant to receive the references
in a structured way.

 Right-click on the tFilelnputPositional component and select Row > Main. Then drag it
onto the tFileOutputXML component and release when the plug symbol shows up.

+ Select the tFileInputPositional component again, and define its properties.

» The job properties are built-in for this scenario. As opposed to the Repository, this means that
the Property type is set for this station only.

B tFileInputPositional_1

Property Type Built-In w

File Mame "Colnputfraw, head'

R.ow Separator “n" Patkern | '25,13,11,*
Header 0 Fookter |0 Lirnit
Schema Type Built-In +w || Edit schema E] [akip empby rows

Encoding Type [50-8859-15 +

 Fill in a path to the file in the File Name field. This field is mandatory.
« Define the Row separator identifying the end of a row, by default, a carriage return.

» Then define the Pattern to delimit fields in a row. The pattern is a series of length values
corresponding to the values of your input files. The values should be entered between quotes,
and separated by a comma. Make sure the values you enter match the schema defined.

* Inthis scenario, the header, footer and limit fields are not set. But depending on the input file
structure, you may need to define them.

 Select a Schema type to define the data to pass on to the tFileOutputXML component.

Copyright © 2007 Talend Open Studio 229

Components
tFilelnputPositional

* You can load and/or edit the schema via the Edit Schema function. For this schema, define
three columns, respectively Contracts, CustomerRef and InsuranceNr matching the three
value lengths defined.

®- Schema of Contracts_Ref

kFileInputPositional _1

Zolurnn Key | Type Length Precision = Mullable Comment
L, Contract]
CuskomerRef []
Insurancelr]]

[Ok l [Zancel

 Then define the second component properties:

» Enter the XML output file path.

tFileOutputxvL

File: Mame | "Cioutputst CantracksRef , xml |* E

Root kags Rowkag | ContractRef! |*

Tag

"ContractsList'

|:| Column name as tag name Field kag | Field' |*

[] 5plit output in several files

Encoding | T50-8859- 15" I*

Schema Type Bult-ln «| Edit schema [

 Enter a root tag (or more), to wrap the XML structure output, in this case ‘ContractsList’.

« Define the row tag that will wrap each line data, in this case ‘ContractRef’.

* Check the box Column name as tag name to reuse the column label from the input schema
as tag label. By default, “field’ is used for each column value data.

 Enter the Encoding standard, the input file is encoded in. Note that, for the time being, the
encoding consistency verification is not supported.

230 Talend Open Studio Copyright © 2007

Components
tFilelnputPositional

 Select the Schema type. If the row connection is already implemented, the schema is
automatically synchronized with the Input file schema. Else, click on Sync columns.

+ Go to the Run Job tab, and click on Run to execute the job.

The file is read row by row and split up into fields based on the length values defined in the Pattern
field. You can open it using any standard XML editor.

— <ContractsList>
— <ContractRef=
= Contract=00004</Contract=
=CustomerRef=5200</CustomerRef=
InsuranceNr=>50320</InswranceNr=>
=/ContractRef~
— <ContractRef>
=Contract=00010</Contract~
ZCustomerBef>8200</CustomerBef>
=InsuwranceMNr=50335</InsuranceNr=
<{ContractRef>
— <ContractRef=
ZContract=00001</Contract=
=CustomerRef=7200</CustomerRef=
InsuranceNr=>50320</InswranceNr=>

=/ContractRef=

Copyright © 2007 Talend Open Studio 231

Components
tFilelnputRegex

tFileInputRegex

>

tFileInputRegex properties

Component family File/Input ¢
¥ <
Function Powerful feature which can replace number of other components of the File

family. Requires some advanced knowledge on regular expression syntax

Purpose Opens a file and reads it row by row to split them up into fields using regular
expressions. Then sends fields as defined in the Schema to the next job
component, via a Row link.

Properties Property type Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where Properties
are stored. The following fields are pre-filled in using
fetched data.

File Name Name of the file to be processed.
Related topic:Defining job context variables on page
101

Row separator String (ex: “\n”on Unix) to distinguish rows.

Regex This field is Perl or Java compatible and can contain

multiple lines. Type in your regular expressions
including the subpattern matching the fields to be
extracted.

Note: In Java, antislashes need to be doubled in regexp

& Regexp syntax is different if in Java/Perl and
requires double or single quotes respectively.

Header Number of rows to be skipped in the beginning of file
Footer Number of rows to be skipped at the end of the file.
Limit Maximum number of rows to be processed. If Limit=0,

no row is read or processed.

Schema type and Edit | A schemaisarow description, i.e., it defines the number

Schema of fields that will be processed and passed on to the next
component. The schema is either built-in or remote in
the Repository.

Built-in: The schema will be created and stored locally
for this component only. Related topic: Setting a built-in
schema on page 49

232 Talend Open Studio Copyright © 2007

Components
tFilelnputRegex

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projets
and job flowcharts. Related topic: Setting a repository
schema on page 49

Skip empty rows Check this box to skip empty rows.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB data
handling.

Usage Use this component to read a file and separate fields contained in this file

according to the defined Regex.

Limitation n/a

Scenario: Regex to Positional file

The following scenario creates a two-component job, reading data from an Input file using regular
expression and outputting delimited data into an XML file.

@- - ru:ul.-;-.ll {Maén} . r @

“tFileInputRegex 1 tFileCutputPositional_1

Click and drop a tFileInputRegex component from the Palette to the design workspace.

Click and drop a tFileOutputPositional component the same way.

Right-click on the tFilelnputRegex component and select Row > Main. Drag this main row
link onto the tFileOutputPositional component and release when the plug symbol displays.

Select the tFilelnputRegex again so the properties tab shows up, and define the properties:

Copyright © 2007 Talend Open Studio 233

Components

tFilelnputRegex

@ tFileInputRegex

Property Type Built-In w

File Mame "CilInputhapache. log' * E]

Row Separator "I

Regex Ai\d{l,3}_\1:1{1,3}_\1:1{1,3}_\1:1{1,3}} #IF address ~
‘“[\[?E’]\f\]]ﬂ\] # Date w

Header 1] Footer |0 Lirit

Schema Type Built-In w | Edi schema E]

skip empty rows

Encoding 'T50-5859-15"

The job is built-in for this scenario. Hence, the Properties are set for this station only.
Fill in a path to the file in File Name field. This field is mandatory.
Define the Row separator identifying the end of a row.

Then define the Regular expression in order to delimit fields of a row, which are to be
passed on to the next component. You can type in a regular expression using Perl code, and
on mutiple lines if needed.

& Take care to use the correct Regex syntax according to the generation language in use as the syntax
is different in Java/Perl, and to include the regexp in single or double quotes accordingly.

In this expression, make sure you include all subpatterns matching the fields to be extracted.
In this scenario, ignore the header, footer and limit fields.

Select a local (Built-in) Schema type to define the data to pass on to the
tFileOutputPositional component.

You can load or create the schema through the Edit Schema function.

Then define the second component properties:

234

Talend Open Studio Copyright © 2007

Components
tFilelnputRegex

@ tFileOutputPositional

File Marme | "Cihoukputsh oot Ext! |* E]
Schema Type Buit-In '~ | Edit schema [
Formats Zolumn Size Padding char | Alignment Keep

IPaddress 20 " Left All

Dake a0 ' Left All

Infos 50 ' Left Al

[Jappend []Include header
Encoding | '150-8553-15"

 Enter the Positional file output path.

+ Enter the Encoding standard, the output file is encoded in. Note that, for the time being, the
encoding consistency verification is not supported.

« Select the Schema type. Click on Sync columns to automatically synchronize the schema
with the Input file schema.

* Now go to the Run Job tab, and click on Run to execute the job.

The file is read row by row and split up into fields based on the Regular Expression definition. You
can open it using any standard file editor.

£ out.txt - Bloc-notes |Z||E|r>__(|
Fichier Edition Faormat Affichage 7
82.120.169,53 20/5ep/2006:00:51:13 -0700forumprofile. php

B5.15.108. 94 20/5ep,/2006:00:51:13 -0700/Torum
81.202.137.187 20/5ep/2006:00:54 134 0700,/ FTarumTndex. php

Copyright © 2007 Talend Open Studio 235

Components
tFilelnputXML

tFilelnputXML

tFilelnputXML Properties

Component family File/Input ¢
¥ <
Function tFilelnputXML reads an XML structured file and extracts data row by row.
Purpose Opens an XML structured file and reads it row by row to split them up into
fields then sends fields as defined in the Schema to the next component, via
a Row link.
Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Schema type and Edit | A schema is a row description, i.e., it defines the

Schema number of fields that will be processed and passed on
to the next component. The schema is either built-in
or remote in the Repository.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused in various
projets and job flowcharts. Related topic: Setting a
repository schema on page 49

File Name Name of the file to be processed.
Related topic:Defining job context variables on page
101

Loop XPath query Node of the tree, which the loop is based on

Mapping Column reflects the schema as defined by the
column/XPath Query | Schema type field
XPath Query: Enter the fields to be extracted from
the structured input.

Limit Maximum number of rows to be processed. If Limit
=0, no row is read nor processed.

Encoding Select the encoding from the list or select Custom
and define it manually. This field is compulsory for
DB data handling.

Limitation n/a

236

Talend Open Studio Copyright © 2007

Scenario: XML street finder

Components
tFilelnputXML

This very basic scenario is made of two components. A tFilelnputXML component extracts from
the defined street directory file and the output is displayed on the Run Job console via a tLogRow

component.

Street_dir

Finder {Mair)

‘q_;"

"Dir_Struck_display

+ Select a tFileInputXML file from the File folder in the Palette. Click and drop also a

tLogRow component and connect both components.

» On the Properties panel of the tFilelnputXML, define the properties:

|f$ tFileInputXML

Property Type Repository s || Repository
achema Type Repository w || Repository
Filename "ChInputiareas. xml’
Loop ¥Path query | fareas)area)strest’
Mapping columng¥Path quer, Column
ity
Diskrick
Skreet
Lirnik
Encading 'T50-8859-15"

StrestFinder

+

StreetFinder - metadata |+ |* Edit schema [Z]

el

=1

¥Path query

" ity
"i@diskrict’

onl

» Asthestreet dir file used as input file has been previously defined in the Metadata area, select
Repository as Property type. This way, the properties are automatically leveraged and the
rest of the properties fields are filled in (apart from Schema). For more information regarding
the metadata creation wizards, see Defining Metadata items on page 51.

« Select the same way the relevant schema in the Repository metadata list. Edit schema if you
want to make any change to the schema loaded.

» The Filename shows the structured file to be used as input

* In Loop XPath query, change if needed the node of the structure where the loop is based.

» On the Mapping table, fill the fields to be extracted and displayed in the output.

« If the file size is consequent, fill in a Limit of rows to be read.

Copyright © 2007

Talend Open Studio

237

Components
tFilelnputXML

* Enter the encoding if needed then double-click on tLogRow to define the separator character.

 Atlast, press F6 or goto Run Job and click Run to execute the job. On the console, the fields
defined in the input properties are extracted from the XML structured and displayed.

Stareing job TSt ressefimdar a6 15 45 FEo81- s
Paris|2ems arrondissement |Fus de la Paix

Paris|Bems arrondissement |Chamnps Elvsees

Hew York City|HManhattan|Madi=son avenue

Hew York City|Brooklyn|Washington heights

Job TSt rastFindar andad & I5 045 GE-RISR0F. fesTr E oo

238 Talend Open Studio Copyright © 2007

-2

Components
tFileList

_ tFileList

tFileList properties

Component family File/Management iﬁ ({

Function iterates on files of a set directory.

Purpose tFileList takes out a set of files based on a filemask pattern and iterates
on each file.

Properties Directory Path to the directory where files are stored
Filemask Filename or filemask using wildcharacter (*) .
Case sensitive Create case sensitive filter on filenames.

Usage tFilelist provides a list of files from a defined directory on which to
iterate

Scenario: Iterating on a file directory

The following scenario creates a three-component job, which aims at listing files from a defined
directory, reading each file by iteration, selecting delimited data and displaying the output in the
Run Job log console.

L.g o B .mwu:mam: =D@.

'CiiInputichunks_ref ' tFileInputDelimited_1 tLogRow 1

» Click and drop a tFileList , a tFileInputDelimited and a tLogRow component into the
Design workspace.

* Right-click on the tFileList component, and pull an Iterate connection to the
tFilelnputDelimited component. Then pull a Main row from the tFilelnputDelimited to
the tLogRow component.

* Now define the properties of all three components.

* First select the tFileList component, and click on Properties tab:

Copyright © 2007 Talend Open Studio 239

Components
tFileList

MUH (Job Fil,.. | PerlDoc | ReqExp | Tasks | Problems (1... | Modules | Scheduler = B

o
- L, tFileList
Properties Direckary |'C:'|,Input'l,chunks_reF' | m
View
Filernask, | bt |
Documentakion
Case Sensitive YES w

» Browse to the Directory of the files to process. To display the path on the job itself, use the
hint label (__DIRECTORY__) that shows up when you browse over the Directory field.
Type in this reference in the Label Format field of the View tab.

 Enter a Filemask using wildcards if need be.
* The case is sensitive.

+ Click on the tFileInputDelimited component and set the properties:

mmmc RegExp | Tasks | Run {Job Filelte, ., | Problems (Job F... | Modules | Scheduler =0

=
Main B tFileInputDelimited
Properties
View Property Tyvpe b
Documentation File Name | $_globals{tFileList_1}{CURRENT FILEPATH} *

Fow Separator | "“n" |Fie||:| Separator | R |

Header I:I Fanter | 1] |Limit | |
Schema Type Built-In v Edit schema E] [] akip empy rows

[]Extract a random number of lines

Encoding | US-ASCIT

 Enter the File Name field using a variable containing the current filename path, as you filled
in in the properties of tFileList. Press Ctrl+Space bar to access the autocomplete list of
variables.

« Fill in all other fields as detailed in the tFilelnputDelimited section. Related topic:
tFilelnputDelimited properties on page 223

* Select the last component, tLogRow and fill in the separator to be used to distinguish field
content displayed on the Log. Related topic: tLogRow properties on page 334.

240

Talend Open Studio Copyright © 2007

Execukion

I™ Run (Job Filelke,,,

Components
tFileList

Job Flelterate

[Soomw |

= Run]

Clear before run [Exec time

Starfing jobh Frisfftarste ¢ 11057 F1L-f1-F0087

oooo4s
ooolae
ooooly
oooo4s
oooo3z
ooo10z2
ooolo4
ooooo4d
000155
ooooay
oooo4s

2030708847013
3597e70011292
2030708846752
2030708847759
2030703845274
2030708845311
2030708347063
2030708845182
3040690502306
2030703845182
2030708847131

—000000764930
—Qoooooo9s000
—0o00o005140270
—000003993560
—0000010320320
—-000001248220
—-00o0000103710
—000000969950
—Qo0o0o038a70
—000001060320
—Qoooooz0z000

—Qoooo?s0an0
—Qooooss000
—Qoooo4z000
—Qo0o03s000
—gooooz2o0a00
—Qoooo1s0a00
—0oooo1so0n
—Qoooo1z000
—Qooo013000
—goooo1z2o000
—Qoooo1z000

Stats & Traces

u Clear

The job iterates on the directory defined, and reads each file contained. Then delimited data is passed
on to the last component which displays it on the Log.

For other scenarios using tFileList, see tFileCopy on page 216.

Copyright © 2007

Talend Open Studio

241

Components
tFileOutputExcel

% tFileOutputExcel

tFileOutputExcel Properties

Component family File/Output ¢
¥ <
Function tFileOutputExcel outputs data to an MS Excel type of file.
Purpose tFileOutputExcel writes an MS Excel file with separated data value according
to a defined schema.
Properties File name Name or path to the output file. Related topic:
Defining job context variables on page 101
Sheet name Name of the sheet

Include header

Schema type and Edit
Schema

Sync columns

Check the box to include header row to the output file

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either built-in
or remote in the Repository.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused in various
projects and job designs. Related topic: Setting a
repository schema on page 49

Click to synchronize the output file schema with the
input file schema. The Sync function only displays
once the Row connection is linked with the Output
component.

Encoding Select the encoding from the list or select Custom
and define it manually. This field is compulsory for
DB data handling.
Usage Use this component to write an XML file with data passed on from other

components using a Row link.

Limitation n/a

Related scenario

For tFileOutputExcel related scenario, see tSugarCRMInput on page 509.

242 Talend Open Studio

Copyright © 2007

Components
tFileOutputLDIF

tFileOutputLDIF

i

tFileOutputLDIF Properties

Component family File/Output ¢

Function tFileOutputLDIF outputs data to an LDIF type of file which can then be
loaded into a LDAP directory.

Purpose tFileOutputLDIF writes or modifies a LDIF file with data separated in
respective entries based on the schema defined,.or else deletes content from
an LDIF file.

Properties File name Name or path to the output file. Related topic:

Defining job context variables on page 101

Wrap Wraps the file content, every defined number of
characters.

Change type Select Add, Modify or Delete to respectively create

an LDIF file, modify or remove an existing LDIF
file. In case of modification, set the type of attribute
changes to be made.

Change on attributes | Select Add, Modify or Delete to respectively add a
new attribute to the file, replace the attributes with
new ones or suppress attributes from the file defined.

Schema type and Edit | A schema is a row description, i.e., it defines the

Schema number of fields that will be processed and passed on
to the next component. The schema is either built-in
or remote in the Repository.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused in various
projects and job designs. Related topic: Setting a
repository schema on page 49

Sync columns Click to synchronize the output file schema with the
input file schema. The Sync function only displays
once the Row connection is linked with the Output
component.

Encoding Select the encoding from the list or select Custom
and define it manually. This field is compulsory for
DB data handling.

Usage Use this component to write an XML file with data passed on from other
components using a Row link.

Limitation n/a

Copyright © 2007 Talend Open Studio 243

Components

tFileOutputLD

IF

Scenario: Writing DB data into an LDIF-type file

This scenario describes a two component job which aims at extracting data from a database table and
writing this data into a new output LDIF file.

. rowl [Main * :ﬁ

EMysglInpat 1 "tFileCutputLDIF 1

Click and drop a tDBInput and a tFileOutputLDIF component from the Palette to the
design area. Bind them together using a Row > Main link.

Select the tDBInput component, and go to the Properties panel then select the Properties
tab.

If you stored the DB connection details in a Metadata entry in the Repository, set the
Property type as well as the Schema type on Repository and select the relevant metadata
entry. All other fields are filled in automatically, and retrieve the metadata-stored
parameters.

. tMysqlinput_1

Property Type
Hosk
sername
Schema Tvpe
Query Type

Query

| ~ | Repository | DB (MYSQL): Talend-DEMS + |*
| '‘talend-dbms' |.;.F‘|:|rt | '3306' L;.Database | talend'
| root! |$ Password | ‘toor!
| Repository: v | | DB (MYSQL): Talend-DEMS - owners v |* Edit schema E]

Repository + | Repositary |DB (MYSOLY: Orders - QueryCiwners vl*

Encoding Tvpe 150-3559-15 v

Alternatively select Built-in as Property type and Schema type and fill in the DB
connection and schema fields manually.

Then double-click on tFileOutpuLDIF and define the Properties.

Browse to the folder where you store the Output file. In this use case, a new LDIF file is to
be created. Thus type in the name of this new file.

In the Wrap field, enter the number of characters held on one line. The text coming
afterwards will get wrapped onto the next line.

5
5

'zelect ID_Owners. Fegistration. Make from comprehensiwve’ * E]

244

Talend Open Studio Copyright © 2007

Components
tFileOutputLDIF

CEE tFileOutputLDIF_1

File Name | 'CHOubpUE File. IdiF =
Wirap | 78 |
Changetype add w

schema Type Built-In v Edtschema [
Encoding Tvpe I50-8859-15

» Select Add as Change Type as the newly created file is by definition empty. In case of
modification type of Change, you’ll need to define the nature of the modification you want
to make to the file.

* As Schema Type, select Built-in and use the Sync Columns button to retrieve the input
schema definition.

 Press F6 to short run the job.

& Lister - [C:\Outputs\File. |dif] =13
File Edit ©Options Help 33 %

LS
dn: 24 =

changetype: add

id ouwners: 24
registration: 5382 KC 94
make: Uolkswagen

dn: 32

changetype: add

id owners: 32
registration: 9591 OE 79
make: Honda

dn: 35

changetype: add

id owners: 35

registration: 3129 UH é1

make: Uolkswagen

W

| >
—

4
—

The LDIF file created contains the data from the DB table and the type of change made to the file,
in this use case, addition.

Copyright © 2007 Talend Open Studio 245

Components
tFileOutputXML

tFileOutputXML

tFileOutputXML properties

Component family File/Output ¢

Function tFileOutputXML outputs data to an XML type of file.

Purpose tFileOutputXML writes an XML file with separated data value according to
a defined schema.

Properties File name Name or path to the output file. Related topic:

Defining job context variables on page 101

Root tag Wraps the whole output file structure and data.
Row tag Wraps data and structure per row

Column name as tag | Check the box to leverage the column labels from the
name input schema, as data wrapping tag.

Split output in files If the XML file output is big , you can split the file
every certain number of rows.

Schema type and Edit | A schema is a row description, i.e., it defines the

Schema number of fields that will be processed and passed on
to the next component. The schema is either built-in
or remote in the Repository.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused in various
projects and job designs. Related topic: Setting a
repository schema on page 49

Sync columns Click to synchronize the output file schema with the
input file schema. The Sync function only displays
once the Row connection is linked with the Output
component.

Encoding Select the encoding from the list or select Custom
and define it manually. This field is compulsory for
DB data handling.

Usage Use this component to write an XML file with data passed on from other
components using a Row link.

Limitation n/a

246 Talend Open Studio Copyright © 2007

Components
tFileOutputXML

Scenario: From Positional to XML file

Find a scenario using tFileOutputXML component at section: Scenario: From Positional to XML
file on page 229.

Copyright © 2007 Talend Open Studio 247

Components
tFileUnarchive

[a tFileUnarchive

tFileUnarchive Properties

Component family File/Management ¢

Function Decompresses the archive file provided as parameter and put it in the
extraction directory.

Purpose Unarchives a file of any format (zip, rar...) that is mostlikely to be
processed.

Properties Archive file File path to the archive

Extract Directory Folder where the unarchived file is put

Use archive name as | Check the box to reproduce the whole path to the
@ Java only features | root directory / file or if none exists create a new folder
Extract file paths

Use Command line | Check this box to use another unarchiving tool

& Perlonly feature | tools than the one provided by default in the Perl
package.
Usage This component can be used as a standalone component but it can also

be used within a job as a Start component using an Iterate link.

Limitation n/a

Related scenario

For tFileUnarchive related scenario, see tFileCompare on page 213.

248 Talend Open Studio Copyright © 2007

Components
tFilterColumn

! tFilterColumn

tFilterColumn Properties

Component family Processing ¢

Function Makes specified changes to the schema defined, based on column name
mapping.

Purpose Helps homogenizing schemas either on the columns order or by
removing unwanted columns or adding new columns.

Properties Schema type and A schema is a row description, i.e., it defines the
Edit Schema number of fields that will be processed and

passed on to the next component. The schema is
either built-in or remote in the Repository.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is
stored in the Repository, hence can be reused in
various projects and job designs. Related topic:
Setting a repository schema on page 49

Usage This component is not startable (green background) and it requires an
output component.

Related Scenario

For more info regarding the tFilterColumn component in use, see tReplace Scenario: multiple
replacements and column filtering on page 475

Copyright © 2007 Talend Open Studio 249

Components
tFilterRow

tFilterRow

tFilterRow Properties

Component family Processing ?@ ¢

Function Compares a column from the main flow with a reference column from
the lookup flow and outputs the main flow data displaying the distance

Purpose Helps ensuring the data quality of any source data against a reference
data source.

Properties Schema type and A schema is a row description, i.e., it defines the
Edit Schema number of fields that will be processed and

passed on to the next component. The schema is
either built-in or remote in the Repository.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is
stored in the Repository, hence can be reused in
various projects and job designs. Related topic:
Setting a repository schema on page 49

Conditions Click Plus to add as many conditions as needed.
The conditions are performed one after the other
for each row.

Function: Select the function on the list

Input column: Select the column of the schema
the function is to be operated on

Operator: Select the operator to bind the input

column with the value

Value: Type in the filtered value, between quotes
if need be.

Use advanced mode | Check this box when the operation you want to
perform cannot be carried out through the
standard functions offered. In the text field, type
in the regular expression as required.

Logical operator In the case you want to combine simple filtering
used to combine and advanced mode, select the operator to
conditions combine both modes.

Usage This component is not startable (green background) and it requires an

output component.

250 Talend Open Studio Copyright © 2007

Components
tFilterRow

Scenario: Filtering and searching a list of names

The following use case filters a list of first names based on the name gender. Then using a regular
expression, the first names starting with ‘rom’ are listed.

B. rI:Il.-;\ll I{Ma;nj .':.@j rD'a;'ZIiMEIéI'I:' =.E@I.

tFileInputDelimited 1 " tFilkerRow 1 tLogRow 1

 Click and drop a tFilelnputDelimited, a tFilterRow and a tLogRow component.

* On the tFilelnputDelimited, set the file path and separators.

Property Type Built-In v

File Mame | 'Ti)/ InputFirsk_Mames, kxt' |* E]

Rowe Separatar | "“n" |Fie||:| Separator | i |

Header DFDDter |IZI |LimiI: | |
Schema Built-In v Edit schema B [v] skip empby rows

[Extract lines at random

Encoding Twpe 150-3559-15 v

» The row separator is a carriage return and the field separator is a tabulation.

* The properties and schema are Built-in for this job. This means, the retrieval information is
not stored in the Repository.

tFileInputDelimited_1

Calurnn Key | Twpe Mullable | Length Precision Carmrent
firstname]]
gender]]
language]]
fFrequency]]

» The schema is made of the following four columns in this example: firstname, gender,
language, frequency.

» Then select the Encoding type in the list according to your file.

Copyright © 2007 Talend Open Studio 251

Components
tFilterRow

Schems v | Editschema [

Conditions

Function Input column Operakor Yalue
Yalue of gender Equals {skr) “m"
Ilse advanced mode
Advanced $input_row[firstname] =" ~"roms

Logical operator used to combine conditions | And s« *

* In the Conditions table, fill in the filtering parameters based on the gender column.

 In Function, select value of, as Input column, select gender and as operator, select Equals
(Str) as the expected values are of string type.

* In the Value column, type in m between double quotes to filter only the male names.

* Then to implement the search on first names starting with the rom syllable, check the Use
advanced mode box and type in the following regular expression (in Perl) that includes the
name of the column to be searched: $input_row[firstname] =~ /~rom/

+ To combine both conditions (simple and advanced), select And as logical operator for this
use case.

» The tLogRow component doesn’t require any particular setting for this example.
 Save and execute the job.

Sedrfing job Frlrerianss a8 F&05T SFo0Ro50TES
romain|m|french|15 .32

roman |m|russian. polish, czech|53 .65

romano |m|italian|0. 41

romeo|m|italian|0. 29

romolo|m|italian|0

romulus | m|roman mythology |0, 45

Joab Frlrarfanes anded a6 TS SR ReSEEF farr e oodesn

Only the male names starting with the rom syllable are listed on the console.

252 Talend Open Studio Copyright © 2007

tFirebirdinput

Components
tFirebirdinput

®

tFirebirdInput properties

Component family

Function

Purpose

Properties

Usage

Databases/FireBird

%

tFirebirdInput reads a database and extracts fields based on a query.

tFirebirdInput executes a DB query with a strictly defined order which must
correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Property type

Host
Database

Username and
Password

Schema type and Edit
Schema

Query type and Query

Encoding

Either Built-in or Repository
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Database server IP address
Name of the database

DB user authentication data.

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

This component covers all possibilities of SQL queries onto a FireBird

database.

Copyright © 2007

Talend Open Studio 253

Components
tFirebirdInput

Related scenarios

For related topics, see generic tDBInput scenarios:
+ Scenario 1: Displaying selected data from DB table on page 162
 Scenario 2: Using StoreSQLQuery variable on page 163

See also related topic in tContextLoad Scenario: Dynamic context use in MySQL DB insert on page
145,

254 Talend Open Studio Copyright © 2007

Components
tFirebirdOutput

tFirebirdOutput

tFirebirdOutput properties

Component family Databases/FireBird

%

tFirebirdOutput writes, updates, makes changes or suppresses entries in a

tFirebirdOutput executes the action defined on the table and/or on the data

contained in the table, based on the flow incoming from the preceding

Function

database.
Purpose

component in the job.
Properties Property type

Host

Port

Database

Username and
Password

Table

Action on data

Clear data in table

Schema type and Edit
Schema

Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Database server IP address
Listening port number of DB server.
Name of the database

DB user authentication data.

Name of the table to be written. Note that only one
table can be written at a time

On the data of the table defined, you can perform:
Insert: Add new entries to the table. If duplicates are
found, job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing
ones.

Update or insert: Update existing entries or create it
if non existing

Delete: Remove entries corresponding to the input
flow.

Wipes out data from the selected table before action.

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Copyright © 2007

Talend Open Studio

255

Components
tFirebirdOutput

Encoding

Additional Columns

Commit every

Die on error

Usage

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

This option is not offered if you create (with or
without drop) the Db table. This option allows you to
perform actions on columns, which are not insert, nor
update or delete actions or requires a particular
preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After, following
the action to be performed on the reference column.

Reference column: Type in a column of reference
that the tDBOutput can use to place or replace the new
or altered column.

Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Uncheck this box to skip the row on error and
complete the process for non-error rows.

This component offers the flexibility benefit of the DB query and covers all

possibilities of SQL queries.

Related scenarios

For related topics, see:

» tDBOutput Scenario: Displaying DB output on page 166

* tMySQLOutput Scenario: Adding new column and altering data on page 396.

256 Talend Open Studio

Copyright © 2007

tFirebirdRow

Components
tFirebirdRow

&

tFirebirdRow properties

Component family

Function

Purpose

Properties

Databases/FireBird

%

tFirebirdRow is the specific component for this database query. It executes
the SQL query stated onto the specified database. The row suffix means the
component implements a flow in the job design although it doesn’t provide

output.

Depending on the nature of the query and the database, tFirebirdRow acts on
the actual DB structure or on the data (although without handling data). The
SQLBuilder tool helps you write easily your SQL statements.

Property type

Host
Port
Database

Username and
Password

Schema type and Edit
Schema

Query type

Query

Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Database server IP address
Listening port number of DB server.
Name of the database

DB user authentication data.

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Either Built-in or Repository.

Built-in: Fill in manually the query statement or build
it graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Copyright © 2007

Talend Open Studio 257

Components
tFirebirdRow

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.

Related scenarios

For related topics, see:
» tDBSQLRow Scenario 1: Resetting a DB auto-increment on page 170
» tMySQLRow Scenario: Removing and regenerating a MySQL table index on page 408.

258 Talend Open Studio Copyright © 2007

Components

tFlowMeter
tFlowMeter

tFlowMeter Properties
Component family Log/Error ¢
Function Counts the number of rows processed in the defined flow.
Purpose The number of rows is then meant to be caught by the tFlowMeterCatcher

for logging purpose.
Properties Use input connection | Check the box to reuse the name given to the input

name as label main row flow as label in the logged data.

Mode Select the type of values for the data measured:

Absolute: the actual number of rows is logged
Relative: a ratio (%) of the number of rows is
logged. When selecting this option, the reference

Thresholds Adds a threshold to watch proportions in volumes
measured. you can decide that the normal flow has to
be between low and top end of a row number range,
and if the flow is under this low end, there is a
bottleneck.

Usage Cannot be used as a start component as it requires an input flow to operate.

Limitation n/a

If you have a need of log, statistics and other measurement of your data flows, see Automating stats
& logs use on page 113.

Related scenario

For related scenario, see Scenario: Catching flow metrics from a job on page 261.

Copyright © 2007 Talend Open Studio 259

Components
tFlowMeterCatcher

tFlowMeterCatcher

tFlowMeterCatcher Properties

Component family Log & Error Qﬁ ¢
N =2

Function Based on a defined sch.ema, the tFlowMeterCatcher catchs the processing
volumetrics from the tFlowMeter component and passes them on to the
output component.

Purpose Operates as a log function triggered by the use of a tFlowMeter component
in the job.

Schema type A schema is a row description, i.e., it defines the
fields to be processed and passed on to the next
component. In this particular case, the schema is
read-only, as this component gathers standard log
information including:

Moment: Processing time and date
Pid: Process ID

Father_pid: Process ID of the father job if
applicable. If not applicable, Pid is duplicated.

Root_pid: Process ID of the root job if applicable. If
not applicable, pid of current job is duplicated.

System_pid: Process id generated by the system
Project: Project name, the job belongs to.

Job: Name of the current job

Job_repository_id: ID generated by the application.
Job_version: Version number of the current job
Context: Name of the current context

Origin: Name of the component if any

Label: Label of the row connection preceding the
tFlowMeter component in the job, and that will be
analysed for volumetrics.

Count: Actual number of rows being processed

Reference: Name of the reference row as defined in
the tFlowMeter component for relative counting
mode.

Thresholds: Only used when the relative mode is
selected in the tFlowMeter component.

Usage This component is the start component of a secondary job which triggers
automatically at the end of the main job.

260

Talend Open Studio Copyright © 2007

Components
tFlowMeterCatcher

Limitation The use of this component cannot be separated from the use of the
tFlowMeter. For more information, see tFlowMeter on page 259.

Scenario: Catching flow metrics from a job

The following basic job aims at catching the number of rows being passed in the flow processed.
The measures are taken twice, once after the input component, that is, before the filtering step and
once right after the filtering step, that is, before the output component.

. II5_Stakes l{f‘-’lain]l= - FoE I{Main! % filkered_states (Main) " - rowed I{Main! E@I

HMysglInput_ 1 " tFlowMeter 1 tMap_1 " tFlowMeter 2 tLogRow 1

& . . . o .
Lz,j row3 (Main) '%

tFlowMeterCatcher 1 " tFileCutputCsy 2

 Click and drop the following components from the Palette to the Designer workspace:
tMysgllnput, tFlowMeter (x2), tMap, tLogRow, tFlowMeterCatcher and
tFileOutputCSV.

« Link the main job using row main connections and click on the label to give consistent name
throughout the job, such as US_States from the input component and filtered_states for the
output from the tMap component, for example.

* Link the tFlowMeterCatcher to the tFileOutputCSV component using a row main link
also as data is passed.

* On the tMysqlInput properties view, configure the connection properties as Repository, if
the table metadata are stored in the Repository. Or else, set the Type as Built-in and
configure manually the connection and schema details if they are built-in for this job.

Copyright © 2007 Talend Open Studio 261

Components
tFlowMeterCatcher

[T tMysqlinput_1

Property Type g+ || Fepository | DB (MYSOL:LocalMysgl o+ |*

|:| se an existing conneckion

Huosk "localhost" g Port | "3308" E Database | "talend" g
sername "rook" E Password | "boor” E
Schema Tvpe Repository s || | DELIM:States - metadata w * Edit schema E]

Query Tvpe Euilt-In w

Query "zelect * from us_states" * D

* The Schema is simply made of two columns: idState and LabelState.
e The Query type is Built-in for this job example.

» The 50 States of the USA are recorded in the table us_states. In order for all 50 entries of the
table to get selected, the query to run onto the Mysqgl database is as follows:
select * from us_states.

+ Select the relevant Encoding type in the list.

 Then select the following component which is a tFlowMeter and set its properties.
[ﬁ] tFlowMeter_1

Use input connection name as label

Mode Absolute a |*

Thresholds Lahel Low end Top end Zolar

+ Check the box Use input connection name as label, in order to reuse the label you chose
in the log output file (tFileOutputCSV).

» The mode is Absolute as there is no reference flow to meter against, also no Threshold is
to be set for this example.

262 Talend Open Studio Copyright © 2007

Components
tFlowMeterCatcher

Note: The Thresholds information is of use within a supervising tool such as Talend’s
Activity Monitoring Console in order to get a proportional representation of the flow
process. See Activity Monitoring Console User guide for more information.

» Then launch the tMap editor to set the filtering properties.

* For this use case, drag and drop the ID and States columns from the Input area of the tMap
towards the Output area. No variable is used in this example.

rowz2 ..'. i filtered_states ..'. l:r":> *
Colurnn row2, LabelSkate, skarkshhithl "M
idState
LabelState Expression Column
rowz,idskate idSkate
rowz ,LabelSkate LabelState

» On the Output flow area (labelled filtered_states in this example), click the arrow & plus
button to activate the expression filter field.

* Drag the LabelState column from the Input area (row2) towards the expression filter field
and type in the rest of the expression in order to filter the state labels starting with the letter
M. The final expression looks like: row2 . LabelState.startsWith(*'M'™)

+ Click OK to validate the setting.

» Then select the second tFlowMeter component and set its properties.

[ﬁ] tAowMeter_2

Ilse input connection name as label

e

Maode Relative
Reference Connection | W5_States i
Threshelds Label Low end Top end Colar

» Check the box Use input connection name as label.

 Select Relative as Mode and in the Reference connection list, select US_States as reference
to be measured against.

Copyright © 2007 Talend Open Studio 263

Components
tFlowMeterCatcher

Once again, no threshold is used for this use case.

No particular setting is required in the tLogRow.

Neither does the tFlowMeterCatcher as this component’s properties are limited to a preset
schema which includes typical log information.

So eventually set the log output component (tFileOutputCSV).

<= tFileOutputCsy_2

Property Type »
File: Mame: "CifLogs/FlowMeter 220, csv” * E]
Rowe Separator “In" Field Separator | "," Escape char | "™ Text enclosure | ™™

[#|Include header [“]Append schema Type | Built-In | Edit schema E]

[1 5plit output in several Files

Encoding Type IS0-5859-15 w

+ Check the Append box in order to log all tFlowMeter measures.
e Then save your job and run it.

Starfing fobh Floslstarizfchar 3¢ 17588 F90E8 SRS

19| Haine

20| Harvland

21 |Haz=zachu=etts

22 |Michigan

23 |Hinne=sota

24 |Mis=i==ippl

25 |Hiz=ouri

26 |Hontana

Joab Flogfetardzichar andad af 17 58 FE-T8-F007, fosrt oodes=d;

The Run Job view shows the filtered state labels as defined in the job.

I K | L lm | W | o |
origin label count reference threshalds
1tFlowhdeter 1 |US States 50

1tFlowhdeter 2 filtered states 8 50

In the delimited csv file, the number of rows shown in column count varies between tFlowMeterl
and tFlowMeter?2 as the filtering has then been carried out. The reference column shows also this
difference.

264

Talend Open Studio Copyright © 2007

tFor

Components
tFor

tFor Properties

Component family

Function
Purpose

Properties

Usage

Limitation

Misc
¥ <

tFor iterates on a task execution.
tFor allows to automatically execute a task or a job based on a loop

From Type in the first instance number which the loop
should start from. A start instance number of 2
with a step of 2 means the loop takes on every
even number instance.

To Type in the last instance number which the loop
should finish with.

Step Type in the step the loop should be incremented
of. A step of 2 means every second instance.

tFor is to be used as a starting component and can only be used with an
iterate connection to the next component.

n/a

Scenario: Job execution in aloop

This scenario describes a job composed of a parent job and a child job. The parent job implements
a loop which executes n times a child job, with a pause between each execution.

Copyright © 2007

Talend Open Studio 265

Components

tFor
. . - - - .G - - - - -
| 5 = ¥
L\ % rawel (Tain) Tl
tFor 1 ' ’ " tRunlob_ 1 ’ ’ ’ tSleep 1
Designer | Code
<3y Job popinputrnail 23
POF ' ' ' e N ' ' ' ' '
é AQ rowl (Mair) v D&l
EPOP 1 ' ' " tFilelnputMail_z ' " tLogRow 1
In the parent job, click and drop a tFor, a tRunJob and a tSleep component onto the
workspace.
Connect the tFor to the tRunJob using an Iterate connection.
Then connect the tRunJob to a tSleep component using a Row connection.
On the child job, click and drop the following components: tPOP, tFilelnputMail and
tLogRow.
On the Properties panel of the tFor component, type in the instance number to start from
(1), the instance number to finish with (5) and the step (1)
On the Properties panel of the tRunJob component, select the child job in the list of stored
jobs offered. In this example: popinputmail
Select the context if relevant. In this use case, the context is default with no variables stored.
In the tSleep Properties panel, type in the time-off value in second. In this example: 3
seconds
Then in the child job, define the connection parameters to the pop server, on the Properties
panel.
In the tFilelInputMail Properties panel, select a global variable as File Name, to collect the
current file in the directory defined in the tPOP component. Press Ctrl+Space bar to access
the variable list. In this example, the variable to be used is:
$_globals{tPOP_1}{CURRENT _FILEPATH}
Define the Schema, for it to include the mail element to be processed, such as author, topic,
delivery date and number of lines.
In the Mail Parts table, type in the corresponding Mail part for each column defined in the
schema. ex: author comes from the From part of the email file.
266 Talend Open Studio Copyright © 2007

Components
tFor

» Then connectthe tFilelnputMail to a tLogRow to check out the execution result on the Run
Job view.

* Press F6 to run the job.

Copyright © 2007 Talend Open Studio 267

Components
tFTP

tFTP

&

tFTP properties

Component family Internet/FTP Qﬁ ¢
Function This component transfers defined files via an FTP connection.
Purpose tFTP purposes vary according to the action selected. It can be used to get
a file, put a file, remove a file or replace it on the FTP server defined.
Properties Host FTP IP address
Port Listening port number of the FTP site.
Username and FTP user authentication data.
Password
Local directory File Path. Use depends on action taken.
Remote directory File Path. Use depends on action taken.
Action List of available actions to transfer files. Related

links: tFTP put, tFTP get, tFTP rename, tFTP
delete on page 269.

Files Filemask of the file and New Name in case of
Rename action. Wildcard character (*) can be
used to transfer a set of files. Or right-click to add
lines to the table.

Usage This component is typically used as a single-component sub-job but can
also be used as output or end object.

Limitation tFTP cannot handle both a Get and a Put action at the same time. In order
to carry out both actions in parallel, duplicate the tFTP component in the
job and set them differently for both actions.

tFTP put

Purpose tFTP copies selected files from a defined local directory to a destination
remote FTP directory.

Local directory Path to source location of the file(s).

Remote directory Path to destination directory of the file(s).

Filemask File names or path to the files to be transferred.

Note: If you enter a file path in the Filemask field, you don’t need to fill in the local
directory field.

268 Talend Open Studio Copyright © 2007

Components
tFTP

tFTP get

Purpose tFTP retrieves selected files from a defined remote FTP directory and
copy them into a local directory .

Local directory Path to destination location of the file.

Remote directory Path to source directory where the files can be fetched.

Filemask File name or path to the files to be transferred.

Note: If you enter a file path in the Filemask field, you don’t need to fill in the local
directory field.

tFTP rename

Purpose tFTP remotely renames or moves files in a a filesystem.

Local directory unused in this action.

Remote directory Source directory where the files to be renamed or moved can be fetched.
Filemask File name or path to the files to be renamed.

New name Enter the new name for the file.

Note: If you enter a file path in the Filemask field, you don’t need to fill in the local
directory field.

tFTP delete

Purpose tFTP remotely deletes files in a a filesystem.

Local directory unused in this action.

Remote directory Source directory where the files to be deleted are located.
Filemask File name or path to the files to be deleted.

Note: If you enter a file path in the Filemask field, you don’t need to fill in the local
directory field.

Scenario: Putting files on a remote FTP server

This scenario creates a single-component job which puts the files defined on a remote server.
 Click and drop a tFTP component onto the design workspace.

« Click on Properties tab, to define the tFTP component parameters:

Copyright © 2007 Talend Open Studio 269

Components
tFTP

mun (Job tFTP) | Madules | PerlDoc | ReaExp | Tasks | Problems (Job EFTP) | Scheduler ¥ =0
Main .-ﬂ i tFTP

Properties

View Hast | lacalhost! Fpart | 21

Documentakion

I=ername | ‘anonymaous’ |* Passwiord | ‘sUomynona’

Local direckory | |

Remate direckory | 'Isharejftp' |

Ackion put w

Files Filermask,

‘o Inputicomprebensive, bxt!
"\ServeriDemol CustomerLarge, csy'

[+ (%] (2] 2)(E)

« Fill in the Host IP address, the listening Port number, as well as the connection details.
« Fill in the local directory details unless you fill it directly in the different filemasks.

* Fill the details of the remote server directory.

« Select the action to be carried out, in this usecase, we’ll perform a Put action.

* Right-click in the Files area, to add new lines and fill in the filemasks of all files to be copied
onto the remote directory.

 Click on Run Job tab and execute the job.

Files defined in the Filemask are copied on the remote server.

270 Talend Open Studio Copyright © 2007

Components

tFuzzyMatch
= tFuzzyMatch
[Tal]
tFuzzyMatch properties

Component family Data quality ¢

Function Compares a column from the main flow with a reference column from
the lookup flow and outputs the main flow data displaying the distance

Purpose Helps ensuring the data quality of any source data against a reference
data source.

Properties Schema type and A schema is a row description, i.e., it defines the
Edit Schema number of fields that will be processed and

passed on to the next component. The schema is
either built-in or remote in the Repository.

Two read-only columns, Value and Match are
added to the output schema automatically.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is
stored in the Repository, hence can be reused in
various projects and job designs. Related topic:
Setting a repository schema on page 49

Matching type Select the relevant matching algorythm among:
Levenshtein:Based on the edit distance theory.
This calculates the number of insertion, deletion
or substitution required to match the reference
Metaphone:Based on the phonetics. It first loads
the phonetics of all entries of the lookup reference
and checks all entries of the main flow against it.
Double Metaphone:If disambiguation is
required in Metaphone, use this option..

Min Distance (Levenshtein only) Set the minimum number of
changes allowed to match the reference. If set to
0, only perfect matchs are returned.

Max Distance (Levenshtein only) Set the maximum number of
changes allowed to match the reference.

Matching Column | Select the column of the main flow that needs to
be checked against the reference (lookup) key
column

Unique Matching Check this box if you want to get the best match
possible, in case several matchs are available.

Copyright © 2007 Talend Open Studio 271

Components

tFuzzyMatch
Matching item In case several matchs are available, all of them
separator are displayed unless the unique match box is
checked. Define the delimiter between all
matchs.
Usage This component is not startable (green background) and it requires two

input components and an output component.

Limitation/prerequisite | Perl users: Make sure the relevant packages are installed. Check the
Module view for modules to be installed

Scenario 1: Levenshtein distance of O in first names

This scenario describes a four-component job aiming at checking the edit distance between the First
Name column of an input file with the data of the reference input file. The output of this Levenshtein
type check is displayed along with the content of the main flow on a table

tFileInputDelimited _2

rowE I{Léu:u:ukup]l

% rowl (Mair " [Tl 1] row3 (Main " E@I
kFileInputDelimited_1 ' " tFuzzyMatch 1 ' ' ' " rlogRow 1

+ Drag and drop the following components from the Palette to the workspace:
tFilelnputDelimited (x2), tFuzzyMatch, tFileOutputDelimited.

