
Talend Open Studio
User’s Guide

Version 2.2_b

Adapted for Talend Open Studio v2.2.x. Supersedes previous User Guide releases.

Copyright

Find a copy of the GNU Free Documentation License with the source files of this documentation.
ii Talend Open Studio Copyright © 2007

Talend Open Studio
User’s Guide .. i

About this guide... ...1
History of changes ...1
Feedback and Support ..2

Getting started with Talend Open Studio ..5
Accessing Talend Open Studio ...5
Connecting to a local repository ..6
Creating a project ...8
Describing the GUI ...9

Repository ...10
Business Models ...10
Job Designs ...10
Contexts ..10
Code ..11

Routines ...11
Snippets ..11

Documentation ...11
Metadata ...12
Recycle bin ...12

Graphical workspace ...12
Palette ...13

Changing the palette position ...13
Changing the palette layout and settings ..13

Properties, Run and Logs views ...13
Properties ..13
Logs ..13
Run Job ...14

Modules and Scheduler ..14
Modules view ...14
Open Scheduler ..15

Outline and Code Summary panel ..16
Outline ..16
Code viewer ..17

Toolbar and Menus ...17
Quick access toolbar ...17
Menus ...18

Configuring Talend Open Studio preferences ..18
Perl/Java Interpreter path ...19
Status ..20
Copyright © 2007 Talend Open Studio iii

External or User components ...21

Designing a Business Model ...23
Objectives ...23
Opening or creating a business model ...23

Opening a business model ..24
Creating a business model ..24

Modeling a business model ...25
Shapes ...26
Connecting shapes ..27
Commenting and arranging a model ..29

Adding a note or free text ...29
Arranging the model view ..29

Properties ..30
Rulers and Grid ...30
Appearance ...31
Assignment ...32

Assigning repository elements to a Business Model ...32
Editing a Business model ..33

Renaming a business model ...34
Copying and pasting a business model ..34
Moving a business model ...34
Deleting a business model ..34

Saving a business model ..34

Designing a Job Design ..35
Objectives ...35
Opening or Creating a job ...35

Opening a job ...36
Creating a job ...36

Getting started with a Job Design ..37
Showing, hiding and moving the palette ..37
Click & drop components from the Palette ..38
Drag & Drop components from the Metadata Manager ..38
Adding Notes to a job design ...39
Changing panels position ...40
Warnings and errors on component ...41

Connecting components together ...42
Connection types ..42

Row connection ..42
Main row ..42
Lookup row ..43
Output row ...44

Iterate connection ...44
Trigger connections ..44
iv Talend Open Studio Copyright © 2007

Link connection ..45
Multiple Input/Output ..45

Defining job Properties ...46
Main ...46
View ...47
Documentation ...47
Properties ..48

Setting a built-in schema ..49
Setting a repository schema ..49
Setting a field dynamically (Ctrl+Space bar) ...50

Defining the Start component ..51
Defining Metadata items ...51

Setting up a DB schema ...52
Step 1: general properties ...52
Step 2: connection ..53
Step 3: table upload ..55
Step 4: schema definition ...55

Setting up a File Delimited schema ..56
Step 1: general properties ...56
Step 2: file upload ...56
Step 3: schema definition ...57
Step 4: final schema ..60

Setting up a File Positional schema ..61
Step 1: general properties ...62
Step 2: connection and file upload ...62
Step 3: schema refining ..63
Step 4: final schema ..63

Setting up a File Regex schema ...64
Step 1: general properties ...64
Step 2: file upload ...64
Step 3: schema definition ...65
Step 4: final schema ..65

Setting up a FileLDIF schema ..66
Step 1: general properties ...66
Step 2: file upload ...66
Step 3: schema definition ...67
Step 4: final schema ...68

Setting up a FileXML schema ..68
Step 1: general properties ...69
Step 2: file upload ...69
Step 3: schema definition ...69
Step 4: final schema ..72

Setting up a LDAP schema ..73
Step 1: general properties ...73
Step 2: server connection ..73
Copyright © 2007 Talend Open Studio v

Step 3: authentication and DN fetching ..74
Step 4: schema definition ...75
Step 5: final schema ..76

Setting up a Generic schema ..77
Step 1: general properties ...78
Step 2: schema definition ...78

Creating queries using SQLBuilder ..78
Database structure comparison ...79
Building a query ...80
Storing a query in the Repository ...82

Mapping data flows in a job ...83
tMap operation overview ...83
tMap interface ..84
Setting the input flow in the Mapper ...86

Filling in Input tables with a schema ..86
Main and Lookup table content ...86
Variables ..87

Explicit Join ..87
Unique Match (java) ..88
First or Last Match (java) ..89
All Matches (java) ...89

Inner join ..89
All rows (java) ..90
Filtering an input flow (java) ..90
Removing Input entries from table ...90

Mapping variables ..91
Accessing global or context variables ..92
Removing variables ..92

Output setting ..92
Building complex expressions ..93
Filters ..93
Rejections ...94
Inner Join Rejection ..94
Removing Output entries ..95

Expression editor ..95
Schema editor ...95

Writing code using the Expression Builder ..97
Activating/Disabling a job or sub-job ...100

Disabling a Start component ..101
Disabling a non-Start component ...101

Defining Contexts and variables ..101
Defining job context variables ...101

Short creation of context variables ..101
StoreSQLQuery ..102

Contexts view ...103
vi Talend Open Studio Copyright © 2007

Variables tab ...103
Values as table tab ..103
Values as tree tab ..104

Configuring contexts ..105
Creating a context ...106
Renaming or editing a context ..107

Storing contexts in the Repository ...107
Running a job in selected context ..109

Running a job ..109
Running in normal mode ..110

Displaying Statistics ...110
Displaying Traces ...111

Running in debug mode ...111
Saving or exporting your jobs ..112

Saving a job ..112
Exporting job scripts ..112

Generating HTML documentation ..113
Automating stats & logs use ...113
Shortcuts and aliases ...115

Components ...117
tAccessInput ...120

tAccessInput properties ..120
Related scenarios ..120

tAccessOutput ..122
tAccessOutput properties ...122
Related scenarios ..123

tAccessRow ..124
tAccessRow properties ...124
Related scenarios ..125

tAggregateRow ...126
tAggregateRow properties ..126
Scenario: Aggregating values and sorting data ..127

tAggregateSortedRow ...131
tAggregateSortedRow properties ...131
Related scenario ...132

tAddCRCRow ..133
tAddCRCRow properties ...133
Scenario: Adding a surrogate key to a file ...133

tAS400Input ...136
tAS400Input properties ..136
Related scenarios ..137

tAS400Output ..138
tAS400Output properties ..138
Related scenarios ..139
Copyright © 2007 Talend Open Studio vii

tAS400Row ...140
tAS400Row properties ...140
Related scenarios ..141

tCentricCRMInput ...142
tCentricCRMInput Properties ..142
Related Scenario ...142

tCentricCRMOutput ...143
tCentricCRMOutput Properties ..143
Related Scenario ...143

tContextDump ...144
tContextDump properties ...144
Related Scenario ...144

tContextLoad ...145
tContextLoad properties ...145
Scenario: Dynamic context use in MySQL DB insert ...145

tCreateTable ..148
tCreateTable Properties ..148
Scenario: Creating new table in a Mysql Database ..149

tDB2Input ..151
tDB2Input properties ..151
Related scenarios ..152

tDB2Output ...153
tDB2Output properties ...153
Related scenarios ..154

tDB2Row ..155
tDB2Row properties ...155
Related scenarios ..156

tDB2SCD ..157
tDB2SCD properties ..157
Related scenarios ..158

tDB2SP ...159
tDB2SP properties ..159
Related scenarios ..160

tDBInput ...161
tDBInput properties ..161
Scenario 1: Displaying selected data from DB table ..162
Scenario 2: Using StoreSQLQuery variable ..163

tDBOutput ...165
tDBOutput properties ...165
Scenario: Displaying DB output ...166

tDBSQLRow ..169
tDBSQLRow properties ...169
Scenario 1: Resetting a DB auto-increment ...170

tDenormalize ..172
tDenormalize Properties ...172
viii Talend Open Studio Copyright © 2007

Scenario 1: Denormalizing on one column in Perl ..172
Scenario 2: Denormalizing on multiple columns in Java ...174

tDie ..177
tDie properties ..177
Related scenarios ..177

tDTDValidator ...178
tDTDValidator Properties ..178
Scenario: Validating xml files ..178

tELTMysqlInput ...181
tELTMysqlInput properties ..181
Related scenarios ..181

tELTMysqlMap ...182
tELTMysqlMap properties ...182

Connecting ELT components ...183
Mapping and joining tables ..184
Adding where clauses ...184
Generating the SQL statement ..184

Scenario1: Aggregating table columns and filtering ..185
Scenario 2: ELT using Alias table ..188

tELTMysqlOutput ..192
tELTMysqlOutput properties ...192
Related scenarios ..194

tELTOracleInput ..195
tELTOracleInput properties ...195
Related scenarios ..195

tELTOracleMap ..196
tELTOracleMap properties ..196

Connecting ELT components ...197
Mapping and joining tables ..197
Adding where clauses ...198
Generating the SQL statement ..198

Scenario 1: Updating Oracle DB entries ..198
tELTOracleOutput ...201

tELTOracleOutput properties ...201
Related scenarios ..203

tELTTeradataInput ..204
tELTTeradataInput properties ..204
Related scenarios ..204

tELTTeradataMap ..205
tELTTeradataMap properties ...205

Connecting ELT components ...206
Mapping and joining tables ..206
Adding where clauses ...207
Generating the SQL statement ..207

Related scenarios ..207
Copyright © 2007 Talend Open Studio ix

tELTTeradataOutput ...208
tELTTeradataOutput properties ...208
Related scenarios ..210

tExternalSortRow ...211
tExternalSortRow properties ..211
Related scenario ...212

tFileCompare ...213
tFileCompare properties ...213
Scenario: Comparing unzipped files ..213

tFileCopy ..216
tFileCopy Properties ...216
Scenario: Restoring files from bin ...216

tFileDelete ..218
tFileDelete Properties ...218
Scenario: Deleting files ..218

tFileFetch ...221
tFileFetch properties ...221
Scenario: Fetching data through HTTP ..221

tFileInputDelimited ...223
tFileInputDelimited properties ...223
Scenario: Delimited file content display ..224

tFileInputMail ...226
tFileInputMail properties ..226
Scenario: Extracting key fields from email ..226

tFileInputPositional ..228
tFileInputPositional properties ...228
Scenario: From Positional to XML file ..229

tFileInputRegex ...232
tFileInputRegex properties ...232
Scenario: Regex to Positional file ..233

tFileInputXML ..236
tFileInputXML Properties ..236
Scenario: XML street finder ...237

tFileList ...239
tFileList properties ...239
Scenario: Iterating on a file directory ...239

tFileOutputExcel ...242
tFileOutputExcel Properties ...242
Related scenario ...242

tFileOutputLDIF ...243
tFileOutputLDIF Properties ...243
Scenario: Writing DB data into an LDIF-type file ...244

tFileOutputXML ...246
tFileOutputXML properties ..246
Scenario: From Positional to XML file ..247
x Talend Open Studio Copyright © 2007

tFileUnarchive ...248
tFileUnarchive Properties ...248
Related scenario ...248

tFilterColumn ..249
tFilterColumn Properties ..249
Related Scenario ...249

tFilterRow ..250
tFilterRow Properties ...250
Scenario: Filtering and searching a list of names ...251

tFirebirdInput ...253
tFirebirdInput properties ..253
Related scenarios ..254

tFirebirdOutput ...255
tFirebirdOutput properties ..255
Related scenarios ..256

tFirebirdRow ...257
tFirebirdRow properties ...257
Related scenarios ..258

tFlowMeter ...259
tFlowMeter Properties ..259
Related scenario ...259

tFlowMeterCatcher ...260
tFlowMeterCatcher Properties ...260
Scenario: Catching flow metrics from a job ...261

tFor ...265
tFor Properties ..265
Scenario: Job execution in a loop ...265

tFTP ..268
tFTP properties ...268

tFTP put ..268
tFTP get ..269
tFTP rename ...269
tFTP delete ..269

Scenario: Putting files on a remote FTP server ..269
tFuzzyMatch ..271

tFuzzyMatch properties ..271
Scenario 1: Levenshtein distance of 0 in first names ...272
Scenario 2: Levenshtein distance of 1 or 2 in first names ...274
Scenario 3: Metaphonic distance in first name ..275

tHSQLDbInput ..276
tHSQLDbInput properties ..276
Related scenarios ..277

tHSQLDbOutput ...278
tHSQLDbOutput properties ...278
Related scenarios ..279
Copyright © 2007 Talend Open Studio xi

tHSQLDbRow ...280
tHSQLDbRow properties ...280
Related scenarios ..281

tInformixInput ...282
tInformixInput properties ...282
Related scenarios ..283

tInformixOutput ..284
tInformixOutput properties ..284
Related scenarios ..285

tInformixRow ..286
tInformixRow properties ..286
Related scenarios ..287

tIngresInput ...288
tIngresInput properties ...288
Related scenarios ..289

tIngresOutput ..290
tIngresOutput properties ...290
Related scenarios ..291

tIngresRow ...292
tIngresRow properties ..292
Related scenarios ..293

tIngresSCD ...294
tIngresSCD Properties ..294
Related scenario ...295

tInterbaseInput ..296
tInterbaseInput properties ...296
Related scenarios ..297

tInterbaseOutput ...298
tInterbaseOutput properties ..298
Related scenarios ..299

tInterbaseRow ...300
tInterbaseRow properties ..300
Related scenarios ..301

tIterateToFlow ...302
tIterateToFlow Properties ...302
Scenario: Transforming a list of files as data flow ...302

tJava ...305
tJava Properties ..305
Scenario: Printing out a variable content ...305

tJavaDBInput ..308
tJavaDBInput properties ...308
Related scenarios ..309

tJavaDBOutput ...310
tJavaDBOutput properties ..310
Related scenarios ..311
xii Talend Open Studio Copyright © 2007

tJavaDBRow ..312
tJavaDBRow properties ..312
Related scenarios ..313

tJDBCInput ...314
tJDBCInput properties ..314
Related scenarios ..314

tJDBCOutput ...316
tJDBCOutput properties ...316
Related scenarios ..317

tJDBCRow ...318
tJDBCRow properties ..318
Related scenarios ..319

tJDBCSP ..320
tJDBCSP Properties ...320
Related scenario ...321

tLDAPInput ...322
tLDAPInput Properties ...322
Scenario: Displaying LDAP directory’s filtered content ...323

tLDAPOutput ..326
tLDAPOutput Properties ..326
Scenario: Editing data in an LDAP directory ...327

tLogCatcher ...330
tLogCatcher properties ..330
Scenario1: warning & log on entries ..330
Scenario 2: log & kill a job ..332

tLogRow ..334
tLogRow properties ..334
Scenario: Delimited file content display ..334

tMap ..335
tMap properties ..335
Scenario 1: Mapping with filter and simple explicit join (Perl) 335
Scenario 2: Mapping with Inner join rejection (Perl) ..340
Scenario 3: Cascading join mapping ..346
Scenario 4: Advanced mapping with filters, explicit joins and Inner join rejection346
Scenario 5: Advanced mapping with filters and a check of all rows 351

tMomInput ...355
tMomInput Properties ..355
Scenario: asynchronous communication via a MOM server ...355

tMomOutput ..359
tMomOutput Properties ..359
Related scenario ...359

tMSSqlBulkExec ...360
tMSSqlBulkExec properties ...360
Related scenarios ..362

tMSSqlInput ..363
Copyright © 2007 Talend Open Studio xiii

tMSSqlInput properties ..363
Related scenarios ..364

tMSSqlOutput ...365
tMSSqlOutput properties ..365
Related scenarios ..366

tMSSqlOutputBulk ...367
tMSSqlOutputBulk properties ..367
Related scenarios ..368

tMSSqlOutputBulkExec ...370
tMSSqlOutputBulkExec properties ..370
Related scenarios ..371

tMSSqlRow ..372
tMSSqlRow properties ...372
Related scenarios ..373

tMSSqlSCD ..374
tMSSqlSCD Properties ...374
Scenario: Slow Changing Dimension type 3 ..376

tMSSqlSP ...381
tMSSqlSP Properties ..381
Related scenario ...382

tMysqlBulkExec ..383
tMysqlBulkExec properties ..383
Related scenarios ..384

tMysqlCommit ...386
tMysqlCommit Properties ..386
Related scenario ...386

tMysqlConnection ...387
tMysqlConnection Properties ...387
Scenario: Inserting data in mother/daughter tables ..387

tMysqlInput ...392
tMysqlInput properties ...392
Related scenarios ..393

tMysqlOutput ..394
tMysqlOutput properties ..394
Scenario: Adding new column and altering data ..396

tMysqlOutputBulk ..398
tMysqlOutputBulk properties ...398
Scenario: Inserting transformed data in MySQL database ...400

tMysqlOutputBulkExec ..404
tMysqlOutputBulkExec properties ...404
Scenario: Inserting data in MySQL database ...405

tMysqlRollback ...406
tMysqlRollback properties ...406
Scenario: Rollback from inserting data in mother/daughter tables406

tMysqlRow ...407
xiv Talend Open Studio Copyright © 2007

tMysqlRow properties ..407
Scenario: Removing and regenerating a MySQL table index ..408

tMysqlSCD ...410
tMysqlSCD Properties ..410
Scenario: Tracking changes using Slowly Changing Dimension 411

tMysqlSP ..418
tMysqlSP Properties ...418
Scenario: Finding a State Label using a stored procedure ...419

 tMsgBox ..423
tMsgBox properties ..423
Scenario: ‘Hello world!’ type test ..423

tNormalize ..425
tNormalize Properties ...425
Scenario: Normalizing data ..425

tOracleBulkExec ...428
tOracleBulkExec properties ...428
Scenario: Truncating and inserting file data into Oracle DB ...429

tOracleCommit ..432
tOracleCommit Properties ..432
Related scenario ...432

tOracleConnection ..433
tOracleConnection Properties ..433
Related scenario ...433

tOracleInput ..434
tOracleInput properties ...434
Related scenarios ..435

tOracleOutput ...436
tOracleOutput properties ..436
Related scenarios ..438

tOracleOutputBulk ...439
tOracleOutputBulk properties ..439
Related scenarios ..440

tOracleOutputBulkExec ...442
tOracleOutputBulkExec properties ..442
Related scenarios ..443

tOracleRollback ...444
tOracleRollback properties ...444
Related scenario ...444

tOracleRow ..445
tOracleRow properties ..445
Related scenarios ..446

tOracleSCD ..447
tOracleSCD Properties ...447
Related scenario ...448

tOracleSP ...449
Copyright © 2007 Talend Open Studio xv

tOracleSP Properties ..449
Scenario: Checking number format using a stored procedure450

tPerl ..455
tPerl properties ...455
Scenario: Displaying number of processed lines ...455

tPostgresqlBulkExec ...458
tPostgresqlBulkExec properties ...458
Related scenarios ..459

tPostgresqlCommit ..460
tPostgresqlCommit Properties ..460
Related scenario ...460

tPostgresqlConnection ..461
tPostgresqlConnection Properties ..461
Related scenario ...461

tPostgresqlInput ..462
tPostgresqlInput properties ...462
Related scenarios ..463

tPostgresqlOutput ...464
tPostgresqlOutput properties ..464
Related scenarios ..466

tPostgresqlOutputBulk ...467
tPostgresqlOutputBulk properties ..467
Related scenarios ..469

tPostgresqlOutputBulkExec ...470
tPostgresqlOutputBulkExec properties ..470
Related scenarios ..470

tPostgresqlRollback ..471
tPostgresqlRollback properties ...471
Related scenario ...471

tPostgresqlRow ..472
tPostgresqlRow properties ..472
Related scenarios ..473

tReplace ..474
tReplace Properties ...474
Scenario: multiple replacements and column filtering ...475

tRowGenerator ...479
tRowGenerator properties ..479

Defining the schema ...479
Defining the function ..480

Scenario: Generating random java data ...481
tRunJob ..483

tRunJob Properties ...483
Scenario: Executing a remote job ...483

tSalesforceInput ...487
tSalesforceInput Properties ..487
xvi Talend Open Studio Copyright © 2007

Related scenario ...487
tSalesforceOutput ..488

tSalesforceOutput Properties ..488
Related scenario ...488

tSendMail ...489
tSendMail Properties ..489
Scenario: Email on error ..489

tSleep ..492
tSleep Properties ...492
Related scenarios ..492

tSortRow ..493
tSortRow properties ..493
Scenario: Sorting entries ..494

tSQLiteInput ..496
tSQLiteInput Properties ..496
Scenario: Filtering SQlite data ...496

tSQLiteOutput ...499
tSQLiteOutput Properties ...499
Related Scenario ...500

tSQLiteRow ...501
tSQLiteRow Properties ..501
Scenario: Updating SQLite rows ..502

tSSH ..504
tSSH Properties ..504
Scenario: Remote system information display via SSH ..504

tStatCatcher ...506
tStatCatcher Properties ...506
Scenario: Displaying job stats log ..506

tSugarCRMInput ..509
tSugarCRMInput Properties ...509
Scenario: Extracting account data from SugarCRM ..509

tSugarCRMOutput ...511
tSugarCRMOutput Properties ..511
Related Scenario ...511

tSybaseBulkExec ...512
tSybaseBulkExec Properties ..512
Related scenarios ..512

tSybaseInput ..514
tSybaseInput Properties ..514
Related scenarios ..515

tSybaseOutput ...516
tSybaseOutput Properties ...516
Related scenarios ..517

tSybaseOutputBulk ...518
tSybaseOutputBulk properties ..518
Copyright © 2007 Talend Open Studio xvii

Related scenarios ..520
tSybaseOutputBulkExec ...521

tSybaseOutputBulkExec properties ..521
Related scenarios ..522

tSybaseRow ..523
tSybaseRow Properties ...523
Related scenarios ..524

tSybaseSCD ..525
tSybaseSCD properties ...525
Related scenarios ..526

tSybaseSP ...527
tSybaseSP properties ..527
Related scenarios ..528

tSystem ...529
tSystem Properties ..529
Scenario: Echo ‘Hello World!’ ..529

tTeradataInput ..531
tTeradataInput Properties ...531
Related scenarios ..532

tTeradataOutput ...533
tTeradataOutput Properties ..533
Related scenarios ..534

tTeradataRow ..535
tTeradataRow Properties ..535
Related scenarios ..536

tUniqRow ...537
tUniqRow Properties ..537
Scenario: Unduplicating entries ...537

tUnite ..539
tUnite Properties ...539
Scenario: Iterate on files and merge the content ..539

tVtigerCRMInput ...542
tVtigerCRMInput Properties ..542
Related Scenario ...542

tVtigerCRMOutput ...543
tVtigerCRMOutput Properties ...543
Related Scenario ...543

tWarn ...544
tWarn Properties ...544
Related scenarios ..544

tWebServiceInput ...545
tWebServiceInput Properties ..545
Scenario: Extracting images through a Webservice ...546

tXMLRPC ..548
tXMLRPC Properties ...548
xviii Talend Open Studio Copyright © 2007

Scenario: Guessing the State name from an XMLRPC ...549
tXSDValidator ...551

tDTDValidator Properties ..551
Related scenario ...551

tXSLT ...552
tXSLT Properties ..552
Scenario: Transforming XML to html using an XSL stylesheet552

Managing jobs & projects ..555
Importing projects ..555
Importing Job samples (Demos) ..556
Importing items ...557
Exporting projects ...560
Exporting job scripts ...561

Exporting jobs in Java ..562
Exporting jobs as POJO ..563
Exporting Jobs as Webservice ..563

Exporting jobs in Perl ...565
Deploying a job on SpagoBI server ...566

Creating a SpagoBI server entry ..567
Editing or removing a SpagoBI server entry ..568
Deploying your jobs on SpagoBI servers ...568

Migration tasks ..569
Copyright © 2007 Talend Open Studio xix

xx Talend Open Studio Copyright © 2007

About this guide...
History of changes
About this guide...

This guide aims at administrators and users of Talend Open Studio.

History of changes

Find in the table below the changes made to this User’s guide.
Copyright © 2007 Talend Open Studio 1

About this guide...
Feedback and Support
Feedback and Support

Your feedback is valuable. Do not hesitate to give your input, make suggestions or requests regarding
this documentation or product and find support from the Talend team, on Talend’s Forum website at:

http://talendforge.org/forum

Find more information about what’s new in the current release of the documentation on the wiki at:

http://talendforge.org/wiki/doku.php?id=doc:release_notes_userguide

Version Date History of Change

v 0.5 10/4/2006 Release of Talend Open Studio version 1.0.0

v 0.5.1 10/6/2006 Added GNU Free Documentation License to source archive.
Added changes history section.

v 0.6 1/5/2007 Release of Talend Open Studio version 1.1.0
Update of User’s Guide to version 0.6
Added missing v1.0 components
Added new v1.1 components
Fixed documentation bugs reported.

v0.6.1 1/15/2007 Updated Variable information
Added some components

v0.7 3/5/2007 Updated template and component information relating to v1.1.1

v0.8 4/12/2007 Release of Talend Open Studio version 2.0.0
New v2.0 components added
Refurbishing of existing chapters
Added information for Perl and Java
New Managing Projects chapter added

v0.8.1 5/26/2007 Release of User’s Guide Html repurposed version v0.8.1 based on
User’s Guide v0.8.0.

v2.1.0 7/9/2007 Synchronization of Documentation release number with application
releases.

Release of Talend Open Studio v2.1.0. Update of User guide includes:
New components added
Added new information of mapping in Java
Reorganisation of information
See Release Notes.

v2.1.1 7/16/2007 Release of Talend Open Studio v2.1.1. Update of User guide includes:
New components information

v2.2_a 10/10/07 Changed versioning for simplification.
Updates in:
- Components chapter
- Designing Jobs chapter
- Managing Projects chapter
2 Talend Open Studio Copyright © 2007

http://talendforge.org/wiki/doku.php?id=doc:release_notes_userguide
http://talendforge.org/forum

—Getting started with Talend Open Studio—
Getting started with Talend Open Studio

Accessing Talend Open Studio

The Setup wizard helps you to install Talend Open Studio application. If you unzip it manually, then
follow the installation instructions provided.

Read and accept the terms of the license agreement to continue.

A Talend Open Studio Registration window prompts you for your email address and location. This
information is optional. Click Cancel, if you do not wish to be informed for future enhancements of
Talend Open Studio.

If needed, check the box to enable HTTP Proxy parameters and fill in the fields with your proxy
details. Make sure you filled in the email address field if you provide proxy details.
Copyright © 2007 Talend Open Studio 5

Getting started with Talend Open Studio
Connecting to a local repository
You can fill in or edit the registration information at any time, through Window > Preference > Talend
> Install/Update.

WARNING—Be ensured that any personal information you may provide to Talend will never be
transmitted to third parties nor used for another purpose than to inform you about Talend and Talend’s

products.

Talend Open Studio opens up with the Login window.

Connecting to a local repository

On the Login window you can connect to Talend Open Studio.

• Select the relevant entry on the Connection list if your username and connection details are
already configured.

• When logging in for the first time, click the three-dot button to configure the Connection
information.
6 Talend Open Studio Copyright © 2007

Getting started with Talend Open Studio
Connecting to a local repository
• To add a new Repository information, click the plus (+) button on the left panel

• Type in the email address that will be used as user login. This field is compulsory to be able to
use Talend Open Studio. Be aware that the email entered is never used for other purpose than
login use.

• Fill in the Password field, if needed. This field is greyed out when the connection is local.

• Click OK to validate.

Click Refresh to update the list of projects if needed. Then choose the relevant project name and click
OK to open it.

If you already created projects with previous releases of Talend Open Studio, you can import them into
your current Talend Open Studio workspace using the Import function.

Related topic: Importing projects on page 555

When creating a project for the first time, there are no default project listed. Click Create to launch the
Creation wizard.

Related topic: Creating a project on page 8

You can discover Talend Open Studio based on job samples. Install the demos project, in one click,
through the Import demos button. The Demos project folder is automatically installed in your
workspace. And the project is directly accessible from the login window.
Copyright © 2007 Talend Open Studio 7

Getting started with Talend Open Studio
Creating a project
When creating a new project, a folder tree is automatically created in the Workspace directory on your
repository server. This will correspond to the Repository folder tree displaying on Talend Open Studio
main window.

Creating a project

When you create a project, you need first to fill in a name for this project. This field is mandatory.

A contextual message pops up at the top of the window, according to the location of your cursor. It
informs you about the nature of data to be filled in, such as forbidden characters.

Note: Note that numbers are not allowed to be used to start a project name.The name is not case
sensitive, therefore, YourProject or YOURPROJECT are the same.

The Technical name is used by the application as file name of the actual project file. The read-only
name usually corresponds to the project name, upper-cased and concatenated with underscores if
needed.

Select the Generation language between Perl and Java. From then, you will be required to use the
relevant code, i.e. Perl code in perl projects and java code in Java projects.

If you want to switch from one to another projects go through File > Switch Projects...

Note: We advise you though to keep Perl projects and Java projects in separate locations and
workspaces to avoid language conflicts.
8 Talend Open Studio Copyright © 2007

Getting started with Talend Open Studio
Describing the GUI
If you already used Talend Open Studio and want to import projects from a previous release,
see Importing projects on page 555.

In the Login window, select the project you’ve created. Click OK to launch Talend Open Studio.

Note: A generation initialization window comes up when launching the application. Wait until
the initialization is complete.

Describing the GUI

Talend Open Studio opens on a multi-panel window.

Talend Open Studio window is composed of the following panels:

• Repository

• Graphical workspace

• Properties, Run and Logs views

• Outline and Code Viewer

The various panels and their respective features are detailed hereafter.
Copyright © 2007 Talend Open Studio 9

Getting started with Talend Open Studio
Describing the GUI
Repository

The Repository is a toolbox gathering all technical items that can be used either to describe business
models or to design job designs.It gives access to the Business models, the job designs, as well as
resusable routines or documentation.

The Repository centralizes and stores on the file system all necessary elements for any job design
and business modeling contained in a project.

The repository gathers together the following components in a folder tree view:

Business Models

Under the Business Models node, are grouped all business models of the project. Double-click
on the name of the model to open it on the graphical modeling workspace.

Related topic: Designing a Business Model on page 23

Job Designs

The Job designs folder shows all job flowcharts designed for the current project. Double-click
on the name of the flowcharts to open it on the modeling workspace.

Related topic: Designing a Job Design on page 35

Contexts

The Context folder groups files holding the context-related data sets you want to reuse in
various jobs, such as filepaths or DB connection details.

Related topic: Defining Contexts and variables on page 101

The refresh button allows you to update the tree with the last
changes made

Store in the relevant folders of the Repository all your data
(BMs and JDs) and metadata (Routines, snippets, DB/File
connections, any meaningful Documentation...)

The Toolbar includes the following functions: Run Job,
Export Project, Import Project
10 Talend Open Studio Copyright © 2007

Getting started with Talend Open Studio
Describing the GUI
Code

The Code library groups the routines available for this project as well as snippets (to come) and
other pieces of code that could be reused in the project.

Click on the relevant tree entry to develop the appropriate code piece.

Related topic: Designing a Job Design on page 35

Routines

A Routine is a piece of code which can be iterative in a technical job hence is likely to be
reused several times within the same project.

Under Routines, a System folder groups all Talend pre-defined routines. Developing this
node again in the repository, various routine files display such as Dates, Misc and String
gathering default pieces of codes according to their nature.

Double-click on one of the file. The Routines editor opens up as a new tab and can be
moved around the modeling workspace by simply holding down the mouse and releasing
at the target location.

Use these routines as reference for building your own or copy the one you need into the
relevant properties field of your job.

To create a new routine, right-click on the Routines entry of the Repository, and select
Create a routine in the pop-up menu. The routine editor opens up on a template file
containing a default piece of code such as:

sub printTalend {

 print "Talend\n"

Replace it with your own and when closing it, the routine is saved as a new node under
Routines.

You can also create directories to classify the user’s routines.

Note: The System folder, along with its content is read-only.

Snippets

Snippets are small pieces of code that can be duplicated accross components or jobs to
automate transformation for example. This feature will be available soon.

Documentation

The Documentation directory gathers all types of documents, of any format.This could be, for
example, specification documents or a description of technical format of a file. Double-click to
open the document in the relevant application.

Related topic: Generating HTML documentation on page 113
Copyright © 2007 Talend Open Studio 11

Getting started with Talend Open Studio
Describing the GUI
Metadata

The Metadata folder bundles files holding redundant information you want to reuse in various
jobs, such as schemas and property data.

Related topic: Defining Metadata items on page 51

Recycle bin

Drag and drop elements from the Repository tree into the recycle bin or press del key to get rid
of irrelevant or obsolete items

Note that the deleted elements are still present on your filesystem, in the recycle bin, until you
right-click on the recycle bin icon and select Empty Recycle bin.

Graphical workspace

The Graphical workspace is Talend Open Studio’s single flowcharting editor, where both
business models as well as job designs can be laid out.

You can open and edit both job designs and business models in this single graphical editor.
Flowcharts you open display in a handy tab system.

A Palette is docked at the top of the workspace to help you draw the model corresponding to your
workflow needs.
12 Talend Open Studio Copyright © 2007

Getting started with Talend Open Studio
Describing the GUI
Palette

From the Palette, depending on whether you’re designing a job or modeling a business model, click
and drop shapes, branchs, notes or technical components to the workspace, then define and format
them using the various tools offered in the Properties panel.

Related topics:

• Designing a Business Model on page 23

• Designing a Job Design on page 35

Changing the palette position

If the Palette doesn’t show or if you want to set it apart in a panel, go to Window > Show
view...> General > Palette. The Palette opens in a separate view that you can move around
wherever you like within Talend Open Studio’s window.

Changing the palette layout and settings

You can change the layout of the component list to display components in column or in list, as
icons only or with short description.

You can also enlarge the component icons for better readability of the component list.

 To do so, right-click and select the option in the list or click Settings to open the configuration
window and fine-tune the layout.

Properties, Run and Logs views

The Properties, Run Jobs and Logs tabs gather all information relative to the graphical elements
in selection in the modeling workspace or the actual execution of a complete job.

See also: Modules and Scheduler on page 14

Properties

The content of the Properties tab varies according to the selected item in the workspace.

For instance, when inserting a shape in the modeling workspace, the Properties tab offers a
range of formatting tools to help you customize your business model and improve the
readability of the whole business model.

In the case, you are working on a job design, the Properties tab offers you to set the operating
parameters of the component and hence set this way each step of the technical job.

Logs

The Logs are mainly used for job designs. They show the results or errors of particular job
design.
Copyright © 2007 Talend Open Studio 13

Getting started with Talend Open Studio
Describing the GUI
Note: However note that the log tab has also an informative function for Perl component
operating progress for example

Run Job

The Run Job tab obviously shows the current job execution. This tab becomes a log console at
the end of an execution.

For details about the job execution, see Running a job on page 109.

Modules and Scheduler

The Modules and Scheduler tabs are located in the same tab system as the Properties, Logs and
Run Job tabs. Both views are independent from the active or inactive jobs open on the workspace.

Modules view

The use of some components requires specific Perl modules to be installed, check the Modules
view, what modules you have or should have to run smoothly your jobs.

If the Modules tab doesn’t show on the tab system of your workspace, go to Window > Show
View... > Talend, and select Modules in the developed Talend node.

The view shows if a module is necessary and required for the use of a referenced component.

The Status column points out if the modules are yet or not yet installed on your system. The
warning triangle icon indicates that the module is not necessarily required for this component.

For example, the DBD::Oracle module is only required for using tDBSQLRow if the latter is
meant to run with Oracle DB. The same way, DBD::Pg module is only required if you use
PostgreSQL. But all of them can be necessary.

The red crossed circle means the module is absolutely required for the component to run.

If the component field is empty, the module is then required for the general use of Talend Open
Studio.

When building your job, if a component misses a module that is absolutely required, an error is
generated and displays on the Problems tab.
14 Talend Open Studio Copyright © 2007

Getting started with Talend Open Studio
Describing the GUI
To install any missing Perl module, refer to the relevant installation manual on
http://talendforge.org/wiki/

Open Scheduler

The Open Scheduler is based on the crontab command, found in Unix and Unix-like operating
systems. This cron can be also installed on any Windows system.

Open Scheduler generates cron-compatible entries allowing you to launch periodically a job via
the crontab program.

If the Scheduler tab doesn’t display on the tab system of your workspace, go to Window >
Show View... > Talend, and select Scheduler in the developed Talend node.
Copyright © 2007 Talend Open Studio 15

http://talendforge.org/wiki/

Getting started with Talend Open Studio
Describing the GUI
Set the time and comprehensive date details to schedule the task.

Open Scheduler automatically generates the corresponding task command that will be added to
the crontab program.

Outline and Code Summary panel

The Information panel is composed of two tabs, Outline and Code Viewer, which provide
information regarding the displayed diagram (either job design or business model).

Outline

The Outline tab offers a quick view of the business model or job design open on the modeling
workspace and a tree view of variables. As the workspace, like any other window area can be
resized upon your needs. The Outline view is convenient to check out where about on your
workspace, you are located.
16 Talend Open Studio Copyright © 2007

Getting started with Talend Open Studio
Describing the GUI
 This graphical representation of the diagram
highlights in a blue rectangle the diagram part
showing in the workspace.

Click on the blue-highlighted view and hold down
the mouse button. Then, move the rectangle over
the job.

The view in the workspace moves accordingly.

The Outline view can also be displaying a folder
tree view of components in use in the current
diagram. Expand the node of a component, to show
the list of variables available for this component.

To switch from the graphical outline view to the
tree view, click on either icon docked at the top
right of the panel.

Code viewer

The Code viewer tab provides lines of code
generated for the selected component, behind the
active job design view, as well the run menu
including Start, Body and End elements.

Note: Note that this view only concerns the job
design code, as no code is generated from
business models.

Using a graphical colored code view, the tab shows the code of the component selected in the
workspace. This is a partial view of the primary Code tab docked at the bottom of the
workspace, which shows the code generated for the whole job.

Toolbar and Menus

At the top of Talend Open Studio main window, a tool bar as well as various menus gather Talend
commonly features along with some Eclipse functions.

Quick access toolbar

The toolbar allows you to access quickly the most commonly used functions. It slightly differs
if you work at a Job or a Business Model.

The toolbar allows a quick access to the following actions:

• Run Job: Executes the job currently shown on the design workspace. For more
information about job execution, see Running a job on page 109.
Copyright © 2007 Talend Open Studio 17

Getting started with Talend Open Studio
Configuring Talend Open Studio preferences
• Export project: Launches the Export project wizard. For more information about
project export, see Exporting projects on page 560.

• Import project: Launches the Import project wizard. For more information about
project import, see Importing projects on page 555.

• Undo/Redo: Allows you to redo or undo the last action you performed.

• Zoom in/out: Select the zoom percentage to zoom in or zoom out on your Job.

Menus

Talend Open Studio’s menus include :

• some standard functions, such as Save, Print, Exit, which are to be used at the
application level.

• some Eclipse native features to be used mainly at the Job Designer level.

• as well as specific Talend Open Studio functions.

Although standard Job or Business Model creation and edition are only available through
right-click on the relevant view, some Talend Open Studio features are offered in Menus.

In Window > Preferences > Talend, you can set your preferences. For more information about
preferences, see Configuring Talend Open Studio preferences on page 18.

In Window > Show views, you can manage the different views to display at the bottom of
Talend Open Studio.

Configuring Talend Open Studio preferences

Talend Open Studio opens up on a multiple panel window.

You can define various properties of Talend Open Studio main workspace according to your needs and
preferences.

First, click on the Window menu of your Talend Open Studio, then select Preferences.
18 Talend Open Studio Copyright © 2007

Getting started with Talend Open Studio
Configuring Talend Open Studio preferences
Perl/Java Interpreter path

In the preferences, you might need to let Talend Open Studio pointing to the right interpreter path.

• If needed, click on the Talend node on the Preferences tree (left).

• Enter a path to the Perl/Java interpreter if the default directory does not display the right path.

On the same view, you can also change the preview limit and the path to the temporary files or the
OS language.
Copyright © 2007 Talend Open Studio 19

Getting started with Talend Open Studio
Configuring Talend Open Studio preferences
Status

Under the Talend node, you can also define the Status.

• Expand the Talend node, and click on Status to define the main properties of your
Repository elements.

• The main properties panel of a Repository item gathers information data such as Name,
Purpose, Description, Author, Version and Status of the selected item. Most properties are
free text fields, but the Status field, which is a drop-down list.

• Populate the Status list with the most relevant values, according to your needs. Note that the
Code can not be more than 3-character long and the Label is required.

Talend makes a difference between two status types: Technical status and Documentation status.

The Technical status list displays classification codes for elements which are to be running on
stations, such as jobs, metadata or routines.
20 Talend Open Studio Copyright © 2007

Getting started with Talend Open Studio
Configuring Talend Open Studio preferences
The Documentation status list helps classifying the elements of Repository which can be used to
document processes (Business Models or documentation).

Once you completed the status setting, click OK to save.

The Status list will offer the status levels you defined here when defining the main properties of your
job designs and business models.

External or User components

You can create/develop your own components and use them in Talend Open Studio.

For more information about the creation and development of user components, refer to our wiki
Component creation tutorial section.

In the Preferences folder tree, expand the Talend node, then select Components.
Copyright © 2007 Talend Open Studio 21

http://www.talendforge.org/wiki/

Getting started with Talend Open Studio
Configuring Talend Open Studio preferences
• Fill in the User components folder path to the components to be added to the Palette of
Talend Open Studio.

• Restart Talend Open Studio for the components to show in the Palette in the location that
you defined.
22 Talend Open Studio Copyright © 2007

—Designing a Business Model—
Designing a Business Model

Talend Open Studio offers the best tool to put in place the Top/Down approach allowing high
stakeholders to get the grip on analytics of a project from the most general business model to the most
precise details in its technical application.

This chapter aims at business managers, decision makers or developers who want to model their flow
management needs at a macro level.

Objectives

A Business model is a non technical view of a business workflow need.

Generally, a typical business model will include the strategic systems or process steps already up and
running in your company as well as new needs. You can symbolise these systems, steps and needs using
multiple shapes and create the connections among them. Likely, all of them can be easily described using
repository attributes and formatting tools.

In the Graphical workspace of Talend Open Studio, you can use multiple tools in order to:

• draw your business needs

• create and assign numerous repository items to your model objects

• define appearance properties of your model objects.

Opening or creating a business model

Open Talend Open Studio following the procedure as detailed in the paragraph Accessing Talend Open
Studio on page 5.

From the main page of Talend Open Studio, click on the Business Models node of the Repository
panel to expand the business models tree.
Copyright © 2007 Talend Open Studio 23

Designing a Business Model
Opening or creating a business model
Select the Expand/Collapse option of the right-click
menu, to display all existing business models (if any).

Opening a business model

Double-click on the name of the model to be opened.

The workspace opens up on the selected business model
view.

Creating a business model

Right-click on the Business Models node and select
Create Business Model.

The Creation wizard guides through the steps to create a new business model.

Select the Location folder where you want the new model to be stored in.

And fill in a Name for it. The name you allocate to the file shows as a label on the tab of the model
designer.

The Modeler opens up on the empty design workspace.

You can create as many models as you want and open them all, they will display in a tab system on
your workspace.
24 Talend Open Studio Copyright © 2007

Designing a Business Model
Modeling a business model
The Modeler is made of the following panels:

• Talend Open Studio’s graphical workspace

• a Palette of shapes and lines specific to the Business modeling

• the Properties panel showing specific information about all or part of the model.

Modeling a business model

If you have multiple tabs opened on your designer workspace, click on the relevant tab in order to show
the appropriate model information.

Note: Properties panel and Menus’ items display indeed information relative to the active
model.

Use the Palette to click and drop the relevant shapes and connect them together with branches and
arrange or improve the model visual aspect by zooming in or out.
Copyright © 2007 Talend Open Studio 25

Designing a Business Model
Modeling a business model
This Palette offers graphical representations for objects interacting within a business model.

The objects can be of different types, from strategic system to output document or decision step. Each
one having a specific role in your business model according to the description, definition and assignment
you give to it.

All objects are represented in the Palette as shapes, and can be included in the
model.

Note: If the shapes do not show on the Palette, click on the business folder
symbol to roll down the library of shapes.

Shapes

Select the shape corresponding to the relevant object you want to include in your
business model. Double-click on it or click on the shape in the Palette and drop
it in the modeling area.

Alternatively, for a quick access to the shape library, keep your cursor still on the
modeling area for a couple of seconds to display the quick access toolbar:

For instance, if your business process includes a decision step, select the
diamond shape in the Palette to add this decision step to your model.

Note: When you mouse over the quick access toolbar, a tooltip helps you to
identify the shapes.

Then a simple click will do to make it show on the modeling area.

The shape is placed in a dotted black frame. Pull the corner dots to resize it at
your own convenience.

Also, a blue-edged input box allows you to add a label to the shape. Give an
expressive name in order for you to be able to identify at a glance the role of this
shape in the model.

Two arrows from and to the added shape allow you to create connections with other shapes. You
can hence quickly define sequence order or dependencies between shapes.

Related topic: Connecting shapes on page 27.

The available shapes include:
26 Talend Open Studio Copyright © 2007

Designing a Business Model
Modeling a business model
Connecting shapes

When designing your business model, you want to implement relations between a source shape and
a target shape;

There are two possible ways to connect shapes in your workspace:

Either select the relevant Relationship tool in the Palette. Then, in the modeling workspace, pull
a link from one shape to the other to draw a connection between them.

Callout Details

Decision The diamond shape generally represents an if condition
in the model. Allows to take context-sensitive actions.

Action The square shape can be used to symbolize actions of
any nature, such as transformation, translation or
formatting.

Terminal The rounded corner square can illustrate any type of
output terminal

Data A parallelogram shape symbolize data of any type.

Document Inserts a Document object which can be any type of
document and can be used as input or output for the data
processed.

Input Inserts an input object allowing the user to type in or
manually provide data to be processed.

List forms a list with the extracted data. The list can be
defined to hold a certain nature of data

Database Inserts a database object which can hold the input or
output data to be processed.

Actor This schematic character symbolizes players in the
decision-support as well technical processes

Ellipse Inserts an ellipse shape

Gear This gearing piece can be used to illustrate pieces of code
programmed manually that should be replaced by a
Talend job for example.
Copyright © 2007 Talend Open Studio 27

Designing a Business Model
Modeling a business model
 Or, you can implement both the relationship and the element to be related to or from, in few clicks.

• Simply mouse over a shape that you already dropped on your design workspace, in order to
display the double connection arrows.

• Select the relevant arrow to implement the correct directional connection if need be.

• Drag a link towards an empty area of the design workspace and release to display the
connections popup menu.

• Select the appropriate connection among the list of relationships to or from. You can choose
among simple relationship, directional relationship or bidirectional relationship.

• Then, select the appropriate element to connect to, among the items listed.

You can create a connection to an existing element of the model. Select Existing Element in the
popup menu and choose the existing element you want to connect to in the displaying list box.

The connection is automatically created with the selected shape.
28 Talend Open Studio Copyright © 2007

Designing a Business Model
Modeling a business model
The nature of this connection can be defined using Repository elements, and can be formatted and
labelled in the Properties panel, see Properties on page 30.

When creating a connection, an input box allows you to add a label to the connection you’ve created.
Choose a meaningful name to help you identify the type of relationship you created.

Note: You can also add note and comment to your model in order to identify elements or
connections at a later stage.

Related topic: Commenting and arranging a model on page 29

Commenting and arranging a model

The tools of the Palette allow you to customize your model:

Adding a note or free text

To add a note, select the Note tool in the Palette, docked at the right of the workspace.

Alternatively right-click on the model or the shape you want to link the note to, and select Add
Note

A sticky note displays on the modeling area. If the note is linked to a particular shape, a line is
automatically drawn to the shape.

Type in the text in the input box or, if the latter doesn’t show, type in directly on the sticky note.

If you want to link your notes and specific shapes of your model, click on the
down arrow next to the Note tool on the Palette and select Note attachment.
Pull the black arrow towards an empty area of the design workspace, and
release. The popup menu offers you to attach a new Note to the selected
shape.

You can also select the Add Text feature to type in free text directly in the
modeling area. You can access this feature in the Note drop-down menu of
the Palette or via a shortcut located next to the Add Note feature on the quick access toolbar.

Arranging the model view

You can also rearrange the look and feel of your model via the right-click menu.

Callout Details

Select Select and move the shapes and lines around in
Designer’s modeling area.

Zoom Zoom in to a part of the model. To watch more
acurately part of the model. To zoom out, press Shift
and click on the modeling area.

Note/Text/Note
attachment

Allows comments and notes to be added in order to
store any useful information regarding the model or
part of it.
Copyright © 2007 Talend Open Studio 29

Designing a Business Model
Modeling a business model
Place your cursor in the design area, right-click to
display the menu and select Arrange all. The shapes
automatically move around to give the best possible
reading of the model.

Alternatively, you can select manually the whole
model or part of it.

To do so, right-click on any part of the modeling
area, and click Select.

You can select :

• All shapes and connectors of the model,

• All shapes used in the design workspace,

• All connectors branching together the shapes.

From this menu you can also zoom in and out to part
of the model and change the view of the model.

Properties

The Properties information corresponds to the current selection, if any. This can be the whole model
if you selected all shapes of it or more specifically one of the shapes it is made of. If nothing is
selected, the Properties give general formatting information about the workspace.

The Properties tab contains different type of information regarding:

• Rulers and Grid

• Appearance

• Assignment

Rulers and Grid

To display the Rulers & Grid tab, select the Select tool on the Palette, then click on any empty
area of the design workspace to deselect any current selection.

Click on the Rulers & Grid tab to access the ruler and grid setting panels.
30 Talend Open Studio Copyright © 2007

Designing a Business Model
Modeling a business model
Check the boxes to show the Ruler, the Grid or both.

Grid in front sends to the back all shapes of the model. Select the ruling unit among
Centimeters, inches or pixels.

You can also choose the color as well as the style of the grid lines or restore the default settings.

Appearance

 From the Appearance tab you can apply filling or border colours, change the appearance of
shapes and lines in order to customize your business model or make it easier to read.

The Properties tab includes the following formats:

• fill the shape with selected colour.

• color the shape border
Copyright © 2007 Talend Open Studio 31

Designing a Business Model
Assigning repository elements to a Business Model
• insert text above the shape

• insert gradient colours to the shape

• insert shadow to the shape

You can also move and manage shapes of your model using the edition tools. Right-click on the
relevant shape to access these editing tools.

Assignment

The Assignment table displays details of the Repository attributes you allocated to a shape or a
connection.

To display any assignment information in the table, select a shape or a connection in the active
model.

You can modify some information. Also, if you update data from the Repository tree,
assignment information gets automatically updated.

For further information about how to assign elements to a Business Model, see Assigning
repository elements to a Business Model on page 32.

Assigning repository elements to a Business Model

The Assignment table lists the components from the Repository panel of the main window.
32 Talend Open Studio Copyright © 2007

Designing a Business Model
Editing a Business model
You can define or describe a particular object of your Business
Model, by associating to it, various types of information .

You can set the nature of the data to be assigned, thus facilitating the
job design phase.

The same way as with shapes and connecting lines, simply drag and
drop an item from the Repository panel to assign it to the relevant
shape in the modeling workspace.

Alternatively, you can use the Un/Assign button to carry out this
operation.

The Assignment table, located underneath the workspace gets
automatically updated accordingly with the assigned information of
the selected object.

You can remove assignments through the Un/Assign button.

The Repository offers the following types of items that you can
assign:

For more information about the Repository Components, see Designing a Job Design on page 35

Editing a Business model

Follow the relevant procedure according to your needs:

Component Details

Job designs If any available job designs developed for other
projects in the same repository can be reused in the
active business model

Metadata Any describing data about any of the objects used in
the model. It can be connection information to a
database for example.

Business Models If other business model of this repository have been
designed, they can be reused in the active model.

Documentation Any type of documentation in any format. It can be
a technical documentation, some guidelines in text
format or a simple description of your databases.

Routines (Code) If some routines have been developed in a previous
project, to automate tasks for example, they can be
reused in the active model. Routines are stored in the
Code folder of the Repository
Copyright © 2007 Talend Open Studio 33

Designing a Business Model
Saving a business model
Renaming a business model

Click on the current business model label on the Repository panel, to display the corresponding
Main properties information.

Then make your edits on the Name field.The label is changed automatically on the Repository and
will be reflected on the Model tab of the workspace, the next time you open it.

Copying and pasting a business model

In Repository > Business model, right-click on the business model name to be copied and select
Copy in the popup menu, or press Ctrl+c.

Then right-click where you want to paste your business model, and select Paste.

Moving a business model

To move a business model from a location to another in your business models project folder, select
a business model in the Repository > Business Models tree.

Then simply drag and drop it to the new location.

Alternatively, right-click on the relevant business model and select Move in the popup menu.

Deleting a business model

Right-click on the name of the model to be deleted and select Delete in the popup menu.

Alternatively, simply select the relevant business model, then drag and drop it into the Recycle bin
of the Repository panel.

Saving a business model

To save a business model, click on File > Save or press Ctrl+s. The model is saved under the name you
gave during the creation process.

An asterisk displays in front of the business model name tab when changes have been made to the model
but not yet saved.
34 Talend Open Studio Copyright © 2007

—Designing a Job Design—
Designing a Job Design

This chapter aims at programmers or IT managers who are ready to implement technical aspects of a
business model (designed or not in Talend Open Studio’s Business Modeler). Talend Open Studio
helps you to develop the job design that will allow you to put in place an up and running dataflow
management.

Objectives

A job design is the runnable layer of a business model. It translates business needs into code, routines
and programs, in other words it technically implements your data flow.

The Job design is the graphical and functional view of a technical process.

From Talend Open Studio, you can:

• put in place actions in your job design using a library of technical components.

• change the default setting of components or create new components or family of components to
match your exact needs.

• set connections and relationships between components in order to define the sequence and the
nature of actions

• access code at any time to edit in Perl or document your job components.

• create and add items to the Repository for reuse and sharing purposes (in other projects or jobs
or with other users).

Opening or Creating a job

Open Talend Open Studio following the procedure as detailed in chapter Accessing Talend Open Studio
on page 5.

In Talend Open Studio Repository panel, click on the Job Designs node to expand the technical job
tree.

You can create folders via the right-click menu to gather together families of jobs. Right-click on the Job
Designs node, and choose Create folder. Give a name to this folder and click OK.

If you have already created jobs that you want to move in this new folder, simply drag and drop them
into the folder.
Copyright © 2007 Talend Open Studio 35

Designing a Job Design
Opening or Creating a job
Opening a job

Double-click on the label of the job you want to open.

The Designer opens up on the selected job last view.

Note: You can open as many job designs as you need. They
will all display in a tab system on your workspace.

Creating a job

Right-click on the Job Designs node and select Create job in the
pop-up menu. The Creation wizard helps you to define the new job main properties.
36 Talend Open Studio Copyright © 2007

Designing a Job Design
Getting started with a Job Design
The Designer opens an empty tab, on the workspace, showing only the job name as tab label.

Note: You can create as many job designs as you want and open them all, they will display
in a tab system on your workspace.

The Designer is made of the following panels:

• Talend Open Studio’s Graphical workspace

• a Palette of components and connections specific to the Job Designer

• a Properties panel which can be edited to change or set parameters related to a particular part
or component of the model.

Getting started with a Job Design

Until a job is created, the design workspace as well as the palette of components are greyed out.

If you’re designing a job for the first time, the workspace opens on an empty area. If you’re opening an
already existing job, it opens on the last view it was saved on.

Showing, hiding and moving the palette

The Palette contains all basic elements to create the most complex jobs in the design workspace.
These components are gathered in families and sub-families.

By default, the palette is hidden on the right side of your design workspace.

If you want the Palette to show permanently, click on the left arrow, at the right top corner
of the designer, to make it visible at all time.

For specific component properties, see chapter Components on page 117.

You can also move around the Palette outside the workspace within Talend Open Studio’s window.
To enable the standalone Palette view, click on Window menu > Show View... > General > Palette.

Field Description

Name Enter a name for your new job. A message comes up if you enter prohibited
characters.

Purpose Enter the job purpose or any useful information regarding the job use.

Description Enter a description if need be for the job created.

Author The Author field is read-only as it shows by default the current user login.

Version The Version is also read-only. You can manually increment the version using
the M and m button

Status You can define the status of a job in your preferences. By default none is
defined. To define them, go to Window > Preferences > Talend >Status.
Copyright © 2007 Talend Open Studio 37

Designing a Job Design
Getting started with a Job Design
Click & drop components from the Palette

Click on a Component or a Note to start with, on the Palette. Then click again to drop it on the
workspace and add it to your job design.

If the Palette doesn’t show, see Showing, hiding and moving the palette on page 37.

Multiple information or warnings may show next to the component. Browse over the component
icon to display the information tooltip. This will display until you fully completed your job design
and defined each component properties.

WARNING—you will be required to use the relevant code, i.e. Perl code in perl jobs and java code in
Java jobs.

Related topics:

• Connecting components together on page 42

• Warnings and errors on component on page 41

• Defining job Properties on page 46

Drag & Drop components from the Metadata Manager

For recurrent use of files and DB connections in various jobs, we recommend you to store the
connection and schema metadata in the Repository. For more information about the Metadata
Manager wizards, see Defining Metadata items on page 51.
38 Talend Open Studio Copyright © 2007

Designing a Job Design
Getting started with a Job Design
Once the relevant metadata are stored in the Metadata Manager of the Repository, you will be able
to drag & drop elements directly onto the design workspace.

• Open the relevant node of the Metadata area in the Repository.

• Then select the relevant connection to a file or a DB table

• Select a schema if more than one is stored under the same connection

According to the type of component (Input or Output) that you want to use, perform one of the
following operations:

• Input: Drag & drop the selection towards the design workspace to include it in the active job.

• Output: Press Ctrl on your keyboard while you drag & drop the component onto the
designer to include it in the active job.

The Properties tab shows the selected connection details as well as the selected schema
information.

Note: If you selected the connection without selecting a schema, then the first encountered
schema will be filling the properties.

Adding Notes to a job design

Select the relevant note tool in the list among Note, Text or Note attachment.These various note
options are also available through a right-click.
Copyright © 2007 Talend Open Studio 39

Designing a Job Design
Getting started with a Job Design
Click and drop the Note element onto the workspace to add a note to a particular component or to
the whole job.

The Note shows as a sticky note on the design workspace.

The Text note allows you to type in directly onto the workspace.

The Note attachment allows you to bind the sticky note to particular element of the workspace.

