
The Twisted Documentation

The Twisted Development Team

June 15, 2008

Contents

1 Introduction 7
1.1 The Vision For Twisted 7
1.2 High-Level Overview of Twisted 7
1.3 Asynchronous Programming with Twisted 8

1.3.1 Introduction to concurrent programming 8
1.3.2 Deferreds 9
1.3.3 The Problem that Deferreds Solve 9
1.3.4 Deferreds - a signal that data is yet to come 10
1.3.5 Conclusion 12

1.4 Overview of Twisted Internet 12

2 Tutorial 13
2.1 Writing Servers 13

2.1.1 Overview 13
2.1.2 Protocols 13
2.1.3 Factories 15

2.2 Writing Clients 17
2.2.1 Overview 17
2.2.2 Protocol 17
2.2.3 Simple, single-use clients 17
2.2.4 ClientFactory 18
2.2.5 A Higher-Level Example: ircLogBot 19
2.2.6 Further Reading 22

2.3 Setting up the TwistedQuotes application 22
2.3.1 Goal 22
2.3.2 Setting up the TwistedQuotes project directory 22

2.4 Designing Twisted Applications 24
2.4.1 Goals 24
2.4.2 Example of a modular design: TwistedQuotes 24

2.5 Twisted from Scratch, or The Evolution of Finger 26
2.5.1 Introduction 26
2.5.2 Contents 26

2.6 The Evolution of Finger: building a simple finger service. 26
2.6.1 Introduction 26
2.6.2 Refuse Connections 27
2.6.3 Do Nothing 27
2.6.4 Drop Connections 27
2.6.5 Read Username, Drop Connections 27
2.6.6 Read Username, Output Error, Drop Connections 28
2.6.7 Output From Empty Factory 28
2.6.8 Output from Non-empty Factory 28
2.6.9 Use Deferreds 29
2.6.10 Run ’finger’ Locally 29
2.6.11 Read Status from the Web 30
2.6.12 Use Application 30

1

CONTENTS 2

2.6.13 twistd 31
2.7 The Evolution of Finger: adding features to the finger service . 31

2.7.1 Introduction 31
2.7.2 Setting Message By Local Users 31
2.7.3 Use Services to Make Dependencies Sane 32
2.7.4 Read Status File 33
2.7.5 Announce on Web, Too 34
2.7.6 Announce on IRC, Too 36
2.7.7 Add XML-RPC Support 37

2.8 The Evolution of Finger: cleaning up the finger code 39
2.8.1 Introduction 39
2.8.2 Write Readable Code 39

2.9 The Evolution of Finger: moving to a component based architecture 42
2.9.1 Introduction 42
2.9.2 Write Maintainable Code 42
2.9.3 Advantages of Latest Version 46
2.9.4 Aspect-Oriented Programming 51

2.10 The Evolution of Finger: pluggable backends 51
2.10.1 Introduction 51
2.10.2 Another Back-end 51
2.10.3 Yet Another Back-end: Doing the Standard Thing 56

2.11 The Evolution of Finger: a web frontend 62
2.11.1 Introduction 62

2.12 The Evolution of Finger: Twisted client support using Perspective Broker 67
2.12.1 Introduction 67
2.12.2 Use Perspective Broker 67

2.13 The Evolution of Finger: using a single factory for multiple protocols 72
2.13.1 Introduction 72
2.13.2 Support HTTPS 72

2.14 The Evolution of Finger: a Twisted finger client 78
2.14.1 Introduction 78
2.14.2 Finger Proxy 78

2.15 The Evolution of Finger: making a finger library 80
2.15.1 Introduction 80
2.15.2 Organization 80
2.15.3 Easy Configuration 81

2.16 The Evolution of Finger: configuration and packaging ofthe finger service 83
2.16.1 Introduction 83
2.16.2 Plugins 83
2.16.3 OS Integration 89

3 Low-Level Twisted 90
3.1 Reactor Overview 90

3.1.1 Reactor Basics 90
3.1.2 Using the reactor object 90

3.2 UDP Networking 91
3.2.1 Overview 91
3.2.2 DatagramProtocol 91
3.2.3 Connected UDP 91
3.2.4 Multicast UDP 92
3.2.5 Acknowledgements 93

3.3 Using Processes 93
3.3.1 Overview 93
3.3.2 Running Another Process 94
3.3.3 Writing a ProcessProtocol 94
3.3.4 Things that can happen to your ProcessProtocol 95
3.3.5 Things you can do from your ProcessProtocol 96

CONTENTS 3

3.3.6 Verbose Example 96
3.3.7 Doing it the Easy Way 97
3.3.8 Mapping File Descriptors 98

3.4 Deferred Reference 100
3.4.1 Callbacks 101
3.4.2 Errbacks 105
3.4.3 Handling either synchronous or asynchronous results. 106
3.4.4 DeferredList 107
3.4.5 Class Overview 109
3.4.6 See also 109

3.5 Generating Deferreds 110
3.5.1 Class overview 110
3.5.2 What Deferreds don’t do: make your code asynchronous 110
3.5.3 Advanced Processing Chain Control 111
3.5.4 Returning Deferreds from synchronous functions 111
3.5.5 Integrating blocking code with Twisted 112
3.5.6 Possible sources of error 113

3.6 Deferreds are beautiful! (A Tutorial) 113
3.6.1 Introduction 113
3.6.2 A simple example 114
3.6.3 Errbacks 115
3.6.4 addBoth: the deferred version of finally 122
3.6.5 addCallbacks: decision making based on previous success or failure 125
3.6.6 Hints, tips, common mistakes, and miscellaney 130
3.6.7 Conclusion 134

3.7 Scheduling tasks for the future 134
3.8 Using Threads in Twisted 135

3.8.1 Running code in a thread-safe manner 135
3.8.2 Running code in threads 135
3.8.3 Utility Methods 135
3.8.4 Managing the Thread Pool 136

3.9 Choosing a Reactor and GUI Toolkit Integration 137
3.9.1 Overview 137
3.9.2 Reactor Functionality 137
3.9.3 General Purpose Reactors 137
3.9.4 Platform-Specific Reactors 138
3.9.5 GUI Integration Reactors 139
3.9.6 Non-Reactor GUI Integration 139

4 High-Level Twisted 141
4.1 The Basics 141

4.1.1 Application 141
4.1.2 twistd 141
4.1.3 tap2deb 141
4.1.4 tap2rpm 142

4.2 The Twisted Plugin System 142
4.2.1 Writing Extensible Programs 142
4.2.2 Extending an Existing Program 143
4.2.3 Alternate Plugin Packages 144
4.2.4 Plugin Caching 144
4.2.5 Further Reading 144

4.3 Writing a twistd Plugin 144
4.3.1 Goals 145
4.3.2 A note on .tap files 145
4.3.3 Alternatives to twistd plugins 145
4.3.4 Creating the plugin 145
4.3.5 Using cred with your TAP 146

CONTENTS 4

4.3.6 Conclusion 147
4.4 Components: Interfaces and Adapters 147

4.4.1 Interfaces and Components in Twisted code 150
4.5 Cred: Pluggable Authentication 153

4.5.1 Goals 153
4.5.2 Cred objects 154
4.5.3 Responsibilities 156
4.5.4 Cred plugins 158
4.5.5 Conclusion 159

4.6 Using the Twisted Application Framework 159
4.6.1 Introduction 159
4.6.2 Overview 160
4.6.3 Using application 160

5 Utilities 163
5.1 Using usage.Options 163

5.1.1 Introduction 163
5.1.2 Boolean Options 163
5.1.3 Parameters 164
5.1.4 Option Subcommands 165
5.1.5 Generic Code For Options 166
5.1.6 Parsing Arguments 166
5.1.7 Post Processing 167
5.1.8 Type enforcement 167