* Define the first tFilelnputDelimited properties. Browse the system to the input file to be
analysed and most importantly set the schema to be used for the flow to be checked.

* Inthe schema, set the Type of data in the Java version, especially if you are in Built-in mode.
* Link the defined input to the tFuzzyMatch using a Main row link.
 Define the second tFilelnputDelimited component the same way.

WARNING—Make sure the reference column is set as key column in the schema of the lookup flow.

272 Talend Open Studio Copyright © 2007

Components
tFuzzyMatch

¥ Schema of Reference

tFilelnputDelimited_2

Colurmn Key Twpe Mullable Length Precision Commenkt
L, 01_firstname String 13
0Z_gender [] string 3

» Then connect the second input component to the tFuzzyMatch using a main row (which
displays as a Lookup row on the workspace).

* Select the tFuzzyMatch properties.

» The Schema should match the Main input flow schema in order for the main flow to be
checked against the reference.

EFuzzyMatch_1 (Oukpuk)

Colurnn kKev Tvpe Mullable Length Precis,.. Com...

* Note that two columns, Value and Matching, are added to the output schema. These are
standard matching information and are read-only.

« Select the method to be used to check the incoming data. In this scenario, Levenshtein is the
Matching type to be used.

» Then set the distance. In this method, the distance is the number of char changes (insertion,
deletion or substitution) that needs to be carried out in order for the entry to fully match the

reference.
Ber tFuzzyMatch_1
Schema Type Built-In v Editschema [
ratching tvpe | Levenshkein W |* [Case sensitive
Min. distance | a |* Maz, distance | 0 |*

Matching column |EIl_Fir5I:name v|*

[Jurique matching Matching item separator | ", |

* In this use case, we want the distance be of 0 for the min. or for the max. This means only
the exact matchs will be output.

» Also, uncheck the Case sensitive box.

» And select the column of the main flow schema that will be checked. In this example, the first
name.

Copyright © 2007 Talend Open Studio 273

Components
tFuzzyMatch

* No need to check the Unique matching nor hence the separator.

 Link the tFuzzyMatch to the standard output tLogRow. No other parameters than the
display delimiter is ot be set for this scenario.

 Save the job and press F6 to execute the job.

august (1)]]
august (21]]
augusta| |
auguste|0|augu=ste
augustijn| |
augustin|0|augustin
augustine| |
augusto| |

augusts| |
augustus| |

anluzta ||

As the edit distance has been set to 0 (min and max), the output shows the result of a regular join
between the main flow and the lookup (reference) flow, hence only full matchs with Value of 0 are
displayed.

A more obvious example is with a minimum distance of 1 and a max. distance of 2, see Scenario 2:
Levenshtein distance of 1 or 2 in first names on page 274.

Scenario 2: Levenshtein distance of 1 or 2 in first names

This scenario is based on the scenario 1 described above. Only the min and max distance settings
in tFuzzyMatch component get modified, which will change the output displayed.

* In the Properties panel of the tFuzzyMatch, change the min distance from 0 to 1. This
excludes straight away the exact matchs (which would show a distance of 0).

» Change also the max distance to 2 as the max distance cannot be lower than the min distance.
The output will provide all matching entries showing a discrepancy of 2 characters at most.

I'ﬁ‘:{H tFuzzyiatch_1
Schema Type v Editschema [
Matching bype Levenshtein w [* [Case sensitive

Min, distance 1 * Max, distance | 2 *

Matching column 01 _firstname s |*

[]Unique matching Matching item separatar | ')

 No other change of the setting is required.

» Make sure the Matching item separator is defined, as several references might be matching
the main flow entry.

274

Talend Open Studio Copyright © 2007

Components
tFuzzyMatch

 Save the new job and press F6 to run it.

audrea| 2 | aude
audrev|2|aude

august (13|

august (2]]
augustall|auguste
augu=te| 2 |augu=stin
augustijn|l|augustin
augustin|?|auguste
augustine|l|augustin
augusto|l|auguste
august=|1l|augu=ste
augustus| 2 |auguste, augustin
aukusti| 2 |auguste, augustin
aulay| |

aulus|2|jules

As the edit distance has been set to 2, some entries of the main flow match several reference entries.

You can also use another method, the metaphone, to assess the distance between the main flow and
the reference,

Scenario 3: Metaphonic distance in first name

This scenario is based on the scenario 1 described above.

#h tFuzzyMatch_1
Schema Type v | Edischema [
Matching bype Metaphaone Pl

Matching calurmn 01 _firsknarme e |[*

[JUnique matching Matching item separator | '

» Change the Matching type to Metaphone. There is no min nor max distance to set as the
matching method is based on the discrepancies with the phonetics of the reference.

» Save the job and press F6. The phonetics value is displayed along with the possible matchs.

audrevy| |

august (1) |AKST|auguste
august (2)|AKST|auguste
augu=sta | AKST |augu=ste
auguste | AKST | auguste
augustijn] |
augustin|AKSTH | augustin
augustine | AKSTN | augustin
augusto|AKST | augu=ste
augusts]| |

augustus| |
auku=sti|AKST|augu=ste
aulavy]| |

aulus=s| |

aune| |

Copyright © 2007 Talend Open Studio 275

®

Components
tHSQLDDbInput

tHSQLDblInput

tHSQLDbInput properties

Component family

Function

Purpose

Properties

Databases/HSQLDb

¢

=i
—
_—

tHSQLDbInput reads a database and extracts fields based on a query.

tHSQLDblInput executes a DB query with a strictly defined order which must
correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Property type

Running Mode

Use TLS/SSL sockets
Host

Port

Database Alias

Username and
Password

Schema type and Edit
Schema

Query type and Query

Encoding

Either Built-in or Repository
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Select on the list the Server Mode corresponding to
your DB setup..

Check the box to enable the secured mode if required.
Database server IP address

Listening port number of DB server.

Alias name of the database

DB user authentication data.

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

276

Talend Open Studio Copyright © 2007

Components
tHSQLDbInput

Usage This component covers all possibilities of SQL queries onto an HSQLDb
database.

Related scenarios

For related topics, see tDBInput scenarios:
» Scenario 1: Displaying selected data from DB table on page 162
¢ Scenario 2: Using StoreSQLQuery variable on page 163

See also the related topic in tContextLoad Scenario: Dynamic context use in MySQL DB insert on
page 145.

Copyright © 2007 Talend Open Studio 277

Components
tHSQLDDbOutput

tHSQLDbOutput

<)

tHSQLDbOutput properties

Component family Databases/HSQLDb ¢
=5
Function tHSQLDbOutput writes, updates, makes changes or suppresses entries in a
database.
Purpose tHSQLDbOutput executes the action defined on the table and/or on the data

contained in the table, based on the flow incoming from the preceding
component in the job.

Properties Property type Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Running Mode Select on the list the Server Mode corresponding to
your DB setup.

Use TLS/SSL sockets | Check the box to enable the secured mode if required.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and DB user authentication data.

Password

Table Name of the table to be written. Note that only one

table can be written at a time

Action on data On the data of the table defined, you can perform:
Insert: Add new entries to the table. If duplicates are
found, job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing
ones.

Update or insert: Update existing entries or create it
if non existing

Delete: Remove entries corresponding to the input
flow.

Clear data in table Wipes out data from the selected table before action.

Schema type and Edit | A schema is a row description, i.e., it defines the

Schema number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

278 Talend Open Studio Copyright © 2007

Components
tHSQLDDbOutput

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Additional Columns | This option is not offered if you create (with or
without drop) the Db table. This option allows you to
perform actions on columns, which are not insert, nor
update or delete actions or requires a particular
preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After, following
the action to be performed on the reference column.

Reference column: Type in a column of reference
that the tDBOutput can use to place or replace the new
or altered column.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.

Related scenarios

For related topics, see
» tDBOutput Scenario: Displaying DB output on page 166
* tMySQLOutput Scenario: Adding new column and altering data on page 396.

Copyright © 2007 Talend Open Studio 279

Components
tHSQLDbRow

tHSQLDbRow

&

tHSQLDbRow properties

Component family Databases/HSQLDb ¢

=i
—
_—

Function tHSQLDbRow is the specific component for this database query. It executes
the SQL query stated onto the specified database. The row suffix means the
component implements a flow in the job design although it doesn’t provide
output.

Purpose Depending on the nature of the query and the database, tHSQLDbRow acts on
the actual DB structure or on the data (although without handling data). The
SQLBUuilder tool helps you write easily your SQL statements.

Properties Property type Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Running Mode Select on the list the Server Mode corresponding to
your DB setup.

Use TLS/SSL sockets | Check the box to enable the secured mode if required.

Host Database server IP address

Port Listening port number of DB server.
Database Name of the database

Username and DB user authentication data.
Password

Schema type and Edit | A schema is a row description, i.e., it defines the

Schema number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build
it graphically using SQLBuilder

280 Talend Open Studio Copyright © 2007

Usage

Related scenarios

Query

Commit every

Encoding

Die on error

Components
tHSQLDbRow

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Uncheck this box to skip the row on error and
complete the process for non-error rows.

This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.

For related topics, see:

» tDBSQLRow Scenario 1: Resetting a DB auto-increment on page 170

» tMySQLRow Scenario: Removing and regenerating a MySQL table index on page 408.

Copyright © 2007

Talend Open Studio 281

®

Components
tinformixinput

tinformixinput

tinformixInput properties

Component family

Function

Purpose

Properties

Usage

Databases/Informix

¢

=i
—
_—

tInformixInput reads a database and extracts fields based on a query.

tinformixInput executes a DB query with a strictly defined order which must
correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Property type

Host
Port
Database
DB server

Username and
Password

Schema type and Edit
Schema

Query type and Query

Encoding

Either Built-in or Repository
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Database server IP address
Listening port number of DB server.
Name of the database

Name of the database server

DB user authentication data.

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

This component covers all possibilities of SQL queries onto a DB2 database.

282

Talend Open Studio Copyright © 2007

Components
tInformixInput

Related scenarios

For related topics, see tDBInput scenarios:
» Scenario 1: Displaying selected data from DB table on page 162
 Scenario 2: Using StoreSQLQuery variable on page 163

See also the tContextLoad Scenario: Dynamic context use in MySQL DB insert on page 145.

Copyright © 2007 Talend Open Studio 283

Components
tinformixOutput

tinformixOutput

<)

tinformixOutput properties

Component family Databases/Informix

Function tinformixOutput writes, updates, makes changes or suppresses entries in a
database.
Purpose tInformixOutput executes the action defined on the table and/or on the data

contained in the table, based on the flow incoming from the preceding
component in the job.

Properties Property type Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

DB server Name of the database server

Username and DB user authentication data.

Password

Table Name of the table to be written. Note that only one

table can be written at a time

Action on data On the data of the table defined, you can perform:
Insert: Add new entries to the table. If duplicates are
found, job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing
ones.

Update or insert: Update existing entries or create it
if non existing

Delete: Remove entries corresponding to the input
flow.

Clear data in table Wipes out data from the selected table before action.

Schema type and Edit | A schema is a row description, i.e., it defines the

Schema number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

284 Talend Open Studio Copyright © 2007

Components
tinformixOutput

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Additional Columns | This option is not offered if you create (with or
without drop) the Db table. This option allows you to
perform actions on columns, which are not insert, nor
update or delete actions or requires a particular
preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After, following
the action to be performed on the reference column.

Reference column: Type in a column of reference
that the tDBOutput can use to place or replace the new
or altered column.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.

Related scenarios

For tDB20utput related topics, see
» tDBOutput Scenario: Displaying DB output on page 166
* tMySQLOutput Scenario: Adding new column and altering data on page 396.

Copyright © 2007 Talend Open Studio 285

&

Components
tinformixRow

tiInformixRow

tinformixRow properties

Component family

Function

Purpose

Properties

Databases/Informix (
=

tinformixRow is the specific component for this database query. It executes
the SQL query stated onto the specified database. The row suffix means the
component implements a flow in the job design although it doesn’t provide
output.

Depending on the nature of the query and the database, tinformixRow acts on
the actual DB structure or on the data (although without handling data). The
SQLBUuilder tool helps you write easily your SQL statements.

Property type Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.
Database Name of the database

Username and DB user authentication data.
Password

Schema type and Edit | A schema is a row description, i.e., it defines the

Schema number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build
it graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

286

Talend Open Studio Copyright © 2007

Components
tinformixRow

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.

Related scenarios

For related topics, see:
» tDBSQLRow Scenario 1: Resetting a DB auto-increment on page 170
» tMySQLRow Scenario: Removing and regenerating a MySQL table index on page 408.

Copyright © 2007 Talend Open Studio 287

®

Components
tingresinput

tingresinput

tingresinput properties

Component family

Function

Purpose

Properties

Usage

Databases/Ingres

%

tingresinput reads a database and extracts fields based on a query.

tingresinput executes a DB query with a strictly defined order which must
correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Property type

Server
Port
Database

Username and
Password

Schema type and Edit
Schema

Query type and Query

Encoding

Either Built-in or Repository
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Database server IP address
Listening port number of DB server.
Name of the database

DB user authentication data.

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

This component covers all possibilities of SQL queries onto an Ingres

database.

288

Talend Open Studio Copyright © 2007

Components
tingresinput

Related scenarios

For related topics, see tDBInput scenarios:
» Scenario 1: Displaying selected data from DB table on page 162
 Scenario 2: Using StoreSQLQuery variable on page 163

See also, the tContextLoad Scenario: Dynamic context use in MySQL DB insert on page 145.

Copyright © 2007 Talend Open Studio 289

<)

Components
tingresOutput

tiIngresOutput

tingresOutput properties

Component family Databases/Ingres

Function
database.

Purpose

tingresOutput writes, updates, makes changes or suppresses entries in a

tingresOutput executes the action defined on the table and/or on the data

contained in the table, based on the flow incoming from the preceding

component in the job.

Properties Property type

Host
Port
Database

Username and
Password

Table

Action on data

Clear data in table

Schema type and Edit
Schema

Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Database server IP address
Listening port number of DB server.
Name of the database

DB user authentication data.

Name of the table to be written. Note that only one
table can be written at a time

On the data of the table defined, you can perform:
Insert: Add new entries to the table. If duplicates are
found, job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing
ones.

Update or insert: Update existing entries or create it
if non existing

Delete: Remove entries corresponding to the input
flow.

Wipes out data from the selected table before action.

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

290

Talend Open Studio

Copyright © 2007

Components
tingresOutput

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Additional Columns | This option is not offered if you create (with or
without drop) the Db table. This option allows you to
perform actions on columns, which are not insert, nor
update or delete actions or requires a particular
preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After, following
the action to be performed on the reference column.

Reference column: Type in a column of reference
that the tDBOutput can use to place or replace the new
or altered column.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.

Related scenarios

For related topics, see:
» tDBOutput Scenario: Displaying DB output on page 166
* tMySQLOutput Scenario: Adding new column and altering data on page 396.

Copyright © 2007 Talend Open Studio 291

Components
tingresRow

[j? tiIngresRow

tingresRow properties

Component family

Function

Purpose

Properties

Databases/Ingres

tingresRow is the specific component for this database query. It executes the
SQL query stated onto the specified database. The row suffix means the
component implements a flow in the job design although it doesn’t provide
output.

Depending on the nature of the query and the database, tingresRow acts on the
actual DB structure or on the data (although without handling data). The
SQLBuilder tool helps you write easily your SQL statements.

Property type Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.
Database Name of the database

Username and DB user authentication data.
Password

Schema type and Edit | A schema is a row description, i.e., it defines the

Schema number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build
it graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

292

Talend Open Studio Copyright © 2007

Components
tingresRow

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.

Related scenarios

For related topics, see:
» tDBSQLRow Scenario 1: Resetting a DB auto-increment on page 170
» tMySQLRow Scenario: Removing and regenerating a MySQL table index on page 408.

Copyright © 2007 Talend Open Studio 293

Components

tingresSCD
o tiIngresSCD
Ial

tingresSCD Properties

Component family Databases/Ingres

Function tIngresSCD reflects and tracks changes in a dedicated Ingres SCD table.
Purpose tIngresSCD addresses Slowly Changing Dimension needs, reading regularly

a source of data and logging the changes into a dedicated SCD table
Properties Property type Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and DB user authentication data.

Password

Encoding Select the encoding from the list or select Custom and

define it manually. This field is compulsory for DB
data handling.

Table Name of the table to be written. Note that only one
table can be written at a time

Schema type and Edit | A schema is a row description, i.e., it defines the

Schema number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Surrogate key Select the column where the generated surrogate key
will be stored. A surrogate key can be generated based
on a method selected on the Creation list.

294 Talend Open Studio Copyright © 2007

Components
tingresSCD

Creation Select the method to be used for the key generation:
input field: key is provided in an input field
routine: you can access the basic functions through
Ctrl+ Space bar combination.
table max +1: the maximum value from the SCD
table is incremented to create a surrogate key
sequence/identity: auto-incremental key

Source Keys Select one or more columns to be used as key, to
ensure the unicity of incoming data.

Use SCD Type 1 fields | Use the type 1if change tracking is not necessary.
SCD Type 1 should be used for typos corrections for
example. Select the columns of the schema, that will
be checked for changes.

Use SCD Type 2 fields | Use type 2 if changes need to be tracked down. SCD
Type 2 should be used to trace updates for example.
Select the columns of the schema, that will be
checked for changes.

Start date/End Date: Add a column to your SCD
schema to hold the start and end date value for the
record. When the record is currently active, the End
date show a null value

Log Active Status: Add a column to your SCD
schema to hold the 1 or O status value. This column
helps to spot easily the active record.

Log versions: Add a column to your SCD schema to
hold the version number of the record.

Use SCD Type 3 fields | Use type 3 when you want to keep track of the
previous value of a changing column
Current value field: Select the column where the
changing value is tracked down..
Previous value field: Select the column where the
previous value should be stored.

Debug Mode Check this box to display each step of the SCD log
process.
Usage This component is used as Output component. It requires an Input component

and Row main link as input.

Related scenario

For related scenarios, see tMysqlSCD Scenario: Tracking changes using Slowly Changing
Dimension on page 411.

Copyright © 2007 Talend Open Studio 295

®

Components
tinterbaselnput

tinterbaselnput

tinterbaselnput properties

Component family

Function

Purpose

Properties

Usage

Databases/Interbase

({.

=i
—
_—

tinterbaselnput reads a database and extracts fields based on a query.

tinterbaselnput executes a DB query with a strictly defined order which must
correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Property type

Host
Database

Username and
Password

Schema type and Edit
Schema

Query type and Query

Encoding

Either Built-in or Repository
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Database server IP address
Name of the database

DB user authentication data.

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

This component covers all possibilities of SQL queries onto an Interbase

database.

296

Talend Open Studio Copyright © 2007

Components
tinterbaselnput

Related scenarios

For related topics, see tDBInput scenarios:
» Scenario 1: Displaying selected data from DB table on page 162
 Scenario 2: Using StoreSQLQuery variable on page 163

See also the related topic in tContextLoad Scenario: Dynamic context use in MySQL DB insert on
page 145.

Copyright © 2007 Talend Open Studio 297

Components
tinterbaseOutput

tinterbaseOutput

<)

tinterbaseOutput properties

Component family Databases/Interbase ¢
=D
Function tinterbaseOutput writes, updates, makes changes or suppresses entries in a
database.
Purpose tinterbaseOutput executes the action defined on the table and/or on the data

contained in the table, based on the flow incoming from the preceding
component in the job.

Properties Property type Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Database Name of the database

Username and DB user authentication data.

Password

Table Name of the table to be written. Note that only one

table can be written at a time

Action on data On the data of the table defined, you can perform:
Insert: Add new entries to the table. If duplicates are
found, job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing
ones.

Update or insert: Update existing entries or create it
if non existing

Delete: Remove entries corresponding to the input
flow.

Clear data in table Wipes out data from the selected table before action.

Schema type and Edit | A schema is a row description, i.e., it defines the

Schema number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

298 Talend Open Studio Copyright © 2007

Components
tinterbaseOutput

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Additional Columns | This option is not offered if you create (with or
without drop) the Db table. This option allows you to
perform actions on columns, which are not insert, nor
update or delete actions or requires a particular
preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After, following
the action to be performed on the reference column.

Reference column: Type in a column of reference
that the tDBOutput can use to place or replace the new
or altered column.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.

Related scenarios

For related topics, see
» tDBOutput Scenario: Displaying DB output on page 166
* tMySQLOutput Scenario: Adding new column and altering data on page 396.

Copyright © 2007 Talend Open Studio 299

&

Components
tinterbaseRow

tinterbaseRow

tinterbaseRow properties

Component family

Function

Purpose

Properties

Databases/Interbase (

=i
—
_—

tInterbaseRow is the specific component for this database query. It executes
the SQL query stated onto the specified database. The row suffix means the
component implements a flow in the job design although it doesn’t provide
output.

Depending on the nature of the query and the database, tinterbaseRow acts on
the actual DB structure or on the data (although without handling data). The
SQLBUuilder tool helps you write easily your SQL statements.

Property type Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address
Database Name of the database
Username and DB user authentication data.
Password

Schema type and Edit | A schema is a row description, i.e., it defines the

Schema number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build
it graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

300

Talend Open Studio Copyright © 2007

Components
tinterbaseRow

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.

Related scenarios

For related topics, see:
» tDBSQLRow Scenario 1: Resetting a DB auto-increment on page 170
» tMySQLRow Scenario: Removing and regenerating a MySQL table index on page 408.

Copyright © 2007 Talend Open Studio 301

Components
titerateToFlow

», titerateToFlow

titerateToFlow Properties

Component family Misc ¢

Function titerateToFlow transforms a list into a data flow that can be processed.

Purpose Allows to transform non processable data into processable flow.

Properties Schema type and A schema is a row description, i.e., it defines the
Edit Schema number of fields that will be processed and

passed on to the next component. The schema is
either built-in or remote in the Repository.
Inthe case of titerate ToFlow, the schema is to be
defined

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is
stored in the Repository, hence can be reused in
various projects and job designs. Related topic:
Setting a repository schema on page 49

Column Type in a name for the columns to be created

Value Press Ctrl+Space bar to access all available
variables either global or user-defined.

Usage This component is not startable (green background) and it requires an
output component.

Scenario: Transforming a list of files as data flow

The following scenario describes a job that iterates on a list of files, picks up the filename and
current date and transforms this into a flow, that gets displayed on the console.

| 7 R R

tRilelist_1 ' "tlterateToFlow_1 tLogRow_1

 Click and drop the following components: tFileList, titerateToFlow and tLogRow.

+ Connect the tFileList to the titerateToFlow using an iterate link and connect the job to the
tLogRow using a Row main connection.

* In the tFileList Properties view, set the directory where the list of files is stored.

302 Talend Open Studio Copyright © 2007

Components
titerateToFlow

Direckory 'T Input)Countries' * E]
Filemask, il v'e
[]Case sensitive

[1includes subdirectaries

In this example, the files are three simple .txt files held in one directory: Countries.

* No need to care about the case, hence uncheck the Case sensitive checkbox.

Leave the Include Subdirectories option unchecked.

Then select the titerateToFlow component et click Edit Schema to set the new schema

kIterateToFlow_1

Colurmn Key Twpe Mullable Length Precision Commenkt
Filename [] string
Diate [] date

+ Add two new columns: Filename of String type and Date of date type. Make sure you define
the correct pattern in Java.

* Click OK to validate.

* Notice that the newly created schema shows on the Mapping table.

Schema Built-In v | Editschema []

Mapping Colurnn Yalue
Filename $_alobals{tFileList_1HCURRENT_FILEPATH}
Date getDate! Ty y-MM-D0Y)

* In each cell of the Value field, press Ctrl+Space bar to access the list of global and
user-specific variables.

* For the Filename column, use the global variable:
($_globals{tFileList_ 1}{CURRENT_FILEPATH}. It retrieves the current
filepath in order to catch the name of each file, the job iterates on.

* For the Date column, use the Talend routine: Date . GetDate (Perl) or
TalendDate.getCurrentDate() (in Java)

» Then on the tLogRow component Properties view, check the Print values in cells of a table
box.

 Save your job and execute it.

Copyright © 2007 Talend Open Studio 303

Components
titerateToFlow

Starérmy jobh Ffaratetoffor 6 1204 830020007,

i tLogRow_1 i
Filenamne	Date
D:~Input~Countrie=s~in-01.txt	2007-10-03
D:~InputsCountries~in-02. txt	2007-10-03
D:~Input~Countrie=s~in-03.t=xt	2007-10-03

Joabh ffarafefoaffor andad a¢ 15048 GR-TECPRES fasr b oods=87

The filepath displays on the Filename column and the current date displays on the Date column.

304

Talend Open Studio

Copyright © 2007

Components
tJava

.. tJava

o

tJava Properties

Component family Processing

Function tJava transforms any data entered in Java code.

Purpose tJava is a (Java) editor that is a very flexible tool within a job.

Properties Code Type in the Java code according to the command
and task you need to perform. For further
information about Java functions syntax, see
Talend Open Studio online Help (Help Contents
> Developer Guide > API Reference)

Usage Typically used for debugging but can also be used to display a variable

content.
Limitation You only need to know Java language.

Scenario: Printing out a variable content

The following scenario is a simple demo of the application extend of the tJava component. The job
aims at printing out the number of lines being processed using a Java command and the global
variable provided in Talend Open Studio.

B _ru:uwl l{_Main]l _ =@

tFileInputDelimited_1 tFileCukpukExeel 1

ThenRun

¥

a‘E

I:'Java_i

 Select and drop the following components from the palette: tFilelnputDelimited,
tFileOutputExcel, tJava.

+ Connect the tFilelnputDelimited to the tFileOutputExcel using a Row Main connection.
The content from a delimited txt file will be passed on through the connection to an xls-type
of file without further transformation.

Copyright © 2007 Talend Open Studio 305

Components
tJava

* Then connect the tFilelnputDelimited component to the tJava component using a Then
Run link. This link sets a sequence ordering the tjava to execute at the end of the main
process.

 Set the Properties of the tFilelnputDelimited component. The input file used in this
example is a simple text file made of two columns: Name and their respective Emails

;<P tFileInputDelimited_1

Property Type W

File Mame " Inputlist_emails. bxt"

Fow Separataor “n" Field Separator |)"
Header 1 Footer |0 Lirnik
Schema Type Built-In + || Edit schema E] Skip empty rows

[C]Extract lines at random

Encoding Tvpe 150-8859-15 +

» The schema has not been stored in the repository for this use case, therefore you need to set
manually the two-column schema

e Click the Edit Schema button.

EFileInputDelimited_1

Colurmn key Type Mullable DateP... Le.. | Pr... Do, Co.
Gl Mames String 255
Emnails [] string 255

» When prompted, click OK to accept the propagation, so that the tFileOutputExcel
component gets automatically set with the input schema. Therefore no need to set the schema
again.

« Set the output file to receive the input content without changes. If the file doesn’t exist
already;, it’ll get created.

CF‘_._%] tFileOutputExcel _1

File Mame " ioutput/Email_List, xls"

Sheet name "Email"

Include header

Schema Type Bult-In | Edischema [
Encoding Tvpe I50-8859-15 «

* In this example, the Sheet name is Email and the Include Header box is checked.

306 Talend Open Studio Copyright © 2007

Components
tJava

» Then select the tJava component to set the Java command to execute.

-

g Hlava_1

Code Etring war = "Nb of line processed:
var = war + globalMap. get{"tFilelnputDelinited_1_HB LIHE"):
Sv=ten.out . printlnivar):

* In the Code area, type in the following command:
String var = "Nb of line processed: ';
var = var + globalMap.get("tFilelnputDelimited_1_NB_LINE™);
System.out.printin(var);

* In this use case, we use the NB_L.ine variable. To access the global variable list, press Ctrl
+ Space bar on your keyboard and select the relevant global parameter.

 Save your job and press F6 to execute it.

Stareimy jobh Jawmafih & 15057 SEiTE SR
Hb of line processed: 4
Joh Jamalh anded 53¢ FFEF SEofEeSEGF fasr b oode=i7

The content gets passed on to the Excel file defined and the Number of lines processed are displayed
on the Run Job console.

Copyright © 2007 Talend Open Studio 307

®

Components
tJavaDBInput

tJavaDBInput

tJavaDBInput properties

Component family

Function

Purpose

Properties

Usage

Databases/JavaDB

%

tJavaDBInput reads a database and extracts fields based on a query.

tJavaDBInput executes a DB query with a strictly defined order which must
correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Property type

Framework
Database
DB root path

Username and
Password

Schema type and Edit
Schema

Query type and Query

Encoding

Either Built-in or Repository
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Select your Java database framework on the list
Name of the database
Browse to your database root.

DB user authentication data.

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

This component covers all possibilities of SQL queries onto a database.

308

Talend Open Studio Copyright © 2007

Components
tJavaDBlInput

Related scenarios

For related topics, see tDBInput scenarios:
» Scenario 1: Displaying selected data from DB table on page 162
 Scenario 2: Using StoreSQLQuery variable on page 163

See also the related topic in tContextLoad Scenario: Dynamic context use in MySQL DB insert on
page 145.

Copyright © 2007 Talend Open Studio 309

<)

Components
tJavaDBOutput

tJavaDBOutput

tJavaDBOutput properties

Component family

Function

Purpose

Properties

Databases/JavaDB

%

tJavaDBOutput writes, updates, makes changes or suppresses entries in a

database.

tJavaDBOutput executes the action defined on the table and/or on the data
contained in the table, based on the flow incoming from the preceding

component in the job.

Property type

Framework
Database
DB root path

Username and
Password

Table

Action on data

Clear data in table

Schema type and Edit
Schema

Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Select your Java database framework on the list
Name of the database
Browse to your database root.

DB user authentication data.

Name of the table to be written. Note that only one
table can be written at a time

On the data of the table defined, you can perform:
Insert: Add new entries to the table. If duplicates are
found, job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing
ones.

Update or insert: Update existing entries or create it
if non existing

Delete: Remove entries corresponding to the input
flow.

Wipes out data from the selected table before action.

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

310

Talend Open Studio Copyright © 2007

Components
tJavaDBOutput

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Additional Columns | This option is not offered if you create (with or
without drop) the Db table. This option allows you to
perform actions on columns, which are not insert, nor
update or delete actions or requires a particular
preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After, following
the action to be performed on the reference column.

Reference column: Type in a column of reference
that the tDBOutput can use to place or replace the new
or altered column.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.

Related scenarios

For related topics, see:
» tDBOutput Scenario: Displaying DB output on page 166
* tMySQLOutput Scenario: Adding new column and altering data on page 396.

Copyright © 2007 Talend Open Studio 311

&

Components
tJavaDBRow

tJavaDBRow

tJavaDBRow properties

Component family

Function

Purpose

Properties

Databases/JavaDB (
=

tJavaDBRow is the specific component for this database query. It executes the
SQL query stated onto the specified database. The row suffix means the
component implements a flow in the job design although it doesn’t provide
output.

Depending on the nature of the query and the database, tJavaDBRow acts on
the actual DB structure or on the data (although without handling data). The
SQLBUuilder tool helps you write easily your SQL statements.

Property type Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Framework Select your Java database framework on the list
Database Name of the database

DB root path Browse to your database root.

Username and DB user authentication data.

Password

Schema type and Edit | A schema is a row description, i.e., it defines the

Schema number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build
it graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

312

Talend Open Studio Copyright © 2007

Components
tJavaDBRow

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.

Related scenarios

For related topics, see:
» tDBSQLRow Scenario 1: Resetting a DB auto-increment on page 170
» tMySQLRow Scenario: Removing and regenerating a MySQL table index on page 408.

Copyright © 2007 Talend Open Studio 313

(=

Components
tJIDBClnput

tJDBClInput

tJDBClInput properties

Component family Databases/JDBC ¢
)
Function tIJDBC reads any database using a JDBC API connection and extracts fields

based on a query.

Purpose tIDBC executes a DB query with a strictly defined order which must
correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Properties JDBC URL Type in the database location path
Driver JAR Select the driver JAR on the list or click the three
button to add a new JAR to the list.
Class Name Type in the Class name to be pointed to in the driver.
Username and DB user authentication data.
Password

Schema type and Edit | A schema is a row description, i.e., it defines the

Schema number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Table Name Type in the name of the table

Query type and Query | Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Usage This component covers all possibilities of SQL queries onto any JDBC
connected database.

Related scenarios

Related topic in tDBInput scenarios:

314 Talend Open Studio Copyright © 2007

Components
tJDBClnput

 Scenario 1: Displaying selected data from DB table on page 162
 Scenario 2: Using StoreSQLQuery variable on page 163

Related topic in tContextLoad Scenario: Dynamic context use in MySQL DB insert on page 145.

Copyright © 2007 Talend Open Studio 315

Components
tJDBCOutput

tJDBCOutput

=)

tJDBCOutput properties

Component family Databases/JDBC

Function tIDBCOutput writes, updates, makes changes or suppresses entries in any
type of database connected to a JDBC API.
Purpose tIDBCOutput executes the action defined on the data contained in the table,
based on the flow incoming from the preceding component in the job.
Properties JDBC URL Type in the database location path
Driver JAR Select the driver JAR on the list or click the three
button to add a new JAR to the list.
Class Name Type in the Class name to be pointed to in the driver.

Username and
Password

Table

Action on data

Clear data in table

Schema type and Edit
Schema

Encoding

DB user authentication data.

Name of the table to be written. Note that only one
table can be written at a time

On the data of the table defined, you can perform:
Insert: Add new entries to the table. If duplicates are
found, job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing
ones.

Update or insert: Update existing entries or create it
if non existing

Delete: Remove entries corresponding to the input
flow.

Wipes out data from the selected table before action.

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

316 Talend Open Studio

Copyright © 2007

Components
tJDBCOutput

Additional Columns | This option is not offered if you create (with or
without drop) the Db table. This option allows you to
perform actions on columns, which are not insert, nor
update or delete actions or requires a particular
preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After, following
the action to be performed on the reference column.

Reference column: Type in a column of reference
that the tDBOutput can use to place or replace the new
or altered column.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of a connection to any type of DB
and covers all possibilities of SQL queries.

Related scenarios

For tJDBCOutput related topics, see:
» tDBOutput Scenario: Displaying DB output on page 166
» tMySQLOutput Scenario: Adding new column and altering data on page 396.

Copyright © 2007 Talend Open Studio 317

Components
tJDBCRow

tJDBCRow

&

tJDBCRow properties

Component family

Function

Purpose

Properties

Databases/JDBC

%

tJIDBCRow is the component for any type database using a JDBC API. It
executes the SQL query stated onto the specified database. The row suffix
means the component implements a flow in the job design although it doesn’t

provide output.

Depending on the nature of the query and the database, tJDBCRow acts on the
actual DB structure or on the data (although without handling data). The
SQLBuilder tool helps you write easily your SQL statements.

JDBC URL
Driver JAR

Class Name

Username and
Password

Schema type and Edit
Schema

Query type

Query

Commit every

Type in the database location path

Select the driver JAR on the list or click the three
button to add a new JAR to the list.

Type in the Class name to be pointed to in the driver.

DB user authentication data.

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Either Built-in or Repository.

Built-in: Fill in manually the query statement or build
it graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

318

Talend Open Studio

Copyright © 2007

Components
tJDBCRow

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of any type DB JDBC connection
and covers all possibilities of SQL queries.

Related scenarios

For related topics, see:
» tDBSQLRow Scenario 1: Resetting a DB auto-increment on page 170
» tMySQLRow Scenario: Removing and regenerating a MySQL table index on page 408.

Copyright © 2007 Talend Open Studio 319

Components
tJDBCSP

o tJDBCSP

.’f,‘_:

tJDBCSP Properties

Component family

Databases/JDBC

Function tIDBCSP calls the specified database stored procedure.
Purpose tIDBCSP offers a convenient way to centralize multiple or complex queries
in a database and call them easily.
Properties JDBC URL Type in the database location path
Driver JAR Select the driver JAR on the list or click the three
button to add a new JAR to the list.
Class Name Type in the Class name to be pointed to in the driver.

Username and
Password

Schema type and Edit
Schema

DB user authentication data.

In SP principle, the schema is an input parameter.

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

SP Name Type in the exact name of the Stored Procedure

Is Function / Return
result in

Parameters

Check this box, if a value only is to be returned.
Select on the list the schema column, the value to be
returned is based on.

Click the Plus button and select the various Schema
Columns that will be required by the procedures.
Note that the SP schema can hold more columns than
there are paramaters used in the procedure.

Select the Type of parameter:

IN: Input parameter

OUT: Output parameter/return value

IN OUT: Input parameters is to be returned as value,
likely after modification through the procedure
(function).

Talend Open Studio

Copyright © 2007

Components
tJDBCSP

Usage This component is used as intermediary component. It can be used as start
component but only input parameters are thus allowed.

Limitation The Stored Procedures syntax should match the Database syntax.

Related scenario

For related scenarios, see:
» tMysqISP Scenario: Finding a State Label using a stored procedure on page 419.

» tOracleSP Scenario: Checking number format using a stored procedure on page 450

Copyright © 2007 Talend Open Studio 321

Components
tLDAPInput

y, tLDAPInput

.’}L‘:__

tLDAPInput Properties

Component family

Databases/LDAP

Function tLDAPInput reads a directory and extracts data based on the defined filter.
Purpose tLDAPInput executes an LDAP query based on the given filter and corresponding
to the schema definition. Then it passes on the field list to the next component via
a Main row link.
Properties Property type Either Built-in or Repository
Built-in: No property data stored centrally.
Repository: Select the Repository file where Properties
are stored. The following fields are pre-filled in using
fetched data.
Host LDAP Directory server IP address
Port Listening port number of server.
Base DN Path to user’s authorised tree leaf.
Protocol Select the protocol type on the list.
LDAP : no encryption is used
LDAPS: secured LDAP
TLS: certificate is used
Authentication Check Authentication if LDAP login is required. Note
User and Password that the login must match the LDAP syntax requirement
to be valid. e.g.: “cn=Directory Manager”.
Filter Type in the filter as expected by the LDAP directory db.
Multi valued field Type in the value separator in multi-value fields.
separator
Alias dereferencing Select the option on the list. Never allows to improve
search performance if you are sure that no aliases is to be
dereferenced. By default, Always is to be used:
Always: Always dereference aliases
Never: Never dereferences aliases.
Searching:Dereferences aliases only after name
resolution.
Finding: Dereferences aliases only during name
resolution
Referrals handle Select the option on the list:
Ignore: does not handle request redirections
Follow:does handle request redirections
Limit Fill in a limit number of records to be read if necessary.
322 Talend Open Studio Copyright © 2007

Components
tLDAPInput

Time Limit Fill in atimeout period for the directory. access

Schema type and Edit | A schemais a row description, i.e., it defines the number

Schema of fields to be processed and passed on to the next
component. The schema is either built-in or remotely
stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored in
the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Usage This component covers all possibilities of LDAP queries.
Note: Press Ctrl + Space bar to access the global variable list, including the
GetResultName variable to retrieve automatically the relevant Base

Scenario: Displaying LDAP directory’s filtered content

The job described below simply filters the LDAP directory and displays the result on the console.

&3 _ rowl (Main) _ v E@I

HLDARInpUt 1 " tLogRow 1

+ Click and drop the tLDAPInput component along with a tLogRow.
» Set the tLDAPInput properties.

 Set the Property type on Repository if you stored the LDAP connection details in the
Metadata Manager in the Repository. Then select the relevant entry on the list.

 In Built-In mode, fill in the Host and Port information manually. Host can be the IP address
of the LDAP directory server or its DNS name.

* No particular Base DN is to be set.

Copyright © 2007 Talend Open Studio 323

Components
tLDAPInput

Property Type Built-In w

Hast "192.168.193.163" I
Fort | 359 I*
Base DM | |
Protocol *
[Authentification
Filter "(&f{objectClass=1netorgper=son)é{uid=FPIERRE DUPCOHT))"

< >

Pk wahied Figld separatu:ur| " |

Aliases Dereferencing
Referrals Handle

Limit | 100 | Time Limit | 0 |
Scherna Type Built-In » | Edit schema E]

» Then select the relevant Protocol on the list. In this example: a simple LDAP protocol is
used.

+ Check the Authentication box and fill in the login information if required to read the
directory. In this use case, no authentication is needed.

* In the Filter area, type in the command, the data selection is based on. In this example, the
filter is: (&(objectClass=inetorgperson)&(uid=PIERRE DUPONT)).

* Fill in Multi-valued field separator with a comma as some fields may hold more than one
value, separated by a comma.

» Aswe don’t know if some aliases are used in the LDAP directory, select Always on the list.
 Set Ignore as Referral handling.

« Set the limit to 100 for this use case.

324 Talend Open Studio Copyright © 2007

Components
tLDAPInput

HLDAPInpUt_1

Column Db Colurmn Key Type Mullable Date P... Length Pre...
de dc [] string 255
ou ou |:| String 255
objectClass objectClass [] string 255
mail mail [] string 255
uid uid [] string 255
dn dn [] string |

 Set the Schema as required by your LDAP directory. In this example, the schema is made
of 6 columns including the objectClass and uid columns which get filtered on.

* In the tLogRow component, no particular setting is required.

FEArfIng Job testIDEFInprs s 18005 18-G5 5007,
DATA | top, person, organizational Person, inetorgperson, add00user | nhirt 78@talend . con | PIERRE DUFONT |
b festIRAFTnput andad a6 185 05 (80505007 fesd e code=07

Only one entry of the directory corresponds to the filter criteria given in the tLDAPInput
component.

Copyright © 2007 Talend Open Studio 325

Components
tLDAPOutput

tLDAPOQutput

tLDAPOutput Properties

Component family Databases/LDAP ¢
=
Function tLDAPOutput writes into an LDAP directory.
Purpose tLDAPOutput executes an LDAP query based on the given filter and corresponding
to the schema definition. Then it passes on the field list to the next component via a
Main row link.
Properties Property type Either Built-in or Repository
Built-in: No property data stored centrally.
Repository: Select the Repository file where Properties
are stored. The following fields are pre-filled in using
fetched data.
Host LDAP Directory server IP address
Port Listening port number of server.
Base DN Path to user’s authorised tree leaf.
Protocol Select the protocol type on the list.

User and Password

Alias dereferencing

Referrals handle

Insert mode

LDAP : no encryption is used
LDAPS: secured LDAP
TLS: certificate is used

Fill in the User and Password as required by the directory
Note that the login must match the LDAP syntax
requirement to be valid. e.g.: “cn=Directory Manager”.

Select the option on the list. Never allows to improve
search performance if you are sure that no aliases is to be
dereferenced. By default, Always is to be used:

Always: Always dereference aliases

Never: Never dereferences aliases.
Searching:Dereferences aliases only after name
resolution.

Finding: Dereferences aliases only during name
resolution

Select the option on the list:
Ignore: does not handle request redirections
Follow:does handle request redirections

Select the editing mode on the list:

Insert: insert new data

Updata: updates the existing data

Delete: removes the seleted data from the directory
Insert or Updata

326 Talend Open Studio Copyright © 2007

Components
tLDAPOutput

Schema type and Edit | A schema is a row description, i.e., it defines the number

Schema of fields to be processed and passed on to the next
component. The schema is either built-in or remotely
stored in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: Setting a built-in schema
on page 49

Repository: The schema already exists and is stored in
the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Usage This component covers all possibilities of LDAP queries.
Note: Press Ctrl + Space bar to access the global variable list, including the
GetResultName variable to retrieve automatically the relevant DN Base

Scenario: Editing data in an LDAP directory

The following scenario describes a job that reads an LDAP directory, updates the email of a selected
entry and displays the output before writing the LDAP directory. To keep it simple, no alias
dereferencing nor referral handling is performed. This scenario is based on LDAPInput’s Scenario:
Displaying LDAP directory’s filtered content on page 323. The result returned was a single entry,
related to an organisational person, whom email is to be updated.

n‘ . . . h.a. . .) h.”.)))) _h-..,f-
$ad input {Main 'E q output (Main} o ~ rows (Main) &

ELDAPInpUE_1 tMap_7 ELogRow 3 " HLDAPOURpUE_1

+ Click and drop the tLDAPInput, tLDAPOutput, tMap and tLogRow components.

» Connect the input component to the tMap then to the tLogRow and to the output
component.

* Inthe tLDAPInput properties view, set the connection details to the LDAP directory server
as well as the filter as described in Scenario: Displaying LDAP directory’s filtered content
on page 323.

» Change the schema to make it simpler, by removing the unused fields: dc, ou, objectclass.

HLDAPInpUt_1

Colurmn Db Colurnn key | T... mulable DateP... L. Pr... D.. | .
dn dn] st]

uid uid] st 255

il mail] st]

» Then open the mapper to set the edit to be carried out.

Copyright © 2007 Talend Open Studio 327

Components
tLDAPOutput

» Drag & drop the uid column from the input table to the output as no change is required on

this column.
input rep | output = ap L[]
Calurn Expression Calurmn
dn r{stringiglobaliap. get("tLDAPInput_1_RESULT_MAME™) dn
uid inpuk. uid wid
mail "Pierre, Dupont@talend. com® rnail

* Inthe Expression field of the dn column (output), fill in with the exact expression expected
by the LDAP server to reach the target tree leaf and allow directory writing on the condition
that you haven’t set it already in the Base DN field of the tLDAPQOutput component.

* In this use case, the GetResultName global variable is used to retrieve this path
automatically. Press Ctrl+Space bar to access the variable list and select
tLDAPInput_1_ RESULT_NAME.

* In the mail column’s expression field, type in the new email that will overwrite the current
data in the LDAP directory. In this example, we change to Pierre.Dupont@talend.com.

* Click OK to validate the changes.
* The tLogRow component doesn’t need any particular setting.

» Then select the tLDAPOutput component to set the directory writing properties.

Property Tyvpe L

Hiosk "192,168,193. 163" *
Port 389 *
Base DN "o=directoryRook"

Protocol LOAP ol

ser "cn=Directory Manager"

Password "talendpswd”

Aliases Dereferencing | Always -

Referrals Handle Ignore s

Insert mode Ilpdate *

W
Schema Type BultIn ~| Editschema [

+ Set the Port and Host details manually if they aren’t stored in the Repository.

 In Base DN field, set the highest tree leaf you have the rights to access. If you haven’t set
previously the exact and full path of the target DN you want to access, then fill in it here. In
this use case, the full DN is provided by the dn output from the tMap component, therefore
only the highest accessible leaf is given: o=directoryRoot.

328 Talend Open Studio Copyright © 2007

Components
tLDAPOutput

Select the relevant protocol to be used: LDAP for this example.
Then fill in the User and Password as expected by the LDAP directory.

Use the default setting of Alias Dereferencing and Referral Handling fields, respectively
Always and Ignore.

The Insert mode for this use case is Update (the email address).
The schema was provided by the previous component through the propagation operation.

Save the job and execute.

Searermy qoab LAdFInprinsr a8 1417 SOG8 5007,
uid=PIERRFE DUPONT.ou=DATA . o=TALENDM o=TALEND|FIERRE DUFONT |FPierre. Dupont@talend . com
Jofr TOgFTnprensr anded 36 F8 005 SEGESNRER faETE oodesig

The output shows the following fields: dn, uid and mail as defined in the job.