Changing panels position

All panels can be moved around according to your needs.
40 Talend Open Studio Copyright © 2007

Designing a Job Design
Getting started with a Job Design
Click on the border or on a tab, hold down the mouse button and drag the panel to the target
destination. Release to change the panel position.

Click on the cross to close one view. To get a view back on display, click Window > Show View >
Talend, then click on the name of the panel you want to add to your current view or see Shortcuts
and aliases on page 115.

If the Palette doesn’t show or if you want to set it apart in a panel, go to Window > Show view...>
General > Palette. The Palette opens in a separate view that you can move around wherever you
like within Talend Open Studio’s window.

Warnings and errors on component

When a component is not properly defined or if the link to the next component does not exist yet, a
red checked circle or a warning sign is docked at the component icon.

Mouse over the component, to display the tooltip messages or warnings along with the label. This
context-sensitive help informs you about any missing data or component status.
Copyright © 2007 Talend Open Studio 41

Designing a Job Design
Connecting components together
Connecting components together

There are various types of connections which define either the data to be processed, the data output, or
else the job logical sequence.

On your workspace, when dragging the link away from your source component towards the
destination component, a graphical plug indicates if the destination component is valid or not.
The black crossed circle only disappears once you reached a valid target component.

Connection types

Only the connections authorized for the selected component are listed on the right-click pop-up
menu.

The types of connections proposed are different for each
component according to its nature and role within the job, if
the connection is meant to transfer data (from a defined
schema) or if no data is handled.

The types of connections available depend also if the data
come from one or multiple input files and get transferred
towards one or multiple outputs.

Select a component on the workspace, and right-click to display the pop-up menu. All links
available for the selected component display.

Row connection

The Row connection handles actual data transfer. The Row links can be main, lookup or output
according to the nature of the flow processed.

Main row

The Main row is the most commonly used connection. It passes on data flows from one
component to the other, iterating on each row and reading input data according to the
component properties setting (schema).

Data transferred through main rows are characterized by a schema definition which
describes the data structure in the input file.
42 Talend Open Studio Copyright © 2007

Designing a Job Design
Connecting components together
Note: Note that you cannot connect two Input components together using a main
Row connection.

Note: Note also that only one incoming Row connection is possible per component.
You will not be able to link twice the same target component using a main
Row connection.

To be able to use multiple Row connections, see Multiple Input/Output on page 45.

Lookup row

The Lookup row is a Row connecting a sub-flow component to a main flow component.
This connection is used only in the case of multiple input flows.

A Lookup row can be changed into a main row at any time (and in reverse, a main row can
be changed to a lookup row). To do so, right-click on the row to be changed, and on the
pop-up menu, click on Set this connection as Main.

Related topic: Multiple Input/Output on page 45.
Copyright © 2007 Talend Open Studio 43

Designing a Job Design
Connecting components together
Output row

The Output row is a Row connecting a component to the final output component. As the
job output can be multiple, you get prompted to give a name for each output row created.

Note: Note that the system remembers also deleted output link names (and
properties if they were defined) to avoid you to fill in again name and property
data in case you want to reuse them.

Related topic: Multiple Input/Output on page 45.

Iterate connection

The Iterate connection can be used to loop on files contained in a directory, on rows contained
in a file or on DB entries.

A component can be the target of only one Iterate link. The Iterate link is mainly to be
connected to the Start component of a flow (either main or secondary).

Some components are meant to be connected through an iterate link with the next component,
such as tFilelist component.

Note that the Iterate link name is read-only unlike the other connections.

Trigger connections

The trigger connections define the processing sequence. No data is handled through trigger
connections.

The connection in use will create a dependency between jobs or sub-jobs which therefore will
trigger one after the other according to the trigger nature.

There are two kinds of triggers: chronological trigger and contextual triggers.

ThenRun (previously Run Before and Run after) is a chronological trigger, in the way, that you
run the first component and then run the next component. This connection is to be used only with
Start components.

Related topic: Defining the Start component on page 51.

Run if, Run if OK and Run if Error are contextual triggers. They can be used with any source
component but are to be connected to Start component of a main or secondary job flow.

• Run if OK will only trigger the target component once the execution of the source
component is complete. Its main use could be to trigger notification sub-jobs for
example.
44 Talend Open Studio Copyright © 2007

Designing a Job Design
Connecting components together
• Run if Error will trigger the sub-job or component as soon as an error is encountered
in the primary job.

• Run if triggers a sub-job or component in case the condition defined is met. Click on the
connection to display the If trigger Properties panel and set the condition in Perl or in
Java according to the generation language you selected. The Ctrl+Space bar allows to
access all global and contect variables.

Link connection

The Link connection can only be used with ELT components. The Links transfer table schema
information to the ELT mapper component in order to be used in specific DB query statements.

Related topics: Components on page 117

The Link connection therefore does not handle actual data but only the metadata regarding the
table to be queried on.

When right-clicking on the ELT component to be connected, select Link > New Output.

WARNING—Be aware that the name you provide to the link MUST reflect the actual table name.

In fact, the link name will be used in the SQL statement generated through the ETL Mapper,
therefore the same name should never be used twice.

Multiple Input/Output

For the time being, if you need to handle data through multiple input points and/or multiple outputs
and integrate a transformation in one flow, you want to use the tMap component, which is dedicated
to this use.

For further information regarding data mapping , see Mapping data flows in a job on page 83.

For properties regarding the tMap component as well as use case scenarios, see tMap on page 335.
Copyright © 2007 Talend Open Studio 45

Designing a Job Design
Defining job Properties
Defining job Properties

The Properties information shows detailed data. The Main tab thus recalls information relative to the
author and job name as filled in at creation stage as well as other general information. And the other tabs
show more specific information about the job or the component selected.

Main

The properties panel shows the Main properties of the selected component. The values of
information data are filled in automatically by the component itself and will be used in the code.
Therefore all fields are read-only, but the Activate box.

The Activate box enables the component function in the job or the sub-job it belongs to, hence code
related to its properties will be generated.

If the Activate box is unchecked, obviously no code will be generated for the component itself but
also for all directly related branches in the job.

For further information regarding the enabling/disabling job feature, see Activating/Disabling a job
or sub-job on page 100.

Field Description

Unique Name Unique identifier, allocated automatically by the
system in order for it to be reused in the code.

Version Component version, independant from the version of
the whole product version.

Family Group of components relative to the same function.
This field is read-write and new family can be created
here.

Activate Check this box to activate the selected component and
the directly linked job.

tStatCatcher Statistics Check this box to allow the tStatCatcher component to
aggregate processing data as defined in the properties
of tStatCatcher on page 506
46 Talend Open Studio Copyright © 2007

Designing a Job Design
Defining job Properties
View

The View tab of the Properties panel allows you to change the default display format of components
on the workspace.

You can graphically highlight both Label and Hint text with HTML formatting tags:

• Bold: YourLabelOrHint

• Italic: <i> YourLabelOrHint </i>

• Return carriage: YourLabelOrHint
 ContdOnNextLine

• Color: YourLabelOrHint

To change your preferences of this View panel, click Window>Preferences>Talend>Designer.

Documentation

Feel free to add any useful comment or chunk of text or documentation to your component.

Field Description

Label format Free text label showing on the workspace. Variables can be set to retrieve and
display values from other fields. The field tooltip usually shows the
corresponding variable where the field value is stored.

Hint format Hidden tooltip, showing only when you mouse over the component.

Show hint Check this box to enable the tooltip feature.
Copyright © 2007 Talend Open Studio 47

Designing a Job Design
Defining job Properties
The content of this Comment field will be formatted using Pod markup and will be integrated in the
generated code. You can view your comment in the Code panel.

You can show the Documentation in your hint tooltip using the associated variable (_COMMENT_)

For advanced use of Documentations, you can use the Repository Documentation area in order to
store and reuse any type of documentation.

Properties

Each component has specific properties shown on the Properties tab of the Properties panel. See
Components on page 117 for details about how to fill in the fields.

Make sure you use the relevant code, i.e. Perl code in perl properties and java code in Java
properties.

For all components you can centralize Properties information in metadata files located in the
Repository Metadata directory. Select Repository as Property type and choose the metadata file
holding the relevant information. Related topic: Defining Metadata items on page 51.

For all Input-type components, you can define the schema to follow in order to select data to be
processed. Like the Properties data, this schema is either built-in or stored remotely in the
Repository in a metadata file that you created.
48 Talend Open Studio Copyright © 2007

Designing a Job Design
Defining job Properties
Setting a built-in schema

A schema created as built in the job is meant for a single use in a job, hence cannot be reused
in another job nor station.

Select Built-in in the list, and click on Edit Schema and create your built-in schema by adding
columns and describing their content, according to the input file definition.

In all Output Properties also, you also have to define the schema of the output. To retrieve the
schema defined in the Input schema, click on Sync columns button.

Note: In Java, some extra information is required. For more information about Date
pattern for example, check out:
http://java.sun.com/j2se/1.5.0/docs/api/index.html

Setting a repository schema

You can avoid redundancy of schema metadata and hold them together in a central place, by
creating metadata files and store them in the Repository Metadata directory.

To recall a metadata file into your current job, select the Schema type Repository and select the
relevant metadata file in the list. Then click on Edit Schema to check the data are appropriate.
Copyright © 2007 Talend Open Studio 49

http://java.sun.com/j2se/1.5.0/docs/api/index.html

Designing a Job Design
Defining job Properties
You are free to edit a repository schema used for a job. However, note that the schema hence
becomes built-in to the current job.

You cannot change the remotely stored schema from this window.

Related topics: Defining Metadata items on page 51

Setting a field dynamically (Ctrl+Space bar)

On any field of your job/component Properties view, you can use Ctrl+Space bar to access
the global and context variable list and set the relevant field value dynamically.

• Place the cursor on any field of the Properties view.

• Press Ctrl+Space bar to access the proposal list.

• Select on the list the relevant parameters you need. Appended to the Variable list, a
information panel provides details about the selected parameter.

This can be any parameter including: error messages, number of lines processed, or else... The
list varies according to the component in selection or the context you’re working in.
50 Talend Open Studio Copyright © 2007

Designing a Job Design
Defining the Start component
Defining the Start component

The Start component is the trigger of a job. There can be several Start components per job design if there
are several flows running in parallel. But for one flow and its connected subflows, only one component
can be the Start component.

Click and drop a component onto the workspace, all possible start components take a distinctive bright
green background colour. Notice that most of the components, can be Start components.

Only components which don’t make sense to trigger a flow, will not be proposed as Start components,
such as tMap component for example.

To distinguish which component is to be the Start component of your job, identify the main flow and
the secondary flows of your job

• The main flow should be the one connecting a component to the next component using a Row
type link. The Start component is then automatically set on the first component of the main flow
(icon with green background).

• The secondary flows are also connected using a Row-type link which is then called Lookup row
on the workspace to distinguish it from the main flow. This Lookup flow is used to enrich the
main flow with more data.

Be aware that you can change the Start component hence the main flow by changing a main Row into
a Lookup Row, simply through a right-click on the row to be changed.

Related topics:

• Connecting components together on page 42

• Activating/Disabling a job or sub-job on page 100

Defining Metadata items

Talend Open Studio is a metadata-driven solution, and can therefore help you ensure the whole job
consistency and quality, through a centralized metadata manager.
Copyright © 2007 Talend Open Studio 51

Designing a Job Design
Defining Metadata items
Use the Repository to store, in the Metadata area, the recurrent information on files used to build your
job and retrieve them easily from the Properties panel of any component. These metadata generally
include: DB connections, File path and schemas.

Follow two main steps to setup schemas either from a DB or a File-type connection.

First step is to setup a connection to the File or to the DB. Then second step is to define the schema based
on DB table or File metadata.

This procedure differs slightly depending on the type of
connection chosen. Below are the respective procedures to set up
various connections and define multiple schemas.

Click on Metadata in the Repository to expand the folder tree.

Each of the connection nodes will gather the various connections
you setup.

Setting up a DB schema

For DB table based schemas, the creation procedure is in two
separate but closely related operations. First Right-click on Db
Connections and select Create connection on the pop-up menu.

Step 1: general properties

A connection wizard opens up. Fill in the generic Schema properties such as Schema Name and
Description. The Status field is a customized field you can define in Window > Preferences.
52 Talend Open Studio Copyright © 2007

Designing a Job Design
Defining Metadata items
Click Next when completed, the second step requires you to fill in DB connection data.

Step 2: connection

Select the type of Database you want to connect to and some fields will be greyed out or enabled
according to the DB connection detail requirements.
Copyright © 2007 Talend Open Studio 53

Designing a Job Design
Defining Metadata items
Fill in the connection details and, check your connection by clicking on Check.

Fill in if need be, the database properties information. That’s all for the first operation on DB
connection setup, click Finish to validate.

The newly created DB connection is now available in the Repository and displays four folders
including Queries for SQL queries you save and Table schemas that will gathers all schema
linked to this DB connection.
54 Talend Open Studio Copyright © 2007

Designing a Job Design
Defining Metadata items
Now right-click on the newly created connection, and select Retrieve schema on the pop-up
menu.

Step 3: table upload

A new wizard opens up on the first step window. The List offers all tables present on the DB
connection. It can be any type of DBs.

Select one or more tables on the list, to load them on your Repository filesystem.You will base
your repository schemas on these tables.

If no schema is visible on the list, click Check connection, to verify the DB connection status.

Click Next. On the new window, four setting panels help you define the schemas to create.

In Java, make sure the data type is correctly defined. For more information regarding data types,
including date pattern, check out http://java.sun.com/j2se/1.5.0/docs/api/index.html.

Step 4: schema definition

By default, the schema displayed on the Schema panel is based on the first table selected in the
list of schemas loaded (left panel). You can change the name of the schema and according to
your needs, you can also customize the schema structure in the schema panel.

Indeed, the tool bar allows you add, remove or move column in your schema. And, you can load
an xml schema or export the current schema as xml.

To retrieve a schema based on one of the loaded table schemas, select the DB table schema name
in the drop-down list and click on Retrieve schema. Note that the retrieved schema then
overwrites any current schema and doesn’t retain any custom edits.

Click Finish to complete the DB schemas creation. All created schemas display under the
relevant DB connection node.
Copyright © 2007 Talend Open Studio 55

http://java.sun.com/j2se/1.5.0/docs/api/index.html

Designing a Job Design
Defining Metadata items
Setting up a File Delimited schema

File delimited metadata can be used for both InputFileDelimited and InputFileCSV design
components as both csv and delimited files are based on the same structure.

WARNING—The File schema creation is very similar for all types of File connections: Delimited,
Positional, Regex, Xml, or Ldif.

On the Repository, right-click on File Delimited tree node, and select Create file delimited on the
pop-up menu.

Unlike the DB connection wizard, the Delimited File wizard gathers both file connection and
schema definition in a four-step procedure.

Step 1: general properties

On the first step, fill in the schema generic information, such as Schema Name and Description.

For further information, see Step 1: general properties on page 52.

Step 2: file upload

Define the Server IP address where the file is stored. And click Browse... to set the File path.
56 Talend Open Studio Copyright © 2007

Designing a Job Design
Defining Metadata items
Select the OS Format the file was created in. This information is used to prefill subsequent step
fields. If the list doesn’t include the appropriate format, ignore it.

The File viewer gives an instant picture of the file loaded. It allows you to check the file
consistency, the presence of header and more generally the file structure.

Click Next to Step3.

Step 3: schema definition

In this view, you can refine your data description and file settings. Click on the squares below,
to zoom in and get more information.
Copyright © 2007 Talend Open Studio 57

Designing a Job Design
Defining Metadata items
Set the Encoding, as well as Field and Row separators in the Delimited File Settings.

58 Talend Open Studio Copyright © 2007

Designing a Job Design
Defining Metadata items
Depending on your file type (csv or delimited), you can also set the Escape and Enclosure
characters to be used.

If the file preview shows a header message, you can exclude the header from the parsing. Set
the number of header rows to be skipped. Also, if you know that the file contains footer
information, set the number of footer lines to be ignored.

The Limit of rows allows you to restrict the extend of the file being parsed.

In the File Preview panel, you can view the new settings impact.

Check the Set heading row as column names box to transform the first parsed row as labels
for schema columns. Note that the number of header rows to be skipped is then incremented
of 1.
Copyright © 2007 Talend Open Studio 59

Designing a Job Design
Defining Metadata items
Click Refresh on the preview panel for the settings to take effect and view the result on the
viewer.

Step 4: final schema

The last step shows the Delimited File schema generated. You can customize the schema using
the toolbar underneath the table.
60 Talend Open Studio Copyright © 2007

Designing a Job Design
Defining Metadata items
If the Delimited file which the schema is based on is changed, use the Guess button to generate
again the schema. Note that if you customized the schema, the Guess feature doesn’t retain these
changes.

Click Finish. The new schema displays on the Repository, under the relevant File Delimited
connection node.

Setting up a File Positional schema

On the Repository, right-click on File Positional tree node, and select Create file positional on the
pop-up menu.
Copyright © 2007 Talend Open Studio 61

Designing a Job Design
Defining Metadata items
Proceed the same way as for the file delimited connection. Right-click on Metadata on the
Repository and select Create file positional.

Step 1: general properties

 Fill in the schema generic information, such as Schema Name and Description.

Step 2: connection and file upload

Then define the positional file connection settings, by filling in the Server IP address and the
File path fields.

Like for Delimited File schema creation, the format is requested for prefill purpose of next step
fields. If the file creation OS format is not offered in the list, ignore this field.

The file viewer shows a file preview and allows you to place your position markers.
62 Talend Open Studio Copyright © 2007

Designing a Job Design
Defining Metadata items
Click on the file preview and set the marker against the ruler. The orange arrow helps you refine
the position.

The Field length lists a series of figures separated by commas, these are the number of
characters between markers. The asterisk symbol means all remaining characters on the row,
from the preceding marker position.

The Marker Position shows the exact position of the marker on the ruler. You can change it to
refine the position.

You can add as many markers as needed. To remove a marker, drag it towards the ruler.

Click Next to continue.

Step 3: schema refining

The next step opens the schema setting window. As for the Delimited File schema, you can
refine the schema definition by precising the field and row separators, the header message
number of lines and else...

At this stage, the preview shows the file delimited upon the markers’ position. If the file contains
column labels, check the box Set heading row as column names.

Step 4: final schema

Step 4 shows the final generated schema. Note that any characters which could be
misinterpreted by the program are replaced by neutral characters, like underscores replace
asterisks.

You can add a customized name (by default, metadata) and make edits to it using the tool bar.

You can also retrieve or update the Positional File schema by clicking on Guess. Note however
that any edits to the schema might be lost after “guessing” the file-based schema.
Copyright © 2007 Talend Open Studio 63

Designing a Job Design
Defining Metadata items
Setting up a File Regex schema

Regex file schemas are used for files containing redundant information, such as log files.

Proceed the same way as for the file delimited or positional connection. Right-click on Metadata on
the Repository and select Create file regex.

Step 1: general properties

 Fill in the schema generic information, such as Schema Name and Description.

Step 2: file upload

Then define the Regex file connection settings, by filling in the Server IP address and the File
path fields.

Like for Delimited File schema creation, the format is requested for prefill purpose of next step
fields. If the file creation OS format is not offered in the list, ignore this field.
64 Talend Open Studio Copyright © 2007

Designing a Job Design
Defining Metadata items
The file viewer gives an instant picture of the loaded file. Click Next to define the schema
structure.

Step 3: schema definition

This step opens the schema setting window. As for the other File schemas, you can refine the
schema definition by precising the field and row separators, the header message number of lines
and else...

In the Regular Expression settings panel, enter the regular expression to be used to delimit the
file.

Take care to use the correct Regex syntax according to the generation language in use as
the syntax is different in Java/Perl, and to include the regexp in single or double quotes
accordingly.

Then click Refresh preview to take into account the changes. The button changes to Wait until
the preview is refreshed.

Click next when setting is complete. The last step generates the Regex File schema.

Step 4: final schema

You can add a customized name (by default, metadata) and make edits to it using the tool bar.

You can also retrieve or update the Regex File schema by clicking on Guess. Note however that
any edits to the schema might be lost after guessing the file based schema.

Click Finish. The new schema displays on the Repository, under the relevant File regex
connection node.
Copyright © 2007 Talend Open Studio 65

Designing a Job Design
Defining Metadata items
Setting up a FileLDIF schema

LDIF files are directory files described by attributes. FileLDIF metadata centralize these LDIF type
files and their attribute description.

Proceed the same way as for other file connections. Right-click on Metadata on the Repository and
select Create file Ldif.

Note: Make sure that you installed the relevant Perl module as described in the Installation
guide. For more info, check out http://talendforge.org/wiki/doku.php

Step 1: general properties

On the first step, fill in the schema generic information, such as Schema name and description.

Step 2: file upload

Then define the Ldif file connection settings, by filling in the File path field.
66 Talend Open Studio Copyright © 2007

Designing a Job Design
Defining Metadata items
Note: The connection functionality to a remote server is not in operation yet for LDIF
file collection.

The File viewer provides a preview of the file’s first 50 rows.

Step 3: schema definition

The list of attributes of the description file displays on the top of the panel. Select the attributes
you want to extract from the LDIF description file, by checking the relevant boxes.
Copyright © 2007 Talend Open Studio 67

Designing a Job Design
Defining Metadata items
Click Refresh Preview to include the selected attributes into the file preview.

Note: DN is omitted in the list of attributes as this key attribute is automatically included
in the file preview hence in the generated schema.

Step 4: final schema

The schema generated shows the columns of the description file. You can customize it upon
your needs and reload the original schema using the Guess button.

Click Finish. The new schema displays on the Repository, under the relevant File LDif
connection node.

Setting up a FileXML schema

Centralize your XPath query statements over a defined XML file and gather the values fetched from
it.

Proceed the same way as for other file connections. Right-click on Metadata on the Repository and
select Create file XML.
68 Talend Open Studio Copyright © 2007

Designing a Job Design
Defining Metadata items
Step 1: general properties

On the first step, fill in the schema generic information, such as Schema name and description.
Click Next when you’re complete.

Step 2: file upload

Browse to the XML File to upload and fill in the Encoding if the system didn’t detect it
automatically.

The file preview shows the XML node tree structure.

Click Next to the following step.

Step 3: schema definition

Set the parameters to be taken into account for the schema definition.
Copyright © 2007 Talend Open Studio 69

Designing a Job Design
Defining Metadata items
The schema definition window is divided into four panels:

• Source Schema: Tree view of the uploaded XML file structure

• Target Schema: Extraction and iteration information

• Preview: Target schema preview

• File viewer: Raw data viewer
70 Talend Open Studio Copyright © 2007

Designing a Job Design
Defining Metadata items
In the Xpath loop expression field, enter the absolute xpath expression leading to the structure
node which the iteration should apply on. You can type in the entire expression or press
Ctrl+Space to get the autocompletion list.

Or else, drag and drop the node from the source structure towards the target schema Xpath field.

Note: The Xpath loop expression field is compulsory.

You can also define a Loop limit to restrict the iteration to a number of nodes. A green link is
then created.

Then define the fields to extract. Simply drag and drop the relevant node to the Relative or
absolute XPath expression field.

Use the plus sign to add rows to the table and select as many fields to extract, as you need. Press
the Ctrl or the Shift keys for multiple selection of grouped or separate nodes, and drag & drop
them to the table.
Copyright © 2007 Talend Open Studio 71

Designing a Job Design
Defining Metadata items
In the Tag name field, give a name the column header that will display on the schema preview
(bottom left panel).

The selected link is blue, and all other links are grey. You can prioritize the order of fields to
extract using the up and down arrows.

Click Refresh preview to display the schema preview. The fields will then be displayed in the
schema preview in the order given (top field on the left).

Step 4: final schema

The schema generated shows the selected columns of the XML file. You can customize it upon
your needs or reload the original schema using the Guess button.

Click Finish. The new schema displays on the Repository, under the relevant File XML
connection node.
72 Talend Open Studio Copyright © 2007

Designing a Job Design
Defining Metadata items
Setting up a LDAP schema

On the Repository, right-click on LDAP tree node, and select Create LDAP schema on the pop-up
menu.

Unlike the DB connection wizard, the LDAP wizard gathers both file connection and schema
definition in a four-step procedure.

Step 1: general properties

On the first step, fill in the schema generic information, such as Schema Name and Description.

For further information, see Step 1: general properties on page 52.

Step 2: server connection

Fill the connection details.

Then check your connection using Check Network Parameter to verify the connection and
activate the Next button.
Copyright © 2007 Talend Open Studio 73

Designing a Job Design
Defining Metadata items
Click Next to validate this step and continue.

Step 3: authentication and DN fetching

In this view, set the authentication and data access mode.

Click Check authentication to verify your access rights.

Field Description

Host LDAP Server IP address

Port Listening port to the LDAP directory

Encryption method LDAP : no encryption is used
LDAPS: secured LDAP
TLS: certificate is used
74 Talend Open Studio Copyright © 2007

Designing a Job Design
Defining Metadata items
Click Fetch Base DNs to retrieve the DN and click the Next button to continue.

Step 4: schema definition

Select the attributes to be included in the schema structure.

Add a filter if you want selected data only.

Field Description

Authentication method Simple authentication: requires Authentication Parameters
field to be filled in
Anonymous authentication: does not require authentication
parameters

Authentication Parameters Bind DN or User: login as expected by the LDAP authentication
method
Bind password: expected password
Save password: remembers the login details.

Get Base DN from Root DSE /
Base DN

Path to user’s authorised tree leaf
Fetch Base DNs button retrieves the DN automatically from Root.

Alias Dereferencing Never allows to improve search performance if you are sure that no
aliases is to be dereferenced. By default, Always is to be used.
Always: Always dereference aliases
Never: Never dereferences aliases.
Searching:Dereferences aliases only after name resolution.
Finding: Dereferences aliases only during name resolution

Referral Handling Redirection of user request:
Ignore: does not handle request redirections
Follow:does handle request redirections

Limit Limited number of records to be read
Copyright © 2007 Talend Open Studio 75

Designing a Job Design
Defining Metadata items
Click Refresh Preview to display the selected column and a sample of the data.

Then click Next to continue.

Step 5: final schema

The last step shows the LDAP schema generated. You can customize the schema using the
toolbar underneath the table.
76 Talend Open Studio Copyright © 2007

Designing a Job Design
Defining Metadata items
If the LDAP directory which the schema is based on has changed, use the Guess button to
generate again the schema. Note that if you customized the schema, your changes won’t be
retained after the Guess operation.

Click Finish. The new schema displays on the Repository, under the relevant LDAP
connection node.

Setting up a Generic schema

Talend Open Studio allows you to create any schema from scratch if none of the specific metadata
wizards matchs your need or if you don’t have any source to take the schema from. The creation
procedure is made of two steps.

First right-click on Generic Schema on the Repository and select Create generic schema.
Copyright © 2007 Talend Open Studio 77

Designing a Job Design
Creating queries using SQLBuilder
Step 1: general properties

A connection wizard opens up. Fill in the generic Schema properties such as Schema Name and
Description. The Status field is a customized field you can define in Window > Preferences.

Click Next when completed.

Step 2: schema definition

There is no default schema displaying as there is no source to take it from.

• You can give a name to the schema or use the default name (metadata) and add a
comment if you feel like.

• Then, customize the schema structure in the schema panel, based on your needs.

• Indeed, the tool bar allows you add, remove or move columns in your schema. Also, you
can load an xml schema or export the current schema as xml.

• Click Finish to complete the generic schema creation. All created schemas display under
the relevant Generic Schemas connection node.

Creating queries using SQLBuilder

SQLBuilder helps you build your SQL queries and monitor the changes between DB tables and metadata
tables. This editor is available in all DBInput and DBSQLRow components (specific or generic).

You can build a query using SQLbuilder whether your database table schema is stored in the repository
or built-in directly in the job component.

Fill in the DB connection details and select the appropriate repository entry if you defined it.

Remove the default query statement in the Query field of the component Properties panel. Then click
on the three-dot button to open the SQL Builder.
78 Talend Open Studio Copyright © 2007

Designing a Job Design
Creating queries using SQLBuilder
The SQL Builder editor is made of the following panels:

• Database structure

• Query editor made of editor and designer tabs

• Query execution view

• Schema view

The Database structure shows the tables for which a schema was defined either in the repository database
entry or in your built-in connection.

The schema view, in the bottom right corner of the editor, shows the column description.

Database structure comparison

On the database structure panel, are shown all the tables stored in the DB connection metadata entry
(Repository) or in case of built-in schema, the tables of the database itself.
Copyright © 2007 Talend Open Studio 79

Designing a Job Design
Creating queries using SQLBuilder
Note: the connection to the database, in case of built-in schema or in case of refreshing
operation of a repository schema, might take quite some time.

Click the refresh icon to display the differences found between the DB metadata tables and the actual
DB tables.

The Diff icons point out that the table contains differences or gaps. Develop the table node to show
the exact column containing the differences.

The red highlight shows that the content of the column contains differences or that the column is
missing from the actual database table.

The blue highlight shows that the column is missing from the table stored in the repository metadata.

Building a query

The Query editor is a multiple-tab system allowing you to write or graphically design as many
queries as you want.

To create a new query, right-click on the table or on the table column and select Generate Select
Statement on the pop-up list.

Click on the empty tab showing by default and type in your SQL query or press Ctrl+Space to
access the autocompletion list. The tooltip bubble shows the whole path to the table or table section
you want to search in.
80 Talend Open Studio Copyright © 2007

Designing a Job Design
Creating queries using SQLBuilder
Alternatively the graphical query designer allows you to handle tables easily and have real-time
generation of the corresponding query in the edit tab.

Click on Designer tab to switch from manual Edit mode to graphical mode.

Note: You may get a message while switching from one view to the other, as some SQL
statements cannot be interpreted graphically.

If you selected a table, all columns are selected by default. Uncheck the box facing the relevant
columns to exclude them from the selection.

Add more tables in a simple right-click. On the designer tab, right-click and select Add tables in
the pop-up list then select the relevant table to be added.

If joins between these tables already exist, these joins are automatically set up graphically in the
editor.

You can also very easily create a join between tables. Right-click on the first table columns to be
linked and select Equal on the pop-up list, to join it with the relevant field of the second table.
Copyright © 2007 Talend Open Studio 81

Designing a Job Design
Creating queries using SQLBuilder
The SQL statement corresponding to your graphical handlings is also displayed on the viewer part
of the editor or click on the edit tab to switch back to manual Edit mode.

Note: In Designer mode, you cannot include graphically filter criteria.These need to be
added in Edit mode.

Once your query is complete, execute it by clicking on the running man button.

The toolbar above the query editor allows you to access quickly usual commands such as: execute,
open, save and clear.

On the Query results view, are displayed the results of the active tab’s query.

The status bar at the bottom of this panel provides information about execution time and number of
rows retrieved.

Storing a query in the Repository

To be able to retrieve and reuse queries, we recommend you to store them in the Repository.

In the SQL Builder editor, click on Save (floppy disk icon on the tool bar) to bind the query with
the DB connection and schema in case these are also stored in the Repository.

The query can then be accessed from the Database structure view, on the left-hand side of the
editor.
82 Talend Open Studio Copyright © 2007

Designing a Job Design
Mapping data flows in a job
Mapping data flows in a job

For the time being, the way to handle multiple input and output flows including transformations and data
re-routing is to use the tMap component. The following section gives details about the usage principles
of this component, for further information or scenario and use cases, see tMap on page 335.

tMap operation overview

tMap allows the following types of operations:

• data multiplexing and demultiplexing

• data transformation on any type of fields

• fields concatenation and interchange

• field filtering using constraints

• data rejecting

As all these operations of transformation and/or routing are carried out by tMap, this component
cannot be a Start or End component in the job design.

tMap uses incoming connections to pre-fill input schemas with data in the Mapper. Therefore, you
cannot create new input schemas straight in the Mapper. Instead, you need to implement as many
Row connections incoming to tMap component as required, in order to create as many input
schemas as needed.

The same way, create as many output row connections as required. However, you can fill in the
output with content straight from the Mapper through a convenient graphical editor.

Note that there can be only one Main incoming rows. All other incoming rows are of Lookup type.
Related topic: Row connection on page 42
Copyright © 2007 Talend Open Studio 83

Designing a Job Design
Mapping data flows in a job
Lookup rows are incoming connections from secondary (or reference) flows of data. These
reference data might depend directly or indirectly on the primary flow. This dependency relationship
is translated with an graphical mapping and the creation of an expression key.

Although the mapper requires the connections to be implemented in order to define Input and Output
flows, you also need to create the actual mapping in order for the Preview to be available in the
Properties panel of the workspace.

Double-click the tMap icon or click on the Map editor three-dot button to open the Mapping editor
in a new window.

tMap interface

tMap is an advanced component which requires more information than other components. Indeed,
the Mapper is an “all-in-one” tool allowing you to define all parameters needed to map, transform
and route your data flows via a convenient graphical interface.

For all tables and the Mapper window, you can minimize and restore the window using the window
icon.
84 Talend Open Studio Copyright © 2007

Designing a Job Design
Mapping data flows in a job
The Mapper is made of several panels:

• The Input panel is the top left panel on the window. It offers a graphical representation of
all (main and lookup) incoming data flows. The data are gathered in various columns of input
tables. Note that the table name reflects the main or lookup row from the job design on the
workspace.

• The Variable panel is the central panel on the Mapper window. It allows the centralization
of redundant information through the mapping to variable and allows you to carry out
transformations.

• The Output panel is the top right panel on the window. It allows mapping data and fields
from Input tables and Variables to the appropriate Output rows.
Copyright © 2007 Talend Open Studio 85

Designing a Job Design
Mapping data flows in a job
• Both bottom panels are the Input and Output schemas description. The Schema editor tab
offers a schema view of all columns of input and output tables in selection in their respective
panel.

• Expression editor is the edition tool for all expression keys of Input/Output data, variable
expressions or filtering conditions.

The name of Input/Output tables in the mapping editor reflects the name of the incoming and
outgoing flows (row connections).

Setting the input flow in the Mapper

The order of the Input tables is essential. The top table reflects the Main flow connection, and for
this reason, is given priority for reading and processing through the tMap component.

For this priority reason, you are not allowed to move up or down the Main flow table. This ensures
that no Join can be lost.

Although you can use the up and down arrows to
interchange Lookup tables order, be aware that
the Joins between two lookup tables may then be
lost.

Related topic: Explicit Join on page 87.

Filling in Input tables with a schema

To fill in input tables, you need to define first the
schemas of all input components connected to
the tMap component on your Job Designer.

Main and Lookup table content

The order of the Input tables is essential.

The Main Row connection determines the Main
flow table content. This input flow is reflected in
the first table of the Mapper’s Input panel.

The Lookup connections’ content fills in all
other (secondary or subordinate) tables which
displays below the Main flow table. If you
haven’t define the schema of an input component
yet , the input table displays as empty in the Input
area.

The key is also retrieved from the schema
defined in the Input component. This Key
corresponds to the key defined in the input
schema where relevant. It has to be distinguished
from the hash key that is internally used in the
Mapper, which displays in a different color.
86 Talend Open Studio Copyright © 2007

Designing a Job Design
Mapping data flows in a job
Variables

You can use global or context variables or reuse the variable defined in the Variables zone.
Press Ctrl+Space bar to access the list of variables. This list gathers together global,
context and mapping variables.

The list of variables changes according to the context and grows along new variable
creation. Only valid mappable variables in the context show on the list.

Docked at the Variable list, a metadata tip box display to provide information about the
selected column.

Related topic: Mapping variables on page 91

Explicit Join

In fact, Joins let you select data from a table depending upon the data from another table. In the
Mapper context, the data of a Main table and of a Lookup table can be bound together on
expression keys. In this case, the order of table does fully make sense.

Simply drag and drop column names from one table to a subordinate one, to create a Join
relationship between the two tables. This way, you can retrieve and process data from multiple
inputs.

The join displays graphically as a violet link and creates automatically a key that will be used
as a hash key to speed up the match search.

You can create direct joins between the main table and lookup tables. But you can also create
indirect joins from the main table to a lookup table, via another lookup table. This requires a
direct join between one of the Lookup table to the Main one.

Note: You cannot create a Join from a subordinate table towards a superior table in the
Input area.

The Expression key field which is filled in with the dragged and dropped data is editable in the
input schema or in the Schema editor panel, whereas the column name can only be changed
from the Schema editor panel.

You can either insert the dragged data into a new entry or replace the existing entries or else
concatenate all selected data into one cell.
Copyright © 2007 Talend Open Studio 87

Designing a Job Design
Mapping data flows in a job
For further information about possible types of drag & drops, see Output setting on page 92.

Note: If you have a great number of input tables, note that you can use the
minimize/maximize icon to reduce or restore the table size in the Input area. The
Join binding two tables remain visible eventhough the table is minimized.

Creating a join automatically assigns a hash key onto the joined field name. The key symbol
displays in violet on the input table itself and is removed when the join between the two tables
is removed.

Related topics:

• Schema editor on page 95

• Inner join on page 89

Along with the explicit Join you can select whether you want to filter down to a unique match
of if you allow several matches to be taken into account. In this last case, you can choose to only
consider the first or the last match or all of them.

Unique Match (java)

This is the default selection when you implement an explicit Join. This means that zero or
one match from the Lookup will be taken into account and passed on to the output.

If more matches are available, a warning notification displays.
88 Talend Open Studio Copyright © 2007

Designing a Job Design
Mapping data flows in a job
First or Last Match (java)

This selection implies that several matches can be expected in the lookup. The First or Last
Match selection means that in the lookup only the first encountered or the last encountered
match will be taken into account and passed onto the main output flow.

The other matches will then be ignored.

All Matches (java)

This selection implies that several matches can be expected in the lookup flow. In this case,
all matches are taken into account and passed on to the main output flow.

Inner join

The Inner join is a particular type of Join that distinguishes itself by the way the rejection is
performed.

This option avoids that null values are passed on to the main output flow. It allows also to pass
on the rejected data to a specific table called Inner Join Reject table.

If the data searched cannot be retrieved through the explicit join or the filter (inner) join, in other
words, the Inner Join cannot be established for any reason, then the requested data will be
rejected to the Output table defined as Inner Join Reject table if any.

Basically check the Inner Join box located at the top a lookup table, to define this table as Inner
Join table.

On the Output area, click on the Inner Join Reject button to define the Inner Join Reject
output.
Copyright © 2007 Talend Open Studio 89

Designing a Job Design
Mapping data flows in a job
Note: An Inner Join table should always be coupled to an Inner Join Reject table

You can also use the filter button to decrease the number of rows to be searched and improve
the performance (in java).

Related topics:

• Inner Join Rejection on page 94

• Filtering an input flow (java) on page 90

All rows (java)

When you check the All rows box , the Inner Join feature gets automatically greyed out. This
All rows option means that all the rows are loaded from the Lookup flow and searched against
the Main flow.

The output corresponds to the Cartesian product of both table (or more tables if need be).

Filtering an input flow (java)

Click the Filter button next to the Inner join button to add a Filter area.

In the Filter area, type in the condition to be applied. This allows to reduce the number of rows
parsed against the main flow, enhancing the performance on long and heterogeneous flows.

You can use the Autocompletion tool via the Ctrl+Space bar keystrokes in order to reuse
schema columns in the condition statement.

This feature is only available in Java therefore the filter condition needs to be written in Java.

Removing Input entries from table

To remove Input entries, click on the red cross sign on the Schema Editor of the selected table.
Press Ctrl or Shift and click on fields for multiple selection to be removed.
90 Talend Open Studio Copyright © 2007

Designing a Job Design
Mapping data flows in a job
Note: Note that if you remove Input entries from the Mapper schema, this removal also
occurs in your component schema definition.

Mapping variables

The Variable table regroups all mapping variables which are used numerous times in various places.

You can also use the Expression field of the Var table to carry out any transformation you want to,
using Perl code or Java Code.

Variables help you save processing time and avoid you to retype many times the same data.

There are various possibilities to create variables:

• Type in freely your variables in Perl. Enter the strings between quotes or concatenate
functions using a dot as coded in Perl.

• Add new lines using the plus sign and remove lines using the red cross sign. And press
Ctrl+Space to retrieve existing global and context variables.

• Drag and drop one or more Input entries to the Var table.

Select an entry on the Input zone or press Shift key to select multiple entries of one Input table.

Press Ctrl to select either non-appended entries in the same input table or entries from various tables.
When selecting entries in the second table, notice that the first selection displays in grey. Hold the
Ctrl key down to drag all entries together. A tooltip shows you how many entries are in selection.

Then various types of drag and drops are possible depending on the action you want to carry out.
Copyright © 2007 Talend Open Studio 91

Designing a Job Design
Mapping data flows in a job
Accessing global or context variables

Press Ctrl+Space to access the global and context variable list.

Appended to the Variable list, a metadata list provides information about the selected column.

Removing variables

To remove a selected Var entry, click on the red cross sign. This removes the whole line as well
as the link.

Press Ctrl or Shift and click on fields for multiple selection then click the red cross sign.

Output setting

On the workspace, the creation of a Row connection from the tMap component to the output
components adds Output schema tables to the Mapper window.

You can also add an Output schema in your Mapper, using the plus sign from the tool bar of the
Output zone.

Unlike the Input zone, the order of output schema tables does not make such a difference, as there
is no subordination relationship between outputs (of Join type).

Once all connections, hence output schema tables, are created, you can select and organize the
output data via drag & drops.

You can drag and drop one or several entries from the Input zone straight to the relevant output table.

Press Ctrl or Shift, and click on entries to carry out multiple selection.

How to... Associated actions

Insert all selected entries as separated
variables.

Simply drag & drop to the Var table. Arrows show you
where the new Var entry can be inserted. Each Input is
inserted in a separate cell.

Concatenate all selected input entries
together with an existing Var entry

Drag & drop onto the Var entry which gets
highlighted. All entries gets concatenated into one
cell. Add the required operators using Perl/Java
operations signs. The dot concatenates string
variables.

Overwrite a Var entry with selected
concatenated Input entries

Drag & drop onto the relevant Var entry which gets
highlighted then press Ctrl and release. All selected
entries are concatenated and overwrite the highlighted
Var.

Concatenate selected input entries with
highlighted Var entries and create new
Var lines if needed

Drag & drop onto an existing Var then press Shift
when browsing over the chosen Var entries. First
entries get concatenated with the highlighted Var
entries. And if necessary new lines get created to hold
remaining entries.
92 Talend Open Studio Copyright © 2007

Designing a Job Design
Mapping data flows in a job
Or you can drag expressions from the Var zone and drop them to fill in the output schemas with the
appropriate reusable data.

Note that if you make any change to the Input column in the Schema Editor, a dialog prompts you
to decide to propagate the changes throughout all Input/Variable/Output table entries, where
concerned.

You can add filters and rejection to customize your outputs.

Building complex expressions

If you have complex expressions to build, or advanced changes to be carried out on the output
flow, then the Expression Builder interface can help in this task.

Click on the Expression field of your input or output table to display the three-dot button. Then
click on this three-dot button to open the Expression Builder.

For more information regarding the Expression Builder, see Writing code using the Expression
Builder on page 97.

Filters

Filters allow you to make a selection among the input fields, and send only the selected fields
to various outputs.

Click the plus button at the top of the table to add a filter line.

You can enter freely your filter statements using Perl operators and function.

Drag and drop expressions from the Input zone or from the Var zone to the Filter row entry of
the relevant Output table.

Action Result

Drag & Drop onto existing expressions Concatenates the selected expression with the existing
expressions.

Drag & Drop to insertion line Inserts one or several new entries at start or end of
table or between two existing lines.

Drag & Drop + Ctrl Replaces highlighted expression with selected
expression.

Drag & Drop + Shift Adds to all highlighted expressions the selected fields.
Inserts new lines if needed.

Drag & Drop + Ctrl + Shift Replaces all highlighted expressions with selected
fields. Inserts new lines if needed.
Copyright © 2007 Talend Open Studio 93

Designing a Job Design
Mapping data flows in a job
An orange link is then created. Add the required Perl/Java operator to finalize your filter
formula.

You can create various filters on different lines. The AND operator is the logical conjunction of
all stated filters.

Rejections

Reject options define the nature of an output table.

It groups data which do not satisfy one or more filters defined in the regular output tables. Note
that as regular output tables, are meant all non-reject tables.

This way, data rejected from other output tables, are gathered in one or more dedicated tables,
allowing you to spot any error or unpredicted case.

The Reject principle concatenates all non Reject tables filters and defines them as an ELSE
statement.

Create a dedicated table and click the Output reject button to define it as Else part of the regular
tables.

You can define several Reject tables, to offer multiple refined outputs. To differenciate various
Reject outputs, add filter lines, by clicking on the plus arrow button.

Once a table is defined as Reject, the verification process will be first enforced on regular tables
before taking in consideration possible constraints of the Reject tables.

Note that data are not exclusively processed to one output. Although a data satisfied one
constraint, hence is routed to the corresponding output, this data still gets checked against the
other constraints and can be routed to other outputs.

Inner Join Rejection

The Inner Join is a Lookup Join. The Inner Join Reject table is a particular type of Rejection
output. It gathers rejected data from the main row table after an Inner Join could not be
established.

To define an Output flow as container for rejected Inner Join data, create a new output
component on your job that you connect to the Mapper. Then in the Mapper, click on the Inner
Join Reject button to define this particular Output table as Inner Join Reject table.
94 Talend Open Studio Copyright © 2007

Designing a Job Design
Mapping data flows in a job
Removing Output entries

To remove Output entries, click on the cross sign on the Schema Editor of the selected table.

Expression editor

All expressions (Input, Var or Output) and constraint statements can be viewed and edited from the
Expression editor. This editor provides visual comfort to write any functions or transformation in a
handy dedicated window.

Select the expression to be edited. Click on Expression editor.

Enter the Perl code or Java code according to your needs. The corresponding table expression is
synchronized.

Note: Refer to the relevant Perl or Java documentation for more information regarding
functions and operations.

The Expression Builder can help you address your complex expression needs. For more
informationWriting code using the Expression Builder on page 97.

Schema editor

The Schema Editor details all fields of the selected table.
Copyright © 2007 Talend Open Studio 95

Designing a Job Design
Mapping data flows in a job
Use the tool bar below the schema table, to add, move or remove columns from the schema.

You can also load a schema from the Repository or export it into a file.

Note: Note that Input metadata and Output metadata are independent from each other. You
can for instance change the label of a column on the Output side without the column
label of the Input schema being changed.

However, any change made to the metadata are immediately reflected in the corresponding schema
on the tMap relevant (Input or Output) zone, but also on the schema defined for the component itself
on the workspace.

A Red colored background shows that an invalid character has been entered. Most special characters
are prohibited in order for the job to be able to interpret and use the text entered in the code.
Authorized characters include lower-case, upper-case, figures except as start character.

Browse the mouse over the red field, a tooltip displays the error message.

Metadata Description

Column Column name as defined on the Mapper schemas and on the Input or
Output component schemas

Key The Key shows if the expression key data should be used to retrieve
data through the Join link. If unchecked, the Join relation is disabled.

Type Type of data. String or Integer.

Note: This column should always be defined in Java
version.

Length -1 shows that no length value has been defined in the schema.

Precision precises the length value if any is defined.

Nullable Uncheck this box if the field value should not be null

Default Shows any default value that may be defined for this field.

Comment Free text field. Enter any useful comment.
96 Talend Open Studio Copyright © 2007

Designing a Job Design
Writing code using the Expression Builder
Writing code using the Expression Builder

Some jobs require pieces of code to be written in order to provide components with parameters. In the
Properties view of some components, an Expression Builder interface can help you build these pieces
of code (in Java or Perl generation language).

The following example shows the use of the Expression Builder in a tMap component.

Two input flows are connected to the tMap component.

• From the DB input, comes a list of names made of a first name and a last name separated by a
space char.

• From the File input, comes a list of US states, in lower case.

In the tMap, use the expression builder to: First, replace the blank char separating the first and last
names with an underscore char, and second, change the states from lower case to upper case.

• In the tMap, set the relevant inner join to set the reference mapping. For more information
regarding the use of the tMap, see Mapping data flows in a job on page 83.

• Drag and drop the Names column from the main (row1) input to the output area, and the State
column from the lookup (row2) input towards the same output area.

• Then click on the first Expression field (row1.Name) to display the three-dot button.

The Expression Builder window opens up.
Copyright © 2007 Talend Open Studio 97

Designing a Job Design
Writing code using the Expression Builder
• In the Category area, select the relevant action you want to perform. In this example, select
StringHandling and select the EREPLACE function.

• In the Expression area, paste row1.Name in place of the text expression, in order to get:
StringHandling.EREPLACE(row1.Name," ","_"). This expression will replace the
separating space char with an underscore char in the char string given.

• Now check that the output is correct, by typing in the relevant Value field of the Test area, a
dummy value, e.g:Tom Jones.

• Then click Test! and check that the correct change is carried out, e.g: Tom_Jones

• Click OK to validate.

• Carry out the same operation for the second column (State).

• In the tMap output, select the row2.State Expression and click the three-dot button to open the
Expression builder again.
98 Talend Open Studio Copyright © 2007

Designing a Job Design
Writing code using the Expression Builder
• This time, the StringHandling function to be used is UPCASE. The complete expression
says: StringHandling.UPCASE(row2.State).

• Once again, check that the expression syntax is correct using a dummy Value in the Test area,
e.g.: indiana.

• The Test! result should display INDIANA for this example.

• Click OK to validate.

Both expressions now display on the tMap Expression field.

These changes will be carried out along the flow processing. The output of this example is as shown
below.
Copyright © 2007 Talend Open Studio 99

Designing a Job Design
Activating/Disabling a job or sub-job
Activating/Disabling a job or sub-job

You can enable or disable the whole job or a sub-job directly connected to the selected component. By
default, a component is activated.

In the Main properties of the selected component, check or uncheck the Activate box.

Alternatively, right-click on the component and select the relevant Activate/Deactivate command
according to the current component status.

If you disable a component, no code will be generated, you will not be able to add or modify links from
the disabled component to active or new components.

Related topic: Defining the Start component on page 51.
100 Talend Open Studio Copyright © 2007

Designing a Job Design
Defining Contexts and variables
Disabling a Start component

In the case the component you deactivated is a Start component, components of all types and links
of all nature connected directly and indirectly to it will get disabled too.

Disabling a non-Start component

When you uncheck the Activate box of a regular (non Start) component, are deactivated only the
selected component itself along with all direct links.

If a direct link to the disabled component is a main Row connection to a sub-job. All components
of this sub-job will also get disabled.

Defining Contexts and variables

Depending on the circumstances the job is being used in, you might want to manage it differently for
various execution types (Prod and Test for example). For instance, there might be various stages of test,
you want to perform and validate before a job is ready to go live for production use.

Talend Open Studio offers you the possibility to create multiple context data sets. Furthermore you can
either create context data sets on a one-shot basis, from the context tab of a job or you can centralize
the context data sets in the Contexts area of the repository in order to reuse them in different jobs.

Defining job context variables

In any Properties field defining a component, you can use an existing global variable or a context
variables.

Press Ctrl+Space bar to display the whole list of global and context variables used in various
predefined Perl functions. The context variables are created by the user for a particular context,
whereas the global variables are a system variables.

The list grows along with new user-defined variables (context variables).

Related topic: Contexts view on page 103

Short creation of context variables

Create quickly your context variables via the F5 keystroke:

• Place your cursor on the field that you want to parameterize in the current context
(possibly the default one).

• Press F5 to display the context parameter dialog box:
Copyright © 2007 Talend Open Studio 101

Designing a Job Design
Defining Contexts and variables
• Give a Name to this new variable, fill in the Comment zone and choose the Type.

• Enter a Prompt to be displayed to confirm the use of this variable in the current job
execution (generally used for test purpose). And check the Prompt for value box to
display the field as editable value.

• If you filled in a value already in the corresponding properties field, this value is
displayed in the Default value field. Else, type in the default value you want to use for
one context.

• Click Finish to validate.

• Go to the Contexts tab. Notice that the context variables tab lists the newly created
variables.

If this is the first ever context created, note that the default context cannot be changed.

Note: Note that the variable name should follow some typing rules and should not
contain any forbidden characters, such as space char.

StoreSQLQuery

StoreSQLQuery is a user-defined variable and is dedicated to debugging mainly.

StoreSQLQuery is different from other context variables in the fact that its main purpose is to
be used as parameter of the specific global variable called Query. It allows you to dynamically
feed the global query variable.
102 Talend Open Studio Copyright © 2007

Designing a Job Design
Defining Contexts and variables
The global variable Query, is available on the proposals list (Ctrl+Space bar) for couple of DB
input components.

For further details on StoreSQLQuery settings, see the Components chapter, in particular
tDBInput Scenario 2: Using StoreSQLQuery variable on page 163.

Contexts view

The Contexts view is positioned on the lower part of the Job Designer and is made of three tabs:
Variables, Values as tree and Values as table.

Note: If you cannot find the Contexts view on the tab system of Talend Open Studio, go
to Window > Show view > Talend, and select Contexts.

Variables tab

A context is characterized by parameters. These parameters are mostly context-sensitive
variables which will be added to the list of variables available for reuse in the
component-specific properties through the Ctrl+Space bar keystrokes.

The Variables tab shows all variables that have been defined for each component of the current
job. For further information regarding variable definition, see Defining job context variables on
page 101.

If needed, add a parameter line to the table by clicking on Plus (+), and fill in with the required
information.You can add as many entries as you need. Make sure that the corresponding variable

Note that you cannot configure the contexts from the Variables tab, but only from the Values
as table or as tree tabs.

Values as table tab

This Values as table tab shows the context and variable settings in the form of a table.

Fields Description

Name Name of the variable.

Type Select the type of data being handled. This is required in Java.

Script Code corresponding to the variable value. It depends on the
Generation language you selected (Java or Perl) such as in Perl:
$_context{YourParameterName. This Script code is
automatically generated when you define the variable in the
Properties view of a component.

Comment Add any useful comment
Copyright © 2007 Talend Open Studio 103

Designing a Job Design
Defining Contexts and variables
You can manage your contexts from this tab, through the small down arrow button placed on the
top right hand side of the Contexts panel. See Configuring contexts on page 105 for further
information regarding the context management.

For more information regarding variable definition, see Defining job context variables on page
101 and Storing contexts in the Repository on page 107.

Values as tree tab

This tab shows the variables as well as their defined values in the form of a tree.

You can manage your contexts from this tab, through the small down arrow button placed on the
top right hand side of the Contexts panel. See Configuring contexts on page 105 for further
information regarding the context management.

For more information regarding variable definition, see Defining job context variables on page
101 and Storing contexts in the Repository on page 107.

On the Values as tree tab, you can display the values based on the contexts or on the variables
for more clarity.

Fields Description

Name Name of the variable.

YourContextName Corresponding value for the variable.

Fields Description

Context Name of the contexts.

Variable Name of the variables.

Prompt Check this box, if you want the variable to be editable in the
Confirmation dialog box at execution time.

If you asked for a prompt to popup, fill in this field to define the message
to show on the dialog box.

Value Value for the corresponding variable. Through this field you can update
the value of the variable and hence define various.

Comment Add any useful comment
104 Talend Open Studio Copyright © 2007

Designing a Job Design
Defining Contexts and variables
To change the way the values are displayed on the tree, click on the small down arrow button
and select Context Presentation, then click on the group by option you want.

Configuring contexts

You can only manage your contexts from the Values as table or Values as tree tabs. A small down
arrow button shows up on the top right hand side of the Contexts panel.

Select Configure Contexts... on the pop-up menu.

Access to the
Context
configuration
Copyright © 2007 Talend Open Studio 105

Designing a Job Design
Defining Contexts and variables
Note: The default context cannot be edited nor removed, therefore the Edit and Remove
buttons are greyed out. To make it editable, select another context on the Default
Context list of the Contexts tab.

Creating a context

Based on the default context you set, you can create as many context as you need.

• To create a new context, click on New on the Configure Contexts window.

• Type in a name for the new context.

Click OK to validate the creation.

When you create a new context, the entire default context legacy is copied over to the new
context.You hence only need to edit the relevant fields to customize the context according to
your use.

The drop-down list Default Context shows all the contexts you created .
106 Talend Open Studio Copyright © 2007

Designing a Job Design
Defining Contexts and variables
You can switch default context by simply selecting the new default context on the Default
Context list on the Contexts tab.

Note that the Default context can never be edited nor removed. There should always be a context
to run the job. This context being called Default or any other name.

Renaming or editing a context

To change the name of an existing context, click on Edit and enter the new context name in the
dialog box showing up.

Click OK to validate the change.

To carry out changes on the actual values of the context variables, go to the Values as tree or
Values as table tabs. For more information about these tabs, see Contexts view on page 103.

Storing contexts in the Repository

You can store centrally all contexts if you need to reuse them accross various jobs.

Right-click on the Contexts entry in the repository and select Create new context group in the list.

A 2-step wizard helps you to define the various contexts and context parameters, that you’ll be able
to select on the Contexts view of the Job Designer.

• On the Step 1, type in a name for the context group to be created.

• Add any general information such as a description.

• Click Next.

The Step 2 allows you to define the various contexts and variables that you need.
Copyright © 2007 Talend Open Studio 107

Designing a Job Design
Defining Contexts and variables
First define the default context’s variable set that will be used as basis for the other contexts.

• On the Variables tab, define the name of the variables to be used in the Name field.

• Select the Type of variable on the list.

• The Script code varies according to the type of variable you selected (and the generation
language). It will be used in the generated code.

On the Tree or Table views, define the various contexts and the values of the variables.

• Define the values for the default (first) context variables.

• Then create a new context that will be based on the variables values that you just set. For
more information about how to create a new context, see Configuring contexts on page 105.

On the Values as tree tab, you can also add a prompt if you want the variable to be editable in a
Confirmation dialog box at execution time.
108 Talend Open Studio Copyright © 2007

Designing a Job Design
Running a job
• To add a prompt message, check the facing box

• And type in the message you want to display at execution time.

Once you created and adapted as many context sets as you want, click Finish to validate. The group
of contexts thus set display under the Contexts node on the Repository.

To apply a context to a job, click on the Contexts tab, select Repository as Context type.

Then select the relevant Context from the repository. The selected context’s parameters show as
read-only values.

Running a job in selected context

You can select the context you want the job design to be executed in.

Click on Run Job tab, and in the Context area, select the relevant context
among the various ones you created.

If you didn’t create any context, only the Default context shows on the
list.

All the context variables you created for the selected context display,
along with their respective value, in a table underneath. If you checked
the Prompt box next to some variables, you will get a dialog box allowing

you to change the variable value for this job execution only.

To make a change permanent in a variable value, you need to change it on the context parameter
setup panel either . Related topic: Contexts view on page 103

Running a job

You can execute a job in several ways. This mainly depends on the purpose of your job execution and
on your user level.
Copyright © 2007 Talend Open Studio 109

Designing a Job Design
Running a job
If you are an advanced Perl/Java user and want to execute your project step by step to check and possibly
modify it on the run, see Running in debug mode on page 111.

