TheServerSide <>

JAVASYMPOSIUM !

POJO Scalability and Large
Workloads with Terracotta

Jonas Bonér
Terracotta, Inc.

jonas@terracottatech.com
http://jonasboner.com

‘'s” TERRACOTTA

s s «* TERRACOTTA

Who is Jonas?

- Hacker, OSS evangelist, Agile Practitioner
- Founder of AspectWerkz
- Committer to Eclipse AspectJ
- Committer to Terracotta
- Ski and Jazz fanatic
- Currently learning:
- Haskell, Erlang

- How to become a better dad

s s «* TERRACOTTA

Goal of this session

Learn how JVM-level clustering and
Terracotta works at a high level

Learn how use it to scale-out POJO-based
applications using Master/Worker and
Locality of Reference

s s «* TERRACOTTA

Agenda

Grids - What’s Behind the Buzz?
Master/Worker Pattern

JVM-level Clustering with Terracotta

Case-study — Distributed Web Spider:
1. Master/Worker Container (POJO-based, single JVM)
2. Web Spider Implementation

3. Cluster It Using JVM-level Clustering

4. Run It as a Grid

Real-World Challenges

Questions

s s «* TERRACOTTA

What is a Grid?

Here is one definition:

“A Grid is a set of servers that together

creates a mainframe class processing
service where data and operations can move

seamlessly across the grid in order to

optimize the performance and scalability of

the computing tasks submitted to the grid.”

s s «* TERRACOTTA

How do Grids scale?

Make use of Locality of Reference
* Data local to a specific node stays there
°* Move operations around instead of data
°* Move the application to the data

Work partitioning
* Ultimate: Work is “Embarrassingly Parallel” - no
shared state
* Acceptable: Partition the work into logical groups
working on the same data set

s s «* TERRACOTTA

How do Grids handle failure?

Highly available using data duplication

Grids are build to expect failure
° In contrast to “traditional” distributed computing in
which every component has to expect the worst and
protect itself accordingly

Automatically re-executes pending and
failed work

s s -a® TERRACOTTA

Grids: Master/Worker in a Box?

s s «* TERRACOTTA

Master/\Worker pattern

MASTER i WORKER ° 1 MaSter
! * 1-N Workers

Tt * 1 Shared Memory Space
=

nnnnnnnnnnn T - Common applications

* Financial Risk Analysis
and other Simulations

» Searching / aggregation
on large datasets

i - Sales Order pipeline
e i processing

s s «* TERRACOTTA

How can we implement Master/Worker in Java?

Concurrency primitives allows you to
write your own implementation

° wait/notify - synchronized blocks etc.

°* Might be tricky to implement correctly and to
achieve good performance

s s «* TERRACOTTA

How can we implement Master/Worker in Java?

java.util.concurrent.ExecutorService

° Highly tuned, high-level abstractions

° Direct support for Master/Worker pattern
Problems:

°* Does not separate Master from Worker

°* Provides no information about Work status

s s «* TERRACOTTA

How can we implement Master/Worker in Java?

CommondJ WorkManager

* IBM and BEA specification that allows
threading in JEE

Advantages:

e Still simple POJO based

°* Can wrap Java 5 concurrency abstractions
* Gives us the right abstraction level

* Allows us to add a layer of reliability

s s «* TERRACOTTA

Review the Goal

What we want to do:
1. Implement a thread-based Master/Worker container

2. Distribute out Workers (and Masters) onto multiple
JVMs

3. Ensure application performance by minimizing data
movement payload across worker contexts

CommondJ WorkManager seems to be up for
the task, but...

How can we do this?

