«" TERRACOTTA

Terracotta versus JBossCache

Introduction

Application scalability is sometimes considered a black art. Terracotta seeks to help our
community by moving clustering logic out of source code and into configuration. We
believe this declarative approach will help, in many cases, to reduce the degree of “black
art” in clustering, give more developers and operators the control they need, and make
applications more resilient and more scalable.

Many discussions have been offered regarding the value of configuration-driven
clustering. With Terracotta, this promise of clustering simplicity comes with assurances
of the highest levels of performance. In this article, we document an experience in
migrating from JBossCache and the associated programming model to Terracotta’s
runtime approach. We will see how Terracotta can make the migration path simple by
adapting itself to JBoss’s API, and we will see how the core DSO technology provides
for two orders of magnitude greater performance than JBoss, with near linear scalability.

The Use Case

The use case has occurred multiple times where third party content gets served via a web
portal. A read-only content aggregator is used to ensure quality of service for end users.
The approach in several cases, Terracotta has seen, is to create a web service hosted on
one app server instance that would query the Internet or Extranet-based content providers
asynchronously with end user traffic, thus limiting end users to only being able to access
the aggregator itself.

© 2007 Terracotta Inc., All Rights Reserved 1

«" TERRACOTTA

App Server App Server App Server App Server

SOAP

Content
Cache

SJapInoid
JUBIU0D

The benefits of this approach are in the ability to scale the aggregator separately of the
application tier, as well as the ability to serve Internet-based or Extranet-based content at
the same speed as the application’s local content; end users are indifferent and unaware
that content is outsourced.

In three recent use cases, JBoss was the container of preference because it offered a web
service API, the app server itself, and built-in caching API’s with configurable clustering
that can be turned on as scale demands; so it appeared to be a one-stop shop for this use
case. JBoss’s app server and API’s worked well for building the application. More
importantly, the caching API was helpful in that JBoss Treecache helped developers
express the content problem in a very natural way. For example, if a content aggregator
contains seismic information per region and custom annotations on that region per
geologist observing this data, surely each type of cache data has different scope from per-
user to per-geography and each will expire on its own schedule. Expressing each type of
cache under an expiration policy and per source makes cache management simple. The
following diagram depicts an example of the power of the Treecache:

© 2007 Terracotta Inc., All Rights Reserved 2

‘s" TERRACOTTA

Seismic
Data

Bookmarks

Corresponding
Weather

Geologist
1

Event:
#249

us
San

D
Francisco
San
Francisco
Event

#249

© 2007 Terracotta Inc., All Rights Reserved

«" TERRACOTTA

Under such a design, one could easily expire all seismic data in the USA every 15
minutes by deleting the USA node from the tree. And, theoretically, scaling the
architecture is just a matter of sharing or partitioning the tree across many caching
servers.

The Pain

In practice, however, JBosscache’s Treecache project worked on one node but when it
was time to scale, the customers found the aggregation server degraded from more than
one hundred requests per second to about ten requests per second per aggregation server.
This 90% penalty for clustering was unacceptable. The cost of making a SOAP call to
the server(s) responsible for aggregation was so high that the value of the cache came
into question. Interestingly, no matter how slow the cache, it is always better than risking
the Internet / Extranet call to get the content straight from the source while servicing the
end user’s HTTP request. So, at the end of the experiments, it became clear that
availability was reason enough to keep the cache. The requirements were to run no more
than 4 app-servers at the beginning with 1 or more app-servers also doubling up as an
“aggregation” server and then gradually add more nodes as application usage increases.
So, why not stay with JBosscache, go to production, and tune for performance throughout
the year? The answer was, Terracotta provides availability without compromising scale,
and without having to delay the solution until the problem hits a production application.
In fact, all three of these customers started by conflating small scale with the cost of
building efficient systems, believing that one must trade of scalability for time to market
when in fact Terracotta helped them decouple system scale from architecture complexity.
While scalability and availability is a concern at 100 nodes, Terracotta’s runtime
clustering lowered the cost of tuning such that it could be started early in the
application’s lifecycle.