If you don’t have advanced Perl knowledge and want to execute and monitor your job in normal mode,
see Running in normal mode on page 110.

Running in normal mode

Make sure you saved your job before running it in order for all properties to be taken into account.

• Click on the Run Job tab to access the panel.

• In the Context zone, select the right context for the job to be executed in. You can also check
the variable values

If you haven’t defined any particular execution context, the context parameter table is empty and the
context is the default one. Related topic: Defining Contexts and variables on page 101

• Click on Run to start the execution.

• On the same panel, the log displays the progress of the execution. The log includes any error
message as well as start and end messages. It also shows the job output in case of tLogRow
component is used in the job design.

Before running again a job, you might want to remove the log content from the execution panel.
Check the Clear before run box, for the log to be cleared each time you execute again a job.

If for any reason, you want to stop the job in progress, simply click on Kill button. You’ll need to
click the Run button again, to start again the job.

Talend Open Studio offers various informative features, such as statistics and traces, facilitating the
job monitoring and debugging work.

Displaying Statistics

The Statistics feature displays each component performance rate, underneath the component
icon on the design workspace.

It shows the number of rows processed and the processing time in row per second, allowing you
to spot straight away any bottleneck in the data processing flow.

Note: Exception is made for external components which cannot offer this feature if their design
doesn’t include it.

Check the Statistics box to activate the stats feature and click again to disable it.

The Stats calculation only starts along with the job execution launchs, and stops at the end of it.
110 Talend Open Studio Copyright © 2007

Designing a Job Design
Running a job
Click Clear to remove the calculated stats displayed. Check the Clear before Run box to reset
the Stats feature before each execution.

Note: The statistics thread slows down sensibly the time performance of a job execution
as the job must send these stats data to the Designer in order to be displayed.

Displaying Traces

The tracking feature is relatively basic in Talend Open Studio for the time being. But it should
be enhanced in a near future.

It provides a row by row view of the component behaviour and displays the dynamic result next
to the row link.

This feature allows you to monitor all components of a job, without switching to Debug mode,
hence without requiring advanced Perl/Java knowledge.

The Traces function displays the content of processed rows in a table.

Note: Exception is made for external components which cannot offer this feature if their
design doesn’t include it.

Click on Traces button to activate the tracking feature and click again to disable it.

The trace only launches along with the job launches, and stops at the end of it.

Click on Clear to remove the tracking data displayed.

Note: Note that the table is limited horizontally, however mouse over the table to display
the whole data table. On the other hand, the table does not have any vertical
limitation. This might become an issue for very long data tables.

Running in debug mode

Note that to run a job in Debug mode, you need the EPIC module to be installed.

Before running your job in Debug mode, add breakpoints to the major steps of your job flow.

This will allow you to get the job to automatically stop at each breakpoint. This way
components and their respective variables can be verified individually and debugged
if required.

To add breakpoints to a component, right-click on it on the Job Design workspace,
and select Add breakpoint on the popup menu.
Copyright © 2007 Talend Open Studio 111

Designing a Job Design
Saving or exporting your jobs
A pause icon displays next to the component where the break is added.

To switch to debug mode, click on the Debug button on the Run Job panel. Talend Open Studio’s
window gets reorganised for debugging.

You can then run the job step by step and check each breakpoint component for the expected
behaviour and variable values.

To switch back to Talend Open Studio designer mode, click on Window, then Perspective and
select Talend Open Studio.

Saving or exporting your jobs

Saving a job

When closing a job or Talend Open Studio, a dialog box prompts you to save the currently open
jobs if not already done.

In case several jobs were unsaved, check the box facing the jobs you want to save. The Job is stored
in the relevant project folder of your workspace directory.

Alternately, click File > Save or press Ctrl+S.

Exporting job scripts

For detailled procedure for exporting jobs outside Talend Open Studio, see Exporting job
scripts on page 561.
112 Talend Open Studio Copyright © 2007

Designing a Job Design
Generating HTML documentation
Generating HTML documentation

Talend Open Studio allows you to produce detailed documentation in HTML of the jobs selected.

• On the Repository, right-click on a Job entry or select several Job Designs to produce multiple
documentations.

• Select Generate Doc as HTML on the pop-up menu.

• Browse to the location where the generated documentation archive should be stored.

• On the same field, type in a Name for the archive gathering all generated documents.

• Click Finish to validate the generation operation.

The archive file contains all required files along with the Html output file. Open the html file in your
favourite browser.

Automating stats & logs use

If you have a great need of log, statistics and other measurement of your data flows, you are facing the
issue of having too many log-related components loading your job designs. You can automate the use
of tFlowMeterCatcher, tStatCatcher, tLogCatcher functionalities without using the components in
your job thanks to the Stats & Logs tab.
Copyright © 2007 Talend Open Studio 113

Designing a Job Design
Automating stats & logs use
The Stats & Logs tab is located underneath the Design workspace and prevents overloading your jobs
designs by superseding the log-related components with a general log configuration.

• Click anywhere on your Job design but on the component.

• Select the Stats & Logs tab to display the configuration view.

• Set the relevant details depending on the output you prefer (console, file or database).

• Check the relevant Catch option according to your needs.
114 Talend Open Studio Copyright © 2007

Designing a Job Design
Shortcuts and aliases
Shortcuts and aliases

Below is a table gathering all keystrokes currently in use:

Shortcut Operation Context

F3 Show Properties view Global application

F4 Show Run Job view Global application

F6 Run current job or Show Run Job view if no job
is open.

Global application

Ctrl + F2 Show Module view Global application

Ctrl + F3 Show Problems view Global application

Ctrl + H Switch to current Job Design view Global application

Ctrl + G Show Code tab of current Job Global application

Ctrl + Shift + F3 Synchronize components perljet templates and
associated java classes

Global application

F7 Switch to Debug mode From Run Job view

F5 Create a context variable from any properties
field

From any job Properties tab view

F8 Kill current job From Run Job view

F5 Refresh Modules install status From Modules view

Ctrl+Space bar Access global and user-defined variables. It can
be error messages or line number for example,
depending on the component selected.

From any component field in
Properties view
Copyright © 2007 Talend Open Studio 115

Designing a Job Design
Shortcuts and aliases
116 Talend Open Studio Copyright © 2007

—Components—
Components

This chapter details the main components’ properties provided in the Palette of Talend Open Studio.
Each component has a specific list of properties and parameters, editable through the Properties tab of
the Properties panel.

In the component properties section, an icon or points out whether the component is
available in Java and/or in Perl.

Click on one of the following link to jump to the relevant component datasheet:

Families Components

Business
Connectors

Salesforce tSalesforceInput tSalesforceOutput

SugarCRM tSugarCRMInput tSugarCRMOutput

CentricCRM tCentricCRMInput tCentricCRMOutput

VtigerCRM tVtigerCRMInput tVtigerCRMOutput

Data quality tFuzzyMatch tAddCRCRow

Databases tCreateTable

AS400 tAS400Input tAS400Output tAS400Row

Access tAccessInput tAccessOutput tAccessRow

DB Generic tDBInput tDBOutput tDBSQLRow

DB2 tDB2Input tDB2Output tDB2Row

tDB2SCD tDB2SP

Firebird tFirebirdInput tFirebirdOutput tFirebirdRow

HSQLDb tHSQLDbInput tHSQLDbOutput tHSQLDbRow

Informix tInformixInput tInformixOutput tInformixRow

Ingres tIngresInput tIngresOutput tIngresRow

tIngresSCD

Interbase tInterbaseInput tInterbaseOutput tInterbaseRow

JDBC tJDBCInput tJDBCOutput tJDBCRow

tJDBCSP
Copyright © 2007 Talend Open Studio 117

Components
LDAP tLDAPInput tLDAPOutput

MSSqlServer tMSSqlInput tMSSqlOutput tMSSqlRow

tMSSqlSCD tMSSqlBulkExec tMSSqlOutputBulk

tMSSqlOutputBulkE
xec

tMSSqlSP

MySQL tMysqlInput tMysqlOutput tMysqlRow

tMysqlOutputBulk tMysqlBulkExec tMysqlOutputBulk
Exec

tMysqlConnection tMysqlCommit tMysqlSCD

tMysqlSP

Oracle tOracleInput tOracleOutput tOracleRow

tOracleBulkExec tOracleSCD tOracleSP

tOracleCommit tOracleConnection tOracleOutputBulk

tOracleOutputBulkE
xec

tOracleRollback

PostgresSQL tPostgresqlInput tPostgresqlOutput tPostgresqlRow

tPostgresqlBulkExe
c

tPostgresqlCommit tPostgresqlConne
ction

tPostgresqlOutputB
ulk

tPostgresqlOutputBulk
Exec

tPostgresqlRollba
ck

SQLite tSQLiteInput tSQLiteOutput

Sybase tSybaseInput tSybaseOutput tSybaseRow

tSybaseBulkExec tSybaseOutputBulk tSybaseOutputBul
kExec

tSybaseSCD tSybaseSP

Teradata tTeradataInput tTeradataOutput tTeradataRow

ELT MySQL tELTMysqlInput tELTMysqlMap tELTMysqlOutput

Oracle tELTOracleInput tELTOracleMap tELTOracleOutput

Teradata tELTTeradataInput tELTTeradataMap tELTTeradataOutp
ut

File Input tFileInputDelimited tFileInputPositional tFileInputRegex

tFileInputXML tFileInputMail

Management tFileList tFileCompare tFileUnarchive

tFileCopy tFileDelete

Output tFileOutputXML tFileOutputLDIF tFileOutputExcel

Internet tSendMail tWebServiceInput tMomInput

Families Components
118 Talend Open Studio Copyright © 2007

Components
tMomOutput tXMLRPC

FTP tFTP

Log/Error tLogRow tStatCatcher tLogCatcher

tWarn tDie tFlowMeter

tFlowMeterCatcher

Misc tMsgBox tRowGenerator tContextLoad

tContextDump tIterateToFlow

Processing tPerl tMap tAggregateRow

tSortRow tUniqRow tNormalize

tDenormalize tJava tFilterRow

tReplace tFilterColumn tExternalSortRow

tAggregateSortedR
ow

tUnite

System tSystem tRunJob tSSH

XML tDTDValidator tXSDValidator tXSLT

Families Components
Copyright © 2007 Talend Open Studio 119

Components
tAccessInput
tAccessInput

tAccessInput properties

Related scenarios

For related topic, see tDBInput scenarios:

Component family Databases/Access

Function tAccessInput reads a database and extracts fields based on a query.

Purpose tAccessInput executes a DB query with a strictly defined statement which
must correspond to the schema definition. Then it passes on the field list to the
next component via a Main row link.

Properties Property type Either Built-in or Repository

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Database Name of the database

Username and
Password

DB user authentication data.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type and Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.
120 Talend Open Studio Copyright © 2007

Components
tAccessInput
• Scenario 1: Displaying selected data from DB table on page 162

• Scenario 2: Using StoreSQLQuery variable on page 163

Related topic in tContextLoad Scenario: Dynamic context use in MySQL DB insert on page 145.
Copyright © 2007 Talend Open Studio 121

Components
tAccessOutput
tAccessOutput

tAccessOutput properties

Component family Databases/Access

Function tAccessOutput writes, updates, makes changes or suppresses entries in a
database.

Purpose tAccessOutput executes the action defined on the table and/or on the data
contained in the table, based on the flow incoming from the preceding
component in the job.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Database Name of the database

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one
table can be written at a time

Action on data On the data of the table defined, you can perform:
Insert: Add new entries to the table. If duplicates are
found, job stops.
Update: Make changes to existing entries
Insert or update: Add entries or update existing
ones.
Update or insert: Update existing entries or create it
if non existing
Delete: Remove entries corresponding to the input
flow.

Clear data in table Wipes out data from the selected table before action.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49
122 Talend Open Studio Copyright © 2007

Components
tAccessOutput
Related scenarios

For related topics, see

• tDBOutput Scenario: Displaying DB output on page 166

• tMySQLOutput Scenario: Adding new column and altering data on page 396.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Additional Columns This option is not offered if you create (with or
without drop) the Db table. This option allows you to
perform actions on columns, which are not insert, nor
update or delete actions or requires a particular
preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After, following
the action to be performed on the reference column.

Reference column: Type in a column of reference
that the tDBOutput can use to place or replace the new
or altered column.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.
Copyright © 2007 Talend Open Studio 123

Components
tAccessRow
tAccessRow

tAccessRow properties

Component family Databases/Access

Function tAccessRow is the specific component for this database query. It executes the
SQL query stated onto the specified database. The row suffix means the
component implements a flow in the job design although it doesn’t provide
output.

Purpose Depending on the nature of the query and the database, tAccessRow acts on
the actual DB structure or on the data (although without handling data). The
SQLBuilder tool helps you write easily your SQL statements.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Database Name of the database

Username and
Password

DB user authentication data.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build
it graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.
124 Talend Open Studio Copyright © 2007

Components
tAccessRow
Related scenarios

For related topics, see:

• tDBSQLRow Scenario 1: Resetting a DB auto-increment on page 170

• tMySQLRow Scenario: Removing and regenerating a MySQL table index on page 408.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.
Copyright © 2007 Talend Open Studio 125

Components
tAggregateRow
tAggregateRow

tAggregateRow properties

Component family Processing

Function tAggregateRow receives a flow and aggregates it based on one or more
columns. For each output line, are provided the aggregation key and the
relevant result of set operations (min, max, sum...).

Purpose Helps to provide a set of metrics based on values or calculations.

Properties Schema type and
Edit Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and
passed on to the next component. The schema is
either built-in or remote in the Repository.
Click Edit Schema to make changes to the
schema. Note that if you make changes, the
schema automatically becomes built-in.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is
stored in the Repository, hence can be reused in
various projets and job flowcharts. Related topic:
Setting a repository schema on page 49

Group by Define the aggregation sets, the values of which
will be used for calculations.

Output Column: Select the column label in the
list offered based on the schema structure you
defined. You can add as many output columns as
you wish to make more precise aggregations.
Ex: Select Country to calculate an average of
values for each country of a list or select Country
and Region if you want to compare one country’s
regions with another country’ regions.

Input Column: Match the input column label
with your output columns, in case the output label
of the aggregation set needs to be different.

Operations Select the type of operation along with the value
to use for the calculation and the output field.

Output Column: Select the destination field in
the list.

Function: Select the operator among: count, min,
max, avg, first, last.
126 Talend Open Studio Copyright © 2007

Components
tAggregateRow
Scenario: Aggregating values and sorting data

The following scenario describes a four-component job. As input component, a CSV file contains
countries and notation values to be sorted by best average value. This component is connected to a
tAggregateRow operator, in charge of the average calculation then to a tSortRow component for
the ascending sort. The output flow goes to the new csv file.

• From the File folder in the Palette, click and drop a tFileInputCSV component.

• Click on the label and rename it as Countries. Or rename it from the View tab panel

• In the Properties tab panel of this component, define the filepath and the delimitation
criteria. Or select the metadata file in the repository if it exists.

• Click on Edit schema... and set the columns: Countries and Points to match the file
structure. If your file description is stored in the Metadata area of the Repository, the schema
is automatically uploaded when you click on Repository in Schema type field.

• Then from the Processing folder in the Palette, click and drop a tAggregateRow
component. Rename it as Calculation.

• Connect Countries to Calculation via a right-click and select Row > Main.

Input column: Select the input column from
which the values are taken to be aggregated.

Usage This component handles flow of data therefore it requires input and
output, hence is defined as an intermediary step. Usually the use of
tAggregateRow is combined with the tSortRow component.

Limitation n/a
Copyright © 2007 Talend Open Studio 127

Components
tAggregateRow
• Double-click on Calculation (tAggregateRow component) to set the properties. Click on
Edit schema and define the output schema. You can add as many columns as you need to
hold the set operations results in the output flow.

• In this example, we’ll calculate the average notation value and we will display the max and
the min notation for each country, given that each country holds several notations. Click OK
when the schema is complete.

• To carry out the various set operations, back in the Properties panel, define the sets holding
the operations in the Group By area. In this example, select Country as group by column.
Note that the output column needs to be defined a key field in the schema. The first column
mentioned as output column in the Group By table is the main set of calculation. All other
output sets will be secondary by order of display.

• Choose the input column which the values will be taken from.

• Then fill in the various operations to be carried out. The functions are average, min, max for
this use case. Select the Input columns, where the values are taken from.
128 Talend Open Studio Copyright © 2007

Components
tAggregateRow
• Click and drop a tSortRow component from the Palette onto the modeling workspace. For
more information regarding this component , see tSortRow properties on page 493.

• Connect the tAggregateRow to this new component using a row main link.

• On the Properties tab of the tSortRow component, define the column the sorting is based on,
the sorting type and order.

• In this case, the column to be sorted by is Country, the sort type is alphabetical and the order
is ascending.
Copyright © 2007 Talend Open Studio 129

Components
tAggregateRow
• Add a last component to your job, to set the output flow. Click and drop a
tFileOutputDelimited and define it.

• Connect the tSortRow component to this output component.

• In the Properties panel, enter the output filepath. Edit the schema if need be. In this case the
delimited file is of csv type. And check the Include Header box to reuse the schema column
labels in your output flow.

• Press F6 to execute the job. The csv file thus created contains the aggregating result.
130 Talend Open Studio Copyright © 2007

Components
tAggregateSortedRow
tAggregateSortedRow

tAggregateSortedRow properties

Component family Processing

Function tAggregateSortedRow receives a sorted flow and aggregates it based
on one or more columns. For each output line, are provided the
aggregation key and the relevant result of set operations (min, max,
sum...).

Purpose Helps to provide a set of metrics based on values or calculations. As the
input flow is meant to be sorted already, the performance are hence
greatly optimized.

Properties Schema type and
Edit Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and
passed on to the next component. The schema is
either built-in or remote in the Repository.
Click Edit Schema to make changes to the
schema. Note that if you make changes, the
schema automatically becomes built-in.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is
stored in the Repository, hence can be reused in
various projets and job flowcharts. Related topic:
Setting a repository schema on page 49

Group by Define the aggregation sets, the values of which
will be used for calculations.

Output Column: Select the column label in the
list offered based on the schema structure you
defined. You can add as many output columns as
you wish to make more precise aggregations.
Ex: Select Country to calculate an average of
values for each country of a list or select Country
and Region if you want to compare one country’s
regions with another country’ regions.

Input Column: Match the input column label
with your output columns, in case the output label
of the aggregation set needs to be different.

Operations Select the type of operation along with the value
to use for the calculation and the output field.

Output Column: Select the destination field in
the list.
Copyright © 2007 Talend Open Studio 131

Components
tAggregateSortedRow
Related scenario

For related use case, see tAggregateRow Scenario: Aggregating values and sorting data on page
127.

Function: Select the operator among: count, min,
max, avg, first, last.

Input column: Select the input column from
which the values are taken to be aggregated.

Usage This component handles flow of data therefore it requires input and
output, hence is defined as an intermediary step.

Limitation n/a
132 Talend Open Studio Copyright © 2007

Components
tAddCRCRow
tAddCRCRow

tAddCRCRow properties

Scenario: Adding a surrogate key to a file

This scenario describes a job adding a surrogate key to a delimited file schema.

• Click and drop the following components: tFileInputDelimited, tAddCRCRow and
tLogRow.

Component family Data quality

Function Calculates a surrogate key based on one or several columns and adds it
to the defined schema

Purpose Providing a unique ID helps improving the quality of processed data.

Properties Schema type and
Edit Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and
passed on to the next component. The schema is
either built-in or remote in the Repository. In this
component, a new CRC column is automatically
added.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is
stored in the Repository, hence can be reused in
various projects and job designs. Related topic:
Setting a repository schema on page 49

Implication Tick the checkbox facing the relevant columns to
be used for the surrogate key checksum.

CRC type Select the CRC type length. The longer the CRC,
the least overlap.

Usage This component is an intermediary step, and requires an input flow as
well as an output.

Limitation n/a
Copyright © 2007 Talend Open Studio 133

Components
tAddCRCRow
• Connect them using a Main row connection.

• In the tFileInputDelimited Properties view, set the File Name path and all related
properties in case these are not stored in the Repository.

• Create the schema through the Edit Schema button, in case the schema is not stored already
in the Repository. In Java, mind the data type column and in case of Date pattern to be filled
in, check out http://java.sun.com/j2se/1.5.0/docs/api/index.html.

• In the tAddCRCRow Properties view, check the Input flow columns to be used to calculate
the CRC.

• Notice that a CRC column (read-only) has been added at the end of the schema.

• Select CRC32 as CRC Type to get a longer surrogate key.
134 Talend Open Studio Copyright © 2007

http://java.sun.com/j2se/1.5.0/docs/api/index.html
http://java.sun.com/j2se/1.5.0/docs/api/index.html

Components
tAddCRCRow
• In the tLogRow Properties view, check the Print values in cells of a table option to display
the output data in a table on the Console.

• Then save your job and run it.

An additional CRC Column has been added to the schema calculated on all previouly selected
columns (in this case all columns of the schema).
Copyright © 2007 Talend Open Studio 135

Components
tAS400Input
tAS400Input

tAS400Input properties

Component family Databases/AS400

Function tAS400Input reads a database and extracts fields based on a query.

Purpose tAS400SInput executes a DB query with a strictly defined statement which
must correspond to the schema definition. Then it passes on the field list to the
next component via a Main row link.

Properties Property type Either Built-in or Repository

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type and Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.
136 Talend Open Studio Copyright © 2007

Components
tAS400Input
Related scenarios

For related topic, see tDBInput scenarios:

• Scenario 1: Displaying selected data from DB table on page 162

• Scenario 2: Using StoreSQLQuery variable on page 163

Related topic in tContextLoad Scenario: Dynamic context use in MySQL DB insert on page 145.
Copyright © 2007 Talend Open Studio 137

Components
tAS400Output
tAS400Output

tAS400Output properties

Component family Databases/DB2

Function tAS400Output writes, updates, makes changes or suppresses entries in a
database.

Purpose tAS400Output executes the action defined on the table and/or on the data
contained in the table, based on the flow incoming from the preceding
component in the job.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one
table can be written at a time

Action on data On the data of the table defined, you can perform:
Insert: Add new entries to the table. If duplicates are
found, job stops.
Update: Make changes to existing entries
Insert or update: Add entries or update existing
ones.
Update or insert: Update existing entries or create it
if non existing
Delete: Remove entries corresponding to the input
flow.

Clear data in table Wipes out data from the selected table before action.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49
138 Talend Open Studio Copyright © 2007

Components
tAS400Output
Related scenarios

For related topics, see

• tDBOutput Scenario: Displaying DB output on page 166

• tMySQLOutput Scenario: Adding new column and altering data on page 396.

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Additional Columns This option is not offered if you create (with or
without drop) the Db table. This option allows you to
perform actions on columns, which are not insert, nor
update or delete actions or requires a particular
preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After, following
the action to be performed on the reference column.

Reference column: Type in a column of reference
that the tDBOutput can use to place or replace the new
or altered column.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.
Copyright © 2007 Talend Open Studio 139

Components
tAS400Row
tAS400Row

tAS400Row properties

Component family Databases/AS400

Function tAS400Row is the specific component for this database query. It executes the
SQL query stated onto the specified database. The row suffix means the
component implements a flow in the job design although it doesn’t provide
output.

Purpose Depending on the nature of the query and the database, tAS400Row acts on the
actual DB structure or on the data (although without handling data). The
SQLBuilder tool helps you write easily your SQL statements.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build
it graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.
140 Talend Open Studio Copyright © 2007

Components
tAS400Row
Related scenarios

For related topics, see:

• tDBSQLRow Scenario 1: Resetting a DB auto-increment on page 170

• tMySQLRow Scenario: Removing and regenerating a MySQL table index on page 408.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.
Copyright © 2007 Talend Open Studio 141

Components
tCentricCRMInput
tCentricCRMInput

tCentricCRMInput Properties

Related Scenario

No scenario is available for this component yet.

Component family Business/CentricCR
M

Function Connects to a module of a Centric CRM database via the relevant webservice.

Purpose Allows to extract data from a Centric CRM DB based on a query.

Properties CentricCRM URL Type in the webservice URL to connect to the
CentricCRM DB.

Module Select the relevant module in the list

Server Type in the IP address of the DB server.

UserID and Password Type in the Webservice user authentication data.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either built-in
or remote in the Repository.
Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema
automatically becomes built-in.
In this component the schema is related to the
Module selected.

Query condition Type in the query to select the data to be extracted.

Usage Usually used as a Start component. An output component is required.

Limitation n/a
142 Talend Open Studio Copyright © 2007

Components
tCentricCRMOutput
tCentricCRMOutput

tCentricCRMOutput Properties

Related Scenario

No scenario is available for this component yet.

Component family Business/CentricCR
M

Function Writes data in a module of a CentricCRM database via the relevant
webservice.

Purpose Allows to write data into a CentricCRM DB.

Properties CentricCRM URL Type in the webservice URL to connect to the
CentricCRM DB.

Module Select the relevant module in the list

Server IP address of the DB server

Username and
Password

Type in the Webservice user authentication data.

Action Insert, Update or Delete the data in the CentricCRM
module.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either built-in
or remote in the Repository.
Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema
automatically becomes built-in.
Click Sync columns to retrieve the schema from the
previous component connected in the job.

Usage Used as an output component. An Input component is required.

Limitation n/a
Copyright © 2007 Talend Open Studio 143

Components
tContextDump
tContextDump

tContextDump properties

Related Scenario

No scenario is available for this component yet.

Component family Misc

Function tContextDump makes a dump copy the values of the active job context.

Purpose tContextDump can be used to transform the current context parameters
into a flow that can then be used in a tContextLoad. This feature is very
convenient in order to define once only the context and be able to reuse
it in numerous jobs via the tContextLoad..

Properties Schema type and
Edit Schema

In the tContextDump use, the schema is read
only and made of two columns, Key and Value,
corresponding to the parameter name and the
parameter value to be copied.
A schema is a row description, i.e., it defines the
fields that will be processed and passed on to the
next component. The schema is either built-in or
remote in the Repository.
Click Edit Schema to make changes to the
schema. Note that if you make changes, the
schema automatically becomes built-in.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is
stored in the Repository, hence can be reused in
various projets and job flowcharts. Related topic:
Setting a repository schema on page 49

Print operations Check this box to display the context parameters
set in the Run job view.

Usage This component creates from the current context values, a data flow,
therefore it requires to be connected to an output component.

Limitation tContextDump does not create any non-defined context variable.
144 Talend Open Studio Copyright © 2007

Components
tContextLoad
tContextLoad

tContextLoad properties

Scenario: Dynamic context use in MySQL DB insert

This scenario is made of two subjobs. The first subjob aims at dynamically load the context
parameters, and the second subjob uses the loaded context to display the content of a DB table.

Component family Misc

Function tContextLoad modifies dynamically the values of the active context.

Purpose tContextLoad can be used to load a context from a flow.
This component performs also two controls. It warns when the
parameters defined in the incoming flow are not defined in the context,
and the other way around, it also warns when a context value is not
initialized in the incoming flow.
But note that this does not block the processing.

Properties Schema type and
Edit Schema

In the tContextLoad use, the schema must be
made of two columns, including the parameter
name and the parameter value to be loaded.
A schema is a row description, i.e., it defines the
fields that will be processed and passed on to the
next component. The schema is either built-in or
remote in the Repository.
Click Edit Schema to make changes to the
schema. Note that if you make changes, the
schema automatically becomes built-in.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is
stored in the Repository, hence can be reused in
various projets and job flowcharts. Related topic:
Setting a repository schema on page 49

Print operations Check this box to display the context parameters
set in the Run job view.

Usage This component relies on the data flow to load the context values to be
used, therefore it requires a preceding input component and thus cannot
be a start component.

Limitation tContextLoad does not create any non-defined variable in the default
context.
Copyright © 2007 Talend Open Studio 145

Components
tContextLoad
• Click and drop a tFilelist, tFileInputDelimited, tContextLoad for the first subjob.

• And click and drop the tMysqlInput and a tLogRow for the second subjob.

• Connect all the components together.

• Create as many delimited files as there are different contexts and store them in a specific
directory, named Contexts. In this scenario, test.txt contains the local database connection
details for testing purpose. And prod.txt holds the actual production db details.

• Each file is made of two fields, contain the parameter name and the corresponding value,
according to the context.

• In the tFileList component Properties panel, select the directory where both context files,
test and prod, are held.

• In the tFileInputDelimited component Properties panel, press Ctrl+Space bar to access
the global variable list. Select $_globals{tFileList_1}{CURRENT_FILEPATH} to loop on
the context files’ directory.

• Define the schema manually (Built-in). It contains two columns defined as: Key and Value.

• Accept the defined schema to be propagated to the next component (tContextLoad).

• For this scenario, check the Print operations box in order for the context parameters in use
to be displayed on the Run Job panel.

• Then double-click to open the tMySQLInput component Properties.
146 Talend Open Studio Copyright © 2007

Components
tContextLoad
• For each of the field values being stored in a context file, press F5 and define the user-defined
context parameter. For example: The Host field has for value parameter $_context{host}, as
the parameter name is host in the context file. Its actual value being talend-dbms.

• Then fill in the Schema information. If you store the schema in the Repository Metadata,
then you can retrieve by selecting Repository and the relevant entry in the list.

• And type in the SQL Query to be executed on the DB table specified. In this case, a simple
select of three columns of the table, which will be displayed on the Run Job tab, through the
tLogRow component.

• Eventually, press F6 to run the job.

The context parameters as well as the select values from the DB table are all displayed on the Run
Job view.
Copyright © 2007 Talend Open Studio 147

Components
tCreateTable
tCreateTable

tCreateTable Properties

Component family Databases

Function tCreateTable creates, drops and creates or clear the specified table.

Purpose This Java specific component helps create or drop any database table

Properties DB Type Select the DBMS type in the List offered.

Special Action Select the action to be carried out on the database
among:
Create table: when you know already that the table
doesn’t exist.
Create table when not exists: when you don’t know
whether the table is already created or not
Drop and create table: when you know that the table
exists already and needs to be replaced.

Use existing
connection

Check this box in case you use tMysqlConnection or
tOracleConnection component.

Property type Either Built-in or Repository

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

New table name Type in between quotes a name for the newly created
table.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Reset the DB type by clicking the relevant
button, to make sure data type is correct

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49
148 Talend Open Studio Copyright © 2007

Components
tCreateTable
Scenario: Creating new table in a Mysql Database

The job described below aims at creating a table in a database, made of a dummy schema taken from
a delimited file schema stored in the Repository. This job is composed of a single component.

• Click and drop a tCreateTable component from the Databases family in the Palette.

• In the Properties view, define the Database type on MySQL for this use case.

• In the Special Action list, select Create table.

• Check Use Existing Connection only in the case, you are using a dedicated connection
component, see tMysqlConnection on page 387. In this use case, we won’t use this option.

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Mapping Select the correct mapping according to your Db type.
This allows a check of DB type in the schema defined.
If the DB type standards do not match, they will
display in a different color in the Edit Schema.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries. More scenarios are available for specific DB
Input components
Copyright © 2007 Talend Open Studio 149

Components
tCreateTable
• In the Property type field, select Repository so that all following connection fields are
automatically filled in. If you didn’t define a Metadata DB connection entry for your Db
connection, fill in manually the details as Built-in.

• In the New Table Name field, fill in a name for the table to be created.

• If you want to retrieve the Schema from the Metadata (it doesn’t need to be a DB connection
Schema metadata), select Repository then the relevant entry.

• In any case (Built-in or Repository) click Edit Schema to check the Data type mapping.

• Click the Reset DB Types button in case the DB type column is empty or shows
discrepancies marks (orange colour). This allows to map any data type to the relevant DB
data type.

• Click OK.

• Then press F6 to run the job.

The table is created empty but with all columns defined in the Schema.
150 Talend Open Studio Copyright © 2007

Components
tDB2Input
tDB2Input

tDB2Input properties

Component family Databases/DB2

Function tDB2Input reads a database and extracts fields based on a query.

Purpose tDB2Input executes a DB query with a strictly defined order which must
correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Properties Property type Either Built-in or Repository

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type and Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Usage This component covers all possibilities of SQL queries onto a DB2 database.
Copyright © 2007 Talend Open Studio 151

Components
tDB2Input
Related scenarios

For related topics, see tDBInput scenarios:

• Scenario 1: Displaying selected data from DB table on page 162

• Scenario 2: Using StoreSQLQuery variable on page 163

See also the related topic in tContextLoad Scenario: Dynamic context use in MySQL DB insert on
page 145.
152 Talend Open Studio Copyright © 2007

Components
tDB2Output
tDB2Output

tDB2Output properties

Component family Databases/DB2

Function tDB2Output writes, updates, makes changes or suppresses entries in a
database.

Purpose tDB2Output executes the action defined on the table and/or on the data
contained in the table, based on the flow incoming from the preceding
component in the job.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one
table can be written at a time

In Java, use
tCreateTable as
substitute for this
function..

Action on table On the table defined, you can perform one of the
following operations:
None: No operation carried out
Drop and create the table: The table is removed and
created again
Create a table: The table doesn’t exist and gets
created.
Clear a table: The table content is deleted

Action on data On the data of the table defined, you can perform:
Insert: Add new entries to the table. If duplicates are
found, job stops.
Update: Make changes to existing entries
Insert or update: Add entries or update existing
ones.
Update or insert: Update existing entries or create it
if non existing
Delete: Remove entries corresponding to the input
flow.

Clear data in table Wipes out data from the selected table before action.
Copyright © 2007 Talend Open Studio 153

Components
tDB2Output
Related scenarios

For tDB2Output related topics, see

• tDBOutput Scenario: Displaying DB output on page 166

• tMySQLOutput Scenario: Adding new column and altering data on page 396.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Additional Columns This option is not offered if you create (with or
without drop) the Db table. This option allows you to
perform actions on columns, which are not insert, nor
update or delete actions or requires a particular
preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After, following
the action to be performed on the reference column.

Reference column: Type in a column of reference
that the tDBOutput can use to place or replace the new
or altered column.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.
154 Talend Open Studio Copyright © 2007

Components
tDB2Row
tDB2Row

tDB2Row properties

Component family Databases/DB2

Function tDB2Row is the specific component for this database query. It executes the
SQL query stated onto the specified database. The row suffix means the
component implements a flow in the job design although it doesn’t provide
output.

Purpose Depending on the nature of the query and the database, tDB2Row acts on the
actual DB structure or on the data (although without handling data). The
SQLBuilder tool helps you write easily your SQL statements.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build
it graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.
Copyright © 2007 Talend Open Studio 155

Components
tDB2Row
Related scenarios

For tDB2Row related topics, see:

• tDBSQLRow Scenario 1: Resetting a DB auto-increment on page 170

• tMySQLRow Scenario: Removing and regenerating a MySQL table index on page 408.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.
156 Talend Open Studio Copyright © 2007

Components
tDB2SCD
tDB2SCD

tDB2SCD properties

Component family Databases/DB2

Function tDB2SCD reflects and tracks changes in a dedicated DB2 SCD table.

Purpose tDB2SCD addresses Slowly Changing Dimension needs, reading regularly a
source of data and logging the changes into a dedicated SCD table

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one
table can be written at a time

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Java only for the
time being.

Surrogate key Select the column where the generated surrogate key
will be stored. A surrogate key can be generated based
on a method selected on the Creation list.

Creation Select the method to be used for the key generation:
input field: key is provided in an input field
routine: you can access the basic functions through
Ctrl+ Space bar combination.
table max +1: the maximum value from the SCD
table is incremented to create a surrogate key
sequence/identity: auto-incremental key
Copyright © 2007 Talend Open Studio 157

Components
tDB2SCD
Related scenarios

For related topics, see the following scenarios:

• tMysqlSCD Scenario: Tracking changes using Slowly Changing Dimension on page 411.

• tMSSqlSCD Scenario: Slow Changing Dimension type 3 on page 376

Source Keys Select one or more columns to be used as key, to
ensure the unicity of incoming data.

Use SCD Type 1 fields Use the type 1if change tracking is not necessary.
SCD Type 1 should be used for typos corrections for
example. Select the columns of the schema, that will
be checked for changes.

Use SCD Type 2 fields Use type 2 if changes need to be tracked down. SCD
Type 2 should be used to trace updates for example.
Select the columns of the schema, that will be
checked for changes.
Start date: Adds a column to your SCD schema to
hold the start date. You can select one of the input
schema column as Start Date in the SCD table.
End Date: Adds a column to your SCD schema to
hold the end date value for the record. When the
record is currently active, the End date show a null
value or you can select Fixed Year value and fill in
with a fictive year to avoid having a null value in the
End date field.
Log Active Status: Adds a column to your SCD
schema to hold the true or false status value. This
column helps to spot easily the active record.
Log versions: Adds a column to your SCD schema to
hold the version number of the record.

 Java only for the
time being.

Use SCD Type 3 fields Use type 3 when you want to keep track of the
previous value of a changing column
Current value field: Select the column where the
changing value is tracked down..
Previous value field: Select the column where the
previous value should be stored.

Debug Mode Check this box to display each step of the SCD log
process.

Usage This component is used as Output component. It requires an Input component
and Row main link as input.
158 Talend Open Studio Copyright © 2007

Components
tDB2SP
tDB2SP

tDB2SP properties

Component family Databases/DB2

Function tDB2SP calls the database stored procedure.

Purpose tDB2SP offers a convenient way to centralize multiple or complex queries in
a database and call them easily.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

SP Name Type in the exact name of the Stored Procedure

Is Function / Return
result in

Check this box, if a value only is to be returned.
Select on the list the schema column, the value to be
returned is based on.
Copyright © 2007 Talend Open Studio 159

Components
tDB2SP
Related scenarios

For related topic, see tMysqlSP Scenario: Finding a State Label using a stored procedure on page
419.

Parameters Click the Plus button and select the various Schema
Columns that will be required by the procedures.
Note that the SP schema can hold more columns than
there are paramaters used in the procedure.
Select the Type of parameter:
IN: Input parameter
OUT: Output parameter/return value
IN OUT: Input parameters is to be returned as value,
likely after modification through the procedure
(function).

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Usage This component is used as intermediary component. It can be used as start
component but only input parameters are thus allowed.

Limitation The Stored Procedures syntax should match the Database syntax.
160 Talend Open Studio Copyright © 2007

Components
tDBInput
tDBInput

tDBInput properties

Component family Databases/DB
Generic

Function tDBInput reads a database and extracts fields based on a query.

Purpose tDBInput executes a DB query with a strictly defined order which must
correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Note: For performance reasons, a specific Input component
(e.g.: tMySQLInput for MySQL database) should
always be preferred to the generic component.

Properties Property type Either Built-in or Repository

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Connection type Drop-down list of available DBMS drivers.

Database Name of the database

Username and
Password

DB user authentication data.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries using a generic ODBC connection.
Copyright © 2007 Talend Open Studio 161

Components
tDBInput
Scenario 1: Displaying selected data from DB table

The following scenario creates a two-component job, reading data from a database using a DB query
and outputting delimited data into the standard output (console).

• Click and drop a tDBInput and tLogRow component from the Palette to the design
workspace.

• Right-click on the tDBInput component and select Row > Main. Drag this main row link
onto the tLogRow component and release when the plug symbol displays.

• Select the tDBInput again so the properties tab shows up, and define the properties:

• The component property data are Built-In for this scenario.

• Select Mysql as database driver.

• Fill in the DB connection data in Host, Port, Database name, User name and password fields.

• The schema is Built-In.This means that it is available for this job and on this station only.

• Click on Edit Schema and create a 2-column description including shop code and sales

• Type in the query making sure it includes all columns in the same order as defined in the
Schema. In this case, as we’ll select all columns of the schema, the asterisk symbol makes
sense.

• Enter the Encoding for information only. And click on the second component to define it.
162 Talend Open Studio Copyright © 2007

Components
tDBInput
• Enter the fields separator. In this case, a pipe separator.

• Now go to the Run Job tab, and click on Run to execute the job.

The DB is parsed and queried data is extracted and passed on to the Job log console. You can view
the output file straight on the console.

Scenario 2: Using StoreSQLQuery variable

StoreSQLQuery is a variable that can be used to debug a tDBInput scenario which does not operate
correctly. It allows you to dynamically feed the SQL query set in your tDBInput component.

• Use the same scenario as scenario 1 above and add a third component, tPerl.

• Connect tDBInput component to tPerl component using a trigger connection of ThenRun
type. In this case, we want the tDBInput to run before the tPerl component.

• Set both tDBInput and tLogRow component as in tDBInput scenario 1.

• Click anywhere on the design workspace to display the Context property panel.

• Create a new parameter called explicitly StoreSQLQuery. Enter a default value of 1. This
value of 1 means the StoreSQLQuery is “true” for a use in the QUERY global variable.
Copyright © 2007 Talend Open Studio 163

Components
tDBInput
• Click on the tPerl component to display the Properties. Enter the command Print to display
the query content, press Ctrl+Space bar to access the variable list and select the global
variable QUERY.

• Go to your Run tab and execute the job.

• The query entered in the tDBInput component shows at the end of the job results, on the log:
164 Talend Open Studio Copyright © 2007

Components
tDBOutput
tDBOutput

tDBOutput properties

Component family Databases

Function tDBOutput writes, updates, makes changes or suppresses entries in a database.

Purpose tDBOutput executes the action defined on the table and/or on the data
contained in the table, based on the flow incoming from the precedin
component in the job.

Note: Specific Output component should always be
preferred to generic component.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Connection type List of available drivers.

Database Name of the database

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one
table can be written at a time

In Java, use
tCreateTable as
substitute for this
function..

Action on table On the table defined, you can perform one of the
following operations:
None: No operation carried out
Drop and create the table: The table is removed and
created again
Create a table: The table doesn’t exist and gets
created.
Clear a table: The table content is deleted

Action on data On the data of the table defined, you can perform:
Insert: Add new entries to the table. If duplicates are
found, job stops.
Update: Make changes to existing entries
Insert or update: Add entries or update existing
ones.
Update or insert: Update existing entries or create it
if non existing
Delete: Remove entries corresponding to the input
flow.

Clear data in table Wipes out data from the selected table before action.
Copyright © 2007 Talend Open Studio 165

Components
tDBOutput
Scenario: Displaying DB output

This following scenario is a three-component job aiming at creating a new table in the database
defined and filling it with data. The tFileInputdelimited passes on the Input flow to the tDBoutput
component. As the content of a DB is not viewable as such, a tLogRow component is used to display
the main flow on the Run Job console.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Additional Columns This option is not offered if you create (with or
without drop) the Db table. This option allows you to
perform actions on columns, which are not insert, nor
update or delete actions or requires a particular
preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After, following
the action to be performed on the reference column.

Reference column: Type in a column of reference
that the tDBOutput can use to place or replace the new
or altered column.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.
166 Talend Open Studio Copyright © 2007

Components
tDBOutput
• First click and drop the three components required for this job.

• On the Properties tab of tFileInputDelimited, define the input flow parameters. In this use
case, the file contains cars’ owner id, makes, color and registration references organised as
follows: semi-colon as field separator, carriage return as row separator. The input file
contains a header row to be considered in the schema. If this file is already described in your
metadata, you can retrieve the properties by selecting the relevant repository entry list.

• And also, if your schema is already loaded in the Repository, select Repository as Schema
type and choose the relevant metadata entry in the list. If you haven’t defined the schema
already, define the data structure in the built-in schema you edit.

• Restrict the extraction to 10 lines, for this example.

• Then define the tDBOutput component to configure the output flow. Select the database to
connect to. Note that you can store all the database connection details in different context
variables. For more information about how to create and use context variables , see Defining
Contexts and variables on page 101.
Copyright © 2007 Talend Open Studio 167

Components
tDBOutput
• Fill in the table name in the Table field. Then select the operations to be performed:

• As Action on table, select Drop and create table in the list. This allows you to overwrite
the possible existing table with the new selected data. Alternately you can insert only extra
rows into an existing table, but note that duplicate management is not supported natively. See
tUniqRow Properties on page 537 for further information.

• As Action on data, select Insert. The data flow incoming as input will be thus added to the
selected table.

• To view the output flow easily, connect the DBOuput component to an tLogRow component.
Define the field separator as a pipe symbol. Press F6 to execute the job.

• As the processing can take some time to reach the tLogRow component, we recommend you
to enable the Statistics functionality on the Run Job console.

Related topic: tMysqlOutput properties on page 394
168 Talend Open Studio Copyright © 2007

Components
tDBSQLRow
tDBSQLRow

tDBSQLRow properties

Component family Databases/DB
Generic

Function tDBSQLRow is the generic component for database query. It executes the
SQL query stated onto the specified database. The row suffix means the
component implements a flow in the job design although it doesn’t provide
output.

Note: For performance reasons, specific DB component
should always be preferred to the generic component.

Purpose Depending on the nature of the query and the database, tDBSQLRow acts on
the actual DB structure or on the data (although without handling data). The
SQLBuilder tool helps you write easily your SQL statements.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Database Name of the database

Username and
Password

DB user authentication data.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build
it graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.
Copyright © 2007 Talend Open Studio 169

Components
tDBSQLRow
Scenario 1: Resetting a DB auto-increment

This scenario describes a single component job which aims at reinitializing the DB auto-increment
to 1. This job has no output and is generally to be used before running a script.

• Drag and drop a tDBSQLRow component from the Palette to the Job designer.

• On the Properties panel, fill in the DB connection properties.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.

Use the relevant DBRow component according to the DB type you use. Most
of the databases have their specific DBRow component.
170 Talend Open Studio Copyright © 2007

Components
tDBSQLRow
• The general connection information to the database is stored in the Repository. The
Database Driver is a generic ODBC driver.

• The Schema type is built-in for this job and describes the Talend database structure. The
schema doesn’t really matter for this particular instance of job as the action is made on the
table auto-increment and not on data.

• The Query type is also built-in. Click on the three dot button to launch the SQLbuilder
editor, or else type in directly in the Query area:
 Alter table <TableName> auto_increment = 1

• Then click OK to validate the Properties. Then press F6 to run the job.

The database autoincrement is reset to 1.

Related topics: tMysqlRow properties on page 407.
Copyright © 2007 Talend Open Studio 171

Components
tDenormalize
tDenormalize

tDenormalize Properties

Scenario 1: Denormalizing on one column in Perl

This scenario illustrates a Perl job denormalizing one column in a delimited file.

• Click and drop the following components: tFileInputDelimited, tDenormalize, tLogRow.

• Connect the components using Row main connections.

• On the tFileInputDelimited properties panel, set the filepath to the file to be denormalized.

Component family Processing

Function Denormalizes the input flow based on one column.

Purpose tDenormalize helps synthesize the input flow.

Properties Schema type and
Edit Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and
passed on to the next component. The schema is
either built-in or remote in the Repository. In this
component, the schema is read-only.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Perl feature
Column to
denormalize

Select the column from the input flow which the
normalization is based on (included in key)

Java feature
Group by Select one or several columns to be grouped. We

recommend to remove unused columns from the
schema before processing.

Separator Enter the separator which will delimit data in the
denormalized flow.

Deduplicate items Removes duplicates when concatenating
denormalized values.

Usage This component can be used as intermediate step in a data flow.

Limitation n/a
172 Talend Open Studio Copyright © 2007

Components
tDenormalize
• Define the Header, Row Separator and Field Separator parameters.

• The input file schema is made of two columns, Fathers and Children.

• In the Properties of tDenormalize, define the column that contains multiple values to be
grouped.

• In this use case, the column to denormalize is Children.

• Set the Item Separator to separate the grouped values. Beware as only one column can be
denormalized.

• Check the Deduplicate items, if you know that some values to be grouped are strictly
identical.

• Save your job and run it.
Copyright © 2007 Talend Open Studio 173

Components
tDenormalize
All values from the column Children (set as column to denormalize) are grouped by their Fathers
column. Values are separated by a comma.

Scenario 2: Denormalizing on multiple columns in Java

This scenario illustrates a Java job denormalizing two columns from a delimited file.

• Click and drop the following components: tFileInputDelimited, tDenormalize, tLogRow.

• Connect all components using a Row main connection.

• On the tFileInputDelimited Properties panel, set the filepath to the file to be denormalized.

• Define the Row and Field separators, the Header and other information if required.

• The file schema is made of four columns including: Name, FirstName, HomeTown,
WorkTown.
174 Talend Open Studio Copyright © 2007

Components
tDenormalize
• In the tDenormalize component Properties, select the columns that contain the repetition.
These are the column which are meant to occur multiple times in the document. In this use
case, FirstName and Name are the columns against which the denormalization is performed.

• Add as many line to the table as you need using the plus button. Then select the relevant
columns in the drop-down list.

• Define the delimiter for concatenated values. In this case, the comma is used.

• Save your job and run it.

• The result shows the denormalized values concatenated using a comma.
Copyright © 2007 Talend Open Studio 175

Components
tDenormalize
• Back to the tDenormalize components Properties, check the Deduplicate box to remove the
duplicate occurences.

• Save your job again and run it.

This time, the console shows the results with no duplicate instances.
176 Talend Open Studio Copyright © 2007

Components
tDie
tDie

tDie properties

Both tDie and tWarn components are closely related to the tLogCatcher component.They
generally make sense when used alongside a tLogCatcher in order for the log data collected to be
encapsulated and passed on to the output defined.

Related scenarios

For uses cases in relation with tDie, see tLogCatcher scenarios:

• Scenario1: warning & log on entries on page 330

• Scenario 2: log & kill a job on page 332

Component family Log & Error

Function Kills the current job. Generally used with a tCatch for log purpose.

Purpose Triggers the tLogCatcher component for exhaustive log before killing the
job.

Die message Enter the message to be displayed before the job is
killed.

Error code Enter the error code if need be, as an integer

Priority Set the level of priority, as an integer

Usage Cannot be used as a start component.

Limitation n/a
Copyright © 2007 Talend Open Studio 177

Components
tDTDValidator
tDTDValidator

tDTDValidator Properties

Scenario: Validating xml files

This scenario describes a job that validates several files from a folder and outputs the log
information for the invalid files into a delimited file.

• Click and drop the following components from the Palette: tFileList, tDTDValidator,
tMap, tFileOutputDelimited.

• Connect the tFileList to the tDTDValidator with an Iterate link and the remaining
component using a main row.

Component family XML

Function Validates the XML input file against a DTD file and sends the validation
log to the defined output.

Purpose Helps at controlling data and structure quality of the file to be processed

Properties Schema type and
Edit Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to
the next component. The schema is either built-in
or remotely stored in the Repository but in this
case, the schema is read-only. It contains standard
information regarding the file validation.

DTD file Filepath to the reference DTD file.

XML file Filepath to the XML file to be validated.

If XML is valid,
display
If XML is not valid
detected, display

Type in a message to be displayed in the Run Job
console based on the result of the comparison.

Print to console Check the box to display the validation message

Usage This component can be used as standalone component but it is usually
linked to an output component to gather the log data.

Limitation n/a
178 Talend Open Studio Copyright © 2007

Components
tDTDValidator
• Set the tFileList component Properties, to fetch an XML file from a folder.

• Change the Filemask to *.xml. Mind the quotes depending on the Perl or Java version you
are using.

• Uncheck the Case Sensitive box.

• In the tDTDValidate component Properties, the schema is read-only as it contains standard
log information related to the validation process.

• Set the DTD file to be used as reference.

• Press Ctrl+Space bar to access the variable list. In the XML file field, select the current
filepath global variable : $_globals{tFileList_1}{CURRENT_FILEPATH} (in Perl)

• In the various messages to display in the Run Job tab console, use the jobName to recall the
job name tag. Recall the filename using the relevant global variable:
$_globals{tFileList_1}{CURRENT_FILE}. Mind the Perl or Java operators such as the dot
or the plus sign to build your message.

• Check the Print to Console box.

• In the tMap component, drag and drop the information data from the standard schema that
you want to pass on to the output file.
Copyright © 2007 Talend Open Studio 179

Components
tDTDValidator
• Once the Output schema is defined as required, add a filter condition to only select the log
information data when the XML file is invalid.

• Follow the best practice by typing first the wanted value for the variable, then the operator
based on the type of data filtered then the variable that should meet the requirement. In this
case (in Java and Perl): 0 == $row1[validate]

• Then connect (if not already done) the tMap to the tFileOutputDelimited component using
a main row. Name it as relevant, in this example: errorsOnly.

• In the tFileOutputDelimited Properties, Define the destination filepath, the field
delimiters and the encoding.

• Save your job and press F6 to run it.

On the Run Job console the messages defined display for each of the invalid files. At the same time
the output file is filled with log data.
180 Talend Open Studio Copyright © 2007

Components
tELTMysqlInput
tELTMysqlInput

tELTMysqlInput properties

All three ELT MySQL components are closely related together in regard to their operating
condition. These components should be used to handle MySQL DB schemas to generate Insert
statements including clauses, which are to be executed to the DB output table defined.

Related scenarios

For uses cases in relation with tELTMysqlInput, see tELTMysqlMap scenarios:

• Scenario1: Aggregating table columns and filtering on page 185

• Scenario 2: ELT using Alias table on page 188

Component family ELT

Function Provides the table schema to be used for the SQL statement to execute.

Purpose Allows to add as many Input tables as required for the most complicated Insert
statement.

Properties Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
nature and number of fields to be processed. The
schema is either built-in or remotely stored in the
Repository. The Schema defined is then passed on to
the ELT Mapper to be included to the Insert SQL
statement.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Usage tELTMysqlInput is to be used along with the tELTMysqlMap. Note that the
Output link to be used with these components has to reflect faithfully the name
of the table

Note: Note that the ELT components do not handle actual
data flow but only schema information.
Copyright © 2007 Talend Open Studio 181

Components
tELTMysqlMap
tELTMysqlMap

tELTMysqlMap properties

All three ELT MySQL components are closely related together in regard to their operating
condition. These components should be used to handle MySQL DB schemas to generate Insert
statements including clauses, which are to be executed to the DB output table defined.
182 Talend Open Studio Copyright © 2007

Components
tELTMysqlMap
Connecting ELT components

The ELT components do not handle any data as such but table schema information that will be
used to build the SQL query to execute.

Therefore the only connection required to connect these components together is a simple link.

Note: The output name you give to this link when creating it should always be the exact
name of the table to be accessed as this parameter will be used in the SQL
statement generated.

Related topic: Link connection on page 45

Component family ELT

Function Helps to graphically build the SQL statement using the table provided as input.

Purpose Uses the tables provided as input, to feed the parameter in the built statement.
The statement can include inner or outer joins to be implemented between
tables or between one table and its aliases.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Preview The preview is an instant shot of the Mapper data. It
becomes available when Mapper properties have
been filled in with data. The preview synchronization
takes effect only after saving changes.

Map editor The ELT Map editor allows you to define the output
schema as well as build graphically the SQL
statement to be executed.

Usage tELTMysqlMap is used along with a tELTMysqlInput and
tELTMysqlOutput. Note that the Output link to be used with these
components has to reflect faithfully the name of the tables.

Note: Note that the ELT components do not handle actual
data flow but only schema information.
Copyright © 2007 Talend Open Studio 183

Components
tELTMysqlMap
Mapping and joining tables

In the ELT Mapper, you can select specific columns from input schemas and include them in the
output schema.

• As you would do it in the regular Mapper editor, simply drag & drop the content from
the input schema towards the output table defined.

• Use the Ctrl and Shift keys for multiple selection of contiguous or non contiguous table
columns.

You can implement explicit joins to retrieve various data from different tables.

• Click on the Join drop-down list and select the relevant explicit join.

• Possible joins include: Inner Join, Left Outer Join, Right Outer Join or Full Outer
Join and Cross Join.

• By default the Inner Join is selected.

You can also create Alias tables to retrieve various data from the same table.

• In the Input area, click on the plus (+) button to create an Alias.

• Define the table to base the alias on.

• Type in a new name for the alias table, preferrably not the same as the main table.

Adding where clauses

You can also restrict the Select statement based on a Where clause. Click on the Add filter row
button at the top of the output table and type in the relevant restriction to be applied.

Make sure that all input components are linked correctly to the ELT Map component to be able
to implement all inclusions, joins and clauses.

Generating the SQL statement

The mapping of elements from the input schemas to the output schemas create instantly the
corresponding Select statement.

The clause are also included automatically.
184 Talend Open Studio Copyright © 2007

Components
tELTMysqlMap
Scenario1: Aggregating table columns and filtering

This scenario describes a job gathering together several Input DB table schemas and implementing
a clause to filter the resulting output using an SQL statement.

• Click and drop the following components: tELTMysqlIntput, tELTMysqlMap,
tELTMysqlOutput.

• Three input components are required for this job.

• Connect the three ELT input components to the ELT mapper using links named following
strictly the actual DB table names: owners, cars and resellers.

• Then connect the ELT mapper to the ELT Output component using another link that you call
results.

• All three Input schemas are stored in the Metadata area of the Repository. They can
therefore be easily retrieved.

• Click on the ELT mapper component to define the Database connection details.

• The Database connection details are stored in the Repository again
Copyright © 2007 Talend Open Studio 185

Components
tELTMysqlMap
• The default encoding for Mysql database is retained.

• Launch the ELT Map editor to set up the join between Input tables

• Drag & drop the ID_Owner column from the Owners table to the corresponding column of
the cars table.

• Select INNER JOIN in the Cars table join list, and check Explicit Join, in front of the
ID_Owners.

• Drag the ID_Resellers column from the Cars table to the Resellers table to set up the second
join. Select here again INNER JOIN in the list of the Resellers table and check the Explicit
Join box of the relevant column.

• Then select the columns to be aggregated into the output.

• Select all columns from the Cars and Owners table and only the Reseller_Name and City
columns from the Resellers table.

• Drag & drop them to the Results output table.

• The mapping displays in yellow and the joins display in dark violet.

• Click on the Generated SQL Select query tab to display the corresponding SQL Statement.
186 Talend Open Studio Copyright © 2007

Components
tELTMysqlMap
• Then implement a filter on the output table.

• Click on the Add filter row button of the output table.

• Restrict the Select using a Where clause such as: resellers.City ='West Coast City'

• See the reflected where clause on the Generated SQL Select query tab.

• Click OK to save the ELT Map setting.

• Define the ELT Output in the Properties Panel of the tELTMysqlOutput component.

• The Action on table is Drop and create table for this use case and the only action available
on data in MySQL is Insert.

• The schema is to be synchronised with the tELTMysqlMap component as it aggregates
several source schemas.
Copyright © 2007 Talend Open Studio 187

Components
tELTMysqlMap
All selected data are inserted in the results table as specified in the SQL statement defined respecting
the clause.

Scenario 2: ELT using Alias table

This scenario describes a job that uses an Alias table. The employees table contains all employees
details as well as the ID of their respective manager, which are also considered as employees and
hence included in the employees table. The dept table contains location and department information
about the employees.