Can we use clustering?

s s «* TERRACOTTA
Yes, clustering is a solution - but we want:
Simplicity and Scale-out

Simplicity
°* No usage of proprietary APIs

* Preservation of Object Identity - no serialization,
works with POJOs

* Preservation of the semantics of the JLS and JMM

Scale-out
°* Fine-grained and lazy replication
° Runtime lock optimization for clustering

°* Runtime caching for data access

s s «* TERRACOTTA
The ideal solution: JVM-level clustering

Enter Terracotta

Delivers clustering as a runtime
infrastructure service - a deployment artifact

Clusters the JVM

Open Source under Mozilla-based license

sty ‘a® TERRACOTTA

Terracotta approach
Today's Reality

* Scale out is complex
°* Requires custom Java code

Our approach is fundamentally different
* Cluster the JVM
* Eliminate need for custom code”

Development Benefits
° Leverage existing infrastru
° Substantially less code
°* Focus on business logic
° Consistent solution

Operational Benefits
. Terracotta Server
* Scale independently Clustering the JVM
* Consistent and manageable
* Provides increased visibility

sty ‘a® TERRACOTTA

Terracotta Use Cases

eTail - HA for Shopping Cart BTQ
HTTP Session C|ustering Telco - HA for User Sessions R
SAAS - Online Testing Services SE| i
Mobile - Mobile Search Content
m
Media - Content Aggregation @0 cast -
Publication - Content Caching | \ O
Distributed Caching Financial Services - Matching Engine mcns
Financial Services - Trading Application p&jg@ﬁg@r
Logistics - Reporting Applications
Etail - Catalog g ZIFF DAVIS VEDIA
Healthcare - Availability of Patient Information eI\ ¥¥e\N
Clustering POJO’s Online Gaming - Customer Account Balance | IS —
Publishing - Reference Data X i
Manufacturing - Dealership Inventory T
. . eTail - Ticketing and Seating Availability hgi
CIUSterlng Sprlng Construction - Financial Reporting Oges
) eTail - Order Processing
Collaboration / Financial Service - Order Processing
. . . Financial Services / Telco - Data Grid e e e r
Coordlnatlon I Eventlng Online Gaming - Game Table Coordination

TheServerSide > .
JAVASYMPOSIUM | a" TERRACOTTA

Terracotta architecture

® Terracotta Server
°* 100% Pure Java
* HA Active / Passive Pair

Local JVM C I Ie nt Sessions Objects Sessions Objects Sessions Objects

®

Tra ns pa re nt Any Framework Any Framework Any Framework
. - -

P ure J ava LI b raries Any Java Objects Any Java Objects Any Java Objects

v

Scale-out

Central Storage
° Maintai L‘oca:l JVM CIient{
restarts

Coordinator “traffi

Terracotta Server Terracotta Server (PASSIVE)

¢ COO rd i n Clustering the JVM
dCCessS

°* Runtime optimizations

Terracotta Librar Terracotta Librar Terracotta Librar
m m m

Terracotta Server
Clustering the JVM

Thnmeeaom a" TERRACOTTA

Terracotta Features Heap Level Replication

* Declarative
3 * No Serialization

* Fine Grained / Field Level

GET FIELD -
PUT FIELD

* Only Where Resident
JVM Coordination

* Distributed Synchronized
* Distributed

wait () /notify ()

v

Scale-out

s o Manage.ment. (?o.r!sole * Fine Grained Locking
252 * Runtime visibility MONITOR ENTRY -
g° * Data introspection MONITOR EXIT

* Cluster monitoring

Large Virtual Heaps
* As large as available disk

e Dvnamic naaina

s s -a® TERRACOTTA

Terracotta Usability Features

Configuration
* Declarative
* Configuration Modules

Developer / Tuning Tools
* Eclipse Integration
* Configurator
* Error Reporting
* Application Analyzer (upcoming)
* Deadlock Detection (upcoming)

Operational Tools
* JMX Support
* Cluster Membership

| APACHE . OPENSYMPHONY

* Cache Hits

* Transactions ‘0H|BER StrUts
JLIULS ™

* Shared Objects / Object Graphs
IBATIS =7 E3

* Shared Classes

s s «* TERRACOTTA

The power of JVM-level clustering

Clustering the JVM underneath CommondJ
WorkManager delivers POJO-based Grid:
* Simplicity:
* POJOs - Standard JDK 1.5 code