5.2 Logging with twisted.python.log 168
5.2.1 Basic usage 168
5.2.2 Writing log observers 169

5.3 DirDBM: Directory-based Storage 169
5.3.1 dirdbm.DirDBM 169
5.3.2 dirdbm.Shelf 170

5.4 Using telnet to manipulate a twisted server 170
5.5 Writing tests for Twisted code 171

5.5.1 Trial basics 171
5.5.2 Twisted-specific quirks: reactor, Deferreds, callLater . 171

6 Twisted RDBMS support 173
6.1 twisted.enterprise.adbapi: Twisted RDBMS support 173

6.1.1 Abstract 173
6.1.2 What you should already know 173
6.1.3 Quick Overview 173
6.1.4 How do I use adbapi? 174
6.1.5 Examples of various database adapters 175
6.1.6 And that’s it! 175

6.2 Twisted Enterprise Row Objects 175
6.2.1 Class Definitions 175
6.2.2 Initialization 176
6.2.3 Creating Row Objects 176
6.2.4 Relationships Between Tables 177
6.2.5 Duplicate Row Objects 177
6.2.6 Updating Row Objects 177
6.2.7 Deleting Row Objects 177

CONTENTS 5

7 Perspective Broker 178
7.1 Overview of Twisted Spread 178

7.1.1 Rationale 178
7.2 Introduction to Perspective Broker 178

7.2.1 Introduction 178
7.2.2 Object Roadmap 179
7.2.3 Things you can Call Remotely 179
7.2.4 Things you can Copy Remotely 180

7.3 Using Perspective Broker 181
7.3.1 Basic Example 181
7.3.2 Complete Example 183
7.3.3 Passing more references 185
7.3.4 References can come back to you 186
7.3.5 References to client-side objects 188
7.3.6 Raising Remote Exceptions 189
7.3.7 Try/Except blocks and Failure.trap 191

7.4 PB Copyable: Passing Complex Types 194
7.4.1 Overview 194
7.4.2 Motivation 194
7.4.3 Passing Objects 194
7.4.4 pb.Copyable 195
7.4.5 pb.Cacheable 201

7.5 Authentication with Perspective Broker 205
7.5.1 Overview 205
7.5.2 Compartmentalizing Services 205
7.5.3 Avatars and Perspectives 209
7.5.4 Perspective Examples 210
7.5.5 Using Avatars 217

8 Manual Pages 222
8.1 MANHOLE.1 222

8.1.1 NAME 222
8.1.2 SYNOPSIS 222
8.1.3 DESCRIPTION 222
8.1.4 AUTHOR 222
8.1.5 REPORTING BUGS 222
8.1.6 COPYRIGHT 222

8.2 MKTAP.1 223
8.2.1 NAME 223
8.2.2 SYNOPSIS 223
8.2.3 DESCRIPTION 223
8.2.4 portforward options 223
8.2.5 web options 223
8.2.6 toc options 224
8.2.7 mail options 224
8.2.8 telnet options 224
8.2.9 socks options 224
8.2.10 ftp options 224
8.2.11 manhole options 225
8.2.12 words options 225
8.2.13 AUTHOR 225
8.2.14 REPORTING BUGS 225
8.2.15 COPYRIGHT 225
8.2.16 SEE ALSO 225

8.3 TAP2DEB.1 226
8.3.1 NAME 226
8.3.2 SYNOPSIS 226

CONTENTS 6

8.3.3 DESCRIPTION 226
8.3.4 AUTHOR 226
8.3.5 REPORTING BUGS 226
8.3.6 COPYRIGHT 226
8.3.7 SEE ALSO 226

8.4 TAP2RPM.1 227
8.4.1 NAME 227
8.4.2 SYNOPSIS 227
8.4.3 DESCRIPTION 227
8.4.4 AUTHOR 227
8.4.5 REPORTING BUGS 227
8.4.6 COPYRIGHT 227
8.4.7 SEE ALSO 227

8.5 TAPCONVERT.1 228
8.5.1 NAME 228
8.5.2 SYNOPSIS 228
8.5.3 DESCRIPTION 228
8.5.4 AUTHOR 228
8.5.5 REPORTING BUGS 228
8.5.6 COPYRIGHT 228
8.5.7 SEE ALSO 228

8.6 TRIAL.1 229
8.6.1 NAME 229
8.6.2 SYNOPSIS 229
8.6.3 DESCRIPTION 229
8.6.4 AUTHOR 230
8.6.5 REPORTING BUGS 230
8.6.6 COPYRIGHT 230

8.7 TWISTD.1 231
8.7.1 NAME 231
8.7.2 SYNOPSIS 231
8.7.3 DESCRIPTION 231
8.7.4 AUTHOR 232
8.7.5 REPORTING BUGS 232
8.7.6 COPYRIGHT 232
8.7.7 SEE ALSO 232

9 Appendix 233
9.1 The Twisted FAQ 233

9.1.1 General 233
9.1.2 Stability 233
9.1.3 Installation 234
9.1.4 Core Twisted 234
9.1.5 Requests and Contributing 236
9.1.6 Documentation 237
9.1.7 Communicating with us 237

9.2 Twisted Glossary 238
9.3 Banana Protocol Specifications 240

9.3.1 Introduction 240
9.3.2 Banana Encodings 240
9.3.3 Element Types 240
9.3.4 Profiles 241
9.3.5 Protocol Handshake and Behaviour 242

Chapter 1

Introduction

1.1 The Vision For Twisted

Many other documents in this repository are dedicated to defining what Twisted is. Here, I will attempt to explain not
what Twisted is, but what it should be, once I’ve met my goals with it.

First, Twisted should be fun. It began as a game, it is being used commercially in games, and it will be, I hope, an
interactive and entertaining experience for the end-user.

Twisted is a platform for developing internet applications. While python, by itself, is a very powerful language,
there are many facilities it lacks which other languages have spent great attention to adding. It can do this now;
Twisted is a good (if somewhat idiosyncratic) pure-python framework or library, depending on how you treat it, and it
continues to improve.

As a platform, Twisted should be focused on integration. Ideally, all functionality will be accessible through
all protocols. Failing that, all functionality should be configurable through at least one protocol, with a seamless
and consistent user-interface. The next phase of development will be focusing strongly on a configuration system
which will unify many disparate pieces of the current infrastructure, and allow them to be tacked together by a non-
programmer.

1.2 High-Level Overview of Twisted

7

CHAPTER 1. INTRODUCTION 8

1.3 Asynchronous Programming with Twisted

This document is a introduction to the asynchronous programming model, and to Twisted’s Deferred abstraction,
which symbolises a ’promised’ result and which can pass an eventual result to handler functions.

This document is for readers new to Twisted who are familiar with the Python programming language and, at
least conceptually, with core networking conepts such as servers, clients and sockets. This document will give you
a high level overview of concurrent programming (interleaving several tasks) and of Twisted’s concurrency model:
non-blocking codeor asynchronous code.

After discussing the concurrency model of which Deferreds are a part, it will introduce the methods of handling
results when a function returns a Deferred object.

1.3.1 Introduction to concurrent programming

Many computing tasks take some time to complete, and there are two reasons why a task might take some time:

1. it is computationally intensive (for example factorising large numbers) and requires a certain amount of CPU
time to calculate the answer; or

2. it is not computationally intensive but has to wait for data to be available to produce a result.

Waiting for answers

A fundamental feature of network programming is that of waiting for data. Imagine you have a function which sends
an email summarising some information. This function needsto connect to a remote server, wait for the remote server
to reply, check that the remote server can process the email,wait for the reply, send the email, wait for the confirmation,
and then disconnect.

Any one of these steps may take a long period of time. Your program might use the simplest of all possible models,
in which it actually sits and waits for data to be sent and received, but in this case it has some very obvious and basic
limitations: it can’t send many emails at once; and in fact itcan’t do anything else while it is sending an email.

Hence, all but the simplest network programs avoid this model. You can use one of several different models to
allow your program to keep doing whatever tasks it has on handwhile it is waiting for something to happen before a
particular task can continue.

CHAPTER 1. INTRODUCTION 9

Not waiting on data

There are many ways to write network programs. The main ones are:

1. handle each connection in a separate operating system process, in which case the operating system will take care
of letting other processes run while one is waiting;

2. handle each connection in a separate thread1 in which the threading framework takes care of letting otherthreads
run while one is waiting; or

3. use non-blocking system calls to handle all connections in one thread.