• Drag and drop tELTMysqlInput components to retrieve respectively the employees and
dept table schemas.

• In this use case, both schemas are stored in the Repository and can therefore be easily
retrieved.
188 Talend Open Studio Copyright © 2007

Components
tELTMysqlMap
• Then select the tELTMysqlMap and define the Mysql database connection details.

• Here again the connection information is stored in the Repository’s Metadata.

• Click on the button to launch the ELT Map editor.

• First make sure the correct input table is positioned at the top of the Input area, as the Joins
are highly dependent on this position.

• In this example, the employees table should be on top.

• Drag and drop the DeptNo column from the employees table to the dept table to set up the
join between both input tables.

• Check the Explicit Join box and define the join as an Inner Join.

• Then create the Alias table based on the employees table
Copyright © 2007 Talend Open Studio 189

Components
tELTMysqlMap
• Name it Managers and click OK to display it as a new Input table in the ELT mapper.

• Drag & drop the ID column from the employees table to the ID_Manager column of the
newly added Managers table.

• Check the Explicit Join box and define it as Left Outer Join, in order for results to be output
eventhough they contain a Null value.

• Drag and drop the content of both Input tables, employees and dept, as well as the Name
column from the Manager table to the Output table.

• Click on the Generated SQL Select query tab to display the query to be executed.
190 Talend Open Studio Copyright © 2007

Components
tELTMysqlMap
• Then click on the Output component and define the Action on data on Insert.

• Make sure the schema is synchronized with the Output table from the ELT mapper before
running the job through F6 or via the toolbar.

The Department information as well as the Employees entries are coupled in the output, and the
Manager Name could be retrieved via the explicit join.
Copyright © 2007 Talend Open Studio 191

Components
tELTMysqlOutput
tELTMysqlOutput

tELTMysqlOutput properties

All three ELT MySQL components are closely related together in regard to their operating
condition. These components should be used to handle MySQL DB schemas to generate Insert
statements including clauses, which are to be executed to the DB output table defined.
192 Talend Open Studio Copyright © 2007

Components
tELTMysqlOutput
Component family ELT

Function Carries out the action on the table specified and inserts the data according to
the output schema defined the ELT Mapper.

Purpose Executes the SQL Insert statement to the Mysql database

Properties

In Java, use
tCreateTable as
substitute for this
function.

Action on table On the table defined, you can perform one of the
following operations:
None: No operation carried out
Drop and create the table: The table is removed and
created again
Create a table: The table doesn’t exist and gets
created. If the table exists, an error is generated and
the job is stopped.
Create table if doesn’t exist: Create the table if
needed and carries out the action on data anyway.
Clear a table: The table content is deleted

Action on data On the data of the table defined, you can perform the
following operation:
Insert: Add new entries to the table. If duplicates are
found, job stops.
Note that in Mysql ELT, only Insert operation is
available.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Usage tELTMysqlOutput is to be used along with the tELTMysqlMap. Note that
the Output link to be used with these components has to reflect faithfully the
name of the table.

Note: Note that the ELT components do not handle actual
data flow but only schema information.
Copyright © 2007 Talend Open Studio 193

Components
tELTMysqlOutput
Related scenarios

For uses cases in relation with tELTMysqlOutput, see tELTMysqlMap scenarios:

• Scenario1: Aggregating table columns and filtering on page 185

• Scenario 2: ELT using Alias table on page 188
194 Talend Open Studio Copyright © 2007

Components
tELTOracleInput
tELTOracleInput

tELTOracleInput properties

All three ELT Oracle components are closely related together in regard to their operating condition.
These components should be used to handle Oracle DB schemas to generate Insert, Update or Delete
statements including clauses, which are to be executed to the DB output table defined.

Related scenarios

For uses cases in relation with tELTOracleInput, see tELTOracleMap Scenario 1: Updating
Oracle DB entries on page 198.

Component family ELT

Function Provides the table schema to be used for the SQL statement to execute.

Purpose Allows to add as many Input tables as required for the most complicated Insert
statement.

Properties Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
nature and number of fields to be processed. The
schema is either built-in or remotely stored in the
Repository. The Schema defined is then passed on to
the ELT Mapper to be included to the Insert SQL
statement.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Usage tELTOracleInput is to be used along with the tELTOracleMap. Note that the
Output link to be used with these components has to reflect faithfully the name
of the table

Note: Note that the ELT components do not handle actual
data flow but only schema information.
Copyright © 2007 Talend Open Studio 195

Components
tELTOracleMap
tELTOracleMap

tELTOracleMap properties

All three ELT Oracle components are closely related together in regard to their operating condition.
These components should be used to handle Oracle DB schemas to generate Insert, Update or Delete
statements including clauses, which are to be executed to the DB output table defined.
196 Talend Open Studio Copyright © 2007

Components
tELTOracleMap
Connecting ELT components

For detailed information regarding ELT component connections, see Connecting ELT
components on page 183.

Related topic: Link connection on page 45

Mapping and joining tables

In the ELT Mapper, you can select specific columns from input schemas and include them in the
output schema.

Component family ELT

Function Helps to graphically build the SQL statement using the table provided as input.

Purpose Uses the tables provided as input, to feed the parameter in the built statement.
The statement can include inner or outer joins to be implemented between
tables or between one table and its aliases.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Preview The preview is an instant shot of the Mapper data. It
becomes available when Mapper properties have
been filled in with data. The preview synchronization
takes effect only after saving changes.

Map editor The ELT Map editor allows you to define the output
schema as well as build graphically the SQL
statement to be executed.

Usage tELTOracleMap is used along with a tELTOracleInput and
tELTOracleOutput. Note that the Output link to be used with these
components has to reflect faithfully the name of the tables.

Note: Note that the ELT components do not handle actual
data flow but only schema information.
Copyright © 2007 Talend Open Studio 197

Components
tELTOracleMap
For detailed information regarding the table schema mapping and joining, see Mapping and
joining tables on page 197.

Adding where clauses

For details regarding the clause handling, see Adding where clauses on page 198.

Generating the SQL statement

The mapping of elements from the input schemas to the output schemas create instantly the
corresponding Select statement.

The clause defined internally in the ELT Mapper are also included automatically.

Scenario 1: Updating Oracle DB entries

This scenario relies on the job described in ELT MySQL components, Scenario1: Aggregating table
columns and filtering on page 185. As the update action on the data is available in Oracle DB, this
scenario describes a job updating particular entries of the results table, adding a model to the make
column of the cars table.

• Define all three Input components as described in Scenario1: Aggregating table columns
and filtering on page 185.

• When connecting the ELT Input components to the ELT mapper, make sure you use the
relevant table names as these table names will be used as parameters in the SQL statement
generated in the ELT mapper.

• Remove the additional clause used to filter the output columns.

• Add a new filter row to the output table in the ELT mapper to setup a relationship between
input and output tables : owners.ID_OWNER=results.ID_OWNER
198 Talend Open Studio Copyright © 2007

Components
tELTOracleMap
• Remove also all the columns unused for the Update action on the output table.

• Then apply the update to the Make column adding the mention C-Class preceding by a
double-pipe.

• And also add the mention Sold by in front of the reseller name column from the resellers
table.

• Check the Generated SQL select query to be executed.

• Click OK to validate the changes in the ELT mapper. And make sure the Oracle DB
connection details are filled in in the tELTOracleMap component properties.

• Select the tELTOracleOutput component to define the Action on data to be carried out.

• There is no action on the table, and the Action on data is set to Update.

• Check that the Schema type corresponds to the output table from the ELT Mapper.

• In the Where clause area, add an additional clause: results.MAKE= ‘Mercedes’.

• Then press F6 to run the job and check the results table in a DB viewer.
Copyright © 2007 Talend Open Studio 199

Components
tELTOracleMap
The job executes the query generated and updates the relevant rows.
200 Talend Open Studio Copyright © 2007

Components
tELTOracleOutput
tELTOracleOutput

tELTOracleOutput properties

All three ELT Oracle components are closely related together in regard to their operating condition.
These components should be used to handle Oracle DB schemas to generate Insert, Update or Delete
statements including clauses, which are to be executed to the DB output table defined.
Copyright © 2007 Talend Open Studio 201

Components
tELTOracleOutput
Component family ELT

Function Carries out the action on the table specified and inserts the data according to
the output schema defined the ELT Mapper.

Purpose Executes the SQL Insert statement to the Mysql database

Properties

In Java, use
tCreateTable as
substitute for this
function.

Action on table On the table defined, you can perform one of the
following operations:
None: No operation carried out
Drop and create the table: The table is removed and
created again
Create a table: The table doesn’t exist and gets
created. If the table exists, an error is generated and
the job is stopped.
Create table if doesn’t exist: Create the table if
needed and carries out the action on data anyway.
Clear a table: The table content is deleted

Action on data On the data of the table defined, you can perform the
following operation:
Insert: Add new entries to the table. If duplicates are
found, job stops.
Update: updates entries in the table.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Usage tELTOracleOutput is to be used along with the tELTOracleMap. Note that
the Output link to be used with these components has to reflect faithfully the
name of the table.

Note: Note that the ELT components do not handle actual
data flow but only schema information.
202 Talend Open Studio Copyright © 2007

Components
tELTOracleOutput
Related scenarios

For uses cases in relation with tELTOracleOutput, see tELTOracleMap Scenario 1: Updating
Oracle DB entries on page 198.
Copyright © 2007 Talend Open Studio 203

Components
tELTTeradataInput
tELTTeradataInput

tELTTeradataInput properties

All three ELT Teradata components are closely related together in regard to their operating
condition. These components should be used to handle Teradata DB schemas to generate Insert
statements including clauses, which are to be executed to the DB output table defined.

Related scenarios

For uses cases in relation with tELTTeradataInput, see tELTMysqlMap scenarios:

• Scenario1: Aggregating table columns and filtering on page 185

• Scenario 2: ELT using Alias table on page 188

Component family ELT

Function Provides the table schema to be used for the SQL statement to execute.

Purpose Allows to add as many Input tables as required for the most complicated Insert
statement.

Properties Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
nature and number of fields to be processed. The
schema is either built-in or remotely stored in the
Repository. The Schema defined is then passed on to
the ELT Mapper to be included to the Insert SQL
statement.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Usage tELTTeradataInput is to be used along with the tELTTeradataMap. Note
that the Output link to be used with these components has to reflect faithfully
the name of the table

Note: Note that the ELT components do not handle actual
data flow but only schema information.
204 Talend Open Studio Copyright © 2007

Components
tELTTeradataMap
tELTTeradataMap

tELTTeradataMap properties

All three ELT Teradata components are closely related together in regard to their operating
condition. These components should be used to handle Teradata DB schemas to generate Insert
statements including clauses, which are to be executed to the DB output table defined.
Copyright © 2007 Talend Open Studio 205

Components
tELTTeradataMap
Connecting ELT components

For detailed information regarding ELT component connections, see Connecting ELT
components on page 183.

Related topic: Link connection on page 45

Mapping and joining tables

In the ELT Mapper, you can select specific columns from input schemas and include them in the
output schema.

Component family ELT

Function Helps to graphically build the SQL statement using the table provided as input.

Purpose Uses the tables provided as input, to feed the parameter in the built statement.
The statement can include inner or outer joins to be implemented between
tables or between one table and its aliases.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Preview The preview is an instant shot of the Mapper data. It
becomes available when Mapper properties have
been filled in with data. The preview synchronization
takes effect only after saving changes.

Map editor The ELT Map editor allows you to define the output
schema as well as build graphically the SQL
statement to be executed.

Usage tELTTeradataMap is used along with a tELTTeradataInput and
tELTTeradataOutput. Note that the Output link to be used with these
components has to reflect faithfully the name of the tables.

Note: Note that the ELT components do not handle actual
data flow but only schema information.
206 Talend Open Studio Copyright © 2007

Components
tELTTeradataMap
For detailed information regarding the table schema mapping and joining, see Mapping and
joining tables on page 197.

Adding where clauses

For details regarding the clause handling, see Adding where clauses on page 198.

Generating the SQL statement

The mapping of elements from the input schemas to the output schemas create instantly the
corresponding Select statement.

The clause defined internally in the ELT Mapper are also included automatically.

Related scenarios

For uses cases in relation with tELTTeradataMap, see tELTMysqlMap scenarios:

• Scenario1: Aggregating table columns and filtering on page 185

• Scenario 2: ELT using Alias table on page 188
Copyright © 2007 Talend Open Studio 207

Components
tELTTeradataOutput
tELTTeradataOutput

tELTTeradataOutput properties

All three ELT Teradata components are closely related together in regard to their operating
condition. These components should be used to handle Teradata DB schemas to generate Insert
statements including clauses, which are to be executed to the DB output table defined.
208 Talend Open Studio Copyright © 2007

Components
tELTTeradataOutput
Component family ELT

Function Carries out the action on the table specified and inserts the data according to
the output schema defined the ELT Mapper.

Purpose Executes the SQL Insert statement to the Teradata database

Properties

In Java, use
tCreateTable as
substitute for this
function.

Action on table On the table defined, you can perform one of the
following operations:
None: No operation carried out
Drop and create the table: The table is removed and
created again
Create a table: The table doesn’t exist and gets
created. If the table exists, an error is generated and
the job is stopped.
Create table if doesn’t exist: Create the table if
needed and carries out the action on data anyway.
Clear a table: The table content is deleted

Action on data On the data of the table defined, you can perform the
following operation:
Insert: Add new entries to the table. If duplicates are
found, job stops.
Note that in Teradata ELT, only Insert operation is
available.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Usage tELTTeradataOutput is to be used along with the tELTTeradataMap. Note
that the Output link to be used with these components has to reflect faithfully
the name of the table.

Note: Note that the ELT components do not handle actual
data flow but only schema information.
Copyright © 2007 Talend Open Studio 209

Components
tELTTeradataOutput
Related scenarios

For uses cases in relation with tELTTeradataOutput, see tELTMysqlMap scenarios:

• Scenario1: Aggregating table columns and filtering on page 185

• Scenario 2: ELT using Alias table on page 188
210 Talend Open Studio Copyright © 2007

Components
tExternalSortRow
tExternalSortRow

tExternalSortRow properties

Component family Processing

Function Uses an external sort application to sort input data based on one or
several columns, by sort type and order

Purpose Helps creating metrics and classification table.

Properties Schema type and
Edit Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and
passed on to the next component. The schema is
either built-in or remote in the Repository.
Click Edit Schema to make changes to the
schema. Note that if you make changes, the
schema automatically becomes built-in.
Click Sync columns to retrieve the schema from
the previous component connected in the job.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is
stored in the Repository, hence can be reused in
various projets and job flowcharts. Related topic:
Setting a repository schema on page 49

Criteria Click + to add as many lines as required for the
sort to be complete. By default the first column
defined in your schema is selected.

Schema column: Select the column label from
your schema, which the sort will be based on.
Note that the order is essential as it determines the
sorting priority.

Sort type: Numerical and Alphabetical order are
proposed. More sorting types to come.

Order: Ascending or descending order.

Maximum memory Type in the size of physical memory you want to
allocate to the sort processing.

Temporary directory Set the location where the temporary files should
be stored in.

Add a dummy EOF
line

Check this box when using the
tAggregateSortedRow component.

Usage This component handles flow of data therefore it requires input and
output, hence is defined as an intermediary step.
Copyright © 2007 Talend Open Studio 211

Components
tExternalSortRow
Related scenario

For related use case, see tSortRow Scenario: Sorting entries on page 494.

Limitation n/a
212 Talend Open Studio Copyright © 2007

Components
tFileCompare
tFileCompare

tFileCompare properties

Scenario: Comparing unzipped files

This scenario describes a job unarchiving a file and comparing it to a reference file to make sure it
didn’t change. The output of the comparison is stored into a delimited file and a message displays
in the console.

• Drag and drop the following components: tFileUnarchive, tFileCompare, and
tFileOutputDelimited.

• Link the tFileUnarchive to the tFileCompare with Iterate connection.

Component family File/Management

Function Compares two files and provides comparison data (based on a read-only
schema)

Purpose Helps at controlling the data quality of files being processed.

Properties Schema type and
Edit Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to
the next component. The schema is either built-in
or remotely stored in the Repository but in this
case, the schema is read-only.

File to compare Filepath to the file to be checked.

Reference file Filepath to the file, the comparison is based on.

If differences are
detected, display
If no difference
detected, display

Type in a message to be displayed in the Run Job
console based on the result of the comparison.

Print to console Check the box to display the cumessage

Usage This component can be used as standalone component but it is usually
linked to an output component to gather the log data.

Limitation n/a
Copyright © 2007 Talend Open Studio 213

Components
tFileCompare
• Connect the tFileCompare to the output component, using a Main row link.

• In the tFileUnarchive component properties, fill in the path to the archive to unzip.

• In the Extraction Directory field, fill in the destination folder for the unarchived file.

• In the tFileCompare Properties, set the File to compare. Press Ctrl+Space bar to display
the list of global variables. Select $_globals{tFileUnarchive_1}{CURRENT_FILEPATH} or
"((String)globalMap.get("tFileUnarchive_1_CURRENT_FILEPATH"))" according to the
language you work with, to fetch the file path from the tFileUnarchive component.

• And set the Reference file to base the comparison on it.

• In the messages fields, set the messages you want to see in case the files differ or in case the
files are identical, for example: '[job '.$_globals{job_name}.'] Files differ' if you work with
Perl or "[job " + jobName + "] Files differ" if you work in Java.

• Check the Print to Console box, for the message defined to display at the end of the
execution.

• The schema is read-only and contains standard information data. Click Edit schema to have
a look to it.

• Then set the output component as usual with semi-colon as data separators.

• Save your job and press F6 to run it.
214 Talend Open Studio Copyright © 2007

Components
tFileCompare
The message set is displayed to the console and the output shows the schema information data.
Copyright © 2007 Talend Open Studio 215

Components
tFileCopy
tFileCopy

tFileCopy Properties

Scenario: Restoring files from bin

This scenario describes a job that iterates on a list of files, copies each file from the defined source
directory to a target directory. It then removes the copied files from the source directory.

• Click and drop a tFileList and a tFileCopy.

• Link both components using an Iterate link.

• In the tFileList Properties, set the directory for the iteration loop.

Component family File/Management

Function Copies a source file into a target directory and can remove the source
file if so defined.

Purpose Helps to streamline processes by automating recurrent and tedious tasks
such as copy.

Properties File Name Path to the file to be copied or moved

Destination Path to the directory where the file is
copied/moved to.

Remove source file Check this box to move the file to the destination.

Replace existing file Check this box to overwrite any existing file with
the newly copied file.

Usage This component can be used as standalone component .

Limitation n/a
216 Talend Open Studio Copyright © 2007

Components
tFileCopy
• Set the Filemask to “*.txt” to catch all files with this extension. For this use case, the case
is not sensitive.

• Then select the tFileCopy to set its Properties.

• In the File Name field, press Ctrl+Space bar to access the list of variables.

• Select the global variable ((String)globalMap.get("tFileList_1_CURRENT_FILEPATH")) if
you work in Java, or $_globals{tFileList_1}{CURRENT_FILEPATH} if you work in Perl.
This way, all files from the source directory can be processed.

• Check the Remove Source file box to get rid of the file that have been copied.

• Check the Replace existing file to overwrite any file possibly present in the destination
directory.

• Save your job and press F6.

The files are copied onto the destination folder and are removed from the source folder.
Copyright © 2007 Talend Open Studio 217

Components
tFileDelete
tFileDelete

tFileDelete Properties

Scenario: Deleting files

This very simple scenario describes a job deleting files from a given directory.

• Click and drop the following components: tFileList, tFileDelete, tJava.

• In the tFileList Properties, set the directory to loop on in the Directory field.

• The filemask is “*.txt” and no case check is to carry out.

• In the tFileDelete Properties panel, set the File Name field in order for the current file in
selection in the tFileList component be deleted. This allows to delete all files contained in
the directory defined earlier on.

Component family File/Management

Function Suppresses a file from a defined directory.

Purpose Helps to streamline processes by automating recurrent and tedious tasks
such as delete..

Properties File Name Path to the file to be copied or moved

Usage This component can be used as standalone component.

Limitation n/a
218 Talend Open Studio Copyright © 2007

Components
tFileDelete
Copyright © 2007 Talend Open Studio 219

Components
tFileDelete
• press Ctrl+Space bar to access the list of global variables. In Java, the relevant variable to
collect the current file is: ((String)globalMap.get("tFileList_1_CURRENT_FILEPATH")).

• Then in the tJava component, define the message to be displayed in the standard output (Run
Job console). In this Java use case, type in the Code field, the following script:
System.out.println(((String)globalMap.get("tFileList_1_CURRENT_FILE"))
+ " has been deleted!");

• Then save your job and press F6 to run it.

The message set in the tJava component displays in the log, for each file that has been deleted
through the tFileDelete component.
220 Talend Open Studio Copyright © 2007

Components
tFileFetch
tFileFetch

tFileFetch properties

Scenario: Fetching data through HTTP

This scenario describes a three-component job which retrieves data from an HTTP website and
select data that will be stored into a delimited file.

• Click and drop a tFileFetch, a tFileInputRegex and a tFileOutputDelimited onto your
workspace.

• In the tFileFetch Properties panel, type in the URI where the file to be fetched can retrieved
from.

• In the Destination directory field, browse to the folder where the fetched file is to be stored.

Component family Internet

Function tFileFetch retrieves a file from HTTP

Purpose tFileFetch allows to fetch data contained in a file through HTTP
protocol.

Properties URI Type in the URI of the HTTP site where the file
is to be fetched from.

Destination
Directory

Browse to the destination folder where the file
fetched will be placed.

Destination
Filename

Type in a new name for the file fetched, if need
be.

Usage This component is generally used as a start component to feed the input
flow of a job and is often connected to the job through a ThenRun link.

Limitation n/a
Copyright © 2007 Talend Open Studio 221

Components
tFileFetch
• In the Filename field, type in a new name for the file if you want it to be changed. In this
example, filefetch.txt.

• Select the tFileInputRegex, set the File name so that it corresponds to the file fetched
earlier.

• Using a regular expression, in the Regex field, select the relevant data from the fetched file.
In this example: <td(?: class="leftalign")?> \s* (t\w+) \s* </td>

Take care to use the correct Regex syntax according to the generation language in use as the syntax
is different in Java/Perl, and to include the regexp in single or double quotes accordingly.

• Define the header, footer and limit if need be. In this case, we’ll ignore these fields.

• Define also the schema describing the flow to be passed on to the final output.

• The schema should be automatically propagated to the final output, but to be sure, check the
schema in the Properties panel of the tFileOutputDelimited component.

• Then press F6 to run the job.
222 Talend Open Studio Copyright © 2007

Components
tFileInputDelimited
tFileInputDelimited

tFileInputDelimited properties

Component family File/Input

Function tFileInputDelimited reads a given file row by row with simple separated fields.

Opens a file and reads it row by row to split them up into fields then sends fields as
defined in the Schema to the next job component, via a Row link.

Purpose

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where Properties are
stored. The following fields are pre-filled in using fetched
data.

File Name Name of the file to be processed.
Related topic:Defining job context variables on page 101

Field separator Character, string or regular expression to separate fields.

Row separator String (ex: “\n”on Unix) to distinguish rows.

Header Number of rows to be skipped in the beginning of file

Footer Number of rows to be skipped at the end of the file.

Limit Maximum number of rows to be processed. If Limit = 0, no
row is read or processed.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the number of
fields that will be processed and passed on to the next
component. The schema is either built-in or remote in the
Repository.
Click Edit Schema to make changes to the schema. Note that
if you make changes, the schema automatically becomes
built-in.
Click Sync columns to retrieve the schema from the
previous component connected in the job.

Built-in: The schema will be created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projets and job
flowcharts. Related topic: Setting a repository schema on
page 49

Skip empty rows Check this box to skip empty rows.

Extract lines at random/
Number of lines

Check this box to set the number of lines to be extracted
randomly.
Copyright © 2007 Talend Open Studio 223

Components
tFileInputDelimited
Scenario: Delimited file content display

The following scenario creates a two-component job, which aims at reading each row of a file,
selecting delimited data and displaying the output in the Run Job log console.

• Click and drop a tFileInputDelimited component from the Palette to the design workspace.

• Click and drop a tLogRow component the same way.

• Right-click on the tFileInputDelimited component and select Row > Main. Then drag it
onto the tLogRow component and release when the plug symbol shows up.

• Select the tFileInputDelimited component again, and define its properties:

• Fill in a path to the file in the File Name field. This field is mandatory.

• Define the Row separator allowing to identify the end of a row. Then define the Field
separator used to delimit fields in a row.

• In this scenario, the header and footer limits are not set. And the Limit number of processed
rows is set on 50.

• Select either a local (Built-in) or a remotely managed (Repository) Schema type to define
the data to pass on to the tLogRow component.

Encoding Select the encoding from the list or select Custom and define
it manually. This field is compulsory for DB data handling.

Usage Use this component to read a file and separate fields contained in this file using a
defined separator.
224 Talend Open Studio Copyright © 2007

Components
tFileInputDelimited
• You can load and/or edit the schema via the Edit Schema function.

Related topics: Setting a built-in schema and Setting a repository schema on page 49

• As selected, the empty rows will be ignored.

• Enter the encoding standard the input file is encoded in. This setting is meant to ensure
encoding consistency throughout all input and output files.

• Select the tLogRow and define the Field separator to use for the output display. Related
topic: tLogRow properties on page 334.

• Check the Print schema column name in front of each value box to retrieve the column
labels in the output displayed.

• Go to Run Job tab, and click on Run to execute the job.

The file is read row by row and the extracted fields are displayed on the Run Job log as defined in
both components Properties.

The Log sums up all parameters in a header followed by the result of the job.
Copyright © 2007 Talend Open Studio 225

Components
tFileInputMail
tFileInputMail

tFileInputMail properties

Scenario: Extracting key fields from email

This two-component scenario is aimed at extracting some key standard fields and displaying the
values on the Run Job console.

Component family File/Input

Function reads the header and content parts of an email file defined

Purpose helps to extract standard key data from emails

Properties File name Browse to the source email file

Schema type and
Edit Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and
passed on to the next component. The schema is
either built-in or remote in the Repository.
Click Edit Schema to make changes to the
schema. Note that if you make changes, the
schema automatically becomes built-in.
Click Sync columns to retrieve the schema from
the previous component connected in the job.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is
stored in the Repository, hence can be reused in
various projets and job flowcharts. Related topic:
Setting a repository schema on page 49

Mail parts Column: This field is automatically populated
with the columns defined in the schema that you
propagated.

Mail part: Type in the label of the header part or
body to be displayed on the output.

Usage This component handles flow of data therefore it requires input and
output, hence is defined as an intermediary step.

Limitation n/a
226 Talend Open Studio Copyright © 2007

Components
tFileInputMail
• Click and drop a tFileInputMail and a tLogRow component

• On the Properties tab, define the email parameters:

• Browse to the mail File to be processed. Define the schema including all columns you want
to retrieve on your output.

• Once the schema is defined, click OK to propagate it into the Mail parts table

• On the Mail part column of the table, type in the actual header or body standard keys that
will be used to retrieve the values to be displayed.

• Define the tLogRow in order for the values to be separated by a carriage return. On Windows
OS, type in \n between double quotes.

• Press F6 to run the job and display the output flow on the execution console.

The header key values are extracted as defined in the Mail parts table. Indeed, the author, topic,
delivery date and number of lines are part of the output displayed.
Copyright © 2007 Talend Open Studio 227

Components
tFileInputPositional
tFileInputPositional

tFileInputPositional properties

Component family File/Input

Function tFileInputPositional reads a given file row by row and extracts fields based on a pattern.

Purpose Opens a file and reads it row by row to split them up into fields then sends fields as defined
in the Schema to the next job component, via a Row link.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where Properties are
stored. The following fields are pre-filled in using fetched
data.

File Name Name of the file to be processed. Related topic:Defining job
context variables on page 101

Field separator Character, string or regular expression to separate fields.

Row separator String (ex: “\n”on Unix) to distinguish rows.

Header Number of rows to be skipped in the beginning of file

Footer Number of rows to be skipped at the end of the file.

Limit Maximum number of rows to be processed. If Limit = 0, no
row is read or processed.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the number of
fields that will be processed and passed on to the next
component. The schema is either built-in or remote in the
Repository.

Built-in: The schema will be created and stored locally for this
component only. Related topic: Setting a built-in schema on
page 49

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projets and job
flowcharts. Related topic: Setting a repository schema on page
49

Skip empty rows Check this box to skip empty rows.

Pattern Length values separated by commas, interpreted as a string
between quotes. Make sure the values entered in this fields are
consistent with the schema defined.

Encoding Select the encoding from the list or select Custom and define
it manually. This field is compulsory for DB data handling.

Usage Use this component to read a file and separate fields using a position separator value.
228 Talend Open Studio Copyright © 2007

Components
tFileInputPositional
Scenario: From Positional to XML file

The following scenario creates a two-component job, which aims at reading data of an Input file and
outputting selected data (according to the data position) into an XML file.

• Click and drop a tFileInputPositional component from the Palette to the design workspace.
The file contains raw data, in this case, contract nr, customer references and insurance
numbers.

• Click and drop a tFileOutputXML component. This file is meant to receive the references
in a structured way.

• Right-click on the tFileInputPositional component and select Row > Main. Then drag it
onto the tFileOutputXML component and release when the plug symbol shows up.

• Select the tFileInputPositional component again, and define its properties.

• The job properties are built-in for this scenario. As opposed to the Repository, this means that
the Property type is set for this station only.

• Fill in a path to the file in the File Name field. This field is mandatory.

• Define the Row separator identifying the end of a row, by default, a carriage return.

• Then define the Pattern to delimit fields in a row. The pattern is a series of length values
corresponding to the values of your input files. The values should be entered between quotes,
and separated by a comma. Make sure the values you enter match the schema defined.

• In this scenario, the header, footer and limit fields are not set. But depending on the input file
structure, you may need to define them.

• Select a Schema type to define the data to pass on to the tFileOutputXML component.
Copyright © 2007 Talend Open Studio 229

Components
tFileInputPositional
• You can load and/or edit the schema via the Edit Schema function. For this schema, define
three columns, respectively Contracts, CustomerRef and InsuranceNr matching the three
value lengths defined.

• Then define the second component properties:

• Enter the XML output file path.

• Enter a root tag (or more), to wrap the XML structure output, in this case ‘ContractsList’.

• Define the row tag that will wrap each line data, in this case ‘ContractRef’.

• Check the box Column name as tag name to reuse the column label from the input schema
as tag label. By default, ‘field’ is used for each column value data.

• Enter the Encoding standard, the input file is encoded in. Note that, for the time being, the
encoding consistency verification is not supported.
230 Talend Open Studio Copyright © 2007

Components
tFileInputPositional
• Select the Schema type. If the row connection is already implemented, the schema is
automatically synchronized with the Input file schema. Else, click on Sync columns.

• Go to the Run Job tab, and click on Run to execute the job.

The file is read row by row and split up into fields based on the length values defined in the Pattern
field. You can open it using any standard XML editor.
Copyright © 2007 Talend Open Studio 231

Components
tFileInputRegex
tFileInputRegex

tFileInputRegex properties

Component family File/Input

Function Powerful feature which can replace number of other components of the File
family. Requires some advanced knowledge on regular expression syntax

Purpose Opens a file and reads it row by row to split them up into fields using regular
expressions. Then sends fields as defined in the Schema to the next job
component, via a Row link.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where Properties
are stored. The following fields are pre-filled in using
fetched data.

File Name Name of the file to be processed.
Related topic:Defining job context variables on page
101

Row separator String (ex: “\n”on Unix) to distinguish rows.

Regex This field is Perl or Java compatible and can contain
multiple lines. Type in your regular expressions
including the subpattern matching the fields to be
extracted.
Note: In Java, antislashes need to be doubled in regexp

Regexp syntax is different if in Java/Perl and
requires double or single quotes respectively.

Header Number of rows to be skipped in the beginning of file

Footer Number of rows to be skipped at the end of the file.

Limit Maximum number of rows to be processed. If Limit = 0,
no row is read or processed.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the next
component. The schema is either built-in or remote in
the Repository.

Built-in: The schema will be created and stored locally
for this component only. Related topic: Setting a built-in
schema on page 49
232 Talend Open Studio Copyright © 2007

Components
tFileInputRegex
Scenario: Regex to Positional file

The following scenario creates a two-component job, reading data from an Input file using regular
expression and outputting delimited data into an XML file.

• Click and drop a tFileInputRegex component from the Palette to the design workspace.

• Click and drop a tFileOutputPositional component the same way.

• Right-click on the tFileInputRegex component and select Row > Main. Drag this main row
link onto the tFileOutputPositional component and release when the plug symbol displays.

• Select the tFileInputRegex again so the properties tab shows up, and define the properties:

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projets
and job flowcharts. Related topic: Setting a repository
schema on page 49

Skip empty rows Check this box to skip empty rows.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB data
handling.

Usage Use this component to read a file and separate fields contained in this file
according to the defined Regex.

Limitation n/a
Copyright © 2007 Talend Open Studio 233

Components
tFileInputRegex
• The job is built-in for this scenario. Hence, the Properties are set for this station only.

• Fill in a path to the file in File Name field. This field is mandatory.

• Define the Row separator identifying the end of a row.

• Then define the Regular expression in order to delimit fields of a row, which are to be
passed on to the next component. You can type in a regular expression using Perl code, and
on mutiple lines if needed.

Take care to use the correct Regex syntax according to the generation language in use as the syntax
is different in Java/Perl, and to include the regexp in single or double quotes accordingly.

• In this expression, make sure you include all subpatterns matching the fields to be extracted.

• In this scenario, ignore the header, footer and limit fields.

• Select a local (Built-in) Schema type to define the data to pass on to the
tFileOutputPositional component.

• You can load or create the schema through the Edit Schema function.

• Then define the second component properties:

•

234 Talend Open Studio Copyright © 2007

Components
tFileInputRegex
• Enter the Positional file output path.

• Enter the Encoding standard, the output file is encoded in. Note that, for the time being, the
encoding consistency verification is not supported.

• Select the Schema type. Click on Sync columns to automatically synchronize the schema
with the Input file schema.

• Now go to the Run Job tab, and click on Run to execute the job.

The file is read row by row and split up into fields based on the Regular Expression definition. You
can open it using any standard file editor.
Copyright © 2007 Talend Open Studio 235

Components
tFileInputXML
tFileInputXML

tFileInputXML Properties

Component family File/Input

Function tFileInputXML reads an XML structured file and extracts data row by row.

Purpose Opens an XML structured file and reads it row by row to split them up into
fields then sends fields as defined in the Schema to the next component, via
a Row link.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either built-in
or remote in the Repository.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused in various
projets and job flowcharts. Related topic: Setting a
repository schema on page 49

File Name Name of the file to be processed.
Related topic:Defining job context variables on page
101

Loop XPath query Node of the tree, which the loop is based on

Mapping
column/XPath Query

Column reflects the schema as defined by the
Schema type field
XPath Query: Enter the fields to be extracted from
the structured input.

Limit Maximum number of rows to be processed. If Limit
= 0, no row is read nor processed.

Encoding Select the encoding from the list or select Custom
and define it manually. This field is compulsory for
DB data handling.

Limitation n/a
236 Talend Open Studio Copyright © 2007

Components
tFileInputXML
Scenario: XML street finder

This very basic scenario is made of two components. A tFileInputXML component extracts from
the defined street directory file and the output is displayed on the Run Job console via a tLogRow
component.

• Select a tFileInputXML file from the File folder in the Palette. Click and drop also a
tLogRow component and connect both components.

• On the Properties panel of the tFileInputXML, define the properties:

• As the street dir file used as input file has been previously defined in the Metadata area, select
Repository as Property type. This way, the properties are automatically leveraged and the
rest of the properties fields are filled in (apart from Schema). For more information regarding
the metadata creation wizards, see Defining Metadata items on page 51.

• Select the same way the relevant schema in the Repository metadata list. Edit schema if you
want to make any change to the schema loaded.

• The Filename shows the structured file to be used as input

• In Loop XPath query, change if needed the node of the structure where the loop is based.

• On the Mapping table, fill the fields to be extracted and displayed in the output.

• If the file size is consequent, fill in a Limit of rows to be read.
Copyright © 2007 Talend Open Studio 237

Components
tFileInputXML
• Enter the encoding if needed then double-click on tLogRow to define the separator character.

• At last, press F6 or go to Run Job and click Run to execute the job. On the console, the fields
defined in the input properties are extracted from the XML structured and displayed.
238 Talend Open Studio Copyright © 2007

Components
tFileList
tFileList

tFileList properties

Scenario: Iterating on a file directory

The following scenario creates a three-component job, which aims at listing files from a defined
directory, reading each file by iteration, selecting delimited data and displaying the output in the
Run Job log console.

• Click and drop a tFileList , a tFileInputDelimited and a tLogRow component into the
Design workspace.

• Right-click on the tFileList component, and pull an Iterate connection to the
tFileInputDelimited component. Then pull a Main row from the tFileInputDelimited to
the tLogRow component.

• Now define the properties of all three components.

• First select the tFileList component, and click on Properties tab:

Component family File/Management

Function iterates on files of a set directory.

Purpose tFileList takes out a set of files based on a filemask pattern and iterates
on each file.

Properties Directory Path to the directory where files are stored

Filemask Filename or filemask using wildcharacter (*) .

Case sensitive Create case sensitive filter on filenames.

Usage tFilelist provides a list of files from a defined directory on which to
iterate
Copyright © 2007 Talend Open Studio 239

Components
tFileList
• Browse to the Directory of the files to process. To display the path on the job itself, use the
hint label (__DIRECTORY__) that shows up when you browse over the Directory field.
Type in this reference in the Label Format field of the View tab.

• Enter a Filemask using wildcards if need be.

• The case is sensitive.

• Click on the tFileInputDelimited component and set the properties:

• Enter the File Name field using a variable containing the current filename path, as you filled
in in the properties of tFileList. Press Ctrl+Space bar to access the autocomplete list of
variables.

• Fill in all other fields as detailed in the tFileInputDelimited section. Related topic:
tFileInputDelimited properties on page 223

• Select the last component, tLogRow and fill in the separator to be used to distinguish field
content displayed on the Log. Related topic: tLogRow properties on page 334.
240 Talend Open Studio Copyright © 2007

Components
tFileList
The job iterates on the directory defined, and reads each file contained. Then delimited data is passed
on to the last component which displays it on the Log.

For other scenarios using tFileList, see tFileCopy on page 216.
Copyright © 2007 Talend Open Studio 241

Components
tFileOutputExcel
tFileOutputExcel

tFileOutputExcel Properties

Related scenario

For tFileOutputExcel related scenario, see tSugarCRMInput on page 509.

Component family File/Output

Function tFileOutputExcel outputs data to an MS Excel type of file.

Purpose tFileOutputExcel writes an MS Excel file with separated data value according
to a defined schema.

Properties File name Name or path to the output file. Related topic:
Defining job context variables on page 101

Sheet name Name of the sheet

Include header Check the box to include header row to the output file

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either built-in
or remote in the Repository.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused in various
projects and job designs. Related topic: Setting a
repository schema on page 49

Sync columns Click to synchronize the output file schema with the
input file schema. The Sync function only displays
once the Row connection is linked with the Output
component.

Encoding Select the encoding from the list or select Custom
and define it manually. This field is compulsory for
DB data handling.

Usage Use this component to write an XML file with data passed on from other
components using a Row link.

Limitation n/a
242 Talend Open Studio Copyright © 2007

Components
tFileOutputLDIF
tFileOutputLDIF

tFileOutputLDIF Properties

Component family File/Output

Function tFileOutputLDIF outputs data to an LDIF type of file which can then be
loaded into a LDAP directory.

Purpose tFileOutputLDIF writes or modifies a LDIF file with data separated in
respective entries based on the schema defined,.or else deletes content from
an LDIF file.

Properties File name Name or path to the output file. Related topic:
Defining job context variables on page 101

Wrap Wraps the file content, every defined number of
characters.

Change type Select Add, Modify or Delete to respectively create
an LDIF file, modify or remove an existing LDIF
file. In case of modification, set the type of attribute
changes to be made.

Change on attributes Select Add, Modify or Delete to respectively add a
new attribute to the file, replace the attributes with
new ones or suppress attributes from the file defined.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either built-in
or remote in the Repository.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused in various
projects and job designs. Related topic: Setting a
repository schema on page 49

Sync columns Click to synchronize the output file schema with the
input file schema. The Sync function only displays
once the Row connection is linked with the Output
component.

Encoding Select the encoding from the list or select Custom
and define it manually. This field is compulsory for
DB data handling.

Usage Use this component to write an XML file with data passed on from other
components using a Row link.

Limitation n/a
Copyright © 2007 Talend Open Studio 243

Components
tFileOutputLDIF
Scenario: Writing DB data into an LDIF-type file

This scenario describes a two component job which aims at extracting data from a database table and
writing this data into a new output LDIF file.

• Click and drop a tDBInput and a tFileOutputLDIF component from the Palette to the
design area. Bind them together using a Row > Main link.

• Select the tDBInput component, and go to the Properties panel then select the Properties
tab.

• If you stored the DB connection details in a Metadata entry in the Repository, set the
Property type as well as the Schema type on Repository and select the relevant metadata
entry. All other fields are filled in automatically, and retrieve the metadata-stored
parameters.

• Alternatively select Built-in as Property type and Schema type and fill in the DB
connection and schema fields manually.

• Then double-click on tFileOutpuLDIF and define the Properties.

• Browse to the folder where you store the Output file. In this use case, a new LDIF file is to
be created. Thus type in the name of this new file.

• In the Wrap field, enter the number of characters held on one line. The text coming
afterwards will get wrapped onto the next line.
244 Talend Open Studio Copyright © 2007

Components
tFileOutputLDIF
• Select Add as Change Type as the newly created file is by definition empty. In case of
modification type of Change, you’ll need to define the nature of the modification you want
to make to the file.

• As Schema Type, select Built-in and use the Sync Columns button to retrieve the input
schema definition.

• Press F6 to short run the job.

The LDIF file created contains the data from the DB table and the type of change made to the file,
in this use case, addition.
Copyright © 2007 Talend Open Studio 245

Components
tFileOutputXML
tFileOutputXML

tFileOutputXML properties

Component family File/Output

Function tFileOutputXML outputs data to an XML type of file.

Purpose tFileOutputXML writes an XML file with separated data value according to
a defined schema.

Properties File name Name or path to the output file. Related topic:
Defining job context variables on page 101

Root tag Wraps the whole output file structure and data.

Row tag Wraps data and structure per row

Column name as tag
name

Check the box to leverage the column labels from the
input schema, as data wrapping tag.

Split output in files If the XML file output is big , you can split the file
every certain number of rows.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either built-in
or remote in the Repository.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused in various
projects and job designs. Related topic: Setting a
repository schema on page 49

Sync columns Click to synchronize the output file schema with the
input file schema. The Sync function only displays
once the Row connection is linked with the Output
component.

Encoding Select the encoding from the list or select Custom
and define it manually. This field is compulsory for
DB data handling.

Usage Use this component to write an XML file with data passed on from other
components using a Row link.

Limitation n/a
246 Talend Open Studio Copyright © 2007

Components
tFileOutputXML
Scenario: From Positional to XML file

Find a scenario using tFileOutputXML component at section: Scenario: From Positional to XML
file on page 229.
Copyright © 2007 Talend Open Studio 247

Components
tFileUnarchive
tFileUnarchive

tFileUnarchive Properties

Related scenario

For tFileUnarchive related scenario, see tFileCompare on page 213.

Component family File/Management

Function Decompresses the archive file provided as parameter and put it in the
extraction directory.

Purpose Unarchives a file of any format (zip, rar...) that is mostlikely to be
processed.

Properties Archive file File path to the archive

Extract Directory Folder where the unarchived file is put

Java only features
Use archive name as
root directory /
Extract file paths

Check the box to reproduce the whole path to the
file or if none exists create a new folder

 Perl only feature
Use Command line
tools

Check this box to use another unarchiving tool
than the one provided by default in the Perl
package.

Usage This component can be used as a standalone component but it can also
be used within a job as a Start component using an Iterate link.

Limitation n/a
248 Talend Open Studio Copyright © 2007

Components
tFilterColumn
tFilterColumn

tFilterColumn Properties

Related Scenario

For more info regarding the tFilterColumn component in use, see tReplace Scenario: multiple
replacements and column filtering on page 475

Component family Processing

Function Makes specified changes to the schema defined, based on column name
mapping.

Purpose Helps homogenizing schemas either on the columns order or by
removing unwanted columns or adding new columns.

Properties Schema type and
Edit Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and
passed on to the next component. The schema is
either built-in or remote in the Repository.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is
stored in the Repository, hence can be reused in
various projects and job designs. Related topic:
Setting a repository schema on page 49

Usage This component is not startable (green background) and it requires an
output component.
Copyright © 2007 Talend Open Studio 249

Components
tFilterRow
tFilterRow

tFilterRow Properties

Component family Processing

Function Compares a column from the main flow with a reference column from
the lookup flow and outputs the main flow data displaying the distance

Purpose Helps ensuring the data quality of any source data against a reference
data source.

Properties Schema type and
Edit Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and
passed on to the next component. The schema is
either built-in or remote in the Repository.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is
stored in the Repository, hence can be reused in
various projects and job designs. Related topic:
Setting a repository schema on page 49

Conditions Click Plus to add as many conditions as needed.
The conditions are performed one after the other
for each row.
Function: Select the function on the list
Input column: Select the column of the schema
the function is to be operated on
Operator: Select the operator to bind the input
column with the value
Value: Type in the filtered value, between quotes
if need be.

Use advanced mode Check this box when the operation you want to
perform cannot be carried out through the
standard functions offered. In the text field, type
in the regular expression as required.

Logical operator
used to combine
conditions

In the case you want to combine simple filtering
and advanced mode, select the operator to
combine both modes.

Usage This component is not startable (green background) and it requires an
output component.
250 Talend Open Studio Copyright © 2007

Components
tFilterRow
Scenario: Filtering and searching a list of names

The following use case filters a list of first names based on the name gender. Then using a regular
expression, the first names starting with ‘rom’ are listed.

• Click and drop a tFileInputDelimited, a tFilterRow and a tLogRow component.

• On the tFileInputDelimited, set the file path and separators.

• The row separator is a carriage return and the field separator is a tabulation.

• The properties and schema are Built-in for this job. This means, the retrieval information is
not stored in the Repository.

• The schema is made of the following four columns in this example: firstname, gender,
language, frequency.

• Then select the Encoding type in the list according to your file.
Copyright © 2007 Talend Open Studio 251

Components
tFilterRow
• In the Conditions table, fill in the filtering parameters based on the gender column.

• In Function, select value of, as Input column, select gender and as operator, select Equals
(Str) as the expected values are of string type.

• In the Value column, type in m between double quotes to filter only the male names.

• Then to implement the search on first names starting with the rom syllable, check the Use
advanced mode box and type in the following regular expression (in Perl) that includes the
name of the column to be searched: $input_row[firstname] =~ /^rom/

• To combine both conditions (simple and advanced), select And as logical operator for this
use case.

• The tLogRow component doesn’t require any particular setting for this example.

• Save and execute the job.

Only the male names starting with the rom syllable are listed on the console.
252 Talend Open Studio Copyright © 2007

Components
tFirebirdInput
tFirebirdInput

tFirebirdInput properties

Component family Databases/FireBird

Function tFirebirdInput reads a database and extracts fields based on a query.

Purpose tFirebirdInput executes a DB query with a strictly defined order which must
correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Properties Property type Either Built-in or Repository

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Database Name of the database

Username and
Password

DB user authentication data.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type and Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Usage This component covers all possibilities of SQL queries onto a FireBird
database.
Copyright © 2007 Talend Open Studio 253

Components
tFirebirdInput
Related scenarios

For related topics, see generic tDBInput scenarios:

• Scenario 1: Displaying selected data from DB table on page 162

• Scenario 2: Using StoreSQLQuery variable on page 163

See also related topic in tContextLoad Scenario: Dynamic context use in MySQL DB insert on page
145.
254 Talend Open Studio Copyright © 2007

Components
tFirebirdOutput
tFirebirdOutput

tFirebirdOutput properties

Component family Databases/FireBird

Function tFirebirdOutput writes, updates, makes changes or suppresses entries in a
database.

Purpose tFirebirdOutput executes the action defined on the table and/or on the data
contained in the table, based on the flow incoming from the preceding
component in the job.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one
table can be written at a time

Action on data On the data of the table defined, you can perform:
Insert: Add new entries to the table. If duplicates are
found, job stops.
Update: Make changes to existing entries
Insert or update: Add entries or update existing
ones.
Update or insert: Update existing entries or create it
if non existing
Delete: Remove entries corresponding to the input
flow.

Clear data in table Wipes out data from the selected table before action.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49
Copyright © 2007 Talend Open Studio 255

Components
tFirebirdOutput
Related scenarios

For related topics, see:

• tDBOutput Scenario: Displaying DB output on page 166

• tMySQLOutput Scenario: Adding new column and altering data on page 396.

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Additional Columns This option is not offered if you create (with or
without drop) the Db table. This option allows you to
perform actions on columns, which are not insert, nor
update or delete actions or requires a particular
preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After, following
the action to be performed on the reference column.

Reference column: Type in a column of reference
that the tDBOutput can use to place or replace the new
or altered column.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.
256 Talend Open Studio Copyright © 2007

Components
tFirebirdRow
tFirebirdRow

tFirebirdRow properties

Component family Databases/FireBird

Function tFirebirdRow is the specific component for this database query. It executes
the SQL query stated onto the specified database. The row suffix means the
component implements a flow in the job design although it doesn’t provide
output.

Purpose Depending on the nature of the query and the database, tFirebirdRow acts on
the actual DB structure or on the data (although without handling data). The
SQLBuilder tool helps you write easily your SQL statements.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build
it graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.
Copyright © 2007 Talend Open Studio 257

Components
tFirebirdRow
Related scenarios

For related topics, see:

• tDBSQLRow Scenario 1: Resetting a DB auto-increment on page 170

• tMySQLRow Scenario: Removing and regenerating a MySQL table index on page 408.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.
258 Talend Open Studio Copyright © 2007

Components
tFlowMeter
tFlowMeter

tFlowMeter Properties

If you have a need of log, statistics and other measurement of your data flows, see Automating stats
& logs use on page 113.

Related scenario

For related scenario, see Scenario: Catching flow metrics from a job on page 261.

Component family Log/Error

Function Counts the number of rows processed in the defined flow.

Purpose The number of rows is then meant to be caught by the tFlowMeterCatcher
for logging purpose.

Properties Use input connection
name as label

Check the box to reuse the name given to the input
main row flow as label in the logged data.

Mode Select the type of values for the data measured:
Absolute: the actual number of rows is logged
Relative: a ratio (%) of the number of rows is
logged. When selecting this option, the reference

Thresholds Adds a threshold to watch proportions in volumes
measured. you can decide that the normal flow has to
be between low and top end of a row number range,
and if the flow is under this low end, there is a
bottleneck.

Usage Cannot be used as a start component as it requires an input flow to operate.

Limitation n/a
Copyright © 2007 Talend Open Studio 259

Components
tFlowMeterCatcher
tFlowMeterCatcher

tFlowMeterCatcher Properties

Component family Log & Error

Function Based on a defined sch.ema, the tFlowMeterCatcher catchs the processing
volumetrics from the tFlowMeter component and passes them on to the
output component.

Purpose Operates as a log function triggered by the use of a tFlowMeter component
in the job.

Schema type A schema is a row description, i.e., it defines the
fields to be processed and passed on to the next
component. In this particular case, the schema is
read-only, as this component gathers standard log
information including:

Moment: Processing time and date

Pid: Process ID

Father_pid: Process ID of the father job if
applicable. If not applicable, Pid is duplicated.

Root_pid: Process ID of the root job if applicable. If
not applicable, pid of current job is duplicated.

System_pid: Process id generated by the system

Project: Project name, the job belongs to.

Job: Name of the current job

Job_repository_id: ID generated by the application.

Job_version: Version number of the current job

Context: Name of the current context

Origin: Name of the component if any

Label: Label of the row connection preceding the
tFlowMeter component in the job, and that will be
analysed for volumetrics.

Count: Actual number of rows being processed

Reference: Name of the reference row as defined in
the tFlowMeter component for relative counting
mode.

Thresholds: Only used when the relative mode is
selected in the tFlowMeter component.

Usage This component is the start component of a secondary job which triggers
automatically at the end of the main job.
260 Talend Open Studio Copyright © 2007

Components
tFlowMeterCatcher
Scenario: Catching flow metrics from a job

The following basic job aims at catching the number of rows being passed in the flow processed.
The measures are taken twice, once after the input component, that is, before the filtering step and
once right after the filtering step, that is, before the output component.

• Click and drop the following components from the Palette to the Designer workspace:
tMysqlInput, tFlowMeter (x2), tMap, tLogRow, tFlowMeterCatcher and
tFileOutputCSV.

• Link the main job using row main connections and click on the label to give consistent name
throughout the job, such as US_States from the input component and filtered_states for the
output from the tMap component, for example.

• Link the tFlowMeterCatcher to the tFileOutputCSV component using a row main link
also as data is passed.

• On the tMysqlInput properties view, configure the connection properties as Repository, if
the table metadata are stored in the Repository. Or else, set the Type as Built-in and
configure manually the connection and schema details if they are built-in for this job.

Limitation The use of this component cannot be separated from the use of the
tFlowMeter. For more information, see tFlowMeter on page 259.
Copyright © 2007 Talend Open Studio 261

Components
tFlowMeterCatcher
• The Schema is simply made of two columns: idState and LabelState.

• The Query type is Built-in for this job example.

• The 50 States of the USA are recorded in the table us_states. In order for all 50 entries of the
table to get selected, the query to run onto the Mysql database is as follows:
select * from us_states.

• Select the relevant Encoding type in the list.

• Then select the following component which is a tFlowMeter and set its properties.

• Check the box Use input connection name as label, in order to reuse the label you chose
in the log output file (tFileOutputCSV).

• The mode is Absolute as there is no reference flow to meter against, also no Threshold is
to be set for this example.
262 Talend Open Studio Copyright © 2007

Components
tFlowMeterCatcher
Note: The Thresholds information is of use within a supervising tool such as Talend’s
Activity Monitoring Console in order to get a proportional representation of the flow
process. See Activity Monitoring Console User guide for more information.

• Then launch the tMap editor to set the filtering properties.

• For this use case, drag and drop the ID and States columns from the Input area of the tMap
towards the Output area. No variable is used in this example.

• On the Output flow area (labelled filtered_states in this example), click the arrow & plus
button to activate the expression filter field.

• Drag the LabelState column from the Input area (row2) towards the expression filter field
and type in the rest of the expression in order to filter the state labels starting with the letter
M. The final expression looks like: row2.LabelState.startsWith("M")

• Click OK to validate the setting.

• Then select the second tFlowMeter component and set its properties.

• Check the box Use input connection name as label.

• Select Relative as Mode and in the Reference connection list, select US_States as reference
to be measured against.
Copyright © 2007 Talend Open Studio 263

Components
tFlowMeterCatcher
• Once again, no threshold is used for this use case.

• No particular setting is required in the tLogRow.

• Neither does the tFlowMeterCatcher as this component’s properties are limited to a preset
schema which includes typical log information.

• So eventually set the log output component (tFileOutputCSV).

• Check the Append box in order to log all tFlowMeter measures.

• Then save your job and run it.

The Run Job view shows the filtered state labels as defined in the job.

In the delimited csv file, the number of rows shown in column count varies between tFlowMeter1
and tFlowMeter2 as the filtering has then been carried out. The reference column shows also this
difference.
264 Talend Open Studio Copyright © 2007

Components
tFor
tFor

tFor Properties

Scenario: Job execution in a loop

This scenario describes a job composed of a parent job and a child job. The parent job implements
a loop which executes n times a child job, with a pause between each execution.

Component family Misc

Function tFor iterates on a task execution.

Purpose tFor allows to automatically execute a task or a job based on a loop

Properties From Type in the first instance number which the loop
should start from. A start instance number of 2
with a step of 2 means the loop takes on every
even number instance.

To Type in the last instance number which the loop
should finish with.

Step Type in the step the loop should be incremented
of. A step of 2 means every second instance.

Usage tFor is to be used as a starting component and can only be used with an
iterate connection to the next component.

Limitation n/a
Copyright © 2007 Talend Open Studio 265

Components
tFor
• In the parent job, click and drop a tFor, a tRunJob and a tSleep component onto the
workspace.

• Connect the tFor to the tRunJob using an Iterate connection.

• Then connect the tRunJob to a tSleep component using a Row connection.

• On the child job, click and drop the following components: tPOP, tFileInputMail and
tLogRow.

• On the Properties panel of the tFor component, type in the instance number to start from
(1), the instance number to finish with (5) and the step (1)

• On the Properties panel of the tRunJob component, select the child job in the list of stored
jobs offered. In this example: popinputmail

• Select the context if relevant. In this use case, the context is default with no variables stored.

• In the tSleep Properties panel, type in the time-off value in second. In this example: 3
seconds

• Then in the child job, define the connection parameters to the pop server, on the Properties
panel.

• In the tFileInputMail Properties panel, select a global variable as File Name, to collect the
current file in the directory defined in the tPOP component. Press Ctrl+Space bar to access
the variable list. In this example, the variable to be used is:
$_globals{tPOP_1}{CURRENT_FILEPATH}

• Define the Schema, for it to include the mail element to be processed, such as author, topic,
delivery date and number of lines.

• In the Mail Parts table, type in the corresponding Mail part for each column defined in the
schema. ex: author comes from the From part of the email file.
266 Talend Open Studio Copyright © 2007

Components
tFor
• Then connect the tFileInputMail to a tLogRow to check out the execution result on the Run
Job view.

• Press F6 to run the job.
Copyright © 2007 Talend Open Studio 267

Components
tFTP
tFTP

tFTP properties

tFTP put

Note: If you enter a file path in the Filemask field, you don’t need to fill in the local
directory field.

Component family Internet/FTP

Function This component transfers defined files via an FTP connection.

Purpose tFTP purposes vary according to the action selected. It can be used to get
a file, put a file, remove a file or replace it on the FTP server defined.

Properties Host FTP IP address

Port Listening port number of the FTP site.

Username and
Password

FTP user authentication data.

Local directory File Path. Use depends on action taken.

Remote directory File Path. Use depends on action taken.

Action List of available actions to transfer files. Related
links: tFTP put, tFTP get, tFTP rename, tFTP
delete on page 269.

Files Filemask of the file and New Name in case of
Rename action. Wildcard character (*) can be
used to transfer a set of files. Or right-click to add
lines to the table.