Copyright © 2007 Talend Open Studio 329

Components
tLogCatcher

tLogCatcher

e

tLogCatcher properties

Both tDie and tWarn components are closely related to the tLogCatcher component. They
generally make sense when used alongside a tLogCatcher in order for the log data collected to be
encapsulated and passed on to the output defined.

Component family Log & Error ¢
¥ <
Function Fetches set fields and messages from Java Exception/PerIDie, tDie and/or

tWarn and passes them on to the next component.

Purpose Operates as a log function triggered by one of the three: Java
exception/PerlDie, tDie or tWarn, to collect and transfer log data.

Schema type and Edit | A schema is a row description, i.e., it defines the

Schema number of fields that will be processed and passed on
to the next component. The schema is either built-in
or remote in the Repository.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused in various
projets and job flowcharts. Related topic: Setting a
repository schema on page 49

Catch PerlIDie Check this box to trigger the tCatch function when a
Catch Java Exception | PerlDie/Java Exception occurs in the job

Catch tDie Check this box to trigger the tCatch function when a
tDie is called in a job

Catch tWarn Check this box to trigger the tCatch function when a
tWarn is called in a job

Usage This component is the start component of a secondary job which
automatically triggers at the end of the main job

Limitation n/a

Scenariol: warning & log on entries

In this basic scenario made of three components, a tRowGenerator creates random entries (id to be
incremented). The input hits a tWarn component which triggers the tLogCatcher subjob. This
subjob fetches the warning message as well as standard predefined information and passes them on
to the tLogRow for a quick display of the log data.

330

Talend Open Studio Copyright © 2007

Components
tLogCatcher

'-_'-'k"' rowe [Main) r !
'tRDwGenera'tDr_l ' ' ' ' I:Warn_i
iy ravwl (Main) T ey
tLogCatcher 1 ' ' " tLogRow 1

Click and drop a tRowGenerator, a tWarn, a tLogCatcher and a tLogRow from the
Palette, on your workspace

Connect the tRowGenerator to the tWarn component.

» Connect separately the tLogCatcher to the tLogRow.

On the tRowGenerator editor, set the random entries creation using a basic Perl function:

Schema Functions Preview
Calurnn Key | Twpe Mullable | Functions Parameters Presigw
G, 1o .. sub{++$I00

columns ™ Mumber of Riows For RowEenerakar | 10

+ On the tWarn Properties panel, set your warning message, the code the priority level. In this
case, the message is “this is a warning’.

* For this scenario, we will concatenate a Perl function to the message above, in order to
collect the first value from the input table.

! twarn_1
Warn message 'this is & warning', $tWwarn_1[0]
Code ‘42!
Pricrity WArning s

* On the tLogCatcher properties panel, check the tWarn box in order for the message from
the latter to be collected by the subjob.

» Click Edit Schema to view the schema used as log output. Notice that the log is
comprehensive.

Copyright © 2007 Talend Open Studio 331

Components
tLogCatcher

1)
/o tLogCatcher 1

Schema Type I:I Edit schema B

Catch Petl die Catch tDie Cakch Bwarn

Press F6 to execute the job. Notice that the Log produced is exhaustive.

Scenario 2: log & kill ajob

This scenario uses a tLogCatcher and a tDie component. A tRowGenerator is connected to a
tFileOutputDelimited using a Row link. On error, the tDie triggers the catcher subjob which
displays the log data content on the Run Job console.

= I u -
k ¢ rowe (Main) @ onErrar 0

tRowsenerator 1 bFileQutputDelimited 1 ' tDie 1

I)))
))\h ruwl I{Ma!nj .':E@I

tLogCatcher 1 tLogRow 1

 Click and drop all required components from various folders of the Palette:
tRowGenerator, tFileOutputDelimited, tDie, tLogCatcher, tLogRow.

» On the tRowGenerator properties panel, define the setting of the input entries to be handled.

Schema Functions Preview i
Zolumn kew | Type mullable | Func... Para... | Preview

L id int subl$. ..
narme [1 string] - subdl. ..
guantity 1 int] . 1..1000
Flag O] it O] o1
creation |:| Day |:| getDate forma. ..

Calumns ™ Mumber of Rows For RowEenerator IZI

« Edit the schema and define the following columns as random input examples: id, name,
quantity, flag and creation.

« Set the Number of rows onto 0. This will constitute the error which the Die operation is
based on.

332 Talend Open Studio Copyright © 2007

Components
tLogCatcher

» On the Values table, define the Perl array functions to feed the input flow.

« Define the tFileOutputDelimited to hold the possible output data. The row connection from
the tRowGenerator feeds automatically the output schema. The separator is a simple
semi-colon.

» Connect this output component to the tDie using a Trigger > If connection. Double-click
on the newly created connection to define the if:
$_globals{tRowGenerator_1}{NB_LINE} <= 0

» Then double-click to select and define the Properties of the tDie component.

0 tDie_1

Die message (Mo row number defined!’
Error code ‘¢
Priarity Error P

 Enter your Die message to be transmitted to the tLogCatcher before the actual kill job
operation happens.

» Next to the job but not physically connected to it, click and drop a tLogCatcher and connect
it to a tLogRow component.

* Define the tLogCatcher properties. Make sure the tDie box is checked in order to add the Die
message to the Log information transmitted to the final component.
Execution
Stats & Traces

[ﬁDEbug] [[B= Run] g?::?zs

Clear before run [Exec time

Seareing ol Dogfr il g6 17037 157045007, N
2007-04-12

11:37:58 | rPOLiN | xPQLiN | rPQLiN | PERL_PROJECT1 |LogKill |Default |6 |Perl
dig|tFiletutputDelinited 1|cannot open file "C:~Outputs~OutputDel txt" at
E:~Talend
builds~]license~TOS-Win3dZ2—r3034-V2 0. I~wvorkspace™ Perl~PERL_FROJECT1 . job_Lo
gKill . pl line 446 |

2007-04-12

11:37:58 | xPQLiN | rPOLiN | rPQLiN | PERL_PROJECT1 |LogKill |Default |5 tDie| tDie 1|1
o row nunber defined! |4

HNo row number defined! at E:~Talend
builds~license~TOS-Tin3d2—r3034-V2 . 0. I~workspace~. Perl~PERL_PREOJECTL.job Lo
gkill pl line 728.

Jofr FogdT 55 ended e F80FF 15008 -5GF . feer e ocodess

* Press F6 to run the job and notice that the log contains a black message and a red one.

» The black log data come from the tDie and are transmitted by the tLogCatcher. In addition
the normal PerIDie message in red displays as a job abnormally died.

Copyright © 2007 Talend Open Studio 333

Components
tLogRow

tLogRow

Q

tLogRow properties

Component family Log & Error i@ ({
Function Displays data or results in the Run Job console
Purpose tLogRow helps monitoring data processed.
Properties Print values in table | The output flow displays in table cells.
cells
Separator Enter the separator which will delimit data on the
Log display
Print component Check this box in case several LogRow

unique name infront | components are used. Allows to differenciate
of each output row | outputs

Print schema Check this box to retrieve column labels from
column name in output schema.
front of each value

Use fixed length for | Check this box to set a fixed width for the value
values display.

Usage This component can be used as intermediate step in a data flow orasan
end object in the job flowchart.

Limitation n/a

Scenario: Delimited file content display

Related topics using a tLogRow component:
* tFilelnputDelimited Scenario: Delimited file content display on page 224.
» tContextLoad Scenario: Dynamic context use in MySQL DB insert on page 145

» tWarn, tDie, tLogCatcher Scenariol: warning & log on entries on page 330 and Scenario
2: log & kill a job on page 332

334 Talend Open Studio Copyright © 2007

>3

tMap

Components
tMap

tMap properties

Component family

Function

Purpose

Properties

Usage

Limitation

Processing _
Y <

tMap is an advanced use component, which integrates itself as
plugin to Talend Open Studio. .

tMap transforms and routes data from single or multiple sources to
single or multiple destinations.

Preview The preview is an instant shot of the Mapper
data. It becomes available when Mapper
properties have been filled in with data. The
preview synchronization takes effect only after
saving changes.

Mapping links | Auto: the default setting is curves links

display as Curves: the mapping display as curves
Lines: the mapping displays as straight lines .
This last option allows to slightly enhance
performance.

Map editor Mapper is the tMap editor. It allows you to define
the tMap routing and transformation properties.

Possible uses are from a simple reorganisation of fields to the most
complex jobs of data multiplexing or demultiplexing
transformation, concatenation, inversion, filtering and more...

The use of tMap supposes minimum Perl or Java knowledge in
order to fully exploit its functionalities.

This component is a junction step, and for this reason cannot be a
start nor end component in the job

Note: For further information, see Mapping data flows in a job on page 83.

Scenario 1: Mapping with filter and simple explicit join (Perl)

The job described below aims at reading data from a csv file stored in the Repository, looking up at
areference file also stored remotely, then extracting data from these two files based on defined filters
to an output file or a reject file.

This job is presented in Perl but could also be carried out in Java.

+ Click on File in the Palette of components, select tFilelnputCSV and drop it on the design
area. Rename the Label to Cars, either by double-clicking on the label in the workspace or
via the View tab of the Properties panel.

* Repeat this operation, and rename this second input component: Owners.

Copyright © 2007

Talend Open Studio 335

Components
tMap

 Click on Processing in the Palette of components, select tMap and drop it on the design area.

» Connect the two Input components to the mapping component and customize the row
connection labels.

Dnaners .

" Ownérs_dafa (Lookop)

» The Cars and Owners delimited files metadata are defined in the Metadata area of the
repository. You can hence use their Repository reference in the Properties panel.

» Double-click on Cars, to set the Properties panel.

@ tFileInputCcsy

Property Type i » | Repository |Cars ¥

File Mame ‘T InputiCars,csy ; E]
Fiowe Separatar "0 I Field Separatar | ;" Escape char |" iy Teut enclosure | " I
Header 1 i Footer | O i Limit b
Schema Type Repository + | Repository | Cars - metadata v |* Edtschema [[]Skip empty rows
Encoding "US-ASCIT v

 Select Repository to retrieve Property type as well as Schema type. The rest of the fields
gets automatically filled in appropriately when you select the relevant Metadata entry on the
list.

» Double-click on the Owners component and repeat the setting operation. Select the
corresponding Metadata entry.

For further information regarding Metadata creation in the Repository, see Defining Metadata items
on page 51.

» Then double-click on the tMap component to open the Mapper. Notice that the Input area
is already filled with the Input component metadata tables and that the top table is the Main
flow table.

» Notice also that the respective row connection labels display on the top bar of the tables.

+ Create a Join between the two tables on the ID_Owner field by simply dragging the top table
ID_Owner field to the lookup input table.

336 Talend Open Studio Copyright © 2007

Components
tMap

Cars_data i

Column

-~ ID_Cwners
R.eqgistrakion
Make

Colar
ID_Reseler

Owners_data | Inner join | -

Expr, key Colurmn

$Cars_data[l... % ID_Cwaner
Marne
ID_Insurance

« Define this link as an Inner Join by checking the box.

¢ Click on the Plus button on the Output area of the Mapper to add three Output tables

40 4 X
Insured ..' # # L3
Expression Colurmn

Reject_Molnsur ..'. |$| # Q

Expression Colurmn

Reject_Innerl ..' # |E| Q

Expression Colurmn

» Dragand drop Input content to fill in the first output schema. For more information regarding
data mapping, see Mapping data flows in a job on page 83.

 Click on the plus arrow button to add a filter row. In the Insured table, will be gathered cars
and owners data which include an Insurance ID.

Copyright © 2007 Talend Open Studio 337

Components

tMap
- SERFEREETES
A
Cars_data i T Insured ..' iﬁ + i
Calurnn Filters conditions (ARD)
ID_Cwwners | $owners_daka[ID_Insurance] ne " |*
;Ei:tramn Expression Caolurnn
Czlnr $Cars_data[ID_Owners) ID_Cwners
D Reseller $Cars_data[Reqistration] R.eqgistration
= $Cars_dakta[Make] Make
$Cars_data[Calor] Colar
$Cars_data[ID_Reseler] ID0_Reseller
1] dat v joi - - -
LR || & FOwiners_data[Mame] Marme
Expr. key Zolurmn $Owiners_data[ID_Insur, .. ID_Insurance
$Cars_data[ID_Cwners] Qz, ID_Cwiner
Marne ——
ID_Insurance B Reject_NoInsur G 4|y LI
b Expression Calurnn

 Therefore drag the ID_Insurance field to the Filter condition area and enter the formula used

meaning ‘not undefined’: $Owners_data[1D_Insurance] ne

» The Reject_Nolnsur table is a standard reject output flow containing all data that do not
satisfy the required filter condition. Click the orange arrow to set the table as Reject Output.

& L0 4+ %
Cars_data i 25 l |
Calun Reject_MNoInsur s |EP|+ o
ID_Cwiners Expression Column
Reqistration
Make
Color
ID_Reseller
Owners_data | Inner ju:uin| & Reject_Inner] q #|+| i
Expr. key Calurnin Expression Calurn
$Cars_data[ID_Owners] % I0_Gwiner $Cars_data[ID_Cwners] ID_Cwiners
RENE $Cars_data[Fegistration] R.egistration
ID_Insura.., W
v

 The third and last table gathers the schema entries whose Inner Join could not be established.
One Owners_ID from the Car database does not match any Owner_ID from the Owner file.

 Click the violet arrow button to set the last table as the Inner Join Reject output flow.

* Click OK to validate and come back to the design area.

338

Talend Open Studio

Copyright © 2007

Components
tMap

+ Add three tFileOutputDelimited components to the workspace and right-click on the tMap
to connect the Mapper with all three output components, using the relevant Row connection.

+ Relabel the three output components accordingly.
Owners . ' ' ' ' ' ' E]

" Ownérs_dafa, {Lockup) Insured
I {Main)

=
B Cars_data (Main) * E 4 Reject_MoInsur {Main) * @

Cars ' EMap_1 " Mot_Insured

I"-.Il:n_'Owner'_ID

» Then double-click on each of them, one after the other, in order to define their respective
output filepath. If you want a new file to be created, browse to the destination output folder,
and type in a file name including the extension.

* Check the Include header box to reuse the column labels from the schema as header row in
the output file.

merlmc RegExp | Tasks | Run {Job Scenari... | Problems (Job 5., | Modules | Scheduler =0

=
Mairi @ tFileOutputDelimited
Propetties
Wig Property Type v
Documentation File Mame | "Cioutputst Insured_all csy' |* E]
Rovw Separatar Field Separator . fppend
Include Header
Schema Type Edit schemna E]
Encoding | '150-8859-15" "

* Run the Job using the F6 keystroke or via the Run Job panel.

» Output files have been created if need be.

Copyright © 2007 Talend Open Studio 339

Components
tMap

! Not_Insured.csv - Bloc-notes

Fichier Edition Format Affichage 7

ID_owners; Registration; ID_Reseller; Mame
1o; 7040 AS 245 ;waesmont
21; 5177 &C B9;1;carbo
25: 7163 90; 2; sabmau
27 bhouhnan
63;1;maunang
71;8;carmau
44;7; sabneng
G4 7 hirtwaes
425 kenszah
10; 5; nengken
£3; 5; Tebone
17:: sabmont
31;4;otmont
86; ;bogall
43 2y 01nemau

Scenario 2: Mapping with Inner join rejection (Perl)

This scenario, based on scenario 1, adds one input file containing Resellers details and extra fields
in the main Output table. Two filters on Inner Joins are added to gather specific rejections.

+ Click on File in the Palette of Components, and drop a tFilelnputCSV component on the
workspace.

» Connect it to the Mapper and put a label on the component and the connection.
F'\'eselle'i"s_‘

3 Resellers_d.;tq Lookup)

Owrers
Onaners_datd flogkup) " I {Main)

i iy N ; : :
B Cars_daka (Main) " Reject_MoInsur (Main) " @

Cars tMap_1 " Mot_Insured

5

fnsured

N-:u_'Owner'_ID

» Double-click on the Resellers component, to define the Reseller input properties.

» Browse to the Resellers.csv file. Edit the schema and add the columns as needed to match
the file structure.

340 Talend Open Studio Copyright © 2007

Components
tMap

B- Schema of Resellers

EFileInputCsy_3

Calurnn kKey | Twpe Length Precision = Mullable = Corment
Ll ID_Reseller int z 0
Mame_Reseller [] sting 24 0
Address Reseller [sString 21 0
FipCode] it 4 0
Ciky [l sting 16 0

B33 D BN E)

I Ok] [Cancel]

» You could also create a metadata entry for this file description and select Repository as
properties and schema type. For further information, see Setting up a File Delimited
schema on page 56.

» Double-click on the tMap component and notice that the schema is added on the Input area.

Cars_data |

Zolurnn
ID_Owners
Reqiskration
Make
Colar

— ID_Reseller

Owners_data | Inner join | i

Resellers_data | Inner join | &

Expr. key Calurnn

“—§ $Cars_data[ID_Reseller] C& ID_Reseller
Mame_Reseler
Address_Reseller
ZipCode

ity

 Create a join between the main input flow and the resellers input. Check the Inner Join box
to define that an Inner Join Reject output is to be created.

» Drag & drop the fields from the Resellers table to the main Output table.

Copyright © 2007 Talend Open Studio 341

Components

tMap
£ 408 4 X%
S — — =
Calurmn Insured + > ap L[]
ID—QWHE_H Filkers conditions (AMD
Eﬂiﬂ:uamn $owners_daka[ID_Insurance] ne " i
Color Expression Colurmn
ID_Reszeler $iars_data[ID_Cwners) ID_Cowwriers
$ars_data[Registration) Registration
$Cars_data[Make] Make
Owners_dat. Inner join LA $Zars_data[Color] Color
$Zars_data[ID_Reseller] ID_Reseller
Resellers_d: Inner join | $ovwners_data[Mame] Marme
$owners_data[ID_Insurance] ID_Insurance
Expr. key Calurnn | $Resellers_data[Mame_Reseler] Mame_Reseller |
$Cars_data[lD_... &, ID_Rese... $Resellers_data[Address Rese... Address_Pese, .,
Mame_F... $Reselers_data[ZipCode] ZipCode
Address... $Resellers_data[City] ity
ZipCaode
City
= Reject_MNoInsur & = L0

Note: When two inner joins are defined, you either need to define two different inner join
reject tables to differenciate both rejections or if there is only one Inner Join reject
output, both Inner Join rejections will be stored in the same output.

» On the output area, click on the plus button to add a new output table.
 Give a name to this new Output connection: Reject_ResellerID
 Click the Inner Join reject button to define this new output table as Inner Join Reject output.

» Drag & drop two fields from the main input flow (Cars) to the new reject output table. In this
case, if the Inner Join cannot be established, these data (ID_Cars & ID_resellers) will be
gathered in the output file and will help identify the bottleneck.

342 Talend Open Studio Copyright © 2007

Components
tMap

Cars_data i Insured

Colurmn

ID_Owners
Reqistration

Make Reject_OwnerID

Calar
ID_Reseller

Dwn Inmer jain | &

Rese Inner jain | &

Reject_MNolnsur

Reject_ResellerID

Expression
$Cars_data[ID_Owners]
$Cars_datal[ID_Reseller]

-
¥
¥

Y

» Now apply filters on the two Inner Join reject outputs, in order for to distinguish both types

of rejection.

* In the first Inner Join output table (Reject_OwnerID), click the plus arrow button to add a
filter line and fill it in with the following formula to gather only OwnerlID-related rejection:
not defined $0wners_data[ID_Owner]

* In the second Inner Join output table (Reject_ResellerID), repeat the same operation using

the following formula: not defined $Resel

Owners_data Inner join | o
Expr. ke Zolumn
$Cars_data[ID_o... @@, ID_Cwiner

Mame

ID_Insurance

Resellers_data Inner join | o

Expr. key Colurmn
$Cars_data[ID_R... C% ID_Reseller
Mame_Rese, ..
Address_R...
FipCode
ity

i

¢ Click OK to validate and close the Mapper editor.

lers_data[ID_Reseller]

Reject_OwnerID ..'. LJ;,} + Q
Filkers conditions (&R

nok defined $Owners_data[ID_Cwner] b 4
Expression Zolumn
$Cars_daka[ID_Cwners] ID_Cwiners
$Cars_data[Registration] Reqistration

Reject_ResellerID ..' l_J'D # i)

Filters conditions (AR
nok defined $Resellers_data[ID_Reseller] b 4

Expression Colurmn
$Cars_data[ID_Cwners] ID_Cwiners
$Cars_data[ID_Reseler] ID_Reseller

* Right-click on the tMap component, click on Row and select Reject_ResellerID in the list.

+ Connect the main row from the Mapper to the Reseller Inner Rejection output component

Copyright © 2007 Talend Open Studio 343

Components
tMap

F';ESE"EFS_

[: : o ’ ’ Insured
F:esellers dal‘a (Lnnkup]l

Owners e Insueed (Main)
Dwners data 1{Lu:u:nk1_||:|]| .
i /Emect‘ﬂmt Insured
B Cars data {Maln} %

Cars I:Map 1

Mo_ResellerID

« Forthis scenario, remove from the Resellers.csv the rows corresponding to Reseller ID 5 and
8.

* Then run the job through a F6 key stroke or from the Run Job panel.

344 Talend Open Studio Copyright © 2007

Components
tMap

C Cars.csv - Bloc-notes
Fichier Edition Formak Affichage

Z0 84;volkswagen; gold; 7
Tw 80;Honda; purple; 7
TT 77;Renault;orange;l
¥F 11;Citroen; =i ver;10
EL @4;Citroen;blue;d
UI &8;Citroen;yellow; 8
GO 26;Toyota; purple;d
59;Citroen;yel Tow; 4
37; va1kswagen green; 8
10 7040 AS 24 Honda; orange; 3
11; 8630 Ks 58; Mer cedes ye11uw;2
12;4322 DP 76;BMw; urp1e 1
13 2373 BC 30;BMw; black; S

ey e el B A T i A0

E Reseller.csv - Bloc-notes JQ|E”X|

Fichiet Edition Format Affichage

ID_Reseller;Mame_Rreseller;address_Reseller;Z2ipCode; City
1;Cars & Pickup shop;38 Boot Avenue; 5113;Morth Coast City
2;Cars & Pickup sSpecialist;15 Rubber Drive;5952;west Coast
City

3;jquality Car Resale;29 wipers Road;7794;Atlantic City

4; 817 you need outlet;45 Rubber Gate; 5987;Caraibean City

6; 411 Cycle Resale; 20 Tyre Road;6593;Caraihean City
7iCars & Pickup Resale;35 Tyre Road;2486;Caraibean City

9;411 Cycle specialist; 30 windshield sStreet; %219 nNorth Coast
EB?E11 Cycle outlet;d45 Rubber Avenue;3529;Pacific City

2 Mo_ResellerlD.csv - Bloc-notes

Fichier Edition Format Affichage 7

ID_Owhners:;ID_Reseller

 The four output files are all created in the defined folder (Outputs).

* Notice in the Inner Join reject output file, NoResellerID.csv, that the ID_Owners field values
matching the Reseller ID 5 and 8 were rejected from the cars file to this file.

Copyright © 2007 Talend Open Studio 345

Components
tMap

Scenario 3: Cascading join mapping

As third advanced use scenario, based on the scenario 2, add a new Input table containing Insurance
details for example.

Set up an Inner Join between two lookup input tables (Owners and Insurance) in the Mapper to
create a cascade lookup and hence retrieve Insurance details via the Owners table data.

Scenario 4: Advanced mapping with filters, explicit joins and Inner
join rejection

This scenario introduces a job (in Java) tMap which allows to find the reseller’s customer leads who
are owners of a defined make, and have between 2 and 6 children (inclusive), for upsale purpose for
example.

R
» -

Owners
. Zars (Lipokup)
Cwners (Leokup) ' '

B Resellers (Main) =E q BMWOwners_wkhChildren (Main order: 1) =@

Resellers ' tMap_1 "B whChildren

Inner _Join_Rejec

" MoBrmw_or_niokids

+ Drag and drop the following components from the Palette: tFileInputDelimited (x3), tMap,
tFileOutputDelimited (x2)

» Connect the input flow components to the tMap using a Main row connection. Pay attention
to the file you connect first as it will automatically be set as Main flow. And all other
connections will thus become Lookup flows.

« Define the Properties of each of the Input components. For example, define the Resellers
file path used as Main flow in the job.

346 Talend Open Studio Copyright © 2007

+=P tFileInputDelimited_3

Property Tyvpe

Built-In "

Components
tMap

File Mame i Input/Reseller csw” * E]
Fow Separator "“n" Field Separator | ;"

Header 1 Fooker Lirnik

Schema Type Repository 4 | | CELIM:Resellers - metadata s+ |* Edit schema [3 [skip empky rows

[Extract lines at random

Encoding Type 150-8859-15 «

« Define the delimited file to be used, the Row and the Field Separator, the Header and Footer
rows if any.

+ Edit the Schema if it hasn’t been stored in the Repository. You will retrieve this schema in
the Main table at the top of the Input area of the mapper.

 Carry out these previous steps for the other Input components: Cars and Owners. These two
Lookup flows will fill in secondary (lookup) tables in the Input area of the Mapper.

» Then double-click on the tMap component to launch the Mapper and define the mapping
and filters.

Resell
esellers * & BMWOwners_wthChildren [= & L

Columnn

A ID_Reseller

Cwners, Children_Mr = 1 &8 Owners, Children_Nr < &

* First set the explicite joins between the Main flow and the Lookup flows.

Expression Colurnn

Resellers.Mame_Reseller Mame_Reseller
Mame_Reseller . .
fddress_Reseller Resellers, ZipCode ZipCode
ZipCode Cars, ID_Cwners ID_Cwwners
City Cars,Req_Car Reg_Car
Cars.Make Make:
COwners, Children_Tr Children_r
Cars All matches - Inner join
B b - Inner_Join_Reject T || O
F | 1D_Cwinets Expression Colurin
Reg_Car Resellers.Mame_Reseller Mame_Reseller
‘ "BIMW" Make Resellers, ZipCode ZipCode
Color Cars, ID_Cwners ID_Chwners
‘-)‘ Resellers.ID_Reseller ID_Reseller Cars.Reg_Car Reg_Car
Cars.Make Make:
Cars.Color Calar
Owners allmatches ~ Inner jain Cars.ID_Reseller ID_Reseller
Cwners,id_owner id_owner
Expr. key Calurnn Cwiners.name name
“-D* Cars. ID_Owners id_owner Owners.id_insurance id_insurance
narne COwners, Children_Tr Children_r
id_insurance
Children_r

+ Simply drag & drop the ID_Resellers column towards the corresponding column and this
way fill in the Expression key field of the Lookup table.

Copyright © 2007

Talend Open Studio

347

Components
tMap

Resellers ..' i
Colurmn
A ID_Reseller
Mame_Reseller
Address_Reseller
ZipCode
ity
Cars allmatches = | [w] Inner join -il &
Expr. kew Calurnn
—{ ID_Cwners
Feq_Car
"B Make
Colar
‘-}& Resellers. ID_Reseller ID_Reseller

» The explicit join displays in color along with a hash key.

» Theninthr Expr. Key of the Make column, type in (in Java) the filter. In this use case, simply
type in “BMW’” as the search is focused on the Owners of this particular Make.

 Implement a cascading join between the two lookup tables Cars and Owners, in order to
retrieve owners information regarding the number of children they have.

Expr. kew Calurnn
ID Owners
Reg_Car
"Bl Make
Colar
* Resellers.ID_Reseller I0_Reseller
Dwners allmatches = | [w] Inner join 'il &
Expr. kew Calurnn
“—I‘& Cars, ID_Cwners id_owner
name
id_insurance
Children_Mr

Cwners, Children_fr = 1 &8 Owners, Children_MNr < 6

» Simply drag and drop the ID_Owners column from the Cars table towards the Expr. Key
field of the id_owner column from the Owners table.

+ Click the Filter button next to the Inner Join button to display the Filter expression area.

348 Talend Open Studio Copyright © 2007

Components
tMap

 Type inthe Filter statement to narrow down the number of rows loaded in the Lookup flows.
In this use case, the statement reads: Owners.Chilldren_Nr > 1 &&
Owners.Children_Nr < 6

» Then, as you want to reject the null values into a separate table and exclude them from the
standard output, check the Inner Join box for each of the filtered Lookup tables.

All matches - Inner join -.I &

Colurmn

ID_Owners
Req_Car
Flake

Calor
ID_Reseller

Al matches - Inner join ..' &

Colurmn
id_owner

* In the Inner join, you can then choose to include only a Unique match, the First or Last
match or All Matches. In this use case, the All matches option is selected. Thus if several
matchs are found in the Inner Join, i.e. rows matching the explicit join as well as the filter,
all of them will be added to the output flow (either in Rejection or the regular output).

* Then on the Output area of the Mapper, add two tables, one for the full matches and one
for the rejections.

 Click the plus button to add the tables and give a name to the outputs.

Copyright © 2007 Talend Open Studio 349

Components

tMap
BMWOwners_wthChildren = [
Expression Calurmn
Resellers.Mame_Reseller Mame_Reseller
Resellers. ZipZode ZipCode
Cars. ID_Cwiners ID_Cnvwners
Cars.Reqg_Car Reqg_Car
Cars.Make Make
Cuwners, Children_r Children_Mr
Inner_Join_Reject g o | O
Expression Column
Resellers.Mame_Reseller rame_Reseller
Resellers, ZipCode ZipCode
Cars, ID_Cwners ID_Cwners
Cars,Reg_Car Req_Car
Zars, Make Make
Cars, Color Color
Cars, ID_Reseller ID_Reseller
Cuwners,id_owner id_owner
OwWners, name narne
Cuwners,id_insurance id_insurance
Cuwners, Children_Tr Children_Hr
» Drag and drop data from the Main and Lookup tables in the Input area, towards the
respective output tables, following the type of information you want to fetch.
* In the rejection table used to direct the non-matches from the external join or the filter, click
the Inner Join Reject button (violet arrow) to activate it.
» On the Designer space, right-click on the tMap and pull the respective output link to the
relevant components.
« Define the Properties of the Output components.
=5 tFileOutputDelimited_1
Property Type Built-In "
File Marme "1 foutput BMW omners_wkhiZhildren. csy” * E]
Row Separatar “\m" Field Separatar | ;" [] append
Include Header
Sehema Type Bult-In | Editschema [
Encoding Type 150-8859-15
« Define the filepath, the expected Row and Field separator. And for this use case, check the
Include Header box.
350 Talend Open Studio Copyright © 2007

Components
tMap

» The Schema should be automatically propagated from the Mapper.

» Save you job, then go to the Run Job tab and check the Statistics box to follow the
processing thread.

>

. Cars ————
|:9 e output inchudes
_ e _ 102 rows in0.225 extra rows as several
Cwners L0 rows in 0.244053.64 ’"‘F‘Wff{f | [matches were Found| |
42553 rows/s Cars I:L;SIICIkJ.Il:I:I
Owners (Loakup) _
]) &4 rows in 0,225] ')) S lz2rowsin 0225 =
00, 97 Fonsds B Ry 5, 55 romess
B Resellers (Main) o EMWOwners_wkhChildren (Main orderi 1) @
Resellers ' ' ' ' ' tMap_1 : ! | ' ' “BMW_wthChildren

" MoBmw_or_nokids

The statistics show that several matches were found and therefore the sum of the output rows (Main
+ rejected) exceeds the Main flow input rows.

Scenario 5: Advanced mapping with filters and a check of all rows

This scenario is a modfied version of the preceding scenario. It describes a job that apply filters and
then check each row of loaded lookup rows.

Copyright © 2007 Talend Open Studio 351

Components
tMap

e
» 7

Cwners
. Cars (Lipokup)
Owiners (Leakup) '

L ::. &
B Resellers (Main) =E q Wi MercedesCwners _wthChildren (Main order: 1]!= @

Resellers ' tMap_1 tFileCutputDelimited 1

irner_Join_Rejec in order:2)’

1

tFileCutputDelimited 2

* Take the same job as in Scenario 4: Advanced mapping with filters, explicit joins and Inner
join rejection on page 346.

* No changes are required in the Input delimited files.

* Launch the Mapper to change the mapping and the filters.

1
Resellers g £ BMWMercedesOwners_wthChildren .|'. Gﬁ * |
Columnn :
I0_Reseller Expression Colurnn
Mame_Reseller Resellers.Mame_Reseller Mame_Reseller
Address_Reseller Resellers, ZipCode ZipCode
ZipCode Cars, ID_Cwners ID_Cwwners
City Cars,Req_Car Reg_Car
Cars.Make Make:
Owners, Children_Mr Children_Mr
Cars Allrows - Inner join |.|'. | &
Expr. key Eemm Inner_Join_Reject .|'. Gﬁ |i| Q
ID_Chwners Expression Columnn
Reg_Car Resellers.Mame_Reseler Mame_Reseller
Make Resellers, ZipCode ZipCode
Calar Cars, ID_Owners ID_Owners
I0_Reseller Cars.Reg_Car Reg_Car
= m = m Cars.Make Make:
N Cars.Make, equals("BMW") || Cars.Make.equals{"Mercedes") ‘ Cars.ID_Reseller I0_Reseller
Cwners,id_owner id_owner
. ChWners. name name
- 1 Owners.id_insurance id_insurance
Ouners (meidhEs |"'_| = Owners, Children_Mr Children_Mr
Expr. key Colurnn
"N‘ Cars. ID_Owners id_owner
name
id_insurance
Children_r
|Owners.ChiIdren_Nr = 1 & Owners, Children_Nr < & |

» Remove all explicit joins between the Main table and the Cars Lookup table.

* Notice that the All Matches setting changes automatically to All Rows. In fact, as no explicit
join is declared (no hash keys), all lookup rows need to be loaded and checked against all
main flow rows.

352 Talend Open Studio Copyright © 2007

Components
tMap

* Remove the Expr. key filter (“BMW?*) from the Cars table.

Cars all rows -

] @

Innet join

Expr. key Colurmn
ID_Cwwners
Reqg_Car
Make
Color
ID_Reseller

) Cars.Make, equals"BMW"Y || Cars.Make.equals("Mercedes™)

» And click the Filters button to display the Filter area. Then type in the new filter to narrow
down the search to BMW or Mercedes car makes. The statement reads as follows:
Cars._Make.equals('BMW'*) || Cars.-Make.equals('Mercedes')

 The filter on the Owners Lookup table doesn’t change from the previous scenario.

« Define new file paths for the respective outputs.

 Save the job and enable the Statistics on the Run Job tab before executing the job.

=

Onrners

=

[] -]
Cars

102 rows in 0115
100 rows in 0,125 57578 rowis/s
Eﬁ?ﬂ?ﬂ.yg_j;.-"s Cars {L:a:u:ukup]l
Cnaners lflllaqlfup} :

>

Resellers

fdromsinils .y @& 1Z16rowsinD.11s
SH7. I 5 fowms *% 775595 rons/s
Resellers (Main) o WMercedesOwners_wthChildren (Main arder: 10
tMap_L 576 rows in 0,115 EFileCutputDelimited,
o romeds

Inner_Join_Rejec in order:Z)

5

tFileCutputDelimited 2

The Statistics show that a cartesian product has been carried out between the Main flow rows with
the filtered Lookup rows.

Copyright © 2007

Talend Open Studio 353

Components

tMap

[=] Emwitercedes wthChildren. caw

34
35
36
37
3g
39
40
41
4z
43
44
45
46

Cars
Cars
Cars
cars

[T - I 2 T~ T |

Cars
Cars &

ouality
oualitcy
Quality
Quality
ouality
oualitcy
Cualitwy

FPickun
Pickun
Pickup
Pickun
FPickun
Pickun

Car
Car
Car
Car
Car
Car
Car

Specialist; 5952762251 JG 82 HMercedes:5
Speciglist 59527929230 CP V7 rMercedes: 5
Specialisc;5952;:96;58506 Zo 03;BMW: 4
Bpecialist;5952;97: 7757 KEQ 65;BMW: S
Specialist; 5952999162 MC 60;HMercedes:4
Specialist:;5952:100:0146 DA 20:BMW: S

Fezale;7794;:9;:9939 CJ 85;Mercedes; 3

Resale:7794;15;:45635
Resale:?794:20; 3405
Resale:?794:27: 5792
Resale;7794:33;8255
Resale:?794:44; 3745
Resale:7794:45:3065

ZB
EmW
QT
LP
1)
Ea

33;BMW: 3
35;:Mercedes; 2
15 EBMI; 3
32;BMW:3
21;:BMW; 2
69:Mercedes:3

The content of the main output flow shows that the filtered rows have correctly been passed on.

Mwibdercedes wihChildiencey | = BMwhMercedes withchildren_InnerReject. cav

1 hamE_Reseller;ZipCDdE;ID_Owners;REg_Car;HakE;ID_RESEller;id_Dwner;namE; A
id insurance;Children Nr
Z Cars & Pickup Shop:5113:16:;6709 YE 10:BHW;Z27:16:bobouh;Q¥Wid41z;:1
3 Cars & Pickup Shop:5113:37:5898 EB O09:BMW:54:37:hirtgall :MFR4898;:1
4 Cars & Pickup Shop:;5113;65:0439 ZF 39;BMW;3Z;65;wauvaes;FEGAS16; 6
5 Cars & Pickup Shop:5113;68:8147 B3 83;Mercedes:33;68:;houhle;NGT4401; 6
& Cars & Pickup Shop:5113;:;80;1359 DY 17:Mercedes:8:80;gallgall; GAC9240; 6
7 Cars & Pickup Shop:5113;86;00594 3H 41:BMW:Z6:86;0tho;0FU7275;: 6
D Cars & Pickup 3hop;5113:92;:6544 LF 7e;ENW; 50:92;otman; ZMNHZS512; 6
Whereas, the Reject result clearly shows the rows that didn’t match one of the filter.
354 Talend Open Studio Copyright © 2007

tMomInput

Components
tMominput

tMomInput Properties

Component family

Function

Purpose

Properties

JBoss Messaging

Websphere

Usage

Limitation

Internet

Fetchs a message from a queue on a Message-Oriented middleware system
and passes it to the next component.

tMomInput makes it possible to set up asynchronous communications via a

MOM server..
MQ Server

Host/Port

Schema type and Edit
Schema

Keep
listening/Sleeping
time

Message From

Message Type
Channel
Queue Manager

Message Queue

Select in the list the MOM server to be used.
According to the server selected, the parameters
required slightly differ.

Fill in the Host name or IP address of the MOM
server as well as the Port.

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component.

In the context of tMomInput usage, the schema is
read-only. It is made of two columns: From and
Message

Check this box to keep listening the MOM server for
fetching any new message. Set the frequency of
verification in seconds.

Type in the message source, exactely as expected by
the server; this must include the type and name of the
source. e.g.: queue/A or topic/testtopic

Note that the field is case-sensitive.

Select the message type, either: topic or queue.
Value by default is Channel
Fill in the server driver details

Source of the message

This component is generally used as a start component . It requires to be
linked to an output component.

Make sure the relevant JBoss or Websphere server is launched.

Scenario: asynchronous communication via a MOM server

This scenario is made of two jobs. The first job aims at posting messages onto a JBoss server queue
and the second job fetches the message from the server.

Copyright © 2007

Talend Open Studio 355

Components
tMomInput

In the first job, a string message is created using a tRowGenerator and put on a JBoss server using
a tMomOutput. An intermediary tLogRow component displays the flow being passed.

,ﬂ-ﬁ-k -;E[]|:| -;J_IE
& ¥ rowl (Main iy rowE (Main L{}
'tRDwGenera'tDr_l ' ' ' ' I:LufugRu:uw'_l ' ' ' tMDanutlet_l

+ Click and drop the three components of this first job and right-click to connect them using
a Main row link.

» Double-click on the tRowGenerator to set the schema to be randomly generated.

Schema Functions Preview
Column key | Type Mullable | Length Functions = Parame... Preview
MESS30E [] String gebAsci,., length=... ‘WcxkI0

[iy M [ﬂ &] H [&] [ﬁy [ﬂy Columns ~ Murnber of Rows for RowGenerator | 10

« Set only one column called message. This is the message to be put on the MOM queue.

+ Thiscolumnis of String type and is nullable. To produce the data, use a preset function which
concatenates randomly chosen ascii characters to form a 6-char string. This function is
getAsciiRandomString. (Java version). Click the Preview button to view a random
sample of data generated.

+ Set the Number of rows to be generated to 10.
* Click OK to validate.

* The tLogRow is only used to display a intermediary state of the data to be handled. In this
example, it doesn’t require any specific configuration.

» Then select the tMomOutput component.

MO server Wil EEEEgl| | Host | localbosk Port | 1099
TS queue/f Message Type | QUELE w
Schema Edit schema E]

 Inthis use case, the MQ server to be used is JBoss.

* In Host and Port fields, fill in the relevant connection information.

356 Talend Open Studio Copyright © 2007

Components
tMominput

 Select the Message type in the list. The message can be of Queue or Topic type. In this
example, select the Queue type on the list.

* Inthe To field, type in the message source information strictly as expected by the server. This
should match the Message Type you selected, such as: queue/A.

Note: The message name is case-sensitive, therefore queue/A and Queue/A are
different.

* Then click Sync Columns to pass on the schema from the preceding component. The
schema being read-only, it cannot be changed. The data posted onto the MQ come from the
first encountered column of the schema.

* Run the job and see the console the data flow being passed on thanks to the tLogRow
component.

Stareing job Mangppoe 36 17048 T8l RS TES
c8HEGC

1EhiC41

opGYgF

=bglotd

ESknsp

tXUZET

BHYHwl

aUA%=M

2=ebw¥

rfPZAP

Joabh Mowinpr s anded a6 17048 148805007 Fferr b codesiy

Then set the second job in order to fetch the queuing messages from the MOM server.

=0 rowl (Main) " --«\
tMomInput_1 ' ' ' ' ' " tLogRow 1

 Click and drop the tMomInput component (from the Internet folder in the Palette) and a
tLogRow to display the fetched messages.

+ Select the tMomInput to set the parameters.

kKeep Listening Sleeping time {in sec) |5

MO server JEoss Messaging s+ | Host | 10.42.10.96 |Pork | 1099
Message Fram queeli Message Type | QUEUE s
Schema Edit schema [:]

Select the MQ server on the list. In this example, a JBoss messaging server is used.

Set the server Host and Port information.

Set the Message From and the Message Type to match the source and type expected by the
messaging server.

The Schema is read-only and is made of two columns: From and Message.

Copyright © 2007 Talend Open Studio 357

Components
tMomInput

» Check the Keep listening box and set the frequency of verification to 5 seconds.
Note: When using the Keep Listening option, you’ll need to kill the job to end it.
* No need to change any default setting from the tLogRow.

 Save the job and run it (when launching for the first time or if you killed it on a previous run).

StAreing jof panountont 36 17047 T8l TS
[stati=tics] connecting to =ocket on port 3414
[stati=stic=s] connected

Feady to receive mnessages

Waiting. ..

queue-a | c8HLGEC

queue~a| 1EhC41

queue-a | opSYgP

queue<a | xbgltd

queue-a | ESknslp

queue-ad | tHTZET

queue~a | GHYHwl

queue-a | SUAYeH

queue-a | 2esbwV

queue-a | rf PLAP

Job mowon bon b snded a6 15047 T4eRReRRRS fasr b oodesE

The messages fetched on the server are displayed on the console.

358 Talend Open Studio Copyright © 2007

tMomOutput

Components
tMomOutput

tMomOutput Properties

Component family

Function

Purpose

Properties

JBoss Messaging

Websphere

Usage

Limitation

Related scenario

Internet

Putsa message in a queue of a Message-Oriented middleware system in order
for it to be fetched asynchronously.

tMomOutput makes it possible to set up asynchronous communications via

a MOM server..
MQ Server

Host/Port

Schema type and Edit
Schema

To

Message Type
Channel
Queue Manager

Message Queue

Select in the list the MOM server to be used.
According to the server selected, the parameters
required slightly differ.

Fill in the Host name or IP address of the MOM
server as well as the Port.

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component.

In the context of tMomOutput usage, the schema is
read-only but will change according to the incoming
schema. Only one-column schema is expected by the
server to contain the Messages

Type in the message destination, exactely as
expected by the server; this must include the type and
name of the target folder. e.g.: queue/A or
topic/testtopic

Note that the field is case-sensitive.

Select the message type, either: topic or queue.
Value by default is Channel
Fill in the server driver details

Destination of the message

This component requires to be linked to an input or intermediary component.

Make sure the relevant JBoss or Websphere server is launched.

For a related scenario, see tMomInput on page 355.

Copyright © 2007

Talend Open Studio 359

Components
tMSSqlIBulkExec

tMSSqlBulkExec

Z4

tMSSqlBulkExec properties

tMSSqlOutputBulk and tMSSqlBulkExec components are used together to first output the file
that will be then used as parameter to execute the SQL query stated. These two steps compose the
tMSSqlOutputBulkExec component, detailed in a separate section. The interest in having two
separate elements lies in the fact that it allows transformations to be carried out before the data
loading in the database.

360 Talend Open Studio Copyright © 2007

Component family

Function

Purpose

Properties

Bulk Insert

Bcp Query out

Components
tMSSqIBulkExec

Databases/MSSql

Executes the Insert action on the data provided.

As a dedicated component, tMSSqlBulkExec offers gains in performance
while carrying out the Insert operations to a MSSql database

Action

Property type

Fields terminated by

Rows terminated by

Data file type
Host

Port
Database

Username and
Password

Table

Remote File Name

First row

Bep utility

SQL Statement

Output File Name
Output

Select the action to be carried out

Bulk insert

Bcp query out

Depending on the action selected, the requied
information varies.

Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Character, string or regular expression to separate
fields.

Character, string or regular expression to separate
rows.

Select the type of data being handled.
Database server IP address

Listening port number of DB server.
Name of the database

DB user authentication data.

Name of the table to be written. Note that only one
table can be written at a time and that the table must
exist for the insert operation to succeed.

Name of the file to be processed.
Related topic:Defining job context variables on page
101

Type in the number of the row where the action should
start from.

Name of the utility to be used to copy data from the
SQL server.

Type in the SQL statement to read and extract the
relevant data from the DB.

Path to the output file.

Select Global Variable if you want to reuse the
output data in another part of your job.

Copyright © 2007

Talend Open Studio 361

Components
tMSSqlBulkExec

Usage This component is to be used along with tMSSqglOutputBulk component.
Used together, they can offer gains in performance while feeding a MSSql
database.