Non-blocking calls

The normal model when using the Twisted framework is the third model: non-blocking calls.
When dealing with many connections in one thread, the scheduling is the responsibility of the application, not the

operating system, and is usually implemented by calling a registered function when each connection is ready to for
reading or writing – commonly known asasynchronous, event-drivenor callback-basedprogramming.

In this model, the earlier email sending function would worksomething like this:

1. it calls a connection function to connect to the remote server;

2. the connection function returns immediately, with the implication that the notify the email sending library will
be called when the connect has been made; and

3. once the connection is made, the connect mechanism notifies the email sending function that the connection is
ready.

What advantage does the above sequence have over our originalblocking sequence? The advantage is that while
the email sending function can’t do the next part of its job until the connection is open, the rest of the program can do
other tasks, like begin the opening sequence for other emailconnections. Hence, the entire program is not waiting for
the connection.

Callbacks

The typical asynchronous model for alerting an applicationthat some data is ready for it is known as acallback. The
application calls a function to request some data, and in this call, it also passes a callback function that should be called
when the data is ready with the data as an argument. The callback function should therefore perform whatever tasks it
was that the application needed that data for.

In synchonous programming, a function requests data, waitsfor the data, and then processes it. In asynchronous
programming, a function requests the data, and lets the library call the callback function when the data is ready.

1.3.2 Deferreds

Twisted uses theDeferred object to manage the callback sequence. The client application attaches a series of
functions to the deferred to be called in order when the results of the asychronous request are available (this series of
functions is known as a series ofcallbacks, or acallback chain), together with a series of functions to be called if there
is an error in the asychronous request (known as a series oferrbacksor anerrback chain). The asychronous library
code calls the first callback when the result is available, orthe first errback when an error occurs, and theDeferred
object then hands the results of each callback or errback function to the next function in the chain.

1.3.3 The Problem that Deferreds Solve

It is the second class of concurrency problem — non-computationally intensive tasks that involve an appreciable delay
— that Deferreds are designed to help solve. Functions that wait on hard drive access, database access, and network
access all fall into this class, although the time delay varies.

Deferreds are designed to enable Twisted programs to wait for data without hanging until that data arrives. They
do this by giving a simple management interface for callbacks to libraries and applications. Libraries know that they

1There are variations on this method, such as a limited-size pool of threads servicing all connections, which are essentially just optimizations of
the same idea.

CHAPTER 1. INTRODUCTION 10

always make their results available by callingDeferred.callback and errors by callingDeferred.errback .
Applications set up result handlers by attaching callbacksand errbacks to deferreds in the order they want them called.

The basic idea behind Deferreds, and other solutions to thisproblem, is to keep the CPU as active as possible. If
one task is waiting on data, rather than have the CPU (and the program!) idle waiting for that data (a process normally
called ”blocking”), the program performs other operationsin the meantime, and waits for some signal that data is
ready to be processed before returning to that process.

In Twisted, a function signals to the calling function that it is waiting by returning a Deferred. When the data is
available, the program activates the callbacks on that Deferred to process the data.

1.3.4 Deferreds - a signal that data is yet to come

In our email sending example above, a parent function calls afunction to connect to the remote server. Asynchrony
requires that this connection function returnwithout waiting for the resultso that the parent function can do other
things. So how does the parent function or its controlling program know that the connection doesn’t exist yet, and how
does it use the connection once it does exist?

Twisted has an object that signals this situation. When the connection function returns, it signals that the operation
is incomplete by returning atwisted.internet.defer.Deferred object.

The Deferred has two purposes. The first is that it says ”I am a signal that the result of whatever you wanted me to
do is still pending.” The second is that you can ask the Deferred to run things when the data does arrive.

Callbacks

The way you tell a Deferred what to do with the data once it arrives is by adding a callback — asking the Deferred to
call a function once the data arrives.

One Twisted library function that returns a Deferred istwisted.web.client.getPage . In this example,
we callgetPage , which returns a Deferred, and we attach a callback to handlethe contents of the page once the data
is available:

from twisted.web.client import getPage

from twisted.internet import reactor

def printContents(contents):
’’’
This is the ’callback’ function, added to the Deferred and ca lled by
it when the promised data is available
’’’

print "The Deferred has called printContents with the follo wing contents:"
print contents

Stop the Twisted event handling system -- this is usually ha ndled
in higher level ways
reactor.stop()

call getPage, which returns immediately with a Deferred, p romising to
pass the page contents onto our callbacks when the contents are available
deferred = getPage(’http://twistedmatrix.com/’)

add a callback to the deferred -- request that it run printCo ntents when
the page content has been downloaded
deferred.addCallback(printContents)

Begin the Twisted event handling system to manage the proce ss -- again this
isn’t the usual way to do this
reactor.run()

A very common use of Deferreds is to attach two callbacks. Theresult of the first callback is passed to the second
callback:

CHAPTER 1. INTRODUCTION 11

from twisted.web.client import getPage

from twisted.internet import reactor

def lowerCaseContents(contents):
’’’
This is a ’callback’ function, added to the Deferred and call ed by
it when the promised data is available. It converts all the da ta to
lower case
’’’

return contents.lower()

def printContents(contents):
’’’
This a ’callback’ function, added to the Deferred after lowe rCaseContents
and called by it with the results of lowerCaseContents
’’’

print contents
reactor.stop()

deferred = getPage(’http://twistedmatrix.com/’)

add two callbacks to the deferred -- request that it run lowe rCaseContents
when the page content has been downloaded, and then run prin tContents with
the result of lowerCaseContents
deferred.addCallback(lowerCaseContents)
deferred.addCallback(printContents)

reactor.run()

Error handling: errbacks

Just as a asynchronous function returns before its result isavailable, it may also return before it is possible to detect
errors: failed connections, erroneous data, protocol errors, and so on. Just as you can add callbacks to a Deferred
which it calls when the data you are expecting is available, you can add error handlers (’errbacks’) to a Deferred for it
to call when an error occurs and it cannot obtain the data:

from twisted.web.client import getPage

from twisted.internet import reactor

def errorHandler(error):
’’’
This is an ’errback’ function, added to the Deferred which wi ll call
it in the event of an error
’’’

this isn’t a very effective handling of the error, we just pr int it out:
print "An error has occurred: <%s>" % str(error)
and then we stop the entire process:
reactor.stop()

def printContents(contents):
’’’
This a ’callback’ function, added to the Deferred and called by it with
the page content

CHAPTER 1. INTRODUCTION 12

’’’

print contents
reactor.stop()

We request a page which doesn’t exist in order to demonstrat e the
error chain
deferred = getPage(’http://twistedmatrix.com/does-not -exist’)

add the callback to the Deferred to handle the page content
deferred.addCallback(printContents)

add the errback to the Deferred to handle any errors
deferred.addErrback(errorHandler)

reactor.run()

1.3.5 Conclusion

In this document, you have:

1. seen why non-trivial network programs need to have some form of concurrency;

2. learnt that the Twisted framework supports concurrency in the form of asynchronous calls;

3. learnt that the Twisted framework has Deferred objects that manage callback chains;

4. seen how thegetPage function returns a Deferred object;

5. attached callbacks and errbacks to that Deferred; and

6. seen the Deferred’s callback chain and errback chain fire.

See also

Since the Deferred abstraction is such a core part of programming with Twisted, there are several other detailed guides
to it:

1. Using Deferreds(page 100), a more complete guide to using Deferreds, including Deferred chaining.

2. Generating Deferreds(page 110), a guide to creating Deferreds and firing their callback chains.

1.4 Overview of Twisted Internet

Twisted Internet is a compatible collection of event-loopsfor Python. It contains the code to dispatch events to
interested observers, and a portable API so that observers need not care about which event loop is running. Thus, it is
possible to use the same code for different loops, from Twisted’s basic, yet portable,select -based loop to the loops
of various GUI toolkits like GTK+ or Tk. Twisted Internet also contains a powerful persistence API so that network
programs can be shutdown and then resurrected with most of the code unaware of this.

