
POJO Scalability and Large
Workloads with Terracotta

Jonas Bonér
Terracotta, Inc.
jonas@terracottatech.com
http://jonasboner.com

Who is Jonas?
- Hacker, OSS evangelist, Agile Practitioner
- Founder of AspectWerkz
- Committer to Eclipse AspectJ
- Committer to Terracotta
- Ski and Jazz fanatic
- Currently learning:

- Haskell, Erlang
- How to become a better dad

Goal of this session

Learn how JVM-level clustering and
Terracotta works at a high level

Learn how use it to scale-out POJO-based
applications using Master/Worker and
Locality of Reference

Agenda

1. Grids - What’s Behind the Buzz?
2. Master/Worker Pattern
3. JVM-level Clustering with Terracotta
4. Case-study – Distributed Web Spider:

1. Master/Worker Container (POJO-based, single JVM)
2. Web Spider Implementation
3. Cluster It Using JVM-level Clustering
4. Run It as a Grid

5. Real-World Challenges
6. Questions

What is a Grid?
Here is one definition:

“A Grid is a set of servers that together
creates a mainframe class processing

service where data and operations can move
seamlessly across the grid in order to

optimize the performance and scalability of
the computing tasks submitted to the grid.”

How do Grids scale?
Make use of Locality of Reference
• Data local to a specific node stays there
• Move operations around instead of data
• Move the application to the data

Work partitioning
• Ultimate: Work is “Embarrassingly Parallel” - no

shared state
• Acceptable: Partition the work into logical groups

working on the same data set

How do Grids handle failure?

Highly available using data duplication

Grids are build to expect failure
• In contrast to “traditional” distributed computing in

which every component has to expect the worst and
protect itself accordingly

Automatically re-executes pending and
failed work

Grids: Master/Worker in a Box?

Master/Worker pattern
• 1 Master

• 1-N Workers

• 1 Shared Memory Space

• Common applications

• Financial Risk Analysis
and other Simulations

• Searching / aggregation
on large datasets

• Sales Order pipeline
processing

How can we implement Master/Worker in Java?
l Concurrency primitives allows you to

write your own implementation
• wait/notify – synchronized blocks etc.

• Might be tricky to implement correctly and to
achieve good performance

How can we implement Master/Worker in Java?
l java.util.concurrent.ExecutorService

• Highly tuned, high-level abstractions

• Direct support for Master/Worker pattern

Problems:

• Does not separate Master from Worker

• Provides no information about Work status

How can we implement Master/Worker in Java?
l CommonJ WorkManager
• IBM and BEA specification that allows

threading in JEE

Advantages:

• Still simple POJO based

• Can wrap Java 5 concurrency abstractions

• Gives us the right abstraction level

• Allows us to add a layer of reliability

Review the Goal
What we want to do:
1. Implement a thread-based Master/Worker container
2. Distribute out Workers (and Masters) onto multiple

JVMs
3. Ensure application performance by minimizing data

movement payload across worker contexts

CommonJ WorkManager seems to be up for
the task, but…
How can we do this?

Can we use clustering?

Yes, clustering is a solution - but we want:
Simplicity and Scale-out

Simplicity
• No usage of proprietary APIs
• Preservation of Object Identity - no serialization,

works with POJOs
• Preservation of the semantics of the JLS and JMM

Scale-out
• Fine-grained and lazy replication
• Runtime lock optimization for clustering
• Runtime caching for data access

Enter Terracotta

Delivers clustering as a runtime
infrastructure service - a deployment artifact

Clusters the JVM

Open Source under Mozilla-based license

The ideal solution: JVM-level clustering

Scale-out

Terracotta approach
Today's Reality
• Scale out is complex
• Requires custom Java code

Our approach is fundamentally different
• Cluster the JVM
• Eliminate need for custom code

Development Benefits
• Leverage existing infrastructure
• Substantially less code
• Focus on business logic
• Consistent solution

Operational Benefits
• Scale independently
• Consistent and manageable
• Provides increased visibility

Terracotta Server
Clustering the JVM

Terracotta Server
Clustering the JVM

App Server

Web App

JVM

Frameworks

Frameworks

Business Logic

App Server

Web App

JVM

Frameworks

Frameworks

Business Logic

App Server

Web App

JVM

Frameworks

Frameworks

Business Logic

Custom DevelopmentCustom DevelopmentJMSJMSRMIRMISerializationSerialization

Terracotta Use Cases
eTail - HA for Shopping Cart
Telco - HA for User Sessions
SAAS - Online Testing Services

Mobile - Mobile Search Content
Media - Content Aggregation
Publication - Content Caching
Financial Services - Matching Engine
Financial Services - Trading Application
Logistics - Reporting Applications
Etail - Catalog