Related scenarios

For uses cases in relation with tMSSqlBulkExec, see the following scenarios:
* tMysqlOutputBulk Scenario: Inserting transformed data in MySQL database on page 400
* tMysqlOutputBulkExec Scenario: Inserting data in MySQL database on page 405

362 Talend Open Studio Copyright © 2007

Components

tMSSqlinput
tMSSqllnput
tMSSqlinput properties
Component family Databases/MS SQL ¢
Server Qﬁ _c.;_.i)
Function tMSSqllnput reads a database and extracts fields based on a query.
Purpose tMSSqllnput executes a DB query with a strictly defined order which must

correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Properties Property type Either Built-in or Repository
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.
Database Name of the database

Username and DB user authentication data.
Password

Schema type and Edit | A schema is a row description, i.e., it defines the

Schema number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type and Query | Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Usage This component covers all possibilities of SQL queries onto a MS SQL server
database..

Copyright © 2007 Talend Open Studio 363

Components
tMSSqlinput

Related scenarios

Related topics in tDBInput scenarios:
 Scenario 1: Displaying selected data from DB table on page 162
 Scenario 2: Using StoreSQLQuery variable on page 163

Related topic in tContextLoad Scenario: Dynamic context use in MySQL DB insert on page 145.

364 Talend Open Studio Copyright © 2007

<)

Components
tMSSqlOutput

tMSSqlOutput

tMSSqlOutput properties

Component family Databases/MS SQL ¢
server @@ _‘::i)

Function tMSSqlOutput writes, updates, makes changes or suppresses entries in a
database.

Purpose tMSSqlOutput executes the action defined on the table and/or on the data

contained in the table, based on the flow incoming from the preceding
component in the job.

Properties Property type Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address
Port Listening port number of DB server.
Database Name of the database
Username and DB user authentication data.
Password
Table Name of the table to be written. Note that only one
table can be written at a time
Action on table On the table defined, you can perform one of the
= InJava, use following operations:
tCreateTable as None: No operation carried out
substitute for this Drop and create the table: The table is removed and
function.. created again
Create a table: The table doesn’t exist and gets
created.

Clear a table: The table content is deleted

Action on data On the data of the table defined, you can perform:
Insert: Add new entries to the table. If duplicates are
found, job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing
ones.

Update or insert: Update existing entries or create it
if non existing

Delete: Remove entries corresponding to the input
flow.

Clear data in table Wipes out data from the selected table before action.

Copyright © 2007 Talend Open Studio 365

Components
tMSSqlOutput

Schema type and Edit | A schema is a row description, i.e., it defines the

Schema number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Additional Columns | This option is not offered if you create (with or
without drop) the Db table. This option allows you to
perform actions on columns, which are not insert, nor
update or delete actions or requires a particular
preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After, following
the action to be performed on the reference column.

Reference column: Type in a column of reference
that the tDBOutput can use to place or replace the new
or altered column.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.

Related scenarios

For tMSSqlOutput related topics, see:
» tDBOutput Scenario: Displaying DB output on page 166
* tMySQL Output Scenario: Adding new column and altering data on page 396.

366 Talend Open Studio Copyright © 2007

Components
tMSSqlOutputBulk

tMSSqlOutputBulk

V]

tMSSqlOutputBulk properties

tMSSqlOutputBulk and tMSSqlBulkExec components are used together to first output the file
that will be then used as parameter to execute the SQL query stated. These two steps compose the
tMSSqlOutputBulkExec component, detailed in a separate section. The interest in having two
separate elements lies in the fact that it allows transformations to be carried out before the data
loading.

Copyright © 2007 Talend Open Studio 367

Components
tMSSqlOutputBulk

Component family

Function

Purpose

Properties

Usage

Related scenarios

Databases/MSSql ¢

=D
Writes a file with columns based on the defined delimiter and the MSSql
standards

Prepares the file to be used as parameter in the INSERT query to feed the
MSSql database.

Property type Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

File Name Name of the file to be processed.
Related topic: Defining job context variables on page
101

Field separator Character, string or regular expression to separate
fields.

Row separator String (ex: “\n”on Unix) to distinguish rows.

Append Check this option box to add the new rows at the end

of the records
Include header Check this box to include the column header.

Schema type and Edit | A schema is a row description, i.e., it defines the

Schema number of fields that will be processed and passed on
to the next component. The schema is either built-in
or remote in the Repository.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused in various
projects and job designs. Related topic: Setting a
repository schema on page 49

Encoding Select the encoding from the list or select Custom
and define it manually. This field is compulsory for
DB data handling.

This component is to be used along with tMSSqlBulkExec component. Used
together they offer gains in performance while feeding a MSSql database.

For uses cases in relation with tMSSqlOutputBulk, see the following scenarios:

368

Talend Open Studio Copyright © 2007

Components
tMSSqlOutputBulk

* tMysqlOutputBulk Scenario: Inserting transformed data in MySQL database on page 400
* tMysqlOutputBulkExec Scenario: Inserting data in MySQL database on page 405

Copyright © 2007 Talend Open Studio 369

Components
tMSSqlOutputBulkExec

e tMSSQlOutputBulkExec

A

tMSSqlOutputBulkExec properties

Component family Databases/MSSql ¢
)
Function Executes the Insert action on the data provided.
Purpose As a dedicated component, it allows gains in performance during Insert

operations to a MSSq| database.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.
Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Bcp utility Name of the utility to be used to copy data over.on the
SQL server.

Host Database server IP address

Port Listening port number of DB server.

DB Name Name of the database

Username and DB user authentication data.

Password

Table Name of the table to be written. Note that only one
table can be written at a time and that the table must
exist for the insert operation to succeed.

File Name Name of the file to be processed.

Field separator

Related topic:Defining job context variables on page
101

Character, string or regular expression to separate
fields.

Row separator String (ex: “\n”on Unix) to distinguish rows.

Append Check this option box to add the new rows at the end
of the records

First row Type in the number of the row where the action should

Include header
Data file type
Encoding

start from.
Check this box to include the column header.
Select the type of data being handled.

Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

370

Talend Open Studio

Copyright © 2007

Components
tMSSqlOutputBulkExec

Usage This component is mainly used when no particular tranformation is required on
the data to be loaded onto the database.

Limitation n/a

Related scenarios

For uses cases in relation with tMSSqlOutputBulkExec, see the following scenarios:
» tMysqlOutputBulk Scenario: Inserting transformed data in MySQL database on page 400
» tMysqlOutputBulkExec Scenario: Inserting data in MySQL database on page 405

Copyright © 2007 Talend Open Studio 371

&

Components
tMSSqglRow

tMSSqlRow

tMSSqlRow properties

Component family

Function

Purpose

Properties

Databases/DB2

S

tMSSqlRow is the specific component for this database query. It executes the
SQL query stated onto the specified database. The row suffix means the
component implements a flow in the job design although it doesn’t provide

outpu.

Depending on the nature of the query and the database, tMSSqglRow acts on
the actual DB structure or on the data (although without handling data). The
SQLBuilder tool helps you write easily your SQL statements.

Property type

Host
Port
Database

Username and
Password

Schema type and Edit
Schema

Query type

Query

Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Database server IP address
Listening port number of DB server.
Name of the database

DB user authentication data.

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Either Built-in or Repository.

Built-in: Fill in manually the query statement or build
it graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

372

Talend Open Studio Copyright © 2007

Components
tMSSqlRow

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.

Related scenarios

For related topics, see:
» tDBSQLRow Scenario 1: Resetting a DB auto-increment on page 170
» tMySQLRow Scenario: Removing and regenerating a MySQL table index on page 408.

Copyright © 2007 Talend Open Studio 373

Components

tMSSqISCD
o tMSSqISCD

tMSSqlISCD Properties

Component family Databases/MSSQL ¢

Server =
Function tMSSqISCD reflects and tracks changes in a dedicated MSSQL SCD table.
Purpose tMSqISCD addresses Slowly Changing Dimension needs, reading regularly a

source of data and logging the changes into a dedicated SCD table
Properties Property type Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and DB user authentication data.

Password

Encoding Select the encoding from the list or select Custom and

define it manually. This field is compulsory for DB
data handling.

Table Name of the table to be written. Note that only one
table can be written at a time

Schema type and Edit | A schema is a row description, i.e., it defines the

Schema number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Surrogate key Select the column where the generated surrogate key
will be stored. A surrogate key can be generated based
on a method selected on the Creation list.

374 Talend Open Studio Copyright © 2007

Components
tMSSqISCD

Creation Select the method to be used for the key generation:
input field: key is provided in an input field
routine: you can access the basic functions through
Ctrl+ Space bar combination.
table max +1: the maximum value from the SCD
table is incremented to create a surrogate key
sequence/identity: auto-incremental key

Source Keys Select one or more columns to be used as key, to
ensure the unicity of incoming data.

Use SCD Type 1 fields | Use the type 1if change tracking is not necessary.
SCD Type 1 should be used for typos corrections for
example. Select the columns of the schema, that will
be checked for changes.

Use SCD Type 2 fields | Use type 2 if changes need to be tracked down. SCD
Type 2 should be used to trace updates for example.
Select the columns of the schema, that will be
checked for changes.

Start date: Adds a column to your SCD schema to
hold the start date. You can select one of the input
schema column as Start Date in the SCD table.
End Date: Adds a column to your SCD schema to
hold the end date value for the record. When the
record is currently active, the End date show a null
value or you can select Fixed Year value and fill in
with a fictive year to avoid having a null value in the
End date field.

Log Active Status: Adds a column to your SCD
schema to hold the true or false status value. This
column helps to spot easily the active record.

Log versions: Adds a column to your SCD schema to
hold the version number of the record.

Use SCD Type 3 fields | Use type 3 when you want to keep track of the
previous value of a changing column
Current value field: Select the column where the
changing value is tracked down..
Previous value field: Select the column where the
previous value should be stored.

Debug Mode Check this box to display each step of the SCD log
process.
Usage This component is used as Output component. It requires an Input component

and Row main link as input.

Copyright © 2007 Talend Open Studio 375

Components
tMSSqISCD

Scenario: Slow Changing Dimension type 3

The following scenario aims at showing the use of slow changing dimension type 1.2 and 3. Some
changes are brought to the input csv file, and an extra Date column is added to the schema. The
successive changes are tracked down in an MSSQL SCD table.

= oXG .
rowl (Main) . ik (Pain) > *

" FFileInpubCsy_1 ' tMap_1 EMSSqISCD 1

* Click & drop the following components: tFilelInputCSV, tMap, and tMSSqISCD.
+ Connect all components using a Row Main link.

» The input file is very large. In this example, changes are performed on the
STORE_MANAGER column.

aperational. cay

"ITORE _ID,"STORE TYPE™, "EEGION IDY,"STORE NAME®, "3TORE NUMEER™, "3TORE 3ITREET AD
TE","STORE POITAL CODE™,"STORE COUNTRY™, "3TCORE MANAGER™,"STORE PHONE™, "3TORE FAZX
MODEL DATE™,"3TORE 3QFT","GROCERY SQFT™, "FROZEN 3QFT","MEAT SQFT","COFFEE EBAR"™, "
LRED FOOD™, "FLORIST™

0, "Headtuarters™, 0, "HO" 0, "1 Llameda Way"™, "Alameda™, "C4L™, "555557, "USAYN, "idams™, "
1, "3upermarket™, 25, "3tore 17",1,"2553 Bailey

Bd", "hcapulco®™, "Guerrerot, 55555, "Mexico®, "Jones", "2 62-555-5124" "2 52-555-5121"
oo:oo:oofr, "1990-12-05 00:00:00%,23593,17475,3671,2447.,0,0.0,0,0

 The changes mentioned above are carried out on the second entry, on Adams.

* Select the tFilelnputCSV component and click on the Properties view

Property Type Built-In v

File Mame "Cu i Inpuk)skore_operational, csy" * E]
Fow Separator "In" Field Separator | "," Escape char | "™ Text enclosure | "™

Header 1 Footer |0 Lirnit

Schema Built-In w | Edit schema [:l [skip empky rows

Encoding Tvpe IS0-8859-15 4

» The properties of the csv file are not stored centrally in the Repository, therefore, select
Built-In as Property Type. Consequently you need to set manually all file details.

* In File Name, browse to the csv file.

 Set the comma as Field separator and backslash apostrophes (\’”) as Text enclosure.

376 Talend Open Studio Copyright © 2007

» Set the Header to 1.

» Then click Edit schema to upload the schema.

Components
tMSSqISCD

Schema of tFilelnputCSV_1 X]

FFilelnpubCay_1

Column
Gl STORE_ID
STORE_TYPE
REGION_ID
STORE_MAME
STORE_MUMBER

STORE_CITY
STORE_STATE

STORE_COUM. ..
STORE_MANA. ..
STORE_PHOMNE
STORE_FaX
FIRST_COPEME...

STORE_SQFT
GROCERY_SOFT
FROZEM_SQFT
MEAT_SQOFT
I"MFFFF RAR

b

STORE_STREE...

STORE_POSTA..,

LAST_REMOCDE...

1000000000000000000E

Tvpe
int
Skring

Inke...

Skring

Inke...

Skring
Skring
Skring
Skring
Skring
Skring
Skring
Skring
Date

Date

Inke...
Inke...
Inke...
Inke...

Trnka

Len...

Z
19
3
g
Z
25
13
e
3
5]
g
12
12

—= & foN N

4

E JERIEERERFREEEEEEREREREREEEC

|

» Make sure the data types are set properly and a key is defined.

* Double-click on the tMap component to open the mapper. Use the AutoMap button to

automatically copy over all columns from the input to the output.

» Add an extra column to the output table, to hold the end date. This column will be reused in

the SCD component to feed the the End Date of the SCD table.

DAY L L e

rowl SALAD BAR

row]l PREPARED _FOOD

row]l FLORIST
TalendDate,getZurrentDatel)

AL e

SoLAD_BAR.
PREPARED_FOOD
FLORIST

DATE

* Inthe Expression field, press Ctrl+Space bar to open the completion list. Select the

GetCurrentDate function and set the column name as DATE.

* Click OK to validate.

Copyright © 2007

Talend Open Studio

377

Components
tMSSqISCD

* Select the tMSSqISCD component and set the changes tracking parameters.

» Set the MS SQL server connection parameters manually.

Property Type Euilt-In v

SEFVEr | "dbms" |F‘|:|rt | "3333" |Data|:uase "talend” |*
Username | "dbal" |* Password | " |*
Table "STORE_DMTEST" *
Schema Built-In «| Editschema []
Surrogate key | STORE_SK v | Creation |Ta|:u|e max + 1 v
Source kews Name

STORE_ID

< | >

 Set the Server, Port, Database and User & password.

» Type in the Table name, where the SCD information should be stored. In this example:
STORE_DMTEST

» The SCD Table schema should include an extra column to hold the surrogate key.

» Create a Surrogate key, based on the table max value incremented by 1. Select the column
in the list (STORE_SK in this example) and Table max + 1 in the Creation field.

» Onthe Source keys table, add one line and select the column to use as key in the source file.
In this example, STORE_ID.

378 Talend Open Studio Copyright © 2007

Components
tMSSqISCD

[]Use SCD type 1 Fields
IJse 30 type 2 fields

SCD bvpe 2 fields Fisld name

STORE_TYPE
LAST_REMODEL_DATE
STORE_SQFT
GROCERY_SQOFT
FROZEM_SQFT
MEAT_SCFT
COFFEE_BAR
YIDED_STORE
SALAD_BAR
PREPARED_FOOD
FLORIST

Skart date SCO_START w || Enddate |5CD_END w

* In this example, the SCD type 1 and 2 are not used. For more information regarding SCD
type 1, see tMySqISCD Scenario: Tracking changes using Slowly Changing Dimension on
page 411.

» Check the SCD type 2 fields box.

 Inthe table, add as many entries as you need to track the important changes. In this example,
all column but the ID are selected.

 Select the Start date and End date columns where the Start and End date should be put in.
In this example, the date has been added to the schema and the current date is used as Start
date.

» Check the Use SCD Type 3 fields box.

» Check the Log active status and Log versions, and select the relevant column in the SCD
table where to store these values, in this example, respectively SCD_START and SCD_END.

Copyright © 2007 Talend Open Studio 379

Components

tMSSqISCD
[¥|Log active status Active field | ACTIVE v
[“lLog versions version field | YERSION 2

Use SC0 kyvpe 3 fields
SCD bype 3 Fields

Current value field Previous value Field
STORE_MAMAGER PREY_STORE_MAMAGER
STORE_MUMEER. PREY _STORE_MUMEER

» Add as many lines as required. In this example, we will focus on the STORE_MANAGER
column.

» The SCD table schema should inclue the previous value column in order to store the former
current value of the selected column. In this example, we focus on
PREV_STORE_MANAGER.

+ Save the job.

» Make the following changes to the STORE_MANAGER column of the input csv file: change
Adams to Smith

E_P §T" STCORE_MAMAGER PREY_STORE_MAMAS ™1 STORE_PHOME PREY_STORE_PHOME
1 B ... |Smith il
2 B .. [Jones il 262-555-5124 |[(hull)
3 B . |Bmith il 605-555-8203 |[(null)

The name Adams is now in the PREV_STORE_MANAGER column and the new name Smith is now
in the STORE_MANAGER column.

For more information regarding the SCD Type 1& 2, see Scenario: Tracking changes using Slowly
Changing Dimension on page 411.

380 Talend Open Studio Copyright © 2007

Components

tMSSqISP
tMSSqlSP
o
1aX
tMSSqISP Properties
Component family Databases/MSSql ¢
i &
Function tMSSqISP calls the database stored procedure.
Purpose tMSSqISP offers a convenient way to centralize multiple or complex queries
in a database and call them easily.
Properties Property type Either Built-in or Repository.
Built-in: No property data stored centrally.
Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.
Host Database server IP address
Port Listening port number of DB server.
Database Name of the database
Username and DB user authentication data.
Password
Encoding Select the encoding from the list or select Custom and

define it manually. This field is compulsory for DB
data handling.

Schema type and Edit | In SP principle, the schema is an input parameter.

Schema A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

SP Name Type in the exact name of the Stored Procedure

Is Function / Return | Check this box, if a value only is to be returned.
result in Select on the list the schema column, the value to be
returned is based on.

Copyright © 2007 Talend Open Studio 381

Components
tMSSqISP

Parameters Click the Plus button and select the various Schema
Columns that will be required by the procedures.
Note that the SP schema can hold more columns than
there are paramaters used in the procedure.
Select the Type of parameter:
IN: Input parameter
OUT: Output parameter/return value
IN OUT: Input parameters is to be returned as value,
likely after modification through the procedure
(function).

Usage This component is used as intermediary component. It can be used as start
component but only input parameters are thus allowed.

Limitation The Stored Procedures syntax should match the Database syntax.

Related scenario

For related scenarios, see:
» tMysqISP Scenario: Finding a State Label using a stored procedure on page 419.

 tOracleSP Scenario: Checking number format using a stored procedure on page 450

382 Talend Open Studio Copyright © 2007

Components
tMysqIBulkExec

w tMysqlBulkExec

tMysqlBulkExec properties

tMysqlOutputBulk and tMysqlBulkExec components are used together to first output the file that
will be then used as parameter to execute the SQL query stated. These two steps compose the
tMysqlOutputBulkExec component, detailed in a separate section. The interest in having two
separate elements lies in the fact that it allows transformations to be carried out before the data
loading in the database.

Copyright © 2007 Talend Open Studio 383

Components
tMysqlBulkExec

Component family

Function

Purpose

Properties

Usage

Limitation

Related scenarios

Databases/Mysq|

S

Executes the Insert action on the data provided.

As adedicated component, tMysglBulkExec offers gains in performance while
carrying out the Insert operations to a Mysql database

Property type

Host
Port
Database

Username and
Password

Table

File Name

Fields terminated by

Encoding

Commit every

Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Database server IP address
Listening port number of DB server.
Name of the database

DB user authentication data.

Name of the table to be written. Note that only one
table can be written at a time and that the table must
exist for the insert operation to succeed.

Name of the file to be processed.
Related topic:Defining job context variables on page
101

Character, string or regular expression to separate
fields.

Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

This component is to be used along with tMysqlOutputBulk component.
Used together, they can offer gains in performance while feeding a Mysql

database.

n/a

For uses cases in relation with tMysqlBulkExec, see the following scenarios:

» tMysqlOutputBulk Scenario: Inserting transformed data in MySQL database on page 400

384

Talend Open Studio

Copyright © 2007

Components
tMysqlBulkExec

* tMysqlOutputBulkExec Scenario: Inserting data in MySQL database on page 405

* tOracleBulkExec Scenario: Truncating and inserting file data into Oracle DB on page 429

Copyright © 2007 Talend Open Studio 385

Components
tMysqlCommit

tMysqlCommit

&

tMysqglCommit Properties

This component is closely related to tMysglCommit and tMysqlRollback. It usually doesn’t make
much sense to use these components independently in a transaction..

Component family Databases/MySQL iﬁ ({

Function Validates the data processed through the job into the connected DB

Purpose Using a unique connection, commits in one go a global transaction instead of

every row or every batch. Provides a gain in performance

Properties Component list Select the tMysqglConnection component in the list if
more than one connection are planned for the current
job.

Usage This component is to be used along with Mysql components, especially with

tMysglConnection and tMysqlRollback components.
Limitation n/a

Related scenario

This component is closely related to tMysglConnection and tMysqlRollback. It usually doesn’t
make much sense to use one of the latters without using a tMysqglConnection component to open
a connection for the current transaction.

For tMysqlCommit related scenario, see tMysglConnection on page 387.

386 Talend Open Studio Copyright © 2007

Components
tMysqglConnection

tMysqglConnection

2

tMysqlConnection Properties

This component is closely related to tMysglCommit and tMysqlRollback. It usually doesn’t make
much sense to use one of the latters without using a tMysglConnection component to open a
connection for the current transaction.

Component family Databases/MySQL Qﬁ ¢
Function Opens a connection to the database for a current transaction.
Purpose Allows to commit a whole job data in one go to the output database as one

transaction when validated.
Properties Property type Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in with fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and DB user authentication data.

Password

Encoding type Select the encoding from the list or select Custom and

define it manually. This field is compulsory for DB
data handling.

Usage This component is to be used along with Mysql components, especially with
tMysqlCommit and tMysqlRollback components.

Limitation n/a

Scenario: Inserting data in mother/daughter tables

The following job is dedicated to advanced database users, who want to carry out multiple table
insertions using a parent table id to feed a child table. As a prerequisite to this job, follow the steps
described below to create the relevant tables using an engine such as innodb.

* Inacommand line editor, connect to your Mysql server.

» Once connected to the relevant database, type in the following command to create the parent
table: create table f1090_mum(id int not null auto_increment, name varchar(10), primary
key(id)) engine=innodb;

Copyright © 2007 Talend Open Studio 387

Components
tMysqlConnection

» Then create the second table: create table baby (id_baby int not null, years int)
engine=innodb;

Back into Talend Open Studio, the job requires seven components including tMysglConnection
and tMysglCommit.

EMyvsqlConnection_1
Thenrun

L% | . . @ .rnwl II:Main]l

tFileList_1 ' EFileInputDelimited_1

ThenRun

g

" EMyvsqlCommit_1 ' ' ' ' ' ' ' ' ' ' " tMysqloutput_2

 Drag and drop the following components from the Palette: tFileList, tFilelnputDelimited,
tMap, tMysqglOutput (x2).

» Connect the tFileList component to the input file component using an Iterate link as the
name of the file to be processed will be dynamically filled in from the tFileList directory
using a global variable.

» Connectthe tFileInputDelimited component to the tMap and dispatch the flow between the
two output Mysql DB components. Use a Row link for each for these connections
representing the main data flow.

 Set the tFileList component properties, such as the directory. name where files will be
fetched from.

* Add a tMysqglConnection component and connect it to the starter component of this job, in
this example, the tFileList component using a ThenRun link to define the execution order.

* In the tMysqlConnection Properties panel, set the connection details manually or fetch
them from the Repository if you centrally stored them as a Metadata DB connection entry.
For more information about Metadata, see Defining Metadata items on page 51.

» On the tFileInputDelimited component’s Properties panel, press Ctrl+Space bar to access
the variable list. Set the File Name field to the global variable:
$_globals{tFileList 1}{CURRENT_FILEPATH}

388 Talend Open Studio Copyright © 2007

Components
tMysqglConnection

@ tFileInputDelimited_1

Froperty Type Euwilt-Tr w

File Mame $_globals{tFilelist_1 HCURREMT_FILEFATH}
Fow Separator "“n" Field Separator | '
Header 1] Fooker |0 Lirnit

Schema Type Built-In s | Edit schema [3 [v] skip empby rows

[Extract lines at random

Encoding Type IS0-8859-15

Set the rest of the fields as usual, defining the row and field separators according to your file

structure.

Then set the schema manually through the Edit schema feature or select the schema from
the Repository. In Java version, make sure the data type is correctly set, in accordance with

the nature of the data processed.

Change the encoding if different from the default one.

In the tMap Output area, add two output tables, one called mum for the parent table, the

second called baby, for the child table.

Drag the Name column from the Input area, and drop it to the mum table.

Drag the Years column from the Input area and drop it to the baby table.

| g 3 JL 0 L0 Buto map!
rowl o mum & = wp L[]
Colurmn Expressian Colurmn
names $rawl[names] names
Vears
baby + > w L
Expressian Colurmn
$row][vears] WEars

» Make sure the mum table is on the top of the baby table as the order is determining for the

flow sequence hence the DB insert to perform correctly.

» Then connect the output row link to distribute correctly the flow to the relevant DB output

component.

Copyright © 2007

Talend Open Studio

389

Components
tMysqlConnection

* In each of the tMysqlOutput components’ Properties panel, check the Use an existing
connection box to retrieve the tMysglConnection details.

» Notice (in Perl version) that the Commit every field doesn’t show anymore as you are
supposed to use the tMysglCommit instead to manage the global transaction commit. In
Java version, ignore the field as this command will get overridden by the tMysglCommit.

1:9 tMysqlOutput_2

Property Type Built-In "

Use an existing connection Component List | EMysqlConnection_1

Table 'F1090_babe!

Action on table Mone % | Action on data | Insett e

Schema Type Built-In v Editschema [

Encoding Type 150-8859-15 a

Additional columns Mame 0L expression Positian Reference colurmn
id_baby' '(Select Last_Insert,.. EBefore WEArs

 Set the Table name making sure it corresponds to the correct table, in this example either
f1090_mum or f1090_baby.

» There is no action on the table as they are already created.
 Select Insert as Action on data for both output components.
+ Click on Sync columns to retrieve the schema set in the tMap.
» Change the encoding type if need be.

* In the Additional columns area of the DB output component corresponding to the child
table (f1090_baby), set the id_baby column so that it reuses the id from the parent table.

 Inthe SQL expression field type in: '(Select Last_Insert_id())'
 The position is Before and the Reference column is years.

* Add the tMysglCommit component to the job workspace and connect it from the tFileList
component using a ThenRun connection in order for the job to terminate with the
transaction commit.

* On the tMysqlCommit component Properties panel, select in the list the connection to be
used.

Save your job and press F6 to run it.

390 Talend Open Studio Copyright © 2007

Components
tMysqglConnection

from f1898_mum yzgl> zelect # from F1898_hahy
-> ;

bruce
beth
andrew
donald
bhetty
John
bruce
beth
andrew
donald

+
1
]

+
1
]
1
1
1
]
1
1
1
]
1
1
1
]
1
1
1
]
1
1
1
]
1
1

+

i R

12 rows in set (A.AA@ zec) 12 rows in zet (A.HBH@ secl

The parent table id has been reused to feed the id_baby column.

Copyright © 2007 Talend Open Studio 391

Components
tMysqlInput

tMysqglinput

tMysqlinput properties

Component family Databases/MySQL Qﬁ ¢
Function tMysqllnput reads a database and extracts fields based on a query.
Purpose tMysqllnput executes a DB query with a strictly defined order which must

correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Properties Property type Either Built-in or Repository
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Use existing Check this box when using a tMySQL Connection
connection

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and DB user authentication data.

Password

Schema type and Edit | A schema is a row description, i.e., it defines the

Schema number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type and Query | Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Usage This component covers all possibilities of SQL queries onto a Mysql database.

392 Talend Open Studio Copyright © 2007

Components
tMysqglinput

Related scenarios

Related topic in tDBInput scenarios:
» Scenario 1: Displaying selected data from DB table on page 162
 Scenario 2: Using StoreSQLQuery variable on page 163

Related topic in tContextLoad Scenario: Dynamic context use in MySQL DB insert on page 145.

Copyright © 2007 Talend Open Studio 393

Components
tMysqlOutput

tMysqlOutput

tMysqlOutput properties

Component family

Function

Purpose

Properties

% In Java, use
tCreateTable as
substitute for this
function..

Databases/MySQL .
i <

tMysqlOutput writes, updates, makes changes or suppresses entries in a
database.

tMysqlOutput executes the action defined on the table and/or on the data
contained in the table, based on the flow incoming from the preceding
component in the job.

Property type Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Use existing Check this box when using a tMySQL Connection
connection

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and DB user authentication data.

Password

Table Name of the table to be written. Note that only one

table can be written at a time

Action on table On the table defined, you can perform one of the
following operations:
None: No operation carried out
Drop and create the table: The table is removed and
created again
Create a table: The table doesn’t exist and gets
created.
Clear a table: The table content is deleted

394

Talend Open Studio Copyright © 2007

Components
tMysqlOutput

Action on data On the data of the table defined, you can perform:
Insert: Add new entries to the table. If duplicates are
found, job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing
ones.

Update or insert: Update existing entries or create it
if non existing

Delete: Remove entries corresponding to the input
flow.

Clear data in table Wipes out data from the selected table before action.

Schema type and Edit | A schema is a row description, i.e., it defines the

Schema number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Additional Columns | This option is not offered if you create (with or
without drop) the Db table. This option allows you to
perform actions on columns, which are not insert, nor
update or delete actions or requires a particular
preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After, following
the action to be performed on the reference column.

Reference column: Type in a column of reference
that the tDBOutput can use to place or replace the new
or altered column.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Copyright © 2007 Talend Open Studio 395

Components
tMysqlOutput

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.

Scenario: Adding new column and altering data

This scenario is a three-component job aiming at creating random data using a tRowGenerator,
duplicating a column to be altered using the tMap component, eventually altering the data to be
inserted based on a SQL expression, as well as inserting a new column in the DB, using the
tDBOutput component.

i $ rowl (Main) r % ouk1 (Main) r ':a

' tRDwGenera'tnr_l ' I:'Map_l' ’ tr'-“lys'quutp'ut_l

» Drag and drop the tRowGenerator, tMap and tMySQL Output components onto the
designer.

 Link the tRowGenerator to the tMap.

+ Set the tRowGenerator component properties. Create a two-column schema: Name and
Random_date

» The Name column does pick up randomly names from a list specified. In this use case, le list
includes FabriceB, PierrickL, GabrielM and ElisaS.

» Then, double-click on the tMap component to duplicate the random_date column and adapt
the schema in order to alter the data in the output component.

* Inthe Mapper, create an output link to the tMysqlOutput component. Add one more column
(based on the input schema) and name it random_date_1 to distinguish it from the other
random_date column.

» Drag and drop the random_date content from the input area to the output area.
» Then double-click on the tMysqlOutput component to set its parameters.

« First fill in the DB connection details, either through the Repository or manually in case of
Built-in information.

« Select the table to be altered, in this example: Feature516.
* No Action on table is to be carried out, the Action on data is Insert.

* In the Additional Columns area, set the alteration to be performed on columns and the
specific insertion of a new moment column onto the database.

e The One_month_later column is a replacement column for the random_date_1 column.
Also, the data it-self gets altered using an SQL expression, which adds one month to the
randomly picked-up date of the random_date_1 column. ex: 2007-08-12 becomes
2007-09-12

396

Talend Open Studio Copyright © 2007

Components
tMysqlOutput

Therefore, in Name field goes the new column label (One_Month_Later) and in SQL
expression field, type in the relevant addition script to be performed: 'adddate(?, interval 1
month)' then as Position, select Replace, and the Reference column is Random_date 1.

Note that for this job we duplicated the random_date_1 column in the DB table before
replacing one instance of it with the One_Month_Later column. The aim of this workaround
was to be able to view upfront the modification performed.

The second entry is the new column, moment, to be inserted into the database table. As SQL
expression, type in the moment function: now() and in the Position field, select Before, the
Reference column is name in this example.

Once the Output setting is complete, press F6 to run the job.

Two new columns were added or altered onto the DB table: One_Month_Later and Moment.

Related topic: tDBOutput properties on page 165

Copyright © 2007 Talend Open Studio 397

Components
tMysqlOutputBulk

we tMysqlOutputBulk

D

tMysqlOutputBulk properties

tMysqlOutputBulk and tMysqglBulkExec components are used together to first output the file that
will be then used as parameter to execute the SQL query stated. These two steps compose the
tMysqglOutputBulkExec component, detailed in a separate section. The interest in having two
separate elements lies in the fact that it allows transformations to be carried out before the data

loading.
Component family Databases/MySQL ¢
Function Writes a file with columns based on the defined delimiter and the MySql
standards
Purpose Prepares the file to be used as parameter in the INSERT query to feed the
MySQL database.
Properties Property type Either Built-in or Repository.
Built-in: No property data stored centrally.
Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.
File Name Name of the file to be processed.
Related topic:Defining job context variables on page
101
Field separator Character, string or regular expression to separate
fields.
Row separator String (ex: “\n”on Unix) to distinguish rows.
Append Check this option box to add the new rows at the end
of the file
Include header Check this box to include the column header to the
file.
Schema type and Edit | A schema is a row description, i.e., it defines the
Schema number of fields that will be processed and passed on

to the next component. The schema is either built-in
or remote in the Repository.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused in various
projects and job designs. Related topic: Setting a
repository schema on page 49

398 Talend Open Studio Copyright © 2007

Usage

Components
tMysqlOutputBulk

Encoding Select the encoding from the list or select Custom
and define it manually. This field is compulsory for
DB data handling.

Thiscomponent is to be used along with tMySQIBulkExec component. Used
together they offer gains in performance while feeding a MySQL database.

Copyright © 2007

Talend Open Studio 399

Components
tMysqlOutputBulk

Scenario: Inserting transformed data in MySQL database

This scenario describes a four-component job which aims at fueling a database with data contained
in a file, including transformed data. Two steps are required in this job, first step is to create the file,
that will then be used in the second step. The first step includes a tranformation phase of the data

included in the file.

— . . R . . L -
* rowl (Main] 'Eq client {Main] 'C&

tRowGenerator 1 ' EMap_1 EMyeglOukpUtBll,_1

ThenRun

" tMyvsqlBulkExec 1

» Drag and drop a tRowGenerator, a tMap, a tMysqlOutputBulk as well as a
tMysqlBulkExec component.

» Connect the main flow using row main links.

» And connect the start component (tRowgenerator in this example) to the tMysqlBulkExec
using a trigger connection, of type ThenRun.

* A tRowGenerator is used to generate random data. Double-click on the tRowGenerator
component to launch the editor.

« Define the schema of the rows to be generated and the nature of data to generate. In this
example, the clients file to be produced will contain the following columns: 1D, First Name,
Last Name, Address, City which all are defined as string data but the ID that is of integer type.

400 Talend Open Studio Copyright © 2007

Components
tMysqlOutputBulk

‘= Talend Open Studio - tRowGenerator - tRowGeneraton?_1

Schema Functions Preview W
Colurmn Key Twpe Mullable | Functions Prewview
ID] ink [] sequence 1
Firstiame [] string [Firsthame abraham
LastMarme [] string [lastMame arfield
Address [] string [l skreet Apalaches Parkway
City [] string] ety Salt Lake City
Columns ™ Mumber of Rows for Rowaenerator | 100

Function pararneters | Preview

Mumber of Rows For Preview

IO FirstMame | LastMame Address Ciky e
1 1 Abraham Garfield Apalachee Parkway Salk Lake City
2 2 Harrw Adams Redwnood Highway Providence
3 3 Rutherford Harrison Mewbury Road Jackson

» Some schema information don’t necessarily need to be displayed. To hide them away, click
on Columns list button next to the toolbar, and uncheck the relevant entries, such as
Precision or Parameters.

* Use the plus button to add as many columns to your schema definition.
 Click the Refresh button to preview the first generated row of your output.
 Then select the tMap component to set the transformation.

 Drag and drop all columns from the input table to the output table.

client b = wp L]
Expressian Colurmn

Frow1[I0] 10

$row 1 [Firsthlame] Firsthame

| uc| $row 1 [LastMame] LastMarme
Frowm][Address] Address

Frowm 1 [Cikyv] iy

* Apply the transformation on the LastName column by adding uc in front of it.
» Click OK to validate the transformation.
» Then double-click on the tMysqlOutputBulk component.

+ Define the name of the file to be produced in File Name field. If the delimited file
information is stored in the Repository, select it in Property type field, to retrieve relevant
data. In this use case the file name is clients.txt.

Copyright © 2007 Talend Open Studio 401

Components
tMysqlOutputBulk

» The schema is propagated from the tMap component, if you accepted it when prompted.

¢ In this example, don’t include the header information as the table should already contain it.

* The encoding is the default one for this use case.

» Click OK to validate the output.

 Then double-click on the tMysqIBulkExec to set the INSERT query to be executed.

« Define the database connection details. We recommend you to store this type of information
in the Repository, so that you can retrieve them at any time for any job.

Iﬁg thMysqlBulkExec

Property Twpe Lepositary

Host ‘talend-dbms’ |- Port | "3306°
Isernane ront!

Tahble 'clients’

Filename Cooutput)Clients bt

Fields terminated bw | '

Encoding Type [S0-8859-15

w || Repository | DB (MY3QL)Talend-DBMS s

i Database

i Password | 'toor'

Fill in the column delimiters in the Field terminated by area.

» Make sure the encoding corresponds to the data encoding.

* Then press F6 to run the job.

0 Rezultzet 1

D Firgt Mame Lazt Mame
[] 1 Martin REAGAMN
2 Herbert REAGAM
3 Franklin WASHINGTON
4 Franklin CARTER
5 wWoodrow MCEIMLEY
E Eil LUIMNCY
7 Bill BUREM
8 Andrew ARTHUR
9 Woodrow FORD
10 Calvin COOLIDGE

Addrezs
Hutchinzon Rd
Bailard Avenue
B avzhore Freeway
Burnett Road
San r'zidro Bled
Fairview Avenue
Calle Real
Santa Ana Freeway
M Harrizon St
Harbar Dir

+

"ralend

=]

=

Set the table to be filled in with the collected data, in the Table field.

City

Dovvery .
Frankfortf
Dervert
Frankfortf
Des Moinezq]
Topekaf
Jefferzon Cigt
Indianapolizfl
Auguztatl
Frankfortf

The clients database table is filled with data from the file including upper-case last name as

transformed in the job.

402

Talend Open Studio

Copyright © 2007

Components
tMysqlOutputBulk

For simple Insert operations that don’t include any transformation, the use of
tMysqlOutputBulkExec allows to spare a step in the process hence to gain some performance.

Related topic: tMysqlOutputBulkExec properties on page 404

Copyright © 2007 Talend Open Studio 403

Components
tMysqlOutputBulkExec

tMysqlOutputBulkExec
&5/

tMysqlOutputBulkExec properties

Component family Databases/MySQL Qﬁ ({ _

Function Executes the Insert action on the data provided.

Purpose As a dedicated component, it allows gains in performance during Insert
operations to a MySQL database.

Properties Property type Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and DB user authentication data.

Password

Table Name of the table to be written. Note that only one

table can be written at a time and that the table must
exist for the insert operation to succeed.

File Name Name of the file to be processed.
Related topic:Defining job context variables on page
101

Field separator Character, string or regular expression to separate
fields.

Row separator String (ex: “\n”on Unix) to distinguish rows.

Encoding Select the encoding from the list or select Custom and

define it manually. This field is compulsory for DB
data handling.

Usage This component is mainly used when no particular tranformation is required on
the data to be loaded onto the database.

Limitation n/a

404 Talend Open Studio Copyright © 2007

Components
tMysqlOutputBulkExec

Scenario: Inserting data in MySQL database

This scenario describes a two-component job which carries out the same operation as the one
described for tMysqlOutputBulk properties on page 398 and tMysqglBulkExec properties on page
383, although no transformation of data is performed.

— —
" * ol (Main] o ‘5

tRowGenerator? 1 tMysgloutputBulkExec 1

 Click and drop a tRowGenerator and a tMysqlOutputBulkExec component.

» The tRowGenerator is to be set the same way as in the Scenario: Inserting transformed data
in MySQL database on page 400. The schema is made of four columns including: 1D, First
Name, Last Name, Address and City.

» Then set the DB connection if needed, the best practices being to store the connection details
in the Metadata repository.

» Then fill in the table to be filled in with the generated data in the Table field.

« And the name of the file to be loaded in File Name field.

el
cﬁ tMysqlOutputBulkExec

Property Type Repositary v || Repository |DB (MYSOL): Talend-DEMS !|*

Host | 't alend-dbms' |.G\F'|:-rt | "F306" L;.Datal:uase | *talend' |.;.
Usernane | 'root! |.3F'asswu:uru:| | ‘toor! |.a.
Table | 'clignts' |
Filenarne |'C:,|'Out|:uut,l'CIients.txt' |* E]
Fow Separator | "] |'G‘
Field Separator | W |.;.

Then press F6 to execute the job.

The result should be pretty much the same as in Scenario: Inserting transformed data in MySQL
database on page 400, but the data might differ as these are regenerated randomly everytime the job
is run.

Copyright © 2007 Talend Open Studio 405

Components
tMysglIRollback

tMysqlRollback

tMysqlRollback properties

This component is closely related to tMysglCommit and tMysglConnection. It usually doesn’t
make much sense to use these components independently in a transaction..

Component family Databases ’Q g ¢

Function Cancel the transaction commit in the connected DB.

Purpose Avoids to commit part of a transaction unvolontarily.

Properties Component list Select the tMysqlConnection component in the list if
more than one connection are planned for the current
job.

Usage This component is to be used along with Mysql components, especially with

tMysglConnection and tMysqlCommit components.

Limitation n/a

Scenario: Rollback from inserting data in mother/daughter tables

Based on the tMysglConnection Scenario: Inserting data in mother/daughter tables on page 387,
insert a rollback funtion in order to prevent unwanted commit.

EMysglCornection_1

ThenRun

L’ . B .ru:uwl {:Main}

trileList tFileInputDelimited_1
ThefRun
" tMysglCommit_1 " tysglfollback_1 ' ' ' ' ' ' ' ' " tMysgloutput_2

» Drag and drop a tMysqlRollback to the workspace and connect it to the Start component.
« Set the Rollback unique field on the relevant DB connection.

This complementary element to the job ensures that the transaction won’t be partly committed.

406 Talend Open Studio Copyright © 2007

tMysqlRow

Components
tMysqlRow

=

tMysqlRow properties

Component family

Databases/MySQL

S

Function tMysqlRow is the specific component for this database query. It executes the
SQL query stated onto the specified database. The row suffix means the
component implements a flow in the job design although it doesn’t provide
output.

Purpose Depending on the nature of the query and the database, tMysqlRow acts on the
actual DB structure or on the data (although without handling data). The
SQLBuilder tool helps you write easily your SQL statements.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.
Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Use existing Check this box when using a tMySQL Connection

connection

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and DB user authentication data.

Password

Schema type and Edit | A schema is a row description, i.e., it defines the

Schema number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.
Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49
Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type Either Built-in or Repository.
Built-in: Fill in manually the query statement or build
it graphically using SQLBuilder
Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Copyright © 2007 Talend Open Studio 407

Components
tMysqlRow

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.

Scenario: Removing and regenerating a MySQL table index

This scenario describes a four-component job which wants to remove a table index, make a select
insert action onto a table then regenerate the index.

tM*;.-'sqI ow_1
ThenRun
ru:uwl {Maln} '.:':,
" tRowiEererator 2 ' I:Mw;.-'s'qIOutp'ut_l '
henRun
tM‘;.-’sqIRu:uw_E

 Select and drop the following components onto the graphical workspace: tMysqglRow (x2),
tRowGenerator, tMysqlOutput.

» Connect tMysqllIntput to the tRowGenerator.

» Then using a ThenRun connection, link the first tMysqlRow to the tMysqgllnput,

» Then connect tRowGenerator to the second tMysqlRow using a ThenRun link again.
» Select the tMysqlRow to fill in the DB Properties.

* In Property type as well in Schema type, select the relevant DB entry in the list.

408 Talend Open Studio Copyright © 2007

Components
tMysqlRow

The DB connection details and the table schema are accordingly filled in.
Propagate the properties and schema details onto the other components of the job.

The query being stored in the Metadata area of the Repository, you can also select
Repository in the Query type field and the relevant query entry.

If you didn’t store your query in the Repository, type in the following SQL statement to alter
the database entries: drop index <index_name> on <table_name>

Then select the second tMysqglRow component, check the DB properties and schema.

Then type in the SQL statement to recreate an index on the table using the following
statement: create index <index_name> on <table_name> (<column_name>);

The tRowGenerator component is used to generate automatically the columns to be added
to the DB output table defined.

Select the tMysqlOutput component and fill in the DB connection properties either from the
Repository or manually the DB connection details are specific for this use only. The table to
be fed is named: comprehensive.

The schema should be automatically inheritated from the data flow coming from the
tLogRow. Edit the schema to check its structure and check that it corresponds to the schema
expected on the DB table specified.

The Action on table is None and the Action on data is Insert.
No additional Columns is required for this job.

Press F6 to run the job.

If you manage to watch the action on DB data, you can notice that the index is dropped at the start
of the job and recreated at the end of the insert action.

Related topics: tDBSQLRow properties on page 169.

Copyright © 2007 Talend Open Studio 409

Components
tMysqlSCD

% tMysqglSCD

tMysqlSCD Properties

Component family Databases/MySQL ¢
Function tMysqlSCD reflects and tracks changes in a dedicated MySQL SCD table.
Purpose tMysqlSCD addresses Slowly Changing Dimension needs, reading regularly

a source of data and logging the changes into a dedicated SCD table
Properties Property type Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and DB user authentication data.

Password

Encoding Select the encoding from the list or select Custom and

define it manually. This field is compulsory for DB
data handling.

Table Name of the table to be written. Note that only one
table can be written at a time

Schema type and Edit | A schema is a row description, i.e., it defines the

Schema number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

& Surrogate key Select the column where the generated surrogate key
Java only for the will be stored. A surrogate key can be generated based
time being. on a method selected on the Creation list.

410 Talend Open Studio Copyright © 2007

Components
tMysqISCD

Creation

Source Keys

Use SCD Type 1 fields

Use SCD Type 2 fields

" Use SCD Type 3 fields

Java only for the
time being.

Debug Mode

Usage

Select the method to be used for the key generation:
input field: key is provided in an input field
routine: you can access the basic functions through
Ctrl+ Space bar combination.

table max +1: the maximum value from the SCD
table is incremented to create a surrogate key
sequence/identity: auto-incremental key

Select one or more columns to be used as key, to
ensure the unicity of incoming data.

Use the type 1if change tracking is not necessary.
SCD Type 1 should be used for typos corrections for
example. Select the columns of the schema, that will
be checked for changes.

Use type 2 if changes need to be tracked down. SCD
Type 2 should be used to trace updates for example.
Select the columns of the schema, that will be
checked for changes.

Start date: Adds a column to your SCD schema to
hold the start date. You can select one of the input
schema column as Start Date in the SCD table.