Usage This component is typically used as a single-component sub-job but can
also be used as output or end object.

Limitation tFTP cannot handle both a Get and a Put action at the same time. In order
to carry out both actions in parallel, duplicate the tFTP component in the
job and set them differently for both actions.

Purpose tFTP copies selected files from a defined local directory to a destination
remote FTP directory.

Local directory Path to source location of the file(s).

Remote directory Path to destination directory of the file(s).

Filemask File names or path to the files to be transferred.
268 Talend Open Studio Copyright © 2007

Components
tFTP
tFTP get

Note: If you enter a file path in the Filemask field, you don’t need to fill in the local
directory field.

tFTP rename

Note: If you enter a file path in the Filemask field, you don’t need to fill in the local
directory field.

tFTP delete

Note: If you enter a file path in the Filemask field, you don’t need to fill in the local
directory field.

Scenario: Putting files on a remote FTP server

This scenario creates a single-component job which puts the files defined on a remote server.

• Click and drop a tFTP component onto the design workspace.

• Click on Properties tab, to define the tFTP component parameters:

Purpose tFTP retrieves selected files from a defined remote FTP directory and
copy them into a local directory .

Local directory Path to destination location of the file.

Remote directory Path to source directory where the files can be fetched.

Filemask File name or path to the files to be transferred.

Purpose tFTP remotely renames or moves files in a a filesystem.

Local directory unused in this action.

Remote directory Source directory where the files to be renamed or moved can be fetched.

Filemask File name or path to the files to be renamed.

New name Enter the new name for the file.

Purpose tFTP remotely deletes files in a a filesystem.

Local directory unused in this action.

Remote directory Source directory where the files to be deleted are located.

Filemask File name or path to the files to be deleted.
Copyright © 2007 Talend Open Studio 269

Components
tFTP
• Fill in the Host IP address, the listening Port number, as well as the connection details.

• Fill in the local directory details unless you fill it directly in the different filemasks.

• Fill the details of the remote server directory.

• Select the action to be carried out, in this usecase, we’ll perform a Put action.

• Right-click in the Files area, to add new lines and fill in the filemasks of all files to be copied
onto the remote directory.

• Click on Run Job tab and execute the job.

Files defined in the Filemask are copied on the remote server.
270 Talend Open Studio Copyright © 2007

Components
tFuzzyMatch
tFuzzyMatch

tFuzzyMatch properties

Component family Data quality

Function Compares a column from the main flow with a reference column from
the lookup flow and outputs the main flow data displaying the distance

Purpose Helps ensuring the data quality of any source data against a reference
data source.

Properties Schema type and
Edit Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and
passed on to the next component. The schema is
either built-in or remote in the Repository.
Two read-only columns, Value and Match are
added to the output schema automatically.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is
stored in the Repository, hence can be reused in
various projects and job designs. Related topic:
Setting a repository schema on page 49

Matching type Select the relevant matching algorythm among:
Levenshtein:Based on the edit distance theory.
This calculates the number of insertion, deletion
or substitution required to match the reference
Metaphone:Based on the phonetics. It first loads
the phonetics of all entries of the lookup reference
and checks all entries of the main flow against it.
Double Metaphone:If disambiguation is
required in Metaphone, use this option..

Min Distance (Levenshtein only) Set the minimum number of
changes allowed to match the reference. If set to
0, only perfect matchs are returned.

Max Distance (Levenshtein only) Set the maximum number of
changes allowed to match the reference.

Matching Column Select the column of the main flow that needs to
be checked against the reference (lookup) key
column

Unique Matching Check this box if you want to get the best match
possible, in case several matchs are available.
Copyright © 2007 Talend Open Studio 271

Components
tFuzzyMatch
Scenario 1: Levenshtein distance of 0 in first names

This scenario describes a four-component job aiming at checking the edit distance between the First
Name column of an input file with the data of the reference input file. The output of this Levenshtein
type check is displayed along with the content of the main flow on a table

• Drag and drop the following components from the Palette to the workspace:
tFileInputDelimited (x2), tFuzzyMatch, tFileOutputDelimited.

• Define the first tFileInputDelimited properties. Browse the system to the input file to be
analysed and most importantly set the schema to be used for the flow to be checked.

• In the schema, set the Type of data in the Java version, especially if you are in Built-in mode.

• Link the defined input to the tFuzzyMatch using a Main row link.

• Define the second tFileInputDelimited component the same way.

WARNING—Make sure the reference column is set as key column in the schema of the lookup flow.

Matching item
separator

In case several matchs are available, all of them
are displayed unless the unique match box is
checked. Define the delimiter between all
matchs.

Usage This component is not startable (green background) and it requires two
input components and an output component.

Limitation/prerequisite Perl users: Make sure the relevant packages are installed. Check the
Module view for modules to be installed
272 Talend Open Studio Copyright © 2007

Components
tFuzzyMatch
• Then connect the second input component to the tFuzzyMatch using a main row (which
displays as a Lookup row on the workspace).

• Select the tFuzzyMatch properties.

• The Schema should match the Main input flow schema in order for the main flow to be
checked against the reference.

• Note that two columns, Value and Matching, are added to the output schema. These are
standard matching information and are read-only.

• Select the method to be used to check the incoming data. In this scenario, Levenshtein is the
Matching type to be used.

• Then set the distance. In this method, the distance is the number of char changes (insertion,
deletion or substitution) that needs to be carried out in order for the entry to fully match the
reference.

• In this use case, we want the distance be of 0 for the min. or for the max. This means only
the exact matchs will be output.

• Also, uncheck the Case sensitive box.

• And select the column of the main flow schema that will be checked. In this example, the first
name.
Copyright © 2007 Talend Open Studio 273

Components
tFuzzyMatch
• No need to check the Unique matching nor hence the separator.

• Link the tFuzzyMatch to the standard output tLogRow. No other parameters than the
display delimiter is ot be set for this scenario.

• Save the job and press F6 to execute the job.

As the edit distance has been set to 0 (min and max), the output shows the result of a regular join
between the main flow and the lookup (reference) flow, hence only full matchs with Value of 0 are
displayed.

A more obvious example is with a minimum distance of 1 and a max. distance of 2, see Scenario 2:
Levenshtein distance of 1 or 2 in first names on page 274.

Scenario 2: Levenshtein distance of 1 or 2 in first names

This scenario is based on the scenario 1 described above. Only the min and max distance settings
in tFuzzyMatch component get modified, which will change the output displayed.

• In the Properties panel of the tFuzzyMatch, change the min distance from 0 to 1. This
excludes straight away the exact matchs (which would show a distance of 0).

• Change also the max distance to 2 as the max distance cannot be lower than the min distance.
The output will provide all matching entries showing a discrepancy of 2 characters at most.

• No other change of the setting is required.

• Make sure the Matching item separator is defined, as several references might be matching
the main flow entry.
274 Talend Open Studio Copyright © 2007

Components
tFuzzyMatch
• Save the new job and press F6 to run it.

As the edit distance has been set to 2, some entries of the main flow match several reference entries.

You can also use another method, the metaphone, to assess the distance between the main flow and
the reference,

Scenario 3: Metaphonic distance in first name

This scenario is based on the scenario 1 described above.

• Change the Matching type to Metaphone. There is no min nor max distance to set as the
matching method is based on the discrepancies with the phonetics of the reference.

• Save the job and press F6. The phonetics value is displayed along with the possible matchs.
Copyright © 2007 Talend Open Studio 275

Components
tHSQLDbInput
tHSQLDbInput

tHSQLDbInput properties

Component family Databases/HSQLDb

Function tHSQLDbInput reads a database and extracts fields based on a query.

Purpose tHSQLDbInput executes a DB query with a strictly defined order which must
correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Properties Property type Either Built-in or Repository

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Running Mode Select on the list the Server Mode corresponding to
your DB setup..

Use TLS/SSL sockets Check the box to enable the secured mode if required.

Host Database server IP address

Port Listening port number of DB server.

Database Alias Alias name of the database

Username and
Password

DB user authentication data.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type and Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.
276 Talend Open Studio Copyright © 2007

Components
tHSQLDbInput
Related scenarios

For related topics, see tDBInput scenarios:

• Scenario 1: Displaying selected data from DB table on page 162

• Scenario 2: Using StoreSQLQuery variable on page 163

See also the related topic in tContextLoad Scenario: Dynamic context use in MySQL DB insert on
page 145.

Usage This component covers all possibilities of SQL queries onto an HSQLDb
database.
Copyright © 2007 Talend Open Studio 277

Components
tHSQLDbOutput
tHSQLDbOutput

tHSQLDbOutput properties

Component family Databases/HSQLDb

Function tHSQLDbOutput writes, updates, makes changes or suppresses entries in a
database.

Purpose tHSQLDbOutput executes the action defined on the table and/or on the data
contained in the table, based on the flow incoming from the preceding
component in the job.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Running Mode Select on the list the Server Mode corresponding to
your DB setup.

Use TLS/SSL sockets Check the box to enable the secured mode if required.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one
table can be written at a time

Action on data On the data of the table defined, you can perform:
Insert: Add new entries to the table. If duplicates are
found, job stops.
Update: Make changes to existing entries
Insert or update: Add entries or update existing
ones.
Update or insert: Update existing entries or create it
if non existing
Delete: Remove entries corresponding to the input
flow.

Clear data in table Wipes out data from the selected table before action.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.
278 Talend Open Studio Copyright © 2007

Components
tHSQLDbOutput
Related scenarios

For related topics, see

• tDBOutput Scenario: Displaying DB output on page 166

• tMySQLOutput Scenario: Adding new column and altering data on page 396.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Additional Columns This option is not offered if you create (with or
without drop) the Db table. This option allows you to
perform actions on columns, which are not insert, nor
update or delete actions or requires a particular
preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After, following
the action to be performed on the reference column.

Reference column: Type in a column of reference
that the tDBOutput can use to place or replace the new
or altered column.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.
Copyright © 2007 Talend Open Studio 279

Components
tHSQLDbRow
tHSQLDbRow

tHSQLDbRow properties

Component family Databases/HSQLDb

Function tHSQLDbRow is the specific component for this database query. It executes
the SQL query stated onto the specified database. The row suffix means the
component implements a flow in the job design although it doesn’t provide
output.

Purpose Depending on the nature of the query and the database, tHSQLDbRow acts on
the actual DB structure or on the data (although without handling data). The
SQLBuilder tool helps you write easily your SQL statements.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Running Mode Select on the list the Server Mode corresponding to
your DB setup.

Use TLS/SSL sockets Check the box to enable the secured mode if required.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build
it graphically using SQLBuilder
280 Talend Open Studio Copyright © 2007

Components
tHSQLDbRow
Related scenarios

For related topics, see:

• tDBSQLRow Scenario 1: Resetting a DB auto-increment on page 170

• tMySQLRow Scenario: Removing and regenerating a MySQL table index on page 408.

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.
Copyright © 2007 Talend Open Studio 281

Components
tInformixInput
tInformixInput

tInformixInput properties

Component family Databases/Informix

Function tInformixInput reads a database and extracts fields based on a query.

Purpose tInformixInput executes a DB query with a strictly defined order which must
correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Properties Property type Either Built-in or Repository

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

DB server Name of the database server

Username and
Password

DB user authentication data.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type and Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Usage This component covers all possibilities of SQL queries onto a DB2 database.
282 Talend Open Studio Copyright © 2007

Components
tInformixInput
Related scenarios

For related topics, see tDBInput scenarios:

• Scenario 1: Displaying selected data from DB table on page 162

• Scenario 2: Using StoreSQLQuery variable on page 163

See also the tContextLoad Scenario: Dynamic context use in MySQL DB insert on page 145.
Copyright © 2007 Talend Open Studio 283

Components
tInformixOutput
tInformixOutput

tInformixOutput properties

Component family Databases/Informix

Function tInformixOutput writes, updates, makes changes or suppresses entries in a
database.

Purpose tInformixOutput executes the action defined on the table and/or on the data
contained in the table, based on the flow incoming from the preceding
component in the job.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

DB server Name of the database server

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one
table can be written at a time

Action on data On the data of the table defined, you can perform:
Insert: Add new entries to the table. If duplicates are
found, job stops.
Update: Make changes to existing entries
Insert or update: Add entries or update existing
ones.
Update or insert: Update existing entries or create it
if non existing
Delete: Remove entries corresponding to the input
flow.

Clear data in table Wipes out data from the selected table before action.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.
284 Talend Open Studio Copyright © 2007

Components
tInformixOutput
Related scenarios

For tDB2Output related topics, see

• tDBOutput Scenario: Displaying DB output on page 166

• tMySQLOutput Scenario: Adding new column and altering data on page 396.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Additional Columns This option is not offered if you create (with or
without drop) the Db table. This option allows you to
perform actions on columns, which are not insert, nor
update or delete actions or requires a particular
preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After, following
the action to be performed on the reference column.

Reference column: Type in a column of reference
that the tDBOutput can use to place or replace the new
or altered column.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.
Copyright © 2007 Talend Open Studio 285

Components
tInformixRow
tInformixRow

tInformixRow properties

Component family Databases/Informix

Function tInformixRow is the specific component for this database query. It executes
the SQL query stated onto the specified database. The row suffix means the
component implements a flow in the job design although it doesn’t provide
output.

Purpose Depending on the nature of the query and the database, tInformixRow acts on
the actual DB structure or on the data (although without handling data). The
SQLBuilder tool helps you write easily your SQL statements.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build
it graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.
286 Talend Open Studio Copyright © 2007

Components
tInformixRow
Related scenarios

For related topics, see:

• tDBSQLRow Scenario 1: Resetting a DB auto-increment on page 170

• tMySQLRow Scenario: Removing and regenerating a MySQL table index on page 408.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.
Copyright © 2007 Talend Open Studio 287

Components
tIngresInput
tIngresInput

tIngresInput properties

Component family Databases/Ingres

Function tIngresInput reads a database and extracts fields based on a query.

Purpose tIngresInput executes a DB query with a strictly defined order which must
correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Properties Property type Either Built-in or Repository

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Server Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type and Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Usage This component covers all possibilities of SQL queries onto an Ingres
database.
288 Talend Open Studio Copyright © 2007

Components
tIngresInput
Related scenarios

For related topics, see tDBInput scenarios:

• Scenario 1: Displaying selected data from DB table on page 162

• Scenario 2: Using StoreSQLQuery variable on page 163

See also, the tContextLoad Scenario: Dynamic context use in MySQL DB insert on page 145.
Copyright © 2007 Talend Open Studio 289

Components
tIngresOutput
tIngresOutput

tIngresOutput properties

Component family Databases/Ingres

Function tIngresOutput writes, updates, makes changes or suppresses entries in a
database.

Purpose tIngresOutput executes the action defined on the table and/or on the data
contained in the table, based on the flow incoming from the preceding
component in the job.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one
table can be written at a time

Action on data On the data of the table defined, you can perform:
Insert: Add new entries to the table. If duplicates are
found, job stops.
Update: Make changes to existing entries
Insert or update: Add entries or update existing
ones.
Update or insert: Update existing entries or create it
if non existing
Delete: Remove entries corresponding to the input
flow.

Clear data in table Wipes out data from the selected table before action.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49
290 Talend Open Studio Copyright © 2007

Components
tIngresOutput
Related scenarios

For related topics, see:

• tDBOutput Scenario: Displaying DB output on page 166

• tMySQLOutput Scenario: Adding new column and altering data on page 396.

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Additional Columns This option is not offered if you create (with or
without drop) the Db table. This option allows you to
perform actions on columns, which are not insert, nor
update or delete actions or requires a particular
preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After, following
the action to be performed on the reference column.

Reference column: Type in a column of reference
that the tDBOutput can use to place or replace the new
or altered column.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.
Copyright © 2007 Talend Open Studio 291

Components
tIngresRow
tIngresRow

tIngresRow properties

Component family Databases/Ingres

Function tIngresRow is the specific component for this database query. It executes the
SQL query stated onto the specified database. The row suffix means the
component implements a flow in the job design although it doesn’t provide
output.

Purpose Depending on the nature of the query and the database, tIngresRow acts on the
actual DB structure or on the data (although without handling data). The
SQLBuilder tool helps you write easily your SQL statements.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build
it graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.
292 Talend Open Studio Copyright © 2007

Components
tIngresRow
Related scenarios

For related topics, see:

• tDBSQLRow Scenario 1: Resetting a DB auto-increment on page 170

• tMySQLRow Scenario: Removing and regenerating a MySQL table index on page 408.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.
Copyright © 2007 Talend Open Studio 293

Components
tIngresSCD
tIngresSCD

tIngresSCD Properties

Component family Databases/Ingres

Function tIngresSCD reflects and tracks changes in a dedicated Ingres SCD table.

Purpose tIngresSCD addresses Slowly Changing Dimension needs, reading regularly
a source of data and logging the changes into a dedicated SCD table

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Table Name of the table to be written. Note that only one
table can be written at a time

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Surrogate key Select the column where the generated surrogate key
will be stored. A surrogate key can be generated based
on a method selected on the Creation list.
294 Talend Open Studio Copyright © 2007

Components
tIngresSCD
Related scenario

For related scenarios, see tMysqlSCD Scenario: Tracking changes using Slowly Changing
Dimension on page 411.

Creation Select the method to be used for the key generation:
input field: key is provided in an input field
routine: you can access the basic functions through
Ctrl+ Space bar combination.
table max +1: the maximum value from the SCD
table is incremented to create a surrogate key
sequence/identity: auto-incremental key

Source Keys Select one or more columns to be used as key, to
ensure the unicity of incoming data.

Use SCD Type 1 fields Use the type 1if change tracking is not necessary.
SCD Type 1 should be used for typos corrections for
example. Select the columns of the schema, that will
be checked for changes.

Use SCD Type 2 fields Use type 2 if changes need to be tracked down. SCD
Type 2 should be used to trace updates for example.
Select the columns of the schema, that will be
checked for changes.
Start date/End Date: Add a column to your SCD
schema to hold the start and end date value for the
record. When the record is currently active, the End
date show a null value
Log Active Status: Add a column to your SCD
schema to hold the 1 or 0 status value. This column
helps to spot easily the active record.
Log versions: Add a column to your SCD schema to
hold the version number of the record.

Use SCD Type 3 fields Use type 3 when you want to keep track of the
previous value of a changing column
Current value field: Select the column where the
changing value is tracked down..
Previous value field: Select the column where the
previous value should be stored.

Debug Mode Check this box to display each step of the SCD log
process.

Usage This component is used as Output component. It requires an Input component
and Row main link as input.
Copyright © 2007 Talend Open Studio 295

Components
tInterbaseInput
tInterbaseInput

tInterbaseInput properties

Component family Databases/Interbase

Function tInterbaseInput reads a database and extracts fields based on a query.

Purpose tInterbaseInput executes a DB query with a strictly defined order which must
correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Properties Property type Either Built-in or Repository

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Database Name of the database

Username and
Password

DB user authentication data.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type and Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Usage This component covers all possibilities of SQL queries onto an Interbase
database.
296 Talend Open Studio Copyright © 2007

Components
tInterbaseInput
Related scenarios

For related topics, see tDBInput scenarios:

• Scenario 1: Displaying selected data from DB table on page 162

• Scenario 2: Using StoreSQLQuery variable on page 163

See also the related topic in tContextLoad Scenario: Dynamic context use in MySQL DB insert on
page 145.
Copyright © 2007 Talend Open Studio 297

Components
tInterbaseOutput
tInterbaseOutput

tInterbaseOutput properties

Component family Databases/Interbase

Function tInterbaseOutput writes, updates, makes changes or suppresses entries in a
database.

Purpose tInterbaseOutput executes the action defined on the table and/or on the data
contained in the table, based on the flow incoming from the preceding
component in the job.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Database Name of the database

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one
table can be written at a time

Action on data On the data of the table defined, you can perform:
Insert: Add new entries to the table. If duplicates are
found, job stops.
Update: Make changes to existing entries
Insert or update: Add entries or update existing
ones.
Update or insert: Update existing entries or create it
if non existing
Delete: Remove entries corresponding to the input
flow.

Clear data in table Wipes out data from the selected table before action.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49
298 Talend Open Studio Copyright © 2007

Components
tInterbaseOutput
Related scenarios

For related topics, see

• tDBOutput Scenario: Displaying DB output on page 166

• tMySQLOutput Scenario: Adding new column and altering data on page 396.

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Additional Columns This option is not offered if you create (with or
without drop) the Db table. This option allows you to
perform actions on columns, which are not insert, nor
update or delete actions or requires a particular
preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After, following
the action to be performed on the reference column.

Reference column: Type in a column of reference
that the tDBOutput can use to place or replace the new
or altered column.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.
Copyright © 2007 Talend Open Studio 299

Components
tInterbaseRow
tInterbaseRow

tInterbaseRow properties

Component family Databases/Interbase

Function tInterbaseRow is the specific component for this database query. It executes
the SQL query stated onto the specified database. The row suffix means the
component implements a flow in the job design although it doesn’t provide
output.

Purpose Depending on the nature of the query and the database, tInterbaseRow acts on
the actual DB structure or on the data (although without handling data). The
SQLBuilder tool helps you write easily your SQL statements.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Database Name of the database

Username and
Password

DB user authentication data.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build
it graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.
300 Talend Open Studio Copyright © 2007

Components
tInterbaseRow
Related scenarios

For related topics, see:

• tDBSQLRow Scenario 1: Resetting a DB auto-increment on page 170

• tMySQLRow Scenario: Removing and regenerating a MySQL table index on page 408.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.
Copyright © 2007 Talend Open Studio 301

Components
tIterateToFlow
tIterateToFlow

tIterateToFlow Properties

Scenario: Transforming a list of files as data flow

The following scenario describes a job that iterates on a list of files, picks up the filename and
current date and transforms this into a flow, that gets displayed on the console.

• Click and drop the following components: tFileList, tIterateToFlow and tLogRow.

• Connect the tFileList to the tIterateToFlow using an iterate link and connect the job to the
tLogRow using a Row main connection.

• In the tFileList Properties view, set the directory where the list of files is stored.

Component family Misc

Function tIterateToFlow transforms a list into a data flow that can be processed.

Purpose Allows to transform non processable data into processable flow.

Properties Schema type and
Edit Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and
passed on to the next component. The schema is
either built-in or remote in the Repository.
In the case of tIterateToFlow, the schema is to be
defined

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is
stored in the Repository, hence can be reused in
various projects and job designs. Related topic:
Setting a repository schema on page 49

Column Type in a name for the columns to be created

Value Press Ctrl+Space bar to access all available
variables either global or user-defined.

Usage This component is not startable (green background) and it requires an
output component.
302 Talend Open Studio Copyright © 2007

Components
tIterateToFlow
• In this example, the files are three simple .txt files held in one directory: Countries.

• No need to care about the case, hence uncheck the Case sensitive checkbox.

• Leave the Include Subdirectories option unchecked.

• Then select the tIterateToFlow component et click Edit Schema to set the new schema

• Add two new columns: Filename of String type and Date of date type. Make sure you define
the correct pattern in Java.

• Click OK to validate.

• Notice that the newly created schema shows on the Mapping table.

• In each cell of the Value field, press Ctrl+Space bar to access the list of global and
user-specific variables.

• For the Filename column, use the global variable:
($_globals{tFileList_1}{CURRENT_FILEPATH}. It retrieves the current
filepath in order to catch the name of each file, the job iterates on.

• For the Date column, use the Talend routine: Date.GetDate (Perl) or
TalendDate.getCurrentDate() (in Java)

• Then on the tLogRow component Properties view, check the Print values in cells of a table
box.

• Save your job and execute it.
Copyright © 2007 Talend Open Studio 303

Components
tIterateToFlow
The filepath displays on the Filename column and the current date displays on the Date column.
304 Talend Open Studio Copyright © 2007

Components
tJava
tJava

tJava Properties

Scenario: Printing out a variable content

The following scenario is a simple demo of the application extend of the tJava component. The job
aims at printing out the number of lines being processed using a Java command and the global
variable provided in Talend Open Studio.

• Select and drop the following components from the palette: tFileInputDelimited,
tFileOutputExcel, tJava.

• Connect the tFileInputDelimited to the tFileOutputExcel using a Row Main connection.
The content from a delimited txt file will be passed on through the connection to an xls-type
of file without further transformation.

Component family Processing

Function tJava transforms any data entered in Java code.

Purpose tJava is a (Java) editor that is a very flexible tool within a job.

Properties Code Type in the Java code according to the command
and task you need to perform. For further
information about Java functions syntax, see
Talend Open Studio online Help (Help Contents
> Developer Guide > API Reference)

Usage Typically used for debugging but can also be used to display a variable
content.

Limitation You only need to know Java language.
Copyright © 2007 Talend Open Studio 305

Components
tJava
• Then connect the tFileInputDelimited component to the tJava component using a Then
Run link. This link sets a sequence ordering the tjava to execute at the end of the main
process.

• Set the Properties of the tFileInputDelimited component. The input file used in this
example is a simple text file made of two columns: Name and their respective Emails

• The schema has not been stored in the repository for this use case, therefore you need to set
manually the two-column schema

• Click the Edit Schema button.

• When prompted, click OK to accept the propagation, so that the tFileOutputExcel
component gets automatically set with the input schema. Therefore no need to set the schema
again.

• Set the output file to receive the input content without changes. If the file doesn’t exist
already, it’ll get created.

• In this example, the Sheet name is Email and the Include Header box is checked.
306 Talend Open Studio Copyright © 2007

Components
tJava
• Then select the tJava component to set the Java command to execute.

• In the Code area, type in the following command:
String var = "Nb of line processed: ";
var = var + globalMap.get("tFileInputDelimited_1_NB_LINE");
System.out.println(var);

• In this use case, we use the NB_Line variable. To access the global variable list, press Ctrl
+ Space bar on your keyboard and select the relevant global parameter.

• Save your job and press F6 to execute it.

The content gets passed on to the Excel file defined and the Number of lines processed are displayed
on the Run Job console.
Copyright © 2007 Talend Open Studio 307

Components
tJavaDBInput
tJavaDBInput

tJavaDBInput properties

Component family Databases/JavaDB

Function tJavaDBInput reads a database and extracts fields based on a query.

Purpose tJavaDBInput executes a DB query with a strictly defined order which must
correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Properties Property type Either Built-in or Repository

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Framework Select your Java database framework on the list

Database Name of the database

DB root path Browse to your database root.

Username and
Password

DB user authentication data.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type and Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Usage This component covers all possibilities of SQL queries onto a database.
308 Talend Open Studio Copyright © 2007

Components
tJavaDBInput
Related scenarios

For related topics, see tDBInput scenarios:

• Scenario 1: Displaying selected data from DB table on page 162

• Scenario 2: Using StoreSQLQuery variable on page 163

See also the related topic in tContextLoad Scenario: Dynamic context use in MySQL DB insert on
page 145.
Copyright © 2007 Talend Open Studio 309

Components
tJavaDBOutput
tJavaDBOutput

tJavaDBOutput properties

Component family Databases/JavaDB

Function tJavaDBOutput writes, updates, makes changes or suppresses entries in a
database.

Purpose tJavaDBOutput executes the action defined on the table and/or on the data
contained in the table, based on the flow incoming from the preceding
component in the job.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Framework Select your Java database framework on the list

Database Name of the database

DB root path Browse to your database root.

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one
table can be written at a time

Action on data On the data of the table defined, you can perform:
Insert: Add new entries to the table. If duplicates are
found, job stops.
Update: Make changes to existing entries
Insert or update: Add entries or update existing
ones.
Update or insert: Update existing entries or create it
if non existing
Delete: Remove entries corresponding to the input
flow.

Clear data in table Wipes out data from the selected table before action.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49
310 Talend Open Studio Copyright © 2007

Components
tJavaDBOutput
Related scenarios

For related topics, see:

• tDBOutput Scenario: Displaying DB output on page 166

• tMySQLOutput Scenario: Adding new column and altering data on page 396.

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Additional Columns This option is not offered if you create (with or
without drop) the Db table. This option allows you to
perform actions on columns, which are not insert, nor
update or delete actions or requires a particular
preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After, following
the action to be performed on the reference column.

Reference column: Type in a column of reference
that the tDBOutput can use to place or replace the new
or altered column.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.
Copyright © 2007 Talend Open Studio 311

Components
tJavaDBRow
tJavaDBRow

tJavaDBRow properties

Component family Databases/JavaDB

Function tJavaDBRow is the specific component for this database query. It executes the
SQL query stated onto the specified database. The row suffix means the
component implements a flow in the job design although it doesn’t provide
output.

Purpose Depending on the nature of the query and the database, tJavaDBRow acts on
the actual DB structure or on the data (although without handling data). The
SQLBuilder tool helps you write easily your SQL statements.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Framework Select your Java database framework on the list

Database Name of the database

DB root path Browse to your database root.

Username and
Password

DB user authentication data.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build
it graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.
312 Talend Open Studio Copyright © 2007

Components
tJavaDBRow
Related scenarios

For related topics, see:

• tDBSQLRow Scenario 1: Resetting a DB auto-increment on page 170

• tMySQLRow Scenario: Removing and regenerating a MySQL table index on page 408.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.
Copyright © 2007 Talend Open Studio 313

Components
tJDBCInput
tJDBCInput

tJDBCInput properties

Related scenarios

Related topic in tDBInput scenarios:

Component family Databases/JDBC

Function tJDBC reads any database using a JDBC API connection and extracts fields
based on a query.

Purpose tJDBC executes a DB query with a strictly defined order which must
correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Properties JDBC URL Type in the database location path

Driver JAR Select the driver JAR on the list or click the three
button to add a new JAR to the list.

Class Name Type in the Class name to be pointed to in the driver.

Username and
Password

DB user authentication data.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Table Name Type in the name of the table

Query type and Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Usage This component covers all possibilities of SQL queries onto any JDBC
connected database.
314 Talend Open Studio Copyright © 2007

Components
tJDBCInput
• Scenario 1: Displaying selected data from DB table on page 162

• Scenario 2: Using StoreSQLQuery variable on page 163

Related topic in tContextLoad Scenario: Dynamic context use in MySQL DB insert on page 145.
Copyright © 2007 Talend Open Studio 315

Components
tJDBCOutput
tJDBCOutput

tJDBCOutput properties

Component family Databases/JDBC

Function tJDBCOutput writes, updates, makes changes or suppresses entries in any
type of database connected to a JDBC API.

Purpose tJDBCOutput executes the action defined on the data contained in the table,
based on the flow incoming from the preceding component in the job.

Properties JDBC URL Type in the database location path

Driver JAR Select the driver JAR on the list or click the three
button to add a new JAR to the list.

Class Name Type in the Class name to be pointed to in the driver.

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one
table can be written at a time

Action on data On the data of the table defined, you can perform:
Insert: Add new entries to the table. If duplicates are
found, job stops.
Update: Make changes to existing entries
Insert or update: Add entries or update existing
ones.
Update or insert: Update existing entries or create it
if non existing
Delete: Remove entries corresponding to the input
flow.

Clear data in table Wipes out data from the selected table before action.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.
316 Talend Open Studio Copyright © 2007

Components
tJDBCOutput
Related scenarios

For tJDBCOutput related topics, see:

• tDBOutput Scenario: Displaying DB output on page 166

• tMySQLOutput Scenario: Adding new column and altering data on page 396.

Additional Columns This option is not offered if you create (with or
without drop) the Db table. This option allows you to
perform actions on columns, which are not insert, nor
update or delete actions or requires a particular
preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After, following
the action to be performed on the reference column.

Reference column: Type in a column of reference
that the tDBOutput can use to place or replace the new
or altered column.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of a connection to any type of DB
and covers all possibilities of SQL queries.
Copyright © 2007 Talend Open Studio 317

Components
tJDBCRow
tJDBCRow

tJDBCRow properties

Component family Databases/JDBC

Function tJDBCRow is the component for any type database using a JDBC API. It
executes the SQL query stated onto the specified database. The row suffix
means the component implements a flow in the job design although it doesn’t
provide output.

Purpose Depending on the nature of the query and the database, tJDBCRow acts on the
actual DB structure or on the data (although without handling data). The
SQLBuilder tool helps you write easily your SQL statements.

Properties JDBC URL Type in the database location path

Driver JAR Select the driver JAR on the list or click the three
button to add a new JAR to the list.

Class Name Type in the Class name to be pointed to in the driver.

Username and
Password

DB user authentication data.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build
it graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.
318 Talend Open Studio Copyright © 2007

Components
tJDBCRow
Related scenarios

For related topics, see:

• tDBSQLRow Scenario 1: Resetting a DB auto-increment on page 170

• tMySQLRow Scenario: Removing and regenerating a MySQL table index on page 408.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of any type DB JDBC connection
and covers all possibilities of SQL queries.
Copyright © 2007 Talend Open Studio 319

Components
tJDBCSP
tJDBCSP

tJDBCSP Properties

Component family Databases/JDBC

Function tJDBCSP calls the specified database stored procedure.

Purpose tJDBCSP offers a convenient way to centralize multiple or complex queries
in a database and call them easily.

Properties JDBC URL Type in the database location path

Driver JAR Select the driver JAR on the list or click the three
button to add a new JAR to the list.

Class Name Type in the Class name to be pointed to in the driver.

Username and
Password

DB user authentication data.

Schema type and Edit
Schema

In SP principle, the schema is an input parameter.
A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

SP Name Type in the exact name of the Stored Procedure

Is Function / Return
result in

Check this box, if a value only is to be returned.
Select on the list the schema column, the value to be
returned is based on.

Parameters Click the Plus button and select the various Schema
Columns that will be required by the procedures.
Note that the SP schema can hold more columns than
there are paramaters used in the procedure.
Select the Type of parameter:
IN: Input parameter
OUT: Output parameter/return value
IN OUT: Input parameters is to be returned as value,
likely after modification through the procedure
(function).
320 Talend Open Studio Copyright © 2007

Components
tJDBCSP
Related scenario

For related scenarios, see:

• tMysqlSP Scenario: Finding a State Label using a stored procedure on page 419.

• tOracleSP Scenario: Checking number format using a stored procedure on page 450

Usage This component is used as intermediary component. It can be used as start
component but only input parameters are thus allowed.

Limitation The Stored Procedures syntax should match the Database syntax.
Copyright © 2007 Talend Open Studio 321

Components
tLDAPInput
tLDAPInput

tLDAPInput Properties

Component family Databases/LDAP

Function tLDAPInput reads a directory and extracts data based on the defined filter.

Purpose tLDAPInput executes an LDAP query based on the given filter and corresponding
to the schema definition. Then it passes on the field list to the next component via
a Main row link.

Properties Property type Either Built-in or Repository

Built-in: No property data stored centrally.

Repository: Select the Repository file where Properties
are stored. The following fields are pre-filled in using
fetched data.

Host LDAP Directory server IP address

Port Listening port number of server.

Base DN Path to user’s authorised tree leaf.

Protocol Select the protocol type on the list.
LDAP : no encryption is used
LDAPS: secured LDAP
TLS: certificate is used

Authentication
User and Password

Check Authentication if LDAP login is required. Note
that the login must match the LDAP syntax requirement
to be valid. e.g.: “cn=Directory Manager”.

Filter Type in the filter as expected by the LDAP directory db.

Multi valued field
separator

Type in the value separator in multi-value fields.

Alias dereferencing Select the option on the list. Never allows to improve
search performance if you are sure that no aliases is to be
dereferenced. By default, Always is to be used:
Always: Always dereference aliases
Never: Never dereferences aliases.
Searching:Dereferences aliases only after name
resolution.
Finding: Dereferences aliases only during name
resolution

Referrals handle Select the option on the list:
Ignore: does not handle request redirections
Follow:does handle request redirections

Limit Fill in a limit number of records to be read if necessary.
322 Talend Open Studio Copyright © 2007

Components
tLDAPInput
Scenario: Displaying LDAP directory’s filtered content

The job described below simply filters the LDAP directory and displays the result on the console.

• Click and drop the tLDAPInput component along with a tLogRow.

• Set the tLDAPInput properties.

• Set the Property type on Repository if you stored the LDAP connection details in the
Metadata Manager in the Repository. Then select the relevant entry on the list.

• In Built-In mode, fill in the Host and Port information manually. Host can be the IP address
of the LDAP directory server or its DNS name.

• No particular Base DN is to be set.

Time Limit Fill in a timeout period for the directory. access

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either built-in or remotely
stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored in
the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Usage This component covers all possibilities of LDAP queries.
Note: Press Ctrl + Space bar to access the global variable list, including the
GetResultName variable to retrieve automatically the relevant Base
Copyright © 2007 Talend Open Studio 323

Components
tLDAPInput
• Then select the relevant Protocol on the list. In this example: a simple LDAP protocol is
used.

• Check the Authentication box and fill in the login information if required to read the
directory. In this use case, no authentication is needed.

• In the Filter area, type in the command, the data selection is based on. In this example, the
filter is: (&(objectClass=inetorgperson)&(uid=PIERRE DUPONT)).

• Fill in Multi-valued field separator with a comma as some fields may hold more than one
value, separated by a comma.

• As we don’t know if some aliases are used in the LDAP directory, select Always on the list.

• Set Ignore as Referral handling.

• Set the limit to 100 for this use case.
324 Talend Open Studio Copyright © 2007

Components
tLDAPInput
• Set the Schema as required by your LDAP directory. In this example, the schema is made
of 6 columns including the objectClass and uid columns which get filtered on.

• In the tLogRow component, no particular setting is required.

Only one entry of the directory corresponds to the filter criteria given in the tLDAPInput
component.
Copyright © 2007 Talend Open Studio 325

Components
tLDAPOutput
tLDAPOutput

tLDAPOutput Properties

Component family Databases/LDAP

Function tLDAPOutput writes into an LDAP directory.

Purpose tLDAPOutput executes an LDAP query based on the given filter and corresponding
to the schema definition. Then it passes on the field list to the next component via a
Main row link.

Properties Property type Either Built-in or Repository

Built-in: No property data stored centrally.

Repository: Select the Repository file where Properties
are stored. The following fields are pre-filled in using
fetched data.

Host LDAP Directory server IP address

Port Listening port number of server.

Base DN Path to user’s authorised tree leaf.

Protocol Select the protocol type on the list.
LDAP : no encryption is used
LDAPS: secured LDAP
TLS: certificate is used

User and Password Fill in the User and Password as required by the directory
Note that the login must match the LDAP syntax
requirement to be valid. e.g.: “cn=Directory Manager”.

Alias dereferencing Select the option on the list. Never allows to improve
search performance if you are sure that no aliases is to be
dereferenced. By default, Always is to be used:
Always: Always dereference aliases
Never: Never dereferences aliases.
Searching:Dereferences aliases only after name
resolution.
Finding: Dereferences aliases only during name
resolution

Referrals handle Select the option on the list:
Ignore: does not handle request redirections
Follow:does handle request redirections

Insert mode Select the editing mode on the list:
Insert: insert new data
Updata: updates the existing data
Delete: removes the seleted data from the directory
Insert or Updata
326 Talend Open Studio Copyright © 2007

Components
tLDAPOutput
Scenario: Editing data in an LDAP directory

The following scenario describes a job that reads an LDAP directory, updates the email of a selected
entry and displays the output before writing the LDAP directory. To keep it simple, no alias
dereferencing nor referral handling is performed. This scenario is based on LDAPInput’s Scenario:
Displaying LDAP directory’s filtered content on page 323. The result returned was a single entry,
related to an organisational person, whom email is to be updated.

• Click and drop the tLDAPInput, tLDAPOutput, tMap and tLogRow components.

• Connect the input component to the tMap then to the tLogRow and to the output
component.

• In the tLDAPInput properties view, set the connection details to the LDAP directory server
as well as the filter as described in Scenario: Displaying LDAP directory’s filtered content
on page 323.

• Change the schema to make it simpler, by removing the unused fields: dc, ou, objectclass.

• Then open the mapper to set the edit to be carried out.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either built-in or remotely
stored in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: Setting a built-in schema
on page 49

Repository: The schema already exists and is stored in
the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Usage This component covers all possibilities of LDAP queries.
Note: Press Ctrl + Space bar to access the global variable list, including the
GetResultName variable to retrieve automatically the relevant DN Base
Copyright © 2007 Talend Open Studio 327

Components
tLDAPOutput
• Drag & drop the uid column from the input table to the output as no change is required on
this column.

• In the Expression field of the dn column (output), fill in with the exact expression expected
by the LDAP server to reach the target tree leaf and allow directory writing on the condition
that you haven’t set it already in the Base DN field of the tLDAPOutput component.

• In this use case, the GetResultName global variable is used to retrieve this path
automatically. Press Ctrl+Space bar to access the variable list and select
tLDAPInput_1_RESULT_NAME.

• In the mail column’s expression field, type in the new email that will overwrite the current
data in the LDAP directory. In this example, we change to Pierre.Dupont@talend.com.

• Click OK to validate the changes.

• The tLogRow component doesn’t need any particular setting.

• Then select the tLDAPOutput component to set the directory writing properties.

• Set the Port and Host details manually if they aren’t stored in the Repository.

• In Base DN field, set the highest tree leaf you have the rights to access. If you haven’t set
previously the exact and full path of the target DN you want to access, then fill in it here. In
this use case, the full DN is provided by the dn output from the tMap component, therefore
only the highest accessible leaf is given: o=directoryRoot.
328 Talend Open Studio Copyright © 2007

Components
tLDAPOutput
• Select the relevant protocol to be used: LDAP for this example.

• Then fill in the User and Password as expected by the LDAP directory.

• Use the default setting of Alias Dereferencing and Referral Handling fields, respectively
Always and Ignore.

• The Insert mode for this use case is Update (the email address).

• The schema was provided by the previous component through the propagation operation.

• Save the job and execute.

The output shows the following fields: dn, uid and mail as defined in the job.
Copyright © 2007 Talend Open Studio 329

Components
tLogCatcher
tLogCatcher

tLogCatcher properties

Both tDie and tWarn components are closely related to the tLogCatcher component.They
generally make sense when used alongside a tLogCatcher in order for the log data collected to be
encapsulated and passed on to the output defined.

Scenario1: warning & log on entries

In this basic scenario made of three components, a tRowGenerator creates random entries (id to be
incremented). The input hits a tWarn component which triggers the tLogCatcher subjob. This
subjob fetches the warning message as well as standard predefined information and passes them on
to the tLogRow for a quick display of the log data.

Component family Log & Error

Function Fetches set fields and messages from Java Exception/PerlDie, tDie and/or
tWarn and passes them on to the next component.

Purpose Operates as a log function triggered by one of the three: Java
exception/PerlDie, tDie or tWarn, to collect and transfer log data.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either built-in
or remote in the Repository.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused in various
projets and job flowcharts. Related topic: Setting a
repository schema on page 49

Catch PerlDie
Catch Java Exception

Check this box to trigger the tCatch function when a
PerlDie/Java Exception occurs in the job

Catch tDie Check this box to trigger the tCatch function when a
tDie is called in a job

Catch tWarn Check this box to trigger the tCatch function when a
tWarn is called in a job

Usage This component is the start component of a secondary job which
automatically triggers at the end of the main job

Limitation n/a
330 Talend Open Studio Copyright © 2007

Components
tLogCatcher
• Click and drop a tRowGenerator, a tWarn, a tLogCatcher and a tLogRow from the
Palette, on your workspace

• Connect the tRowGenerator to the tWarn component.

• Connect separately the tLogCatcher to the tLogRow.

• On the tRowGenerator editor, set the random entries creation using a basic Perl function:

• On the tWarn Properties panel, set your warning message, the code the priority level. In this
case, the message is “this is a warning’.

• For this scenario, we will concatenate a Perl function to the message above, in order to
collect the first value from the input table.

• On the tLogCatcher properties panel, check the tWarn box in order for the message from
the latter to be collected by the subjob.

• Click Edit Schema to view the schema used as log output. Notice that the log is
comprehensive.
Copyright © 2007 Talend Open Studio 331

Components
tLogCatcher
Press F6 to execute the job. Notice that the Log produced is exhaustive.

Scenario 2: log & kill a job

This scenario uses a tLogCatcher and a tDie component. A tRowGenerator is connected to a
tFileOutputDelimited using a Row link. On error, the tDie triggers the catcher subjob which
displays the log data content on the Run Job console.

• Click and drop all required components from various folders of the Palette:
tRowGenerator, tFileOutputDelimited, tDie, tLogCatcher, tLogRow.

• On the tRowGenerator properties panel, define the setting of the input entries to be handled.

• Edit the schema and define the following columns as random input examples: id, name,
quantity, flag and creation.

• Set the Number of rows onto 0. This will constitute the error which the Die operation is
based on.
332 Talend Open Studio Copyright © 2007

Components
tLogCatcher
• On the Values table, define the Perl array functions to feed the input flow.

• Define the tFileOutputDelimited to hold the possible output data. The row connection from
the tRowGenerator feeds automatically the output schema. The separator is a simple
semi-colon.

• Connect this output component to the tDie using a Trigger > If connection. Double-click
on the newly created connection to define the if:
$_globals{tRowGenerator_1}{NB_LINE} <= 0

• Then double-click to select and define the Properties of the tDie component.

• Enter your Die message to be transmitted to the tLogCatcher before the actual kill job
operation happens.

• Next to the job but not physically connected to it, click and drop a tLogCatcher and connect
it to a tLogRow component.

• Define the tLogCatcher properties. Make sure the tDie box is checked in order to add the Die
message to the Log information transmitted to the final component.

• Press F6 to run the job and notice that the log contains a black message and a red one.

• The black log data come from the tDie and are transmitted by the tLogCatcher. In addition
the normal PerlDie message in red displays as a job abnormally died.
Copyright © 2007 Talend Open Studio 333

Components
tLogRow
tLogRow

tLogRow properties

Scenario: Delimited file content display

Related topics using a tLogRow component:

• tFileInputDelimited Scenario: Delimited file content display on page 224.

• tContextLoad Scenario: Dynamic context use in MySQL DB insert on page 145

• tWarn, tDie, tLogCatcher Scenario1: warning & log on entries on page 330 and Scenario
2: log & kill a job on page 332

Component family Log & Error

Function Displays data or results in the Run Job console

Purpose tLogRow helps monitoring data processed.

Properties Print values in table
cells

The output flow displays in table cells.

Separator Enter the separator which will delimit data on the
Log display

Print component
unique name in front
of each output row

Check this box in case several LogRow
components are used. Allows to differenciate
outputs

Print schema
column name in
front of each value

Check this box to retrieve column labels from
output schema.

Use fixed length for
values

Check this box to set a fixed width for the value
display.

Usage This component can be used as intermediate step in a data flow or as a n
end object in the job flowchart.

Limitation n/a
334 Talend Open Studio Copyright © 2007

Components
tMap
tMap

tMap properties

Note: For further information, see Mapping data flows in a job on page 83.

Scenario 1: Mapping with filter and simple explicit join (Perl)

The job described below aims at reading data from a csv file stored in the Repository, looking up at
a reference file also stored remotely, then extracting data from these two files based on defined filters
to an output file or a reject file.

This job is presented in Perl but could also be carried out in Java.

• Click on File in the Palette of components, select tFileInputCSV and drop it on the design
area. Rename the Label to Cars, either by double-clicking on the label in the workspace or
via the View tab of the Properties panel.

• Repeat this operation, and rename this second input component: Owners.

Component family Processing

Function tMap is an advanced use component, which integrates itself as
plugin to Talend Open Studio. .

Purpose tMap transforms and routes data from single or multiple sources to
single or multiple destinations.

Properties Preview The preview is an instant shot of the Mapper
data. It becomes available when Mapper
properties have been filled in with data. The
preview synchronization takes effect only after
saving changes.

Mapping links
display as

Auto: the default setting is curves links
Curves: the mapping display as curves
Lines: the mapping displays as straight lines .
This last option allows to slightly enhance
performance.

Map editor Mapper is the tMap editor. It allows you to define
the tMap routing and transformation properties.

Usage Possible uses are from a simple reorganisation of fields to the most
complex jobs of data multiplexing or demultiplexing
transformation, concatenation, inversion, filtering and more...

Limitation The use of tMap supposes minimum Perl or Java knowledge in
order to fully exploit its functionalities.
This component is a junction step, and for this reason cannot be a
start nor end component in the job
Copyright © 2007 Talend Open Studio 335

Components
tMap
• Click on Processing in the Palette of components, select tMap and drop it on the design area.

• Connect the two Input components to the mapping component and customize the row
connection labels.

• The Cars and Owners delimited files metadata are defined in the Metadata area of the
repository. You can hence use their Repository reference in the Properties panel.

• Double-click on Cars, to set the Properties panel.

• Select Repository to retrieve Property type as well as Schema type. The rest of the fields
gets automatically filled in appropriately when you select the relevant Metadata entry on the
list.

• Double-click on the Owners component and repeat the setting operation. Select the
corresponding Metadata entry.

For further information regarding Metadata creation in the Repository, see Defining Metadata items
on page 51.

• Then double-click on the tMap component to open the Mapper. Notice that the Input area
is already filled with the Input component metadata tables and that the top table is the Main
flow table.

• Notice also that the respective row connection labels display on the top bar of the tables.

• Create a Join between the two tables on the ID_Owner field by simply dragging the top table
ID_Owner field to the lookup input table.
336 Talend Open Studio Copyright © 2007

Components
tMap
• Define this link as an Inner Join by checking the box.

• Click on the Plus button on the Output area of the Mapper to add three Output tables

• Drag and drop Input content to fill in the first output schema. For more information regarding
data mapping, see Mapping data flows in a job on page 83.

• Click on the plus arrow button to add a filter row. In the Insured table, will be gathered cars
and owners data which include an Insurance ID.
Copyright © 2007 Talend Open Studio 337

Components
tMap
• Therefore drag the ID_Insurance field to the Filter condition area and enter the formula used
meaning ‘not undefined’: $Owners_data[ID_Insurance] ne ''

• The Reject_NoInsur table is a standard reject output flow containing all data that do not
satisfy the required filter condition. Click the orange arrow to set the table as Reject Output.

• The third and last table gathers the schema entries whose Inner Join could not be established.
One Owners_ID from the Car database does not match any Owner_ID from the Owner file.

• Click the violet arrow button to set the last table as the Inner Join Reject output flow.

• Click OK to validate and come back to the design area.
338 Talend Open Studio Copyright © 2007

Components
tMap
• Add three tFileOutputDelimited components to the workspace and right-click on the tMap
to connect the Mapper with all three output components, using the relevant Row connection.

• Relabel the three output components accordingly.

• Then double-click on each of them, one after the other, in order to define their respective
output filepath. If you want a new file to be created, browse to the destination output folder,
and type in a file name including the extension.

• Check the Include header box to reuse the column labels from the schema as header row in
the output file.

• Run the Job using the F6 keystroke or via the Run Job panel.

• Output files have been created if need be.
Copyright © 2007 Talend Open Studio 339

Components
tMap
Scenario 2: Mapping with Inner join rejection (Perl)

This scenario, based on scenario 1, adds one input file containing Resellers details and extra fields
in the main Output table. Two filters on Inner Joins are added to gather specific rejections.

• Click on File in the Palette of Components, and drop a tFileInputCSV component on the
workspace.

• Connect it to the Mapper and put a label on the component and the connection.

• Double-click on the Resellers component, to define the Reseller input properties.

• Browse to the Resellers.csv file. Edit the schema and add the columns as needed to match
the file structure.
340 Talend Open Studio Copyright © 2007

Components
tMap
• You could also create a metadata entry for this file description and select Repository as
properties and schema type. For further information, see Setting up a File Delimited
schema on page 56.

• Double-click on the tMap component and notice that the schema is added on the Input area.

• Create a join between the main input flow and the resellers input. Check the Inner Join box
to define that an Inner Join Reject output is to be created.

• Drag & drop the fields from the Resellers table to the main Output table.
Copyright © 2007 Talend Open Studio 341

Components
tMap
Note: When two inner joins are defined, you either need to define two different inner join
reject tables to differenciate both rejections or if there is only one Inner Join reject
output, both Inner Join rejections will be stored in the same output.

• On the output area, click on the plus button to add a new output table.

• Give a name to this new Output connection: Reject_ResellerID

• Click the Inner Join reject button to define this new output table as Inner Join Reject output.

• Drag & drop two fields from the main input flow (Cars) to the new reject output table. In this
case, if the Inner Join cannot be established, these data (ID_Cars & ID_resellers) will be
gathered in the output file and will help identify the bottleneck.
342 Talend Open Studio Copyright © 2007

Components
tMap
• Now apply filters on the two Inner Join reject outputs, in order for to distinguish both types
of rejection.

• In the first Inner Join output table (Reject_OwnerID), click the plus arrow button to add a
filter line and fill it in with the following formula to gather only OwnerID-related rejection:
not defined $Owners_data[ID_Owner]

• In the second Inner Join output table (Reject_ResellerID), repeat the same operation using
the following formula: not defined $Resellers_data[ID_Reseller]

• Click OK to validate and close the Mapper editor.

• Right-click on the tMap component, click on Row and select Reject_ResellerID in the list.

• Connect the main row from the Mapper to the Reseller Inner Rejection output component
Copyright © 2007 Talend Open Studio 343

Components
tMap
• For this scenario, remove from the Resellers.csv the rows corresponding to Reseller ID 5 and
8.

• Then run the job through a F6 key stroke or from the Run Job panel.
344 Talend Open Studio Copyright © 2007

Components
tMap
• The four output files are all created in the defined folder (Outputs).

• Notice in the Inner Join reject output file, NoResellerID.csv, that the ID_Owners field values
matching the Reseller ID 5 and 8 were rejected from the cars file to this file.
Copyright © 2007 Talend Open Studio 345

Components
tMap
Scenario 3: Cascading join mapping

As third advanced use scenario, based on the scenario 2, add a new Input table containing Insurance
details for example.

Set up an Inner Join between two lookup input tables (Owners and Insurance) in the Mapper to
create a cascade lookup and hence retrieve Insurance details via the Owners table data.

Scenario 4: Advanced mapping with filters, explicit joins and Inner
join rejection

This scenario introduces a job (in Java) tMap which allows to find the reseller’s customer leads who
are owners of a defined make, and have between 2 and 6 children (inclusive), for upsale purpose for
example.

• Drag and drop the following components from the Palette: tFileInputDelimited (x3), tMap,
tFileOutputDelimited (x2)

• Connect the input flow components to the tMap using a Main row connection. Pay attention
to the file you connect first as it will automatically be set as Main flow. And all other
connections will thus become Lookup flows.

• Define the Properties of each of the Input components. For example, define the Resellers
file path used as Main flow in the job.
346 Talend Open Studio Copyright © 2007

Components
tMap
• Define the delimited file to be used, the Row and the Field Separator, the Header and Footer
rows if any.

• Edit the Schema if it hasn’t been stored in the Repository. You will retrieve this schema in
the Main table at the top of the Input area of the mapper.

• Carry out these previous steps for the other Input components: Cars and Owners. These two
Lookup flows will fill in secondary (lookup) tables in the Input area of the Mapper.

• Then double-click on the tMap component to launch the Mapper and define the mapping
and filters.

• First set the explicite joins between the Main flow and the Lookup flows.

• Simply drag & drop the ID_Resellers column towards the corresponding column and this
way fill in the Expression key field of the Lookup table.
Copyright © 2007 Talend Open Studio 347

Components
tMap
• The explicit join displays in color along with a hash key.

• Then in thr Expr. Key of the Make column, type in (in Java) the filter. In this use case, simply
type in “BMW” as the search is focused on the Owners of this particular Make.

• Implement a cascading join between the two lookup tables Cars and Owners, in order to
retrieve owners information regarding the number of children they have.

• Simply drag and drop the ID_Owners column from the Cars table towards the Expr. Key
field of the id_owner column from the Owners table.

• Click the Filter button next to the Inner Join button to display the Filter expression area.
348 Talend Open Studio Copyright © 2007

Components
tMap
• Type in the Filter statement to narrow down the number of rows loaded in the Lookup flows.
In this use case, the statement reads: Owners.Children_Nr > 1 &&
Owners.Children_Nr < 6

• Then, as you want to reject the null values into a separate table and exclude them from the
standard output, check the Inner Join box for each of the filtered Lookup tables.

• In the Inner join, you can then choose to include only a Unique match, the First or Last
match or All Matches. In this use case, the All matches option is selected. Thus if several
matchs are found in the Inner Join, i.e. rows matching the explicit join as well as the filter,
all of them will be added to the output flow (either in Rejection or the regular output).

• Then on the Output area of the Mapper, add two tables, one for the full matches and one
for the rejections.

• Click the plus button to add the tables and give a name to the outputs.
Copyright © 2007 Talend Open Studio 349

Components
tMap
• Drag and drop data from the Main and Lookup tables in the Input area, towards the
respective output tables, following the type of information you want to fetch.

• In the rejection table used to direct the non-matches from the external join or the filter, click
the Inner Join Reject button (violet arrow) to activate it.

• On the Designer space, right-click on the tMap and pull the respective output link to the
relevant components.

• Define the Properties of the Output components.

• Define the filepath, the expected Row and Field separator. And for this use case, check the
Include Header box.
350 Talend Open Studio Copyright © 2007

Components
tMap
• The Schema should be automatically propagated from the Mapper.

• Save you job, then go to the Run Job tab and check the Statistics box to follow the
processing thread.

The statistics show that several matches were found and therefore the sum of the output rows (Main
+ rejected) exceeds the Main flow input rows.

Scenario 5: Advanced mapping with filters and a check of all rows

This scenario is a modfied version of the preceding scenario. It describes a job that apply filters and
then check each row of loaded lookup rows.
Copyright © 2007 Talend Open Studio 351

Components
tMap
• Take the same job as in Scenario 4: Advanced mapping with filters, explicit joins and Inner
join rejection on page 346.

• No changes are required in the Input delimited files.

• Launch the Mapper to change the mapping and the filters.

• Remove all explicit joins between the Main table and the Cars Lookup table.

• Notice that the All Matches setting changes automatically to All Rows. In fact, as no explicit
join is declared (no hash keys), all lookup rows need to be loaded and checked against all
main flow rows.
352 Talend Open Studio Copyright © 2007

Components
tMap
• Remove the Expr. key filter (“BMW”) from the Cars table.

• And click the Filters button to display the Filter area. Then type in the new filter to narrow
down the search to BMW or Mercedes car makes. The statement reads as follows:
Cars.Make.equals("BMW") || Cars.Make.equals("Mercedes")

• The filter on the Owners Lookup table doesn’t change from the previous scenario.

• Define new file paths for the respective outputs.

• Save the job and enable the Statistics on the Run Job tab before executing the job.

The Statistics show that a cartesian product has been carried out between the Main flow rows with
the filtered Lookup rows.
Copyright © 2007 Talend Open Studio 353

Components
tMap
The content of the main output flow shows that the filtered rows have correctly been passed on.