© 2007 Terracotta Inc., All Rights Reserved 4

«" TERRACOTTA

App Server App Server App Server App Server

Terracotta
Server

sJapinoid

For this content caching use case, Terracotta scaled linearly, presented itself via a POJO
Treemap interface as a bolt-on replacement for JBosscache, and provided higher
availability than JBoss could. The availability advantage comes from the fact that
Terracotta, as shown in the diagram below, runs both in process and outside your Java
process.

The app servers can be stopped. The caching SOAP service disappears from the
architecture altogether, and Terracotta’s out-of-process Server can be stopped and the
cache will not be lost without the need to implement a CacheLoader on top of a
proprietary API. This afforded the operations team a 100% available cache without the
need to maintain special application startup procedures, re-warm the cache, or suffer a
recovery period when the application goes down and back up.

© 2007 Terracotta Inc., All Rights Reserved 5

«" TERRACOTTA

v
4

v

V|
=~

v

;@
>
@

Héap H&ap)
f) Transaction 1234:
Transaction 1234: \\ Update obj 5
Update obj 5
plate 0B \U Clustering Impl
— e/
Clustering Impl _ VM)
N o 7y

_ JVM 4)

|

Cluster Server J

Let us now dive into the key features of Terracotta’s DSO clustering technology that
provided these customers with scale and improved availability. Note that a detailed
discussion of Terracotta’s design is outside the scope of this article, but is available on
our website at http://docs.terracotta.org/confluence/display/docs1/Terracotta+Scalability.
Terracotta DSO works to keep objects consistent across JVM boundaries as depicted in
the following diagram:

Note that the image depicts the system’s ability to keep the JVM on the left in sync with
the others. This implies a level of integration to the JVM unlike any other in that
Terracotta does not require objects to implement Java’s serialization interface, nor does
Terracotta invoke Java serialization at any time. Such integration preserves object
identity and allows applications and development frameworks to remain true POJO. This
proves vital to our use case, as we will explain later.

The following key features each contribute to the availability and performance gains the
customers saw:
* Two-tier caching with LRU / LFU optimizations
e Terracotta’s fine-grained updates allowing clustering to push only the object data
that changes
* Page in and out objects on demand
* Linear scale in the server

Two tier caching

Terracotta DSO is designed under the same concepts as symmetric multiprocessing. If
Application Servers are our CPU’s and the caching server is a slow I/O subsystem, we
need to put read-thru / write-thru L1 caches into the App server (CPU, by analogy), and

© 2007 Terracotta Inc., All Rights Reserved 6

«" TERRACOTTA

the caching server needs to be a consistent, cross-app server L2 cache. Terracotta injects
itself into your JVM, and introduces L1 caches automatically.

The following diagram depicts Terracotta’s architecture. The boxes labeled “TC
Libraries” represent our JVM plug-in. The plug-in contains LRU / LFU caching logic
inside. When depicted as per the diagram, one can visualize the app server boxes as
CPUs with the TC Libraries acting as L1 caches. The Terracotta Server cluster is then
the highly-available L2 keeping shared access to memory in synch. With two tier
caching as opposed to a single JBoss caching service, Terracotta helps the application
avoid unnecessary calls to your caching server by remembering the last answer the
caching server provided. An important note here is that under Terracotta, as opposed to
JBoss, this two tier caching technique was used in place of SOAP so as to avoid the
marshalling / un-marshalling cost of calling the caching service. The cache became a
pure POJO cache, with the behavior of a centralized caching server but with the
performance of a local-only cache.