Twisted Internet contains the various interfaces to the reactor API, whose usage is documented in the low-level
chapter. Those APIs areIReactorCore , IReactorTCP , IReactorSSL , IReactorUNIX , IReactorUDP ,
IReactorTime , IReactorProcess andIReactorThreads . The reactor APIs allow non-persistent calls to
be made.

Twisted Internet also covers the interfaces for the varioustransports, inITransport and friends. These inter-
faces allow Twisted network code to be written without regard to the underlying implementation of the transport.

TheIProtocolFactory dictates how factories, which are usually a large part of third party code, are written.

Chapter 2

Tutorial

2.1 Writing Servers

2.1.1 Overview

Twisted is a framework designed to be very flexible and let youwrite powerful servers. The cost of this flexibility is a
few layers in the way to writing your server.

This document describes theProtocol layer, where you implement protocol parsing and handling. If you are
implementing an application then you should read this document second, after first reading the top level overview of
how to begin writing your Twisted application, inWriting Plug-Ins for Twisted(page 142). This document is only
relevant to TCP, SSL and Unix socket servers, there is aseparate document(page 91) for UDP.

Your protocol handling class will usually subclasstwisted.internet.protocol.Protocol . Most pro-
tocol handlers inherit either from this class or from one of its convenience children. An instance of the protocol class
might be instantiated per-connection, on demand, and mightgo away when the connection is finished. This means that
persistent configuration is not saved in theProtocol .

The persistent configuration is kept in a Factory class, which usually inherits fromtwisted.internet.
protocol.Factory . The default factory class just instantiates eachProtocol , and then sets on it an attribute
calledfactory which points to itself. This lets everyProtocol access, and possibly modify, the persistent con-
figuration.

It is usually useful to be able to offer the same service on multiple ports or network addresses. This is why the
Factory does not listen to connections, and in fact does not know anything about the network. Seetwisted.
internet.interfaces.IReactorTCP.listenTCP , and the otherIReactor * .listen * APIs for more
information.

This document will explain each step of the way.

2.1.2 Protocols

As mentioned above, this, along with auxiliary classes and functions, is where most of the code is. A Twisted protocol
handles data in an asynchronous manner. What this means is that the protocol never waits for an event, but rather
responds to events as they arrive from the network.

Here is a simple example:

from twisted.internet.protocol import Protocol

class Echo(Protocol):

def dataReceived(self, data):
self.transport.write(data)

This is one of the simplest protocols. It simply writes back whatever is written to it, and does not respond to all
events. Here is an example of a Protocol responding to another event:

from twisted.internet.protocol import Protocol

13

CHAPTER 2. TUTORIAL 14

class QOTD(Protocol):

def connectionMade(self):
self.transport.write("An apple a day keeps the doctor away \r\n")
self.transport.loseConnection()

This protocol responds to the initial connection with a wellknown quote, and then terminates the connection.
The connectionMade event is usually where set up of the connection object happens, as well as any initial greetings

(as in the QOTD protocol above, which is actually based on RFC865). TheconnectionLost event is where tearing
down of any connection-specific objects is done. Here is an example:

from twisted.internet.protocol import Protocol

class Echo(Protocol):

def connectionMade(self):
self.factory.numProtocols = self.factory.numProtocols +1
if self.factory.numProtocols > 100:

self.transport.write("Too many connections, try later")
self.transport.loseConnection()

def connectionLost(self, reason):
self.factory.numProtocols = self.factory.numProtocols -1

def dataReceived(self, data):
self.transport.write(data)

HereconnectionMade andconnectionLost cooperate to keep a count of the active protocols in the factory.
connectionMade immediately closes the connection if there are too many active protocols.

Using the Protocol

In this section, I will explain how to test your protocol easily. (In order to see how you should write a production-grade
Twisted server, though, you should read theWriting Plug-Ins for Twisted(page 142) HOWTO as well).

Here is code that will run the QOTD server discussed earlier

from twisted.internet.protocol import Protocol, Factory
from twisted.internet import reactor

class QOTD(Protocol):

def connectionMade(self):
self.transport.write("An apple a day keeps the doctor away \r\n")
self.transport.loseConnection()

Next lines are magic:
factory = Factory()
factory.protocol = QOTD

8007 is the port you want to run under. Choose something >102 4
reactor.listenTCP(8007, factory)
reactor.run()

Don’t worry about the last 6 magic lines – you will understandwhat they do later in the document.

Helper Protocols

Many protocols build upon similar lower-level abstraction. The most popular in internet protocols is being line-based.
Lines are usually terminated with a CR-LF combinations.

CHAPTER 2. TUTORIAL 15

However, quite a few protocols are mixed - they have line-based sections and then raw data sections. Examples
include HTTP/1.1 and the Freenet protocol.

For those cases, there is theLineReceiver protocol. This protocol dispatches to two different event handlers
- lineReceived andrawDataReceived . By default, onlylineReceived will be called, once for each line.
However, if setRawMode is called, the protocol will callrawDataReceived until setLineMode is called,
which returns it to usinglineReceived .

Here is an example for a simple use of the line receiver:

from twisted.protocols.basic import LineReceiver

class Answer(LineReceiver):

answers = {’How are you?’: ’Fine’, None : "I don’t know what yo u mean"}

def lineReceived(self, line):
if self.answers.has_key(line):

self.sendLine(self.answers[line])
else:

self.sendLine(self.answers[None])

Note that the delimiter is not part of the line.
Several other, less popular, helpers exist, such as a netstring based protocol and a prefixed-message-length protocol.

State Machines

Many Twisted protocol handlers need to write a state machineto record the state they are at. Here are some pieces of
advice which help to write state machines:

• Don’t write big state machines. Prefer to write a state machine which deals with one level of abstraction at a
time.

• Use Python’s dynamicity to create open ended state machines. See, for example, the code for the SMTP client.

• Don’t mix application-specific code with Protocol handlingcode. When the protocol handler has to make an
application-specific call, keep it as a method call.

2.1.3 Factories

As mentioned before, usually the classtwisted.internet.protocol.Factory works, and there is no need
to subclass it. However, sometimes there can be factory-specific configuration of the protocols, or other considerations.
In those cases, there is a need to subclassFactory .

For a factory which simply instantiates instances of a specific protocol class, simply instantiateFactory , and
sets itsprotocol attribute:

from twisted.internet.protocol import Factory
from twisted.protocols.wire import Echo

myFactory = Factory()
myFactory.protocol = Echo

If there is a need to easily construct factories for a specificconfiguration, a factory function is often useful:

from twisted.internet.protocol import Factory, Protocol

class QOTD(Protocol):

def connectionMade(self):
self.transport.write(self.factory.quote+’\r\n’)
self.transport.loseConnection()

CHAPTER 2. TUTORIAL 16

def makeQOTDFactory(quote=None):
factory = Factory()
factory.protocol = QOTD
factory.quote = quote or ’An apple a day keeps the doctor away ’
return factory

A Factory has two methods to perform application-specific building up and tearing down (since a Factory is
frequently persisted, it is often not appropriate to do themin init or del , and would frequently be too
early or too late).

Here is an example of a factory which allows its Protocols to write to a special log-file:

from twisted.internet.protocol import Factory
from twisted.protocols.basic import LineReceiver

class LoggingProtocol(LineReceiver):

def lineReceived(self, line):
self.factory.fp.write(line+’\n’)

class LogfileFactory(Factory):

protocol = LoggingProtocol

def __init__(self, fileName):
self.file = fileName

def startFactory(self):
self.fp = open(self.file, ’a’)

def stopFactory(self):
self.fp.close()

Putting it All Together

So, you know what factories are, and want to run the QOTD with configurable quote server, do you? No problems,
here is an example.

from twisted.internet.protocol import Factory, Protocol
from twisted.internet import reactor

class QOTD(Protocol):

def connectionMade(self):
self.transport.write(self.factory.quote+’\r\n’)
self.transport.loseConnection()

class QOTDFactory(Factory):

protocol = QOTD

def __init__(self, quote=None):
self.quote = quote or ’An apple a day keeps the doctor away’

reactor.listenTCP(8007, QOTDFactory("configurable quo te"))
reactor.run()

CHAPTER 2. TUTORIAL 17

The only lines you might not understand are the last two.
listenTCP is the method which connects aFactory to the network. It uses the reactor interface, which lets

many different loops handle the networking code, without modifying end-user code, like this. As mentioned above, if
you want to write your code to be a production-grade Twisted server, and not a mere 20-line hack, you will want to
usethe Application object(page 159).