Healthcare - Availability of Patient Information
Online Gaming - Customer Account Balance
Publishing - Reference Data
Manufacturing - Dealership Inventory

eTail - Ticketing and Seating Availability
Construction - Financial Reporting

eTail - Order Processing
Financial Service - Order Processing
Financial Services / Telco - Data Grid
Online Gaming - Game Table Coordination

Distributed Caching

Clustering POJO’s

Clustering Spring

Collaboration /
Coordination / Eventing

HTTP Session Clustering

Terracotta Server (PASSIVE)
Clustering the JVM

Terracotta Server (PASSIVE)
Clustering the JVM

Terracotta architecture
Scale-out

Terracotta Server (ACTIVE)
Clustering the JVM

Terracotta Server (ACTIVE)
Clustering the JVM

App Server

Web App

JVM

Any Java Objects

Any Framework

Sessions Objects

App Server

Web App

JVM

Any Java Objects

Any Framework

Sessions Objects

App Server

Web App

JVM

Any Java Objects

Any Framework

Sessions Objects

Terracotta LibraryTerracotta LibraryTerracotta Library

Terracotta Server
• 100% Pure Java
• HA Active / Passive Pair

Local JVM Client
• Transparent
• Pure Java Libraries

Central Storage
• Maintains state across

restarts

Coordinator “traffic cop”
• Coordinates resource

access
• Runtime optimizations

Terracotta Server
Clustering the JVM

Terracotta Server
Clustering the JVM

Local JVM Client

Terracotta Server

Heap Level Replication
• Declarative
• No Serialization
• Fine Grained / Field Level

GET_FIELD -
PUT_FIELD

• Only Where Resident

JVM Coordination
• Distributed Synchronized

Block
• Distributed

wait()/notify()
• Fine Grained Locking

MONITOR_ENTRY -
MONITOR_EXIT

Large Virtual Heaps
• As large as available disk
• Dynamic paging

Scale-out

App Server

Web App

JVM TC Libraries

Shared
Objects

Terracotta Server
Clustering the JVM

Terracotta Server
Clustering the JVM

App Server

Web App

JVM TC Libraries

Shared
Objects

App Server

Web App

JVM TC Libraries

Shared
Objects

Terracotta Features
TC

M
an

ag
em

en
t

C
on

so
le

TC
M

an
ag

em
en

t
C

on
so

le

Management Console
• Runtime visibility
• Data introspection
• Cluster monitoring

Configuration
• Declarative
• Configuration Modules

Developer / Tuning Tools
• Eclipse Integration
• Configurator
• Error Reporting
• Application Analyzer (upcoming)
• Deadlock Detection (upcoming)

Operational Tools
• JMX Support
• Cluster Membership

Administration Console
• Cache Hits
• Transactions
• Shared Objects / Object Graphs
• Shared Classes

Terracotta Usability Features

The power of JVM-level clustering

Clustering the JVM underneath CommonJ
WorkManager delivers POJO-based Grid:
• Simplicity:

POJOs - Standard JDK 1.5 code
• Performance:

Locality of Reference + fine-grained replication
• Scale-Out:

Ability to scale Masters and Workers
independently

• High-Availability:
Data resides on the “network” - fail-over to any
other node

Demo:
Master/Worker

Case study

1. Implement a Master/Worker “container”

2. Implement a Web Crawler that uses our
“container”

3. Cluster it with Terracotta

4. Look into how we can tackle some real-world
challenges

CommonJ WorkManager specification 1
public interface Work extends Runnable {

}

public interface WorkItem {

Work getResult();

int getStatus();

}

CommonJ WorkManager specification 2

public interface WorkManager {

WorkItem schedule(Work work);

WorkItem schedule(Work work,
WorkListener listener);

boolean waitForAll(Collection workItems,
long timeout);

Collection waitForAny(Collection
workItems, long timeout);

}

CommonJ WorkManager specification 3

public interface WorkListener {

void workAccepted(WorkEvent we);

void workRejected(WorkEvent we);

void workStarted(WorkEvent we);

void workCompleted(WorkEvent we);

}

CommonJ WorkManager specification 4
public interface WorkEvent {

int WORK_ACCEPTED = 1;

int WORK_REJECTED = 2;

int WORK_STARTED = 3;

int WORK_COMPLETED = 4;

public int getType();

public WorkItem getWorkItem();

public WorkException getException();

}

1. Let’s look at the
code for

Master/Worker

2. Implementing a Web Spider
What is a Web Spider?
1. Grabs the page from a URL
2. Does something with it – for example indexes it using Lucene
3. Parses it and find all URLs from this page
4. Grabs these pages
5. Parses them and…so on…you get the idea

How to slice the problem?
1. Create new Work for a URL to a page to parse
2. Pass it to the WorkManager
3. When executed, the Work grabs the page, parses it and

gathers all its URLs
4. For each new URL: GOTO 1.