End Date: Adds a column to your SCD schema to
hold the end date value for the record. When the
record is currently active, the End date show a null
value or you can select Fixed Year value and fill in
with a fictive year to avoid having a null value in the
End date field.

Log Active Status: Adds a column to your SCD
schema to hold the true or false status value. This
column helps to spot easily the active record.

Log versions: Adds a column to your SCD schema to
hold the version number of the record.

Use type 3 when you want to keep track of the
previous value of a changing column

Current value field: Select the column where the
changing value is tracked down..

Previous value field: Select the column where the
previous value should be stored.

Check this box to display each step of the SCD log
process.

This component is used as Output component. It requires an Input component

and Row main link as input.

Scenario: Tracking changes using Slowly Changing Dimension

This scenario describes a job that tracks changes and updates of a source file and writes the history

of changes in an SCD table.

Copyright © 2007

Talend Open Studio

411

Components
tMysqlSCD

The source file contains various person profiles including their name, their number of pets and their
home city. An id column helps ensuring the unicity of the line.

a

tMysglCornection_1

ThenRun
B rowl (Mair " & rowE (Mair " E Cnidk, =w
kFileInputPositional_1 ' ' " HogRow 1 ' " tMysglScD 1 ' " tMysglCommit_L

 Click and drop the following components from the Palette onto the design workspace:
tMysqglConnection, tFilelnputPositional, tLogRow, tMysqISCD, tMysglCommit.

+ Connect first the tFilelnputPositional, tLogRow, tMysqISCD using the Row Main link.
This is the main flow of your job.

» Then connect tMysglConnection to the tFilelnputPositional component using a Then
Run link.

* And connect tMysqISCD to a tMysqlCommit using a OnOK trigger.

+ First configure the connection to the SCD table where all changes will be tracked down. The
tMysqlConnection component should be used to avoid setting several times the same DB
connection when multiple DB components are used.

l!‘] tMysqlConnection_1

Property Type i | Repository | DB (MY¥SQL):SCDEable o

Haost Localhast' | Part | '3308' pDatabase | 'Talend 3
Usernane 'root! E Password | 'toor! E
Encoding Type [S0-8859-15

« If your database details are stored in the repository, select Repository in the Property type
field

* And select the relevant repository entry if several databases are stored centrally.

 Then define the tFileInputPositional properties:

412 Talend Open Studio Copyright © 2007

Components

tMysqISCD
| =) tileInputPositional_1
Property Type d v Repository | POSSCD_dataset hd |*
File Marme | 'C/Input/SCO_dataset_injdataset!_in-010,bxt’ kL
Fow Separator | " |.3F‘attern | "3,19,11,*"
Header | 1 |.DF|:u:|ter | 1] |.3Limit |
Schema Type |Repu:usitu:ury w | |POS:SCD_dataset - metadata w |* Edit schema E] [5kip empty row

Encoding Type IS0-8859-15

» Recall the tFilelnputPositional properties from the Repository, else fill in the Built-in
settings.

¢ In this example, the schema holds four column and follows this pattern: 3,19,11,9

Schema of tFilelnputPositional_1

kFileInputPositional _1
Calumn Key | Twpe Mullable Length Precision | Comm...
¢ | ®jn | @B /s | | |
name |:| Skring 19
nr_peks |:| ink 11
ity [1 string g

» Then set the tLogRow in order for the content of the varying input file to display on the
console before being processed through the SCD component.

* In this example, check the Print values in cells of a table box so that the content displays
in a table.

* Then set the tMysglSCD component to track changes in the input file.

":h, tMysqlSCD_1

v | Repository | DE (MYSOL):SCDkable 3 |*

Property Tvpe

Idse an existing conneckion Companent List | EMysglConnection_1 s |

Tahle | SCD
Schema Type Repository + | | DB (MY5QL):5CDtable - sed v |* Edtschema [

» Check the Use an existing connection box to reuse the details defined on the
tMysglConnection properties.

* Set the table name to be used to track changes. The SCD-type table must exist.

Copyright © 2007 Talend Open Studio 413

Components
tMysqlSCD

EMy=qlSCD_1 (Oukpuk)

Colurnn Key Type Mullable | Length Pre... | C

tech_key] it 10

id] it 10

narme |:| Skr... 255

nb_pets] it 10

ity] str... 255

Start_date] Day

End_date] Day

Skatus] str... 10

Version |:| ink 10

B3 ERIE

» Define the table schema. In addition to the flow schema, the SCD schema should include
SCD-specific columns to hold standard log information such as: Start date, End date, Status
(Active/Disabled) and Version number.

* Add these columns to the schema if it does not include them already.

Source kevs Name

id

» On the Source keys table, add at least one column using the plus button and select the
relevant column that ensures the unicity of the records. It can be a generated Surrogate Key
or you can use several columns to create a key that will ensure the unicity of each record.

» Then check the Use SCD type 1 fields to set the columns, for which changes will be
implemented without being tracked down.

414 Talend Open Studio Copyright © 2007

Components
tMysqISCD

Use SC0 bype 1 fields

SCD bype 1 fields Field name

name

» The SCD type 1 should be used mainly for typos and small mistake corrections, which don’t
need to be traced, but should be reflected in the output.

« Click on the Plus button and select the relevant table column name.

* Then check the Use SCD type 2 fields box to set the columns, for which changes will be
implemented and tracked down in the SCD table.

IJse 30 type 2 fields

SCD bvpe 2 fields Field name
id
cikty

Stark date Start_date | Enddate |[End_date
Log active status Active Fisld | Stabus v
Log versions version figld | Yersion w

Cebug mode

 Click the Plus button as many times as required and select the relevant column names.

» SCD Type-2 principle lies in the fact that a new record is added to the SCD table when
changes are detected on the columns defined. Note that although several changes may be
made to the same record on various columns defined as SCD type-2, only one additional line
tracks these changes in the SCD table.

Copyright © 2007 Talend Open Studio 415

Components
tMysqlSCD

« Define the columns of your table that will hold the Start date and End date values. The End
date is null for current records until a change is detected. Then the End date gets filled in and
a new record is added with no End date.

» Check the Log active status box, and select the column that will hold the True or False
status. True for the current active record and False for the changed record.

» Check the Log versions box and select the column that will hold the Version number value.

» Check the Debug mode if you wish to trace the SCD tracking steps on the console during
the job execution.

» Then select the tMysqlCommit component and select the relevant connection on the list.
 Press F6 to execute your job.

[tHy=glSCD 1] compari=on cache loaded
[tHy=glSCD_1] new s=ource id inserted
[tHy=glSCD 1] new source id inserted

i tLogRow_3 i
| id | name | nr pet=s | city

| 1 | Cedric CARBONE | 0 | Bondoufle |
| 2 | Pierrick LE GALL | 0| Toulou=se |

[tHy=glSCD_1] compari=on cache loaded
[tHy=glSCD 1] 11 update done
[tMy=glSCD_1] new hi=story line
[tHy=glSCD 1] new source id inserted

i tLogRow_3 i
id	name	nr_pets	city
1	Cedril CARBONE	1	Hontesson
2	Pierrick LE GALL	0	Yesinet
2	Erwann LE GALL	0	Vesinet
4	Tiphaine LE GALL	0	Vesinet

The Run Job tab console shows all SCD steps along with the content of the varying input file (first
and last on the example only). The SCD table shows the history of changes made to the input file
along with the status and version number.

416 Talend Open Studio Copyright © 2007

Components

tMysqISCD
id name nr_pets | city Start_date End_date Statuz Yerzion
1 Cedik CAREONE 0 EBondoufle 19820612 0. 1998-09-07 00:00:00 falze 1
2 Piemick LE GaLL 0 Toulouze 1982-06-12 0. 1983-03-2900:00:00 falze 1
2 Piemck LE GALL 0 LePecq 1983-03-290.. 1991-04-1800:00:00 falze 2
2 Piemick LE GALL 0 Fourquels 1991-04-18 0., 13320521 00:00:00 falze 3
2 Piemick LE GALL 0 Saint Germain en Lave 1992-05-21 0. 1996-04-16 00:00:00 false 4
2 Piemck LE GALL 0 Chatou 1996-04-16 0., 1998-09-071 00:00:00 falze]
1 Cedik CAREONE 0 Pars 1938-09-01 0., 2005-09-25 00:00:00 falze 2
2 Piemick LE GALL 0 Rouen 1992-09-01 0., 2000-09-07 00:00:00 falze B
2 Piemick LE GaLL 0 Lpon 2000-09-01 0., 2003-03-20 00:00:00 falze 7
2 Piemick LE GALL 0 ‘WVesinet 2003-03-2010... brue S
1 Cedik CARBONE 0 Ruei 2005-09-250.. 2005-07-24 00:00:00 falze 3
1 Cedik CAREONE 1 Ruei 2005-07-24 0., 2007-02-27 00:00:00 falze 4
3 Emwann LE GALL 0 WVesinet 2005-07-240... brue 1
1 Cedrik CARBOME 1 Montezzon 2007-02-21 0. brue 5
4 Tiphaine LE Ga. .. 0 “esinet 2007-02-21 0. true 1

The End date is Null when the record status is active (current).
Copyright © 2007 Talend Open Studio 417

Components
tMysqlSP

I, tMysqlSP

Inl

tMysqlSP Properties

Component family Databases/Mysq| ¢
¥ <
Function tMysqlSP calls the database stored procedure.
Purpose tMysqlSP offers a convenient way to centralize multiple or complex queries
in a database and call them easily.
Properties Property type Either Built-in or Repository.
Built-in: No property data stored centrally.
Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.
Host Database server IP address
Port Listening port number of DB server.
Database Name of the database

Username and
Password

Encoding

Schema type and Edit
Schema

SP Name

Is Function / Return
result in

DB user authentication data.

Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

In SP principle, the schema is an input parameter.

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Type in the exact name of the Stored Procedure

Check this box, if a value only is to be returned.
Select on the list the schema column, the value to be
returned is based on.

418 Talend Open Studio

Copyright © 2007

Components
tMysqISP

Parameters Click the Plus button and select the various Schema
Columns that will be required by the procedures.
Note that the SP schema can hold more columns than
there are paramaters used in the procedure.
Select the Type of parameter:
IN: Input parameter
OUT: Output parameter/return value
IN OUT: Input parameters is to be returned as value,
likely after modification through the procedure
(function).

Usage This component is used as intermediary component. It can be used as start
component but only input parameters are thus allowed.

Limitation The Stored Procedures syntax should match the Database syntax.

Scenario: Finding a State Label using a stored procedure

The following job aims at finding the State labels matching the odd State IDs in a Mysql two-column
table. A stored procedure is used to carry out this operation.

* _ al *f N
" roed (Main) > 1 a2 (Main) o

'tRDwGenera'tDr_l ' ' I:M'w;.-'sqISP'_l ' ' I:Lui-gRu:uw'_l
+ Drag and drop the following components used in this example: tRowGenerator, tMysqISP,
tLogRow.
+ Connect the components using the Row Main link.

* The tRowGenerator is used to generate the odd id number. Double-click on the component
to launch the editor.

Schema Functions
Caluran key Type mMullable | Length Funckions Parameters
C% IC ink |:| 2 | sEqUENCE i...

’ o=] [b o l ’ 9] ’ 4L] ’H_.] ’ @] ’ @] columns ~ Mumber of Roves For RowGenerator

 Click on the Plus button to add a column to the schema to generate.

» Check the Key box and define the Type to Int.
* The Length equals to 2 digits max.

Copyright © 2007 Talend Open Studio 419

Components
tMysqISP

 Use the preset function called sequence but customize the Parameters in the lower part of

the window.

HEEEE

’ @] ’ @] calumns * Mumber of Rows for RowGeneratar

Function parameters . Prewview

return an incremented numeric id

Parameter Yalue
seguence identifier 51"
stark value 1
skep z2

Carnment

» Change the Value of step from 1 to 2 for this example, still starting from 1.

generated.

Click OK to validate the configuration.

Then select the tMysqISP component and define its properties.

Set the Number of generated rows to 25 in order for all the odd State id (of 50 states) to be

420

Talend Open Studio

Copyright © 2007

Components

tMysqISP
ﬂ‘f tMysqlSP_1

Property Type Repositary w || Repository | DB (MYSQL):LocalMysgl s |*
|:| IJdse an existing conneckion
Hosk "localhiost” i Frort "3306" b Database | “talend” i
Ilsername “root” b Password | “boor" i
Schema Type Bult-ln % Editschema [
Encoding Type 150-8859-15 +
SP Marme 'getstate *
[]1s function
Paramsters Schema Column Tvpe

I IM

Stake ouT

 Set the Property type field to Repository and select the relevant entry on the list. The
connection details get filled in automatically.

* Else, set manually the connection information.
* Click Sync Column to retrieve the generated schema from the preceding component.

» Then click Edit Schema and add an extra column to hold the State Label to be output, in
addition to the ID.

« Select the encoding type on the list.

» Type in the name of the procedure in the SP Name field as it is called in the Database. In this
example, getstate. The procedure to be executed states as follows:
DROP PROCEDURE IF EXISTS “talend . getstate™ $$
CREATE DEFINER="root @ localhost™ PROCEDURE ~“getstate (IN pid
INT, OUT pstate VARCHAR(50))
BEGIN
SELECT LabelState INTO pstate FROM us_states WHERE idState =
pid;
END 3

 In the Parameters area, click the plus button to add a line to the table.

Copyright © 2007 Talend Open Studio 421

Components
tMysqlSP

+ Set the Column field to ID, and the Type field to IN as it will be given as input parameter
to the procedure.

* Add asecond line and set the Column field to State and the Type to Out as this is the output
parameter to be returned.

» Eventually, set the tLogRow component properties.

DET tLogRow_1

Schema Type Bult-n | Editschema [

Print walues in cells of a table

» Synchronize the schema with the preceding component.
» And check the Print values in cells of a table box for reading convenience.

» Then save your job and execute it.

Staréang qob MsgdoF a6 1754 FR-08-FHES.

tLogRow_1

D|State

Alabama
Arizona
California
Connecticut
Florida
Hawaii
13|I1linoi=

15| Towa

MO eI N

s
jury

The output shows the state labels corresponding to the odd state ids as defined in the procedure.

422 Talend Open Studio Copyright © 2007

Components
tMsgBox

tMsgBox

tMsgBox properties

Component family Misc ¢

Function Opens a dialog box with an OK button requiring action from the user.
Purpose tMsgBox is a graphical break in the job execution progress.
Properties Title Text entered shows on the title bar of the dialog

box created.

Buttons Listbox of buttons you want to include in the
dialog box. The button combinations are
restricted and cannot be changed.

Icon Icon shows on the title bar of the dialog box.

Message Free text to display as message on the dialog box.
Text can be dynamic (for example: retrieve and
show a file name).

Usage This component can be used as intermediate step in a data flow or as a
start or end object in the job flowchart.
It can be connected to the next/previous component using either a Row
or Iterate link.

Limitation For Perl users: Make sure the relevant package is installed.

Scenario: ‘Hello world!’ type test

The following scenario creates a single-component job, where tMsgBox is used to display the pid
(process id) in place of the traditional “Hello World!” message.

 Click and drop a tMsgBox component into the workspace.

« Define the dialog box display properties:

Copyright © 2007 Talend Open Studio 423

Components
tMsgBox

MUH job | PerlDoc | RegExp | Tasks | Problems (Job Hell,., | Modules | Scheduler = B8

=

W tMsgBox

Properties
View Title | "Talend Open Studic’
Documentation BLUtrans | K v |
Icon | Icon Information v |
Message '"Current PID i=z:' . 54

e ‘My Title’ is the message box title, it can be any variable.

* In the Message field comes the message text in quotes concatenated with the Perl scalar
variable ($$) containing the “pid” for this example.

 Switch to the Run job tab to execute the job defined.

The Message box displays the message and requires the user to click OK to go to the next component
or end the job.

Talend Open Studio @

Current PIDis: 3116

After the user clicked on OK button, the Run Job log is updated accordingly.

Related topic: Running a job on page 109

424 Talend Open Studio Copyright © 2007

Components

tNormalize
mm tNOrmalize
11 |
¢
tNormalize Properties

Component family Processing iﬁ ({

Function Normalizes the input flow following SQL standard.

Purpose tNormalize helps improve data quality and thus eases the data update.

Properties Schema type and A schema is a row description, i.e., it defines the

Edit Schema number of fields that will be processed and

passed on to the next component. The schema is
either built-in or remote in the Repository. In this
component, the schema is read-only.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Column to Select the column from the input flow which the
normalize normalization is based on
Separator Enter the separator which will delimits data in the
input flow.
Usage This component can be used as intermediate step in a data flow.
Limitation nla

Scenario: Normalizing data

This simple scenario illustrates a job that normalizes a list of tags for Web forum topics and outputs
them into a table in the standard output console (Run Job tab).

B rnwl (Ma?n]l _ .':_ ¥ 1'_l _ru:nwE l{_Main]l _ " E@

EFileInputDelimited_1 thormalize_1 tLogRow 1

 Click and drop the following components onto the designing workspace:
tFilelnputDelimited, tNormalize, tLogRow.

* In the tFileInputDelimited properties, set the input file to be normalized.

Copyright © 2007 Talend Open Studio 425

Components
tNormalize

[=] labels_raw.tut
1 , ldap,
2 Ldbz2 Jdbe driver,
3 ,grid computing, talend architecture,
4 soontext, environment,
5 , Cmap,
& ,eclip=e,;
7 ,database, java, postgresgl,
=1 ; Cap,
9 database, java, svhase,
10 sdeployvment, perl,
11 ,Fepository,
12 sdatabaze, informix, java,

» The file schema is stored in the repository for ease of use. It is made of one column, called
Tags, containing rows with one or more keywords.

» Set the Row Separator and the Field Separator.

1= tFileInputDelimited_1

Property Type Built-In v

File Mame "CiInput)labels_raw, bxt’

Fow Separator "in" Field Separator | "3

He:ader 1 Footer |0 Lirnik

Schema Type Repository s || | DELIM:Labels_raw - metadats + ¥ Edit schema E]

[Extract lines at random

Encoding Type IS0-6859-15 a

» On the tNormalize Properties panel, define the column the normalization operation is
based on.

* In this use case, the column to normalize is Tags.

[|
ﬂj tNormalizer_1

Schema Type Edit schema [:I

Colurmn ko normalize | Tags « *

Ikem separatar s

* The Item separator is the comma, surrounded here by single quotes as the job is done in
Perl.

¢ In the tLogRow component, check the Print values in the cells of table box.

426 Talend Open Studio Copyright © 2007

« Save the Job and run it.

Components
tNormalize

tLogRow_1

Starting fob eXurwsiize 3 15058 SRCGFOTNTRS

Tags=

ldap

db?

jdbc driwver
grid computing

context
environmnent
tmap
eclipse
database
java
postgresgl
tmap
database

talend architecture

The values are normalized and displayed in a table cell on the console.

Copyright © 2007

Talend Open Studio

427

Components
tOracleBulkExec

Eﬁ? tOracleBulkExec

tOracleBulkExec properties

Component family

Function

Purpose

Properties

Databases/Oracle

S

tOracleBulkExec inserts, appends, replaces or truncate data in an Oracle

database.

As a dedicated component, it allows gains in performance during operations
performed on data of an Oracle database.

Property type

Service Name

Username and
Password
Table

Action on data

Data File Name

Fields terminated by

Fields optionnally
enclosed by

Encoding

Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Oracle Service Name or SID in Oracle database.

Note: In Java projects, the full
database connection details

are required.

DB user authentication data.

Name of the table to be written. Note that only one
table can be written at a time

On the data of the table defined, you can perform:
Insert: Inserts rows to an empty table. If duplicates
are found, job stops.

Append: Add rows to the existing data of the table
Replace: Overwrites some rows of the table
Truncate: Drops table entries and inserts new input
flow data.

Name of the file to be processed.
Related topic:Defining job context variables on page
101

Character, string or regular expression to separate
fields.

Data enclosure characters.

Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

428

Talend Open Studio

Copyright © 2007

Components
tOracleBulkExec

Output to Console: Loading information
Global variable: returned values from ctl, bad or log
files.
Usage This dedicated component offers performance and flexibility of Oracle DB

query handling.

Scenario: Truncating and inserting file data into Oracle DB

This scenario describes how to truncate the content of an Oracle DB and load an input file content.
The related job is composed of three components that respectively creates the content, output this
content into a file to be loaded onto the Oracle database after the DB table has been truncated.

. rowl (Mair " @

" roraclkelnput_1 tFileQutpukDelimited_1

ThenqRun

¥
G

‘kOracleBuUlkExec 1
 Click and drop the following components: tOraclelnput, tFileOutputDelimited,
tOracleBulkExec
 Connect the tOraclelnput with the tFileOutputDelimited using a row main link.
» And connect the tOraclelnput to the tOracleBulkExec using a ThenRun trigger link.

+ Define the Oracle connection details. We recommend you to store the DB connection details
in the Metadata repository in order to retrieve them easily at any time in any job.

Copyright © 2007 Talend Open Studio 429

Components
tOracleBulkExec

b tOracleInput_1

Froperty Tyvpe Fepository « | Repository | DB {ORACLE):Oracle_Talend « |[*

Host ‘talend-dbms’ L Port | 1521 . Database | 'TALEND' ESchema ‘RO
Usernarne root! E Password | 'toor!

Schema Type Repository s || | DB (ORACLE): Oracle_Talend - CLIENT + ¥ Edit schema E]

Query Type Built-In v

Cuery "SELECT ID CONTRACT. ID CLIENT. CONTRACT TYPE., CONTRACT_VALUE

FROM CLIENT_ COHTRACT'|

Encoding Twpe CUSTOM | | AL3ZUTFE

 Define the schema, if it isn’t stored either in the Repository. In this example, the schema is
as follows: ID_Contract, ID_Client, Contract_type, Contract_Value.

» Change the default encoding to AL32UTF8 encoding type.

« Define the tFileOutputDelimited component parameters, including output File Name,
Row separator and Fields delimiter.

 Set also the encoding to the Oracle encoding type as above.

» Then double-click on the tOracleBulkExec to define the DB feeding properties.

ﬁ? tOracleBulkExec_1

Property Type Repositary w || Repository | DB (ORACLE):Oracle_Talend e |*

Service name ‘TALEMD *
sername 'ront! g Password | 'boor! E
Table 'emp!’ * action on data | Insert w|*

Diata File name 'C:ftalend_Filesfemp_bulk, bt * E]
Fields terminated by | ;' * Fields optionally enclosed by | ™

Encoding Type CUSTOM w | | BL32UTFE * Qutput | b0 console L

« Fill in the DB connection details if they are not available from the Repository.

 Fill in the name of the Table to be fed and the Action on data to be carried out, in this use
case: insert.

 Define the encoding as in preceding steps.

* For this scenario, the log output is to be displayed in the console.

430 Talend Open Studio Copyright © 2007

Components
tOracleBulkExec

Press F6 to run the job. The log output displays in the Run Job tab and the table is fed with the
parameter file data.

Related topic: Scenario: Inserting data in MySQL database on page 405

Copyright © 2007 Talend Open Studio 431

Components
tOracleCommit

tOracleCommit

®

tOracleCommit Properties

This component is closely related to tOracleCommit and tOracleRollback. It usually doesn’t
make much sense to use these components independently in a transaction..

Component family Databases/Oracle iﬁ ({

Function Validates the data processed through the job into the connected DB

Purpose Using a unique connection, commits in one go a global transaction instead of

every row or every batch. Provides a gain in performance

Properties Component list Select the tOracleConnection component in the list
if more than one connection are planned for the
current job.

Usage This component is to be used along with Oracle components, especially with

tOracleConnection and tOracleRollback components.

Limitation n/a

Related scenario

This component is closely related to tOracleConnection and tOracleRollback. It usually doesn’t
make much sense to use one of the latters without using a tOracleConnection component to open
a connection for the current transaction.

For tOracleCommit related scenario, see tMysqlConnection on page 387.

432 Talend Open Studio Copyright © 2007

Components
tOracleConnection

tOracleConnection

e

tOracleConnection Properties

This component is closely related to tOracleCommit and tOracleRollback. It usually doesn’t
make much sense to use one of the latters without using a tOracleConnection component to open
a connection for the current transaction.

Component family Databases/Oracle Q@ ({
Function Opens a connection to the database for a current transaction.
Purpose Allows to commit a whole job data in one go to the output database as one

transaction when validated.
Properties Property type Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in with fetched data.

Connection type Drop-down list of available drivers.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Schema Name of the schema

Username and DB user authentication data.

Password

Encoding type Select the encoding from the list or select Custom and

define it manually. This field is compulsory for DB
data handling.

Usage This component is to be used along with Oracle components, especially with
tOracleCommit and tOracleRollback components.

Limitation n/a

Related scenario

This component is closely related to tOracleCommit and tOracleRollback. It usually doesn’t
make much sense to use one of the latters without using a tOracleConnection component to open
a connection for the current transaction.

For tOracleConnection related scenario, see tMysglConnection on page 387.

Copyright © 2007 Talend Open Studio 433

Components
tOraclelnput

tOraclelnput

tOraclelnput properties

Component family Databases/Oracle ¢

% <
Function tOraclelnput reads a database and extracts fields based on a query.
Purpose tOraclelnput executes a DB query with a strictly defined order which must

correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Properties Property type Either Built-in or Repository
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Connection type Drop-down list of available drivers.

Use existing Check this box when using a tOracleConnection
connection

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and DB user authentication data.

Password

Schema type and Edit | A schema is a row description, i.e., it defines the

Schema number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type and Query | Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Usage This component covers all possibilities of SQL queries onto a Oracle database.

434 Talend Open Studio Copyright © 2007

Components
tOraclelnput

Related scenarios

Related topics in tDBInput scenarios:
» Scenario 1: Displaying selected data from DB table on page 162
 Scenario 2: Using StoreSQLQuery variable on page 163

Related topic in tContextLoad Scenario: Dynamic context use in MySQL DB insert on page 145.

Copyright © 2007 Talend Open Studio 435

Components
tOracleOutput

tOracleOutput

tOracleOutput properties

Component family

Function

Purpose

Properties

% n Java, use
tCreateTable as
substitute for this
function..

Databases/Oracle

S

tOracleOutput writes, updates, makes changes or suppresses entries in a

database.

tOracleOutput executes the action defined on the table and/or on the data
contained in the table, based on the flow incoming from the preceding

component in the job.

Property type

Use existing
connection

Connection type
Host

Port

Database

Username and
Password

Table

Action on table

Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Check this box when using a tOracleConnection

Drop-down list of available drivers.
Database server IP address
Listening port number of DB server.
Name of the database

DB user authentication data.

Name of the table to be written. Note that only one
table can be written at a time

On the table defined, you can perform one of the
following operations:

None: No operation carried out

Drop and create the table: The table is removed and
created again

Create a table: The table doesn’t exist and gets
created.

Clear a table: The table content is deleted

436

Talend Open Studio

Copyright © 2007

Components
tOracleOutput

Action on data On the data of the table defined, you can perform:
Insert: Add new entries to the table. If duplicates are
found, job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing
ones.

Update or insert: Update existing entries or create it
if non existing

Delete: Remove entries corresponding to the input
flow.

Clear data in table Wipes out data from the selected table before action.

Schema type and Edit | A schema is a row description, i.e., it defines the

Schema number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Additional Columns | This option is not offered if you create (with or
without drop) the Db table. This option allows you to
perform actions on columns, which are not insert, nor
update or delete actions or requires a particular
preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After, following
the action to be performed on the reference column.

Reference column: Type in a column of reference
that the tDBOutput can use to place or replace the new
or altered column.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Copyright © 2007 Talend Open Studio 437

Components
tOracleOutput

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.

Related scenarios

For tOracleOutput related topics, see:
» tDBOutput Scenario: Displaying DB output on page 166
* tMySQL Output Scenario: Adding new column and altering data on page 396.

438 Talend Open Studio Copyright © 2007

Components
tOracleOutputBulk

% tOracleOutputBulk

tOracleOutputBulk properties

tOracleOutputBulk and tOracleBulkExec components are used together to first output the file
that will be then used as parameter to execute the SQL query stated. These two steps compose the
tOracleOutputBulkExec component, detailed in a separate section. The interest in having two
separate elements lies in the fact that it allows transformations to be carried out before the data
loading.

Copyright © 2007 Talend Open Studio 439

Components
tOracleOutputBulk

Component family

Function

Purpose

Properties

Usage

Related scenarios

Databases/Oracle ((
=2

Writes a file with columns based on the defined delimiter and the Oracle

standards

Prepares the file to be used as parameter in the INSERT query to feed the
Oracle database.

Property type Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

File Name Name of the file to be processed.
Related topic:Defining job context variables on page
101

Field separator Character, string or regular expression to separate
fields.

Append Check this option box to add the new rows at the end
of the file

Schema type and Edit | A schema is a row description, i.e., it defines the

Schema number of fields that will be processed and passed on
to the next component. The schema is either built-in
or remote in the Repository.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused in various
projects and job designs. Related topic: Setting a
repository schema on page 49

Encoding Select the encoding from the list or select Custom
and define it manually. This field is compulsory for
DB data handling.

This component is to be used along with tOracleBulkExec component. Used
together they offer gains in performance while feeding a Oracle database.

For uses cases in relation with tOracleOutputBulk, see the following scenarios:

» tMysqglOutputBulk Scenario: Inserting transformed data in MySQL database on page 400

* tMysqlOutputBulkExec Scenario: Inserting data in MySQL database on page 405

440

Talend Open Studio Copyright © 2007

Components
tOracleOutputBulk

 tOracleBulkExec Scenario: Truncating and inserting file data into Oracle DB on page 429

Copyright © 2007 Talend Open Studio 441

Components
tOracleOutputBulkExec

% tOracleOutputBulkExec

tOracleOutputBulkExec properties

Component family Databases/Oracle

As a dedicated component, it allows gains in performance during Insert

Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Database server IP address
Listening port number of DB server.
Name of the database

DB user authentication data.

Name of the table to be written. Note that only one
table can be written at a time and that the table must
exist for the insert operation to succeed.

On the data of the table defined, you can perform:
Insert: Add new entries to the table. If duplicates are
found, job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing

Update or insert: Update existing entries or create it
if non existing
Truncate: Remove all entries from table.

Name of the file to be processed.
Related topic:Defining job context variables on page

Character, string or regular expression to separate

Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Function Executes the Insert action on the data provided.
Purpose
operations to an Oracle database.
Properties Property type
Host
Port
Database
Username and
Password
Table
Action on data
Oones.
File Name
101
Field separator
fields.
Encoding
Usage

This component is mainly used when no particular tranformation is required on

the data to be loaded onto the database.

442

Talend Open Studio

Copyright © 2007

Components
tOracleOutputBulkExec

Limitation n/a

Related scenarios

For uses cases in relation with tOracleOutputBulkExec, see the following scenarios:
* tMysqlOutputBulk Scenario: Inserting transformed data in MySQL database on page 400
» tMysqlOutputBulkExec Scenario: Inserting data in MySQL database on page 405

* tOracleBulkExec Scenario: Truncating and inserting file data into Oracle DB on page 429

Copyright © 2007 Talend Open Studio 443

Components
tOracleRollback

tOracleRollback

tOracleRollback properties

This component is closely related to tOracleCommit and tOracleConnection. It usually doesn’t
make much sense to use these components independently in a transaction..

Component family Databases iﬁ ({

Function Cancel the transaction commit in the connected DB.

Purpose Avoids to commit part of a transaction unvolontarily.

Properties Component list Select the tOracleConnection component in the list
if more than one connection are planned for the
current job.

Usage This component is to be used along with Oracle components, especially with

tOracleConnection and tOracleCommit components.

Limitation n/a

Related scenario

This component is closely related to tOracleConnection and tOracleCommit. It usually doesn’t
make much sense to use one of the latters without using a tOracleConnection component to open
a connection for the current transaction.

For tOracleRollback related scenario, see tMysglRollback on page 406.

444 Talend Open Studio Copyright © 2007

tOracleRow

Components
tOracleRow

tOracleRow properties

Component family

Databases/Oracle

S

Function tOracleRow is the specific component for this database query. It executes the
SQL query stated onto the specified database. The row suffix means the
component implements a flow in the job design although it doesn’t provide
output.

Purpose Depending on the nature of the query and the database, tOracleRow acts on
the actual DB structure or on the data (although without handling data). The
SQLBuilder tool helps you write easily your SQL statements.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.
Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Use existing Check this box when using a tOracleConnection

connection

Connection type Drop-down list of available drivers.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and DB user authentication data.

Password

Schema type and Edit | A schema is a row description, i.e., it defines the

Schema number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.
Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49
Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type Either Built-in or Repository.
Built-in: Fill in manually the query statement or build
it graphically using SQLBuilder

Copyright © 2007 Talend Open Studio 445

Components
tOracleRow

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.

Related scenarios

For related topics, see:
» tDBSQLRow Scenario 1: Resetting a DB auto-increment on page 170
» tMySQLRow Scenario: Removing and regenerating a MySQL table index on page 408.

446 Talend Open Studio Copyright © 2007

Components
tOracleSCD

i tOracleSCD

tOracleSCD Properties

Component family Databases/Oracle

Function

Purpose

b IS

tOracleSCD reflects and tracks changes in a dedicated Oracle SCD table.

tOracleSCD addresses Slowly Changing Dimension needs, reading regularly

a source of data and logging the changes into a dedicated SCD table

Properties Property type

Use existing
connection

Connection type
Host

Port

Database

Username and
Password

Encoding

Table

Schema type and Edit
Schema

. Surrogate key
= Java only for the

time being.

Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Check this box when using a tOracleConnection

Drop-down list of available drivers.
Database server IP address
Listening port number of DB server.
Name of the database

DB user authentication data.

Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Name of the table to be written. Note that only one
table can be written at a time

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Select the column where the generated surrogate key
will be stored. A surrogate key can be generated based
on a method selected on the Creation list.

Copyright © 2007

Talend Open Studio

447

Components
tOracleSCD

Source Keys Select one or more columns to be used as key, to
ensure the unicity of incoming data.

Use SCD Type 1 fields | Use the type 1if change tracking is not necessary.
SCD Type 1 should be used for typos corrections for
example. Select the columns of the schema, that will
be checked for changes.

Use SCD Type 2 fields | Use type 2 if changes need to be tracked down. SCD
Type 2 should be used to trace updates for example.
Select the columns of the schema, that will be
checked for changes.

Start date/End Date: Add a column to your SCD
schema to hold the start and end date value for the
record. When the record is currently active, the End
date show a null value

Log Active Status: Add a column to your SCD
schema to hold the 1 or O status value. This column
helps to spot easily the active record.

Log versions: Add a column to your SCD schema to
hold the version number of the record.

Use SCD Type 3 fields | Use type 3 when you want to keep track of the
Java only for the previous value of a changing column
time being. Current value field: Select the column where the
changing value is tracked down..
Previous value field: Select the column where the
previous value should be stored.

(1
=

Debug Mode Check this box to display each step of the SCD log
process.

Usage This component is used as Output component. It requires an Input component
and Row main link as input.

Related scenario

For related scenarios, see tMysqlSCD Scenario: Tracking changes using Slowly Changing
Dimension on page 411.

448 Talend Open Studio Copyright © 2007

Components
tOracleSP

. tOracleSP

p
L3

tOracleSP Properties

Component family Databases/Oracle

Function

Purpose

b IS

tOracleSP calls the database stored procedure.

tOracleSP offers a convenient way to centralize multiple or complex queries

in a database and call them easily.

Properties Property type

Host
Port
Database
Schema

Username and
Password

Encoding

Schema type and Edit
Schema

SP Name

Is Function / Return
result in

Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Database server IP address
Listening port number of DB server.
Name of the database

Name of the Schema

DB user authentication data.

Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

In SP principle, the schema is an input parameter.

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Type in the exact name of the Stored Procedure (or
Function)

Check this box, if the stored procedure is a function
and one value only is to be returned.

Select on the list the schema column, the value to be
returned is based on.

Copyright © 2007

Talend Open Studio

449

Components
tOracleSP

Parameters Click the Plus button and select the various Schema
Columns that will be required by the procedures.
Note that the SP schema can hold more columns than
there are paramaters used in the procedure.
Select the Type of parameter:
IN: Input parameter
OUT: Output parameter/return value
IN OUT: Input parameters is to be returned as value,
likely after modification through the procedure
(function).

Usage This component is used as intermediary component. It can be used as start
component but only input parameters are thus allowed.

Limitation The Stored Procedures syntax should match the Database syntax.

Scenario: Checking number format using a stored procedure

The following job aims at connecting to an Oracle Database containing Social Security Numbers

and their holders’ name, calling a stored procedure that checks the SSN format of against a standard
#iH-#-H##H# format. Then the verification output results, 1 for valid format and 0 for wrong format
get displayed onto the execution console.

.

bor acleComnection_1

ThenRun
e 4 .
ol (Main) > 1 o2 (Main) o
" boraclelnput_1 ' "\ kOraclesP_1 ' ' " HogRow 1

» Drag and drop the following components from the Palette: tOracleConnection,
tOraclelnput, tOracleSP and tLogRow.

 Link the tOracleConnection to the tOraclelnput using a Then Run connection as no data
is handled here.

* And connect the other components using a Row Main link as rows are to be passed on as
parameter to the SP component and to the console.

« In the tOracleConnection, define the details of connection to the relevant Database. You
will then be able to reuse this information in all other DB-related components.

» Then select the tOraclelnput and define its properties.

450 Talend Open Studio Copyright © 2007

Components

tOracleSP
B tOraclelnput_1
Property Tvpe Repositary || Repository | DB (ORACLE)Orace e |*
Llse an exisking conneckion ompaonent Lisk toracleConnection_1
Schema Type Repository + | | DB (ORACLE)Oracle - 530 w | Edit schema []
Query "zelect ID, WAME, CITY. SSHNUMEER from SSH" * D

» Check the Use an existing connection and select the tOracleConnection component in the
list in order to reuse the connection details that you already set.

» Select Repository as Property type as the Oracle schema is defined in the DB Oracle
connection entry of the Repository. If you haven’t recorded the Oracle DB details in the
Repository, then fill in the Schema name manually.

» Then select Repository as Schema type, and retrieve the relevant schema corresponding to
your Oracle DB table.

D o | MemE | CITY | SSMUMBER |
1 1/ Jack LA 123-45-6TE9
2 2 Tarm MY C 123-AA-6TEY
3 3 Bill SF 123=45-784
4 4/ Jana MY C 236-52-2056
3 & Brandon SLC 61-52-B267

* Inthisexample, the SSN table has a four-column schema that includes ID, NAME, CITY and
SSNUMBER.

« In the Query field, type in the following Select query or select it in the list, if you stored it
in the Repository.
select ID, NAME, CITY, SSNUMBER from SSN

» Then select the tOracleSP and define its Properties.

Copyright © 2007 Talend Open Studio 451

Components
tOracleSP

:f tOracleSP_1

Froperty Tvpe Repository + | Repository | DB (ORACLE): Oracle « |[*

Use an existing connection Component List | EOracleConneckion_1 «

Schema Type Bult-In » | Edischema [

Encoding Type IS0-5859-15 w
P Name i5_s5n

[“]1s Function Return resultin | SSM_Yalid

Parameters Schema Column Type

S3MUMEER. IM

« Like for the tOraclelnput component, select Repository in the Property type field and
check the Use an existing connection box, then select the relevant entries in the respective
list.

» The schema used for the tOracleSP slightly differs from the input schema. Indeed, an extra
column (SSN_Valid) is added to the Input schema. This column will hold the format validity
status (1 or 0) produced by the procedure.

EraclesP_1 {Output)

Colummn ... FKew Type Mullable Dat... L.... P.. ©D.
Gl o float F] 22 10
MAME [1 string] 50
CITY [1 string] 50
SSMUMEER [1 string] 12
55M_Yalid [1 int] z

» Then select the Encoding type in the list.

 In the SP Name field, type in the exact name of the stored procedure (or function) as called
in the Database. In this use case, the stored procedure name is is_ssn.

452 Talend Open Studio Copyright © 2007

Components
tOracleSP

¢ The basic function used in this particular example is as follows:

CREATE OR REPLACE FUNCTION is_ssn(string_in VARCHAR2) RETURN
PLS_INTEGER
IS
-— validating ###-##-#### format
BEGIN

IF TRANSLATE(string_in, "0123456789A%, “AAAAAAAAAAB®) =

"AAA-AA-AAAA® THEN
RETURN 1;

END 1IF;

RETURN O;
END is ssn;
/

» Asareturn value is expected in this use case, the procedure acts as a function, so check the
Is function box.

» The only return value expected is based on the ssn_valid column, hence select the relevant
list entry.

* Inthe Parameters area, define the input and output parameters used in the procedure. In this
use case, only the SSNumber column from the schema is used in the procedure.

+ Click the plus sign to add a line to the table and select the relevant column (SSNumber) and
type (IN).

» Then select the tLogRow component and click Sync Column to make sure the schema is
passed on from the preceding tOracleSP component.

DET tLogRow_1

Schema Type v | Edtschema [

Print walues in cells of a table

» Check the Print values in cells of a table to facilitate the output reading.

» Then save your job and press F6 to run it.

Copyright © 2007 Talend Open Studio 453

Components
tOracleSP

Searfing job dracieSE a8 15014 SRS

tlégRDw_l
ID |HAME |[CITY|SSHUHEER |S5H_¥alid
1.0]Jack [|123-45-£789|1
2.0|Tam |[H¥C |123-A5-6789|0
3.0|Bill |SF |123=45-£789|0
4 . 0|Jana |[H¥C |236-52-2956|1
£ 0|Brandon|SLC |561-52-B267|0

Sl firgodenF anded ¢ I500d SERORECSFRRS. fasr e cods=ig

On the console, you can read the output results. All input schema columns are displayed eventhough
they are not used as parameters in the stored procedure.

The final column shows the expected return value, i.e. whether the SS Number checked is valid or
not.

454 Talend Open Studio Copyright © 2007

Components
tPerl

. tPerl

{o}

[

tPerl properties

Component family Processing %ﬁ

Function tPerl transforms any data entered as argument of Perl commands.
Purpose tPerl is an (Perl) editor that is a very flexible tool within a job.
Properties Code Type in the Perl code based on the command and

task you need to perform. For further information
about Perl functions syntax, see Talend Open
Studio online Help (under Talend Open Studio
User Guide > Perl)

Usage Typically used for debugging but can also be used to display a variable
content.
Limitation This component requires an advanced Perl user level and is not meant to

be used with a Row connection as is meant for single use.

Scenario: Displaying number of processed lines

This scenario is a three-component job showing in the Log the number of rows being processed and
output in an XML file.

a rowd (Plain) g %
EFileInputDelimited_1 ' ' ‘tFileCutpukExcel 1
ThenRun
)
EPerl_1
+ Click and drop three components from the Palette to the workspace: tFileInputDelimited,
tFileOutputExcel, tPerl

* Right-click on the tFilelnputDelimited object and connect it to the tFileOutputExcel
component using a main Row.

 Right-click again on tFilelnputDelimited and link it with the tPerl component using a
Trigger > ThenRun link. This link means that, following the arrow direction, the first
component (tFileDelimited) will run before the second component (tPerl).

Copyright © 2007 Talend Open Studio 455

Components

tPerl
« Click once on tFilelnputDelimited and select Properties tab to define the component
properties.
mmmc RegExp | Tasks | Run {Jab MbLines) | Prablems (Job MbLines) | Modules | Scheduler =0
=
Ml @ tFileInputDelimited
Properties
Mg Property Type Built-In w
ERENEN S File Mame "CilInputtfist_emails, bxk' * E]
Row Separator "“n" Field Separator | '}
Header 1 Footer |0 Limit
Schema Tvpe Built-In w || Edit schema E] Skip empty rows
[]Extract a random number of lines
Encoding 150-8859-15' *

» The Properties are not reused from or for another job stored in the repository, but instead
are used for this job only. Therefore select Built-In in the drop-down list.

 Enter a path or browse to the file containing the data to be processed. In this example, the
text file gathers a list of names facing the relevant email addresses.

+ Define the Row and Field separators. In this scenario, there is one name and the matching
email per row. And the fields are separated by a semi-colon.

» The first row of the file contains the labels of the columns, therefore it should be ignored in
the job. Therefore the the Header field value is 1.

* There is no footer nor limit value to be defined for this scenario.

» The Schema type is also built-in in this case. Click on Edit Schema and describe the content
of the input file. In this scenario, there are two columns labelled Name and Emails, of type
String and with no length defined. Key field being Email.

» Select the tFileOutputExcel component and define it accordingly.
« Select the output file path, Sheet and synchronize the schema.

» Then define the tPerl sub-job in order to get the number of rows transferred to the XML
Output file.

456 Talend Open Studio Copyright © 2007

Components
tPerl

tPerl_1

Code print "=s=s====tn";
print "Humber of lines processed: "
print
Frint "~p====="~pn"

 Enter the Perl command print to get the variable containing the number of rows read in
the tFilelnputDelimited. To access the list of available variables, press Ctrl+Space then
select the relevant variable in the list.

* For a better readability in the Run Job log, add equal signs before and after the commands.
Note also that commands, strings and variables are coloured differently.

» Then switch to the Run Job tab and execute the job.

The job runs smoothly and create an output xml file following the two-field schema defined: Name
and Email.

Execution

Skats & Traces

’ ffrDEbug l ’ (= Run l gj::jcs

Clear before run [] Exec time

Staréing job Farlirlinss ¢ 1008 165055007,

Humnber of lines processed: 4

Job Fariiriines andsd af 0085 PESESCoFRET fasT o code =07

The Perl command result is shown in the job log.

Copyright © 2007 Talend Open Studio 457

Components
tPostgresqlBulkExec

W tPostgresqlBulkExec

tPostgresqlBulkExec properties

tPostgresqlOutputBulk and tPostgresqlBulkExec components are used together to first output
the file that will be then used as parameter to execute the SQL query stated. These two steps
compose the tPostgresqlOutputBulkExec component, detailed in a separate section. The interest
in having two separate elements lies in the fact that it allows transformations to be carried out before
the data loading in the database.

Component family Databases/Postgresql ((
=D
Function Executes the Insert action on the data provided.
Purpose As a dedicated component, tPostgresqlBulkExec offers gains in performance

while carrying out the Insert operations to a Postgresql database
Properties Property type Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and DB user authentication data.

Password

Table Name of the table to be written. Note that only one

table can be written at a time and that the table must
exist for the insert operation to succeed.

File Name Name of the file to be processed.
Related topic:Defining job context variables on page
101

Fields terminated by | Character, string or regular expression to separate
fields.

Usage This component is to be used along with tPostgresqlOutputBulk component.
Used together, they can offer gains in performance while feeding a Postgresql
database.