Whereas, the Reject result clearly shows the rows that didn’t match one of the filter.
354 Talend Open Studio Copyright © 2007

Components
tMomInput
tMomInput

tMomInput Properties

Scenario: asynchronous communication via a MOM server

This scenario is made of two jobs. The first job aims at posting messages onto a JBoss server queue
and the second job fetches the message from the server.

Component family Internet

Function Fetchs a message from a queue on a Message-Oriented middleware system
and passes it to the next component.

Purpose tMomInput makes it possible to set up asynchronous communications via a
MOM server..

Properties MQ Server Select in the list the MOM server to be used.
According to the server selected, the parameters
required slightly differ.

Host/Port Fill in the Host name or IP address of the MOM
server as well as the Port.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component.
In the context of tMomInput usage, the schema is
read-only. It is made of two columns: From and
Message

JBoss Messaging Keep
listening/Sleeping
time

Check this box to keep listening the MOM server for
fetching any new message. Set the frequency of
verification in seconds.

Message From Type in the message source, exactely as expected by
the server; this must include the type and name of the
source. e.g.: queue/A or topic/testtopic
Note that the field is case-sensitive.

Message Type Select the message type, either: topic or queue.

Websphere Channel Value by default is Channel

Queue Manager Fill in the server driver details

Message Queue Source of the message

Usage This component is generally used as a start component . It requires to be
linked to an output component.

Limitation Make sure the relevant JBoss or Websphere server is launched.
Copyright © 2007 Talend Open Studio 355

Components
tMomInput
In the first job, a string message is created using a tRowGenerator and put on a JBoss server using
a tMomOutput. An intermediary tLogRow component displays the flow being passed.

• Click and drop the three components of this first job and right-click to connect them using
a Main row link.

• Double-click on the tRowGenerator to set the schema to be randomly generated.

• Set only one column called message. This is the message to be put on the MOM queue.

• This column is of String type and is nullable.To produce the data, use a preset function which
concatenates randomly chosen ascii characters to form a 6-char string. This function is
getAsciiRandomString. (Java version). Click the Preview button to view a random
sample of data generated.

• Set the Number of rows to be generated to 10.

• Click OK to validate.

• The tLogRow is only used to display a intermediary state of the data to be handled. In this
example, it doesn’t require any specific configuration.

• Then select the tMomOutput component.

• In this use case, the MQ server to be used is JBoss.

• In Host and Port fields, fill in the relevant connection information.
356 Talend Open Studio Copyright © 2007

Components
tMomInput
• Select the Message type in the list. The message can be of Queue or Topic type. In this
example, select the Queue type on the list.

• In the To field, type in the message source information strictly as expected by the server. This
should match the Message Type you selected, such as: queue/A.

Note: The message name is case-sensitive, therefore queue/A and Queue/A are
different.

• Then click Sync Columns to pass on the schema from the preceding component. The
schema being read-only, it cannot be changed. The data posted onto the MQ come from the
first encountered column of the schema.

• Run the job and see the console the data flow being passed on thanks to the tLogRow
component.

Then set the second job in order to fetch the queuing messages from the MOM server.

• Click and drop the tMomInput component (from the Internet folder in the Palette) and a
tLogRow to display the fetched messages.

• Select the tMomInput to set the parameters.

• Select the MQ server on the list. In this example, a JBoss messaging server is used.

• Set the server Host and Port information.

• Set the Message From and the Message Type to match the source and type expected by the
messaging server.

• The Schema is read-only and is made of two columns: From and Message.
Copyright © 2007 Talend Open Studio 357

Components
tMomInput
• Check the Keep listening box and set the frequency of verification to 5 seconds.

Note: When using the Keep Listening option, you’ll need to kill the job to end it.

• No need to change any default setting from the tLogRow.

• Save the job and run it (when launching for the first time or if you killed it on a previous run).

The messages fetched on the server are displayed on the console.
358 Talend Open Studio Copyright © 2007

Components
tMomOutput
tMomOutput

tMomOutput Properties

Related scenario

For a related scenario, see tMomInput on page 355.

Component family Internet

Function Puts a message in a queue of a Message-Oriented middleware system in order
for it to be fetched asynchronously.

Purpose tMomOutput makes it possible to set up asynchronous communications via
a MOM server..

Properties MQ Server Select in the list the MOM server to be used.
According to the server selected, the parameters
required slightly differ.

Host/Port Fill in the Host name or IP address of the MOM
server as well as the Port.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component.
In the context of tMomOutput usage, the schema is
read-only but will change according to the incoming
schema. Only one-column schema is expected by the
server to contain the Messages

JBoss Messaging To Type in the message destination, exactely as
expected by the server; this must include the type and
name of the target folder. e.g.: queue/A or
topic/testtopic
Note that the field is case-sensitive.

Message Type Select the message type, either: topic or queue.

Websphere Channel Value by default is Channel

Queue Manager Fill in the server driver details

Message Queue Destination of the message

Usage This component requires to be linked to an input or intermediary component.

Limitation Make sure the relevant JBoss or Websphere server is launched.
Copyright © 2007 Talend Open Studio 359

Components
tMSSqlBulkExec
tMSSqlBulkExec

tMSSqlBulkExec properties

tMSSqlOutputBulk and tMSSqlBulkExec components are used together to first output the file
that will be then used as parameter to execute the SQL query stated. These two steps compose the
tMSSqlOutputBulkExec component, detailed in a separate section. The interest in having two
separate elements lies in the fact that it allows transformations to be carried out before the data
loading in the database.
360 Talend Open Studio Copyright © 2007

Components
tMSSqlBulkExec
Component family Databases/MSSql

Function Executes the Insert action on the data provided.

Purpose As a dedicated component, tMSSqlBulkExec offers gains in performance
while carrying out the Insert operations to a MSSql database

Properties Action Select the action to be carried out
Bulk insert
Bcp query out
Depending on the action selected, the requied
information varies.

Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Fields terminated by Character, string or regular expression to separate
fields.

Rows terminated by Character, string or regular expression to separate
rows.

Data file type Select the type of data being handled.

Bulk Insert Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one
table can be written at a time and that the table must
exist for the insert operation to succeed.

Remote File Name Name of the file to be processed.
Related topic:Defining job context variables on page
101

First row Type in the number of the row where the action should
start from.

Bcp Query out Bcp utility Name of the utility to be used to copy data from the
SQL server.

SQL Statement Type in the SQL statement to read and extract the
relevant data from the DB.

Output File Name Path to the output file.

Output Select Global Variable if you want to reuse the
output data in another part of your job.
Copyright © 2007 Talend Open Studio 361

Components
tMSSqlBulkExec
Related scenarios

For uses cases in relation with tMSSqlBulkExec, see the following scenarios:

• tMysqlOutputBulk Scenario: Inserting transformed data in MySQL database on page 400

• tMysqlOutputBulkExec Scenario: Inserting data in MySQL database on page 405

Usage This component is to be used along with tMSSqlOutputBulk component.
Used together, they can offer gains in performance while feeding a MSSql
database.
362 Talend Open Studio Copyright © 2007

Components
tMSSqlInput
tMSSqlInput

tMSSqlInput properties

Component family Databases/MS SQL
Server

Function tMSSqlInput reads a database and extracts fields based on a query.

Purpose tMSSqlInput executes a DB query with a strictly defined order which must
correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Properties Property type Either Built-in or Repository

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type and Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Usage This component covers all possibilities of SQL queries onto a MS SQL server
database..
Copyright © 2007 Talend Open Studio 363

Components
tMSSqlInput
Related scenarios

Related topics in tDBInput scenarios:

• Scenario 1: Displaying selected data from DB table on page 162

• Scenario 2: Using StoreSQLQuery variable on page 163

Related topic in tContextLoad Scenario: Dynamic context use in MySQL DB insert on page 145.
364 Talend Open Studio Copyright © 2007

Components
tMSSqlOutput
tMSSqlOutput

tMSSqlOutput properties

Component family Databases/MS SQL
server

Function tMSSqlOutput writes, updates, makes changes or suppresses entries in a
database.

Purpose tMSSqlOutput executes the action defined on the table and/or on the data
contained in the table, based on the flow incoming from the preceding
component in the job.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one
table can be written at a time

In Java, use
tCreateTable as
substitute for this
function..

Action on table On the table defined, you can perform one of the
following operations:
None: No operation carried out
Drop and create the table: The table is removed and
created again
Create a table: The table doesn’t exist and gets
created.
Clear a table: The table content is deleted

Action on data On the data of the table defined, you can perform:
Insert: Add new entries to the table. If duplicates are
found, job stops.
Update: Make changes to existing entries
Insert or update: Add entries or update existing
ones.
Update or insert: Update existing entries or create it
if non existing
Delete: Remove entries corresponding to the input
flow.

Clear data in table Wipes out data from the selected table before action.
Copyright © 2007 Talend Open Studio 365

Components
tMSSqlOutput
Related scenarios

For tMSSqlOutput related topics, see:

• tDBOutput Scenario: Displaying DB output on page 166

• tMySQLOutput Scenario: Adding new column and altering data on page 396.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Additional Columns This option is not offered if you create (with or
without drop) the Db table. This option allows you to
perform actions on columns, which are not insert, nor
update or delete actions or requires a particular
preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After, following
the action to be performed on the reference column.

Reference column: Type in a column of reference
that the tDBOutput can use to place or replace the new
or altered column.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.
366 Talend Open Studio Copyright © 2007

Components
tMSSqlOutputBulk
tMSSqlOutputBulk

tMSSqlOutputBulk properties

tMSSqlOutputBulk and tMSSqlBulkExec components are used together to first output the file
that will be then used as parameter to execute the SQL query stated. These two steps compose the
tMSSqlOutputBulkExec component, detailed in a separate section. The interest in having two
separate elements lies in the fact that it allows transformations to be carried out before the data
loading.
Copyright © 2007 Talend Open Studio 367

Components
tMSSqlOutputBulk
Related scenarios

For uses cases in relation with tMSSqlOutputBulk, see the following scenarios:

Component family Databases/MSSql

Function Writes a file with columns based on the defined delimiter and the MSSql
standards

Purpose Prepares the file to be used as parameter in the INSERT query to feed the
MSSql database.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

File Name Name of the file to be processed.
Related topic: Defining job context variables on page
101

Field separator Character, string or regular expression to separate
fields.

Row separator String (ex: “\n”on Unix) to distinguish rows.

Append Check this option box to add the new rows at the end
of the records

Include header Check this box to include the column header.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either built-in
or remote in the Repository.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused in various
projects and job designs. Related topic: Setting a
repository schema on page 49

Encoding Select the encoding from the list or select Custom
and define it manually. This field is compulsory for
DB data handling.

Usage This component is to be used along with tMSSqlBulkExec component. Used
together they offer gains in performance while feeding a MSSql database.
368 Talend Open Studio Copyright © 2007

Components
tMSSqlOutputBulk
• tMysqlOutputBulk Scenario: Inserting transformed data in MySQL database on page 400

• tMysqlOutputBulkExec Scenario: Inserting data in MySQL database on page 405
Copyright © 2007 Talend Open Studio 369

Components
tMSSqlOutputBulkExec
tMSSqlOutputBulkExec

tMSSqlOutputBulkExec properties

Component family Databases/MSSql

Function Executes the Insert action on the data provided.

Purpose As a dedicated component, it allows gains in performance during Insert
operations to a MSSql database.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Bcp utility Name of the utility to be used to copy data over.on the
SQL server.

Host Database server IP address

Port Listening port number of DB server.

DB Name Name of the database

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one
table can be written at a time and that the table must
exist for the insert operation to succeed.

File Name Name of the file to be processed.
Related topic:Defining job context variables on page
101

Field separator Character, string or regular expression to separate
fields.

Row separator String (ex: “\n”on Unix) to distinguish rows.

Append Check this option box to add the new rows at the end
of the records

First row Type in the number of the row where the action should
start from.

Include header Check this box to include the column header.

Data file type Select the type of data being handled.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.
370 Talend Open Studio Copyright © 2007

Components
tMSSqlOutputBulkExec
Related scenarios

For uses cases in relation with tMSSqlOutputBulkExec, see the following scenarios:

• tMysqlOutputBulk Scenario: Inserting transformed data in MySQL database on page 400

• tMysqlOutputBulkExec Scenario: Inserting data in MySQL database on page 405

Usage This component is mainly used when no particular tranformation is required on
the data to be loaded onto the database.

Limitation n/a
Copyright © 2007 Talend Open Studio 371

Components
tMSSqlRow
tMSSqlRow

tMSSqlRow properties

Component family Databases/DB2

Function tMSSqlRow is the specific component for this database query. It executes the
SQL query stated onto the specified database. The row suffix means the
component implements a flow in the job design although it doesn’t provide
output.

Purpose Depending on the nature of the query and the database, tMSSqlRow acts on
the actual DB structure or on the data (although without handling data). The
SQLBuilder tool helps you write easily your SQL statements.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build
it graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.
372 Talend Open Studio Copyright © 2007

Components
tMSSqlRow
Related scenarios

For related topics, see:

• tDBSQLRow Scenario 1: Resetting a DB auto-increment on page 170

• tMySQLRow Scenario: Removing and regenerating a MySQL table index on page 408.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.
Copyright © 2007 Talend Open Studio 373

Components
tMSSqlSCD
tMSSqlSCD

tMSSqlSCD Properties

Component family Databases/MSSQL
Server

Function tMSSqlSCD reflects and tracks changes in a dedicated MSSQL SCD table.

Purpose tMSqlSCD addresses Slowly Changing Dimension needs, reading regularly a
source of data and logging the changes into a dedicated SCD table

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Table Name of the table to be written. Note that only one
table can be written at a time

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Surrogate key Select the column where the generated surrogate key
will be stored. A surrogate key can be generated based
on a method selected on the Creation list.
374 Talend Open Studio Copyright © 2007

Components
tMSSqlSCD
Creation Select the method to be used for the key generation:
input field: key is provided in an input field
routine: you can access the basic functions through
Ctrl+ Space bar combination.
table max +1: the maximum value from the SCD
table is incremented to create a surrogate key
sequence/identity: auto-incremental key

Source Keys Select one or more columns to be used as key, to
ensure the unicity of incoming data.

Use SCD Type 1 fields Use the type 1if change tracking is not necessary.
SCD Type 1 should be used for typos corrections for
example. Select the columns of the schema, that will
be checked for changes.

Use SCD Type 2 fields Use type 2 if changes need to be tracked down. SCD
Type 2 should be used to trace updates for example.
Select the columns of the schema, that will be
checked for changes.
Start date: Adds a column to your SCD schema to
hold the start date. You can select one of the input
schema column as Start Date in the SCD table.
End Date: Adds a column to your SCD schema to
hold the end date value for the record. When the
record is currently active, the End date show a null
value or you can select Fixed Year value and fill in
with a fictive year to avoid having a null value in the
End date field.
Log Active Status: Adds a column to your SCD
schema to hold the true or false status value. This
column helps to spot easily the active record.
Log versions: Adds a column to your SCD schema to
hold the version number of the record.

Use SCD Type 3 fields Use type 3 when you want to keep track of the
previous value of a changing column
Current value field: Select the column where the
changing value is tracked down..
Previous value field: Select the column where the
previous value should be stored.

Debug Mode Check this box to display each step of the SCD log
process.

Usage This component is used as Output component. It requires an Input component
and Row main link as input.
Copyright © 2007 Talend Open Studio 375

Components
tMSSqlSCD
Scenario: Slow Changing Dimension type 3

The following scenario aims at showing the use of slow changing dimension type 1.2 and 3. Some
changes are brought to the input csv file, and an extra Date column is added to the schema. The
successive changes are tracked down in an MSSQL SCD table.

• Click & drop the following components: tFileInputCSV, tMap, and tMSSqlSCD.

• Connect all components using a Row Main link.

• The input file is very large. In this example, changes are performed on the
STORE_MANAGER column.

• The changes mentioned above are carried out on the second entry, on Adams.

• Select the tFileInputCSV component and click on the Properties view

• The properties of the csv file are not stored centrally in the Repository, therefore, select
Built-In as Property Type. Consequently you need to set manually all file details.

• In File Name, browse to the csv file.

• Set the comma as Field separator and backslash apostrophes (\”) as Text enclosure.
376 Talend Open Studio Copyright © 2007

Components
tMSSqlSCD
• Set the Header to 1.

• Then click Edit schema to upload the schema.

• Make sure the data types are set properly and a key is defined.

• Double-click on the tMap component to open the mapper. Use the AutoMap button to
automatically copy over all columns from the input to the output.

• Add an extra column to the output table, to hold the end date. This column will be reused in
the SCD component to feed the the End Date of the SCD table.

• In the Expression field, press Ctrl+Space bar to open the completion list. Select the
GetCurrentDate function and set the column name as DATE.

• Click OK to validate.
Copyright © 2007 Talend Open Studio 377

Components
tMSSqlSCD
• Select the tMSSqlSCD component and set the changes tracking parameters.

• Set the MS SQL server connection parameters manually.

• Set the Server, Port, Database and User & password.

• Type in the Table name, where the SCD information should be stored. In this example:
STORE_DMTEST

• The SCD Table schema should include an extra column to hold the surrogate key.

• Create a Surrogate key, based on the table max value incremented by 1. Select the column
in the list (STORE_SK in this example) and Table max + 1 in the Creation field.

• On the Source keys table, add one line and select the column to use as key in the source file.
In this example, STORE_ID.
378 Talend Open Studio Copyright © 2007

Components
tMSSqlSCD
• In this example, the SCD type 1 and 2 are not used. For more information regarding SCD
type 1, see tMySqlSCD Scenario: Tracking changes using Slowly Changing Dimension on
page 411.

• Check the SCD type 2 fields box.

• In the table, add as many entries as you need to track the important changes. In this example,
all column but the ID are selected.

• Select the Start date and End date columns where the Start and End date should be put in.
In this example, the date has been added to the schema and the current date is used as Start
date.

• Check the Use SCD Type 3 fields box.

• Check the Log active status and Log versions, and select the relevant column in the SCD
table where to store these values, in this example, respectively SCD_START and SCD_END.
Copyright © 2007 Talend Open Studio 379

Components
tMSSqlSCD
• Add as many lines as required. In this example, we will focus on the STORE_MANAGER
column.

• The SCD table schema should inclue the previous value column in order to store the former
current value of the selected column. In this example, we focus on
PREV_STORE_MANAGER.

• Save the job.

• Make the following changes to the STORE_MANAGER column of the input csv file: change
Adams to Smith

The name Adams is now in the PREV_STORE_MANAGER column and the new name Smith is now
in the STORE_MANAGER column.

For more information regarding the SCD Type 1& 2, see Scenario: Tracking changes using Slowly
Changing Dimension on page 411.
380 Talend Open Studio Copyright © 2007

Components
tMSSqlSP
tMSSqlSP

tMSSqlSP Properties

Component family Databases/MSSql

Function tMSSqlSP calls the database stored procedure.

Purpose tMSSqlSP offers a convenient way to centralize multiple or complex queries
in a database and call them easily.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Schema type and Edit
Schema

In SP principle, the schema is an input parameter.
A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

SP Name Type in the exact name of the Stored Procedure

Is Function / Return
result in

Check this box, if a value only is to be returned.
Select on the list the schema column, the value to be
returned is based on.
Copyright © 2007 Talend Open Studio 381

Components
tMSSqlSP
Related scenario

For related scenarios, see:

• tMysqlSP Scenario: Finding a State Label using a stored procedure on page 419.

• tOracleSP Scenario: Checking number format using a stored procedure on page 450

Parameters Click the Plus button and select the various Schema
Columns that will be required by the procedures.
Note that the SP schema can hold more columns than
there are paramaters used in the procedure.
Select the Type of parameter:
IN: Input parameter
OUT: Output parameter/return value
IN OUT: Input parameters is to be returned as value,
likely after modification through the procedure
(function).

Usage This component is used as intermediary component. It can be used as start
component but only input parameters are thus allowed.

Limitation The Stored Procedures syntax should match the Database syntax.
382 Talend Open Studio Copyright © 2007

Components
tMysqlBulkExec
tMysqlBulkExec

tMysqlBulkExec properties

tMysqlOutputBulk and tMysqlBulkExec components are used together to first output the file that
will be then used as parameter to execute the SQL query stated. These two steps compose the
tMysqlOutputBulkExec component, detailed in a separate section. The interest in having two
separate elements lies in the fact that it allows transformations to be carried out before the data
loading in the database.
Copyright © 2007 Talend Open Studio 383

Components
tMysqlBulkExec
Related scenarios

For uses cases in relation with tMysqlBulkExec, see the following scenarios:

• tMysqlOutputBulk Scenario: Inserting transformed data in MySQL database on page 400

Component family Databases/Mysql

Function Executes the Insert action on the data provided.

Purpose As a dedicated component, tMysqlBulkExec offers gains in performance while
carrying out the Insert operations to a Mysql database

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one
table can be written at a time and that the table must
exist for the insert operation to succeed.

File Name Name of the file to be processed.
Related topic:Defining job context variables on page
101

Fields terminated by Character, string or regular expression to separate
fields.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Usage This component is to be used along with tMysqlOutputBulk component.
Used together, they can offer gains in performance while feeding a Mysql
database.

Limitation n/a
384 Talend Open Studio Copyright © 2007

Components
tMysqlBulkExec
• tMysqlOutputBulkExec Scenario: Inserting data in MySQL database on page 405

• tOracleBulkExec Scenario: Truncating and inserting file data into Oracle DB on page 429
Copyright © 2007 Talend Open Studio 385

Components
tMysqlCommit
tMysqlCommit

tMysqlCommit Properties

This component is closely related to tMysqlCommit and tMysqlRollback. It usually doesn’t make
much sense to use these components independently in a transaction..

Related scenario

This component is closely related to tMysqlConnection and tMysqlRollback. It usually doesn’t
make much sense to use one of the latters without using a tMysqlConnection component to open
a connection for the current transaction.

For tMysqlCommit related scenario, see tMysqlConnection on page 387.

Component family Databases/MySQL

Function Validates the data processed through the job into the connected DB

Purpose Using a unique connection, commits in one go a global transaction instead of
every row or every batch. Provides a gain in performance

Properties Component list Select the tMysqlConnection component in the list if
more than one connection are planned for the current
job.

Usage This component is to be used along with Mysql components, especially with
tMysqlConnection and tMysqlRollback components.

Limitation n/a
386 Talend Open Studio Copyright © 2007

Components
tMysqlConnection
tMysqlConnection

tMysqlConnection Properties

This component is closely related to tMysqlCommit and tMysqlRollback. It usually doesn’t make
much sense to use one of the latters without using a tMysqlConnection component to open a
connection for the current transaction.

Scenario: Inserting data in mother/daughter tables

The following job is dedicated to advanced database users, who want to carry out multiple table
insertions using a parent table id to feed a child table. As a prerequisite to this job, follow the steps
described below to create the relevant tables using an engine such as innodb.

• In a command line editor, connect to your Mysql server.

• Once connected to the relevant database, type in the following command to create the parent
table: create table f1090_mum(id int not null auto_increment, name varchar(10), primary
key(id)) engine=innodb;

Component family Databases/MySQL

Function Opens a connection to the database for a current transaction.

Purpose Allows to commit a whole job data in one go to the output database as one
transaction when validated.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in with fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Encoding type Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Usage This component is to be used along with Mysql components, especially with
tMysqlCommit and tMysqlRollback components.

Limitation n/a
Copyright © 2007 Talend Open Studio 387

Components
tMysqlConnection
• Then create the second table: create table baby (id_baby int not null, years int)
engine=innodb;

Back into Talend Open Studio, the job requires seven components including tMysqlConnection
and tMysqlCommit.

• Drag and drop the following components from the Palette: tFileList, tFileInputDelimited,
tMap, tMysqlOutput (x2).

• Connect the tFileList component to the input file component using an Iterate link as the
name of the file to be processed will be dynamically filled in from the tFileList directory
using a global variable.

• Connect the tFileInputDelimited component to the tMap and dispatch the flow between the
two output Mysql DB components. Use a Row link for each for these connections
representing the main data flow.

• Set the tFileList component properties, such as the directory. name where files will be
fetched from.

• Add a tMysqlConnection component and connect it to the starter component of this job, in
this example, the tFileList component using a ThenRun link to define the execution order.

• In the tMysqlConnection Properties panel, set the connection details manually or fetch
them from the Repository if you centrally stored them as a Metadata DB connection entry.
For more information about Metadata, see Defining Metadata items on page 51.

• On the tFileInputDelimited component’s Properties panel, press Ctrl+Space bar to access
the variable list. Set the File Name field to the global variable:
$_globals{tFileList_1}{CURRENT_FILEPATH}
388 Talend Open Studio Copyright © 2007

Components
tMysqlConnection
• Set the rest of the fields as usual, defining the row and field separators according to your file
structure.

• Then set the schema manually through the Edit schema feature or select the schema from
the Repository. In Java version, make sure the data type is correctly set, in accordance with
the nature of the data processed.

• Change the encoding if different from the default one.

• In the tMap Output area, add two output tables, one called mum for the parent table, the
second called baby, for the child table.

• Drag the Name column from the Input area, and drop it to the mum table.

• Drag the Years column from the Input area and drop it to the baby table.

• Make sure the mum table is on the top of the baby table as the order is determining for the
flow sequence hence the DB insert to perform correctly.

• Then connect the output row link to distribute correctly the flow to the relevant DB output
component.
Copyright © 2007 Talend Open Studio 389

Components
tMysqlConnection
• In each of the tMysqlOutput components’ Properties panel, check the Use an existing
connection box to retrieve the tMysqlConnection details.

• Notice (in Perl version) that the Commit every field doesn’t show anymore as you are
supposed to use the tMysqlCommit instead to manage the global transaction commit. In
Java version, ignore the field as this command will get overridden by the tMysqlCommit.

• Set the Table name making sure it corresponds to the correct table, in this example either
f1090_mum or f1090_baby.

• There is no action on the table as they are already created.

• Select Insert as Action on data for both output components.

• Click on Sync columns to retrieve the schema set in the tMap.

• Change the encoding type if need be.

• In the Additional columns area of the DB output component corresponding to the child
table (f1090_baby), set the id_baby column so that it reuses the id from the parent table.

• In the SQL expression field type in: '(Select Last_Insert_id())'

• The position is Before and the Reference column is years.

• Add the tMysqlCommit component to the job workspace and connect it from the tFileList
component using a ThenRun connection in order for the job to terminate with the
transaction commit.

• On the tMysqlCommit component Properties panel, select in the list the connection to be
used.

Save your job and press F6 to run it.
390 Talend Open Studio Copyright © 2007

Components
tMysqlConnection
The parent table id has been reused to feed the id_baby column.
Copyright © 2007 Talend Open Studio 391

Components
tMysqlInput
tMysqlInput

tMysqlInput properties

Component family Databases/MySQL

Function tMysqlInput reads a database and extracts fields based on a query.

Purpose tMysqlInput executes a DB query with a strictly defined order which must
correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Properties Property type Either Built-in or Repository

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Use existing
connection

Check this box when using a tMySQLConnection

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type and Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Usage This component covers all possibilities of SQL queries onto a Mysql database.
392 Talend Open Studio Copyright © 2007

Components
tMysqlInput
Related scenarios

Related topic in tDBInput scenarios:

• Scenario 1: Displaying selected data from DB table on page 162

• Scenario 2: Using StoreSQLQuery variable on page 163

Related topic in tContextLoad Scenario: Dynamic context use in MySQL DB insert on page 145.
Copyright © 2007 Talend Open Studio 393

Components
tMysqlOutput
tMysqlOutput

tMysqlOutput properties

Component family Databases/MySQL

Function tMysqlOutput writes, updates, makes changes or suppresses entries in a
database.

Purpose tMysqlOutput executes the action defined on the table and/or on the data
contained in the table, based on the flow incoming from the preceding
component in the job.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Use existing
connection

Check this box when using a tMySQLConnection

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one
table can be written at a time

In Java, use
tCreateTable as
substitute for this
function..

Action on table On the table defined, you can perform one of the
following operations:
None: No operation carried out
Drop and create the table: The table is removed and
created again
Create a table: The table doesn’t exist and gets
created.
Clear a table: The table content is deleted
394 Talend Open Studio Copyright © 2007

Components
tMysqlOutput
Action on data On the data of the table defined, you can perform:
Insert: Add new entries to the table. If duplicates are
found, job stops.
Update: Make changes to existing entries
Insert or update: Add entries or update existing
ones.
Update or insert: Update existing entries or create it
if non existing
Delete: Remove entries corresponding to the input
flow.

Clear data in table Wipes out data from the selected table before action.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Additional Columns This option is not offered if you create (with or
without drop) the Db table. This option allows you to
perform actions on columns, which are not insert, nor
update or delete actions or requires a particular
preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After, following
the action to be performed on the reference column.

Reference column: Type in a column of reference
that the tDBOutput can use to place or replace the new
or altered column.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.
Copyright © 2007 Talend Open Studio 395

Components
tMysqlOutput
Scenario: Adding new column and altering data

This scenario is a three-component job aiming at creating random data using a tRowGenerator,
duplicating a column to be altered using the tMap component, eventually altering the data to be
inserted based on a SQL expression, as well as inserting a new column in the DB, using the
tDBOutput component.

• Drag and drop the tRowGenerator, tMap and tMySQLOutput components onto the
designer.

• Link the tRowGenerator to the tMap.

• Set the tRowGenerator component properties. Create a two-column schema: Name and
Random_date

• The Name column does pick up randomly names from a list specified. In this use case, le list
includes FabriceB, PierrickL, GabrielM and ElisaS.

• Then, double-click on the tMap component to duplicate the random_date column and adapt
the schema in order to alter the data in the output component.

• In the Mapper, create an output link to the tMysqlOutput component. Add one more column
(based on the input schema) and name it random_date_1 to distinguish it from the other
random_date column.

• Drag and drop the random_date content from the input area to the output area.

• Then double-click on the tMysqlOutput component to set its parameters.

• First fill in the DB connection details, either through the Repository or manually in case of
Built-in information.

• Select the table to be altered, in this example: Feature516.

• No Action on table is to be carried out, the Action on data is Insert.

• In the Additional Columns area, set the alteration to be performed on columns and the
specific insertion of a new moment column onto the database.

• The One_month_later column is a replacement column for the random_date_1 column.
Also, the data it-self gets altered using an SQL expression, which adds one month to the
randomly picked-up date of the random_date_1 column. ex: 2007-08-12 becomes
2007-09-12

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.
396 Talend Open Studio Copyright © 2007

Components
tMysqlOutput
• Therefore, in Name field goes the new column label (One_Month_Later) and in SQL
expression field, type in the relevant addition script to be performed: 'adddate(?, interval 1
month)' then as Position, select Replace, and the Reference column is Random_date_1.

• Note that for this job we duplicated the random_date_1 column in the DB table before
replacing one instance of it with the One_Month_Later column. The aim of this workaround
was to be able to view upfront the modification performed.

• The second entry is the new column, moment, to be inserted into the database table. As SQL
expression, type in the moment function: now() and in the Position field, select Before, the
Reference column is name in this example.

• Once the Output setting is complete, press F6 to run the job.

Two new columns were added or altered onto the DB table: One_Month_Later and Moment.

Related topic: tDBOutput properties on page 165
Copyright © 2007 Talend Open Studio 397

Components
tMysqlOutputBulk
tMysqlOutputBulk

tMysqlOutputBulk properties

tMysqlOutputBulk and tMysqlBulkExec components are used together to first output the file that
will be then used as parameter to execute the SQL query stated. These two steps compose the
tMysqlOutputBulkExec component, detailed in a separate section. The interest in having two
separate elements lies in the fact that it allows transformations to be carried out before the data
loading.

Component family Databases/MySQL

Function Writes a file with columns based on the defined delimiter and the MySql
standards

Purpose Prepares the file to be used as parameter in the INSERT query to feed the
MySQL database.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

File Name Name of the file to be processed.
Related topic:Defining job context variables on page
101

Field separator Character, string or regular expression to separate
fields.

Row separator String (ex: “\n”on Unix) to distinguish rows.

Append Check this option box to add the new rows at the end
of the file

Include header Check this box to include the column header to the
file.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either built-in
or remote in the Repository.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused in various
projects and job designs. Related topic: Setting a
repository schema on page 49
398 Talend Open Studio Copyright © 2007

Components
tMysqlOutputBulk
Encoding Select the encoding from the list or select Custom
and define it manually. This field is compulsory for
DB data handling.

Usage This component is to be used along with tMySQlBulkExec component. Used
together they offer gains in performance while feeding a MySQL database.
Copyright © 2007 Talend Open Studio 399

Components
tMysqlOutputBulk
Scenario: Inserting transformed data in MySQL database

This scenario describes a four-component job which aims at fueling a database with data contained
in a file, including transformed data. Two steps are required in this job, first step is to create the file,
that will then be used in the second step. The first step includes a tranformation phase of the data
included in the file.

• Drag and drop a tRowGenerator, a tMap, a tMysqlOutputBulk as well as a
tMysqlBulkExec component.

• Connect the main flow using row main links.

• And connect the start component (tRowgenerator in this example) to the tMysqlBulkExec
using a trigger connection, of type ThenRun.

• A tRowGenerator is used to generate random data. Double-click on the tRowGenerator
component to launch the editor.

• Define the schema of the rows to be generated and the nature of data to generate. In this
example, the clients file to be produced will contain the following columns: ID, First Name,
Last Name, Address, City which all are defined as string data but the ID that is of integer type.
400 Talend Open Studio Copyright © 2007

Components
tMysqlOutputBulk
• Some schema information don’t necessarily need to be displayed. To hide them away, click
on Columns list button next to the toolbar, and uncheck the relevant entries, such as
Precision or Parameters.

• Use the plus button to add as many columns to your schema definition.

• Click the Refresh button to preview the first generated row of your output.

• Then select the tMap component to set the transformation.

• Drag and drop all columns from the input table to the output table.

• Apply the transformation on the LastName column by adding uc in front of it.

• Click OK to validate the transformation.

• Then double-click on the tMysqlOutputBulk component.

• Define the name of the file to be produced in File Name field. If the delimited file
information is stored in the Repository, select it in Property type field, to retrieve relevant
data. In this use case the file name is clients.txt.
Copyright © 2007 Talend Open Studio 401

Components
tMysqlOutputBulk
• The schema is propagated from the tMap component, if you accepted it when prompted.

• In this example, don’t include the header information as the table should already contain it.

• The encoding is the default one for this use case.

• Click OK to validate the output.

• Then double-click on the tMysqlBulkExec to set the INSERT query to be executed.

• Define the database connection details. We recommend you to store this type of information
in the Repository, so that you can retrieve them at any time for any job.

• Set the table to be filled in with the collected data, in the Table field.

• Fill in the column delimiters in the Field terminated by area.

• Make sure the encoding corresponds to the data encoding.

• Then press F6 to run the job.

The clients database table is filled with data from the file including upper-case last name as
transformed in the job.
402 Talend Open Studio Copyright © 2007

Components
tMysqlOutputBulk
For simple Insert operations that don’t include any transformation, the use of
tMysqlOutputBulkExec allows to spare a step in the process hence to gain some performance.

Related topic: tMysqlOutputBulkExec properties on page 404
Copyright © 2007 Talend Open Studio 403

Components
tMysqlOutputBulkExec
tMysqlOutputBulkExec

tMysqlOutputBulkExec properties

Component family Databases/MySQL

Function Executes the Insert action on the data provided.

Purpose As a dedicated component, it allows gains in performance during Insert
operations to a MySQL database.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one
table can be written at a time and that the table must
exist for the insert operation to succeed.

File Name Name of the file to be processed.
Related topic:Defining job context variables on page
101

Field separator Character, string or regular expression to separate
fields.

Row separator String (ex: “\n”on Unix) to distinguish rows.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Usage This component is mainly used when no particular tranformation is required on
the data to be loaded onto the database.

Limitation n/a
404 Talend Open Studio Copyright © 2007

Components
tMysqlOutputBulkExec
Scenario: Inserting data in MySQL database

This scenario describes a two-component job which carries out the same operation as the one
described for tMysqlOutputBulk properties on page 398 and tMysqlBulkExec properties on page
383, although no transformation of data is performed.

• Click and drop a tRowGenerator and a tMysqlOutputBulkExec component.

• The tRowGenerator is to be set the same way as in the Scenario: Inserting transformed data
in MySQL database on page 400. The schema is made of four columns including: ID, First
Name, Last Name, Address and City.

• Then set the DB connection if needed, the best practices being to store the connection details
in the Metadata repository.

• Then fill in the table to be filled in with the generated data in the Table field.

• And the name of the file to be loaded in File Name field.

Then press F6 to execute the job.

The result should be pretty much the same as in Scenario: Inserting transformed data in MySQL
database on page 400, but the data might differ as these are regenerated randomly everytime the job
is run.
Copyright © 2007 Talend Open Studio 405

Components
tMysqlRollback
tMysqlRollback

tMysqlRollback properties

This component is closely related to tMysqlCommit and tMysqlConnection. It usually doesn’t
make much sense to use these components independently in a transaction..

Scenario: Rollback from inserting data in mother/daughter tables

Based on the tMysqlConnection Scenario: Inserting data in mother/daughter tables on page 387,
insert a rollback funtion in order to prevent unwanted commit.

• Drag and drop a tMysqlRollback to the workspace and connect it to the Start component.

• Set the Rollback unique field on the relevant DB connection.

This complementary element to the job ensures that the transaction won’t be partly committed.

Component family Databases

Function Cancel the transaction commit in the connected DB.

Purpose Avoids to commit part of a transaction unvolontarily.

Properties Component list Select the tMysqlConnection component in the list if
more than one connection are planned for the current
job.

Usage This component is to be used along with Mysql components, especially with
tMysqlConnection and tMysqlCommit components.

Limitation n/a
406 Talend Open Studio Copyright © 2007

Components
tMysqlRow
tMysqlRow

tMysqlRow properties

Component family Databases/MySQL

Function tMysqlRow is the specific component for this database query. It executes the
SQL query stated onto the specified database. The row suffix means the
component implements a flow in the job design although it doesn’t provide
output.

Purpose Depending on the nature of the query and the database, tMysqlRow acts on the
actual DB structure or on the data (although without handling data). The
SQLBuilder tool helps you write easily your SQL statements.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Use existing
connection

Check this box when using a tMySQLConnection

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build
it graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.
Copyright © 2007 Talend Open Studio 407

Components
tMysqlRow
Scenario: Removing and regenerating a MySQL table index

This scenario describes a four-component job which wants to remove a table index, make a select
insert action onto a table then regenerate the index.

• Select and drop the following components onto the graphical workspace: tMysqlRow (x2),
tRowGenerator, tMysqlOutput.

• Connect tMysqlIntput to the tRowGenerator.

• Then using a ThenRun connection, link the first tMysqlRow to the tMysqlInput,

• Then connect tRowGenerator to the second tMysqlRow using a ThenRun link again.

• Select the tMysqlRow to fill in the DB Properties.

• In Property type as well in Schema type, select the relevant DB entry in the list.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.
408 Talend Open Studio Copyright © 2007

Components
tMysqlRow
• The DB connection details and the table schema are accordingly filled in.

• Propagate the properties and schema details onto the other components of the job.

• The query being stored in the Metadata area of the Repository, you can also select
Repository in the Query type field and the relevant query entry.

• If you didn’t store your query in the Repository, type in the following SQL statement to alter
the database entries: drop index <index_name> on <table_name>

• Then select the second tMysqlRow component, check the DB properties and schema.

• Then type in the SQL statement to recreate an index on the table using the following
statement: create index <index_name> on <table_name> (<column_name>);

• The tRowGenerator component is used to generate automatically the columns to be added
to the DB output table defined.

• Select the tMysqlOutput component and fill in the DB connection properties either from the
Repository or manually the DB connection details are specific for this use only. The table to
be fed is named: comprehensive.

• The schema should be automatically inheritated from the data flow coming from the
tLogRow. Edit the schema to check its structure and check that it corresponds to the schema
expected on the DB table specified.

• The Action on table is None and the Action on data is Insert.

• No additional Columns is required for this job.

• Press F6 to run the job.

If you manage to watch the action on DB data, you can notice that the index is dropped at the start
of the job and recreated at the end of the insert action.

Related topics: tDBSQLRow properties on page 169.
Copyright © 2007 Talend Open Studio 409

Components
tMysqlSCD
tMysqlSCD

tMysqlSCD Properties

Component family Databases/MySQL

Function tMysqlSCD reflects and tracks changes in a dedicated MySQL SCD table.

Purpose tMysqlSCD addresses Slowly Changing Dimension needs, reading regularly
a source of data and logging the changes into a dedicated SCD table

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Table Name of the table to be written. Note that only one
table can be written at a time

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Java only for the
time being.

Surrogate key Select the column where the generated surrogate key
will be stored. A surrogate key can be generated based
on a method selected on the Creation list.
410 Talend Open Studio Copyright © 2007

Components
tMysqlSCD
Scenario: Tracking changes using Slowly Changing Dimension

This scenario describes a job that tracks changes and updates of a source file and writes the history
of changes in an SCD table.

Creation Select the method to be used for the key generation:
input field: key is provided in an input field
routine: you can access the basic functions through
Ctrl+ Space bar combination.
table max +1: the maximum value from the SCD
table is incremented to create a surrogate key
sequence/identity: auto-incremental key

Source Keys Select one or more columns to be used as key, to
ensure the unicity of incoming data.

Use SCD Type 1 fields Use the type 1if change tracking is not necessary.
SCD Type 1 should be used for typos corrections for
example. Select the columns of the schema, that will
be checked for changes.

Use SCD Type 2 fields Use type 2 if changes need to be tracked down. SCD
Type 2 should be used to trace updates for example.
Select the columns of the schema, that will be
checked for changes.
Start date: Adds a column to your SCD schema to
hold the start date. You can select one of the input
schema column as Start Date in the SCD table.
End Date: Adds a column to your SCD schema to
hold the end date value for the record. When the
record is currently active, the End date show a null
value or you can select Fixed Year value and fill in
with a fictive year to avoid having a null value in the
End date field.
Log Active Status: Adds a column to your SCD
schema to hold the true or false status value. This
column helps to spot easily the active record.
Log versions: Adds a column to your SCD schema to
hold the version number of the record.

 Java only for the
time being.

Use SCD Type 3 fields Use type 3 when you want to keep track of the
previous value of a changing column
Current value field: Select the column where the
changing value is tracked down..
Previous value field: Select the column where the
previous value should be stored.

Debug Mode Check this box to display each step of the SCD log
process.

Usage This component is used as Output component. It requires an Input component
and Row main link as input.
Copyright © 2007 Talend Open Studio 411

Components
tMysqlSCD
The source file contains various person profiles including their name, their number of pets and their
home city. An id column helps ensuring the unicity of the line.

• Click and drop the following components from the Palette onto the design workspace:
tMysqlConnection, tFileInputPositional, tLogRow, tMysqlSCD, tMysqlCommit.

• Connect first the tFileInputPositional, tLogRow, tMysqlSCD using the Row Main link.
This is the main flow of your job.

• Then connect tMysqlConnection to the tFileInputPositional component using a Then
Run link.

• And connect tMysqlSCD to a tMysqlCommit using a OnOK trigger.

• First configure the connection to the SCD table where all changes will be tracked down. The
tMysqlConnection component should be used to avoid setting several times the same DB
connection when multiple DB components are used.

• If your database details are stored in the repository, select Repository in the Property type
field

• And select the relevant repository entry if several databases are stored centrally.

• Then define the tFileInputPositional properties:
412 Talend Open Studio Copyright © 2007

Components
tMysqlSCD
• Recall the tFileInputPositional properties from the Repository, else fill in the Built-in
settings.

• In this example, the schema holds four column and follows this pattern: 3,19,11,9

• Then set the tLogRow in order for the content of the varying input file to display on the
console before being processed through the SCD component.

• In this example, check the Print values in cells of a table box so that the content displays
in a table.

• Then set the tMysqlSCD component to track changes in the input file.

• Check the Use an existing connection box to reuse the details defined on the
tMysqlConnection properties.

• Set the table name to be used to track changes. The SCD-type table must exist.
Copyright © 2007 Talend Open Studio 413

Components
tMysqlSCD
• Define the table schema. In addition to the flow schema, the SCD schema should include
SCD-specific columns to hold standard log information such as: Start date, End date, Status
(Active/Disabled) and Version number.

• Add these columns to the schema if it does not include them already.

• On the Source keys table, add at least one column using the plus button and select the
relevant column that ensures the unicity of the records. It can be a generated Surrogate Key
or you can use several columns to create a key that will ensure the unicity of each record.

• Then check the Use SCD type 1 fields to set the columns, for which changes will be
implemented without being tracked down.
414 Talend Open Studio Copyright © 2007

Components
tMysqlSCD
• The SCD type 1 should be used mainly for typos and small mistake corrections, which don’t
need to be traced, but should be reflected in the output.

• Click on the Plus button and select the relevant table column name.

• Then check the Use SCD type 2 fields box to set the columns, for which changes will be
implemented and tracked down in the SCD table.

• Click the Plus button as many times as required and select the relevant column names.

• SCD Type-2 principle lies in the fact that a new record is added to the SCD table when
changes are detected on the columns defined. Note that although several changes may be
made to the same record on various columns defined as SCD type-2, only one additional line
tracks these changes in the SCD table.
Copyright © 2007 Talend Open Studio 415

Components
tMysqlSCD
• Define the columns of your table that will hold the Start date and End date values. The End
date is null for current records until a change is detected. Then the End date gets filled in and
a new record is added with no End date.

• Check the Log active status box, and select the column that will hold the True or False
status. True for the current active record and False for the changed record.

• Check the Log versions box and select the column that will hold the Version number value.

• Check the Debug mode if you wish to trace the SCD tracking steps on the console during
the job execution.

• Then select the tMysqlCommit component and select the relevant connection on the list.

• Press F6 to execute your job.

The Run Job tab console shows all SCD steps along with the content of the varying input file (first
and last on the example only). The SCD table shows the history of changes made to the input file
along with the status and version number.
416 Talend Open Studio Copyright © 2007

Components
tMysqlSCD
The End date is Null when the record status is active (current).
Copyright © 2007 Talend Open Studio 417

Components
tMysqlSP
tMysqlSP

tMysqlSP Properties

Component family Databases/Mysql

Function tMysqlSP calls the database stored procedure.

Purpose tMysqlSP offers a convenient way to centralize multiple or complex queries
in a database and call them easily.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Schema type and Edit
Schema

In SP principle, the schema is an input parameter.
A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

SP Name Type in the exact name of the Stored Procedure

Is Function / Return
result in

Check this box, if a value only is to be returned.
Select on the list the schema column, the value to be
returned is based on.
418 Talend Open Studio Copyright © 2007

Components
tMysqlSP
Scenario: Finding a State Label using a stored procedure

The following job aims at finding the State labels matching the odd State IDs in a Mysql two-column
table. A stored procedure is used to carry out this operation.

• Drag and drop the following components used in this example: tRowGenerator, tMysqlSP,
tLogRow.

• Connect the components using the Row Main link.

• The tRowGenerator is used to generate the odd id number. Double-click on the component
to launch the editor.

• Click on the Plus button to add a column to the schema to generate.

• Check the Key box and define the Type to Int.

• The Length equals to 2 digits max.

Parameters Click the Plus button and select the various Schema
Columns that will be required by the procedures.
Note that the SP schema can hold more columns than
there are paramaters used in the procedure.
Select the Type of parameter:
IN: Input parameter
OUT: Output parameter/return value
IN OUT: Input parameters is to be returned as value,
likely after modification through the procedure
(function).

Usage This component is used as intermediary component. It can be used as start
component but only input parameters are thus allowed.

Limitation The Stored Procedures syntax should match the Database syntax.
Copyright © 2007 Talend Open Studio 419

Components
tMysqlSP
• Use the preset function called sequence but customize the Parameters in the lower part of
the window.

• Change the Value of step from 1 to 2 for this example, still starting from 1.

• Set the Number of generated rows to 25 in order for all the odd State id (of 50 states) to be
generated.

• Click OK to validate the configuration.

• Then select the tMysqlSP component and define its properties.
420 Talend Open Studio Copyright © 2007

Components
tMysqlSP
• Set the Property type field to Repository and select the relevant entry on the list. The
connection details get filled in automatically.

• Else, set manually the connection information.

• Click Sync Column to retrieve the generated schema from the preceding component.

• Then click Edit Schema and add an extra column to hold the State Label to be output, in
addition to the ID.

• Select the encoding type on the list.

• Type in the name of the procedure in the SP Name field as it is called in the Database. In this
example, getstate. The procedure to be executed states as follows:
DROP PROCEDURE IF EXISTS `talend`.`getstate` $$
CREATE DEFINER=`root`@`localhost` PROCEDURE ̀ getstate`(IN pid
INT, OUT pstate VARCHAR(50))
BEGIN
 SELECT LabelState INTO pstate FROM us_states WHERE idState =
pid;
END $$

• In the Parameters area, click the plus button to add a line to the table.
Copyright © 2007 Talend Open Studio 421

Components
tMysqlSP
• Set the Column field to ID, and the Type field to IN as it will be given as input parameter
to the procedure.

• Add a second line and set the Column field to State and the Type to Out as this is the output
parameter to be returned.

• Eventually, set the tLogRow component properties.

• Synchronize the schema with the preceding component.

• And check the Print values in cells of a table box for reading convenience.

• Then save your job and execute it.

The output shows the state labels corresponding to the odd state ids as defined in the procedure.
422 Talend Open Studio Copyright © 2007

Components
tMsgBox
 tMsgBox

tMsgBox properties

Scenario: ‘Hello world!’ type test

The following scenario creates a single-component job, where tMsgBox is used to display the pid
(process id) in place of the traditional “Hello World!” message.

• Click and drop a tMsgBox component into the workspace.

• Define the dialog box display properties:

Component family Misc

Function Opens a dialog box with an OK button requiring action from the user.

Purpose tMsgBox is a graphical break in the job execution progress.

Properties Title Text entered shows on the title bar of the dialog
box created.

Buttons Listbox of buttons you want to include in the
dialog box. The button combinations are
restricted and cannot be changed.

Icon Icon shows on the title bar of the dialog box.

Message Free text to display as message on the dialog box.
Text can be dynamic (for example: retrieve and
show a file name).

Usage This component can be used as intermediate step in a data flow or as a
start or end object in the job flowchart.
It can be connected to the next/previous component using either a Row
or Iterate link.

Limitation For Perl users: Make sure the relevant package is installed.
Copyright © 2007 Talend Open Studio 423

Components
tMsgBox
• ‘My Title’ is the message box title, it can be any variable.

• In the Message field comes the message text in quotes concatenated with the Perl scalar
variable ($$) containing the “pid” for this example.

• Switch to the Run job tab to execute the job defined.

The Message box displays the message and requires the user to click OK to go to the next component
or end the job.

After the user clicked on OK button, the Run Job log is updated accordingly.

Related topic: Running a job on page 109
424 Talend Open Studio Copyright © 2007

Components
tNormalize
tNormalize

tNormalize Properties

Scenario: Normalizing data

This simple scenario illustrates a job that normalizes a list of tags for Web forum topics and outputs
them into a table in the standard output console (Run Job tab).

• Click and drop the following components onto the designing workspace:
tFileInputDelimited, tNormalize, tLogRow.

• In the tFileInputDelimited properties, set the input file to be normalized.

Component family Processing

Function Normalizes the input flow following SQL standard.

Purpose tNormalize helps improve data quality and thus eases the data update.

Properties Schema type and
Edit Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and
passed on to the next component. The schema is
either built-in or remote in the Repository. In this
component, the schema is read-only.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Column to
normalize

Select the column from the input flow which the
normalization is based on

Separator Enter the separator which will delimits data in the
input flow.

Usage This component can be used as intermediate step in a data flow.

Limitation n/a
Copyright © 2007 Talend Open Studio 425

Components
tNormalize
• The file schema is stored in the repository for ease of use. It is made of one column, called
Tags, containing rows with one or more keywords.

• Set the Row Separator and the Field Separator.

• On the tNormalize Properties panel, define the column the normalization operation is
based on.

• In this use case, the column to normalize is Tags.

• The Item separator is the comma, surrounded here by single quotes as the job is done in
Perl.

• In the tLogRow component, check the Print values in the cells of table box.
426 Talend Open Studio Copyright © 2007

Components
tNormalize
• Save the Job and run it.

The values are normalized and displayed in a table cell on the console.
Copyright © 2007 Talend Open Studio 427

Components
tOracleBulkExec
tOracleBulkExec

tOracleBulkExec properties

Component family Databases/Oracle

Function tOracleBulkExec inserts, appends, replaces or truncate data in an Oracle
database.

Purpose As a dedicated component, it allows gains in performance during operations
performed on data of an Oracle database.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Service Name Oracle Service Name or SID in Oracle database.

Note: In Java projects, the full
database connection details
are required.

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one
table can be written at a time

Action on data On the data of the table defined, you can perform:
Insert: Inserts rows to an empty table. If duplicates
are found, job stops.
Append: Add rows to the existing data of the table
Replace: Overwrites some rows of the table
Truncate: Drops table entries and inserts new input
flow data.

Data File Name Name of the file to be processed.
Related topic:Defining job context variables on page
101

Fields terminated by Character, string or regular expression to separate
fields.

Fields optionnally
enclosed by

Data enclosure characters.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.
428 Talend Open Studio Copyright © 2007

Components
tOracleBulkExec
Scenario: Truncating and inserting file data into Oracle DB

This scenario describes how to truncate the content of an Oracle DB and load an input file content.
The related job is composed of three components that respectively creates the content, output this
content into a file to be loaded onto the Oracle database after the DB table has been truncated.

• Click and drop the following components: tOracleInput, tFileOutputDelimited,
tOracleBulkExec

• Connect the tOracleInput with the tFileOutputDelimited using a row main link.

• And connect the tOracleInput to the tOracleBulkExec using a ThenRun trigger link.

• Define the Oracle connection details. We recommend you to store the DB connection details
in the Metadata repository in order to retrieve them easily at any time in any job.

Output to Console: Loading information
Global variable: returned values from ctl, bad or log
files.

Usage This dedicated component offers performance and flexibility of Oracle DB
query handling.
Copyright © 2007 Talend Open Studio 429

Components
tOracleBulkExec
• Define the schema, if it isn’t stored either in the Repository. In this example, the schema is
as follows: ID_Contract, ID_Client, Contract_type, Contract_Value.

• Change the default encoding to AL32UTF8 encoding type.

• Define the tFileOutputDelimited component parameters, including output File Name,
Row separator and Fields delimiter.

• Set also the encoding to the Oracle encoding type as above.

• Then double-click on the tOracleBulkExec to define the DB feeding properties.

• Fill in the DB connection details if they are not available from the Repository.

• Fill in the name of the Table to be fed and the Action on data to be carried out, in this use
case: insert.

• Define the encoding as in preceding steps.

• For this scenario, the log output is to be displayed in the console.
430 Talend Open Studio Copyright © 2007

Components
tOracleBulkExec
Press F6 to run the job. The log output displays in the Run Job tab and the table is fed with the
parameter file data.

Related topic: Scenario: Inserting data in MySQL database on page 405
Copyright © 2007 Talend Open Studio 431

Components
tOracleCommit
tOracleCommit

tOracleCommit Properties

This component is closely related to tOracleCommit and tOracleRollback. It usually doesn’t
make much sense to use these components independently in a transaction..

Related scenario

This component is closely related to tOracleConnection and tOracleRollback. It usually doesn’t
make much sense to use one of the latters without using a tOracleConnection component to open
a connection for the current transaction.

For tOracleCommit related scenario, see tMysqlConnection on page 387.

Component family Databases/Oracle

Function Validates the data processed through the job into the connected DB

Purpose Using a unique connection, commits in one go a global transaction instead of
every row or every batch. Provides a gain in performance

Properties Component list Select the tOracleConnection component in the list
if more than one connection are planned for the
current job.

Usage This component is to be used along with Oracle components, especially with
tOracleConnection and tOracleRollback components.

Limitation n/a
432 Talend Open Studio Copyright © 2007

Components
tOracleConnection
tOracleConnection

tOracleConnection Properties

This component is closely related to tOracleCommit and tOracleRollback. It usually doesn’t
make much sense to use one of the latters without using a tOracleConnection component to open
a connection for the current transaction.

Related scenario

This component is closely related to tOracleCommit and tOracleRollback. It usually doesn’t
make much sense to use one of the latters without using a tOracleConnection component to open
a connection for the current transaction.

For tOracleConnection related scenario, see tMysqlConnection on page 387.

Component family Databases/Oracle

Function Opens a connection to the database for a current transaction.

Purpose Allows to commit a whole job data in one go to the output database as one
transaction when validated.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in with fetched data.

Connection type Drop-down list of available drivers.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Schema Name of the schema

Username and
Password

DB user authentication data.

Encoding type Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Usage This component is to be used along with Oracle components, especially with
tOracleCommit and tOracleRollback components.

Limitation n/a
Copyright © 2007 Talend Open Studio 433

Components
tOracleInput
tOracleInput

tOracleInput properties

Component family Databases/Oracle

Function tOracleInput reads a database and extracts fields based on a query.

Purpose tOracleInput executes a DB query with a strictly defined order which must
correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Properties Property type Either Built-in or Repository

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Connection type Drop-down list of available drivers.

Use existing
connection

Check this box when using a tOracleConnection

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type and Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Usage This component covers all possibilities of SQL queries onto a Oracle database.
434 Talend Open Studio Copyright © 2007

Components
tOracleInput
Related scenarios

Related topics in tDBInput scenarios:

• Scenario 1: Displaying selected data from DB table on page 162

• Scenario 2: Using StoreSQLQuery variable on page 163

Related topic in tContextLoad Scenario: Dynamic context use in MySQL DB insert on page 145.
Copyright © 2007 Talend Open Studio 435

Components
tOracleOutput
tOracleOutput

tOracleOutput properties

Component family Databases/Oracle

Function tOracleOutput writes, updates, makes changes or suppresses entries in a
database.

Purpose tOracleOutput executes the action defined on the table and/or on the data
contained in the table, based on the flow incoming from the preceding
component in the job.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Use existing
connection

Check this box when using a tOracleConnection

Connection type Drop-down list of available drivers.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one
table can be written at a time

In Java, use
tCreateTable as
substitute for this
function..

Action on table On the table defined, you can perform one of the
following operations:
None: No operation carried out
Drop and create the table: The table is removed and
created again
Create a table: The table doesn’t exist and gets
created.
Clear a table: The table content is deleted
436 Talend Open Studio Copyright © 2007

Components
tOracleOutput
Action on data On the data of the table defined, you can perform:
Insert: Add new entries to the table. If duplicates are
found, job stops.
Update: Make changes to existing entries
Insert or update: Add entries or update existing
ones.
Update or insert: Update existing entries or create it
if non existing
Delete: Remove entries corresponding to the input
flow.

