

Bluetooth - Short Introduction

- Short range wireless technology operating at 2.4 GHz
- Originally announced in 1998 as a replacement for RS-232
 - but has evolved way beyond that
- 1.1 in 2001 fixed many issues in the initial version
- 2.0 in 2004 with increased data rate from 1 to 3 Mbit/s
- 3.0 in 2009 with High Speed support together with WiFi
- 4.0 in 2010 with Low Energy (aka Bluetooth Smart)
 - Bringing Bluetooth into many new kinds of devices

Bluetooth – Common Uses

- File transfer
- Contacts & Message access
- High quality audio streaming
- Media playback control
- Phone call control & audio
- Health care devices
- Human Input Devices
- Networking
- ...and many more

Bluetooth Low Energy

- A new 2.4 GHz technology reusing many features of Bluetooth
- Went through several names in its evolution
 - Wibree, Ultra Low Power, Low Energy
- Now official branding
 - Bluetooth Smart For single-mode (LE-only) devices
 - Bluetooth Smart Ready For dual-mode (LE + traditional Bluetooth)
- Much lower power consumption coin-cell battery is enough
 - ...with the drawback of having less bandwidth than traditional Bluetooth
- Much faster connection creation
 - Smaller penalty for being more often disconnected saves more power

Bluetooth Smart Devices

Differences to traditional Bluetooth

- Connection model
 - Scanning and Advertising
- All profiles based on the Attribute Protocol
 - ATT = Attribute Protocol
 - GATT = Generic Attribute Profile
- Device roles in matching pairs
 - Central & Peripheral
 - Observer & Broadcaster
- Security algorithms on the host side instead of the controller
- Privacy
 - Random device addresses in addition to public ones

ATT & GATT

- A basis for all LE profiles
- Smallest logical unit the attribute
 - Type
 - Value
 - Permissions
- Hierarchy
 - Profile
 - Service
 - Characteristic
- Read/write operations, indications & notifications

BlueZ - History

- Standard Linux Bluetooth stack since 2.4.6 (2001)
- BlueZ 2 in 2002
- BlueZ 3 in 2006
 - First D-Bus release
- BlueZ 4 in 2008
 - Refined D-Bus
 - Bluetooth 2.1 support
- BlueZ 5 end of 2012
 - Refined D-Bus
 - Bluetooth 4.0 support

BlueZ – Maintainers & Contributors

Maintainers

- Marcel Holtmann (Intel, Kernel & User Space)
- Johan Hedberg (Intel, Kernel & User Space)
- Luiz Von Dentz (Intel, User Space)
- Gustavo Padovan (Collabora, Kernel)

Contributors

- 82 AUTHORS entries (people with > 10 commits or bigger patches)
- Intel, IndT, ProFUSION, TI, Qualcomm, Google, CSR, Atheros, etc.

BlueZ Contributor Companies

BlueZ – Main Features

- Core specification 4.0 (GAP, SDP, L2CAP, RFCOMM, GATT)
- Audio/media profile support (A2DP, AVRCP)
- Networking profile support (PAN)
- Input device profile support (HID)
- Health device support (HDP)
- File transfer (FTP, OPP)
- Message access (MAP)
- Phone Book Access (PBAP)
- …and many more

BlueZ – General Architecture

- Hardware (HCI) drivers and lower level protocols in the kernel
 - All standard HCI transports supported (UART, 3-Wire UART, USB, SDIO)
- BSD socket based abstraction to user space
 - HCI, L2CAP, RFCOMM, SCO and Management sockets
- Profiles and higher level protocols in user space
- Central user space daemon (bluetoothd) extensible with plugins
 - Separate obexd daemon for OBEX profiles
- D-Bus interfaces towards the UI and other subsystems

BlueZ Architecture - Visualized

Integration with other subsystems

ConnMan

Networking (PAN) support

oFono

- Hands-Free Profile (HFP) support
- Dial-Up Networking (DUN) support

PulseAudio

Audio streaming support (both HFP and A2DP)

neard

NFC support (automatic pairing & connection creation)

BlueZ – Low Energy Support

- Available since Linux Kernel 3.5 and BlueZ 5.0
- Kernel level features:
 - Generic Access Profile (GAP)
 - Security Manager Protocol (SMP)
 - Interface to user space is mostly the same as for traditional Bluetooth
- User space features:
 - Attribute Protocol & Generic Attribute Profile
 - Profiles implemented through plugins
 - Profile-specific D-Bus interfaces
 - (WIP) Generic GATT D-Bus interface for external custom profiles

Current Low Energy Profiles in BlueZ

- Proximity (keep track of your things)
- Immediate alert (similar to proximity)
- Health thermometer
- Time (sync time from phone to watch)
- Battery (know when your LE device needs a new one)
- Human Interface Device (mice and keyboards)
- Heart rate (sport heart rate belts, medical)

Using & Developing LE profiles with BlueZ

- GATT library available for bluetoothd plugins
 - All existing profiles use this
 - Both server and client roles
- Existing profiles have D-Bus interfaces to allow implementing UIs (e.g. a heart rate monitor)
- Custom/proprietary profiles need a custom plugin right now
- Generic GATT D-Bus API on its way

Ongoing work and near-future features for BlueZ

- GATT D-Bus API
- AVRCP enhancements (AVRCP 1.5)
- HFP 1.6 with Wide-Band Speech (mSBC)
- MAP enhancements
- LE Connection model re-factoring
- Following up on upcoming (non-public) specifications

Low Energy and Tizen

- Enables many new use cases across the different verticals
- Tizen already has a good Bluetooth API
- Proper LE API needs defining and making official
- Generic GATT D-Bus API for BlueZ
 - Needed for custom GATT profiles external to BlueZ
 - Work on the way