Limitation n/a

458 Talend Open Studio Copyright © 2007

Components
tPostgresqlBulkExec

Related scenarios

For uses cases in relation with tPostgresqlBulkExec, see the following scenarios:
» tMysqlOutputBulk Scenario: Inserting transformed data in MySQL database on page 400
» tMysqlOutputBulkExec Scenario: Inserting data in MySQL database on page 405

* tOracleBulkExec Scenario: Truncating and inserting file data into Oracle DB on page 429

Copyright © 2007 Talend Open Studio 459

Components
tPostgresqlCommit

tPostgresqlCommit

2

tPostgresglCommit Properties

This component is closely related to tPostgresqlCommit and tPostgresqlRollback. It usually
doesn’t make much sense to use these components independently in a transaction..

Component family Databases/Postgresql iﬁ ¢

Function Validates the data processed through the job into the connected DB

Purpose Using a unique connection, commits in one go a global transaction instead of

every row or every batch. Provides a gain in performance

Properties Component list Select the tPostgresqglConnection component in the
list if more than one connection are planned for the
current job.

Usage This component is to be used along with Postgresql components, especially

with tPostgresqlConnection and tPostgresglRollback components.

Limitation n/a

Related scenario

This component is closely related to tPostgresqlConnection and tPostgresqlRollback. It usually
doesn’t make much sense to use one of the latters without using a tPostgresqlConnection
component to open a connection for the current transaction.

For tPostgresqlCommit related scenario, see tMysglConnection on page 387.

460 Talend Open Studio Copyright © 2007

tPostgresqglConnection

Components
tPostgresqlConnection

2

tPostgresglConnection Properties

This component is closely related to tPostgresqlCommit and tPostgresglRollback. It usually
doesn’t make much sense to use one of the latters without using a tPostgresglConnection
component to open a connection for the current transaction.

Component family

Databases/Postgresql _
¥ <

Function Opens a connection to the database for a current transaction.

Purpose Allows to commit a whole job data in one go to the output database as one
transaction when validated.

Properties Property type Either Built-in or Repository.
Built-in: No property data stored centrally.
Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in with fetched data.
Host Database server IP address
Port Listening port number of DB server.
Database Name of the database
Schema Exact name of the schema
Username and DB user authentication data.
Password
Encoding type Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.
Usage This component is to be used along with Postgresql components, especially
with tPostgresqlCommit and tPostgresqlRollback components.
Limitation n/a

Related scenario

This component is closely related to tPostgresglCommit and tPostgresqlRollback. It usually
doesn’t make much sense to use one of the latters without using a tPostgresglConnection
component to open a connection for the current transaction.

For tPostgresglConnection related scenario, see tMysglConnection on page 387.

Copyright © 2007

Talend Open Studio 461

Components
tPostgresqglinput

tPostgresqlinput

tPostgresqglinput properties

Component family

Function

Purpose

Properties

Databases/
PostgreSQL

S

tPostgresqglinput reads a database and extracts fields based on a query.

tPostgresqglinput executes a DB query with a strictly defined order which
must correspond to the schema definition. Then it passes on the field list to the
next component via a Main row link.

Property type

Use existing
connection

Host
Port
Database
Schema

Username and
Password

Schema type and Edit
Schema

Query type and Query

Encoding

Either Built-in or Repository
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Check this box when using a tPostgresqlConnection

Database server IP address
Listening port number of DB server.
Name of the database

Exact name of the schema

DB user authentication data.

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

462

Talend Open Studio Copyright © 2007

Components
tPostgresqlinput

Usage This component covers all possibilities of SQL queries onto a Postgresql
database.

Related scenarios

Related topics in tDBInput scenarios:
 Scenario 1: Displaying selected data from DB table on page 162
 Scenario 2: Using StoreSQLQuery variable on page 163

Related topic in tContextLoad Scenario: Dynamic context use in MySQL DB insert on page 145.

Copyright © 2007 Talend Open Studio 463

Components
tPostgresqlOutput

tPostgresqlOutput

tPostgresqlOutput properties

Component family

Function

Purpose

Properties

% n Java, use
tCreateTable as
substitute for this
function..

Databases/Postgresq| _
¥ <

tPostgresqlOutput writes, updates, makes changes or suppresses entries in a

database.

tPostgresqlOutput executes the action defined on the table and/or on the data
contained in the table, based on the flow incoming from the preceding

component in the job.

Property type

Use existing
connection

Host
Port
Database
Schema

Username and
Password

Table

Action on table

Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Check this box when using a tPostgresqlConnection

Database server IP address
Listening port number of DB server.
Name of the database

Exact name of the schema

DB user authentication data.

Name of the table to be written. Note that only one
table can be written at a time

On the table defined, you can perform one of the
following operations:

None: No operation carried out

Drop and create the table: The table is removed and
created again

Create a table: The table doesn’t exist and gets
created.

Clear a table: The table content is deleted

464

Talend Open Studio

Copyright © 2007

Components
tPostgresqlOutput

Action on data On the data of the table defined, you can perform:
Insert: Add new entries to the table. If duplicates are
found, job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing
ones.

Update or insert: Update existing entries or create it
if non existing

Delete: Remove entries corresponding to the input
flow.

Clear data in table Wipes out data from the selected table before action.

Schema type and Edit | A schema is a row description, i.e., it defines the

Schema number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Additional Columns | This option is not offered if you create (with or
without drop) the Db table. This option allows you to
perform actions on columns, which are not insert, nor
update or delete actions or requires a particular
preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After, following
the action to be performed on the reference column.

Reference column: Type in a column of reference
that the tDBOutput can use to place or replace the new
or altered column.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Copyright © 2007 Talend Open Studio 465

Components
tPostgresqlOutput

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.

Related scenarios

For tPostgresqlOutput related topics, see:
» tDBOutput Scenario: Displaying DB output on page 166
* tMySQL Output Scenario: Adding new column and altering data on page 396.

466 Talend Open Studio Copyright © 2007

Components
tPostgresqlOutputBulk

% tPostgresqlOutputBulk

tPostgresqlOutputBulk properties

tPostgresqlOutputBulk and tPostgresqlBulkExec components are used together to first output
the file that will be then used as parameter to execute the SQL query stated. These two steps
compose the tPostgresglOutputBulkExec component, detailed in a separate section. The interest

in having two separate elements lies in the fact that it allows transformations to be carried out before
the data loading.

Copyright © 2007 Talend Open Studio 467

Components
tPostgresqlOutputBulk

Component family Databases/Postgresql ¢

=D

Function Writes a file with columns based on the defined delimiter and the Postgresql
standards

Purpose Prepares the file to be used as parameter in the INSERT query to feed the
Postgresql database.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.
Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

File Name Name of the file to be processed.
Related topic:Defining job context variables on page
101

Field separator Character, string or regular expression to separate
fields.

Row separator String (ex: “\n”on Unix) to distinguish rows.

Append Check this option box to add the new rows at the end
of the file

Include header Check this box to include the column header to the
file.

Schema type and Edit | A schema is a row description, i.e., it defines the

Schema number of fields that will be processed and passed on
to the next component. The schema is either built-in
or remote in the Repository.
Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49
Repository: The schema already exists and is stored
in the Repository, hence can be reused in various
projects and job designs. Related topic: Setting a
repository schema on page 49

Encoding Select the encoding from the list or select Custom
and define it manually. This field is compulsory for
DB data handling.

Usage This component is to be used along with tPostgresqlBulkExec component.
Used together they offer gains in performance while feeding a Postgresql
database.

468 Talend Open Studio Copyright © 2007

Components
tPostgresqlOutputBulk

Related scenarios

For uses cases in relation with tPostgresqlOutputBulk, see the following scenarios:
* tMysqlOutputBulk Scenario: Inserting transformed data in MySQL database on page 400
» tMysqlOutputBulkExec Scenario: Inserting data in MySQL database on page 405

* tOracleBulkExec Scenario: Truncating and inserting file data into Oracle DB on page 429

Copyright © 2007 Talend Open Studio 469

Components
tPostgresqlOutputBulkExec

% tPostgresqlOutputBulkExec

tPostgresqglOutputBulkExec properties

Component family Databases/Postgresq| ¢
)
Function Executes the Insert action on the data provided.
Purpose As a dedicated component, it allows gains in performance during Insert

operations to a Postgresql database.
Properties Property type Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and DB user authentication data.

Password

Table Name of the table to be written. Note that only one

table can be written at a time and that the table must
exist for the insert operation to succeed.

File Name Name of the file to be processed.
Related topic:Defining job context variables on page
101
Field separator Character, string or regular expression to separate
fields.
Row separator String (ex: “\n”on Unix) to distinguish rows.
Usage This component is mainly used when no particular tranformation is required on

the data to be loaded onto the database.

Related scenarios

For uses cases in relation with tPostgresqlOutputBulkExec, see the following scenarios:
* tMysqlOutputBulk Scenario: Inserting transformed data in MySQL database on page 400
» tMysqglOutputBulkExec Scenario: Inserting data in MySQL database on page 405

* tOracleBulkExec Scenario: Truncating and inserting file data into Oracle DB on page 429

470 Talend Open Studio Copyright © 2007

Components
tPostgresqglRollback

tPostgresqlRollback

tPostgresqglRollback properties

This component is closely related to tPostgresglCommit and tPostgresqglConnection. It usually
doesn’t make much sense to use these components independently in a transaction..

Component family Databases iﬁ ¢

Function Cancel the transaction commit in the connected DB.

Purpose Avoids to commit part of a transaction unvolontarily.

Properties Component list Select the tPostgresqlConnection component in the
list if more than one connection are planned for the
current job.

Usage This component is to be used along with Postgresql components, especially

with tPostgresqlConnection and tPostgresglCommit components.

Limitation n/a

Related scenario

This component is closely related to tPostgresglConnection and tPostgresqlCommit. It usually
doesn’t make much sense to use one of the latters without using a tPostgresglConnection
component to open a connection for the current transaction.

For tPostgresqlRollback related scenario, see tMysglRollback on page 406.

Copyright © 2007 Talend Open Studio 471

Components
tPostgresqlRow

tPostgresqlRow

&

tPostgresqglRow properties

Component family

Databases/Postgresql

S

Function tPostgresglRow is the specific component for the database query. It executes
the SQL query stated onto the specified database. The row suffix means the
component implements a flow in the job design although it doesn’t provide
output.

Purpose Depending on the nature of the query and the database, tPostgresqlRow acts
on the actual DB structure or on the data (although without handling data). The
SQLBuilder tool helps you write easily your SQL statements.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.
Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Use existing Check this box when using a tPostgresqlConnection

connection

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Schema Exact name of the schema

Username and
Password

Schema type and Edit
Schema

Query type

DB user authentication data.

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Either Built-in or Repository.

Built-in: Fill in manually the query statement or build
it graphically using SQLBuilder

Talend Open Studio

Copyright © 2007

Usage

Related scenarios

Query

Commit every

Encoding

Die on error

Components
tPostgresqlRow

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Uncheck this box to skip the row on error and
complete the process for non-error rows.

This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.

For related topics, see:

» tDBSQLRow Scenario 1: Resetting a DB auto-increment on page 170

» tMySQLRow Scenario: Removing and regenerating a MySQL table index on page 408.

Copyright © 2007

Talend Open Studio 473

Components
tReplace

tReplace

T

(el

ey
T

tReplace Properties

Component family Processing

b

Function Carries out a Search & Replace operation in the input columns defined.

Purpose Helps to cleanse all files before further processing.

Properties Schema type and
Edit Schema

Simple Mode
Search / Replace

Use advanced mode

A schema is a row description, i.e., it defines the
number of fields that will be processed and
passed on to the next component. The schema is
either built-in or remote in the Repository.

Two read-only columns, Value and Match are
added to the output schema automatically. These

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is
stored in the Repository, hence can be reused in
various projects and job designs. Related topic:
Setting a repository schema on page 49

Click Plus to add as many conditions as needed.
The conditions are performed one after the other
for each row.

Input column: Select the column of the schema
the search & replace is to be operated on
Search: Type in the value to search in the input
column

Replace with: Type in the subsitution value.
Whole word: Check the box if the searched value
is to be considered as whole.

Case sensitive: Check the box to care about the
case.

Note that you cannot use regular expression in
these columns.

Check this box when the operation you want to
perform cannot be carried out through the simple
mode. In the text field, type in the regular
expression as required.

Usage This component is not startable as it requires an input flow. And it
requires an output component.

474 Talend Open Studio

Copyright © 2007

Components
tReplace

Scenario: multiple replacements and column filtering

This following job (made in Perl) searches and replaces various typos and defects in a csv file then
operates a column filtering before producing a new csv file with the final output.

EFileInputDelimite

tReplace 1 ' ' ' ' ' " rFileOutputDelimited 1

* Click & drop the following components from the Palette: tFilelnputDelimited, tReplace,
tFilterColumn and tFileOutputDelimited.

» Connect the components using Main Row connections via a right-click on each component.

+ Select the tFilelnputDelimited component and set the input flow parameters.

Property Type Built-In "W

File Marne | ‘T fInputfreplace. csv' |* E]

Row Separatar | "in" |FiE|'2| Separator | ' |

Header ICIFDDIH |IZI |Limit | |
Schema Built-In v Edit schema E] [+] Skip emply rows

[]Extract lines at randam

Encoding Type IS0-8859-15 «

* The Property type for this scenario is Built-in. Therefore the following fields are to be set
manually unlike the Properties stored centrally in the repository, that are retrieved
automatically.

* The File is a simple csv file stored locally. The Row Separator is a carriage return and the
Field Separator is a semi-colon. In this example no Header, no Footer and no Limit are
to be set.

» The file contains characterssuch as: \t, |||, [d] or*dwhichshouldnotbe interpreted
as special characters or wild card.

Copyright © 2007 Talend Open Studio 475

Components
tReplace

stre
Streat
stret
Streat
Streat
Streat
street

Bill

John
Richar[d]
Jimmy\t
Richar+d
toto
Richar*d
Georges

Clinton
Kennedy

Nixon
Carter
Nixon
Mixon
Nixon
bush

98.305
78.235
38.545
78.25

78.23

78.235
99.935

100

» The schema for this file is built in also and made of four columns of various types (string or

int).

* Now select the tReplace component to set the search & replace parameters.

Schemsa BultIn s | Editschema [

Simple mode

SearchiReplace Tk el

armounk
skr

sty
firstname
armounk
firstrame

£

Search

'stret|skreat|stre'

W
TH1+1*
I$I

L

] Advanced mode | search with regexp pattern)

Replace with

Kl
"Skreet!

|€|

» The schema can be synchronized with the incoming flow.

Whale word

EOOOEC

Case ¢

OO

 Check the Simple mode box as the search parameters can be easily set without requiring the

use of regexp.

 Click the plus sign to add some lines to the parameters table.

+ On the first parameter line, select amount as input column. In the search field look for the
decimal dot separator and replace it with a comma, in between single quotes.

* On the second parameter line, select str as input column. In the search field, look for stret
or streat or stre. Note that these values are separated by a pipe that means or in Perl

language. Replace them by Street. Check the whole word box.

* Onthethird parameter line, select again str as input column, search the pipe character using
a backslash in front, to differenciate it from the “or” in Perl language. and replace it with
nothing between single quotes (*’).

476

Talend Open Studio

Copyright © 2007

Components
tReplace

» On the fourth parameter line, select firsthame as input column. In the Search field, look for
the following characters: [,], +, *. Note that these values are separated by a pipe that
means or in Perl language. Replace them with nothing between single quotes (*’).

» On the fifth parameter line, select amount as input column. In the Search field, type in the
dollar sign between single quotes and In the Replace field, type in the Euro sign.

* On the last parameter line, select firstname as input column. Search the string: \t. To
differenciate it from the tabulation, add as many backslashes in front of it as there are
parsing, in other words, two backlashes are used to avoid misinterpreting and two extra
backslashes constitute part of the character being looked for. In total four backslahes
including the one in the character it self are being searched. Replace them with nothing
between single quotes (*’). And check the whole word box.

e The advanced mode isn’t used in this scenario.

 Select the next component in the job, tFilterColumn.

% Schema of tFilterColumns_1

Replace_1 (Input - Main) EFilter Columns_1 (Oukpuk])

Colurmn key Tvpe Mullable L. Colurmn kKey Type | MNullable | L.,
sty]] empty_field 1 []]
Firstnanne]] Firstnarne]]
name]] nanme]]
amountk]] sty]]

amount]]

@ Filler 1]]

Fillerz]]
¢ | B ¢ | B
[(04] [Cancel]

* The tFilterColumn component holds a schema editor allowing to build the output schema
based on the column names of the input schema. In this use case, change the order of the
input schema columns and add 3 new columns, to obtain a schema as follows: empty_field,
firstname, name, str, amount, fillerd, filler2.

* Click OK to validate.

Copyright © 2007 Talend Open Studio 477

Components

tReplace
Property Type v
File Mame | 'TnInputfCleanCutputFile, csy'
Fow Separator “In" Field Separator | W'
[1include Header

Schema Built-In v | Edit schema E]

Encoding Type IS0-8859-15 «

+ Set the tFileOutputDelimited properties manually.

» The schema is built-in for this scenario, and comes from the preceding component in the job.

 Save the job and execute it.

Bill
lohn
Richard
Jimmy
Richard
toto
Richard
Georges

Clinton
Kennedy
Mixon
Carter
Mixon
Mixon
Mixon
bush

Street
Street
Street
Street
Street
Street
street

100
98,30 €
78,23 €
38,54 €
78,20 €

78,23
78,23 €
99,93 €

The first column is empty and the rest of the columns have been cleaned up from the parasitical
characters. The street column was moved. And the decimal delimiter has been changed from a dot
to a comma, along with the currency sign.

478

Talend Open Studio

Copyright © 2007

Components
tRowGenerator

+ tRowGenerator
tRowGenerator properties
Component family Misc ¢
Function tRowGenerator generates as many rows and fields as needed using
random values taken in a list.
Purpose Can be used to create an input flow in a job for testing purpose in
particular for boundary test sets
Properties Row The editor allows you to define precisely the
generation columns and nature of data to be generated. You
editor can use predefined routines or type in yourself the
function to be used to generate the data specified
Usage The tRowGenerator Editor’s ease of use allows users without any
Perl or Java knowledge to generate random data for test purpose.
Limitation n/a
The tRowGenerator Editor opens up on a separate window made of two parts:
* a Schema definition panel at the top of the window
+ and a Function definition and preview panel at the bottom.
Defining the schema
First you need to define the structure of data to be generated.
* Add as many columns to your schema as needed, using the plus (+) button.
* Type in the names of the columns to be created in the Columns area and check the Key
box if required
» Make sure you define then the nature of the data contained in the column, by selecting
the Type in the list. According to the type you select, the list of Functions offered will
differ. This information is therefore compulsory.
Copyright © 2007 Talend Open Studio 479

Components

tRowGenerator
Schema Functions Preview
Colurnn Key | Tvpe Mullable | Functions Presview
C% I0_employvees ink |:| seqUence 2
First_Mame [] string] Phoebe H
Last_Mame [] string] asthlame % | Eisenhower
Hire_Diate] Day] getRandombDate 2008-08-31

@ columns ™ Munber af Rows Far RowGeneratar | 10

+ Some extra information, although not required, might be useful such as Length,
Precision or Comment. You can also hide these columns, by clicking on the Columns
drop-down button next to the toolbar, and unchecking the relevant entries on the list.

* In the Function area, you can select the predefined routine/function if one of them
corresponds to your needs.You can also add to this list any routine you stored in the
Routine area of the Repository. Or you can type in the function you want to use in the
Function definition panel. Related topic: Defining the function on page 480

« Click Refresh to have a preview of the data generated.

» Type inanumber of rows to be generated. The more rows to be generated, the longer it’ll
take to carry out the generation operation.

Note: Note that the functions list differs from Perl to Java.

Defining the function

You selected the three dots [...] as Function in the Schema definition panel, as you want to
customize the function parameters.

 Select the Function parameters tab
» The Parameter area displays Customized parameter as function name (read-only)
Function parameters . Preview

Customer set wour own Perl expression,

Parameter Walue Cormmenk
cuskomize par... sub{getRandomsString(1, ['Roger’, 'Bill', Jimme!, 'Chris', 'George’...

* Inthe Value area, type in the Perl or Java function to be used to generate the data
specified.

 Click on the Preview tab and click Preview to check out a sample of the data generated.

480 Talend Open Studio Copyright © 2007

Components
tRowGenerator

Scenario: Generating random java data

The following scenario creates a two-component job made in Java, generating 50 rows structured
as follows: a randomly picked-up ID in a 1-to-3 range, a random ascii First Name and Last Name
generation and a random date taken in a defined range.

= . -7
- ol (Main) .
'tRDwGenera'tDr_l ' ' ' ' ' tLuﬁgF{Dw'_l

» Click and drop a tRowGenerator and a tLogRow component from the Palette to the
workspace.

 Right-click on the tRowGenerator component and select Row > Main. Drag this main row
link onto the tLogRow component and release when the plug symbol displays.

+ Double-click on the tRowGenerator component to open the Editor.

 Define the fields to be generated.

Schema Functions Preview
Zolurnn Key | Tvpe Mullable | Func... Parameters Preview
Random_ID] it] " 1,2,3 3
First_Marme [] string] getds... length==6; bFilbp
Lask_Mame [] string] getds... length==6; 2IT4mk
Date] Date] getRa..., min =>"2004-01-..., Sun Jun 29 11:19:3..,

columns T mumber of Rows for RowGenerakar | S0

» The random ID column is of integer type, the First and Last names are of string type and the
Date is of date type.

* Inthe Function list, select the relevant function or set on the three dots for custom function.

* On the Function parameters tab, define the Values to be randomly picked up.

Parameter Walue Carment
customize parameter 1,2,3

» First_Name and Last_Name columns are to be generated using the getAsciiRandomString
function that is predefined in the system routines. By default the length defined is 6
character-long. But you can change it if need be.

» The Date column calls the also predefined getRandomDate function. You can edit the
parameter values in the Function parameters tab.

 Set the Number of Rows to be generated to 50.

» Click OK to validate the setting.

Copyright © 2007 Talend Open Studio 481

Components
tRowGenerator

» Double-click on the tLogRow component to view the properties. The default setting is
retained for this job.

* Press F6 to run the job.

Starfing fobh Jamaflsanarsfe 3¢ 1804y J8eiE SRS
Funning process with context: Default

1iHemtj |v3hSEH|Wed Apr 16 11:44:15 CEST 2008
cityeld|uwnkKkO|Sun Jan 06 11:44:16 CET 20083
XZ200DF|15VzET |Wed Oct 26 11:44:16 CEST 2005
D5LuEl |58ul5i|Sat Mar 04 11:44:16 CET 2006
codznd | vuc9cf | Thu Jan 20 11:44:16 CET 2005
HwK3PH | InHvDU|Mon Jun 06 11:44:16 CEST 2005
CtoeBa|pClgwp|Sat Aug 07 11:44:16 CEST 2004
EMt7EN|SUIzFn|Sun May 09 11:44:16 CEST 2004
JiPor? | 145xp? |Wed Aug 25 11:44:16 CEST 2004
CBHATE |hywHdF |Sat Feb 09 11:44:16 CET 2008 I
LbVTuE|=21FAQ0 | Tue Jan 27 11:44:16 CET 2004
zQ1tel | VHHbESw |Sun Oct 05 11:44:16 CEST 2008
dnrniu|SThn=xd |Fri NHov 14 11:44:16 CET 2008
PA0ggu|=3jEzJ|Tue Feb 13 11:44:16 CET 2007
FagVoTg|u¥YhInEF | Thu Mar 01 11:44:16 CET 2007
Spd4e9F |zHcTES |Thu Apr 08 11:44:16 CEST 2004
E3A403 | vEHoog |[Wed Jan 11 11:44:16 CET 2006
pOMGpG | kolklW: |Thu Apr 22 11:44:1s CEST 2004
9¥Ogmd |CChFva|Sat Feb 18 11:44:16 CET 2006
1tZEWx | LhOB=xl |Tuse Apr 18 11:44:16 CEST 2006
Onldww |E?Yagn|Fri Dec 10 11:44:16 CET 2004
UPTZ9M | 8=902c|Fri Howv 11 11:44:16 CET 2005
WhITOu|EWnBhO|Mon May 07 11:44:16 CEST 2007
IbbeFv |Evnllc|Thu Mar 16 11:44:16 CET 2006

HFHERFRFEMRODRF PR ORI P G0 G000 00 D D)

The 50 rows are generated following the setting defined in the tRowGenerator editor and the output
is displayed in the Run Job console.

482

Talend Open Studio Copyright © 2007

tRunJob

Components

tRunJob

#

tRunJob Properties

Component family

Function

Purpose

Properties

Usage

Limitation

System

S

Executes the job called in the component’s Properties, in the frame of the

context defined.

tRunJob helps mastering complex job systems which need to execute

one job after another.

Process

Context

Context parameter

Generate Code

Select the job to be called in and processed. Make
sure you already executed once the job called,
beforehand, in order to ensure a smooth run
through the tRunJob.

If you defined contexts and variables for the job
to be run by the tRunJob, select the applicable
context entry on the list.

You can change the selected context parameters.
Click the plus button to add the parameters as
defined in the Context of the child job

Click the button to validate the context selection
in the tRunJob and generate the relevant code.

This component can be used as a standalone job or can help clarifying
complex job by avoiding having too many sub-jobs all together in one

job.

n/a

Scenario: Executing a remote job

This particular scenario describes a single-component job calling in and executing another job. The
job to be executed reads a basic delimited file and simply displays its content on the Run Job log

console. The particularity of this job lies in the fact that this latter job is executed from a separate
job and uses a context variable to prompt for the input file to be processed.

Copyright © 2007

Talend Open Studio

483

Components
tRunJob

’EE *1ob ReadFile i3

Ia. u::-:ulumns: {Main::l L'Cil

Client_File display

¥

Designer | Code

.I"|J *lob Masterlob X

Create the first job reading the delimited file.
* Click and drop a tFileInputDelimited and a tLogRow onto the Designer.
* Set the input component properties in the Properties panel.

* Set the Property type on Built-In for this job.

B tFileInputDelimited

Property Type Built-In "

File Marne | 1 Inputicomprehensive, txk| |* E]
Row Separator | “in" |Fie||:| Separator | ! |
Header 0 |Footer |D ILimit | 50 |

Schema Type Built-In v Edit schema E] [v] skip ermpty rows

[]Extract a random number of lines

|*

Encoding | 150-5859-15

* In File Name, browse to the input file. In this example, the file is a txt file called
Comprehensive.

* Select the path to this Input file and press F5 to open the Variable configuration window.

« Give a name to the new context variable, in this scenario, it is called File.

484 Talend Open Studio Copyright © 2007

Components
tRunJob

¥ Mew Context Parameter, E]

Context parameter

—
Create a new conkext parameter, D

Mame File |
Carmrmenkt

Type |STRING v|
Praompk | |

] Prompt: For walue

Default value | " Inputicomprehensive, bxt! |

7 [Einish H Cancel]

* No need to check the Prompt for value box nor set a prompt message for this use case, as
the default parameter value is ok to be used.

 Click Finish to validate and press again Enter to make sure the new context variable is
stored the File Name field.

» Back on the Properties view, type in the field and row separators used in the input file.

« In this case, no header nor footer are to be set. But set a limited number of rows to be
processed. In the Limit field, type in 50.

» The Schema type is Built-in for this scenario. Click the three-dot button to configure
manually the schema.

» Add two columns and name them following the first and second column name of your input
file. In this example: ID and Registration.

* If you stored your schema in the repository, you only need to select the relevant metadata
entry corresponding to your input file structure.

* Then link the Input component to your output component, tLogRow.
Create the second job, to play the role of master job.

* In the Properties panel of the tRunJob component, select the job to be executed.

Copyright © 2007 Talend Open Studio 485

Components

tRunJob
* We recommend you to run once the called-in job before executing it through the tRunJob
component in order to make sure it runs smoothly.
% tRunlob_1
Process 07 ReadFile v [* Conkext |Defaul o [*
 In the Context field, select the relevant context. In this case, only the Default context is
available and holds the context variable created earlier.
» Click Generate Code to validate the context selection and generate the related code.
 Save the master job and press F6 to run it.
1
Built-In v | Editschema []
ells of a table

: unique name in fronk of each oukpuk Fow
[urin narne in Frant of each value

1 Far wvalues

The called-in job reads the data contained in the input file, as defined by the input schema, and the
result of this job is displayed directly in the Run Job console.

Related topic: Scenario: Job execution in a loop on page 265

486 Talend Open Studio Copyright © 2007

Components
tSalesforcelnput

E tSalesforcelnput

tSalesforcelnput Properties

Component family Business

Function Connects to a module of a Salesforce database via the relevant webservice.
Purpose Allows to extract data from a Salesforce DB based on a query.
Properties Salesforce Webservice | Type in the webservice URL to connect to the
URL Salesforce DB.
Username and Type in the Webservice user authentication data.
Password
Module Select the relevant module in the list

Schema type and Edit | A schema is a row description, i.e., it defines the
Schema number of fields that will be processed and passed on
to the next component. The schema is either built-in
or remote in the Repository.
Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema
automatically becomes built-in.
In this component the schema is related to the
Module selected.

Query condition Type in the query to select the data to be extracted.
Example: account_name= ‘Talend’
Usage Usually used as a Start component. An output component is required.
Limitation n/a

Related scenario

The operation is similar to the connection to SugarCRM, therefore see scenario of tSugarCRMInput
on page 509 for more information.

Copyright © 2007 Talend Open Studio 487

Components
tSalesforceOutput

% tSalesforceOutput

tSalesforceOutput Properties

Component family
Function

Purpose

Properties

Usage

Limitation

Related scenario

Business

Writes in a module of a Salesforce database via the relevant webservice.

Allows to write data into a Salesforce DB.

Salesforce Webservice | Type in the webservice URL to connect to the

URL

Username and
Password

Action
Module

Schema type and Edit
Schema

Salesforce DB.

Type in the Webservice user authentication data.

Insert or Update the data in the Salesforce module.
Select the relevant module in the list

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either built-in
or remote in the Repository.

Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema
automatically becomes built-in.

Click Sync columns to retrieve the schema from the
previous component connected in the job.

Used as an output component. An Input component is required.

n/a

No scenario is available for this component yet.

488

Talend Open Studio

Copyright © 2007

Components

tSendMail
tSendMail
tSendMail Properties
Component family Internet ¢
¥ <
Function tSendMail sends emaiils and any attachements to defined recipients.
Purpose tSendMail purpose is to notify recipients about a particular state of the
job or possible errors .
Properties To Main recipient email address

From Sending server’s email address

Cc Carbon copy recipient email

Subject Heading of the mail

Message Body message of the email. Press Ctrl+Space to
display the list of available variables

Attachment Filemask or path to the file to be sent along with
the mail, if any.

Other Headers Type in the Key and corresponding value of any
header information that does not belong to the
standard header.

SMTP Host and Port | IP address of SMTP server used to send emails.

Usage This component is typically used as one sub-job but can also be used as

output or end object. It can be connected to other components with either
Row or Iterate links.

Limitation Note that email sendings with or without attachment require two
different perl module

Scenario: Email on error

This scenario creates a three-component job which sends an email to defined recipients when an
error occurs.

Copyright © 2007 Talend Open Studio 489

Components
tSendMail

B. .ru:uwl I{II"-“Iain]l . =..

tFileInputDelimited_1 ' " tFileCutputML 1
CnEkrar

tSendiail_1
 Click and drop the following components from your palette to the workspace:

tFilelnputDelimited, tFileOutputXML, tSendMail.

« Define tFilelnputdelimited properties. Related topic: tFilelnputDelimited properties on
page 223.

+ Right-click on the tFilelnputDelimited component and select Row > Main. Then drag it
onto the tFileOutputXML component and release when the plug symbol shows up.

« Define tFileOutputXML properties.
» Drag a Run on Error link from tFileDelimited to tSendMail component.

* Define the tSendMail component properties:

Mun {Job EFTP) | Modules | PerlDoc | RegExp | Tasks | Problems {Job tFTP) | Scheduler
Main h]tSEhdMail

Propetties

Wigw Ta | ‘Demo@demnao, com’

Documentatian From | ‘processadmin@exanmple, com'
ZC | "
Subject | "Talend Cpen Studio notification'
Message "Hi.

The process failed.
The error code i=:' . % _globals{tFilelnputDelinited_1

£ |

* Enter the recipient and sender email addresses, as well as the email subject.

 Enter amessage containing the error code produced using the corresponding global variable.
Access the list of variables by pressing Ctrl+Space.

 Add attachments and extra header information if any. Type in the SMTP information.

490 Talend Open Studio Copyright © 2007

Components

tSendMail
Attachments File
‘e Inputherrar.log’
B3] B
Ckher headers Key Value
S &
SMTP host |'smtp.prwider.cam' |* SMTP part |25 |*

In this scenario, the file containing data to be transferred to XML output cannot be found. tSendmail
runs on this error and sends an notification email the defined recipient.

Copyright © 2007 Talend Open Studio 491

Components
tSleep

tSleep

O

tSleep Properties

Component family Misc ¢
W &
Function tSleep implements a time off in a job execution.
Purpose Allows to identify possible bottlenecks using a time break in the job for

testing or tracking purpose. In production, it can be used for any needed
pause in the job to feed input flow for example.

Properties Pause (in second) Time in second the job execution is stopped for.

Usage tSleep component is generally used as a middle component to make a
break/pause in the job, before resuming the job.

Limitation n/a

Related scenarios

For use cases in relation with tSleep, see tFor Scenario: Job execution in a loop on page 265.

492 Talend Open Studio Copyright © 2007

=2

Components

tSortRow
tSortRow
tSortRow properties

Component family Processing ¢

Function Sorts input data based on one or several columns, by sort type and order
Purpose Helps creating metrics and classification table.

Properties Schema type and A schema is a row description, i.e., it defines the

Edit Schema number of fields that will be processed and

passed on to the next component. The schema is
either built-in or remote in the Repository.
Click Edit Schema to make changes to the
schema. Note that if you make changes, the
schema automatically becomes built-in.

Click Sync columns to retrieve the schema from
the previous component connected in the job.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is
stored in the Repository, hence can be reused in
various projets and job flowcharts. Related topic:
Setting a repository schema on page 49

Criteria Click + to add as many lines as required for the
sort to be complete. By default the first column
defined in your schema is selected.

Schema column: Select the column label from
your schema, which the sort will be based on.
Note that the order is essential as it determines the
sorting priority.

Sort type: Numerical and Alphabetical order are
proposed. More sorting types to come.

Order: Ascending or descending order.

Usage This component handles flow of data therefore it requires input and
output, hence is defined as an intermediary step.

Limitation n/a

Copyright © 2007 Talend Open Studio 493

Components
tSortRow

Scenario: Sorting entries

This scenario describes a three-component job. A tRowGenerator is used to create random entries
which are directly sent to a tSortRow to be ordered following a defined value entry. In this scenario,
we suppose the input flow contains names of salespersons along with their respective sales and their
years of presence in the company. The result of the sorting operation is displayed on the Run job
console.

’ﬁs% rowl (Main) =%: rowd (Mainj =EE|

Gener akor Sorking i:-utput'

+ Click and drop the three components required for this use case: tRowGenerator, tSortRow
and tLogRow.

» Connect them together using Row main links.

» Onthe tRowGenerator editor, define the values to be randomly used in the Sort component.
For more information regarding the use of this particular component, see tRowGenerator
properties on page 479.

Schema Functions Preview
Colurmn Kev Twpe Mullable Functions Parameters Prewview
Gl ID int F subd++4idt
vearsinComp [| ink] 1.4
Marne [] string] gw [Pietrick Mickael Steffie Fabrice Bertr. .,
Sales] it] 1..100
£ >

columns Murmber of Rows for RowGeneratar | 10

* In this scenario, we want to rank each salesperson according to its Sales value and to its
number of years in the company.

* Double-click on tSortRow to display the Properties tab panel. Set the sort priority on the
Sales value and as secondary criteria, set the number of years in the company.

494 Talend Open Studio Copyright © 2007

Components
tSortRow

mmmc RegExp | Tasks | Run {Job SimpleSort) | Problems (Job Simple... | Modules | Scheduler = B
=
Main %ﬂ tSortRow

Properties
Wie Schema Type | Edit schema E]
Documentation L
riteria Schema calumn sark num ou al, .. Order ascar d...
Sales nurm desc
YearsInZomp i desc

 Use the plus button to add the number of rows required. Set the type of sorting, in this case,
both criteria being integer, the sort is numerical. At last, given that the output wanted is a rank
classification, set the order as descending.

» Make sure you connected this flow to the output component, tLogRow, to display the result
in the Job console.

* Press F6 to run the Job or go to the Run Job panel and click Run.The ranking is based first
on the Sales value and second on the number of years of experience.

Execution

Skakts & Traces

’ ﬁDEbug] ’ [Run] gj:::cs

Clear before run [|wWatch

SERrEImy rafh Sraplasiares g6 P55 BEe S 80F
|Steffi=]| 89
|Hickael |75
|Bertrand| 60
|Pierrick|39
|Hatthew]| 25
|Fabrice| 8
Joh SrapieShrt amded s 5050 BAIPEEF fasr b onde=iF

g2
1]4
61
i
2|4
304

Copyright © 2007 Talend Open Studio 495

Components
tSQLitelnput

tSQLitelnput

®

tSQLitelnput Properties

Component family

Function

Purpose

Properties

Usage

Databases

S

tSQL.itelnput reads a database file and extracts fields based on an SQL query.
As it embeds the SQL ite engine, no need of connecting to any database server.

tSQL.itelnput executes a DB query with a defined command which must
correspond to the schema definition. Then it passes on rows to the next
component via a Main row link.

Database

Schema type and Edit
Schema

Query type

Query

Encoding

Filepath to the SQL ite database file.

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

The query can be built-in for a particular job or for
commonly used query, it can be stored in the
repository to ease the query reuse.

If your query is not stored in the Repository, type in
your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

This component is standalone as it includes the SQL.ite engine. This is a
startable component that can iniate a data flow processing.

Scenario: Filtering SQlite data

This scenario describes a rather simple job which uses a select statement based on a filter to extract

rows from a source SQL.ite Database and feed an output SQL.te table.

496

Talend Open Studio

Copyright © 2007

Components
tSQLitelnput

@. . :rnwl II:Main]l . =.:®.

" orsglikeInput_1 " rSQLiteCutput_1

+ Click and drop from the Palette, a tSQL.itelnput and a tSQLiteOutput component.
» Connect the input to the output using a row main link.

» On the tSQL.itelnput properties, type in or browse to the SQL.ite Database input file.

id WETZION download_date | ip type lupe_os b
1 20027 TO5MwWind2-200610)13/11/2006 1191947307 1 10
2 20028 TOSwWin32-200810)13/11/2008 1195650472 1 102
3 20030 TO5 wWind2-200610)1:3/11/2006 J3ATEEEEV4G 1 103
4 20031 TOSWwWin32-200810)13/11/2008 1195650472 1 104
4] 20032 TO5MwWin32-200610)1:3/11/2006 1195650472 1 105
E 20033 TOSWwWin32-200810)13/11/2006 1104872453 1 108
7 20034 TO5 wWin32-200610)13/11/2006 1104872453 1 107
a 20036 TOSWwWin32-200810)13/11/2008 1130333057 1 103
3 20037 TO5 wind2-200610)1:3/11/2006 1130832057 1 109
10 20038 TOS5WwWin32-200810)13/11/2008 1348977142 1 110
1 20040 TO54wWin32-200610)1:3/11/2006 3581349521 1 1
12 20047 TOSWwWin32-200810)13/11/2008 1130333057 1 12
13 20043 TO5 wWin32-200610)13/11/2006 1196425544 1 13
14 20044 TOSWwWin32-200810)13/11/2008 10BE743463 1 14
15 20045 TOS5 wWin32-200610)1311/2006 1196425544 1 15
ic MNOAC TOC S22 20010 1241 000 A0 34 TN 1 ic b’

 The file contains hundreds of lines and includes an ip column which the select statement will
based on

» On the tSQL.ite Properties, edit the schema for it to match the table structure.

Copyright © 2007 Talend Open Studio 497

Components
tSQLitelnput

@ tsOLiteInput_1

Database "CiInput) Talend_rbyfSoLike fipcountry datk’ * E]
Schema Type Built-In w | Edit schema E]

Query 'zelect * from download where ip=119L650472° * E]
Encoding Type [SO-8859-15

* In the Query field, type in your select statement based on the ip column.
+ Select the right encoding parameter.

» On the tSQL.iteOutput component Properties panel, select the Database filepath.

= | tsOLiteDutput_1

Database "Cafoutpat fip_null sdb’ * E]
Table ‘download’ *
Action on table Drop and create table % | Action ondata | Insert w

Schema Type Bult-In »| Edischema [

Encoding Type 150-8859-15 +

Carnmik every 100 *

» Type in the Table to be fed with the selected data.

« Select the Action on table and Action on Data. In this use case, the action on table is Drop

and create and the action on data is Insert.
» The schema should be synchronized with the input schema.
« Select the encoding and define the threshold to commit.

» Save the job and run it.

id YETEION download_date ip type hype_os
1 20028 TOS4in32-200810 131142008 1195600472 1 102
2 20031 TOSAWin32-200610 13112008 11908650472 1 104
20032 TOS 4 in32-200810 131142008 1195600472 1 105
The queried data are returned in the defined SQL.te file.
498 Talend Open Studio Copyright © 2007

<

Components
tSQLiteOutput

tSQLiteOutput

tSQLiteOutput Properties

Component family Databases

S

tSQL.iteOutput writes, updates, makes changes or suppresses entries in an

SQLite database. As it embeds the SQL.ite engine, no need of connecting to

tSQL.iteOutput executes the action defined on the table and/or on the data

contained in the table, based on the flow incoming from the preceding

Function

any database server.
Purpose

component in the job.
Properties Property type

Database

Table

Action on table
% In Java, use
tCreateTable as
substitute for this
function..

Action on data

Schema type and Edit
Schema

Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Filepath to the Database file

Name of the table to be written. Note that only one
table can be written at a time

On the table defined, you can perform one of the
following operations:

None: No operation carried out

Drop and create the table: The table is removed and
created again

Create a table: The table doesn’t exist and gets
created.

Clear a table: The table content is deleted

On the data of the table defined, you can perform:
Insert: Add new entries to the table. If duplicates are
found, job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing
ones.

Update or insert: Update existing entries or create it
if non existing

Delete: Remove entries corresponding to the input
flow.

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Copyright © 2007

Talend Open Studio

499

Components
tSQLiteOutput

oy

Perl components do
not include this feature
yet.

Usage

Related Scenario

Encoding

Additional Columns

Commit every

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

This option is not offered if you create (with or
without drop) the Db table. This option allows you to
perform actions on columns, which are not insert, nor
update or delete actions or requires a particular
preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After, following
the action to be performed on the reference column.

Reference column: Type in a column of reference
that the tDBOutput can use to place or replace the new
or altered column.

Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

This component is requried to be connected to an Input component.

For scenarios related to tSQLiteOutput, see tSQLitelnput on page 496.

500

Talend Open Studio

Copyright © 2007

Components

tSQLiteRow
z tSQLiteRow
tSQLiteRow Properties
Component family Databases a@ ¢
Function tSQL.iteRow executes the defined query onto the specified database and uses
the parameters bound with the column .
Purpose A prepared statement uses the input flow to replace the placeholders with the
values for each parameters defined. This component can be very useful for
updates.
Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Schema type and Edit | A schema is a row description, i.e., it defines the

Schema number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build
it graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Prepared statement Check the Prepared statement box, to display the
and Input parameters | Input parameters table.
In the table, click the plus button to add a row for each
parameters invoked in the query.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Commit every Number of rows before commiting

Copyright © 2007 Talend Open Studio 501

Components
tSQLiteRow

Scenario: Updating SQLite rows

This scenario describes a job which updates an SQL ite database file based on a prepared statement
and using a delimited file.

B _ru:uwl l{_l"-’lain]l _ =ﬁ

tFileInputDelimited_1 " tsOliteRow 1

 Click and drop a tFilelnputDelimited and a tSQL.iteRow component.

* On the tFilelnputDelimited Properties panel, browse to the input file that will be used to
update rows in the database.

3= tFileInputDelimited_1

Property Tyvpe ot

File Marme | " fCukput fnewSglite., csy!

Raow Separatar | “in" Field Separator |)"

He:ader | 1 |F-:u:|ter | n |Limit |

Schema Tvpe |Repnsitnry v | |DELIM:5QIitERDw_schema - metadata v |* Edit schema E] F

[]Extract lines at random

Encoding Type IS0-8859-15 w

» There is no header nor footer. The Row separator is a carriage return and the field separator
is a semi-colon.

« Edit the schema in case it is not stored in the Repository.

tFileInputDelimited_1

Calumn Key | Twpe Mullable | Length Precision Caomment
id [1 int 6
Yersion |:| Skring 40
download_date [1 string 20
ip [1 string 20
Lvpe |:| ink 1
tyvpe_os |:| ink 3

» Make sure the length and type are respectively correct and large enough to define the
columns.

e Then in the tSQLiteRow Properties panel, set the Database filepath to the file to be
updated.

502 Talend Open Studio Copyright © 2007

Components
tSQLiteRow

[33 tsOLiteRow_1

Dakabase "o Input) Talend_rbySdLitefipcountry dat’ * [:I

Schema Type Built-Tn v || Editschema []

QUEty '‘Tpdate download ==t type_o==Y where id=7"' * D

» The schema is read-only as it is required to match the input schema.

» Type inthe query or retrieve it from the Repository. In this use case, we updated the type_os
for the id defined in the Input flow. The statement is as follows: 'Update download set
type_os=? where id=?"

» Then check the Prepared statement box to display the placeholders’ parameter table.
Prepared stakement

Input parameters Input column position

bvpe_os
id

Cormnmik every 50

Encoding Type [S0-8859-15 4

* Inthe Input parameters table, add as many lines as necessary to cover all placeholders. In this
scenario, type_os and id are to be defined.

 Set the Commit every field and select the Encoding type in the list.
+ Save the job and press F6 to run it.

The dowload table from the SQL.ite database is thus updated with new type_os code according to
the delimited input file.

Copyright © 2007 Talend Open Studio 503

o2

Components

tSSH

tSSH

tSSH Properties

Component family System ¢

Function Returns data from a remote computer, based on the secure shell
command defined.

Purpose Allows to establish a communication with distant server and return
securely sensible information.

Properties Host IP address
Port Listening port number
User User authentication information
Public Select the relevant option.
Key/Password In case of Public Key, make sure the key is added

to the agent or that no passphrase is required.

Password/Private Password: Type in the password required.
Key Private key: browse to the relevant key location.

Commands Type in the command for the relevant information
to be returned from the remote computer.

Use timeout/timeout | Define the timeout time period. A timeout
in seconds message will be generated if the actual response
time exceeds this expected processing time.

Usage This component can be used as standalone component.

Limitation The component use is optimized for Unix-like systems.

Scenario: Remote system information display via SSH

The following use case describes a basic job that uses SSH command to display the hostname of the
distant server being connected to, and the current date on this remote system.

The tSSH component is sufficient for this job. It can be clicked & droped from the System family
of the palette.

Double-click on the tSSH component and select the Properties view tab.