* Performance:
» Locality of Reference + fine-grained replication

* Scale-Out:

= Ability to scale Masters and Workers
independently

* High-Availability:
» Data resides on the “network” - fail-over to any
other node

s s -a® TERRACOTTA

Demo:
Master/Worker

s s «* TERRACOTTA

Case study

Implement a Master/Worker “container”

Implement a Web Crawler that uses our
“container”

Cluster it with Terracotta

Look into how we can tackle some real-world
challenges

s s -a® TERRACOTTA

Commond WorkManager specification 1

public interface Work extends Runnable {

}

public interface WorkItem ({
Work getResult();
int getStatus();

s s «* TERRACOTTA

Commond WorkManager specification 2

public interface WorkManager ({
WorkItem schedule (Work work) ;

WorkItem schedule (Work work,
WorkListener listener);

boolean waitForAll (Collection workItems,
long timeout) ;

Collection waitForAny (Collection
workItems, long timeout) ;

s s -a® TERRACOTTA

Commond WorkManager specification 3

public interface WorkListener ({
void workAccepted (WorkEvent we) ;
void workRejected (WorkEvent we) ;
void workStarted (WorkEvent we) ;

void workCompleted (WorkEvent we) ;

s s «* TERRACOTTA
Commond WorkManager specification 4

public interface WorkEvent ({

int WORK ACCEPTED = 1;
int WORK REJECTED = 2;
int WORK STARTED = 3;
int WORK COMPLETED = 4;

public int getType() ;
public WorkItem getWorkItem() ;
public WorkException getException();

s s «* TERRACOTTA

1. Let’s look at the
code for
Master/Worker

s s «* TERRACOTTA
2. Implementing a Web Spider

What is a Web Spider?

. Grabs the page from a URL

. Does something with it — for example indexes it using Lucene
. Parses it and find all URLs from this page

. Grabs these pages

. Parses them and...so on...you get the idea

ARLhWON=-

How to slice the problem?
1. Create new Work for a URL to a page to parse
2. Pass it to the WorkManager

3. When executed, the Work grabs the page, parses it and
gathers all its URLs

4. For each new URL: GOTO 1.

We are using the Master/Worker “container” to
parallelize the work

s s «* TERRACOTTA

3. Cluster with Terracotta
Do not change the application

Declaratively select which objects should be
shared across the grid
° E.g. which part(s) of the Java heap that should be

always up-to-date and visible to all parts of the
application that needs it — in the whole grid

s s -a® TERRACOTTA

Terracotta configuration

<roots> :
<root> define roots
<field-name> j

org. tc.workmanager.SingleWorkQueue.m workQueue

</field-name>
</root>
</roots>

define includes

<instrumented-classes>
<include> J

<class-expression>org. tc.workmanager. . *</class-expression>
</include>
<include>

<class-expression>org.tc.spider. .*</class-expression>
</include>

</instrumented-classes>

Th i « @

A STMPOSION 45' =" TERRACOTTA
Master and Worker are operating on

the exact same but still local WorkItem instance

Network-Attached
Memory (NAM)

Queue q = new LinkedList ()%

Queue q = new LinkedList() ;
WorkItem wi = new MyWorkItem

€ (wi) kltem wi = gq.poll();
qg.put(wi) ;
4 N

WorkIteJ

— —

Master Worker

s s -a® TERRACOTTA

4. Challenges

Routing?

How to handle work failure?
Ordering matters?

Worker failure?

