
Tizen Telephony

Jongman Park

tizen.org2

Contents
• Introduction

• Architecture

• Components

• Operation flow

• Developing plug-in

tizen.org3
3/

Introduction

• Telephony stack is ready for commercialization
– It is a proven qualified stack with modem chip vendors in industry

– Full compliant telecommunication functionalities
• SIM, SIM phonebook, SIM application toolkit

• Network registration, Voice/Video call service, Managing SMS/CBS

• Supplementary services

• Packet service

– It already supports well-defined interface with connman.

• Benefits for commercialization
– Flexible plug-in architecture

• Inter-process communication plug-in

• Modem interface plug-in

– Keeping maintenance for commercialization readiness.
• GCF certification

– Can be well customized for various carrier requirements and manufacturer’s proprietary
requirements

• Various carrier requirements can be easily customized with plug-in capsules

• Manufacturers do not need to have obligation to open their proprietary implementation
*GCF : Global Certificate Forum

tizen.org4
4/

Architecture

Tizen
Telephony

App - 1 App - 2 App - 3 App - n

FreeStyle

Plug-in

Communicator

Plug-in (socket)

Communicator

Plug-in (dBUS)

Modem 1

Plug-in

Modem 2

Plug-in

FreeStyle

Plug-in

FreeStyle

Plug-in

Modem1 Modem2

. . .

Database Storage

Modem N

Plug-in

Modem N. . .

tizen.org5
5/

Components
• Core Library

– Base libraries of Tizen Telephony

– Service Components
• Server, Plug-in, Queue, HAL, Communicator, Storage, Util

– Core Objects
• Functional objects

– Modem, Network, Call, SS, SMS, PS, Context, SIM, SAP, SAT, SIM Phonebook

• Operation table
– Functions of object are defined by operation table

• Private object
– Data of objects are stored and can be accessible by get/set APIs

– e.g : Connected context list

• Plug-in
– Integrated service module

• Communicator plug-in
– Interaction between applications and Tizen Telephony stack

• Modem plug-in
– Processing requests/responses/notifications between AP and CP

• Freestyle plug-in
– Independently processing tasks by a certain trigger

• Daemon
– Dispatcher

• Sending requests/responses/notifications to a proper plug-in

*AP : Application Processor
*CP : Communication Processor

tizen.org6
6/

Core Library

call

SIM Access

Profile
storage

HALcommunicator

Supplementary

service

SMS

SIM Application

Toolkit

network

SIM phonebook

modem

Packet service

context

SIM

Core Library

Server

Plug-in queue

util

Service
components CoreObjects

tizen.org7
7/

Plug-in

Storage Plug-in

(DataBase)

storage

HAL

Plug-in

HAL

Communicator Plug-in

(DBUS)

communicator

Modem Plug-in

call

SIM Access

Profile

Supplementary

service

SMS

SIM Application

Toolkit

network

SIM phonebook

modem

Packet service

SIM

HAL

Storage Plug-in

(Application

Preference)

storage

storage

Freestyle Plug-in

(PacketService Manager)

Context * n

Packet serviceContext * n

Freestyle Plug-in

(Indicator)

storage

Packet service

Plug-in

CoreObjects

Referencing

CoreObjects

Legend

tizen.org8
8/

Operation Flow

Application

libA.so

Application

libB.so

Tizen Telephony
Communicator

Plugin

Communicator

Plugin

Application

libA.so

Server

Modem

Plugin

Modem

Plugin

3. server_dispatch_

request(UserRequest)

UserRequest

2. communicator_dispatch_

request(UserRequest)

Communicator

1. user_request_

new("plugin_name")

request_hook

4. server_find_

plugin("plugin_name")

5. plugin_get_core_

object_bytype(Plugin, Type)

CoreObject

CoreObject

6. core_object_dispatch_

request(UserRequest)

7. _dispatcher() 8. umts_xxx()

Pending

Hal
10. hal_send_

request()

tizen.org9
9/

Developing plug-in

• Set plug-in description

– It should be in any plug-in

– Symbol (plugin_define_desc) for

dynamic loading

– Defines the name, priority, version,

load, init, and unload action

• Communicator plug-in

– Set the operation table

• Response from modem plug-in

• Notification from modem plug-in

– Create the communicator object.

struct plugin_define_desc_t {

gchar *name;

enum plugin_priority_e priority;

int version;

gboolean (*load)();

gboolean (*init)(TcorePlugin *);

void (*unload)(TcorePlugin *);

};

enum plugin_priority_e {

PLUGIN_PRIORITY_HIGH = -100,

PLUGIN_PRIORITY_MID = 0,

PLUGIN_PRIORITY_LOW = +100

};

communicator plugin

struct communitor_operations_t ops = {

.send_response = my_send_response, /* send response to application */

.send_notification = my_send_notification, /* send notification to application */

};

On_recv(…)

{

/* Request delivery to daemon */

tcore_server_dispatch_request(…)

}

static gboolean on_init(TcorePlugin *p)

{

Communicator *comm;

comm = communicator_new(p, &ops);

…

/* create socket & bind & listen & accept */

/* if, recv from application, call on_recv() */

return TRUE;

}

Plug-in description

struct tcore_plugin_define_desc

plugin_define_desc =

{

.name = "MYMODEM",

.priority =

TCORE_PLUGIN_PRIORITY_MID,

.version = 1,

.load = NULL,

.init = NULL,

.unload = NULL

};

tizen.org10
10/

Developing plug-in

• HAL Plug-in

– Create the data channel to modem

– Naming a certain modem for other plug-ins

• Modem Plug-in

– Find the HAL for interacting physical modem

– Initialize the core objects

• Core objects’ operation table has to be set

HAL plug-in
static struct hal_operations_t hops = {

.power = hal_power,

.send = hal_send,

};

static gboolean my_hal_recv(GIOChannel *channel, GIOCondition condition, gpointer data)

{

TcoreHal *hal = data;

/* read data from fd */

/* n = length */

/* buf = read data */

tcore_hal_emit_recv_callback(hal, n, buf);

}

static gboolean on_init(TcorePlugin *p) {

TcoreHal *h;

h = tcore_hal_new(plugin, “myhal”, &hops);

/* Create MODEM TX/RX Channel */

fd = … /* create i/o channel for communicate with modem */

channel = g_io_channel_unix_new(fd);

source = g_io_add_watch(channel, G_IO_IN, (GIOFunc) my_hal_recv, h);

g_io_channel_unref(channel);

return TRUE;

}

modem plug-in

static gboolean on_init(TcorePlugin *p)

{

TcoreHal *h;

h = tcore_server_find_hal(tcore_plugin_ref_server(p), “myhal”);

initialize core objects which will be used

…

return TRUE;

}

tizen.org11

Thank You.