Clear data in table Wipes out data from the selected table before action.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Additional Columns This option is not offered if you create (with or
without drop) the Db table. This option allows you to
perform actions on columns, which are not insert, nor
update or delete actions or requires a particular
preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After, following
the action to be performed on the reference column.

Reference column: Type in a column of reference
that the tDBOutput can use to place or replace the new
or altered column.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.
Copyright © 2007 Talend Open Studio 437

Components
tOracleOutput
Related scenarios

For tOracleOutput related topics, see:

• tDBOutput Scenario: Displaying DB output on page 166

• tMySQLOutput Scenario: Adding new column and altering data on page 396.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.
438 Talend Open Studio Copyright © 2007

Components
tOracleOutputBulk
tOracleOutputBulk

tOracleOutputBulk properties

tOracleOutputBulk and tOracleBulkExec components are used together to first output the file
that will be then used as parameter to execute the SQL query stated. These two steps compose the
tOracleOutputBulkExec component, detailed in a separate section. The interest in having two
separate elements lies in the fact that it allows transformations to be carried out before the data
loading.
Copyright © 2007 Talend Open Studio 439

Components
tOracleOutputBulk
Related scenarios

For uses cases in relation with tOracleOutputBulk, see the following scenarios:

• tMysqlOutputBulk Scenario: Inserting transformed data in MySQL database on page 400

• tMysqlOutputBulkExec Scenario: Inserting data in MySQL database on page 405

Component family Databases/Oracle

Function Writes a file with columns based on the defined delimiter and the Oracle
standards

Purpose Prepares the file to be used as parameter in the INSERT query to feed the
Oracle database.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

File Name Name of the file to be processed.
Related topic:Defining job context variables on page
101

Field separator Character, string or regular expression to separate
fields.

Append Check this option box to add the new rows at the end
of the file

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either built-in
or remote in the Repository.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused in various
projects and job designs. Related topic: Setting a
repository schema on page 49

Encoding Select the encoding from the list or select Custom
and define it manually. This field is compulsory for
DB data handling.

Usage This component is to be used along with tOracleBulkExec component. Used
together they offer gains in performance while feeding a Oracle database.
440 Talend Open Studio Copyright © 2007

Components
tOracleOutputBulk
• tOracleBulkExec Scenario: Truncating and inserting file data into Oracle DB on page 429
Copyright © 2007 Talend Open Studio 441

Components
tOracleOutputBulkExec
tOracleOutputBulkExec

tOracleOutputBulkExec properties

Component family Databases/Oracle

Function Executes the Insert action on the data provided.

Purpose As a dedicated component, it allows gains in performance during Insert
operations to an Oracle database.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one
table can be written at a time and that the table must
exist for the insert operation to succeed.

Action on data On the data of the table defined, you can perform:
Insert: Add new entries to the table. If duplicates are
found, job stops.
Update: Make changes to existing entries
Insert or update: Add entries or update existing
ones.
Update or insert: Update existing entries or create it
if non existing
Truncate: Remove all entries from table.

File Name Name of the file to be processed.
Related topic:Defining job context variables on page
101

Field separator Character, string or regular expression to separate
fields.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Usage This component is mainly used when no particular tranformation is required on
the data to be loaded onto the database.
442 Talend Open Studio Copyright © 2007

Components
tOracleOutputBulkExec
Related scenarios

For uses cases in relation with tOracleOutputBulkExec, see the following scenarios:

• tMysqlOutputBulk Scenario: Inserting transformed data in MySQL database on page 400

• tMysqlOutputBulkExec Scenario: Inserting data in MySQL database on page 405

• tOracleBulkExec Scenario: Truncating and inserting file data into Oracle DB on page 429

Limitation n/a
Copyright © 2007 Talend Open Studio 443

Components
tOracleRollback
tOracleRollback

tOracleRollback properties

This component is closely related to tOracleCommit and tOracleConnection. It usually doesn’t
make much sense to use these components independently in a transaction..

Related scenario

This component is closely related to tOracleConnection and tOracleCommit. It usually doesn’t
make much sense to use one of the latters without using a tOracleConnection component to open
a connection for the current transaction.

For tOracleRollback related scenario, see tMysqlRollback on page 406.

Component family Databases

Function Cancel the transaction commit in the connected DB.

Purpose Avoids to commit part of a transaction unvolontarily.

Properties Component list Select the tOracleConnection component in the list
if more than one connection are planned for the
current job.

Usage This component is to be used along with Oracle components, especially with
tOracleConnection and tOracleCommit components.

Limitation n/a
444 Talend Open Studio Copyright © 2007

Components
tOracleRow
tOracleRow

tOracleRow properties

Component family Databases/Oracle

Function tOracleRow is the specific component for this database query. It executes the
SQL query stated onto the specified database. The row suffix means the
component implements a flow in the job design although it doesn’t provide
output.

Purpose Depending on the nature of the query and the database, tOracleRow acts on
the actual DB structure or on the data (although without handling data). The
SQLBuilder tool helps you write easily your SQL statements.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Use existing
connection

Check this box when using a tOracleConnection

Connection type Drop-down list of available drivers.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build
it graphically using SQLBuilder
Copyright © 2007 Talend Open Studio 445

Components
tOracleRow
Related scenarios

For related topics, see:

• tDBSQLRow Scenario 1: Resetting a DB auto-increment on page 170

• tMySQLRow Scenario: Removing and regenerating a MySQL table index on page 408.

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.
446 Talend Open Studio Copyright © 2007

Components
tOracleSCD
tOracleSCD

tOracleSCD Properties

Component family Databases/Oracle

Function tOracleSCD reflects and tracks changes in a dedicated Oracle SCD table.

Purpose tOracleSCD addresses Slowly Changing Dimension needs, reading regularly
a source of data and logging the changes into a dedicated SCD table

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Use existing
connection

Check this box when using a tOracleConnection

Connection type Drop-down list of available drivers.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Table Name of the table to be written. Note that only one
table can be written at a time

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Java only for the
time being.

Surrogate key Select the column where the generated surrogate key
will be stored. A surrogate key can be generated based
on a method selected on the Creation list.
Copyright © 2007 Talend Open Studio 447

Components
tOracleSCD
Related scenario

For related scenarios, see tMysqlSCD Scenario: Tracking changes using Slowly Changing
Dimension on page 411.

Source Keys Select one or more columns to be used as key, to
ensure the unicity of incoming data.

Use SCD Type 1 fields Use the type 1if change tracking is not necessary.
SCD Type 1 should be used for typos corrections for
example. Select the columns of the schema, that will
be checked for changes.

Use SCD Type 2 fields Use type 2 if changes need to be tracked down. SCD
Type 2 should be used to trace updates for example.
Select the columns of the schema, that will be
checked for changes.
Start date/End Date: Add a column to your SCD
schema to hold the start and end date value for the
record. When the record is currently active, the End
date show a null value
Log Active Status: Add a column to your SCD
schema to hold the 1 or 0 status value. This column
helps to spot easily the active record.
Log versions: Add a column to your SCD schema to
hold the version number of the record.

 Java only for the
time being.

Use SCD Type 3 fields Use type 3 when you want to keep track of the
previous value of a changing column
Current value field: Select the column where the
changing value is tracked down..
Previous value field: Select the column where the
previous value should be stored.

Debug Mode Check this box to display each step of the SCD log
process.

Usage This component is used as Output component. It requires an Input component
and Row main link as input.
448 Talend Open Studio Copyright © 2007

Components
tOracleSP
tOracleSP

tOracleSP Properties

Component family Databases/Oracle

Function tOracleSP calls the database stored procedure.

Purpose tOracleSP offers a convenient way to centralize multiple or complex queries
in a database and call them easily.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Schema Name of the Schema

Username and
Password

DB user authentication data.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Schema type and Edit
Schema

In SP principle, the schema is an input parameter.
A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

SP Name Type in the exact name of the Stored Procedure (or
Function)

Is Function / Return
result in

Check this box, if the stored procedure is a function
and one value only is to be returned.
Select on the list the schema column, the value to be
returned is based on.
Copyright © 2007 Talend Open Studio 449

Components
tOracleSP
Scenario: Checking number format using a stored procedure

The following job aims at connecting to an Oracle Database containing Social Security Numbers
and their holders’ name, calling a stored procedure that checks the SSN format of against a standard
###-##-#### format. Then the verification output results, 1 for valid format and 0 for wrong format
get displayed onto the execution console.

• Drag and drop the following components from the Palette: tOracleConnection,
tOracleInput, tOracleSP and tLogRow.

• Link the tOracleConnection to the tOracleInput using a Then Run connection as no data
is handled here.

• And connect the other components using a Row Main link as rows are to be passed on as
parameter to the SP component and to the console.

• In the tOracleConnection, define the details of connection to the relevant Database. You
will then be able to reuse this information in all other DB-related components.

• Then select the tOracleInput and define its properties.

Parameters Click the Plus button and select the various Schema
Columns that will be required by the procedures.
Note that the SP schema can hold more columns than
there are paramaters used in the procedure.
Select the Type of parameter:
IN: Input parameter
OUT: Output parameter/return value
IN OUT: Input parameters is to be returned as value,
likely after modification through the procedure
(function).

Usage This component is used as intermediary component. It can be used as start
component but only input parameters are thus allowed.

Limitation The Stored Procedures syntax should match the Database syntax.
450 Talend Open Studio Copyright © 2007

Components
tOracleSP
• Check the Use an existing connection and select the tOracleConnection component in the
list in order to reuse the connection details that you already set.

• Select Repository as Property type as the Oracle schema is defined in the DB Oracle
connection entry of the Repository. If you haven’t recorded the Oracle DB details in the
Repository, then fill in the Schema name manually.

• Then select Repository as Schema type, and retrieve the relevant schema corresponding to
your Oracle DB table.

• In this example, the SSN table has a four-column schema that includes ID, NAME, CITY and
SSNUMBER.

• In the Query field, type in the following Select query or select it in the list, if you stored it
in the Repository.
select ID, NAME, CITY, SSNUMBER from SSN

• Then select the tOracleSP and define its Properties.
Copyright © 2007 Talend Open Studio 451

Components
tOracleSP
• Like for the tOracleInput component, select Repository in the Property type field and
check the Use an existing connection box, then select the relevant entries in the respective
list.

• The schema used for the tOracleSP slightly differs from the input schema. Indeed, an extra
column (SSN_Valid) is added to the Input schema. This column will hold the format validity
status (1 or 0) produced by the procedure.

• Then select the Encoding type in the list.

• In the SP Name field, type in the exact name of the stored procedure (or function) as called
in the Database. In this use case, the stored procedure name is is_ssn.
452 Talend Open Studio Copyright © 2007

Components
tOracleSP
• The basic function used in this particular example is as follows:
CREATE OR REPLACE FUNCTION is_ssn(string_in VARCHAR2) RETURN
PLS_INTEGER
IS
-- validating ###-##-#### format
BEGIN
 IF TRANSLATE(string_in, '0123456789A', 'AAAAAAAAAAB') =
 'AAA-AA-AAAA' THEN
 RETURN 1;
 END IF;
 RETURN 0;
END is_ssn;
/

• As a return value is expected in this use case, the procedure acts as a function, so check the
Is function box.

• The only return value expected is based on the ssn_valid column, hence select the relevant
list entry.

• In the Parameters area, define the input and output parameters used in the procedure. In this
use case, only the SSNumber column from the schema is used in the procedure.

• Click the plus sign to add a line to the table and select the relevant column (SSNumber) and
type (IN).

• Then select the tLogRow component and click Sync Column to make sure the schema is
passed on from the preceding tOracleSP component.

• Check the Print values in cells of a table to facilitate the output reading.

• Then save your job and press F6 to run it.
Copyright © 2007 Talend Open Studio 453

Components
tOracleSP
On the console, you can read the output results. All input schema columns are displayed eventhough
they are not used as parameters in the stored procedure.

The final column shows the expected return value, i.e. whether the SS Number checked is valid or
not.
454 Talend Open Studio Copyright © 2007

Components
tPerl
tPerl

tPerl properties

Scenario: Displaying number of processed lines

This scenario is a three-component job showing in the Log the number of rows being processed and
output in an XML file.

• Click and drop three components from the Palette to the workspace: tFileInputDelimited,
tFileOutputExcel, tPerl

• Right-click on the tFileInputDelimited object and connect it to the tFileOutputExcel
component using a main Row.

• Right-click again on tFileInputDelimited and link it with the tPerl component using a
Trigger > ThenRun link. This link means that, following the arrow direction, the first
component (tFileDelimited) will run before the second component (tPerl).

Component family Processing

Function tPerl transforms any data entered as argument of Perl commands.

Purpose tPerl is an (Perl) editor that is a very flexible tool within a job.

Properties Code Type in the Perl code based on the command and
task you need to perform. For further information
about Perl functions syntax, see Talend Open
Studio online Help (under Talend Open Studio
User Guide > Perl)

Usage Typically used for debugging but can also be used to display a variable
content.

Limitation This component requires an advanced Perl user level and is not meant to
be used with a Row connection as is meant for single use.
Copyright © 2007 Talend Open Studio 455

Components
tPerl
• Click once on tFileInputDelimited and select Properties tab to define the component
properties.

• The Properties are not reused from or for another job stored in the repository, but instead
are used for this job only. Therefore select Built-In in the drop-down list.

• Enter a path or browse to the file containing the data to be processed. In this example, the
text file gathers a list of names facing the relevant email addresses.

• Define the Row and Field separators. In this scenario, there is one name and the matching
email per row. And the fields are separated by a semi-colon.

• The first row of the file contains the labels of the columns, therefore it should be ignored in
the job. Therefore the the Header field value is 1.

• There is no footer nor limit value to be defined for this scenario.

• The Schema type is also built-in in this case. Click on Edit Schema and describe the content
of the input file. In this scenario, there are two columns labelled Name and Emails, of type
String and with no length defined. Key field being Email.

• Select the tFileOutputExcel component and define it accordingly.

• Select the output file path, Sheet and synchronize the schema.

• Then define the tPerl sub-job in order to get the number of rows transferred to the XML
Output file.
456 Talend Open Studio Copyright © 2007

Components
tPerl
• Enter the Perl command print to get the variable containing the number of rows read in
the tFileInputDelimited. To access the list of available variables, press Ctrl+Space then
select the relevant variable in the list.

• For a better readability in the Run Job log, add equal signs before and after the commands.
Note also that commands, strings and variables are coloured differently.

• Then switch to the Run Job tab and execute the job.

The job runs smoothly and create an output xml file following the two-field schema defined: Name
and Email.

The Perl command result is shown in the job log.
Copyright © 2007 Talend Open Studio 457

Components
tPostgresqlBulkExec
tPostgresqlBulkExec

tPostgresqlBulkExec properties

tPostgresqlOutputBulk and tPostgresqlBulkExec components are used together to first output
the file that will be then used as parameter to execute the SQL query stated. These two steps
compose the tPostgresqlOutputBulkExec component, detailed in a separate section. The interest
in having two separate elements lies in the fact that it allows transformations to be carried out before
the data loading in the database.

Component family Databases/Postgresql

Function Executes the Insert action on the data provided.

Purpose As a dedicated component, tPostgresqlBulkExec offers gains in performance
while carrying out the Insert operations to a Postgresql database

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one
table can be written at a time and that the table must
exist for the insert operation to succeed.

File Name Name of the file to be processed.
Related topic:Defining job context variables on page
101

Fields terminated by Character, string or regular expression to separate
fields.

Usage This component is to be used along with tPostgresqlOutputBulk component.
Used together, they can offer gains in performance while feeding a Postgresql
database.

Limitation n/a
458 Talend Open Studio Copyright © 2007

Components
tPostgresqlBulkExec
Related scenarios

For uses cases in relation with tPostgresqlBulkExec, see the following scenarios:

• tMysqlOutputBulk Scenario: Inserting transformed data in MySQL database on page 400

• tMysqlOutputBulkExec Scenario: Inserting data in MySQL database on page 405

• tOracleBulkExec Scenario: Truncating and inserting file data into Oracle DB on page 429
Copyright © 2007 Talend Open Studio 459

Components
tPostgresqlCommit
tPostgresqlCommit

tPostgresqlCommit Properties

This component is closely related to tPostgresqlCommit and tPostgresqlRollback. It usually
doesn’t make much sense to use these components independently in a transaction..

Related scenario

This component is closely related to tPostgresqlConnection and tPostgresqlRollback. It usually
doesn’t make much sense to use one of the latters without using a tPostgresqlConnection
component to open a connection for the current transaction.

For tPostgresqlCommit related scenario, see tMysqlConnection on page 387.

Component family Databases/Postgresql

Function Validates the data processed through the job into the connected DB

Purpose Using a unique connection, commits in one go a global transaction instead of
every row or every batch. Provides a gain in performance

Properties Component list Select the tPostgresqlConnection component in the
list if more than one connection are planned for the
current job.

Usage This component is to be used along with Postgresql components, especially
with tPostgresqlConnection and tPostgresqlRollback components.

Limitation n/a
460 Talend Open Studio Copyright © 2007

Components
tPostgresqlConnection
tPostgresqlConnection

tPostgresqlConnection Properties

This component is closely related to tPostgresqlCommit and tPostgresqlRollback. It usually
doesn’t make much sense to use one of the latters without using a tPostgresqlConnection
component to open a connection for the current transaction.

Related scenario

This component is closely related to tPostgresqlCommit and tPostgresqlRollback. It usually
doesn’t make much sense to use one of the latters without using a tPostgresqlConnection
component to open a connection for the current transaction.

For tPostgresqlConnection related scenario, see tMysqlConnection on page 387.

Component family Databases/Postgresql

Function Opens a connection to the database for a current transaction.

Purpose Allows to commit a whole job data in one go to the output database as one
transaction when validated.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in with fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Schema Exact name of the schema

Username and
Password

DB user authentication data.

Encoding type Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Usage This component is to be used along with Postgresql components, especially
with tPostgresqlCommit and tPostgresqlRollback components.

Limitation n/a
Copyright © 2007 Talend Open Studio 461

Components
tPostgresqlInput
tPostgresqlInput

tPostgresqlInput properties

Component family Databases/
PostgreSQL

Function tPostgresqlInput reads a database and extracts fields based on a query.

Purpose tPostgresqlInput executes a DB query with a strictly defined order which
must correspond to the schema definition. Then it passes on the field list to the
next component via a Main row link.

Properties Property type Either Built-in or Repository

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Use existing
connection

Check this box when using a tPostgresqlConnection

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Schema Exact name of the schema

Username and
Password

DB user authentication data.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type and Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.
462 Talend Open Studio Copyright © 2007

Components
tPostgresqlInput
Related scenarios

Related topics in tDBInput scenarios:

• Scenario 1: Displaying selected data from DB table on page 162

• Scenario 2: Using StoreSQLQuery variable on page 163

Related topic in tContextLoad Scenario: Dynamic context use in MySQL DB insert on page 145.

Usage This component covers all possibilities of SQL queries onto a Postgresql
database.
Copyright © 2007 Talend Open Studio 463

Components
tPostgresqlOutput
tPostgresqlOutput

tPostgresqlOutput properties

Component family Databases/Postgresql

Function tPostgresqlOutput writes, updates, makes changes or suppresses entries in a
database.

Purpose tPostgresqlOutput executes the action defined on the table and/or on the data
contained in the table, based on the flow incoming from the preceding
component in the job.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Use existing
connection

Check this box when using a tPostgresqlConnection

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Schema Exact name of the schema

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one
table can be written at a time

In Java, use
tCreateTable as
substitute for this
function..

Action on table On the table defined, you can perform one of the
following operations:
None: No operation carried out
Drop and create the table: The table is removed and
created again
Create a table: The table doesn’t exist and gets
created.
Clear a table: The table content is deleted
464 Talend Open Studio Copyright © 2007

Components
tPostgresqlOutput
Action on data On the data of the table defined, you can perform:
Insert: Add new entries to the table. If duplicates are
found, job stops.
Update: Make changes to existing entries
Insert or update: Add entries or update existing
ones.
Update or insert: Update existing entries or create it
if non existing
Delete: Remove entries corresponding to the input
flow.

Clear data in table Wipes out data from the selected table before action.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Additional Columns This option is not offered if you create (with or
without drop) the Db table. This option allows you to
perform actions on columns, which are not insert, nor
update or delete actions or requires a particular
preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After, following
the action to be performed on the reference column.

Reference column: Type in a column of reference
that the tDBOutput can use to place or replace the new
or altered column.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.
Copyright © 2007 Talend Open Studio 465

Components
tPostgresqlOutput
Related scenarios

For tPostgresqlOutput related topics, see:

• tDBOutput Scenario: Displaying DB output on page 166

• tMySQLOutput Scenario: Adding new column and altering data on page 396.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.
466 Talend Open Studio Copyright © 2007

Components
tPostgresqlOutputBulk
tPostgresqlOutputBulk

tPostgresqlOutputBulk properties

tPostgresqlOutputBulk and tPostgresqlBulkExec components are used together to first output
the file that will be then used as parameter to execute the SQL query stated. These two steps
compose the tPostgresqlOutputBulkExec component, detailed in a separate section. The interest
in having two separate elements lies in the fact that it allows transformations to be carried out before
the data loading.
Copyright © 2007 Talend Open Studio 467

Components
tPostgresqlOutputBulk
Component family Databases/Postgresql

Function Writes a file with columns based on the defined delimiter and the Postgresql
standards

Purpose Prepares the file to be used as parameter in the INSERT query to feed the
Postgresql database.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

File Name Name of the file to be processed.
Related topic:Defining job context variables on page
101

Field separator Character, string or regular expression to separate
fields.

Row separator String (ex: “\n”on Unix) to distinguish rows.

Append Check this option box to add the new rows at the end
of the file

Include header Check this box to include the column header to the
file.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either built-in
or remote in the Repository.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused in various
projects and job designs. Related topic: Setting a
repository schema on page 49

Encoding Select the encoding from the list or select Custom
and define it manually. This field is compulsory for
DB data handling.

Usage This component is to be used along with tPostgresqlBulkExec component.
Used together they offer gains in performance while feeding a Postgresql
database.
468 Talend Open Studio Copyright © 2007

Components
tPostgresqlOutputBulk
Related scenarios

For uses cases in relation with tPostgresqlOutputBulk, see the following scenarios:

• tMysqlOutputBulk Scenario: Inserting transformed data in MySQL database on page 400

• tMysqlOutputBulkExec Scenario: Inserting data in MySQL database on page 405

• tOracleBulkExec Scenario: Truncating and inserting file data into Oracle DB on page 429
Copyright © 2007 Talend Open Studio 469

Components
tPostgresqlOutputBulkExec
tPostgresqlOutputBulkExec

tPostgresqlOutputBulkExec properties

Related scenarios

For uses cases in relation with tPostgresqlOutputBulkExec, see the following scenarios:

• tMysqlOutputBulk Scenario: Inserting transformed data in MySQL database on page 400

• tMysqlOutputBulkExec Scenario: Inserting data in MySQL database on page 405

• tOracleBulkExec Scenario: Truncating and inserting file data into Oracle DB on page 429

Component family Databases/Postgresql

Function Executes the Insert action on the data provided.

Purpose As a dedicated component, it allows gains in performance during Insert
operations to a Postgresql database.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one
table can be written at a time and that the table must
exist for the insert operation to succeed.

File Name Name of the file to be processed.
Related topic:Defining job context variables on page
101

Field separator Character, string or regular expression to separate
fields.

Row separator String (ex: “\n”on Unix) to distinguish rows.

Usage This component is mainly used when no particular tranformation is required on
the data to be loaded onto the database.
470 Talend Open Studio Copyright © 2007

Components
tPostgresqlRollback
tPostgresqlRollback

tPostgresqlRollback properties

This component is closely related to tPostgresqlCommit and tPostgresqlConnection. It usually
doesn’t make much sense to use these components independently in a transaction..

Related scenario

This component is closely related to tPostgresqlConnection and tPostgresqlCommit. It usually
doesn’t make much sense to use one of the latters without using a tPostgresqlConnection
component to open a connection for the current transaction.

For tPostgresqlRollback related scenario, see tMysqlRollback on page 406.

Component family Databases

Function Cancel the transaction commit in the connected DB.

Purpose Avoids to commit part of a transaction unvolontarily.

Properties Component list Select the tPostgresqlConnection component in the
list if more than one connection are planned for the
current job.

Usage This component is to be used along with Postgresql components, especially
with tPostgresqlConnection and tPostgresqlCommit components.

Limitation n/a
Copyright © 2007 Talend Open Studio 471

Components
tPostgresqlRow
tPostgresqlRow

tPostgresqlRow properties

Component family Databases/Postgresql

Function tPostgresqlRow is the specific component for the database query. It executes
the SQL query stated onto the specified database. The row suffix means the
component implements a flow in the job design although it doesn’t provide
output.

Purpose Depending on the nature of the query and the database, tPostgresqlRow acts
on the actual DB structure or on the data (although without handling data). The
SQLBuilder tool helps you write easily your SQL statements.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Use existing
connection

Check this box when using a tPostgresqlConnection

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Schema Exact name of the schema

Username and
Password

DB user authentication data.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build
it graphically using SQLBuilder
472 Talend Open Studio Copyright © 2007

Components
tPostgresqlRow
Related scenarios

For related topics, see:

• tDBSQLRow Scenario 1: Resetting a DB auto-increment on page 170

• tMySQLRow Scenario: Removing and regenerating a MySQL table index on page 408.

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.
Copyright © 2007 Talend Open Studio 473

Components
tReplace
tReplace

tReplace Properties

Component family Processing

Function Carries out a Search & Replace operation in the input columns defined.

Purpose Helps to cleanse all files before further processing.

Properties Schema type and
Edit Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and
passed on to the next component. The schema is
either built-in or remote in the Repository.
Two read-only columns, Value and Match are
added to the output schema automatically. These

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is
stored in the Repository, hence can be reused in
various projects and job designs. Related topic:
Setting a repository schema on page 49

Simple Mode
Search / Replace

Click Plus to add as many conditions as needed.
The conditions are performed one after the other
for each row.
Input column: Select the column of the schema
the search & replace is to be operated on
Search: Type in the value to search in the input
column
Replace with: Type in the subsitution value.
Whole word: Check the box if the searched value
is to be considered as whole.
Case sensitive: Check the box to care about the
case.
Note that you cannot use regular expression in
these columns.

Use advanced mode Check this box when the operation you want to
perform cannot be carried out through the simple
mode. In the text field, type in the regular
expression as required.

Usage This component is not startable as it requires an input flow. And it
requires an output component.
474 Talend Open Studio Copyright © 2007

Components
tReplace
Scenario: multiple replacements and column filtering

This following job (made in Perl) searches and replaces various typos and defects in a csv file then
operates a column filtering before producing a new csv file with the final output.

• Click & drop the following components from the Palette: tFileInputDelimited, tReplace,
tFilterColumn and tFileOutputDelimited.

• Connect the components using Main Row connections via a right-click on each component.

• Select the tFileInputDelimited component and set the input flow parameters.

• The Property type for this scenario is Built-in. Therefore the following fields are to be set
manually unlike the Properties stored centrally in the repository, that are retrieved
automatically.

• The File is a simple csv file stored locally. The Row Separator is a carriage return and the
Field Separator is a semi-colon. In this example no Header, no Footer and no Limit are
to be set.

• The file contains characters such as: \t, |||, [d] or *d which should not be interpreted
as special characters or wild card.
Copyright © 2007 Talend Open Studio 475

Components
tReplace
• The schema for this file is built in also and made of four columns of various types (string or
int).

• Now select the tReplace component to set the search & replace parameters.

• The schema can be synchronized with the incoming flow.

• Check the Simple mode box as the search parameters can be easily set without requiring the
use of regexp.

• Click the plus sign to add some lines to the parameters table.

• On the first parameter line, select amount as input column. In the search field look for the
decimal dot separator and replace it with a comma, in between single quotes.

• On the second parameter line, select str as input column. In the search field, look for stret
or streat or stre. Note that these values are separated by a pipe that means or in Perl
language. Replace them by Street. Check the whole word box.

• On the third parameter line, select again str as input column, search the pipe character using
a backslash in front, to differenciate it from the “or” in Perl language. and replace it with
nothing between single quotes (‘’).
476 Talend Open Studio Copyright © 2007

Components
tReplace
• On the fourth parameter line, select firstname as input column. In the Search field, look for
the following characters: [,], +, *. Note that these values are separated by a pipe that
means or in Perl language. Replace them with nothing between single quotes (‘’).

• On the fifth parameter line, select amount as input column. In the Search field, type in the
dollar sign between single quotes and In the Replace field, type in the Euro sign.

• On the last parameter line, select firstname as input column. Search the string: \t. To
differenciate it from the tabulation, add as many backslashes in front of it as there are
parsing, in other words, two backlashes are used to avoid misinterpreting and two extra
backslashes constitute part of the character being looked for. In total four backslahes
including the one in the character it self are being searched. Replace them with nothing
between single quotes (‘’). And check the whole word box.

• The advanced mode isn’t used in this scenario.

• Select the next component in the job, tFilterColumn.

• The tFilterColumn component holds a schema editor allowing to build the output schema
based on the column names of the input schema. In this use case, change the order of the
input schema columns and add 3 new columns, to obtain a schema as follows: empty_field,
firstname, name, str, amount, filler1, filler2.

• Click OK to validate.
Copyright © 2007 Talend Open Studio 477

Components
tReplace
• Set the tFileOutputDelimited properties manually.

• The schema is built-in for this scenario, and comes from the preceding component in the job.

• Save the job and execute it.

The first column is empty and the rest of the columns have been cleaned up from the parasitical
characters. The street column was moved. And the decimal delimiter has been changed from a dot
to a comma, along with the currency sign.
478 Talend Open Studio Copyright © 2007

Components
tRowGenerator
tRowGenerator

tRowGenerator properties

The tRowGenerator Editor opens up on a separate window made of two parts:

• a Schema definition panel at the top of the window

• and a Function definition and preview panel at the bottom.

Defining the schema

First you need to define the structure of data to be generated.

• Add as many columns to your schema as needed, using the plus (+) button.

• Type in the names of the columns to be created in the Columns area and check the Key
box if required

• Make sure you define then the nature of the data contained in the column, by selecting
the Type in the list. According to the type you select, the list of Functions offered will
differ. This information is therefore compulsory.

Component family Misc

Function tRowGenerator generates as many rows and fields as needed using
random values taken in a list.

Purpose Can be used to create an input flow in a job for testing purpose in
particular for boundary test sets

Properties Row
generation
editor

The editor allows you to define precisely the
columns and nature of data to be generated. You
can use predefined routines or type in yourself the
function to be used to generate the data specified

Usage The tRowGenerator Editor’s ease of use allows users without any
Perl or Java knowledge to generate random data for test purpose.

Limitation n/a
Copyright © 2007 Talend Open Studio 479

Components
tRowGenerator
• Some extra information, although not required, might be useful such as Length,
Precision or Comment. You can also hide these columns, by clicking on the Columns
drop-down button next to the toolbar, and unchecking the relevant entries on the list.

• In the Function area, you can select the predefined routine/function if one of them
corresponds to your needs.You can also add to this list any routine you stored in the
Routine area of the Repository. Or you can type in the function you want to use in the
Function definition panel. Related topic: Defining the function on page 480

• Click Refresh to have a preview of the data generated.

• Type in a number of rows to be generated. The more rows to be generated, the longer it’ll
take to carry out the generation operation.

Note: Note that the functions list differs from Perl to Java.

Defining the function

You selected the three dots [...] as Function in the Schema definition panel, as you want to
customize the function parameters.

• Select the Function parameters tab

• The Parameter area displays Customized parameter as function name (read-only)

• In the Value area, type in the Perl or Java function to be used to generate the data
specified.

• Click on the Preview tab and click Preview to check out a sample of the data generated.
480 Talend Open Studio Copyright © 2007

Components
tRowGenerator
Scenario: Generating random java data

The following scenario creates a two-component job made in Java, generating 50 rows structured
as follows: a randomly picked-up ID in a 1-to-3 range, a random ascii First Name and Last Name
generation and a random date taken in a defined range.

• Click and drop a tRowGenerator and a tLogRow component from the Palette to the
workspace.

• Right-click on the tRowGenerator component and select Row > Main. Drag this main row
link onto the tLogRow component and release when the plug symbol displays.

• Double-click on the tRowGenerator component to open the Editor.

• Define the fields to be generated.

• The random ID column is of integer type, the First and Last names are of string type and the
Date is of date type.

• In the Function list, select the relevant function or set on the three dots for custom function.

• On the Function parameters tab, define the Values to be randomly picked up.

• First_Name and Last_Name columns are to be generated using the getAsciiRandomString
function that is predefined in the system routines. By default the length defined is 6
character-long. But you can change it if need be.

• The Date column calls the also predefined getRandomDate function. You can edit the
parameter values in the Function parameters tab.

• Set the Number of Rows to be generated to 50.

• Click OK to validate the setting.
Copyright © 2007 Talend Open Studio 481

Components
tRowGenerator
• Double-click on the tLogRow component to view the properties. The default setting is
retained for this job.

• Press F6 to run the job.

The 50 rows are generated following the setting defined in the tRowGenerator editor and the output
is displayed in the Run Job console.
482 Talend Open Studio Copyright © 2007

Components
tRunJob
tRunJob

tRunJob Properties

Scenario: Executing a remote job

This particular scenario describes a single-component job calling in and executing another job. The
job to be executed reads a basic delimited file and simply displays its content on the Run Job log
console. The particularity of this job lies in the fact that this latter job is executed from a separate
job and uses a context variable to prompt for the input file to be processed.

Component family System

Function Executes the job called in the component’s Properties, in the frame of the
context defined.

Purpose tRunJob helps mastering complex job systems which need to execute
one job after another.

Properties Process Select the job to be called in and processed. Make
sure you already executed once the job called,
beforehand, in order to ensure a smooth run
through the tRunJob.

Context If you defined contexts and variables for the job
to be run by the tRunJob, select the applicable
context entry on the list.

Context parameter You can change the selected context parameters.
Click the plus button to add the parameters as
defined in the Context of the child job

Generate Code Click the button to validate the context selection
in the tRunJob and generate the relevant code.

Usage This component can be used as a standalone job or can help clarifying
complex job by avoiding having too many sub-jobs all together in one
job.

Limitation n/a
Copyright © 2007 Talend Open Studio 483

Components
tRunJob
Create the first job reading the delimited file.

• Click and drop a tFileInputDelimited and a tLogRow onto the Designer.

• Set the input component properties in the Properties panel.

• Set the Property type on Built-In for this job.

• In File Name, browse to the input file. In this example, the file is a txt file called
Comprehensive.

• Select the path to this Input file and press F5 to open the Variable configuration window.

• Give a name to the new context variable, in this scenario, it is called File.
484 Talend Open Studio Copyright © 2007

Components
tRunJob
• No need to check the Prompt for value box nor set a prompt message for this use case, as
the default parameter value is ok to be used.

• Click Finish to validate and press again Enter to make sure the new context variable is
stored the File Name field.

• Back on the Properties view, type in the field and row separators used in the input file.

• In this case, no header nor footer are to be set. But set a limited number of rows to be
processed. In the Limit field, type in 50.

• The Schema type is Built-in for this scenario. Click the three-dot button to configure
manually the schema.

• Add two columns and name them following the first and second column name of your input
file. In this example: ID and Registration.

• If you stored your schema in the repository, you only need to select the relevant metadata
entry corresponding to your input file structure.

• Then link the Input component to your output component, tLogRow.

Create the second job, to play the role of master job.

• In the Properties panel of the tRunJob component, select the job to be executed.
Copyright © 2007 Talend Open Studio 485

Components
tRunJob
• We recommend you to run once the called-in job before executing it through the tRunJob
component in order to make sure it runs smoothly.

• In the Context field, select the relevant context. In this case, only the Default context is
available and holds the context variable created earlier.

• Click Generate Code to validate the context selection and generate the related code.

• Save the master job and press F6 to run it.

The called-in job reads the data contained in the input file, as defined by the input schema, and the
result of this job is displayed directly in the Run Job console.

Related topic: Scenario: Job execution in a loop on page 265
486 Talend Open Studio Copyright © 2007

Components
tSalesforceInput
tSalesforceInput

tSalesforceInput Properties

Related scenario

The operation is similar to the connection to SugarCRM, therefore see scenario of tSugarCRMInput
on page 509 for more information.

Component family Business

Function Connects to a module of a Salesforce database via the relevant webservice.

Purpose Allows to extract data from a Salesforce DB based on a query.

Properties Salesforce Webservice
URL

Type in the webservice URL to connect to the
Salesforce DB.

Username and
Password

Type in the Webservice user authentication data.

Module Select the relevant module in the list

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either built-in
or remote in the Repository.
Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema
automatically becomes built-in.
In this component the schema is related to the
Module selected.

Query condition Type in the query to select the data to be extracted.
Example: account_name= ‘Talend’

Usage Usually used as a Start component. An output component is required.

Limitation n/a
Copyright © 2007 Talend Open Studio 487

Components
tSalesforceOutput
tSalesforceOutput

tSalesforceOutput Properties

Related scenario

No scenario is available for this component yet.

Component family Business

Function Writes in a module of a Salesforce database via the relevant webservice.

Purpose Allows to write data into a Salesforce DB.

Properties Salesforce Webservice
URL

Type in the webservice URL to connect to the
Salesforce DB.

Username and
Password

Type in the Webservice user authentication data.

Action Insert or Update the data in the Salesforce module.

Module Select the relevant module in the list

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either built-in
or remote in the Repository.
Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema
automatically becomes built-in.
Click Sync columns to retrieve the schema from the
previous component connected in the job.

Usage Used as an output component. An Input component is required.

Limitation n/a
488 Talend Open Studio Copyright © 2007

Components
tSendMail
tSendMail

tSendMail Properties

Scenario: Email on error

This scenario creates a three-component job which sends an email to defined recipients when an
error occurs.

Component family Internet

Function tSendMail sends emaiils and any attachements to defined recipients.

Purpose tSendMail purpose is to notify recipients about a particular state of the
job or possible errors .

Properties To Main recipient email address

From Sending server’s email address

Cc Carbon copy recipient email

Subject Heading of the mail

Message Body message of the email. Press Ctrl+Space to
display the list of available variables

Attachment Filemask or path to the file to be sent along with
the mail, if any.

Other Headers Type in the Key and corresponding value of any
header information that does not belong to the
standard header.

SMTP Host and Port IP address of SMTP server used to send emails.

Usage This component is typically used as one sub-job but can also be used as
output or end object. It can be connected to other components with either
Row or Iterate links.

Limitation Note that email sendings with or without attachment require two
different perl module
Copyright © 2007 Talend Open Studio 489

Components
tSendMail
• Click and drop the following components from your palette to the workspace:
tFileInputDelimited, tFileOutputXML, tSendMail.

• Define tFileInputdelimited properties. Related topic: tFileInputDelimited properties on
page 223.

• Right-click on the tFileInputDelimited component and select Row > Main. Then drag it
onto the tFileOutputXML component and release when the plug symbol shows up.

• Define tFileOutputXML properties.

• Drag a Run on Error link from tFileDelimited to tSendMail component.

• Define the tSendMail component properties:

• Enter the recipient and sender email addresses, as well as the email subject.

• Enter a message containing the error code produced using the corresponding global variable.
Access the list of variables by pressing Ctrl+Space.

• Add attachments and extra header information if any. Type in the SMTP information.
490 Talend Open Studio Copyright © 2007

Components
tSendMail
In this scenario, the file containing data to be transferred to XML output cannot be found. tSendmail
runs on this error and sends an notification email the defined recipient.
Copyright © 2007 Talend Open Studio 491

Components
tSleep
tSleep

tSleep Properties

Related scenarios

For use cases in relation with tSleep, see tFor Scenario: Job execution in a loop on page 265.

Component family Misc

Function tSleep implements a time off in a job execution.

Purpose Allows to identify possible bottlenecks using a time break in the job for
testing or tracking purpose. In production, it can be used for any needed
pause in the job to feed input flow for example.

Properties Pause (in second) Time in second the job execution is stopped for.

Usage tSleep component is generally used as a middle component to make a
break/pause in the job, before resuming the job.

Limitation n/a
492 Talend Open Studio Copyright © 2007

Components
tSortRow
tSortRow

tSortRow properties

Component family Processing

Function Sorts input data based on one or several columns, by sort type and order

Purpose Helps creating metrics and classification table.

Properties Schema type and
Edit Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and
passed on to the next component. The schema is
either built-in or remote in the Repository.
Click Edit Schema to make changes to the
schema. Note that if you make changes, the
schema automatically becomes built-in.
Click Sync columns to retrieve the schema from
the previous component connected in the job.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is
stored in the Repository, hence can be reused in
various projets and job flowcharts. Related topic:
Setting a repository schema on page 49

Criteria Click + to add as many lines as required for the
sort to be complete. By default the first column
defined in your schema is selected.

Schema column: Select the column label from
your schema, which the sort will be based on.
Note that the order is essential as it determines the
sorting priority.

Sort type: Numerical and Alphabetical order are
proposed. More sorting types to come.

Order: Ascending or descending order.

Usage This component handles flow of data therefore it requires input and
output, hence is defined as an intermediary step.

Limitation n/a
Copyright © 2007 Talend Open Studio 493

Components
tSortRow
Scenario: Sorting entries

This scenario describes a three-component job. A tRowGenerator is used to create random entries
which are directly sent to a tSortRow to be ordered following a defined value entry. In this scenario,
we suppose the input flow contains names of salespersons along with their respective sales and their
years of presence in the company. The result of the sorting operation is displayed on the Run job
console.

• Click and drop the three components required for this use case: tRowGenerator, tSortRow
and tLogRow.

• Connect them together using Row main links.

• On the tRowGenerator editor, define the values to be randomly used in the Sort component.
For more information regarding the use of this particular component, see tRowGenerator
properties on page 479.

• In this scenario, we want to rank each salesperson according to its Sales value and to its
number of years in the company.

• Double-click on tSortRow to display the Properties tab panel. Set the sort priority on the
Sales value and as secondary criteria, set the number of years in the company.
494 Talend Open Studio Copyright © 2007

Components
tSortRow
• Use the plus button to add the number of rows required. Set the type of sorting, in this case,
both criteria being integer, the sort is numerical. At last, given that the output wanted is a rank
classification, set the order as descending.

• Make sure you connected this flow to the output component, tLogRow, to display the result
in the Job console.

• Press F6 to run the Job or go to the Run Job panel and click Run.The ranking is based first
on the Sales value and second on the number of years of experience.
Copyright © 2007 Talend Open Studio 495

Components
tSQLiteInput
tSQLiteInput

tSQLiteInput Properties

Scenario: Filtering SQlite data

This scenario describes a rather simple job which uses a select statement based on a filter to extract
rows from a source SQLite Database and feed an output SQLite table.

Component family Databases

Function tSQLiteInput reads a database file and extracts fields based on an SQL query.
As it embeds the SQLite engine, no need of connecting to any database server.

Purpose tSQLiteInput executes a DB query with a defined command which must
correspond to the schema definition. Then it passes on rows to the next
component via a Main row link.

Properties Database Filepath to the SQLite database file.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type The query can be built-in for a particular job or for
commonly used query, it can be stored in the
repository to ease the query reuse.

Query If your query is not stored in the Repository, type in
your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Usage This component is standalone as it includes the SQLite engine. This is a
startable component that can iniate a data flow processing.
496 Talend Open Studio Copyright © 2007

Components
tSQLiteInput
• Click and drop from the Palette, a tSQLiteInput and a tSQLiteOutput component.

• Connect the input to the output using a row main link.

• On the tSQLiteInput properties, type in or browse to the SQLite Database input file.

• The file contains hundreds of lines and includes an ip column which the select statement will
based on

• On the tSQLite Properties, edit the schema for it to match the table structure.
Copyright © 2007 Talend Open Studio 497

Components
tSQLiteInput
• In the Query field, type in your select statement based on the ip column.

• Select the right encoding parameter.

• On the tSQLiteOutput component Properties panel, select the Database filepath.

• Type in the Table to be fed with the selected data.

• Select the Action on table and Action on Data. In this use case, the action on table is Drop
and create and the action on data is Insert.

• The schema should be synchronized with the input schema.

• Select the encoding and define the threshold to commit.

• Save the job and run it.

The queried data are returned in the defined SQLite file.
498 Talend Open Studio Copyright © 2007

Components
tSQLiteOutput
tSQLiteOutput

tSQLiteOutput Properties

Component family Databases

Function tSQLiteOutput writes, updates, makes changes or suppresses entries in an
SQLite database. As it embeds the SQLite engine, no need of connecting to
any database server.

Purpose tSQLiteOutput executes the action defined on the table and/or on the data
contained in the table, based on the flow incoming from the preceding
component in the job.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Database Filepath to the Database file

Table Name of the table to be written. Note that only one
table can be written at a time

In Java, use
tCreateTable as
substitute for this
function..

Action on table On the table defined, you can perform one of the
following operations:
None: No operation carried out
Drop and create the table: The table is removed and
created again
Create a table: The table doesn’t exist and gets
created.
Clear a table: The table content is deleted

Action on data On the data of the table defined, you can perform:
Insert: Add new entries to the table. If duplicates are
found, job stops.
Update: Make changes to existing entries
Insert or update: Add entries or update existing
ones.
Update or insert: Update existing entries or create it
if non existing
Delete: Remove entries corresponding to the input
flow.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.
Copyright © 2007 Talend Open Studio 499

Components
tSQLiteOutput
Related Scenario

For scenarios related to tSQLiteOutput, see tSQLiteInput on page 496.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Perl components do
not include this feature
yet.

Additional Columns This option is not offered if you create (with or
without drop) the Db table. This option allows you to
perform actions on columns, which are not insert, nor
update or delete actions or requires a particular
preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After, following
the action to be performed on the reference column.

Reference column: Type in a column of reference
that the tDBOutput can use to place or replace the new
or altered column.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Usage This component is requried to be connected to an Input component.
500 Talend Open Studio Copyright © 2007

Components
tSQLiteRow
tSQLiteRow

tSQLiteRow Properties

Component family Databases

Function tSQLiteRow executes the defined query onto the specified database and uses
the parameters bound with the column .

Purpose A prepared statement uses the input flow to replace the placeholders with the
values for each parameters defined. This component can be very useful for
updates.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build
it graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Prepared statement
and Input parameters

Check the Prepared statement box, to display the
Input parameters table.
In the table, click the plus button to add a row for each
parameters invoked in the query.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Commit every Number of rows before commiting
Copyright © 2007 Talend Open Studio 501

Components
tSQLiteRow
Scenario: Updating SQLite rows

This scenario describes a job which updates an SQLite database file based on a prepared statement
and using a delimited file.

• Click and drop a tFileInputDelimited and a tSQLiteRow component.

• On the tFileInputDelimited Properties panel, browse to the input file that will be used to
update rows in the database.

• There is no header nor footer. The Row separator is a carriage return and the field separator
is a semi-colon.

• Edit the schema in case it is not stored in the Repository.

• Make sure the length and type are respectively correct and large enough to define the
columns.

• Then in the tSQLiteRow Properties panel, set the Database filepath to the file to be
updated.
502 Talend Open Studio Copyright © 2007

Components
tSQLiteRow
• The schema is read-only as it is required to match the input schema.

• Type in the query or retrieve it from the Repository. In this use case, we updated the type_os
for the id defined in the Input flow. The statement is as follows: 'Update download set
type_os=? where id=?'

• Then check the Prepared statement box to display the placeholders’ parameter table.

• In the Input parameters table, add as many lines as necessary to cover all placeholders. In this
scenario, type_os and id are to be defined.

• Set the Commit every field and select the Encoding type in the list.

• Save the job and press F6 to run it.

The dowload table from the SQLite database is thus updated with new type_os code according to
the delimited input file.
Copyright © 2007 Talend Open Studio 503

Components
tSSH
tSSH

tSSH Properties

Scenario: Remote system information display via SSH

The following use case describes a basic job that uses SSH command to display the hostname of the
distant server being connected to, and the current date on this remote system.

The tSSH component is sufficient for this job. It can be clicked & droped from the System family
of the palette.

Double-click on the tSSH component and select the Properties view tab.

Component family System

Function Returns data from a remote computer, based on the secure shell
command defined.

Purpose Allows to establish a communication with distant server and return
securely sensible information.

Properties Host IP address

Port Listening port number

User User authentication information

Public
Key/Password

Select the relevant option.
In case of Public Key, make sure the key is added
to the agent or that no passphrase is required.

Password/Private
Key

Password: Type in the password required.
Private key: browse to the relevant key location.

Commands Type in the command for the relevant information
to be returned from the remote computer.

Use timeout/timeout
in seconds

Define the timeout time period. A timeout
message will be generated if the actual response
time exceeds this expected processing time.

Usage This component can be used as standalone component.

Limitation The component use is optimized for Unix-like systems.
504 Talend Open Studio Copyright © 2007

Components
tSSH
• Type in the name of the Host to be accessed through SSH as well as the Port number.

• Fill in the User identification name on the remote machine.

• Select the Authentication method on the list. For this use case, the authentication method
used is the public key.

• Thus fill in the corresponding Private key.

• On the Command field, type in the following command. For this use case, type in
hostname; date between single quotes (as the job is generated in Perl.).

• Check the Use timeout box and set the time before falling in error to 5 seconds.

The remote machine returns the host name and the current date and time as defined on its system.
Copyright © 2007 Talend Open Studio 505

Components
tStatCatcher
tStatCatcher

tStatCatcher Properties

Scenario: Displaying job stats log

This scenario describes a four-component job, aiming at displaying on the Run Job console the
statistics log fetched from the file generation through the tStatCatcher component.

Component family Log & Error

Function Based on a defined sch.ema, gathers the job processing metadata at a job level
as well as at each component level.

Purpose Operates as a log function triggered by the StatsCatcher Statistics checkbox
of individual compoenents, and collects and transfers this log data to the
output defined.

Schema type A schema is a row description, i.e., it defines the
fields to be processed and passed on to the next
component. In this particular case, the schema is
read-only, as this component gathers standard log
information including:

Moment: Processing time and date

Pid: Process ID

Father_pid: Process ID of the father job if
applicable. If not applicable, Pid is duplicated.

Root-pid: Process ID of the root job if applicable. If
not applicable, pid of current job is duplicated.

Project: Project name, the job belongs to.

Job: Name of the current job

Context: Name of the current context

Origin: Name of the component if any

Message: Begin or End.

Usage This component is the start component of a secondary job which triggers
automatically at the end of the main job. The processing time is also displayed
at the end of the log.

Limitation n/a
506 Talend Open Studio Copyright © 2007

Components
tStatCatcher
• Click and drop the required components: tRowGenerator, tFileOutputDelimited,
tStatCatcher and tLogRow

• In the Properties panel of tRowGenerator, define the data to be generated. For this job, the
schema is composed of three columns: ID_Owners, Name_Customer and ID_Insurance,
generated using Perl script.

• The number of rows can be restricted to 100.

• Click on the Main tab of the Properties view.

• And check the tStatCatcher Statistics box to enable the statistics fetching operation.

• Then, define the output component’s properties. In the tFileOutputDelimited Properties
panel, browse to the output file or enter a name for the output file to be created. Define the
delimiters, such as semi-colon, and the encoding.
Copyright © 2007 Talend Open Studio 507

Components
tStatCatcher
• Click on Edit schema and make sure the schema is recollected from the input schema. If
need be, click on Sync Columns.

• Then click on the Main tab of the Properties view, and check here as well the tStatCatcher
Statistics box to enable the processing data gathering.

• In the secondary job, double-click on the tStatCatcher component. Note that the Properties
are provided for information only as the schema representing the processing data to be
gathered and aggregated in statistics, is defined and read-only.

• Define then the tLogRow to set the delimiter to be displayed on the console.

• Eventually, press F6 to run the job and display the job result.

The log shows the Begin and End information for the job itself and for each of the component used
in the job.
508 Talend Open Studio Copyright © 2007

Components
tSugarCRMInput
tSugarCRMInput

tSugarCRMInput Properties

Scenario: Extracting account data from SugarCRM

This scenario describes a two-component job which aims at extracting account information from a
SugarCRM database to an Excel output file.

• Click and drop a tSugarCRMInput and a tFileOutputExcel component.

• Connect the input component to the output component using a main row link.

• On the tSugarCRMInput Properties panel, fill in the connection information in the
SugarCRM Web Service URL as well as the Username and Password fields

Component family Business

Function Connects to a module of a Sugar CRM database via the relevant webservice.

Purpose Allows to extract data from a SugarCRM DB based on a query.

Properties SugarCRM
Webservice URL

Type in the webservice URL to connect to the
SugarCRM DB.

Module Select the relevant module in the list

Username and
Password

Type in the Webservice user authentication data.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either built-in
or remote in the Repository.
Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema
automatically becomes built-in.
In this component the schema is related to the
Module selected.

Query condition Type in the query to select the data to be extracted.
Example: account_name= ‘Talend’

Usage Usually used as a Start component. An output component is required.

Limitation n/a
Copyright © 2007 Talend Open Studio 509

Components
tSugarCRMInput
• Then select the Module in the list of modules offered. In this example, Accounts is selected.

• The Schema is then automatically set according to the module selected. But you can change
it and remove the columns that you don’t require in the output.

• In the Query Condition field, type in the query you want to extract from the CRM. In this
example: “billing_address_city=’Sunnyvale’”

• Then select the tFileOutputExcel component, .

• Set the destination file name as well as the Sheet name and check the Include header box.

• Save the job and press F6 to run it.

The filtered data is output in the defined spreadsheet of the specified Excel type file.
510 Talend Open Studio Copyright © 2007

Components
tSugarCRMOutput
tSugarCRMOutput

tSugarCRMOutput Properties

Related Scenario

No scenario is available for this component yet.

Component family Business

Function Writes in a module of a Sugar CRM database via the relevant webservice.

Purpose Allows to write data into a SugarCRM DB.

Properties SugarCRM
Webservice URL

Type in the webservice URL to connect to the
SugarCRM DB.

Module Select the relevant module in the list

Username and
Password

Type in the Webservice user authentication data.

Action Insert or Update the data in the SugarCRM module.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either built-in
or remote in the Repository.
Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema
automatically becomes built-in.
Click Sync columns to retrieve the schema from the
previous component connected in the job.

Usage Used as an output component. An Input component is required.

Limitation n/a
Copyright © 2007 Talend Open Studio 511

Components
tSybaseBulkExec
tSybaseBulkExec

tSybaseBulkExec Properties

Related scenarios

For tSybaseBulkExec related topics, see:

Component family Databases

Function Executes the Insert action on the data provided.

Purpose As a dedicated component, it allows gains in performance during Insert
operations to a Sybase database.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Server Database server IP address

Database Name of the database

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one
table can be written at a time and that the table must
exist for the insert operation to succeed.

File Name Name of the file to be processed.
Related topic:Defining job context variables on page
101

Fields terminated by Character, string or regular expression to separate
fields.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Output to Console: Loading information
Global variable: Returned values from log files.

Usage This component is mainly used when no particular tranformation is required on
the data to be loaded onto the database.

Limitation As opposed to the Oracle dedicated bulk component, no action on data is
possible using this Sybase dedicated component
512 Talend Open Studio Copyright © 2007

Components
tSybaseBulkExec
• tMysqlOutputBulkExec Scenario: Inserting transformed data in MySQL database on page
400

• tOracleBulkExec Scenario: Truncating and inserting file data into Oracle DB on page 429.
Copyright © 2007 Talend Open Studio 513

Components
tSybaseInput
tSybaseInput

tSybaseInput Properties

Component family Databases/Sybase

Function tSybaseInput reads a database and extracts fields based on a query.

Purpose tSybaseInput executes a DB query with a strictly defined order which must
correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Properties Property type Either Built-in or Repository

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Server Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type and Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Usage This component covers all possibilities of SQL queries onto a Sybase database.
514 Talend Open Studio Copyright © 2007

Components
tSybaseInput
Related scenarios

Related topic in tDBInput scenarios:

• Scenario 1: Displaying selected data from DB table on page 162

• Scenario 2: Using StoreSQLQuery variable on page 163

Related topic in tContextLoad Scenario: Dynamic context use in MySQL DB insert on page 145.
Copyright © 2007 Talend Open Studio 515

Components
tSybaseOutput
tSybaseOutput

tSybaseOutput Properties

Component family Databases/Sybase

Function tSybaseOutput writes, updates, makes changes or suppresses entries in a
database.

Purpose tSybaseOutput executes the action defined on the table and/or on the data
contained in the table, based on the flow incoming from the preceding
component in the job.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Server Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one
table can be written at a time

In Java, use
tCreateTable as
substitute for this
function..

Action on table On the table defined, you can perform one of the
following operations:
None: No operation carried out
Drop and create the table: The table is removed and
created again
Create a table: The table doesn’t exist and gets
created.
Clear a table: The table content is deleted

Action on data On the data of the table defined, you can perform:
Insert: Add new entries to the table. If duplicates are
found, job stops.
Update: Make changes to existing entries
Insert or update: Add entries or update existing
ones.
Update or insert: Update existing entries or create it
if non existing
Delete: Remove entries corresponding to the input
flow.

Clear data in table Wipes out data from the selected table before action.
516 Talend Open Studio Copyright © 2007

Components
tSybaseOutput
Related scenarios

For use cases in relation with tSybaseOutput, see:

• tDBOutput Scenario: Displaying DB output on page 166

• tMySQLOutput Scenario: Adding new column and altering data on page 396.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Additional Columns This option is not offered if you create (with or
without drop) the Db table. This option allows you to
perform actions on columns, which are not insert, nor
update or delete actions or requires a particular
preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After, following
the action to be performed on the reference column.

Reference column: Type in a column of reference
that the tDBOutput can use to place or replace the new
or altered column.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.
Copyright © 2007 Talend Open Studio 517

Components
tSybaseOutputBulk
tSybaseOutputBulk

tSybaseOutputBulk properties

tSybaseOutputBulk and tSybaseBulkExec components are used together to first output the file
that will be then used as parameter to execute the SQL query stated. These two steps compose the
tSybaseOutputBulkExec component, detailed in a separate section. The interest in having two
separate elements lies in the fact that it allows transformations to be carried out before the data
loading.

Component family Databases/Sybase

Function Writes a file with columns based on the defined delimiter and the Sybase
standards

Purpose Prepares the file to be used as parameter in the INSERT query to feed the
Sybase database.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

File Name Name of the file to be processed.
Related topic:Defining job context variables on page
101

Field separator Character, string or regular expression to separate
fields.

Row separator String (ex: “\n”on Unix) to distinguish rows.