2.2 Writing Clients

2.2.1 Overview

Twisted is a framework designed to be very flexible, and let you write powerful clients. The cost of this flexibility is a
few layers in the way to writing your client. This document covers creating clients that can be used for TCP, SSL and
Unix sockets, UDP is coveredin a different document(page 91).

At the base, the place where you actually implement the protocol parsing and handling, is the Protocol class.
This class will usually be decended fromtwisted.internet.protocol.Protocol . Most protocol handlers
inherit either from this class or from one of its conveniencechildren. An instance of the protocol class will be
instantiated when you connect to the server, and will go awaywhen the connection is finished. This means that
persistent configuration is not saved in the Protocol.

The persistent configuration is kept in a Factory class, which usually inherits fromtwisted.internet.
protocol.ClientFactory . The default factory class just instantiate the Protocol, and then sets on it an attribute
calledfactory which points to itself. This let the Protocol access, and possibly modify, the persistent configuration.

2.2.2 Protocol

As mentioned above, this, and auxiliary classes and functions, is where most of the code is. A Twisted protocol handles
data in an asynchronous manner. What this means is that the protocol never waits for an event, but rather responds to
events as they arrive from the network.

Here is a simple example:

from twisted.internet.protocol import Protocol
from sys import stdout

class Echo(Protocol):
def dataReceived(self, data):

stdout.write(data)

This is one of the simplest protocols. It simply writes to standard output whatever it reads from the connection.
There are many events it does not respond to. Here is an example of a Protocol responding to another event.

from twisted.internet.protocol import Protocol

class WelcomeMessage(Protocol):
def connectionMade(self):

self.transport.write("Hello server, I am the client!\r\n ")
self.transport.loseConnection()

This protocol connects to the server, sends it a welcome message, and then terminates the connection.
The connectionMade event is usually where set up of the Protocol object happens, as well as any initial greetings

(as in the WelcomeMessage protocol above). Any tearing downof Protocol-specific objects is done in connectionLost.

2.2.3 Simple, single-use clients

In many cases, the protocol only needs to connect to the server once, and the code just wants to get a connected instance
of the protocol. In those casestwisted.internet.protocol.ClientCreator provides the appropriate
API.

from twisted.internet import reactor
from twisted.internet.protocol import Protocol, ClientC reator

CHAPTER 2. TUTORIAL 18

class Greeter(Protocol):
def sendMessage(self, msg):

self.transport.write("MESSAGE %s\n" % msg)

def gotProtocol(p):
p.sendMessage("Hello")
reactor.callLater(1, p.sendMessage, "This is sent in a sec ond")
reactor.callLater(2, p.transport.loseConnection)

c = ClientCreator(reactor, Greeter)
c.connectTCP("localhost", 1234).addCallback(gotProto col)

2.2.4 ClientFactory

We use reactor.connect* and a ClientFactory. The ClientFactory is in charge of creating the Protocol, and also receives
events relating to the connection state. This allows it to dothings like reconnect on the event of a connection error. Here
is an example of a simple ClientFactory that uses the Echo protocol (above) and also prints what state the connection
is in.

from twisted.internet.protocol import Protocol, ClientF actory
from sys import stdout

class Echo(Protocol):
def dataReceived(self, data):

stdout.write(data)

class EchoClientFactory(ClientFactory):
def startedConnecting(self, connector):

print ’Started to connect.’

def buildProtocol(self, addr):
print ’Connected.’
return Echo()

def clientConnectionLost(self, connector, reason):
print ’Lost connection. Reason:’, reason

def clientConnectionFailed(self, connector, reason):
print ’Connection failed. Reason:’, reason

To connect this EchoClientFactory to a server, you could usethis code:

from twisted.internet import reactor
reactor.connectTCP(host, port, EchoClientFactory())
reactor.run()

Note thatclientConnectionFailed is called when a connection could not be established, and that client
ConnectionLost is called when a connection was made and then disconnected.

Reconnection

Many times, the connection of a client will be lost unintentionally due to network errors. One way to reconnect after
a disconnection would be to callconnector.connect() when the connection is lost:

from twisted.internet.protocol import ClientFactory

class EchoClientFactory(ClientFactory):
def clientConnectionLost(self, connector, reason):

connector.connect()

CHAPTER 2. TUTORIAL 19

The connector passed as the first argument is the interface between a connection and a protocol. When the con-
nection fails and the factory receives the clientConnectionLost event, the factory can callconnector.connect()
to start the connection over again from scratch.

However, most programs that want this functionality shouldimplementReconnectingClientFactory in-
stead, which tries to reconnect if a connection is lost or fails, and which exponentially delays repeated reconnect
attempts.

Here is the Echo protocol implemented with a ReconnectingClientFactory:

from twisted.internet.protocol import Protocol, Reconne ctingClientFactory
from sys import stdout

class Echo(Protocol):
def dataReceived(self, data):

stdout.write(data)

class EchoClientFactory(ReconnectingClientFactory):
def startedConnecting(self, connector):

print ’Started to connect.’

def buildProtocol(self, addr):
print ’Connected.’
print ’Resetting reconnection delay’
self.resetDelay()
return Echo()

def clientConnectionLost(self, connector, reason):
print ’Lost connection. Reason:’, reason
ReconnectingClientFactory.clientConnectionLost(self , connector, reason)

def clientConnectionFailed(self, connector, reason):
print ’Connection failed. Reason:’, reason
ReconnectingClientFactory.clientConnectionFailed(se lf, connector,

reason)

2.2.5 A Higher-Level Example: ircLogBot

Overview of ircLogBot

The clients so far have been fairly simple. A more complicated example comes with Twisted Words in the
doc/examples directory.

twisted imports
from twisted.words.protocols import irc
from twisted.internet import reactor, protocol
from twisted.python import log

system imports
import time, sys

class MessageLogger:
"""
An independent logger class (because separation of applica tion
and protocol logic is a good thing).
"""
def __init__(self, file):

self.file = file

CHAPTER 2. TUTORIAL 20

def log(self, message):
"""Write a message to the file."""
timestamp = time.strftime("[%H:%M:%S]", time.localtime (time.time()))
self.file.write(’%s %s\n’ % (timestamp, message))
self.file.flush()

def close(self):
self.file.close()

class LogBot(irc.IRCClient):
"""A logging IRC bot."""

nickname = "twistedbot"

def connectionMade(self):
irc.IRCClient.connectionMade(self)
self.logger = MessageLogger(open(self.factory.filenam e, "a"))
self.logger.log("[connected at %s]" %

time.asctime(time.localtime(time.time())))

def connectionLost(self, reason):
irc.IRCClient.connectionLost(self, reason)
self.logger.log("[disconnected at %s]" %

time.asctime(time.localtime(time.time())))
self.logger.close()

callbacks for events

def signedOn(self):
"""Called when bot has succesfully signed on to server."""
self.join(self.factory.channel)

def joined(self, channel):
"""This will get called when the bot joins the channel."""
self.logger.log("[I have joined %s]" % channel)

def privmsg(self, user, channel, msg):
"""This will get called when the bot receives a message."""
user = user.split(’!’, 1)[0]
self.logger.log("<%s> %s" % (user, msg))

Check to see if they’re sending me a private message
if channel == self.nickname:

msg = "It isn’t nice to whisper! Play nice with the group."
self.msg(user, msg)
return

Otherwise check to see if it is a message directed at me
if msg.startswith(self.nickname + ":"):

msg = "%s: I am a log bot" % user
self.msg(channel, msg)
self.logger.log("<%s> %s" % (self.nickname, msg))

def action(self, user, channel, msg):
"""This will get called when the bot sees someone do an action ."""