504

Talend Open Studio Copyright © 2007

A tssH_1

Main
Properties
\iew

Documentation

Components
tSSH

| Host I'picassn'
Port |22
User |'pierric|~c'

| Authentication methndfﬁub“c I-:ey|T|

Private key |'fhcme,':pierrickf.sshfid_dsa'

Commands :'Hnstname; date’

[4.|

M Use timeout Timeout in seconds |5

» Type in the name of the Host to be accessed through SSH as well as the Port number.

« Fill in the User identification name on the remote machine.

« Select the Authentication method on the list. For this use case, the authentication method

used is the public key.

» Thus fill in the corresponding Private key.

* On the Command field, type in the following command. For this use case, type in
hostname; date between single quotes (as the job is generated in Perl.).

» Check the Use timeout box and set the time before falling in error to 5 seconds.

Starting job wniteflisa at 16:!26 2670972007,

plcasso

Wed Sep 26 14:24:15 CEST 2007
Job wniteflisa ended at 1626 26/09/2007, [exit code=0]

The remote machine returns the host name and the current date and time as defined on its system.

Copyright © 2007

Talend Open Studio 505

!

Components
tStatCatcher

tStatCatcher

oy

tStatCatcher Properties

Component family Log & Error ¢
¥ <
Function Based on a defined sch.ema, gathers the job processing metadata at a job level

as well as at each component level.

Purpose Operates as a log function triggered by the StatsCatcher Statistics checkbox
of individual compoenents, and collects and transfers this log data to the
output defined.

Schema type A schema is a row description, i.e., it defines the
fields to be processed and passed on to the next
component. In this particular case, the schema is
read-only, as this component gathers standard log
information including:

Moment: Processing time and date
Pid: Process ID

Father_pid: Process ID of the father job if
applicable. If not applicable, Pid is duplicated.

Root-pid: Process ID of the root job if applicable. If
not applicable, pid of current job is duplicated.

Project: Project name, the job belongs to.
Job: Name of the current job

Context: Name of the current context
Origin: Name of the component if any
Message: Begin or End.

Usage This component is the start component of a secondary job which triggers
automatically at the end of the main job. The processing time is also displayed
at the end of the log.

Limitation n/a

Scenario: Displaying job stats log

This scenario describes a four-component job, aiming at displaying on the Run Job console the
statistics log fetched from the file generation through the tStatCatcher component.

506 Talend Open Studio Copyright © 2007

Components
tStatCatcher

e ravwl (Main)

'tRanenera'tDr_l ' Cwners
Up s
it rowE [Main iy
" bStakCatcher 1 ' " tlogRow 1

 Click and drop the required components: tRowGenerator, tFileOutputDelimited,
tStatCatcher and tLogRow

 Inthe Properties panel of tRowGenerator, define the data to be generated. For this job, the
schema is composed of three columns: ID_Owners, Name_Customer and ID_Insurance,
generated using Perl script.

Schema Functions
Colurnn Key Type Mull... | Func... Parameters
% ID_Cnaner ink | sub{++fowner}t
Mame_Customer [| String O sub{getRandomstring(2, ['sab’, ‘ot 'le', "gall’, 'car', ...
ID_Insurance [] string O sub{getRandomstring3, ['4'..'2'T). getRandomStrin. . .

columns T murmber of Rows for RowGenerator | 100

e The number of rows can be restricted to 100.

+ Click on the Main tab of the Properties view.

Main ':& tRowGenerator
Properties
Wiew rique Mame FRowGenerator_1
Documentation Farrily Misc

Activate

EStatCatcher Statistics

» And check the tStatCatcher Statistics box to enable the statistics fetching operation.

» Then, define the output component’s properties. In the tFileOutputDelimited Properties
panel, browse to the output file or enter a name for the output file to be created. Define the
delimiters, such as semi-colon, and the encoding.

Copyright © 2007 Talend Open Studio 507

Components
tStatCatcher

+ Click on Edit schema and make sure the schema is recollected from the input schema. If
need be, click on Sync Columns.

» Then click on the Main tab of the Properties view, and check here as well the tStatCatcher
Statistics box to enable the processing data gathering.

* Inthe secondary job, double-click on the tStatCatcher component. Note that the Properties
are provided for information only as the schema representing the processing data to be
gathered and aggregated in statistics, is defined and read-only.

% Schema of t5tatCatcher_1 @

kStatCatcher 1

Colurnn Key | Type Mullable | Length Precision Zomrmenk

marnent Dray

pid Skring 20
Father_pid Skring 20
rook_pid Skring 20
projeckt Skring S0
job Skring 50
conkexk 2kring =)
origin 2kring 255
mMessage 2kring 255

[Ok] [Cancel

« Define then the tLogRow to set the delimiter to be displayed on the console.

» Eventually, press F6 to run the job and display the job result.

Srarérng job StIfsfaindh a6 1518 FERARSSTERF

2007-02-23 15:10:30| 3656 |Stat=sCatch |Default | |begin

2007-02-23

15:10: 30| 3656 |Stat=Catch|Default |tFileOutputDelinited_1|begin
2007-02-23 15:10:30| 3656 |Stat=Catch|Default | tRowGenerator 1 |begin
2007-02-23 15:10:30| 3656 |Stat=s=Catch|Default | tRowvGenerator_1 | end
2007-02-23 15:10:30| 3656 |Stat=Catch|Default | tRovGenerator_1|0.0 =seconds
2007-02-232 15:10:30| 3656 |Stat=Catch|Default |[tFilefutputDelinited_1|end
2007-02-23 15:10:30| 3656 |Stat=sCatch|Default |tFilefutputDelinited_1|0.0
seconds
2007-02-22 15:10:30| 3656 |Stat=Catch |Default | |end
2007-02-23 15:10:30| 3656 |Stat=Catch|Default||0.0 =seconds
B SEFEEE ECh andad g I8 00 SRoRSeSGGS fesr b codesET

The log shows the Begin and End information for the job itself and for each of the component used
in the job.

508 Talend Open Studio Copyright © 2007

"

Components
tSugarCRMInput

tSugarCRMInput

tSugarCRMInput Properties

Component family Business

Function Connects to a module of a Sugar CRM database via the relevant webservice.
Purpose Allows to extract data from a SugarCRM DB based on a query.
Properties SugarCRM Type in the webservice URL to connect to the
Webservice URL SugarCRM DB.
Module Select the relevant module in the list
Username and Type in the Webservice user authentication data.
Password

Schema type and Edit | A schema is a row description, i.e., it defines the
Schema number of fields that will be processed and passed on
to the next component. The schema is either built-in
or remote in the Repository.
Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema
automatically becomes built-in.
In this component the schema is related to the
Module selected.

Query condition Type in the query to select the data to be extracted.
Example: account_name= ‘Talend’
Usage Usually used as a Start component. An output component is required.
Limitation n/a

Scenario: Extracting account data from SugarCRM

This scenario describes a two-component job which aims at extracting account information from a
SugarCRM database to an Excel output file.

E _r-:uwl l{_Main]l _ =%

tSugarCRMInpuE_ 1 ‘tFileCutpukExcel 1

* Click and drop a tSugarCRMInput and a tFileOutputExcel component.
» Connect the input component to the output component using a main row link.

* On the tSugarCRMInput Properties panel, fill in the connection information in the
SugarCRM Web Service URL as well as the Username and Password fields

Copyright © 2007 Talend Open Studio 509

Components
tSugarCRMInput

» Then select the Module in the list of modules offered. In this example, Accounts is selected.

E tSugarCRMInput_1

SugarCRM WehService URL | "hetp:fflocalhastsugarfsoap.php” [* Module | Accounts "
Ilsername "admin" * Password | "root”

Schema Type Built-In % || Edit schema E]

Cuery Condition "billing_address_city ="sunrvale™

» The Schema is then automatically set according to the module selected. But you can change
it and remove the columns that you don’t require in the output.

* In the Query Condition field, type in the query you want to extract from the CRM. In this
example: “billing_address_city="Sunnyvale’”

* Then select the tFileOutputExcel component, .

@ tFileOutputExcel_1

File: Marne "Cuoukput/billing_ciky <l
Sheet name "accounts)

Include header

Schema Type Built-In

Encoding Tvpe IS0-8859-15 4

* || Edit schema E]

 Set the destination file name as well as the Sheet name and check the Include header box.

» Save the job and press F6 to run it.

a | B

c | D

E | F

id harne

1
2 [leeblal14T-Cat Media Group Inc 877300
3 [481bfBE5-¥ [0', Rourke Inc 323225
4 [Fbhd02eBck CONS TRUST (A5 222552

5 |[b2adc25f¥COMNS TRUST (A 240011

& |dfoe073d-#2 Tall Stores 792551

7

g

£

efe/ c0f4-2.JAB Funds Lid. 106774

account_trindustry
Customer Environmental
Customer [Insurance
Customer Energy
Customer |(Communications
Customer Transportation
Customer Engineering

IE

10
i1
' accounts f
Sheet 1)1 Pagestyle_accounts 100%: STD &

billing_ad®billing_address
ST WWestkSunnyvale
9599 Bakek Sunnyvale
B7 321 Wer Sunnyvale
345 Sugaksunnyvale
321 Univek Sunnyvale
345 Sugak Sunnyvale

Sun-

The filtered data is output in the defined spreadsheet of the specified Excel type file.

510

Talend Open Studio

Copyright © 2007

=

tSugarCRMOutput

Components
tSugarCRMOutput

tSugarCRMOutput Properties

Component family
Function

Purpose

Properties

Usage

Limitation

Related Scenario

Business

Writes in a module of a Sugar CRM database via the relevant webservice.
Allows to write data into a SugarCRM DB.

SugarCRM
Webservice URL

Module

Username and
Password

Action

Schema type and Edit
Schema

Type in the webservice URL to connect to the
SugarCRM DB.

Select the relevant module in the list

Type in the Webservice user authentication data.

Insert or Update the data in the SugarCRM module.

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either built-in
or remote in the Repository.

Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema
automatically becomes built-in.

Click Sync columns to retrieve the schema from the
previous component connected in the job.

Used as an output component. An Input component is required.

n/a

No scenario is available for this component yet.

Copyright © 2007

Talend Open Studio 511

Components
tSybaseBulkExec

i'? tSybaseBulkExec

tSybaseBulkExec Properties

Component family Databases % ({
Function Executes the Insert action on the data provided.
Purpose As a dedicated component, it allows gains in performance during Insert

operations to a Sybase database.
Properties Property type Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Server Database server IP address

Database Name of the database

Username and DB user authentication data.

Password

Table Name of the table to be written. Note that only one

table can be written at a time and that the table must
exist for the insert operation to succeed.

File Name Name of the file to be processed.
Related topic:Defining job context variables on page
101

Fields terminated by | Character, string or regular expression to separate
fields.

Encoding Select the encoding from the list or select Custom and

define it manually. This field is compulsory for DB
data handling.

Output to Console: Loading information
Global variable: Returned values from log files.

Usage This component is mainly used when no particular tranformation is required on
the data to be loaded onto the database.

Limitation As opposed to the Oracle dedicated bulk component, no action on data is
possible using this Sybase dedicated component

Related scenarios

For tSybaseBulkExec related topics, see:

512 Talend Open Studio Copyright © 2007

Components
tSybaseBulkExec

» tMysqlOutputBulkExec Scenario: Inserting transformed data in MySQL database on page
400

 tOracleBulkExec Scenario: Truncating and inserting file data into Oracle DB on page 429.

Copyright © 2007 Talend Open Studio 513

[

Components
tSybaselnput

tSybaselnput

tSybaselnput Properties

Component family

Function

Purpose

Properties

Usage

Databases/Sybase

S

tSybaselnput reads a database and extracts fields based on a query.

tSybaselnput executes a DB query with a strictly defined order which must
correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Property type

Server
Port
Database

Username and
Password

Schema type and Edit
Schema

Query type and Query

Encoding

Either Built-in or Repository
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Database server IP address
Listening port number of DB server.
Name of the database

DB user authentication data.

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

This component covers all possibilities of SQL queries onto a Sybase database.

514

Talend Open Studio

Copyright © 2007

Components
tSybaselnput

Related scenarios

Related topic in tDBInput scenarios:
» Scenario 1: Displaying selected data from DB table on page 162
 Scenario 2: Using StoreSQLQuery variable on page 163

Related topic in tContextLoad Scenario: Dynamic context use in MySQL DB insert on page 145.

Copyright © 2007 Talend Open Studio 515

Components
tSybaseOutput

tSybaseOutput

=]

tSybaseOutput Properties

Component family

Function

Purpose

Properties

% n Java, use
tCreateTable as
substitute for this
function..

Databases/Sybase
¥ <

tSybaseOutput writes, updates, makes changes or suppresses entries in a
database.

tSybaseOutput executes the action defined on the table and/or on the data
contained in the table, based on the flow incoming from the preceding
component in the job.

Property type Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Server Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and DB user authentication data.

Password

Table Name of the table to be written. Note that only one

table can be written at a time

Action on table On the table defined, you can perform one of the
following operations:
None: No operation carried out
Drop and create the table: The table is removed and
created again
Create a table: The table doesn’t exist and gets
created.
Clear a table: The table content is deleted

Action on data On the data of the table defined, you can perform:
Insert: Add new entries to the table. If duplicates are
found, job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing
ones.

Update or insert: Update existing entries or create it
if non existing

Delete: Remove entries corresponding to the input
flow.

Clear data in table Wipes out data from the selected table before action.

516

Talend Open Studio Copyright © 2007

Components
tSybaseOutput

Schema type and Edit | A schema is a row description, i.e., it defines the

Schema number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Additional Columns | This option is not offered if you create (with or
without drop) the Db table. This option allows you to
perform actions on columns, which are not insert, nor
update or delete actions or requires a particular
preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After, following
the action to be performed on the reference column.

Reference column: Type in a column of reference
that the tDBOutput can use to place or replace the new
or altered column.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.

Related scenarios

For use cases in relation with tSybaseOutput, see:
» tDBOutput Scenario: Displaying DB output on page 166
* tMySQLOutput Scenario: Adding new column and altering data on page 396.

Copyright © 2007 Talend Open Studio 517

V]

Components
tSybaseOutputBulk

tSybaseOutputBulk

tSybaseOutputBulk properties

tSybaseOutputBulk and tSybaseBulkExec components are used together to first output the file
that will be then used as parameter to execute the SQL query stated. These two steps compose the

tSybaseOutputBulkExec component, detailed in a separate section. The interest in having two
separate elements lies in the fact that it allows transformations to be carried out before the data

loading.
Component family
Function
Purpose

Properties

Databases/Sybase

%

Writes a file with columns based on the defined delimiter and the Sybase

standards

Prepares the file to be used as parameter in the INSERT query to feed the

Sybase database.
Property type

File Name

Field separator

Row separator

Append

Include header

Schema type and Edit
Schema

Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Name of the file to be processed.
Related topic:Defining job context variables on page
101

Character, string or regular expression to separate
fields.

String (ex: “\n”on Unix) to distinguish rows.

Check this option box to add the new rows at the end
of the file

Check this box to include the column header to the
file.

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either built-in
or remote in the Repository.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused in various
projects and job designs. Related topic: Setting a
repository schema on page 49

518

Talend Open Studio

Copyright © 2007

Usage

Components
tSybaseOutputBulk

Encoding Select the encoding from the list or select Custom
and define it manually. This field is compulsory for
DB data handling.

This component is to be used along with tSybaseBulkExec component. Used
together they offer gains in performance while feeding a Sybase database.

Copyright © 2007

Talend Open Studio 519

Components
tSybaseOutputBulk

Related scenarios

For uses cases in relation with tSybaseOutputBulk, see the following scenarios:
» tMysqlOutputBulk Scenario: Inserting transformed data in MySQL database on page 400
» tMysqlOutputBulkExec Scenario: Inserting data in MySQL database on page 405

* tOracleBulkExec Scenario: Truncating and inserting file data into Oracle DB on page 429

520 Talend Open Studio Copyright © 2007

Components
tSybaseOutputBulkExec

% tSybaseOutputBulkExec

tSybaseOutputBulkExec properties

Component family

Function

Purpose

Properties

Usage

Limitation

Databases/Sybase

Executes the Insert action on the data provided.

As a dedicated component, it allows gains in performance during Insert
operations to a Sybase database.

Property type

Bcp utility

Server
Port
Database

Username and
Password

Table

File Name

Field terminator

DB Row terminator

First row

FILE Row terminator

Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Name of the utility to be used to copy data over.on the
Sybase server.

Database server IP address
Listening port number of DB server.
Name of the database

DB user authentication data.

Name of the table to be written. Note that only one
table can be written at a time and that the table must
exist for the insert operation to succeed.

Name of the file to be processed.
Related topic:Defining job context variables on page
101

Character, string or regular expression to separate
fields.

String (ex: “\n”on Unix) to distinguish rows in the
DB.

Type in the number of the file row where the action
should start from.

Character, string or regular expression to separate
fields in file.

This component is mainly used when no particular tranformation is required on
the data to be loaded onto the database.

n/a

Copyright © 2007

Talend Open Studio 521

Components
tSybaseOutputBulkExec

Related scenarios

For uses cases in relation with tSybaseOutputBulkExec, see the following scenarios:
» tMysqlOutputBulk Scenario: Inserting transformed data in MySQL database on page 400
* tMysqlOutputBulkExec Scenario: Inserting data in MySQL database on page 405

» tOracleBulkExec Scenario: Truncating and inserting file data into Oracle DB on page 429

522 Talend Open Studio Copyright © 2007

Components

tSybaseRow
7 tSybaseRow
tSybaseRow Properties
Component family Databases/Sybase ¢
<
Function tSybaseRow is the specific component for this database query. It executes the

SQL query stated onto the specified database. The row suffix means the
component implements a flow in the job design although it doesn’t provide
output.

Purpose Depending on the nature of the query and the database, tSybaseRow acts on
the actual DB structure or on the data (although without handling data). The
SQLBuilder tool helps you write easily your SQL statements.

Properties Property type Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Server Database server IP address

Port Listening port number of DB server.
Database Name of the database

Username and DB user authentication data.
Password

Schema type and Edit | A schema is a row description, i.e., it defines the

Schema number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build
it graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Copyright © 2007 Talend Open Studio 523

Components
tSybaseRow

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.

Related scenarios

For tSybaseRow related topics, see:
» tDBSQLRow Scenario 1: Resetting a DB auto-increment on page 170
» tMySQLRow Scenario: Removing and regenerating a MySQL table index on page 408.

524 Talend Open Studio Copyright © 2007

-
S,

' ¢
Y

Components
tSybaseSCD

tSybaseSCD

tSybaseSCD properties

Component family Databases/Sybase

Function

Purpose

%

tSybaseSCD reflects and tracks changes in a dedicated Sybase SCD table.

tSybaseSCD addresses Slowly Changing Dimension needs, reading regularly

a source of data and logging the changes into a dedicated SCD table

Properties Property type

Host
Port
Database

Username and
Password

Table

Schema type and Edit
Schema

. Surrogate key
= Java only for the

time being.

Creation

Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Database server IP address
Listening port number of DB server.
Name of the database

DB user authentication data.

Name of the table to be written. Note that only one
table can be written at a time

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Select the column where the generated surrogate key
will be stored. A surrogate key can be generated based
on a method selected on the Creation list.

Select the method to be used for the key generation:
input field: key is provided in an input field
routine: you can access the basic functions through
Ctrl+ Space bar combination.

table max +1: the maximum value from the SCD
table is incremented to create a surrogate key
sequence/identity: auto-incremental key

Copyright © 2007

Talend Open Studio

525

Components
tSybaseSCD

Java only for the
time being.

Usage

Related scenarios

Source Keys

Use SCD Type 1 fields

Use SCD Type 2 fields

Use SCD Type 3 fields

Debug Mode

Select one or more columns to be used as key, to
ensure the unicity of incoming data.

Use the type 1if change tracking is not necessary.
SCD Type 1 should be used for typos corrections for
example. Select the columns of the schema, that will
be checked for changes.

Use type 2 if changes need to be tracked down. SCD
Type 2 should be used to trace updates for example.
Select the columns of the schema, that will be
checked for changes.

Start date: Adds a column to your SCD schema to
hold the start date. You can select one of the input
schema column as Start Date in the SCD table.
End Date: Adds a column to your SCD schema to
hold the end date value for the record. When the
record is currently active, the End date show a null
value or you can select Fixed Year value and fill in
with a fictive year to avoid having a null value in the
End date field.

Log Active Status: Adds a column to your SCD
schema to hold the true or false status value. This
column helps to spot easily the active record.

Log versions: Adds a column to your SCD schema to
hold the version number of the record.

Use type 3 when you want to keep track of the
previous value of a changing column

Current value field: Select the column where the
changing value is tracked down..

Previous value field: Select the column where the
previous value should be stored.

Check this box to display each step of the SCD log
process.

This component is used as Output component. It requires an Input component
and Row main link as input.

For related topics, see the following scenarios:

» tMysqISCD Scenario: Tracking changes using Slowly Changing Dimension on page 411.

» tMSSqISCD Scenario: Slow Changing Dimension type 3 on page 376

526

Talend Open Studio

Copyright © 2007

Components

tSybaseSP
tSybaseSP
o
IaX
tSybaseSP properties

Component family Databases/Sybase ¢

Function tSybaseSP calls the database stored procedure.

Purpose tSybaseSP offers a convenient way to centralize multiple or complex queries

in a database and call them easily.
Properties Property type Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.
Database Name of the database

Username and DB user authentication data.
Password

Schema type and Edit | A schema is a row description, i.e., it defines the

Schema number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

SP Name Type in the exact name of the Stored Procedure

Is Function / Return | Check this box, if a value only is to be returned.
result in Select on the list the schema column, the value to be
returned is based on.

Copyright © 2007 Talend Open Studio 527

Components
tSybaseSP

Usage

Limitation

Related scenarios

Parameters Click the Plus button and select the various Schema
Columns that will be required by the procedures.
Note that the SP schema can hold more columns than
there are paramaters used in the procedure.
Select the Type of parameter:
IN: Input parameter
OUT: Output parameter/return value
IN OUT: Input parameters is to be returned as value,
likely after modification through the procedure
(function).

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

This component is used as intermediary component. It can be used as start
component but only input parameters are thus allowed.

The Stored Procedures syntax should match the Database syntax.

For related topic, see tMysqlISP Scenario: Finding a State Label using a stored procedure on page

4109.

528

Talend Open Studio Copyright © 2007

Components
tSystem

tSystem

* cmd

tSystem Properties

Component family System ¢

Function tSystem executes one or more system commands.

Purpose tSystem can call other processing commands, already up and running in
a larger job.

Properties Command Enter the system command. Note that the syntax

is not checked.

Output Select the type of output for the processed data to
be passed onto.

to console: standard output passes on data to be
viewed in the Log view.

to global variable: data is put in output variable
linked to tsystem component.

Usage This component can typically used for companies which already
implemented other applications that they want to integrate into their
processing flow through Talend.

Limitation n/a

Scenario: Echo ‘Hello World!’

This scenario is a two-component job showing a message in the Log.
 Click and drop a tSystem and a tPerl component onto the workspace.

+ Right-click on tSystem, and pull a ThenRun link between the two components. When
executing the job, the first component will then trigger before the second one.

* Click on the tSystem and select the Properties tab:

Copyright © 2007 Talend Open Studio 529

Components
tSystem

== propertes X g

Mair » cmd tSystem

Properties

Wiew Command | 'gcho HELLD WORLD' *
Documentation Oukput | to global variable + |

 Enter the echo command and string “Hello World!” to be displayed

 Select To a global variable option as Output to include the command output value into

» Then select the tPerl component

mmmc ReqgExp | Tasks | Run (Job System] | Problems (Job System) | Modules | Scheduler ¥ =0

Main

Properties

Wi Code print '[tPerl]' . $_globals{tSy=sten_1}{0UTPUT};

Document ation

 Enter a Perl command to display the tSystem output variable in the console.

+ Go to the Run Job tab and execute the job.

Execution
Skats 2 Traces

’ ﬁDEbug] ’ [E= Run] g?:S::ES

Clear before run [Exec time

SEarfIing foh Sefan sF FF00 T4 Te 0GR

[tPerl JHELLD WORLD
Sk Sefan anded ¢ 1508 T4eRSCBRES. farr b oode=E7

The job executes an echo command and shows the output in the Log using a Print command in the
tPerl component.

530 Talend Open Studio Copyright © 2007

tTeradatalnput

Components
tTeradatalnput

®

tTeradatalnput Properties

Component family

Function

Purpose

Properties

Usage

Databases/Teradata

%

tTeradatalnput reads a database and extracts fields based on a query.

tTeradatalnput executes a DB query with a strictly defined order which must
correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Property type

Host
Port
Database

Username and
Password

Schema type and Edit
Schema

Query type and Query

Encoding

Either Built-in or Repository
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Database server IP address
Listening port number of DB server.
Name of the database

DB user authentication data.

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

This component covers all possibilities of SQL queries onto a Teradata

database.

Copyright © 2007

Talend Open Studio 531

Components
tTeradatalnput

Related scenarios

Related topics in generic tDBInput scenarios:
+ Scenario 1: Displaying selected data from DB table on page 162
 Scenario 2: Using StoreSQLQuery variable on page 163

Related topic in tContextLoad Scenario: Dynamic context use in MySQL DB insert on page 145.

532 Talend Open Studio Copyright © 2007

Copyright © 2007

<)

tTeradataOutput

Components

tTeradataOutput

tTeradataOutput Properties

Component family Databases/Teradata ¢
)
Function tTeradataOutput writes, updates, makes changes or suppresses entries in a
database.
Purpose tTeradataOutput executes the action defined on the table and/or on the data

component in the job.

Properties

contained in the table, based on the flow incoming from the preceding
Property type

Either Built-in or Repository.

Built-in: No property data stored centrally.
Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.
Host Database server IP address
Port Listening port number of DB server.
Database Name of the database
Username and DB user authentication data.
Password
Table Name of the table to be written. Note that only one
table can be written at a time
Action on data On the data of the table defined, you can perform:
Insert: Add new entries to the table. If duplicates are
found, job stops.
Update: Make changes to existing entries
Insert or update: Add entries or update existing
ones.
Update or insert: Update existing entries or create it
if non existing
Delete: Remove entries corresponding to the input
flow.
Clear data in table
Schema type and Edit
Schema

Wipes out data from the selected table before action.

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the

next component. The schema is either built-in or
remotely stored in the Repository.

schema on page 49

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in

Talend Open Studio

533

Components

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

This option is not offered if you create (with or
without drop) the Db table. This option allows you to
perform actions on columns, which are not insert, nor
update or delete actions or requires a particular
preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column

Position: Select Before, Replace or After, following
the action to be performed on the reference column.

Reference column: Type in a column of reference
that the tDBOutput can use to place or replace the new
or altered column.

Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Uncheck this box to skip the row on error and
complete the process for non-error rows.

tTeradataOutput
Encoding
Additional Columns
data.
Commit every
Die on error
Usage

This component offers the flexibility benefit of the DB query and covers all

possibilities of SQL queries.

Related scenarios

For related topics, see:

» tDBOutput Scenario: Displaying DB output on page 166

* tMySQLOutput Scenario: Adding new column and altering data on page 396.

534 Talend Open Studio

Copyright © 2007

Components
tTeradataRow

[j? tTeradataRow

tTeradataRow Properties

Component family

Function

Purpose

Properties

Databases/Teradata

%

tTeradataRow is the specific component for this database query. It executes
the SQL query stated onto the specified database. The row suffix means the
component implements a flow in the job design although it doesn’t provide

output.

Depending on the nature of the query and the database, tTeradataRow acts on
the actual DB structure or on the data (although without handling data). The
SQLBuilder tool helps you write easily your SQL statements.

Property type

Host
Port
Database

Username and
Password

Schema type and Edit
Schema

Query type

Query

Either Built-in or Repository.
Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Database server IP address
Listening port number of DB server.
Name of the database

DB user authentication data.

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Either Built-in or Repository.

Built-in: Fill in manually the query statement or build
it graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Copyright © 2007

Talend Open Studio 535

Components
tTeradataRow

Commit every

Encoding

Die on error

Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.

Related scenarios

For related topics, see:

» tDBSQLRow Scenario 1: Resetting a DB auto-increment on page 170

» tMySQLRow Scenario: Removing and regenerating a MySQL table index on page 408.

536

Talend Open Studio Copyright © 2007

Components

tUnigRow
$ tUnigRow
tUnigRow Properties
Component family Data Quality @ﬁ ({
Function Compares entries and removes the first encountered duplicate from the
input flow.
Purpose Ensures data quality of input or output flow in a job.
Properties Schema type and A schema is a row description, i.e., it defines the
Edit Schema number of fields that will be processed and

passed on to the next component. The schema is
either built-in or remote in the Repository.
Click Edit Schema to make changes to the
schema. Note that if you make changes, the
schema automatically becomes built-in.

Click Sync columns to retrieve the schema from
the previous component connected in the job.

S you want the deduplication to be

carried out on particular columns, define them on
the schema.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is
stored in the Repository, hence can be reused in
various projets and job flowcharts. Related topic:
Setting a repository schema on page 49

Case sensitive Check the box to consider the lower or upper
case.
Usage This component handles flow of data therefore it requires input and

output, hence is defined as an intermediary step.

Limitation n/a

Scenario: Unduplicating entries

Based on the tSortRow job, the tUnigRow component is added to the job in order to uniquify the
entries in the output flow. In fact, as the input data is randomly created, duplication cannot be
avoided.

Copyright © 2007 Talend Open Studio 537

Components
tUnigRow

= : : : Main) Unmum;:h:gag?ﬁﬁrﬁhﬂs. Ej
K * Fionwl l{_Main]l _ i

Generakar Sarting oukpUt

» On the Properties tab panel of the tUnigRow component, click Edit Schema... to set the
Key on Names field to uniquify the output flow on this criteria.

» Check the Case Sensitive box to differenciate lower case and upper case.

 Press F6 to run the job again. The console displays the sorted and unique results

SreIng fof ndupnlioseafah a6 8088 GRS
|[Hickael|93

|Pierricl| 92

ISteffleIEE
|
|

r_n

r

£

Fabrice| 75
Bertrand|67

1 L3 e 00 P 0
o L)

Matthew| 28
Job fdmdusd fosrafnh anded 38 10058 GEedIoRG0F fasr e oodesa}

538 Talend Open Studio Copyright © 2007

Components
tUnite

tUnite
>

tUnite Properties

Component family Processing iﬁ ({

Function Merges data from various sources, based on a common schema.

Purpose Centralize data from various and heterogeneous sources.

Properties Schema type and A schema is a row description, i.e., it defines the
Edit Schema number of fields that will be processed and

passed on to the next component. The schema is
either built-in or remote in the Repository.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is
stored in the Repository, hence can be reused in
various projects and job designs. Related topic:
Setting a repository schema on page 49

Usage This component is not startable and requires one or several input
components and an output component.

Scenario: Iterate on files and merge the content

The following job iterates on a list of files then merges their content and diplays the final 2-column
content on the console.

Lé B rowl (Merge order: 1) =, ' rowz (fain) =D@|

tFilelist 1 EFileInputDelimited 1 HJnike_1 tLogRow 1

 Click and drop the following components onto the design workspace: tFileL.ist,
tFileInputDelimited, tUnite and tLogRow.

» Connect the tFileList to the tFileInputDelimited using an iterate connection and connect
the other component using a row main link.

 Inthe tFileList Properties view, browse to the directory, where the files to merge are stored.

Copyright © 2007 Talend Open Studio 539

Components

tUnite
Direckary ‘D Inpuk/Countries' * E]
Filemask, * bt
Case Sensitive
[]includes subdirectaries
* As Filemask, type in * . txt as all files to be merged are of this type.
* The Case Sensitive box is checked by default. No need to uncheck it.
» The files are pretty basic and contain a list of countries and their respective score.
01 b | B iFRE6E | [i |
1 france;12
& usa; 10
3 france; 14
4 [i P 02t | R |
1 uk: 13
2 usa;: 9
S TTERSRIS | R 03 |
1 france;16
2 muk:;13
3|
* Select the tFilelnputdelimited component, and display this component’s Properties view.
* In this use case, the input files” connection properties are not centrally stored in the
Repository, therefore select Built-In as Property type and set every single field manually.
Property Type v
File Name $_globals{tFileList_1HCURRENT FILEPATH} * [l
Row Separatar "“In" Field Separator | ')’
Header 0 Footer | O Lirnik
achema Built-In » || Edit schema E] [+] Skip empty rows
[]Extract lines at random
Encoding Tvpe IS0-8859-15 4
« To fill in the File Name field, use the Ctrl+Space bar combination to access the variable
completion list. To process all files from the directory defined in the tFileList, select
$_globals{tFileList_1}{CURRENT_FILEPATH} on the global variable list (in
Perl).
» Keep the default setting for the Row and Field separators as well as the other fields.
540 Talend Open Studio Copyright © 2007

Components
tUnite

 Click the Edit Schema button and set manually the 2-column schema to reflect the input
files’ content.

tFileInputDelimited_1

Calumn Key | Twpe Mullable | Length Precision Caomment
Counktry |:|
Paoints |:|

* For this example, the 2 columns are Country and Points .They are both nullable.
» Click OK to validate the setting and accept to propagate the schema throughout the job.

» Then select the tUnite component and display the Properties view. Notice that the output
schema strictly reflects the input schema and is read-only.

 Inthe tLogRow Properties view, check the Print values in cells of the table box to display
properly the output values.

 Save the job and execute it.

Searfing job fnrre a¢ 11008 G- GCSRGF

tLogRow_1

Country | Points

france 12
u=a 10
france 14
uk 13
u=a 9
france 5
france 16
ul 13

SJah fpree andad s 8008 FE-RECSRERS. Fesr e oode sl

The console shows the data from the various files, merged into one single table. This uniformized
output can then be aggregated to set

Copyright © 2007 Talend Open Studio 541

Components
tVtigerCRMInput

tVtigerCRMInput

tVtigerCRMInput Properties

Component family
Function

Purpose

Properties

Usage

Limitation

Related Scenario

Business/vTigerCRM

Connects to a module of a vTigerCRM database.

Allows to extract data from a vTigerCRM DB .

Server Address
Port

Username and
Password

\ersion
Module
Method

Schema type and Edit
Schema

Type in the IP address of the vTigerCRM server
Type in the Port number to access the server

Type in the user authentication data.

Type in the version of vTigerCRM you are using.
Select the relevant module in the list

Select the relevant method on the list. The method
specifies the action you can carry out on the
vTigerCRM module selected.

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either built-in
or remote in the Repository.

Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema
automatically becomes built-in.

In this component the schema is related to the
Module selected.

Usually used as a Start component. An output component is required.

n/a

No scenario is available for this component yet.

542

Talend Open Studio

Copyright © 2007

Components

tVtigerCRMOutput
tVtigerCRMOutput
tVtigerCRMOutput Properties
Component family Business/vTigerCRM ¢
=
Function Writes data into a module of a vTigerCRM database.
Purpose Allows to write data from a vTigerCRM DB.
Properties Server Address Type in the IP address of the vTigerCRM server
Port Type in the Port number to access the server
Username and Type in the user authentication data.
Password
\ersion Type in the version of vTigerCRM you are using.
Module Select the relevant module in the list
Method Select the relevant method on the list. The method

specifies the action you can carry out on the
vTigerCRM module selected.

Schema type and Edit | A schema is a row description, i.e., it defines the
Schema number of fields that will be processed and passed on
to the next component. The schema is either built-in
or remote in the Repository.
Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema
automatically becomes built-in.
In this component the schema is related to the
Module selected.

Usage Used as an output component. An Input component is required.

Limitation n/a

Related Scenario

No scenario is available for this component yet.

Copyright © 2007 Talend Open Studio 543

Components
tWarn

tWarn

tWarn Properties

Both tDie and tWarn components are closely related to the tLogCatcher component. They
generally make sense when used alongside a tLogCatcher in order for the log data collected to be
encapsulated and passed on to the output defined.

Component family

Function

Purpose

Usage

Limitation

Related scenarios

Log/Error _
i <

Provides a priority-rated message to the next component

Triggers a warning often caught by the tLogCatcher component for
exhaustive log.

Warn message Type in your warning message
Code Define the code level
Priority Enter the priority level as an integer

Cannot be used as a start component. If an output component is connected to
it, an input component should be preceding it.

n/a

For uses cases in relation with tWarn, see tLogCatcher scenarios:

» Scenariol: warning & log on entries on page 330

 Scenario 2: log & kill a job on page 332

544

Talend Open Studio Copyright © 2007

e

tWebServicelnput

Components
tWebServicelnput

tWebServicelnput Properties

Component family Internet

b IS

Calls the defined method from the invoked webservice, and returns the class

as defined, based on the given parameters.

Function

Purpose

Properties Schema type and Edit
Schema
End Point URI
WSDL

SOAPAction URI
& Java only field

Method Name

Return class

& Java only field

Parameters

Usage

Invokes a Method through a webservice and for the described purpose

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either built-in
or remote in the Repository.

Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema
automatically becomes built-in.

Click Sync columns to retrieve the schema from the
previous component connected in the job.

Resource identifier of the web service

Description of Web service bindings and
configuration

SOAP standard end point if required

Enter the exact name of the Method to be invoked.
The Method name MUST match the corresponding
method described in the Web Service. The Method
name is also case-sensitive.

Select the type of data to be returned by the method.
Make sure it fully matches the one defined in the
method.

Note: For .Net services, use the
returned class:
org.apache.axis.types.Schem
a.class

Enter the parameters expected and the sought values
to be returned. Make sure that the parameters entered
fully match the names and the case of the parameters
described in the method.

This component is generally used as a Start component . It requires to be

linked to an output component.

Limitation n/a

Copyright © 2007

Talend Open Studio 545

Components
tWebServicelnput

Scenario: Extracting images through a Webservice

This scenario describes a two-component job aiming at using a Webservice method and display the
output on the standard view.

The method takes a full url as an input string and returns a string array of images from a given web
page.

| el |
L* rowl (faind r a
. :
EWwebServicelnput_1 fLogRow_1

+ Click and drop a tWebServicelnput component and a tLogRow component.

» On the Properties view of the tWebServicelnput component, define the WSDL
specifications, such as End Point URI, WSDL and SOAPAction URI where required.

« Ifthe Web service you invoked requires authentication details, check the box and provide the
relevant authentication information.

L_# tWebServicelnput_1

Schema Type Built-In » | Edit schema E]

TargetiMamespace |"http:,l',l'www.atu:umiu:-x.cu:um,l'xmlservices,l'ImageExtractu:ur"

Endpoint LRI | "hkkpe f e, abamic-a, comxmlservicesfimagesxkractorws, asmx rwsdl” |

SOAPACkon LRI | "hkkp: f ey, abamic -, com mlservices TmageE xtrackor ExtrackImages" |

[]Meed authentication?

Method name | "ExtractImages" |return class

* In the Method Name field, type in the method name as defined in the Web Service
description. The name and the case of the method entered must match exactly the
corresponding Web service method.

» Then select the return class corresponding to the expected value type.
 In the Parameters area, click the plus (+) button to add a line to the table.

» Then type in the exact parameters’ name as expected by the method.

546 Talend Open Studio Copyright © 2007

Pararmeters

SEar

{img
{img
<1mg
{img
<1img
{img
{img
<1mg
{img

nianne

mal el

Components
tWebServicelnput

value

class

"hkkp: f e, vabhoo, com'” java.lang. String.class

[+)(x](2])(¢) (@)

In the Value column, type in the URL of the Website, the images are to be extracted from.

The Class column is automatically filled in with the return class type selected earlier.

Link the tWebServicelnput component to the standard output component, tLogRow.

Then press F6 to run the job.

Ermy b FahSEreros af JE
CFimg.
vimg.
L¥img.
vimg.
LVLimg.
ving.
vimg.
yimg.
wimg.

zrc="http:
zrc="http:
src="http:
zrc="http:
sroc="http:
zrc="http:
zrc="http:
src="http:
zrc="http:

Joah Fassarrros

SAam
SAas
SAus
SAas
SAE,
SAaE
SAam
SAas
SAam

al

il.

il

il.

il

il.
il.
il.

il.

Comn 1S

COomo s .

Com- s

COom- s .
Comno s,
COom s .
COom-11s .
Com- s

Com-11s .

ving

CVImMg .
vimg.
.com-1owwsthlosfdbg . gif " r<simgs

vimg

vimg.
vimg.
yimg.
g.consi<ww-thl<allys gif" ;< 1mg:

vimg

S GRS
SFimg.
coms1swwsthl-webs gif"»< img:

comn-1<ww-beta<v3 . gif" »< 1mg>

coms1<ww-tbhl-fdbg. gif" < 1mg>
com-1<ww thl<fdbg . gif" < img:

comn-1<ww thl-fdbg. gif" < 1mg:
DDm/i/ww/tbl/fdbg.gif">
coms"1<ww-tbhl-fdbg. gif" < 1mg:>

amieT & T8 FE GFEATECSNET. farr b oode =gy

All images extracted from the given website are returned as a list of URLs on the Run Job view.

Copyright © 2007

Talend Open Studio 547

RPC E

Components
tXMLRPC

tXMLRPC

tXMLRPC Properties

Component family

Internet

Function Calls the defined method from the invoked RPC service, and returns the class
as defined, based on the given parameters.
Purpose Invokes a Method through a webservice and for the described purpose
Properties Schema type and Edit | A schema is a row description, i.e., it defines the
Schema number of fields that will be processed and passed on
to the next component. The schema is either built-in
or remote in the Repository.
Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema
automatically becomes built-in.
Click Sync columns to retrieve the schema from the
previous component connected in the job.
In the RPC context, the schema corresponds to the
output parameters. If two parameters are meant to be
returned, then the schema should contain two
columns.
Server URL URL of the RPC service to be accessed
Need authentication / | Check the authentication box and fill in a username
Username and and password if required to access the service.
Password
Method Name Enter the exact name of the Method to be invoked.
The Method name MUST match the corresponding
method described in the RPC Service. The Method
name is also case-sensitive.
Return class Select the type of data to be returned by the method.
Make sure it fully matches the one defined in the
method.
Parameters Enter the parameters expected by the method as
input parameters .
Usage This component is generally used as a Start component . It requires to be
linked to an output component.
Limitation n/a
548 Talend Open Studio Copyright © 2007

Components
tXMLRPC

Scenario: Guessing the State name from an XMLRPC

This scenario describes a two-component job aiming at using a RPC method and displaying the
output on the console view.

ig rowliMaing _ r E@

EXMLRPC 1 tLogRow 1

 Click and drop the tXMLRPC and a tLogRow components.
+ Set the tXMLRPC properties.

Schema Type » | Edit schema E]
Server url | "http:fiphpxmlrpe, sourceforge, netfserver,php” |*

[]Meed authentication?

Method | "examples . getStateflame" |return class |]'a'-.-'a.|ang.5tring.class " |
Parameters

nane walue class

"State Mr" 4z java.lang.Bvte.class

B EI | E

 Define the Schema type as Built-in for this use case.

 Set a single-column schema as the expected output for the called method is only one
parameter: StateName.

% Schema of tXMLRPC_1

EXMLRPC_1
Colurmn Key Twvpe Mullable = Date Patt.., | Length P

» Then set the Server url. For this demo, use: http://phpxmirpc.sourceforge.net/server.php
* No authentication details are required in this use case.

* The Method to be called is: examples.getStateName

Copyright © 2007 Talend Open Studio 549

Components
tXMLRPC

» The return class is not compulsory for this method but might be strictly required for another.
Leave the default setting for this use case.

» Then set the input Parameters required by the method called. The Name field is not used
in the code but the value should follow the syntax expected by the method. In this example,
the Name used is State Nr and the value randomly chosen is 42.

» The class has not much impact using this demo method but could have with another method,
so leave the default setting.

» On the tLogRow component Properties view, check the box: Print schema column name
in front of each value.

» Then save the job and execute.

Starésng qob salroe g 180585 SLoGR-R005.
StateName: South Dalota
Job mwdros anded ¢ JE0 S5 SLefSeSGns, fasl b code=as

South Dakota is the state name found using the GetStateName RPC method and corresponds
the 42nd State of the United States as defined as input parameter.

550 Talend Open Studio Copyright © 2007

Components
tXSDValidator

tXSDValidator

tDTDValidator Properties

Component family XML ¢

Function Validates the XML input file against a XSD file and sends the validation
log to the defined output.

Purpose Helps at controlling data and structure quality of the file to be processed

Properties Schema type and A schema is a row description, i.e., it defines the
Edit Schema number of fields to be processed and passed on to

the next component. The schemais either built-in
or remotely stored in the Repository but in this
case, the schemais read-only. It contains standard
information regarding the file validation.

XSD file Filepath to the reference DTD file.

XML file Filepath to the XML file to be validated.

If XML is valid, Type in a message to be displayed in the Run Job
display console based on the result of the comparison.

If XML is not valid
detected, display

Print to console Check the box to display the validation message

Usage This component can be used as standalone component but it is usually
linked to an output component to gather the log data.

Limitation n/a

Related scenario

For related tXSDValidator use cases, see Scenario: Validating xml files on page 178.

Copyright © 2007 Talend Open Studio 551

Components
tXSLT

tXSLT

L

tXSLT Properties

Component family XML ¢
¥ <

Function Refers to an XSL stylesheet, to transform an XML source file into a
defined output file.

Purpose Helps to transform data structure to another structure.

Properties XML file Filepath to the XML file to be validated.
XSL file Filepath to the reference XSL transformation file.
Output file Filepath to the output file. If the file doesn’t exist,

it will be created. The output file can be any
structured or unstructured file such as html, xml,
txt or also pdf or edifact depending on your xsl.

Usage This component can be used as standalone component.

Limitation n/a

Scenario: Transforming XML to html using an XSL stylesheet

This scenario describes a job applying an xsl stylesheet on an xml file and outputs an html file.
ESLT i

» Drag and drop the tXSLT component.

» On the Properties view of the component, set the XML file to be transformed. In this use
case, a list of MP3 titles and their corresponding artist

@ EXSLT 1

wML File | "o Input) Talend _rbjxsltmusic, xml |* D
%3L File |"C:,I'Input,l'Talenu:l_rl:u,l'xslt,l'musiu:.xsl" |* E]
Ckput: File | " Input) Talend _rbjxsltmusic, hkml" |* [I]

* Then set the filepath to the relevant XSL file in order to apply the wanted transformation.

552 Talend Open Studio Copyright © 2007

Components
tXSLT

* Inthis use case, we want to add an image and apply an stylesheet to create a table in HTML.

[y

[n . T iy Y Y

-]

(=]

£l
10
11
1z
13
14
15
la
17
13
12
20
21
22
23

k?xml verszion='1.0"' encoding="IS0-8859-1"7>
H«®x=zl:aztyleshest wersion="1.0" xmlhns:xsl=
"hittp: ffwnr. w3 orgf1999 /X5 fTransform" =
—J<xal:itemplate matoch=" ">
<html>
—|<hody:>
<IMG SRC="http:/f/www.talend. comfimg/logo-talend-fast.jpg"
ALT="Talend image" TITLE="Talend Open =studio":>
</ IMG>
—J<table border="1" pellspacing="0" cellpadding="3">
E{:tr bgocolor="#h5dcld" =
<td>Title</ tdx>
<td=Artist</cds
BT
—J<x=sl:for-each select="compilation/mp3" >
E{:tr}
<tdr<xslivalue-of select="Title"/></td>
<tdr<xslivalue—-of select="Artist" /=< /td>
R o8 o
r</xsl:for-eachs>
<l tables
-/ hadys
</ htmls
refuslitemplater
-<fuslistyleshest

» Eventually set the output filepath to the HTML file.

