.. _libdoc_gradient: =========================================== :mod:`gradient` -- Symbolic Differentiation =========================================== .. module:: gradient :platform: Unix, Windows :synopsis: low-level automatic differentiation .. moduleauthor:: LISA .. testsetup:: * from theano.gradient import * Symbolic gradient is usually computed from :func:`gradient.grad`, which offers a more convenient syntax for the common case of wanting the gradient in some expressions with respect to a scalar cost. The :func:`grad_sources_inputs` function does the underlying work, and is more flexible, but is also more awkward to use when :func:`gradient.grad` can do the job. Gradient related functions ========================== .. automodule:: theano.gradient :members: .. _R_op_list: List of Implemented R op ======================== See the :ref:`gradient tutorial ` for the R op documentation. list of ops that support R-op: * with test [Most is tensor/tests/test_rop.py] * SpecifyShape * MaxAndArgmax * Subtensor * IncSubtensor set_subtensor too * Alloc * Dot * Elemwise * Sum * Softmax * Shape * Join * Rebroadcast * Reshape * Flatten * DimShuffle * Scan [In scan_module/tests/test_scan.test_rop] * without test * Split * ARange * ScalarFromTensor * AdvancedSubtensor1 * AdvancedIncSubtensor1 * AdvancedIncSubtensor Partial list of ops without support for R-op: * All sparse ops * All linear algebra ops. * PermuteRowElements * Tile * AdvancedSubtensor * TensorDot * Outer * Prod * MulwithoutZeros * ProdWithoutZeros * CAReduce(for max,... done for MaxAndArgmax op) * MaxAndArgmax(only for matrix on axis 0 or 1)