CHAPTER 2. TUTORIAL 21

user = user.split(’!’, 1)[0]
self.logger.log(" * %s %s" % (user, msg))

irc callbacks

def irc_NICK(self, prefix, params):
"""Called when an IRC user changes their nickname."""
old_nick = prefix.split(’!’)[0]
new_nick = params[0]
self.logger.log("%s is now known as %s" % (old_nick, new_ni ck))

class LogBotFactory(protocol.ClientFactory):
"""A factory for LogBots.

A new protocol instance will be created each time we connect t o the server.
"""

the class of the protocol to build when new connection is mad e
protocol = LogBot

def __init__(self, channel, filename):
self.channel = channel
self.filename = filename

def clientConnectionLost(self, connector, reason):
"""If we get disconnected, reconnect to server."""
connector.connect()

def clientConnectionFailed(self, connector, reason):
print "connection failed:", reason
reactor.stop()

if __name__ == ’__main__’:
initialize logging
log.startLogging(sys.stdout)

create factory protocol and application
f = LogBotFactory(sys.argv[1], sys.argv[2])

connect factory to this host and port
reactor.connectTCP("irc.freenode.net", 6667, f)

run bot
reactor.run()

Source listing —ircLogBot.py

ircLogBot.py connects to an IRC server, joins a channel, andlogs all traffic on it to a file. It demonstrates some of
the connection-level logic of reconnecting on a lost connection, as well as storing persistent data in the Factory.

Persistent Data in the Factory

Since the Protocol instance is recreated each time the connection is made, the client needs some way to keep track of
data that should be persisted. In the case of the logging bot,it needs to know which channel it is logging, and where
to log it to.

CHAPTER 2. TUTORIAL 22

from twisted.internet import protocol
from twisted.protocols import irc

class LogBot(irc.IRCClient):

def connectionMade(self):
irc.IRCClient.connectionMade(self)
self.logger = MessageLogger(open(self.factory.filenam e, "a"))
self.logger.log("[connected at %s]" %

time.asctime(time.localtime(time.time())))

def signedOn(self):
self.join(self.factory.channel)

class LogBotFactory(protocol.ClientFactory):

protocol = LogBot

def __init__(self, channel, filename):
self.channel = channel
self.filename = filename

When the protocol is created, it gets a reference to the factory as self.factory. It can then access attributes of the
factory in its logic. In the case of LogBot, it opens the file and connects to the channel stored in the factory.

2.2.6 Further Reading

TheProtocol class used throughout this document is a base implementation of IProtocol used in most Twisted
applications for convenience. To learn about the completeIProtocol interface, see the API documentation for
IProtocol .

The transport attribute used in some examples in this document provides the ITCPTransport interface.
To learn about the complete interface, see the API documentation for ITCPTransport .

Interface classes are a way of specifying what methods and attributes an object has and how they behave. See the
Components: Interfaces and Adapters(page 147) document.

2.3 Setting up the TwistedQuotes application

2.3.1 Goal

This document describes how to set up the TwistedQuotes application used in a number of other documents, such as
designing Twisted applications(page 24).

2.3.2 Setting up the TwistedQuotes project directory

In order to run the Twisted Quotes example, you will need to dothe following:

1. Make aTwistedQuotes directory on your system

2. Place the following files in theTwistedQuotes directory:

• """Twisted Quotes."""

Source listing — init .py

(this file marks it as a package, see this section1 of the Python tutorial for more on packages);

1http://www.python.org/doc/current/tut/node8.html#SECTION008400000000000000000

CHAPTER 2. TUTORIAL 23

• from zope.interface import Interface, implements

from random import choice

class IQuoter(Interface):
"""An object that returns quotes."""

def getQuote():
"""Return a quote."""

class StaticQuoter:
"""Return a static quote."""

implements(IQuoter)

def __init__(self, quote):
self.quote = quote

def getQuote(self):
return self.quote

class FortuneQuoter:
"""Load quotes from a fortune-format file."""

implements(IQuoter)

def __init__(self, filenames):
self.filenames = filenames

def getQuote(self):
return choice(open(choice(self.filenames)).read().sp lit(’\n%\n’))

Source listing —quoters.py
;

• from twisted.internet.protocol import Factory, Protocol

class QOTD(Protocol):

def connectionMade(self):
self.transport.write(self.factory.quoter.getQuote() +’\r\n’)
self.transport.loseConnection()

class QOTDFactory(Factory):

protocol = QOTD

def __init__(self, quoter):
self.quoter = quoter

Source listing —quoteproto.py
;

and

• register("Quote of the Day TAP Builder",
"TwistedQuotes.quotetap",
description="""

CHAPTER 2. TUTORIAL 24

Example of a TAP builder module.
""",
type="tap",
tapname="qotd")

Source listing —plugins.tml
.

3. Add theTwistedQuotes directory’sparentto your Python path. For example, if the TwistedQuotes direc-
tory’s path is/tmp/TwistedQuotes add /tmp to your Python path. On UNIX this would beexport
PYTHONPATH=/my/stuff:$PYTHONPATH , on Microsoft Windows change thePYTHONPATHvariable
through the Systems Properites dialog to add/my/stuff; at the beginning.

4. Test your package by trying to import it in the Python interpreter:

Python 2.1.3 (#1, Apr 20 2002, 22:45:31)
[GCC 2.95.4 20011002 (Debian prerelease)] on linux2
Type "copyright", "credits" or "license" for more informat ion.
>>> import TwistedQuotes
>>> # No traceback means you’re fine.

2.4 Designing Twisted Applications

2.4.1 Goals

This document describes how a good Twisted application is structured. It should be useful for beginning Twisted
developers who want to structure their code in a clean, maintainable way that reflects current best practices.

Readers will want to be familiar withasynchonous programming using Deferreds(page 8) and with writingservers
(page 13) andclients(page 17) using Twisted.

2.4.2 Example of a modular design: TwistedQuotes

TwistedQuotes is a very simple plugin which is a great demonstration of Twisted’s power. It will export a small
kernel of functionality – Quote of the Day – which can be accessed through every interface that Twisted supports: web
pages, e-mail, instant messaging, a specific Quote of the Dayprotocol, and more.

Set up the project directory

See the description ofsetting up the TwistedQuotes example(page 22).

A Look at the Heart of the Application

from zope.interface import Interface, implements

from random import choice

class IQuoter(Interface):
"""An object that returns quotes."""

def getQuote():
"""Return a quote."""

class StaticQuoter:
"""Return a static quote."""

implements(IQuoter)

CHAPTER 2. TUTORIAL 25

def __init__(self, quote):
self.quote = quote

def getQuote(self):
return self.quote

class FortuneQuoter:
"""Load quotes from a fortune-format file."""

implements(IQuoter)

def __init__(self, filenames):
self.filenames = filenames

def getQuote(self):
return choice(open(choice(self.filenames)).read().sp lit(’\n%\n’))

Twisted Quotes Central Abstraction —quoters.py

This code listing shows us what the Twisted Quotes system is all about. The code doesn’t have any way of talking
to the outside world, but it provides a library which is a clear and uncluttered abstraction: “give me the quote of the
day”.

Note that this module does not import any Twisted functionality at all! The reason for doing things this way is
integration. If your “business objects” are not stuck to your user interface, you can make a module that can integrate
those objects with different protocols, GUIs, and file formats. Having such classes provides a way to decouple your
components from each other, by allowing each to be used independently.

In this manner, Twisted itself has minimal impact on the logic of your program. Although the Twisted “dot
products” are highly interoperable, they also follow this approach. You can use them independently because they are
not stuck to each other. They communicate in well-defined ways, and only when that communication provides some
additional feature. Thus, you can usetwisted.web with twisted.enterprise , but neither requires the other,
because they are integrated around the concept ofDeferreds(page 100).

Your Twisted applications should follow this style as much as possible. Have (at least) one module which imple-
ments your specific functionality, independent of any user-interface code.