e ~
Scale-out ——

App Server

Web App

Shared
Objects

TC Libraries

App Server

./.\0 Web App
A Objects

TC Libraries

App Server

Web App

Shared
Objects

J

Terracotta Server
Cluster

Fine Grained Updates

Terracotta plugs in to your existing JVM and weaves itself into the calls to read and write
to heap (heap being the Java process’s memory in the host operating system). This
means that regardless of object graph size or complexity, Terracotta will see the details of
a memory update. When memory is read by a Java thread (such as looking up a cache
entry in the data tree) that memory can come from another JVM over the network just in
time to satisfy the thread’s need to access a particular object. When memory is written
by a Java thread (such as flushing the cache or updating a cache entry in the aggregation
server) that write can be pushed to other JVMs in the application server cluster as needed.

© 2007 Terracotta Inc., All Rights Reserved 7

«" TERRACOTTA

Performance comes from the fact that small changes to cache represent small updates to
the network. For this caching use case there are 2 types of updates to cache and both are
always small. The first is a cache flush where a whole sub-graph of the treemap is
deleted once stale. This is a simple reference update (this.child = null in pseudo code),
and represents four bytes of data (the reference ID) changing on heap (assuming we can
ignore the garbage that eventually gets collected). The second type of update is a cache
miss, leading to the addition of a new cache node to the tree. The size of this update is
dependent on the type of cache data being populated but typically ranges from 250 —
1KBytes.

While JBoss’s Treecache pushes only the nodes in the tree that change, Terracotta can
push fine-grained tree updates at a field level versus a node level. This can add
significant performance in data models where a cache node is much larger than any one
field in that node and individual fields can be updated without deleting or overwriting the
entire tree node. Terracotta does this with is core JVM plug-in and without a purpose
built treecache technology.

Page In and Out

The ability to connect into the JVM’s very access to its own heap allows Terracotta to
page data into memory just in time to satisfy a cache lookup. This adds another
performance benefit in that the cache can be sparsely populated and data will be pulled in
as needed but not before. Unlike JBosscache’s peer-to-peer approach, Terracotta’s server
(or server cluster as the need may arise) is the only server that must keep track of all data
in the cache. Meanwhile, application server instances can remember the pieces of cache
needed to satisfy end user traffic at any one period in time. Memory footprint is smaller
so more heap remains for end user session and request processing. More importantly, the
application servers do not need to hear about all cache updates since they do not store the
entire cache in memory; there is no data to keep consistent. This approach minimizes
network chatter and assures close-to-linear scalability.

Linear Scale in the Server

As a result of app server-internal caching, fine-grained updates, and the ability to page in
only the subset of cache needed to service requests, Terracotta will outperform
JBosscache, whether using Treecache or Pojocache. Both technologies are clustered
using JGroups and, while functionally viable, the scalability of keeping all servers
consistent via copying all data to all caching nodes will eventually bottleneck on the
network. Terracotta does not suffer from this bottleneck because the caching servers can,
in a just-in-time fashion, update only the parts of cache that become stale in each
application server’s local copy over time. No cluster-wide conversations need occur on
cache update. This all but eliminates the network bottleneck except for cache data that is
resident in all nodes. So, the server adds another level of scalability by forcing the app

© 2007 Terracotta Inc., All Rights Reserved 8

«" TERRACOTTA

servers to pull changes on-read instead of pushing the changes on write. This means the
server lazily updates clients as they read stale data and thus was able to avoid the network
bottleneck in all cases where a Terracotta customer has migrated from JBoss Cache.