Save the job and press F6 to run it. Open the Html file in a browser to check the output.

talen

*open data solution

Title !&rﬁst

Thriller Michael Jackseon
DK Cotmputer Eadichead
“What a wonderfill world | Lows Armstrong
To le tas Wanessa Paradis
Tears m heaven Enc Clapton

Copyright © 2007 Talend Open Studio 553

Components
tXSLT

554 Talend Open Studio Copyright © 2007

—Managing jobs & projects—

Managing jobs & projects

You can import projects from a previous version of Talend Open Studio as well as importing or
exporting jobs from one project to the other or from one machine to another.

Importing projects

On the login window, click Import projects to open the Import wizard. Click on Open several projects
if you intend to import more than one project at once.

Or in Talend Open Studio main window, click on the Import projects button on the toolbar.

Import Projects
Select a directaory to search For existing Eclipse projects., @

-

(%) Select root direchory: | E:\Talend buildsi TOS-Win32-+3034-Y2.0 | [Browse. ..]

() Select: archive file: | |

Projects:
[].3ava Select all
[] . JETEmitters
O e
Javs _PROJECTL
PERL_PROIECTI

Copy projects into workspace

Impart project as [Firish] [Cancel

Click Browse... to select the Workspace directory or the specific project folder. By default, the
workspace in selection is the current release’s one. Browse up to reach the previous release workspace
directory containing the projects to import.

Copyright © 2007 Talend Open Studio 555

Managing jobs & projects
Importing Job samples (Demos)

Check the Copy projects into workspace option box to make a copy of the project instead of moving
them. If you want to remove the original project directories from the previous Talend Open Studio
release workspace directory, uncheck this box. But we strongly recommend you to keep it selected for
backup purpose.

Select in the list the projects to import and click Finish to validate.
In the login window, the projects imported now display in the Project list, select it from the list

Or from Talend Open Studio workspace, click File > Switch projects... to get back to the login
window.

%® Talend Open Studio

Conneckion | Local w | u

E-rnail | |

Passward | |

Project

Existing | Perl-projectl - perl w ,_ﬁh
Java_projectl - java

e @mg—m
TALEMDDEMOSPERL - perl

[0K, H Cancel]

Click OK to launch Talend Open Studio.

Note: A generation initialization window might come up when launching the application. Wait
until the initialization is complete.

If, instead of importing the whole project, you’d rather select individual items from your projects,

Importing Job samples (Demos)

As for the import of projects from previous releases of Talend Open Studio, you can import in your
workspace the Demos project folder, that includes numerous samples of job.

On the Login window of Talend Open Studio, click on the Demos button.

556 Talend Open Studio Copyright © 2007

Managing jobs & projects
Importing items

Demos project language

\::) Select the language of demas project
-

[Java] [Perl] [Cancel

Select your preferred language between Perl and Java.

The Job samples covering all needs are automatically imported into your workspace and made available
in the Repository.

A message displays to confirm the import operation successfully.
The Demos project displays in the list of existing Projects in the Login window.

You can use these samples to get started with your own job design.

Importing items

You can import items from previous versions of Talend Open Studio or from a different project of your
current version.

Copyright © 2007 Talend Open Studio 557

Managing jobs & projects
Importing items

The items you can possibly import are multiple:

* Business Models

Jobs Designs

Routines

Documentation

Metadata
Follow the steps below to import them to the Repository:
» On the Repository, right-click on any entry such as Job Designs or Business Models.

» On the pop-up menu, select the Import Items option.

ﬂ Repository XX Mavigator | Palette b;;.(h =0

iﬂ' Business Models
¥ ohnesioo. |

M o %Create job
Co| (9 Create folder
i Me Expand)Collapse

% Do [l Generate Doc As HTML
&) Re

B3 Import items

A dialog box prompts you to select the root directory or the archive file to extract the items from.

* If you exported the items from your local repository into an archive file (including source files
and scripts), select the archive filepath, browse to the file then click OK.

558 Talend Open Studio Copyright © 2007

Managing jobs & projects
Importing items

« If the items to import are still stored on your local repository, select Root Directory and browse
to the relevant project directory on your system.

* Browse down to the relevant Project directory within the Workspace folder. It should
correspond to the project name you picked up.

Select rook directary of the projects to impart

=) TOS-Win32-r30s4-¥2.0.0 L
I configuration
I Features
= ik
I3 plugins
[temp
=) workspace
[Java
[. JETEmitkers
[metadata
I Perl
= [1AvA_PROJECTI
|5) businessProcess
[code w

Dossier @ | JAWA_PROJECT]

« If you only want to import very specific items such as some Job Designs, you can select the
specific folder, such as Process where all the job designs for the project are stored. If you only
have Business Models to import, select the specific folder: BusinessProcess.

 But if your project gather various types of items (Business Models, Jobs Designs, Metadata,
Routines...), we recommend you to select the Project folder to import all items in one go.

* Then click OK to continue.

Copyright © 2007 Talend Open Studio 559

Managing jobs & projects
Exporting projects

#* Import items @

() Seleck root directory: | E:\Talend buildsi TOS-Win3z-r3034-w2.0.0% | [Eirclwse...]

() Select archive file: | | Browse. ..

Items Lisk

File =ml StreetFinder 0.1 A0 Select al

Job Designs AllContracksHML 0.1

Job Designs Cars_2 0.1 — | | Deselect All
Job Designs Cars 0.1
Job Designs Contextload 0.1
Job Designs contexthica 0.1 w

(7 [Finish l [Cancel

 Inthe Items List are displayed all valid items that can be imported. All items are selected by
default, but you can deselect all or uncheck individually unwanted items.

 Click Finish to validate the import.

» The imported items display on the Repository in the relevant folder respective to their nature.

Exporting projects

On Talend Open Studio workspace, the toolbar allows you to export the current project.

Click on the Export project button of the toolbar, at the top of Talend Open Studio main window.

560 Talend Open Studio Copyright © 2007

Managing jobs & projects
Exporting job scripts

% Export Talend projects in archive file

Archive file
Export resources ko an archive file on the local file system,

[#]l= CLIENTXML Jproject
[uG_Java =) talend. project
Select Types...l [Select Al] [Deselect all

T archive File: | CClient:ML. zip Vl [Browse. ..

Options
(%) Create directory struckure For Files

() Create only selected directories

(%) Save in zip Format
() Save in kar Format
Compress the conkents of the file

[Finish][Cancel]

The Export window opens up on the workspace directory showing the projects you can export to an
archive file.
* You can select multiple projects or only select parts of the project through the Select Types link,
if need be (for advanced users).

» Type in the name of the archive or browse to the archive file if it already exists.

* In the Option area, select the compression format and the structure type you prefer.

Click Finish to validate.

Exporting job scripts

The Export Job Scripts feature allows you to deploy and execute a job on any server, regardless Talend
Open Studio.

The job scripts export adds to an archive all the files required to execute the job, including the .bat and
.sh along with the possible context-parameter files or relative files.

Copyright © 2007 Talend Open Studio 561

Managing jobs & projects
Exporting job scripts

To export any job scripts:
 Right-click on the relevant job in the Repository.
» And select Export Job Scripts.
 Give a path where to create the archive file.

The Export Job scripts dialog differs whether you work on a Java or a Perl version of the product.

Exporting jobs in Java

% Export Job Scripts

To archive File: | L4 Inputh ArchiveJobMName, zip v| [Browse. .. l
Expork bvpe

Select the expart bype |F‘OJ0 w

Qpkions

Shell launcher all w

Swskem routines Jser roukines
Required talend modules

Job scripks

Source files

Conkext scripts | Default % apply ko children

'\':’,' [Finish H Cancel]

+ Select the Export Type in the list including POJO, Axis Webservice (WAR) and Axis
Webservice (Zip)

» Then select the type of files you want to add to your archive. The list of files differ according
to the type of export you chose.

Click Finish when complete.

562 Talend Open Studio Copyright © 2007

Managing jobs & projects
Exporting job scripts

Exporting jobs as POJO

In the case of a Plain Old Java Object export, if you want to reuse the job in Talend Open
Studio installed on another machine, make sure you checked the Source files box. These
source files (.item and .properties) are only needed within Talend Open Studio.

Note: Note that you cannot import job script into a different version of Talend Open
Studio than the one the jobs were created in. To be able to reuse previous jobs in
a later version of Talend Open Studio, use the Import Project function. See
Importing projects on page 555.

Select a context in the list when offered. The .bat/.sh file will thus include this context setting
as default for the execution. But note that all contexts parameter files are exported along in
addition to the one selected in the list. You will thus be able to edit the .bat/.sh file to change
manually the context selection if you want to.

If you want to change the context selection, simply edit the .bat/.sh file and change the following
setting: ——context=Prod to the relevant context.

If you want to change the context settings, then edit the relevant context .properties file.

Exporting Jobs as Webservice

On the Export Job dialog box, you can change the type of Export in order to export the job
selection as Webservice archive.

Expork tvpe

Select the expart bype [P0 w
i Bis WebService (WAR)
Cptions L.xis WebService (ZIF)

Select the type of archive you want to use in your Web application.

Archive type Description

WAR The options are read-only. Indeed, the WAR archive generated
includes all configuration files necessary for the execution or
deployment from the Web application.

ZIP All options are available. In the case the files of your Web
appplication config are all set, you have the possibility to only
set the Context parameters if relevant and export only the
Classes into the archive.

Once the archive is produced, place the WAR or the relevant Class from the ZIP (or unzipped
files) into the relevant location, of your Web application server.

The URL to be used to deploy the jobn, typically reads as follow:
http://1ocalhost:8080/Webappname/services/JobName?method=runJo
b&args=null

where the parameters stand as follow:

Copyright © 2007 Talend Open Studio 563

Managing jobs & projects
Exporting job scripts

URL parameters
http://localhost:8080/
/Webappname/

/services/
/JobName

?method=runJob&args=null

Description
Type in the Web app host and port
Type in the actual name of your web application
Type in “services” as the standard call term for web services
Type in the exact name of the job you want to execute

The method is RunJob to execute the job.

The call return from the Web application is 0 when no error and different from O in case of error.

564

Talend Open Studio Copyright © 2007

Managing jobs & projects
Exporting job scripts

Exporting jobs in Perl

#® Export Job Scripts |._||'E|rz|
15
To archive File: | CeInputh Your Jobdrchive, zip v| [Browse. ..]
Options
Shell launcher All w
Swskem routines Iser routines
Required kalend modules
Job scripts
source filas
Cortext scripts | Default 4+ Apply ta children
'i':’:' [Finish] [Cancel

» Select the type of files you want to add to your archive.

« If you want to reuse the job in Talend Open Studio installed on another machine, make
sure you checked the Source files box. These source files (.item and .properties) are only
needed within Talend Open Studio.

+ Selecta context in the list when offered. The .bat/.sh file will thus include this context setting
as default for the execution. But note that all contexts parameter files are exported along in
addition to the one selected in the list. You will thus be able to edit the .bat/.sh file to change
manually the context selection if you want to.

Note: Ifyouwantto change the context selection, simply edit the .bat/.sh file and change the
following setting: —-—context=Prod to the relevant context.

Note: If you want to change the context settings, then edit the relevant context .properties
file.

Click Finish to complete the export operation.

WARNING—Note that you cannot import job script into a different version of Talend Open Studio
than the one the jobs were created in. To be able to reuse previous jobs in a later version of Talend
Open Studio, use the Import Project function. See Importing projects on page 555.

Copyright © 2007 Talend Open Studio 565

Managing jobs & projects
Deploying a job on SpagoBI server

Deploying ajob on SpagoBI server

From Talend Open Studio interface, you can deploy your jobs easily on a SpagoBI server in order to
execute them from your SpagoBI administrator.

566 Talend Open Studio Copyright © 2007

Managing jobs & projects
Deploying a job on SpagoBI server

Creating a SpagoBlI server entry

Beforehands, you need to set up your single or multiple SpagoBI server details in Talend Open
Studio.

 Click Preferences > Talend > SpagoBI servers

e Click New to add a new server to the list.

X

% Create new SpagoBi server
Engine name mySpago

Short descripkion i Prod Server
Hosk 92.168,10.3
Port gogn

Login roak

Passwiord

Application context | PROD)|

T

[(8] 4 l [Cancel

* The Engine Name is the internal name used in Talend Open Studio. This name is not used
in the generated code.

» The Short description is a free text field that you can use to describe the server entry you
are recording.

* Fill in the Host and Port information corresponding to your server. Host can be the IP
address or the DNS Name of your server.

» Type in the Login and Password as required to log on the SpagoBI server.
* In Application Context, type in the context name as you created it in Talend Open Studio

+ Click OK to validate the details of the new server entry.

SpagoBi Server s

SpagoEl server

Engine name Short descripkion Host
mySpagao SpagoBi Prod Server 192,1658.10.3
mySpago:s SpagoBi Dew Server 192.165.10.4

The newly created entry is added to the table of available servers.

Copyright © 2007 Talend Open Studio 567

Managing jobs & projects
Deploying a job on SpagoBI server

You can add as many SpagoBi entries as you need.

Editing or removing a SpagoBI server entry

Select the relevant entry in the table, click the Remove button next to the table to first delete the
outdated entry.

Then if required, simply create a new entry including the updated details.

Deploying your jobs on SpagoBI servers

Follow the steps below to deploy your job(s) onto a SpagoBI server.

Repository &2 T Mavigator = O

w{::q
iﬂ' Business Models
= ’EE Job Designs

A ordr £ Edit job
[Contey trd” Read job
Code ‘;? Edit properties
il Metad: 3L Delete Delete
El Docum 1= copy Chri+C
[Zl Recych
aenerate Doc As HTML
GB Export Job Scripts

[l Deplay on SpagoBl

* In the Job designer, select the job to deploy and right-click to display the pop-up menu.
 Select Deploy on SpagoBI.

» As for any job script export, select a Name for the job archive that will be created and fill it
in the To archive file field.

» Select the relevant SpagoBI server on the drop-down list.

» The Label, Name and Description fields come from the Job main properties.
* Select the relevant context in the list.

+ Click OK once you’ve completed the setting operation.

The jobs are now deployed onto the relevant SpagoBI server. Open your SpagoBI administrator to
execute your jobs.

568 Talend Open Studio Copyright © 2007

Managing jobs & projects
Migration tasks

Migration tasks

Migration tasks are performed to ensure the compatibility of the projects you created with a previous
version of Talend Open Studio with the current release.

As some changes might become visible to the user, we thought we’d share these update tasks with you
through an information window.

% Migration tasks done f'5_<|

Here are the migration tasks applied on this session on this project,

B Rename EDBRATotOraclexx

Migrate database generic components connecked to a Oracle database to the corresponding specific Oracle
components,

B Rename EDBXRTotMySQLxH

Migrate database generic components connected ko a MySQL database to the corresponding specific My SQL
components,

B Rename tDBxxTotPostgresgl=x

Migrate database generic components connected ko a PoskgresdL database to the corresponding specific
PostgreSGL compaonents.,

B Rename EDBRHTotMssqlxs
Migrate database generic components connecked to a Microsoft SOL Server database to the corresponding "

Some changes that affect the usage of Talend Open Studio include, for example:

 tDBInput used with a MySQL database becomes a specific tDBMysqlInput component the
aspect of which is automatically changed in the job where it is used.

* tUnigRow used to be based on the Input schema keys, whereas the current tUnigRow allows the
user to select the column to base the unicity on.

This information window pops up when you launch the project you imported (created) in a previous
version of Talend Open Studio.

It lists and provides a short description of the tasks which were successfully performed so that you can
smoothly roll your projects.

Copyright © 2007 Talend Open Studio 569

Managing jobs & projects
Migration tasks

570 Talend Open Studio Copyright © 2007

A

ACHIVALE/DEACHIVALEveeuviieieiieeie et eie ettt e et e e s e e be e e e sseesaeeseesreeteeneesreenenreas 100
[T SRS SRPSPRRSS 184
N] 0 LcT L (o TP PR PPN 31
ASSIGNMENT TADIE ... s 33
B
2= 10101 1 PSSR 111
BUSINESS MOTEN ..o 10, 23, 24
(01 =T: 1110 o TSP U U U R URORPPOPTPTPPOO 24
(@] 0101 T TSRS 24
BUSINESS MOTEIET ... e re e e nne e 25
BUSINESS MOTEIS ...t e e e ae e s ae e te e saneenaeesnee s 23
C
(00T [T ST SPPR 11
(@000 (oI 1= T PSS 16, 17
LO0T0 1o o] 1T 0| OO SOPPPPR 38, 117
F Ao ()7 OSSPSR 46
(=] - 1SS 21
) £ ST OURP 51
Connection
L] 2 LTS PP PP 44
T 0] PSSR 45
LLOOKUD ettt bbbttt bbbt 42
1 U ST 42
OULPUL ettt ettt b et bt ekt e e b e e et e e be e e st e e ebe e e mb e e nbeeenb e e nbeeeneeenne e e 42
0 PSPPSR 42
L0011 () SO P P T O PR PPPTPUPRTPPPRROPPS 10, 110, 483
D
Data quality
FAAUCRCROW ...ttt ettt be e e et et e stenbesbenbeaseareaneas 133
TFUZZYIMAICN ... bbbt 271
Database
EIDBINPUL .. 161
EDBOULPUL ...ttt b e e b 165
EDBSQLIROW ...ttt ettt bbbttt bbbt ene s 169
EMSSGIINPUL <.ttt be e b e re e sbe et e neenne e 363
EIMISSOIOULPUL ...ttt 365
EMSSGIROW ..ottt ettt e e s e s teetenneesteenteareenneens 372
EMYSQIBUIKEXEC ...ttt sttt sb et sne e 383
EMYSQICOMIMIT .ot 386, 432, 460
EMYSQICONNECTION ... 387, 433, 461
EMYSOUINPUL ettt et e ne et e et sneenne e 392

Copyright © 2007 Talend Open Studio

LAYV AT | [I 11 | SRR 394

tMYSQIOULPUEBUIK ...t 398
tMYSQIOUIPUIBUIKEXEC ..ottt 404
tMYSQIROIDACK ...t ne e 406
EMYSOIROW ..ttt ettt be e besne e sbeenbeaneenne e 407
DT oW o I T o [PSSRSO 112
DT 1T 41 T PRSPPSO 56
DOCUMENTALION ...ttt b et sbe et e e st e s b e et e e st e sbeebe e st e nbeebeaneenne e 11
E
o [Tl 1T 4 PSPPSR 49
ELT
L= A YT LT o SRS 181
EELTIMYSOIIMAD ettt ettt sttt sb e bt nb e e e 182
L= I 1YY AT [T 1 ST 192
L= I O = Tod [=1 o] o | SRR 195
TELTOFACIEMAP ..ttt sb et e et e reenne e 196
L= I O = Tod [T 10 o[SRS 201
(o] [To]) A o] [OSSR 184
Exporting
o 0] 1= £ SPRPSSS 560
EXPreSSioN BUIIUEEcvvoiiiice ettt be et re e neenne e 97
F
File
TFHIECOMPAIE ...ttt bbbt e et 213
L1 [=T o] o) SRS 216
EFTIEDRIETE ...ttt 218
tRHEINPUIDEIMITEA ..o 223
LU L= LT 010111 L SRS 226
tFIHEINPUEPOSITIONAL ..o e e 228
TFHEINPUIREOEX .ottt bbbt 232
LU L= LT 0100 €AY SR 236
LU =T OSSR SO PP PRRPRON 239
TFHEOULPULEXCEI ... 242
TFIHEOULPULLDIF ..ottt e s te et e areenne e 243
EFIHEOULPUIXIML .ottt ae e neereenre e e 246
TFHEUNAICNIVE .ottt sne e 248
File XML
[0 To] o I8 11 11 USSR 71
1 (=] o017 1o g | SRS 61
1[5 (T SR 64
G
GeNEration lANQUAGEcccueiieiieeieeteesieeee et et et e et e e e esbe et e sneente e e e aneenaeaneesreeeennes 8

i Talend Open Studio Copyright © 2007

GraphiCal WOTKSPACEcueiuiiiiiiieiieieiee ettt 12,23

] 1 o PSSO URPRPRPRPROS 30
H
[P (T NG Y/ PSSR 86
I
Importing
DB ettt bR et e b e e e et e R e e nRr e neennn e nne e 557
18] 0T=] o o] | TPV UR PSR PR PR 89
INNEE JOIN REJECT ..ottt et e e s e e te e s e aseesaeeneenraeneenes 89
Internet
L1121 =] (o] o SRS 221
L0 I USSP U TP PSPPSRI 268
ESENAMAEIT ..ottt b ettt 489
Item
0] 70 X1 PSSR 557
LT (TP PP TR PPRPR 44
J
Job
(01 =T: 1110 o TP U TR PR PPOPTPTPPOO 37
(@] o=l a T 1L =T 11T oo SRS 35
RUNNING ettt bbbt et e st sbe b snee b 109, 110
JOD DESIGNET ..ttt bbb 37
PANEIS ..t b bbbt 40
JOD DIBSIGNS .t ae e 10, 35, 36
Job script
(010] T USSR 112
Join
EXPHCHT oot bbb 184
K
(S U ST PPN PPN 86
L
[11 1 SRS 66
LETE OULET JOIN .ttt bbbt b ettt e e 190
T 0] USSP 45
Log&Error
L4 LT P TP UURUR PSPPSRI 177
ELOGCALCNET ..ttt ne e 330
Log/error
TLOGROW . nrne e 334
ESTALCAICNEL ...ttt bbbt e nre e 506

Copyright © 2007 Talend Open Studio

[0 To (U o ST PP RTUR 43
M
IMAIN PIOPEITIES .ttt sttt e bt s e be et e e ne e s b e b e e nbesbeenbeeneeaneene e 34
L UL I 0 SRS 42
V=T] o 1< PRSPPI 45
Y= To - - PSPPSR 12,51
DB CONNECLION SCNEMAecuiiiiieiieeie et e b e e e e e sreeneeenes 52
FileDelimited SChEmMAcccoiiie e e s 56
FIHELDIF SCREMA ...ocviiiiii ettt et e e e et e et e e e ae e nreeanes 66
FilePositional SChEMA ..o s 61
FIIEREGEX SCNEMAviiiiiece et et re et sre e ene e 64
FHEXIML SChEIMA ...ociiiiiic et et e e a e be e beeenne e 68
Misc
(L0001 (=3 qd o - T SRS 145
L0 RO SPPRT 265
EMISOBIOX .ttt e et r e rre e 423
TROWGENEIALION ...iiiiiiiiiiie sttt e et e e nbb e e s e e e snb e e nnbeeennneeeas 479
Model
N 4 =0T 1o USSR 29, 30
ASSIGNING .eeeitieie ettt e e e et et e et e e te et e abe et e araenreenreare e reanreares 33
(O00] 01 001=] 01 1o o SRR 29
(©70]0)Y/] 1T TSRS 34
D=1 =) 7o SRS 34
IMIOVING ettt bbbttt b bbbttt 34
ST V7o SR 34
oo 1L PSPPI 25
MUltiple INPUL/OULPUL ...t 45
@)
(0] o] 1= TSP SO P TP PRTURPRPRURPROOS 26
@ 11 1 1T USSR 16, 17
L@ 11101 | PSP STPPROTPRPIN 44
P
PAIELEE ...t 12, 25, 26, 29, 37, 38
COMPONENES ...t b ettt b e e b e e nbeeneenes 117
N[0 (=TSRSS RT PRSPPI 29
NOtE attACHIMENToceeieee e et re e ens 29
ST Tt S PRSP STRP 29
4 o To] 1 1 IO U PO PP 29
PIIMAIY KEY ..ttt e et e e s et e et e s ae e te e st e sbeeteeneesteeneesreenee e 86
Processing
TAQOIEQAIEBROW ..o 126

iv Talend Open Studio Copyright © 2007

I BNOIIMNAIIZE ...ttt enennn e e nennnennes 172

L1 =T o ST P PP PRUPRROUPRTPR 335
(LN o T L= SRS 425
L0 2= o SO RPR 455
ESOMTROW .. bb et e e s b e e nnb e e nnbeeenbne e e 493
EUNIGROW ..ottt et e e e te et e e se e s beetesreesreenteaneeane e 537
Project
(010] T OSSR TPRSSSR 560
PIOPEITIES ...uveiieite ettt ettt ettt et e et e et e e ae e be e s e s te et e esaesteetesreenteaneesneenneas 13, 25, 30
@01 10017 o | SR 48
1 U ST 34
e 0] 0L L= SR 48
U] L= 3 /A 1 4 o USRS 30
WHBW ittt ettt ettt et e bt n e R e e Rt e Rt et e Rt e R e e R te R e e teenteaRe e teene e e e e reaneenre s 47
Q
Query
SQLBUIAEL ...ttt er e sttt e e s be e e be e s beesabeesbeesabeesbeesnreenree e, 78
R
RECYCIE DN ottt e st e et e s s e e ae e e e raenrennes 12,34
] =TS OSSPSR 7
REQUIAT EXPIESSIONS ...c.veeiieiieitieiietie e et e ste et e ste et e s te et essa e ta et essaesteaneessaesaeeneenreenneaneenneens 65
REIALIONSNID e bbbt et re et et e 27
(o]0 TTg=Tox (o] -1 S SPPSPP 28
01 1T - LRSS 28
371101 0] SRR 28
[T 0101 0] Y USSR 8, 10, 23, 35
ROULINE ..ttt ettt et et et e et e s s et e e st e s reeteeseesne e e e aneenreeneenreenee e 11
0 PP PSP PRRURUPR 42
Y T USSP 42
(U 1=] TSR 30
RUN JOD ettt bbbt e e neens 13, 109, 110
S
RS0t 1= o U 1= BTSSP 15
Schema
2 T oS 50
RS 0o ST TRRURPRTUSTTRPRS 26
SQLBUIIEE ..t e et e e beeseesreenteereesreeteaneenneas 78
) L O OO OT PSP TPPROPPPROPIN 51
Y LU] (o1 PSSR POUP RO 110
SEOTESQLQUETY ettt ettt sttt b e sttt e e sb e e nbe e nbeenbeennneen 102, 163
SYNC COIUIMNS .ottt et e s te st e s te e teeseesseesseeseenteeneesneenseanennneas 49
System

Copyright © 2007 Talend Open Studio

BRUNIOD e ettt e e e et e e e e e e e e ens 483

[65) 7S] (=] 1 [T P RO PR TR PUPR TP 529
T
Table

AN LT TSP 184
BIET AT Tor= LI T U =R 8
LU (0T, 1<) (T £ O o1 T SRRSO 113
L 00 O (o o -] USRS 113
L1} = o T PP PR 45
TTACES oo, 111
Trigger

L 1 (=] (SRR 44

U ST=Y (0] (TR 44

RUN T et e e bt e e et b e e s b e e s st e e e sab e e e sabeeesabeeesbteesabeeesnreeaas 44

T =1 () GRS TRR 44

RUN TTFOK ettt et e s b e e s s e e s s ab e e s s abe s s sbbaesebbessbeassabeeaas 44

LI 1= 01 {0 T R 44
L] 210X (o 1= TR 113
V
R T o] [101, 483

SEOrESQLQUETY ettt e e e e e e e e be e e et e e e srbeeeanaaaaa 102, 163
Views

0NV SRR 40
X
XML

LD DAY £=1 1T F- L (o] S 178
DAY =TRSO 68
D0 U1 SRS 71

vi Talend Open Studio Copyright © 2007

	Talend Open Studio User’s Guide
	About this guide...
	History of changes
	Feedback and Support

	Getting started with Talend Open Studio
	Accessing Talend Open Studio
	Connecting to a local repository
	Creating a project
	Describing the GUI
	Repository
	Business Models
	Job Designs
	Contexts
	Code
	Routines
	Snippets

	Documentation
	Metadata
	Recycle bin

	Graphical workspace
	Palette
	Changing the palette position
	Changing the palette layout and settings

	Properties, Run and Logs views
	Properties
	Logs
	Run Job

	Modules and Scheduler
	Modules view
	Open Scheduler

	Outline and Code Summary panel
	Outline
	Code viewer

	Toolbar and Menus
	Quick access toolbar
	Menus

	Configuring Talend Open Studio preferences
	Perl/Java Interpreter path
	Status
	External or User components

	Designing a Business Model
	Objectives
	Opening or creating a business model
	Opening a business model
	Creating a business model

	Modeling a business model
	Shapes
	Connecting shapes
	Commenting and arranging a model
	Adding a note or free text
	Arranging the model view

	Properties
	Rulers and Grid
	Appearance
	Assignment

	Assigning repository elements to a Business Model
	Editing a Business model
	Renaming a business model
	Copying and pasting a business model
	Moving a business model
	Deleting a business model

	Saving a business model

	Designing a Job Design
	Objectives
	Opening or Creating a job
	Opening a job
	Creating a job

	Getting started with a Job Design
	Showing, hiding and moving the palette
	Click & drop components from the Palette
	Drag & Drop components from the Metadata Manager
	Adding Notes to a job design
	Changing panels position
	Warnings and errors on component

	Connecting components together
	Connection types
	Row connection
	Main row
	Lookup row
	Output row

	Iterate connection
	Trigger connections
	Link connection

	Multiple Input/Output

	Defining job Properties
	Main
	View
	Documentation
	Properties
	Setting a built-in schema
	Setting a repository schema
	Setting a field dynamically (Ctrl+Space bar)

	Defining the Start component
	Defining Metadata items
	Setting up a DB schema
	Step 1: general properties
	Step 2: connection
	Step 3: table upload
	Step 4: schema definition

	Setting up a File Delimited schema
	Step 1: general properties
	Step 2: file upload
	Step 3: schema definition
	Step 4: final schema

	Setting up a File Positional schema
	Step 1: general properties
	Step 2: connection and file upload
	Step 3: schema refining
	Step 4: final schema

	Setting up a File Regex schema
	Step 1: general properties
	Step 2: file upload
	Step 3: schema definition
	Step 4: final schema

	Setting up a FileLDIF schema
	Step 1: general properties
	Step 2: file upload
	Step 3: schema definition
	Step 4: final schema

	Setting up a FileXML schema
	Step 1: general properties
	Step 2: file upload
	Step 3: schema definition
	Step 4: final schema

	Setting up a LDAP schema
	Step 1: general properties
	Step 2: server connection
	Step 3: authentication and DN fetching
	Step 4: schema definition
	Step 5: final schema

	Setting up a Generic schema
	Step 1: general properties
	Step 2: schema definition

	Creating queries using SQLBuilder
	Database structure comparison
	Building a query
	Storing a query in the Repository

	Mapping data flows in a job
	tMap operation overview
	tMap interface
	Setting the input flow in the Mapper
	Filling in Input tables with a schema
	Main and Lookup table content
	Variables

	Explicit Join
	Unique Match (java)
	First or Last Match (java)
	All Matches (java)

	Inner join
	All rows (java)
	Filtering an input flow (java)
	Removing Input entries from table

	Mapping variables
	Accessing global or context variables
	Removing variables

	Output setting
	Building complex expressions
	Filters
	Rejections
	Inner Join Rejection
	Removing Output entries

	Expression editor
	Schema editor

	Writing code using the Expression Builder
	Activating/Disabling a job or sub-job
	Disabling a Start component
	Disabling a non-Start component

	Defining Contexts and variables
	Defining job context variables
	Short creation of context variables
	StoreSQLQuery

	Contexts view
	Variables tab
	Values as table tab
	Values as tree tab

	Configuring contexts
	Creating a context
	Renaming or editing a context

	Storing contexts in the Repository
	Running a job in selected context

	Running a job
	Running in normal mode
	Displaying Statistics
	Displaying Traces

	Running in debug mode

	Saving or exporting your jobs
	Saving a job
	Exporting job scripts

	Generating HTML documentation
	Automating stats & logs use
	Shortcuts and aliases

	Components
	tAccessInput
	tAccessInput properties
	Related scenarios

	tAccessOutput
	tAccessOutput properties
	Related scenarios

	tAccessRow
	tAccessRow properties
	Related scenarios

	tAggregateRow
	tAggregateRow properties
	Scenario: Aggregating values and sorting data

	tAggregateSortedRow
	tAggregateSortedRow properties
	Related scenario

	tAddCRCRow
	tAddCRCRow properties
	Scenario: Adding a surrogate key to a file

	tAS400Input
	tAS400Input properties
	Related scenarios

	tAS400Output
	tAS400Output properties
	Related scenarios

	tAS400Row
	tAS400Row properties
	Related scenarios

	tCentricCRMInput
	tCentricCRMInput Properties
	Related Scenario

	tCentricCRMOutput
	tCentricCRMOutput Properties
	Related Scenario

	tContextDump
	tContextDump properties
	Related Scenario

	tContextLoad
	tContextLoad properties
	Scenario: Dynamic context use in MySQL DB insert

	tCreateTable
	tCreateTable Properties
	Scenario: Creating new table in a Mysql Database

	tDB2Input
	tDB2Input properties
	Related scenarios

	tDB2Output
	tDB2Output properties
	Related scenarios

	tDB2Row
	tDB2Row properties
	Related scenarios

	tDB2SCD
	tDB2SCD properties
	Related scenarios

	tDB2SP
	tDB2SP properties
	Related scenarios

	tDBInput
	tDBInput properties
	Scenario 1: Displaying selected data from DB table
	Scenario 2: Using StoreSQLQuery variable

	tDBOutput
	tDBOutput properties
	Scenario: Displaying DB output

	tDBSQLRow
	tDBSQLRow properties
	Scenario 1: Resetting a DB auto-increment

	tDenormalize
	tDenormalize Properties
	Scenario 1: Denormalizing on one column in Perl
	Scenario 2: Denormalizing on multiple columns in Java

	tDie
	tDie properties
	Related scenarios

	tDTDValidator
	tDTDValidator Properties
	Scenario: Validating xml files

	tELTMysqlInput
	tELTMysqlInput properties
	Related scenarios

	tELTMysqlMap
	tELTMysqlMap properties
	Connecting ELT components
	Mapping and joining tables
	Adding where clauses
	Generating the SQL statement

	Scenario1: Aggregating table columns and filtering
	Scenario 2: ELT using Alias table

	tELTMysqlOutput
	tELTMysqlOutput properties
	Related scenarios

	tELTOracleInput
	tELTOracleInput properties
	Related scenarios

	tELTOracleMap
	tELTOracleMap properties
	Connecting ELT components
	Mapping and joining tables
	Adding where clauses
	Generating the SQL statement

	Scenario 1: Updating Oracle DB entries

	tELTOracleOutput
	tELTOracleOutput properties
	Related scenarios

	tELTTeradataInput
	tELTTeradataInput properties
	Related scenarios

	tELTTeradataMap
	tELTTeradataMap properties
	Connecting ELT components
	Mapping and joining tables
	Adding where clauses
	Generating the SQL statement

	Related scenarios

	tELTTeradataOutput
	tELTTeradataOutput properties
	Related scenarios

	tExternalSortRow
	tExternalSortRow properties
	Related scenario

	tFileCompare
	tFileCompare properties
	Scenario: Comparing unzipped files

	tFileCopy
	tFileCopy Properties
	Scenario: Restoring files from bin

	tFileDelete
	tFileDelete Properties
	Scenario: Deleting files

	tFileFetch
	tFileFetch properties
	Scenario: Fetching data through HTTP

	tFileInputDelimited
	tFileInputDelimited properties
	Scenario: Delimited file content display

	tFileInputMail
	tFileInputMail properties
	Scenario: Extracting key fields from email

	tFileInputPositional
	tFileInputPositional properties
	Scenario: From Positional to XML file

	tFileInputRegex
	tFileInputRegex properties
	Scenario: Regex to Positional file

	tFileInputXML
	tFileInputXML Properties
	Scenario: XML street finder

	tFileList
	tFileList properties
	Scenario: Iterating on a file directory

	tFileOutputExcel
	tFileOutputExcel Properties
	Related scenario

	tFileOutputLDIF
	tFileOutputLDIF Properties
	Scenario: Writing DB data into an LDIF-type file

	tFileOutputXML
	tFileOutputXML properties
	Scenario: From Positional to XML file

	tFileUnarchive
	tFileUnarchive Properties
	Related scenario

	tFilterColumn
	tFilterColumn Properties
	Related Scenario

	tFilterRow
	tFilterRow Properties
	Scenario: Filtering and searching a list of names

	tFirebirdInput
	tFirebirdInput properties
	Related scenarios

	tFirebirdOutput
	tFirebirdOutput properties
	Related scenarios

	tFirebirdRow
	tFirebirdRow properties
	Related scenarios

	tFlowMeter
	tFlowMeter Properties
	Related scenario

	tFlowMeterCatcher
	tFlowMeterCatcher Properties
	Scenario: Catching flow metrics from a job

	tFor
	tFor Properties
	Scenario: Job execution in a loop

	tFTP
	tFTP properties
	tFTP put
	tFTP get
	tFTP rename
	tFTP delete

	Scenario: Putting files on a remote FTP server

	tFuzzyMatch
	tFuzzyMatch properties
	Scenario 1: Levenshtein distance of 0 in first names
	Scenario 2: Levenshtein distance of 1 or 2 in first names
	Scenario 3: Metaphonic distance in first name

	tHSQLDbInput
	tHSQLDbInput properties
	Related scenarios

	tHSQLDbOutput
	tHSQLDbOutput properties
	Related scenarios

	tHSQLDbRow
	tHSQLDbRow properties
	Related scenarios

	tInformixInput
	tInformixInput properties
	Related scenarios

	tInformixOutput
	tInformixOutput properties
	Related scenarios

	tInformixRow
	tInformixRow properties
	Related scenarios

	tIngresInput
	tIngresInput properties
	Related scenarios

	tIngresOutput
	tIngresOutput properties
	Related scenarios

	tIngresRow
	tIngresRow properties
	Related scenarios

	tIngresSCD
	tIngresSCD Properties
	Related scenario

	tInterbaseInput
	tInterbaseInput properties
	Related scenarios

	tInterbaseOutput
	tInterbaseOutput properties
	Related scenarios

	tInterbaseRow
	tInterbaseRow properties
	Related scenarios

	tIterateToFlow
	tIterateToFlow Properties
	Scenario: Transforming a list of files as data flow

	tJava
	tJava Properties
	Scenario: Printing out a variable content

	tJavaDBInput
	tJavaDBInput properties
	Related scenarios

	tJavaDBOutput
	tJavaDBOutput properties
	Related scenarios

	tJavaDBRow
	tJavaDBRow properties
	Related scenarios

	tJDBCInput
	tJDBCInput properties
	Related scenarios

	tJDBCOutput
	tJDBCOutput properties
	Related scenarios

	tJDBCRow
	tJDBCRow properties
	Related scenarios

	tJDBCSP
	tJDBCSP Properties
	Related scenario

	tLDAPInput
	tLDAPInput Properties
	Scenario: Displaying LDAP directory’s filtered content

	tLDAPOutput
	tLDAPOutput Properties
	Scenario: Editing data in an LDAP directory

	tLogCatcher
	tLogCatcher properties
	Scenario1: warning & log on entries
	Scenario 2: log & kill a job

	tLogRow
	tLogRow properties
	Scenario: Delimited file content display

	tMap
	tMap properties
	Scenario 1: Mapping with filter and simple explicit join (Perl)
	Scenario 2: Mapping with Inner join rejection (Perl)
	Scenario 3: Cascading join mapping
	Scenario 4: Advanced mapping with filters, explicit joins and Inner join rejection
	Scenario 5: Advanced mapping with filters and a check of all rows

	tMomInput
	tMomInput Properties
	Scenario: asynchronous communication via a MOM server

	tMomOutput
	tMomOutput Properties
	Related scenario

	tMSSqlBulkExec
	tMSSqlBulkExec properties
	Related scenarios

	tMSSqlInput
	tMSSqlInput properties
	Related scenarios

	tMSSqlOutput
	tMSSqlOutput properties
	Related scenarios

	tMSSqlOutputBulk
	tMSSqlOutputBulk properties
	Related scenarios

	tMSSqlOutputBulkExec
	tMSSqlOutputBulkExec properties
	Related scenarios

	tMSSqlRow
	tMSSqlRow properties
	Related scenarios

	tMSSqlSCD
	tMSSqlSCD Properties
	Scenario: Slow Changing Dimension type 3

	tMSSqlSP
	tMSSqlSP Properties
	Related scenario

	tMysqlBulkExec
	tMysqlBulkExec properties
	Related scenarios

	tMysqlCommit
	tMysqlCommit Properties
	Related scenario

	tMysqlConnection
	tMysqlConnection Properties
	Scenario: Inserting data in mother/daughter tables

	tMysqlInput
	tMysqlInput properties
	Related scenarios

	tMysqlOutput
	tMysqlOutput properties
	Scenario: Adding new column and altering data

	tMysqlOutputBulk
	tMysqlOutputBulk properties
	Scenario: Inserting transformed data in MySQL database

	tMysqlOutputBulkExec
	tMysqlOutputBulkExec properties
	Scenario: Inserting data in MySQL database

	tMysqlRollback
	tMysqlRollback properties
	Scenario: Rollback from inserting data in mother/daughter tables

	tMysqlRow
	tMysqlRow properties
	Scenario: Removing and regenerating a MySQL table index

	tMysqlSCD
	tMysqlSCD Properties
	Scenario: Tracking changes using Slowly Changing Dimension

	tMysqlSP
	tMysqlSP Properties
	Scenario: Finding a State Label using a stored procedure

	tMsgBox
	tMsgBox properties
	Scenario: ‘Hello world!’ type test

	tNormalize
	tNormalize Properties
	Scenario: Normalizing data

	tOracleBulkExec
	tOracleBulkExec properties
	Scenario: Truncating and inserting file data into Oracle DB

	tOracleCommit
	tOracleCommit Properties
	Related scenario

	tOracleConnection
	tOracleConnection Properties
	Related scenario

	tOracleInput
	tOracleInput properties
	Related scenarios

	tOracleOutput
	tOracleOutput properties
	Related scenarios

	tOracleOutputBulk
	tOracleOutputBulk properties
	Related scenarios

	tOracleOutputBulkExec
	tOracleOutputBulkExec properties
	Related scenarios

	tOracleRollback
	tOracleRollback properties
	Related scenario

	tOracleRow
	tOracleRow properties
	Related scenarios

	tOracleSCD
	tOracleSCD Properties
	Related scenario

	tOracleSP
	tOracleSP Properties
	Scenario: Checking number format using a stored procedure

	tPerl
	tPerl properties
	Scenario: Displaying number of processed lines

	tPostgresqlBulkExec
	tPostgresqlBulkExec properties
	Related scenarios

	tPostgresqlCommit
	tPostgresqlCommit Properties
	Related scenario

	tPostgresqlConnection
	tPostgresqlConnection Properties
	Related scenario

	tPostgresqlInput
	tPostgresqlInput properties
	Related scenarios

	tPostgresqlOutput
	tPostgresqlOutput properties
	Related scenarios

	tPostgresqlOutputBulk
	tPostgresqlOutputBulk properties
	Related scenarios

	tPostgresqlOutputBulkExec
	tPostgresqlOutputBulkExec properties
	Related scenarios

	tPostgresqlRollback
	tPostgresqlRollback properties
	Related scenario

	tPostgresqlRow
	tPostgresqlRow properties
	Related scenarios

	tReplace
	tReplace Properties
	Scenario: multiple replacements and column filtering

	tRowGenerator
	tRowGenerator properties
	Defining the schema
	Defining the function

	Scenario: Generating random java data

	tRunJob
	tRunJob Properties
	Scenario: Executing a remote job

	tSalesforceInput
	tSalesforceInput Properties
	Related scenario

	tSalesforceOutput
	tSalesforceOutput Properties
	Related scenario

	tSendMail
	tSendMail Properties
	Scenario: Email on error

	tSleep
	tSleep Properties
	Related scenarios

	tSortRow
	tSortRow properties
	Scenario: Sorting entries

	tSQLiteInput
	tSQLiteInput Properties
	Scenario: Filtering SQlite data

	tSQLiteOutput
	tSQLiteOutput Properties
	Related Scenario

	tSQLiteRow
	tSQLiteRow Properties
	Scenario: Updating SQLite rows

	tSSH
	tSSH Properties
	Scenario: Remote system information display via SSH

	tStatCatcher
	tStatCatcher Properties
	Scenario: Displaying job stats log

	tSugarCRMInput
	tSugarCRMInput Properties
	Scenario: Extracting account data from SugarCRM

	tSugarCRMOutput
	tSugarCRMOutput Properties
	Related Scenario

	tSybaseBulkExec
	tSybaseBulkExec Properties
	Related scenarios

	tSybaseInput
	tSybaseInput Properties
	Related scenarios

	tSybaseOutput
	tSybaseOutput Properties
	Related scenarios

	tSybaseOutputBulk
	tSybaseOutputBulk properties
	Related scenarios

	tSybaseOutputBulkExec
	tSybaseOutputBulkExec properties
	Related scenarios

	tSybaseRow
	tSybaseRow Properties
	Related scenarios

	tSybaseSCD
	tSybaseSCD properties
	Related scenarios

	tSybaseSP
	tSybaseSP properties
	Related scenarios

	tSystem
	tSystem Properties
	Scenario: Echo ‘Hello World!’

	tTeradataInput
	tTeradataInput Properties
	Related scenarios

	tTeradataOutput
	tTeradataOutput Properties
	Related scenarios

	tTeradataRow
	tTeradataRow Properties
	Related scenarios

	tUniqRow
	tUniqRow Properties
	Scenario: Unduplicating entries

	tUnite
	tUnite Properties
	Scenario: Iterate on files and merge the content

	tVtigerCRMInput
	tVtigerCRMInput Properties
	Related Scenario

	tVtigerCRMOutput
	tVtigerCRMOutput Properties
	Related Scenario

	tWarn
	tWarn Properties
	Related scenarios

	tWebServiceInput
	tWebServiceInput Properties
	Scenario: Extracting images through a Webservice

	tXMLRPC
	tXMLRPC Properties
	Scenario: Guessing the State name from an XMLRPC

	tXSDValidator
	tDTDValidator Properties
	Related scenario

	tXSLT
	tXSLT Properties
	Scenario: Transforming XML to html using an XSL stylesheet

	Managing jobs & projects
	Importing projects
	Importing Job samples (Demos)
	Importing items
	Exporting projects
	Exporting job scripts
	Exporting jobs in Java
	Exporting jobs as POJO
	Exporting Jobs as Webservice

	Exporting jobs in Perl

	Deploying a job on SpagoBI server
	Creating a SpagoBI server entry
	Editing or removing a SpagoBI server entry
	Deploying your jobs on SpagoBI servers

	Migration tasks