Append Check this option box to add the new rows at the end
of the file

Include header Check this box to include the column header to the
file.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either built-in
or remote in the Repository.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused in various
projects and job designs. Related topic: Setting a
repository schema on page 49
518 Talend Open Studio Copyright © 2007

Components
tSybaseOutputBulk
Encoding Select the encoding from the list or select Custom
and define it manually. This field is compulsory for
DB data handling.

Usage This component is to be used along with tSybaseBulkExec component. Used
together they offer gains in performance while feeding a Sybase database.
Copyright © 2007 Talend Open Studio 519

Components
tSybaseOutputBulk
Related scenarios

For uses cases in relation with tSybaseOutputBulk, see the following scenarios:

• tMysqlOutputBulk Scenario: Inserting transformed data in MySQL database on page 400

• tMysqlOutputBulkExec Scenario: Inserting data in MySQL database on page 405

• tOracleBulkExec Scenario: Truncating and inserting file data into Oracle DB on page 429
520 Talend Open Studio Copyright © 2007

Components
tSybaseOutputBulkExec
tSybaseOutputBulkExec

tSybaseOutputBulkExec properties

Component family Databases/Sybase

Function Executes the Insert action on the data provided.

Purpose As a dedicated component, it allows gains in performance during Insert
operations to a Sybase database.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Bcp utility Name of the utility to be used to copy data over.on the
Sybase server.

Server Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one
table can be written at a time and that the table must
exist for the insert operation to succeed.

File Name Name of the file to be processed.
Related topic:Defining job context variables on page
101

Field terminator Character, string or regular expression to separate
fields.

DB Row terminator String (ex: “\n”on Unix) to distinguish rows in the
DB.

First row Type in the number of the file row where the action
should start from.

FILE Row terminator Character, string or regular expression to separate
fields in file.

Usage This component is mainly used when no particular tranformation is required on
the data to be loaded onto the database.

Limitation n/a
Copyright © 2007 Talend Open Studio 521

Components
tSybaseOutputBulkExec
Related scenarios

For uses cases in relation with tSybaseOutputBulkExec, see the following scenarios:

• tMysqlOutputBulk Scenario: Inserting transformed data in MySQL database on page 400

• tMysqlOutputBulkExec Scenario: Inserting data in MySQL database on page 405

• tOracleBulkExec Scenario: Truncating and inserting file data into Oracle DB on page 429
522 Talend Open Studio Copyright © 2007

Components
tSybaseRow
tSybaseRow

tSybaseRow Properties

Component family Databases/Sybase

Function tSybaseRow is the specific component for this database query. It executes the
SQL query stated onto the specified database. The row suffix means the
component implements a flow in the job design although it doesn’t provide
output.

Purpose Depending on the nature of the query and the database, tSybaseRow acts on
the actual DB structure or on the data (although without handling data). The
SQLBuilder tool helps you write easily your SQL statements.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Server Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build
it graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.
Copyright © 2007 Talend Open Studio 523

Components
tSybaseRow
Related scenarios

For tSybaseRow related topics, see:

• tDBSQLRow Scenario 1: Resetting a DB auto-increment on page 170

• tMySQLRow Scenario: Removing and regenerating a MySQL table index on page 408.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.
524 Talend Open Studio Copyright © 2007

Components
tSybaseSCD
tSybaseSCD

tSybaseSCD properties

Component family Databases/Sybase

Function tSybaseSCD reflects and tracks changes in a dedicated Sybase SCD table.

Purpose tSybaseSCD addresses Slowly Changing Dimension needs, reading regularly
a source of data and logging the changes into a dedicated SCD table

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one
table can be written at a time

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Java only for the
time being.

Surrogate key Select the column where the generated surrogate key
will be stored. A surrogate key can be generated based
on a method selected on the Creation list.

Creation Select the method to be used for the key generation:
input field: key is provided in an input field
routine: you can access the basic functions through
Ctrl+ Space bar combination.
table max +1: the maximum value from the SCD
table is incremented to create a surrogate key
sequence/identity: auto-incremental key
Copyright © 2007 Talend Open Studio 525

Components
tSybaseSCD
Related scenarios

For related topics, see the following scenarios:

• tMysqlSCD Scenario: Tracking changes using Slowly Changing Dimension on page 411.

• tMSSqlSCD Scenario: Slow Changing Dimension type 3 on page 376

Source Keys Select one or more columns to be used as key, to
ensure the unicity of incoming data.

Use SCD Type 1 fields Use the type 1if change tracking is not necessary.
SCD Type 1 should be used for typos corrections for
example. Select the columns of the schema, that will
be checked for changes.

Use SCD Type 2 fields Use type 2 if changes need to be tracked down. SCD
Type 2 should be used to trace updates for example.
Select the columns of the schema, that will be
checked for changes.
Start date: Adds a column to your SCD schema to
hold the start date. You can select one of the input
schema column as Start Date in the SCD table.
End Date: Adds a column to your SCD schema to
hold the end date value for the record. When the
record is currently active, the End date show a null
value or you can select Fixed Year value and fill in
with a fictive year to avoid having a null value in the
End date field.
Log Active Status: Adds a column to your SCD
schema to hold the true or false status value. This
column helps to spot easily the active record.
Log versions: Adds a column to your SCD schema to
hold the version number of the record.

 Java only for the
time being.

Use SCD Type 3 fields Use type 3 when you want to keep track of the
previous value of a changing column
Current value field: Select the column where the
changing value is tracked down..
Previous value field: Select the column where the
previous value should be stored.

Debug Mode Check this box to display each step of the SCD log
process.

Usage This component is used as Output component. It requires an Input component
and Row main link as input.
526 Talend Open Studio Copyright © 2007

Components
tSybaseSP
tSybaseSP

tSybaseSP properties

Component family Databases/Sybase

Function tSybaseSP calls the database stored procedure.

Purpose tSybaseSP offers a convenient way to centralize multiple or complex queries
in a database and call them easily.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

SP Name Type in the exact name of the Stored Procedure

Is Function / Return
result in

Check this box, if a value only is to be returned.
Select on the list the schema column, the value to be
returned is based on.
Copyright © 2007 Talend Open Studio 527

Components
tSybaseSP
Related scenarios

For related topic, see tMysqlSP Scenario: Finding a State Label using a stored procedure on page
419.

Parameters Click the Plus button and select the various Schema
Columns that will be required by the procedures.
Note that the SP schema can hold more columns than
there are paramaters used in the procedure.
Select the Type of parameter:
IN: Input parameter
OUT: Output parameter/return value
IN OUT: Input parameters is to be returned as value,
likely after modification through the procedure
(function).

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Usage This component is used as intermediary component. It can be used as start
component but only input parameters are thus allowed.

Limitation The Stored Procedures syntax should match the Database syntax.
528 Talend Open Studio Copyright © 2007

Components
tSystem
tSystem

tSystem Properties

Scenario: Echo ‘Hello World!’

This scenario is a two-component job showing a message in the Log.

• Click and drop a tSystem and a tPerl component onto the workspace.

• Right-click on tSystem, and pull a ThenRun link between the two components. When
executing the job, the first component will then trigger before the second one.

• Click on the tSystem and select the Properties tab:

Component family System

Function tSystem executes one or more system commands.

Purpose tSystem can call other processing commands, already up and running in
a larger job.

Properties Command Enter the system command. Note that the syntax
is not checked.

Output Select the type of output for the processed data to
be passed onto.

to console: standard output passes on data to be
viewed in the Log view.

to global variable: data is put in output variable
linked to tsystem component.

Usage This component can typically used for companies which already
implemented other applications that they want to integrate into their
processing flow through Talend.

Limitation n/a
Copyright © 2007 Talend Open Studio 529

Components
tSystem
• Enter the echo command and string “Hello World!” to be displayed

• Select To a global variable option as Output to include the command output value into

• Then select the tPerl component

• Enter a Perl command to display the tSystem output variable in the console.

• Go to the Run Job tab and execute the job.

The job executes an echo command and shows the output in the Log using a Print command in the
tPerl component.
530 Talend Open Studio Copyright © 2007

Components
tTeradataInput
tTeradataInput

tTeradataInput Properties

Component family Databases/Teradata

Function tTeradataInput reads a database and extracts fields based on a query.

Purpose tTeradataInput executes a DB query with a strictly defined order which must
correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Properties Property type Either Built-in or Repository

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type and Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Usage This component covers all possibilities of SQL queries onto a Teradata
database.
Copyright © 2007 Talend Open Studio 531

Components
tTeradataInput
Related scenarios

Related topics in generic tDBInput scenarios:

• Scenario 1: Displaying selected data from DB table on page 162

• Scenario 2: Using StoreSQLQuery variable on page 163

Related topic in tContextLoad Scenario: Dynamic context use in MySQL DB insert on page 145.
532 Talend Open Studio Copyright © 2007

Components
tTeradataOutput
tTeradataOutput

tTeradataOutput Properties

Component family Databases/Teradata

Function tTeradataOutput writes, updates, makes changes or suppresses entries in a
database.

Purpose tTeradataOutput executes the action defined on the table and/or on the data
contained in the table, based on the flow incoming from the preceding
component in the job.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one
table can be written at a time

Action on data On the data of the table defined, you can perform:
Insert: Add new entries to the table. If duplicates are
found, job stops.
Update: Make changes to existing entries
Insert or update: Add entries or update existing
ones.
Update or insert: Update existing entries or create it
if non existing
Delete: Remove entries corresponding to the input
flow.

Clear data in table Wipes out data from the selected table before action.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49
Copyright © 2007 Talend Open Studio 533

Components
tTeradataOutput
Related scenarios

For related topics, see:

• tDBOutput Scenario: Displaying DB output on page 166

• tMySQLOutput Scenario: Adding new column and altering data on page 396.

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Additional Columns This option is not offered if you create (with or
without drop) the Db table. This option allows you to
perform actions on columns, which are not insert, nor
update or delete actions or requires a particular
preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After, following
the action to be performed on the reference column.

Reference column: Type in a column of reference
that the tDBOutput can use to place or replace the new
or altered column.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.
534 Talend Open Studio Copyright © 2007

Components
tTeradataRow
tTeradataRow

tTeradataRow Properties

Component family Databases/Teradata

Function tTeradataRow is the specific component for this database query. It executes
the SQL query stated onto the specified database. The row suffix means the
component implements a flow in the job design although it doesn’t provide
output.

Purpose Depending on the nature of the query and the database, tTeradataRow acts on
the actual DB structure or on the data (although without handling data). The
SQLBuilder tool helps you write easily your SQL statements.

Properties Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where
Properties are stored. The following fields are
pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either built-in or
remotely stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: Setting a built-in
schema on page 49

Repository: The schema already exists and is stored
in the Repository, hence can be reused. Related topic:
Setting a repository schema on page 49

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build
it graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.
Copyright © 2007 Talend Open Studio 535

Components
tTeradataRow
Related scenarios

For related topics, see:

• tDBSQLRow Scenario 1: Resetting a DB auto-increment on page 170

• tMySQLRow Scenario: Removing and regenerating a MySQL table index on page 408.

Commit every Number of rows to be completed before commiting
batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and
above all better performance on executions.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB
data handling.

Die on error Uncheck this box to skip the row on error and
complete the process for non-error rows.

Usage This component offers the flexibility benefit of the DB query and covers all
possibilities of SQL queries.
536 Talend Open Studio Copyright © 2007

Components
tUniqRow
tUniqRow

tUniqRow Properties

Scenario: Unduplicating entries

Based on the tSortRow job, the tUniqRow component is added to the job in order to uniquify the
entries in the output flow. In fact, as the input data is randomly created, duplication cannot be
avoided.

Component family Data Quality

Function Compares entries and removes the first encountered duplicate from the
input flow.

Purpose Ensures data quality of input or output flow in a job.

Properties Schema type and
Edit Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and
passed on to the next component. The schema is
either built-in or remote in the Repository.
Click Edit Schema to make changes to the
schema. Note that if you make changes, the
schema automatically becomes built-in.
Click Sync columns to retrieve the schema from
the previous component connected in the job.

If you want the deduplication to be
carried out on particular columns, define them on
the schema.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is
stored in the Repository, hence can be reused in
various projets and job flowcharts. Related topic:
Setting a repository schema on page 49

Case sensitive Check the box to consider the lower or upper
case.

Usage This component handles flow of data therefore it requires input and
output, hence is defined as an intermediary step.

Limitation n/a
Copyright © 2007 Talend Open Studio 537

Components
tUniqRow
• On the Properties tab panel of the tUniqRow component, click Edit Schema... to set the
Key on Names field to uniquify the output flow on this criteria.

• Check the Case Sensitive box to differenciate lower case and upper case.

• Press F6 to run the job again. The console displays the sorted and unique results
538 Talend Open Studio Copyright © 2007

Components
tUnite
tUnite

tUnite Properties

Scenario: Iterate on files and merge the content

The following job iterates on a list of files then merges their content and diplays the final 2-column
content on the console.

• Click and drop the following components onto the design workspace: tFileList,
tFileInputDelimited, tUnite and tLogRow.

• Connect the tFileList to the tFileInputDelimited using an iterate connection and connect
the other component using a row main link.

• In the tFileList Properties view, browse to the directory, where the files to merge are stored.

Component family Processing

Function Merges data from various sources, based on a common schema.

Purpose Centralize data from various and heterogeneous sources.

Properties Schema type and
Edit Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and
passed on to the next component. The schema is
either built-in or remote in the Repository.

Built-in: The schema will be created and stored
locally for this component only. Related topic:
Setting a built-in schema on page 49

Repository: The schema already exists and is
stored in the Repository, hence can be reused in
various projects and job designs. Related topic:
Setting a repository schema on page 49

Usage This component is not startable and requires one or several input
components and an output component.
Copyright © 2007 Talend Open Studio 539

Components
tUnite
• As Filemask, type in *.txt as all files to be merged are of this type.

• The Case Sensitive box is checked by default. No need to uncheck it.

• The files are pretty basic and contain a list of countries and their respective score.

• Select the tFileInputdelimited component, and display this component’s Properties view.

• In this use case, the input files’ connection properties are not centrally stored in the
Repository, therefore select Built-In as Property type and set every single field manually.

• To fill in the File Name field, use the Ctrl+Space bar combination to access the variable
completion list. To process all files from the directory defined in the tFileList, select
$_globals{tFileList_1}{CURRENT_FILEPATH} on the global variable list (in
Perl).

• Keep the default setting for the Row and Field separators as well as the other fields.
540 Talend Open Studio Copyright © 2007

Components
tUnite
• Click the Edit Schema button and set manually the 2-column schema to reflect the input
files’ content.

• For this example, the 2 columns are Country and Points .They are both nullable.

• Click OK to validate the setting and accept to propagate the schema throughout the job.

• Then select the tUnite component and display the Properties view. Notice that the output
schema strictly reflects the input schema and is read-only.

• In the tLogRow Properties view, check the Print values in cells of the table box to display
properly the output values.

• Save the job and execute it.

The console shows the data from the various files, merged into one single table. This uniformized
output can then be aggregated to set
Copyright © 2007 Talend Open Studio 541

Components
tVtigerCRMInput
tVtigerCRMInput

tVtigerCRMInput Properties

Related Scenario

No scenario is available for this component yet.

Component family Business/vTigerCRM

Function Connects to a module of a vTigerCRM database.

Purpose Allows to extract data from a vTigerCRM DB .

Properties Server Address Type in the IP address of the vTigerCRM server

Port Type in the Port number to access the server

Username and
Password

Type in the user authentication data.

Version Type in the version of vTigerCRM you are using.

Module Select the relevant module in the list

Method Select the relevant method on the list. The method
specifies the action you can carry out on the
vTigerCRM module selected.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either built-in
or remote in the Repository.
Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema
automatically becomes built-in.
In this component the schema is related to the
Module selected.

Usage Usually used as a Start component. An output component is required.

Limitation n/a
542 Talend Open Studio Copyright © 2007

Components
tVtigerCRMOutput
tVtigerCRMOutput

tVtigerCRMOutput Properties

Related Scenario

No scenario is available for this component yet.

Component family Business/vTigerCRM

Function Writes data into a module of a vTigerCRM database.

Purpose Allows to write data from a vTigerCRM DB.

Properties Server Address Type in the IP address of the vTigerCRM server

Port Type in the Port number to access the server

Username and
Password

Type in the user authentication data.

Version Type in the version of vTigerCRM you are using.

Module Select the relevant module in the list

Method Select the relevant method on the list. The method
specifies the action you can carry out on the
vTigerCRM module selected.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either built-in
or remote in the Repository.
Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema
automatically becomes built-in.
In this component the schema is related to the
Module selected.

Usage Used as an output component. An Input component is required.

Limitation n/a
Copyright © 2007 Talend Open Studio 543

Components
tWarn
tWarn

tWarn Properties

Both tDie and tWarn components are closely related to the tLogCatcher component.They
generally make sense when used alongside a tLogCatcher in order for the log data collected to be
encapsulated and passed on to the output defined.

Related scenarios

For uses cases in relation with tWarn, see tLogCatcher scenarios:

• Scenario1: warning & log on entries on page 330

• Scenario 2: log & kill a job on page 332

Component family Log/Error

Function Provides a priority-rated message to the next component

Purpose Triggers a warning often caught by the tLogCatcher component for
exhaustive log.

Warn message Type in your warning message

Code Define the code level

Priority Enter the priority level as an integer

Usage Cannot be used as a start component. If an output component is connected to
it, an input component should be preceding it.

Limitation n/a
544 Talend Open Studio Copyright © 2007

Components
tWebServiceInput
tWebServiceInput

tWebServiceInput Properties

Component family Internet

Function Calls the defined method from the invoked webservice, and returns the class
as defined, based on the given parameters.

Purpose Invokes a Method through a webservice and for the described purpose

Properties Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either built-in
or remote in the Repository.
Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema
automatically becomes built-in.
Click Sync columns to retrieve the schema from the
previous component connected in the job.

End Point URI Resource identifier of the web service

WSDL Description of Web service bindings and
configuration

Java only field
SOAPAction URI SOAP standard end point if required

Method Name Enter the exact name of the Method to be invoked.
The Method name MUST match the corresponding
method described in the Web Service. The Method
name is also case-sensitive.

Java only field
Return class Select the type of data to be returned by the method.

Make sure it fully matches the one defined in the
method.

Note: For .Net services, use the
returned class:
org.apache.axis.types.Schem
a.class

Parameters Enter the parameters expected and the sought values
to be returned. Make sure that the parameters entered
fully match the names and the case of the parameters
described in the method.

Usage This component is generally used as a Start component . It requires to be
linked to an output component.

Limitation n/a
Copyright © 2007 Talend Open Studio 545

Components
tWebServiceInput
Scenario: Extracting images through a Webservice

This scenario describes a two-component job aiming at using a Webservice method and display the
output on the standard view.

The method takes a full url as an input string and returns a string array of images from a given web
page.

• Click and drop a tWebServiceInput component and a tLogRow component.

• On the Properties view of the tWebServiceInput component, define the WSDL
specifications, such as End Point URI, WSDL and SOAPAction URI where required.

• If the Web service you invoked requires authentication details, check the box and provide the
relevant authentication information.

• In the Method Name field, type in the method name as defined in the Web Service
description. The name and the case of the method entered must match exactly the
corresponding Web service method.

• Then select the return class corresponding to the expected value type.

• In the Parameters area, click the plus (+) button to add a line to the table.

• Then type in the exact parameters’ name as expected by the method.
546 Talend Open Studio Copyright © 2007

Components
tWebServiceInput
• In the Value column, type in the URL of the Website, the images are to be extracted from.

• The Class column is automatically filled in with the return class type selected earlier.

• Link the tWebServiceInput component to the standard output component, tLogRow.

• Then press F6 to run the job.

All images extracted from the given website are returned as a list of URLs on the Run Job view.
Copyright © 2007 Talend Open Studio 547

Components
tXMLRPC
tXMLRPC

tXMLRPC Properties

Component family Internet

Function Calls the defined method from the invoked RPC service, and returns the class
as defined, based on the given parameters.

Purpose Invokes a Method through a webservice and for the described purpose

Properties Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either built-in
or remote in the Repository.
Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema
automatically becomes built-in.
Click Sync columns to retrieve the schema from the
previous component connected in the job.
In the RPC context, the schema corresponds to the
output parameters. If two parameters are meant to be
returned, then the schema should contain two
columns.

Server URL URL of the RPC service to be accessed

Need authentication /
Username and
Password

Check the authentication box and fill in a username
and password if required to access the service.

Method Name Enter the exact name of the Method to be invoked.
The Method name MUST match the corresponding
method described in the RPC Service. The Method
name is also case-sensitive.

Return class Select the type of data to be returned by the method.
Make sure it fully matches the one defined in the
method.

Parameters Enter the parameters expected by the method as
input parameters .

Usage This component is generally used as a Start component . It requires to be
linked to an output component.

Limitation n/a
548 Talend Open Studio Copyright © 2007

Components
tXMLRPC
Scenario: Guessing the State name from an XMLRPC

This scenario describes a two-component job aiming at using a RPC method and displaying the
output on the console view.

• Click and drop the tXMLRPC and a tLogRow components.

• Set the tXMLRPC properties.

• Define the Schema type as Built-in for this use case.

• Set a single-column schema as the expected output for the called method is only one
parameter: StateName.

• Then set the Server url. For this demo, use: http://phpxmlrpc.sourceforge.net/server.php

• No authentication details are required in this use case.

• The Method to be called is: examples.getStateName
Copyright © 2007 Talend Open Studio 549

Components
tXMLRPC
• The return class is not compulsory for this method but might be strictly required for another.
Leave the default setting for this use case.

• Then set the input Parameters required by the method called. The Name field is not used
in the code but the value should follow the syntax expected by the method. In this example,
the Name used is State Nr and the value randomly chosen is 42.

• The class has not much impact using this demo method but could have with another method,
so leave the default setting.

• On the tLogRow component Properties view, check the box: Print schema column name
in front of each value.

• Then save the job and execute.

 South Dakota is the state name found using the GetStateName RPC method and corresponds
the 42nd State of the United States as defined as input parameter.
550 Talend Open Studio Copyright © 2007

Components
tXSDValidator
tXSDValidator

tDTDValidator Properties

Related scenario

For related tXSDValidator use cases, see Scenario: Validating xml files on page 178.

Component family XML

Function Validates the XML input file against a XSD file and sends the validation
log to the defined output.

Purpose Helps at controlling data and structure quality of the file to be processed

Properties Schema type and
Edit Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to
the next component. The schema is either built-in
or remotely stored in the Repository but in this
case, the schema is read-only. It contains standard
information regarding the file validation.

XSD file Filepath to the reference DTD file.

XML file Filepath to the XML file to be validated.

If XML is valid,
display
If XML is not valid
detected, display

Type in a message to be displayed in the Run Job
console based on the result of the comparison.

Print to console Check the box to display the validation message

Usage This component can be used as standalone component but it is usually
linked to an output component to gather the log data.

Limitation n/a
Copyright © 2007 Talend Open Studio 551

Components
tXSLT
tXSLT

tXSLT Properties

Scenario: Transforming XML to html using an XSL stylesheet

This scenario describes a job applying an xsl stylesheet on an xml file and outputs an html file.

• Drag and drop the tXSLT component.

• On the Properties view of the component, set the XML file to be transformed. In this use
case, a list of MP3 titles and their corresponding artist

• Then set the filepath to the relevant XSL file in order to apply the wanted transformation.

Component family XML

Function Refers to an XSL stylesheet, to transform an XML source file into a
defined output file.

Purpose Helps to transform data structure to another structure.

Properties XML file Filepath to the XML file to be validated.

XSL file Filepath to the reference XSL transformation file.

Output file Filepath to the output file. If the file doesn’t exist,
it will be created. The output file can be any
structured or unstructured file such as html, xml,
txt or also pdf or edifact depending on your xsl.

Usage This component can be used as standalone component.

Limitation n/a
552 Talend Open Studio Copyright © 2007

Components
tXSLT
• In this use case, we want to add an image and apply an stylesheet to create a table in HTML.

• Eventually set the output filepath to the HTML file.

• Save the job and press F6 to run it. Open the Html file in a browser to check the output.
Copyright © 2007 Talend Open Studio 553

Components
tXSLT
554 Talend Open Studio Copyright © 2007

—Managing jobs & projects—
Managing jobs & projects

You can import projects from a previous version of Talend Open Studio as well as importing or
exporting jobs from one project to the other or from one machine to another.

Importing projects

On the login window, click Import projects to open the Import wizard. Click on Open several projects
if you intend to import more than one project at once.

Or in Talend Open Studio main window, click on the Import projects button on the toolbar.

Click Browse... to select the Workspace directory or the specific project folder. By default, the
workspace in selection is the current release’s one. Browse up to reach the previous release workspace
directory containing the projects to import.
Copyright © 2007 Talend Open Studio 555

Managing jobs & projects
Importing Job samples (Demos)
Check the Copy projects into workspace option box to make a copy of the project instead of moving
them. If you want to remove the original project directories from the previous Talend Open Studio
release workspace directory, uncheck this box. But we strongly recommend you to keep it selected for
backup purpose.

Select in the list the projects to import and click Finish to validate.

In the login window, the projects imported now display in the Project list, select it from the list

Or from Talend Open Studio workspace, click File > Switch projects... to get back to the login
window.

Click OK to launch Talend Open Studio.

Note: A generation initialization window might come up when launching the application. Wait
until the initialization is complete.

If, instead of importing the whole project, you’d rather select individual items from your projects,

Importing Job samples (Demos)

As for the import of projects from previous releases of Talend Open Studio, you can import in your
workspace the Demos project folder, that includes numerous samples of job.

On the Login window of Talend Open Studio, click on the Demos button.
556 Talend Open Studio Copyright © 2007

Managing jobs & projects
Importing items
Select your preferred language between Perl and Java.

The Job samples covering all needs are automatically imported into your workspace and made available
in the Repository.

A message displays to confirm the import operation successfully.

The Demos project displays in the list of existing Projects in the Login window.

You can use these samples to get started with your own job design.

Importing items

You can import items from previous versions of Talend Open Studio or from a different project of your
current version.
Copyright © 2007 Talend Open Studio 557

Managing jobs & projects
Importing items
The items you can possibly import are multiple:

• Business Models

• Jobs Designs

• Routines

• Documentation

• Metadata

Follow the steps below to import them to the Repository:

• On the Repository, right-click on any entry such as Job Designs or Business Models.

• On the pop-up menu, select the Import Items option.

• A dialog box prompts you to select the root directory or the archive file to extract the items from.

• If you exported the items from your local repository into an archive file (including source files
and scripts), select the archive filepath, browse to the file then click OK.
558 Talend Open Studio Copyright © 2007

Managing jobs & projects
Importing items
• If the items to import are still stored on your local repository, select Root Directory and browse
to the relevant project directory on your system.

• Browse down to the relevant Project directory within the Workspace folder. It should
correspond to the project name you picked up.

• If you only want to import very specific items such as some Job Designs, you can select the
specific folder, such as Process where all the job designs for the project are stored. If you only
have Business Models to import, select the specific folder: BusinessProcess.

• But if your project gather various types of items (Business Models, Jobs Designs, Metadata,
Routines...), we recommend you to select the Project folder to import all items in one go.

• Then click OK to continue.
Copyright © 2007 Talend Open Studio 559

Managing jobs & projects
Exporting projects
• In the Items List are displayed all valid items that can be imported. All items are selected by
default, but you can deselect all or uncheck individually unwanted items.

• Click Finish to validate the import.

• The imported items display on the Repository in the relevant folder respective to their nature.

Exporting projects

On Talend Open Studio workspace, the toolbar allows you to export the current project.

Click on the Export project button of the toolbar, at the top of Talend Open Studio main window.
560 Talend Open Studio Copyright © 2007

Managing jobs & projects
Exporting job scripts
The Export window opens up on the workspace directory showing the projects you can export to an
archive file.

• You can select multiple projects or only select parts of the project through the Select Types link,
if need be (for advanced users).

• Type in the name of the archive or browse to the archive file if it already exists.

• In the Option area, select the compression format and the structure type you prefer.

Click Finish to validate.

Exporting job scripts

The Export Job Scripts feature allows you to deploy and execute a job on any server, regardless Talend
Open Studio.

The job scripts export adds to an archive all the files required to execute the job, including the .bat and
.sh along with the possible context-parameter files or relative files.
Copyright © 2007 Talend Open Studio 561

Managing jobs & projects
Exporting job scripts
To export any job scripts:

• Right-click on the relevant job in the Repository.

• And select Export Job Scripts.

• Give a path where to create the archive file.

The Export Job scripts dialog differs whether you work on a Java or a Perl version of the product.

Exporting jobs in Java

• Select the Export Type in the list including POJO, Axis Webservice (WAR) and Axis
Webservice (Zip)

• Then select the type of files you want to add to your archive. The list of files differ according
to the type of export you chose.

Click Finish when complete.
562 Talend Open Studio Copyright © 2007

Managing jobs & projects
Exporting job scripts
Exporting jobs as POJO

In the case of a Plain Old Java Object export, if you want to reuse the job in Talend Open
Studio installed on another machine, make sure you checked the Source files box. These
source files (.item and .properties) are only needed within Talend Open Studio.

Note: Note that you cannot import job script into a different version of Talend Open
Studio than the one the jobs were created in. To be able to reuse previous jobs in
a later version of Talend Open Studio, use the Import Project function. See
Importing projects on page 555.

Select a context in the list when offered. The .bat/.sh file will thus include this context setting
as default for the execution. But note that all contexts parameter files are exported along in
addition to the one selected in the list. You will thus be able to edit the .bat/.sh file to change
manually the context selection if you want to.

If you want to change the context selection, simply edit the .bat/.sh file and change the following
setting: --context=Prod to the relevant context.

If you want to change the context settings, then edit the relevant context .properties file.

Exporting Jobs as Webservice

On the Export Job dialog box, you can change the type of Export in order to export the job
selection as Webservice archive.

Select the type of archive you want to use in your Web application.

Once the archive is produced, place the WAR or the relevant Class from the ZIP (or unzipped
files) into the relevant location, of your Web application server.

The URL to be used to deploy the jobn, typically reads as follow:
http://localhost:8080/Webappname/services/JobName?method=runJo
b&args=null

where the parameters stand as follow:

Archive type Description

WAR The options are read-only. Indeed, the WAR archive generated
includes all configuration files necessary for the execution or
deployment from the Web application.

ZIP All options are available. In the case the files of your Web
appplication config are all set, you have the possibility to only
set the Context parameters if relevant and export only the
Classes into the archive.
Copyright © 2007 Talend Open Studio 563

Managing jobs & projects
Exporting job scripts
The call return from the Web application is 0 when no error and different from 0 in case of error.

URL parameters Description

http://localhost:8080/ Type in the Web app host and port

/Webappname/ Type in the actual name of your web application

/services/ Type in “services” as the standard call term for web services

/JobName Type in the exact name of the job you want to execute

?method=runJob&args=null The method is RunJob to execute the job.
564 Talend Open Studio Copyright © 2007

Managing jobs & projects
Exporting job scripts
Exporting jobs in Perl

• Select the type of files you want to add to your archive.

• If you want to reuse the job in Talend Open Studio installed on another machine, make
sure you checked the Source files box. These source files (.item and .properties) are only
needed within Talend Open Studio.

• Select a context in the list when offered. The .bat/.sh file will thus include this context setting
as default for the execution. But note that all contexts parameter files are exported along in
addition to the one selected in the list. You will thus be able to edit the .bat/.sh file to change
manually the context selection if you want to.

Note: If you want to change the context selection, simply edit the .bat/.sh file and change the
following setting: --context=Prod to the relevant context.

Note: If you want to change the context settings, then edit the relevant context .properties
file.

Click Finish to complete the export operation.

WARNING—Note that you cannot import job script into a different version of Talend Open Studio
than the one the jobs were created in. To be able to reuse previous jobs in a later version of Talend

Open Studio, use the Import Project function. See Importing projects on page 555.
Copyright © 2007 Talend Open Studio 565

Managing jobs & projects
Deploying a job on SpagoBI server
Deploying a job on SpagoBI server

From Talend Open Studio interface, you can deploy your jobs easily on a SpagoBI server in order to
execute them from your SpagoBI administrator.
566 Talend Open Studio Copyright © 2007

Managing jobs & projects
Deploying a job on SpagoBI server
Creating a SpagoBI server entry

Beforehands, you need to set up your single or multiple SpagoBI server details in Talend Open
Studio.

• Click Preferences > Talend > SpagoBI servers

• Click New to add a new server to the list.

• The Engine Name is the internal name used in Talend Open Studio. This name is not used
in the generated code.

• The Short description is a free text field that you can use to describe the server entry you
are recording.

• Fill in the Host and Port information corresponding to your server. Host can be the IP
address or the DNS Name of your server.

• Type in the Login and Password as required to log on the SpagoBI server.

• In Application Context, type in the context name as you created it in Talend Open Studio

• Click OK to validate the details of the new server entry.

The newly created entry is added to the table of available servers.
Copyright © 2007 Talend Open Studio 567

Managing jobs & projects
Deploying a job on SpagoBI server
You can add as many SpagoBi entries as you need.

Editing or removing a SpagoBI server entry

Select the relevant entry in the table, click the Remove button next to the table to first delete the
outdated entry.

Then if required, simply create a new entry including the updated details.

Deploying your jobs on SpagoBI servers

Follow the steps below to deploy your job(s) onto a SpagoBI server.

• In the Job designer, select the job to deploy and right-click to display the pop-up menu.

• Select Deploy on SpagoBI.

• As for any job script export, select a Name for the job archive that will be created and fill it
in the To archive file field.

• Select the relevant SpagoBI server on the drop-down list.

• The Label, Name and Description fields come from the Job main properties.

• Select the relevant context in the list.

• Click OK once you’ve completed the setting operation.

The jobs are now deployed onto the relevant SpagoBI server. Open your SpagoBI administrator to
execute your jobs.
568 Talend Open Studio Copyright © 2007

Managing jobs & projects
Migration tasks
Migration tasks

Migration tasks are performed to ensure the compatibility of the projects you created with a previous
version of Talend Open Studio with the current release.

As some changes might become visible to the user, we thought we’d share these update tasks with you
through an information window.

Some changes that affect the usage of Talend Open Studio include, for example:

• tDBInput used with a MySQL database becomes a specific tDBMysqlInput component the
aspect of which is automatically changed in the job where it is used.

• tUniqRow used to be based on the Input schema keys, whereas the current tUniqRow allows the
user to select the column to base the unicity on.

This information window pops up when you launch the project you imported (created) in a previous
version of Talend Open Studio.

It lists and provides a short description of the tasks which were successfully performed so that you can
smoothly roll your projects.
Copyright © 2007 Talend Open Studio 569

Managing jobs & projects
Migration tasks
570 Talend Open Studio Copyright © 2007

A
Activate/Deactivate ..100
Alias ...184
Appearance ..31
Assignment table ..33

B
Breakpoint ..111
Business Model ..10, 23, 24

Creating ..24
Opening ..24

Business Modeler ...25
Business Models ..23

C
Code ...11
Code Viewer ..16, 17
Component ...38, 117

Activate ..46
External ..21
Start ..51

Connection
Iterate ...44
Link ..45
Lookup ...42
Main ...42
Output ..42
Row ..42

Context ...10, 110, 483

D
Data quality

tAddCRCRow ..133
tFuzzyMatch ..271

Database
tDBInput ..161
tDBOutput ..165
tDBSQLRow ..169
tMSSqlInput ...363
tMSSqlOutput ..365
tMSSqlRow ..372
tMysqlBulkExec ..383
tMysqlCommit ...386, 432, 460
tMysqlConnection ..387, 433, 461
tMysqlInput ..392
Copyright © 2007 Talend Open Studio i

tMysqlOutput ...394
tMysqlOutputBulk ...398
tMysqlOutputBulkExec ...404
tMysqlRollback ..406
tMysqlRow ...407

Debug mode ...112
Delimited ...56
Documentation ...11

E
Edit Schema ...49
ELT

tELTMysqlInput ..181
tELTMysqlMap ...182
tELTMysqlOutput ..192
tELTOracleInput ..195
tELTOracleMap ...196
tELTOracleOutput ...201

Explicit Join ...184
Exporting

Projects ...560
Expression Builder ...97

F
File

tFileCompare ...213
tFileCopy ...216
tFileDelete ..218
tFileInputDelimited ..223
tFileInputMail ..226
tFileInputPositional ..228
tFileInputRegex ...232
tFileInputXML ...236
tFileList ..239
tFileOutputExcel ..242
tFileOutputLDIF ..243
tFileOutputXML ..246
tFileUnarchive ...248

File XML
Loop limit ..71

FilePositional ...61
FileRegex ...64

G
Generation language ..8
ii Talend Open Studio Copyright © 2007

Graphical workspace ..12, 23
Grid ..30

H
Hash key ..86

I
Importing

Items ...557
Inner join ..89
Inner Join Reject ..89
Internet

tFileFetch ...221
tFTP ...268
tSendMail ...489

Item
Importing ...557

Iterate ...44

J
Job

Creating ..37
Opening/Creating ...35
Running ..109, 110

Job Designer ..37
Panels ...40

Job Designs ..10, 35, 36
Job script

Exporting ...112
Join

Explicit ...184

K
Key ...86

L
LDIFfile ...66
Left Outer Join ...190
Link ..45
Log&Error

tDie ...177
tLogCatcher ...330

Log/error
tLogRow ..334
tStatCatcher ..506
Copyright © 2007 Talend Open Studio iii

Logs ...13
Lookup ...43

M
Main properties ..34
Main row ..42
Mapper ...45
Metadata ...12, 51

DB Connection schema ...52
FileDelimited schema ..56
FileLDIF Schema ...66
FilePositional schema ..61
FileRegex schema ..64
FileXML schema ...68

Misc
tContextLoad ...145
tFor ...265
tMsgBox ...423
tRowGenerator ...479

Model
Arranging ...29, 30
Assigning ...33
Commenting ...29
Copying ..34
Deleting ..34
Moving ...34
Saving ..34

Modeler ..25
Multiple Input/Output ..45

O
Object ...26
Outline ...16, 17
Output ..44

P
Palette ...12, 25, 26, 29, 37, 38

Components ...117
Note ..29
Note attachment ...29
Select ..29
Zoom ..29

Primary Key ...86
Processing

tAggregateRow ..126
iv Talend Open Studio Copyright © 2007

tDenormalize ..172
tMap ...335
tNormalize ...425
tPerl ..455
tSortRow ..493
tUniqRow ...537

Project
Exporting ...560

Properties ...13, 25, 30
Comment ..48
Main ...34
Properties ...48
Rulers & Grid ...30
View ...47

Q
Query

SQLBuilder ..78

R
Recycle bin ..12, 34
Refresh ...7
Regular Expressions ..65
Relationship ...27

bidirectional ...28
directional ..28
Simple ..28

Repository ..8, 10, 23, 35
Routine ...11
Row ..42

Main ...42
Rulers ...30
Run Job ..13, 109, 110

S
Scheduler ...15
Schema

Built-in ...50
Shape ..26
SQLBuilder ..78
Start ..51
Statistics ...110
StoreSQLQuery ...102, 163
Sync columns ...49
System
Copyright © 2007 Talend Open Studio v

tRunJob ..483
tSystem ...529

T
Table

Alias ...184
Technical name ..8
tFlowMeterCatcher ..113
tLogCatcher ...113
tMap ...45
Traces ...111
Trigger

Run After ...44
Run Before ...44
Run if ...44
Run if Error ..44
Run if OK ...44
ThenRun ...44

tStatCatcher ..113

V
Variable ..101, 483

StoreSQLQuery ...102, 163
Views

Moving ...40

X
XML

tDTDValidator ...178
XMLFile ..68
Xpath ..71
vi Talend Open Studio Copyright © 2007

	Talend Open Studio User’s Guide
	About this guide...
	History of changes
	Feedback and Support

	Getting started with Talend Open Studio
	Accessing Talend Open Studio
	Connecting to a local repository
	Creating a project
	Describing the GUI
	Repository
	Business Models
	Job Designs
	Contexts
	Code
	Routines
	Snippets

	Documentation
	Metadata
	Recycle bin

	Graphical workspace
	Palette
	Changing the palette position
	Changing the palette layout and settings

	Properties, Run and Logs views
	Properties
	Logs
	Run Job

	Modules and Scheduler
	Modules view
	Open Scheduler

	Outline and Code Summary panel
	Outline
	Code viewer

	Toolbar and Menus
	Quick access toolbar
	Menus

	Configuring Talend Open Studio preferences
	Perl/Java Interpreter path
	Status
	External or User components

	Designing a Business Model
	Objectives
	Opening or creating a business model
	Opening a business model
	Creating a business model

	Modeling a business model
	Shapes
	Connecting shapes
	Commenting and arranging a model
	Adding a note or free text
	Arranging the model view

	Properties
	Rulers and Grid
	Appearance
	Assignment

	Assigning repository elements to a Business Model
	Editing a Business model
	Renaming a business model
	Copying and pasting a business model
	Moving a business model
	Deleting a business model

	Saving a business model

	Designing a Job Design
	Objectives
	Opening or Creating a job
	Opening a job
	Creating a job

	Getting started with a Job Design
	Showing, hiding and moving the palette
	Click & drop components from the Palette
	Drag & Drop components from the Metadata Manager
	Adding Notes to a job design
	Changing panels position
	Warnings and errors on component

	Connecting components together
	Connection types
	Row connection
	Main row
	Lookup row
	Output row

	Iterate connection
	Trigger connections
	Link connection

	Multiple Input/Output

	Defining job Properties
	Main
	View
	Documentation
	Properties
	Setting a built-in schema
	Setting a repository schema
	Setting a field dynamically (Ctrl+Space bar)

	Defining the Start component
	Defining Metadata items
	Setting up a DB schema
	Step 1: general properties
	Step 2: connection
	Step 3: table upload
	Step 4: schema definition

	Setting up a File Delimited schema
	Step 1: general properties
	Step 2: file upload
	Step 3: schema definition
	Step 4: final schema

	Setting up a File Positional schema
	Step 1: general properties
	Step 2: connection and file upload
	Step 3: schema refining
	Step 4: final schema

	Setting up a File Regex schema
	Step 1: general properties
	Step 2: file upload
	Step 3: schema definition
	Step 4: final schema

	Setting up a FileLDIF schema
	Step 1: general properties
	Step 2: file upload
	Step 3: schema definition
	Step 4: final schema

	Setting up a FileXML schema
	Step 1: general properties
	Step 2: file upload
	Step 3: schema definition
	Step 4: final schema

	Setting up a LDAP schema
	Step 1: general properties
	Step 2: server connection
	Step 3: authentication and DN fetching
	Step 4: schema definition
	Step 5: final schema

	Setting up a Generic schema
	Step 1: general properties
	Step 2: schema definition

	Creating queries using SQLBuilder
	Database structure comparison
	Building a query
	Storing a query in the Repository

	Mapping data flows in a job
	tMap operation overview
	tMap interface
	Setting the input flow in the Mapper
	Filling in Input tables with a schema
	Main and Lookup table content
	Variables

	Explicit Join
	Unique Match (java)
	First or Last Match (java)
	All Matches (java)

	Inner join
	All rows (java)
	Filtering an input flow (java)
	Removing Input entries from table

	Mapping variables
	Accessing global or context variables
	Removing variables

	Output setting
	Building complex expressions
	Filters
	Rejections
	Inner Join Rejection
	Removing Output entries

	Expression editor
	Schema editor

	Writing code using the Expression Builder
	Activating/Disabling a job or sub-job
	Disabling a Start component
	Disabling a non-Start component

	Defining Contexts and variables
	Defining job context variables
	Short creation of context variables
	StoreSQLQuery

	Contexts view
	Variables tab
	Values as table tab
	Values as tree tab

	Configuring contexts
	Creating a context
	Renaming or editing a context

	Storing contexts in the Repository
	Running a job in selected context

	Running a job
	Running in normal mode
	Displaying Statistics
	Displaying Traces

	Running in debug mode

	Saving or exporting your jobs
	Saving a job
	Exporting job scripts

	Generating HTML documentation
	Automating stats & logs use
	Shortcuts and aliases

	Components
	tAccessInput
	tAccessInput properties
	Related scenarios

	tAccessOutput
	tAccessOutput properties
	Related scenarios

	tAccessRow
	tAccessRow properties
	Related scenarios

	tAggregateRow
	tAggregateRow properties
	Scenario: Aggregating values and sorting data

	tAggregateSortedRow
	tAggregateSortedRow properties
	Related scenario

	tAddCRCRow
	tAddCRCRow properties
	Scenario: Adding a surrogate key to a file

	tAS400Input
	tAS400Input properties
	Related scenarios

	tAS400Output
	tAS400Output properties
	Related scenarios

	tAS400Row
	tAS400Row properties
	Related scenarios

	tCentricCRMInput
	tCentricCRMInput Properties
	Related Scenario

	tCentricCRMOutput
	tCentricCRMOutput Properties
	Related Scenario

	tContextDump
	tContextDump properties
	Related Scenario

	tContextLoad
	tContextLoad properties
	Scenario: Dynamic context use in MySQL DB insert

	tCreateTable
	tCreateTable Properties
	Scenario: Creating new table in a Mysql Database

	tDB2Input
	tDB2Input properties
	Related scenarios

	tDB2Output
	tDB2Output properties
	Related scenarios

	tDB2Row
	tDB2Row properties
	Related scenarios

	tDB2SCD
	tDB2SCD properties
	Related scenarios

	tDB2SP
	tDB2SP properties
	Related scenarios

	tDBInput
	tDBInput properties
	Scenario 1: Displaying selected data from DB table
	Scenario 2: Using StoreSQLQuery variable

	tDBOutput
	tDBOutput properties
	Scenario: Displaying DB output

	tDBSQLRow
	tDBSQLRow properties
	Scenario 1: Resetting a DB auto-increment

	tDenormalize
	tDenormalize Properties
	Scenario 1: Denormalizing on one column in Perl
	Scenario 2: Denormalizing on multiple columns in Java

	tDie
	tDie properties
	Related scenarios

	tDTDValidator
	tDTDValidator Properties
	Scenario: Validating xml files

	tELTMysqlInput
	tELTMysqlInput properties
	Related scenarios

	tELTMysqlMap
	tELTMysqlMap properties
	Connecting ELT components
	Mapping and joining tables
	Adding where clauses
	Generating the SQL statement

	Scenario1: Aggregating table columns and filtering
	Scenario 2: ELT using Alias table

	tELTMysqlOutput
	tELTMysqlOutput properties
	Related scenarios

	tELTOracleInput
	tELTOracleInput properties
	Related scenarios

	tELTOracleMap
	tELTOracleMap properties
	Connecting ELT components
	Mapping and joining tables
	Adding where clauses
	Generating the SQL statement

	Scenario 1: Updating Oracle DB entries

	tELTOracleOutput
	tELTOracleOutput properties
	Related scenarios

	tELTTeradataInput
	tELTTeradataInput properties
	Related scenarios

	tELTTeradataMap
	tELTTeradataMap properties
	Connecting ELT components
	Mapping and joining tables
	Adding where clauses
	Generating the SQL statement

	Related scenarios

	tELTTeradataOutput
	tELTTeradataOutput properties
	Related scenarios

	tExternalSortRow
	tExternalSortRow properties
	Related scenario

	tFileCompare
	tFileCompare properties
	Scenario: Comparing unzipped files

	tFileCopy
	tFileCopy Properties
	Scenario: Restoring files from bin

	tFileDelete
	tFileDelete Properties
	Scenario: Deleting files

	tFileFetch
	tFileFetch properties
	Scenario: Fetching data through HTTP

	tFileInputDelimited
	tFileInputDelimited properties
	Scenario: Delimited file content display

	tFileInputMail
	tFileInputMail properties
	Scenario: Extracting key fields from email

	tFileInputPositional
	tFileInputPositional properties
	Scenario: From Positional to XML file

	tFileInputRegex
	tFileInputRegex properties
	Scenario: Regex to Positional file

	tFileInputXML
	tFileInputXML Properties
	Scenario: XML street finder

	tFileList
	tFileList properties
	Scenario: Iterating on a file directory

	tFileOutputExcel
	tFileOutputExcel Properties
	Related scenario

	tFileOutputLDIF
	tFileOutputLDIF Properties
	Scenario: Writing DB data into an LDIF-type file

	tFileOutputXML
	tFileOutputXML properties
	Scenario: From Positional to XML file

	tFileUnarchive
	tFileUnarchive Properties
	Related scenario

	tFilterColumn
	tFilterColumn Properties
	Related Scenario

	tFilterRow
	tFilterRow Properties
	Scenario: Filtering and searching a list of names

	tFirebirdInput
	tFirebirdInput properties
	Related scenarios

	tFirebirdOutput
	tFirebirdOutput properties
	Related scenarios

	tFirebirdRow
	tFirebirdRow properties
	Related scenarios

	tFlowMeter
	tFlowMeter Properties
	Related scenario

	tFlowMeterCatcher
	tFlowMeterCatcher Properties
	Scenario: Catching flow metrics from a job

	tFor
	tFor Properties
	Scenario: Job execution in a loop

	tFTP
	tFTP properties
	tFTP put
	tFTP get
	tFTP rename
	tFTP delete

	Scenario: Putting files on a remote FTP server

	tFuzzyMatch
	tFuzzyMatch properties
	Scenario 1: Levenshtein distance of 0 in first names
	Scenario 2: Levenshtein distance of 1 or 2 in first names
	Scenario 3: Metaphonic distance in first name

	tHSQLDbInput
	tHSQLDbInput properties
	Related scenarios

	tHSQLDbOutput
	tHSQLDbOutput properties
	Related scenarios

	tHSQLDbRow
	tHSQLDbRow properties
	Related scenarios

	tInformixInput
	tInformixInput properties
	Related scenarios

	tInformixOutput
	tInformixOutput properties
	Related scenarios

	tInformixRow
	tInformixRow properties
	Related scenarios

	tIngresInput
	tIngresInput properties
	Related scenarios

	tIngresOutput
	tIngresOutput properties
	Related scenarios

	tIngresRow
	tIngresRow properties
	Related scenarios

	tIngresSCD
	tIngresSCD Properties
	Related scenario

	tInterbaseInput
	tInterbaseInput properties
	Related scenarios

	tInterbaseOutput
	tInterbaseOutput properties
	Related scenarios

	tInterbaseRow
	tInterbaseRow properties
	Related scenarios

	tIterateToFlow
	tIterateToFlow Properties
	Scenario: Transforming a list of files as data flow

	tJava
	tJava Properties
	Scenario: Printing out a variable content

	tJavaDBInput
	tJavaDBInput properties
	Related scenarios

	tJavaDBOutput
	tJavaDBOutput properties
	Related scenarios

	tJavaDBRow
	tJavaDBRow properties
	Related scenarios

	tJDBCInput
	tJDBCInput properties
	Related scenarios

	tJDBCOutput
	tJDBCOutput properties
	Related scenarios

	tJDBCRow
	tJDBCRow properties
	Related scenarios

	tJDBCSP
	tJDBCSP Properties
	Related scenario

	tLDAPInput
	tLDAPInput Properties
	Scenario: Displaying LDAP directory’s filtered content

	tLDAPOutput
	tLDAPOutput Properties
	Scenario: Editing data in an LDAP directory

	tLogCatcher
	tLogCatcher properties
	Scenario1: warning & log on entries
	Scenario 2: log & kill a job

	tLogRow
	tLogRow properties
	Scenario: Delimited file content display

	tMap
	tMap properties
	Scenario 1: Mapping with filter and simple explicit join (Perl)
	Scenario 2: Mapping with Inner join rejection (Perl)
	Scenario 3: Cascading join mapping
	Scenario 4: Advanced mapping with filters, explicit joins and Inner join rejection
	Scenario 5: Advanced mapping with filters and a check of all rows

	tMomInput
	tMomInput Properties
	Scenario: asynchronous communication via a MOM server

	tMomOutput
	tMomOutput Properties
	Related scenario

	tMSSqlBulkExec
	tMSSqlBulkExec properties
	Related scenarios

	tMSSqlInput
	tMSSqlInput properties
	Related scenarios

	tMSSqlOutput
	tMSSqlOutput properties
	Related scenarios

	tMSSqlOutputBulk
	tMSSqlOutputBulk properties
	Related scenarios

	tMSSqlOutputBulkExec
	tMSSqlOutputBulkExec properties
	Related scenarios

	tMSSqlRow
	tMSSqlRow properties
	Related scenarios

	tMSSqlSCD
	tMSSqlSCD Properties
	Scenario: Slow Changing Dimension type 3

	tMSSqlSP
	tMSSqlSP Properties
	Related scenario

	tMysqlBulkExec
	tMysqlBulkExec properties
	Related scenarios

	tMysqlCommit
	tMysqlCommit Properties
	Related scenario

	tMysqlConnection
	tMysqlConnection Properties
	Scenario: Inserting data in mother/daughter tables

	tMysqlInput
	tMysqlInput properties
	Related scenarios

	tMysqlOutput
	tMysqlOutput properties
	Scenario: Adding new column and altering data

	tMysqlOutputBulk
	tMysqlOutputBulk properties
	Scenario: Inserting transformed data in MySQL database

	tMysqlOutputBulkExec
	tMysqlOutputBulkExec properties
	Scenario: Inserting data in MySQL database

	tMysqlRollback
	tMysqlRollback properties
	Scenario: Rollback from inserting data in mother/daughter tables

	tMysqlRow
	tMysqlRow properties
	Scenario: Removing and regenerating a MySQL table index

	tMysqlSCD
	tMysqlSCD Properties
	Scenario: Tracking changes using Slowly Changing Dimension

	tMysqlSP
	tMysqlSP Properties
	Scenario: Finding a State Label using a stored procedure

	tMsgBox
	tMsgBox properties
	Scenario: ‘Hello world!’ type test

	tNormalize
	tNormalize Properties
	Scenario: Normalizing data

	tOracleBulkExec
	tOracleBulkExec properties
	Scenario: Truncating and inserting file data into Oracle DB

	tOracleCommit
	tOracleCommit Properties
	Related scenario

	tOracleConnection
	tOracleConnection Properties
	Related scenario

	tOracleInput
	tOracleInput properties
	Related scenarios

	tOracleOutput
	tOracleOutput properties
	Related scenarios

	tOracleOutputBulk
	tOracleOutputBulk properties
	Related scenarios

	tOracleOutputBulkExec
	tOracleOutputBulkExec properties
	Related scenarios

	tOracleRollback
	tOracleRollback properties
	Related scenario

	tOracleRow
	tOracleRow properties
	Related scenarios

	tOracleSCD
	tOracleSCD Properties
	Related scenario

	tOracleSP
	tOracleSP Properties
	Scenario: Checking number format using a stored procedure

	tPerl
	tPerl properties
	Scenario: Displaying number of processed lines

	tPostgresqlBulkExec
	tPostgresqlBulkExec properties
	Related scenarios

	tPostgresqlCommit
	tPostgresqlCommit Properties
	Related scenario

	tPostgresqlConnection
	tPostgresqlConnection Properties
	Related scenario

	tPostgresqlInput
	tPostgresqlInput properties
	Related scenarios

	tPostgresqlOutput
	tPostgresqlOutput properties
	Related scenarios

	tPostgresqlOutputBulk
	tPostgresqlOutputBulk properties
	Related scenarios

	tPostgresqlOutputBulkExec
	tPostgresqlOutputBulkExec properties
	Related scenarios

	tPostgresqlRollback
	tPostgresqlRollback properties
	Related scenario

	tPostgresqlRow
	tPostgresqlRow properties
	Related scenarios

	tReplace
	tReplace Properties
	Scenario: multiple replacements and column filtering

	tRowGenerator
	tRowGenerator properties
	Defining the schema
	Defining the function

	Scenario: Generating random java data

	tRunJob
	tRunJob Properties
	Scenario: Executing a remote job

	tSalesforceInput
	tSalesforceInput Properties
	Related scenario

	tSalesforceOutput
	tSalesforceOutput Properties
	Related scenario

	tSendMail
	tSendMail Properties
	Scenario: Email on error

	tSleep
	tSleep Properties
	Related scenarios

	tSortRow
	tSortRow properties
	Scenario: Sorting entries

	tSQLiteInput
	tSQLiteInput Properties
	Scenario: Filtering SQlite data

	tSQLiteOutput
	tSQLiteOutput Properties
	Related Scenario

	tSQLiteRow
	tSQLiteRow Properties
	Scenario: Updating SQLite rows

	tSSH
	tSSH Properties
	Scenario: Remote system information display via SSH

	tStatCatcher
	tStatCatcher Properties
	Scenario: Displaying job stats log

	tSugarCRMInput
	tSugarCRMInput Properties
	Scenario: Extracting account data from SugarCRM

	tSugarCRMOutput
	tSugarCRMOutput Properties
	Related Scenario

	tSybaseBulkExec
	tSybaseBulkExec Properties
	Related scenarios

	tSybaseInput
	tSybaseInput Properties
	Related scenarios

	tSybaseOutput
	tSybaseOutput Properties
	Related scenarios

	tSybaseOutputBulk
	tSybaseOutputBulk properties
	Related scenarios

	tSybaseOutputBulkExec
	tSybaseOutputBulkExec properties
	Related scenarios

	tSybaseRow
	tSybaseRow Properties
	Related scenarios

	tSybaseSCD
	tSybaseSCD properties
	Related scenarios

	tSybaseSP
	tSybaseSP properties
	Related scenarios

	tSystem
	tSystem Properties
	Scenario: Echo ‘Hello World!’

	tTeradataInput
	tTeradataInput Properties
	Related scenarios

	tTeradataOutput
	tTeradataOutput Properties
	Related scenarios

	tTeradataRow
	tTeradataRow Properties
	Related scenarios

	tUniqRow
	tUniqRow Properties
	Scenario: Unduplicating entries

	tUnite
	tUnite Properties
	Scenario: Iterate on files and merge the content

	tVtigerCRMInput
	tVtigerCRMInput Properties
	Related Scenario

	tVtigerCRMOutput
	tVtigerCRMOutput Properties
	Related Scenario

	tWarn
	tWarn Properties
	Related scenarios

	tWebServiceInput
	tWebServiceInput Properties
	Scenario: Extracting images through a Webservice

	tXMLRPC
	tXMLRPC Properties
	Scenario: Guessing the State name from an XMLRPC

	tXSDValidator
	tDTDValidator Properties
	Related scenario

	tXSLT
	tXSLT Properties
	Scenario: Transforming XML to html using an XSL stylesheet

	Managing jobs & projects
	Importing projects
	Importing Job samples (Demos)
	Importing items
	Exporting projects
	Exporting job scripts
	Exporting jobs in Java
	Exporting jobs as POJO
	Exporting Jobs as Webservice

	Exporting jobs in Perl

	Deploying a job on SpagoBI server
	Creating a SpagoBI server entry
	Editing or removing a SpagoBI server entry
	Deploying your jobs on SpagoBI servers

	Migration tasks