Very high volumes of data?

s s «* TERRACOTTA

Routing

Keep state in the Work — no state in Worker

Route Work that are working on the same data to the

same node

Work can repost itself or new work onto the Queue
and is guaranteed to be routed to the same node

public class RoutableWorkItem<ID> extends

DefaultWorkItem 1mplements
Routable<ID> {

protected ID m routinglID;

s s «* TERRACOTTA

Routing

public interface Router<ID> {
RoutableWorkItem<ID> route (Work work) ;
RoutableWorkItem<ID> route (Work work, WorkListener listener);

RoutableWorkItem<ID> route (RoutableWorkItem<ID> workItem) ;

Can use different load-balancing algorithms

* Round-robin

* Work load sensitive balancing (Router looks at
Queue depth)

* Data affinity - “Sticky routing”
°* Your own...

s s «* TERRACOTTA

Retry

Retry on failure
Event-based failure reporting
Use the WworkL1stener

public void WorkListener#workRejected (WorkEvent
we) ;

public void workRejected (WorkEvent we) {
Expection cause = we.getException()
WorkItem wi = we.getWorkItem() ;
Work work = wi.getResult()

. // reroute the work onto queue X

s s «* TERRACOTTA

Ordering matters?

Use a PriorityBlockingQueue<T> (instead of a
LinkedBlockingQueue<T>)

Let your work implement Comparable

Create a custom Comparator<T>:
Comparator c = new Comparator<RoutableWorkItem<ID>>() ({
public int compare (
RoutableWorkItem<ID> workIteml,
RoutableWorkItem<ID> workItem2) ({
Comparable workl =
(Comparable)workIteml.getResult() ;
Comparable work2 =
(Comparable)workItem2.getResult () ;
return workl.compareTo (work2) ;

}}s

Pass it into the constructor of the
PriorityBlockingQueue<T>

s s «* TERRACOTTA
Worker failure detection: approaches
Heartbeat mechanism

Work timestamp — Master checks for timeout

Worker holds an “is-alive-lock” that Master
tries to take

Notification from Terracotta Server (since 2.3)

If detected: reroute all non-completed work

s s «* TERRACOTTA

Very high volumes of data?

Problem: Bottlenecks on the single Queue

°* High contention + Bad Locality of Reference

Solution:

1.Create a Channel abstraction
 Has 2 queues - pending and result

2.Each Worker has its own Channel(s)

3.Load-balancing in the Master(s)
- Maximizes Locality of Reference

— Minimizes contention

s s «* TERRACOTTA
Very high volumes of data — Result 1

Single Queue Implementation
~ 100 TPS (regardless of # nodes)

Channel Implementation
1 Node : 600 TPS
2 Nodes : 750 TPS
3 Nodes : 1000 TPS

s s -a® TERRACOTTA
Very high volumes of data - Batching

Better, but still not great throughput

Solution:
* Use Batching

° Create a configurable BatchingChannel

s s «* TERRACOTTA
Very high volumes of data — Result 2

Single Queue Implementation
~ 100 TPS (regardless of # nodes)

Channel Implementation
1 Node : 600 TPS
2 Nodes : 750 TPS
3 Nodes : 1000 TPS

Channel Implementation with Batching
1 Node : 1000 TPS
2 Nodes : 1750 TPS
3 Nodes : 2500 TPS

s s «* TERRACOTTA

Wrap up: developer benefits

Work with plain POJOs

Event-driven development

° Does not require explicit threading and guarding
Test on a single JVM, deploy on multiple JVMs

White box implementation

°* Freedom to design Master, Worker, routing
algorithms, fail-over schemes etc. the way you need

sty ‘a® TERRACOTTA

Learn more

Checkout the source:

* http://svn.terracotta.org/svn/forge/projects/labs/opendataqgrid

* http:/Isvn.terracotta.org/svn/forge/projects/labs/workmanager

Download Open Terracotta today:

* http://terracotta.orq

Articles:
* http://jonasboner.com/2007/01/29/how-to-build-a-pojo-based-data-grid-

using-open-terracotta/

* http://www.theserverside.com/tt/articles/article.tss?I=DistCompute

Documentation and blogs:

* http://terracotta.orqg

* http://blog.terracottatech.com/

* http://jonasboner.com

s s -a® TERRACOTTA

Questions?

TheServerSide <>

JAVASYMPOSIUM] ‘'a” TERRACOTTA

Thanks

http://terracotta.org