Results, Graphs, and Analysis

Terracotta has prepared a harness with which you can reproduce the test results that our
customers used to convince themselves of the performance benefits of our approach.
(Keep in mind the development benefit of being able to eliminate the SOAP calls and
remaining pure POJO while simultaneously introducing multi-tier caching strategies.)
There are two approaches we have undertaken. You can either use JBoss’s own
performance test or use our kit to insert Terracotta into your application. We have
bundled both to make testing easier. This analysis focuses on JBoss’s own test harness.
The harness is based on JBoss’s internal performance test harness made available on their
website at
http://wiki.jboss.org/wiki/Wiki.jsp?page=WhatShouldWeExpectOfThePojoCachePerfor
mance

JBoss’s site does not document the size or configuration of the computer cluster for this
test, so Terracotta chose to first reproduce the test using JBosscache to form a local
hardware baseline for our own computer cluster. The first thing we found is that we
could not reproduce the performance JBoss had. But this is not too important. Because
Terracotta DSO was able to be introduced to JBoss’s harness without rewriting it. So we
could test the same code base clustered by JBosscache and DSO side by side. The
conclusion was documented in a webinar we hosted recently.

According to JBoss’s own results in the graph directly below, Treecache produced on the
order of 500 requests per second from a four-node cluster.

© 2007 Terracotta Inc., All Rights Reserved 9

«" TERRACOTTA

Throughput
10000
9000
. 8000 "
o
& 7000
® 6000 * —+—TreeCache
- PgjoCache 100-0
F a0 —4 PajoCache 10-90
=4 4000 PogoCache 5-95
£ 3000
2000 AV
1000 -
¢
o T T T
10 100 200
Course list size

(All data for four nodes. Source of graph is JBoss.com)

Treecache and Pojocache both decreased significantly in throughput on 2 or more nodes
when caches had more than 100 entries and/or had a significant write mix. The graph
above shows a 4-node JBoss cluster reading and writing a cache of 10 to 200 objects in
scale. The green and blue graphs labeled 10-90 and 5-95 represent a 10% and 5% write
mix, respectively. 100-0 represents a write-only scenario that is irrelevant to the caching
use case. Terracotta produced more than 2000 requests per second totaling 8000 per
second for JBoss’s 4-node 200 list test.

Terracotta engineers gathered similar data for our clustering implementation but we
tested larger datasets, higher read / write mix, and more nodes. The 4-node cluster
produces about five times the performance of JBoss’s own performance numbers from
the graph above at low scale like 10 cache objects. And the cluster never drops below
4000 transactions per second, even at 1600 tree nodes in cache.

© 2007 Terracotta Inc., All Rights Reserved 10

«" TERRACOTTA

14000

12000

10000

8000

Throughput (per node)

4000

2000

Terracotta Cache - 4 node cluster

—O=—100~0 (Write~Read)

6000 -

=—{1=—50~50
—/x—20~80

~>¢=10~90

T~ —A

10

100 200
List Size

400

800 1600

At eight caching nodes, the cache still scales well, whereas customer testing reports that
JBoss’s JGroups internals no longer function and the JBoss version of the test crashes:

9000

8000

7000

6000

5000

4000

3000

Throughput (per node)

2000

1000

Terracotta Cache -8 node cluster

—¢— 100~0 (Write~Read)
0— @@ @ -
\ﬂ —a— 50-50
——20~80
. 10~90
10 100 200

List Size

As one can see, the throughput of a single app server using the standard Java Treemap
class and backed by Terracotta far outpaces the same architecture built on JBosscache.
When adding SOAP service calls to the JBoss architecture as opposed to Terracotta’s
pure POJO approach JBoss’s system dropped from hundreds or thousands of request per
second to tens. This observation in this use case led customers to conclude that
Terracotta is 100 times faster than JBoss. Terracotta’s pure POJO approach
demonstrated throughput 100 times that of the alternative approach where SOAP calls are
added to the JBoss architecture and the Terracotta approach scales to 16 nodes without
significant slow down.

© 2007 Terracotta Inc., All Rights Reserved

11

«" TERRACOTTA

Also, recall that with Terracotta, the application servers, the caching servers, and the
Terracotta server can all be restarted at will, since Terracotta is persisting the cache to
disk at this level of throughput. So availability is significantly higher than JBoss’s in-
memory clustering, whose caches are lost on restart or crash.