We are using the Master/Worker “container” to
parallelize the work

3. Cluster with Terracotta
Do not change the application
Declaratively select which objects should be

shared across the grid
• E.g. which part(s) of the Java heap that should be

always up-to-date and visible to all parts of the
application that needs it – in the whole grid

Terracotta configuration
<roots>

<root>

<field-name>

org.tc.workmanager.SingleWorkQueue.m_workQueue

</field-name>

</root>

</roots>

<instrumented-classes>

<include>

<class-expression>org.tc.workmanager..*</class-expression>

</include>

<include>

<class-expression>org.tc.spider..*</class-expression>

</include>

</instrumented-classes>

define includes

define roots

Master and Worker are operating on
the exact same but still local WorkItem instance

Network-Attached
Memory (NAM)

Network-Attached
Memory (NAM)

Master Worker

WorkItem

WorkItem

WorkItem

Queue q = new LinkedList();

WorkItem wi = new MyWorkItem();

q.put(wi);

Queue q = new LinkedList();

WorkItem wi = q.poll();

4. Challenges

Routing?

How to handle work failure?

Ordering matters?

Worker failure?

Very high volumes of data?

Routing
Keep state in the Work – no state in Worker

Route Work that are working on the same data to the
same node

Work can repost itself or new work onto the Queue
and is guaranteed to be routed to the same node

public class RoutableWorkItem<ID> extends
DefaultWorkItem implements

Routable<ID> {

protected ID m_routingID;

...

}

Routing
public interface Router<ID> {

RoutableWorkItem<ID> route(Work work);

RoutableWorkItem<ID> route(Work work, WorkListener listener);

RoutableWorkItem<ID> route(RoutableWorkItem<ID> workItem);

}

Can use different load-balancing algorithms
• Round-robin
• Work load sensitive balancing (Router looks at

Queue depth)
• Data affinity - “Sticky routing”
• Your own…

Retry
Retry on failure
Event-based failure reporting
Use the WorkListener
public void WorkListener#workRejected(WorkEvent

we);

public void workRejected(WorkEvent we) {

Expection cause = we.getException();

WorkItem wi = we.getWorkItem();

Work work = wi.getResult();

... // reroute the work onto queue X

}

Ordering matters?
1. Use a PriorityBlockingQueue<T> (instead of a

LinkedBlockingQueue<T>)

2. Let your Work implement Comparable
3. Create a custom Comparator<T>:

Comparator c = new Comparator<RoutableWorkItem<ID>>() {
public int compare(

RoutableWorkItem<ID> workItem1,
RoutableWorkItem<ID> workItem2) {

Comparable work1 =
(Comparable)workItem1.getResult();

Comparable work2 =
(Comparable)workItem2.getResult();

return work1.compareTo(work2);
}};

4. Pass it into the constructor of the
PriorityBlockingQueue<T>

Worker failure detection: approaches
Heartbeat mechanism
Work timestamp – Master checks for timeout
Worker holds an “is-alive-lock” that Master
tries to take
Notification from Terracotta Server (since 2.3)

If detected: reroute all non-completed work

Very high volumes of data?

Problem: Bottlenecks on the single Queue
• High contention + Bad Locality of Reference

Solution:
1.Create a Channel abstraction
• Has 2 queues - pending and result

2.Each Worker has its own Channel(s)
3.Load-balancing in the Master(s)

Maximizes Locality of Reference
Minimizes contention

Very high volumes of data – Result 1

Single Queue Implementation
~ 100 TPS (regardless of # nodes)

Channel Implementation
1 Node : 600 TPS

2 Nodes : 750 TPS

3 Nodes : 1000 TPS

Very high volumes of data - Batching

Better, but still not great throughput

Solution:

• Use Batching
• Create a configurable BatchingChannel

Very high volumes of data – Result 2

Single Queue Implementation
~ 100 TPS (regardless of # nodes)

Channel Implementation
1 Node : 600 TPS

2 Nodes : 750 TPS

3 Nodes : 1000 TPS

Channel Implementation with Batching
1 Node : 1000 TPS

2 Nodes : 1750 TPS

3 Nodes : 2500 TPS

Wrap up: developer benefits

Work with plain POJOs

Event-driven development
• Does not require explicit threading and guarding

Test on a single JVM, deploy on multiple JVMs

White box implementation
• Freedom to design Master, Worker, routing

algorithms, fail-over schemes etc. the way you need

Learn more
Checkout the source:
• http://svn.terracotta.org/svn/forge/projects/labs/opendatagrid (simple)

• http://svn.terracotta.org/svn/forge/projects/labs/workmanager (performant)

Download Open Terracotta today:
• http://terracotta.org

Articles:
• http://jonasboner.com/2007/01/29/how-to-build-a-pojo-based-data-grid-

using-open-terracotta/

• http://www.theserverside.com/tt/articles/article.tss?l=DistCompute

Documentation and blogs:
• http://terracotta.org

• http://blog.terracottatech.com/

• http://jonasboner.com

Questions?

Thanks
http://terracotta.org