Next, we’re going to need to associate this abstract logic with some way of displaying it to the user. We’ll do this
by writing a Twisted server protocol, which will respond to the clients that connect to it by sending a quote to the
client and then closing the connection. Note: don’t get too focused on the details of this – different ways to interface
with the user are 90% of what Twisted does, and there are lots of documents describing the different ways to do it.

from twisted.internet.protocol import Factory, Protocol

class QOTD(Protocol):

def connectionMade(self):
self.transport.write(self.factory.quoter.getQuote() +’\r\n’)
self.transport.loseConnection()

class QOTDFactory(Factory):

protocol = QOTD

def __init__(self, quoter):
self.quoter = quoter

Twisted Quotes Protocol Implementation —quoteproto.py

CHAPTER 2. TUTORIAL 26

This is a very straightforwardProtocol implementation, and the pattern described above is repeated here. The
Protocol contains essentially no logic of its own, just enough to tie together an object which can generate quotes (a
Quoter) and an object which can relay bytes to a TCP connection (aTransport). When a client connects to this
server, aQOTDinstance is created, and itsconnectionMade method is called.

TheQOTDFactory ’s role is to specify to the Twisted framework how to create aProtocol instance that will
handle the connection. Twisted will not instantiate aQOTDFactory ; you will do that yourself later, in themktap
plug-in below.

Note: you can read more specifics ofProtocol andFactory in theWriting Servers(page 13) HOWTO.
Once we have an abstraction – aQuoter – and we have a mechanism to connect it to the network – theQOTD

protocol – the next thing to do is to put the last link in the chain of functionality between abstraction and user. This
last link will allow a user to choose aQuoter and configure the protocol. Writing this configuration is covered in the
Application HOWTO(page 159).

2.5 Twisted from Scratch, or The Evolution of Finger

2.5.1 Introduction

Twisted is a big system. People are often daunted when they approach it. It’s hard to know where to start looking.
This guide builds a full-fledged Twisted application from the ground up, using most of the important bits of the

framework. There is a lot of code, but don’t be afraid.
The application we are looking at is a “finger” service, alongthe lines of the familiar service traditionally provided

by UNIX servers. We will extend this service slightly beyondthe standard, in order to demonstrate some of Twisted’s
higher-level features.

2.5.2 Contents

This tutorial is split into eleven parts:

1. The Evolution of Finger: building a simple finger service(this page)

2. The Evolution of Finger: adding features to the finger service (page 31)

3. The Evolution of Finger: cleaning up the finger code(page 39)

4. The Evolution of Finger: moving to a component based architecture(page 42)

5. The Evolution of Finger: pluggable backends(page 51)

6. The Evolution of Finger: a web frontend(page 62)

7. The Evolution of Finger: Twisted client support using Perspective Broker(page 67)

8. The Evolution of Finger: using a single factory for multipleprotocols(page 72)

9. The Evolution of Finger: a Twisted finger client(page 78)

10. The Evolution of Finger: making a finger library(page 80)

11. The Evolution of Finger: configuration and packaging of the finger service(page 83)

2.6 The Evolution of Finger: building a simple finger service

2.6.1 Introduction

This is the first part of the Twisted tutorialTwisted from Scratch, or The Evolution of Finger(this page).
By the end of this section of the tutorial, our finger server will answer TCP finger requests on port 1079, and will

read data from the web.

CHAPTER 2. TUTORIAL 27

2.6.2 Refuse Connections

from twisted.internet import reactor
reactor.run()

Source listing —finger01.py

This example only runs the reactor. Nothing at all will happen until we interrupt the program. It will consume
almost no CPU resources. Not very useful, perhaps — but this is the skeleton inside which the Twisted program will
grow.

The Reactor

You don’t call Twisted, Twisted calls you. Thereactor is Twisted’s main event loop. There is exactly one reactor in
any running Twisted application. Once started it loops overand over again, responding to network events, and making
scheduled calls to code.

2.6.3 Do Nothing

from twisted.internet import protocol, reactor
class FingerProtocol(protocol.Protocol):

pass
class FingerFactory(protocol.ServerFactory):

protocol = FingerProtocol
reactor.listenTCP(1079, FingerFactory())
reactor.run()

Source listing —finger02.py

Here, we start listening on port 1079. The 1079 is a reminder that eventually, we want to run on port 79, the
standard port for finger servers. We define a protocol which does not respond to any events. Thus, connections to 1079
will be accepted, but the input ignored.

2.6.4 Drop Connections

from twisted.internet import protocol, reactor
class FingerProtocol(protocol.Protocol):

def connectionMade(self):
self.transport.loseConnection()

class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol

reactor.listenTCP(1079, FingerFactory())
reactor.run()

Source listing —finger03.py

Here we add to the protocol the ability to respond to the eventof beginning a connection — by terminating it.
Perhaps not an interesting behavior, but it is already closeto behaving according to the letter of the protocol. After
all, there is no requirement to send any data to the remote connection in the standard. The only problem, as far as the
standard is concerned, is that we terminate the connection too soon. A client which is slow enough will see his send()
of the username result in an error.

2.6.5 Read Username, Drop Connections

from twisted.internet import protocol, reactor
from twisted.protocols import basic
class FingerProtocol(basic.LineReceiver):

CHAPTER 2. TUTORIAL 28

def lineReceived(self, user):
self.transport.loseConnection()

class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol

reactor.listenTCP(1079, FingerFactory())
reactor.run()

Source listing —finger04.py

Here we makeFingerProtocol inherit fromLineReceiver , so that we get data-based events on a line-by-
line basis. We respond to the event of receiving the line withshutting down the connection.

Congratulations, this is the first standard-compliant version of the code. However, usually people actually expect
some data about users to be transmitted.

2.6.6 Read Username, Output Error, Drop Connections

from twisted.internet import protocol, reactor
from twisted.protocols import basic
class FingerProtocol(basic.LineReceiver):

def lineReceived(self, user):
self.transport.write("No such user\r\n")
self.transport.loseConnection()

class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol

reactor.listenTCP(1079, FingerFactory())
reactor.run()

Source listing —finger05.py

Finally, a useful version. Granted, the usefulness is somewhat limited by the fact that this version only prints out a
“No such user” message. It could be used for devastating effect in honey-pots, of course.

2.6.7 Output From Empty Factory

Read username, output from empty factory, drop connection s
from twisted.internet import protocol, reactor
from twisted.protocols import basic
class FingerProtocol(basic.LineReceiver):

def lineReceived(self, user):
self.transport.write(self.factory.getUser(user)+"\r \n")
self.transport.loseConnection()

class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol
def getUser(self, user): return "No such user"

reactor.listenTCP(1079, FingerFactory())
reactor.run()

Source listing —finger06.py

The same behavior, but finally we see what usefulness the factory has: as something that does not get constructed
for every connection, it can be in charge of the user database. In particular, we won’t have to change the protocol if
the user database back-end changes.

2.6.8 Output from Non-empty Factory

Read username, output from non-empty factory, drop connec tions

CHAPTER 2. TUTORIAL 29

from twisted.internet import protocol, reactor
from twisted.protocols import basic
class FingerProtocol(basic.LineReceiver):

def lineReceived(self, user):
self.transport.write(self.factory.getUser(user)+"\r \n")
self.transport.loseConnection()

class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol
def __init__(self, ** kwargs): self.users = kwargs
def getUser(self, user):

return self.users.get(user, "No such user")
reactor.listenTCP(1079, FingerFactory(moshez=’Happy a nd well’))
reactor.run()

Source listing —finger07.py

Finally, a really useful finger database. While it does not supply information about logged in users, it could be
used to distribute things like office locations and internaloffice numbers. As hinted above, the factory is in charge of
keeping the user database: note that the protocol instance has not changed. This is starting to look good: we really
won’t have to keep tweaking our protocol.

2.6.9 Use Deferreds

Read username, output from non-empty factory, drop connec tions
Use deferreds, to minimize synchronicity assumptions
from twisted.internet import protocol, reactor, defer
from twisted.protocols import basic
class FingerProtocol(basic.LineReceiver):

def lineReceived(self, user):
self.factory.getUser(user
).addErrback(lambda _: "Internal error in server"
).addCallback(lambda m:

(self.transport.write(m+"\r\n"),
self.transport.loseConnection()))

class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol
def __init__(self, ** kwargs): self.users = kwargs
def getUser(self, user):

return defer.succeed(self.users.get(user, "No such user "))
reactor.listenTCP(1079, FingerFactory(moshez=’Happy a nd well’))
reactor.run()

Source listing —finger08.py

But, here we tweak it just for the hell of it. Yes, while the previous version worked, it did assume the result of
getUser is always immediately available. But what if instead of an in memory database, we would have to fetch result
from a remote Oracle? Or from the web? Or, or...