Reproducing the Tests

Several tests were run. You can download the tests from wiki.jboss.org and try to hook
up the system yourself. You can also download a pre-built kit from Terracotta to test and
/ or migrate your application from JBoss to Terracotta DSO:

http://www.terracotta.org/confluence/display/labs/Terracotta+Cache

The basic approach to migration is to remove JBoss cache initialization and replace it
with org.tc.ITerracottaTreeCache instead. The interface supports most of the methods in
the original JBoss Cache implementation:

public interface ITerracottaTreeCache {

Set getKeys (String fgn) throws CacheException;

Set getKeys (Fgn fgn) throws CacheException;

Object get (String fgn, Object key) throws CacheException;
Object get (Fgn fgn, Object key) throws CacheException;

ITerracottaTreeCache get (String fgn) throws CacheException;

ITerracottaTreeCache get (Fgn fgn) throws CacheException;

Fgn getFgn () throws CacheException;

public String getStringFgn () throws CacheException;

public Map getData (String fgn) throws CacheException;

public Map getData (Fgn fgn) throws CacheException;

boolean exists (String fgqn) throws CacheException;

boolean exists (Fgn fgn) throws CacheException;

boolean exists (String fgn, Object key) throws CacheException;
boolean exists (Fgn fgn, Object key) throws CacheException;
void put (String fgn, Map data) throws CacheException;

void put (Fgn fgn, Map data) throws CacheException;

© 2007 Terracotta Inc., All Rights Reserved 12

Object put(String fgn, Object key, Object value) throws
CacheException;

Object put (Fgn fgn, Object key, Object value) throws
CacheException;

void remove (String fgn) throws CacheException;

void remove (Fgn fgn) throws CacheException;

Object remove (String fgn, Object key) throws CacheException;
Object remove (Fgn fgn, Object key) throws CacheException;
void removeData (String fqgn) throws CacheException;

void removeData (Fgn fgn) throws CacheException;

String print (String fgn);

String print (Fgn fgn);

Set getChildrenNames (String fgqn) throws CacheException;
Set getChildrenNames (Fgn fgn) throws CacheException;
String toString();

String printDetails () ;

int getNumberOfNodes () ;
}

The Terracotta version of the cache is implemented in the class

org.tc. TerracottaTreeCache.java. The implementation supports many backing stores such
as hashmap, synchronizedHashMap, and ConcurrentHashMap. The cache keys
implement a comparator (so as to allow applications to reference a subsection of the
TreeMap), while maintaining Jboss TreeCache APIs — the user then replaces TreeCache
transparently by simply instantiating the Terracotta cache (instead of JbossTreeCache) ,
since most of the APIs are preserved.

Conclusion

Terracotta’s architecture helped deliver higher application availability than JBosscache
by keeping cache data available across JVM crashes and restarts. The caching service is
also now capable of scaling well past 16 nodes at linear scales far beyond all three
customers’ initial requirements (60,000 requests per second from 16 app servers as
opposed to a planned 10,000 requests per second projected from 80 app servers at 100
requests each per second). Thus the resulting cluster will be smaller over time and save
the customers money. There is a second savings because the application architecture is

© 2007 Terracotta Inc., All Rights Reserved 13

«" TERRACOTTA

«" TERRACOTTA

now POJO as opposed to SOAP-based, and scales with less complexity, thus freeing
developers from what was a planned six month development and scalability project, to in
this case, an effort measured in weeks.

The architecture is more elegant in that it incorporates a two-tier caching system. It also
scales through on-demand partial cache loading that avoids unnecessary network chatter.

Most important, the customer’s developers helped Terracotta develop a migration kit that
is now freely downloadable under the same open source license as Terracotta at
http://www.terracotta.org/confluence/display/labs/Terracotta+Cache.

This migration kit will help you get on your way with Terracotta DSO in place of JBoss
Cache without rewriting your application or causing any alteration of your caching
service.

© 2007 Terracotta Inc., All Rights Reserved 14