2.6.10 Run ’finger’ Locally

Read username, output from factory interfacing to OS, drop connections
from twisted.internet import protocol, reactor, defer, ut ils
from twisted.protocols import basic
class FingerProtocol(basic.LineReceiver):

def lineReceived(self, user):
self.factory.getUser(user

CHAPTER 2. TUTORIAL 30

).addErrback(lambda _: "Internal error in server"
).addCallback(lambda m:

(self.transport.write(m+"\r\n"),
self.transport.loseConnection()))

class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol
def getUser(self, user):

return utils.getProcessOutput("finger", [user])
reactor.listenTCP(1079, FingerFactory())
reactor.run()

Source listing —finger09.py

...from running a local command? Yes, this version runs finger locally with whatever arguments it is given, and
returns the standard output. This is probably insecure, so you probably don’t want a real server to do this without a lot
more validation of the user input. This will do exactly what the standard version of the finger server does.

2.6.11 Read Status from the Web

The web. That invention which has infiltrated homes around the world finally gets through to our invention. Here
we use the built-in Twisted web client, which also returns a deferred. Finally, we manage to have examples of three
different database back-ends, which do not change the protocol class. In fact, we will not have to change the protocol
again until the end of this tutorial: we have achieved, here,one truly usable class.

Read username, output from factory interfacing to web, dro p connections
from twisted.internet import protocol, reactor, defer, ut ils
from twisted.protocols import basic
from twisted.web import client
class FingerProtocol(basic.LineReceiver):

def lineReceived(self, user):
self.factory.getUser(user
).addErrback(lambda _: "Internal error in server"
).addCallback(lambda m:

(self.transport.write(m+"\r\n"),
self.transport.loseConnection()))

class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol
def __init__(self, prefix): self.prefix=prefix
def getUser(self, user):

return client.getPage(self.prefix+user)
reactor.listenTCP(1079, FingerFactory(prefix=’http:/ /livejournal.com/˜’))
reactor.run()

Source listing —finger10.py

2.6.12 Use Application

Up until now, we faked. We kept using port 1079, because really, who wants to run a finger server with root privileges?
Well, the common solution is “privilege shedding”: after binding to the network, become a different, less privileged
user. We could have done it ourselves, but Twisted has a built-in way to do it. We will create a snippet as above, but
now we will define an application object. That object will have uid and gid attributes. When running it (later we will
see how) it will bind to ports, shed privileges and then run.

After saving the next example (finger11.py) as “finger.tac”,read on to find out how to run this code using the twistd
utility.

Read username, output from non-empty factory, drop connec tions

CHAPTER 2. TUTORIAL 31

Use deferreds, to minimize synchronicity assumptions
Write application. Save in ’finger.tpy’
from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer
from twisted.protocols import basic
class FingerProtocol(basic.LineReceiver):

def lineReceived(self, user):
self.factory.getUser(user
).addErrback(lambda _: "Internal error in server"
).addCallback(lambda m:

(self.transport.write(m+"\r\n"),
self.transport.loseConnection()))

class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol
def __init__(self, ** kwargs): self.users = kwargs
def getUser(self, user):

return defer.succeed(self.users.get(user, "No such user "))

application = service.Application(’finger’, uid=1, gid= 1)
factory = FingerFactory(moshez=’Happy and well’)
internet.TCPServer(79, factory).setServiceParent(

service.IServiceCollection(application))

Source listing —finger11.py

2.6.13 twistd

This is how to run “Twisted Applications”— files which define an ’application’. twistd (TWISTed Daemonizer) does
everything a daemon can be expected to — shuts down stdin/stdout/stderr, disconnects from the terminal and can even
change runtime directory, or even the root filesystems. In short, it does everything so the Twisted application developer
can concentrate on writing his networking code.

root% twistd -ny finger.tac # just like before
root% twistd -y finger.tac # daemonize, keep pid in twistd.p id
root% twistd -y finger.tac --pidfile=finger.pid
root% twistd -y finger.tac --rundir=/
root% twistd -y finger.tac --chroot=/var
root% twistd -y finger.tac -l /var/log/finger.log
root% twistd -y finger.tac --syslog # just log to syslog
root% twistd -y finger.tac --syslog --prefix=twistedfing er # use given prefix

2.7 The Evolution of Finger: adding features to the finger service

2.7.1 Introduction

This is the second part of the Twisted tutorialTwisted from Scratch, or The Evolution of Finger(page 26).
In this section of the tutorial, our finger server will continue to sprout features: the ability for users to set finger

announces, and using our finger service to send those announcements on the web, on IRC and over XML-RPC.

2.7.2 Setting Message By Local Users

Now that port 1079 is free, maybe we can run on it a different server, one which will let people set their messages. It
does no access control, so anyone who can login to the machinecan set any message. We assume this is the desired
behavior in our case. Testing it can be done by simply:

CHAPTER 2. TUTORIAL 32

% nc localhost 1079 # or telnet localhost 1079
moshez
Giving a tutorial now, sorry!
ˆD

But let’s try and fix setting away messages, shall we?
from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer
from twisted.protocols import basic
class FingerProtocol(basic.LineReceiver):

def lineReceived(self, user):
self.factory.getUser(user
).addErrback(lambda _: "Internal error in server"
).addCallback(lambda m:

(self.transport.write(m+"\r\n"),
self.transport.loseConnection()))

class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol
def __init__(self, ** kwargs): self.users = kwargs
def getUser(self, user):

return defer.succeed(self.users.get(user, "No such user "))

class FingerSetterProtocol(basic.LineReceiver):
def connectionMade(self): self.lines = []
def lineReceived(self, line): self.lines.append(line)
def connectionLost(self, reason):

self.factory.setUser(* self.lines[:2])
first line: user second line: status

class FingerSetterFactory(protocol.ServerFactory):
protocol = FingerSetterProtocol
def __init__(self, ff): self.setUser = ff.users.__setite m__

ff = FingerFactory(moshez=’Happy and well’)
fsf = FingerSetterFactory(ff)

application = service.Application(’finger’, uid=1, gid= 1)
serviceCollection = service.IServiceCollection(applic ation)
internet.TCPServer(79,ff).setServiceParent(serviceC ollection)
internet.TCPServer(1079,fsf).setServiceParent(servi ceCollection)

Source listing —finger12.py

2.7.3 Use Services to Make Dependencies Sane

The previous version had the setter poke at the innards of thefinger factory. It’s usually not a good idea: this version
makes both factories symmetric by making them both look at a single object. Services are useful for when an object is
needed which is not related to a specific network server. Here, we moved all responsibility for manufacturing factories
into the service. Note that we stopped subclassing: the service simply puts useful methods and attributes inside the
factories. We are getting better at protocol design: none ofour protocol classes had to be changed, and neither will
have to change until the end of the tutorial.

Fix asymmetry
from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer

CHAPTER 2. TUTORIAL 33

from twisted.protocols import basic
class FingerProtocol(basic.LineReceiver):

def lineReceived(self, user):
self.factory.getUser(user
).addErrback(lambda _: "Internal error in server"
).addCallback(lambda m:

(self.transport.write(m+"\r\n"),
self.transport.loseConnection()))

class FingerSetterProtocol(basic.LineReceiver):
def connectionMade(self): self.lines = []
def lineReceived(self, line): self.lines.append(line)
def connectionLost(self,reason): self.factory.setUser (* self.lines[:2])
first line: user second line: status

class FingerService(service.Service):
def __init__(self, * args, ** kwargs):

self.parent.__init__(self, * args)
self.users = kwargs

def getUser(self, user):
return defer.succeed(self.users.get(user, "No such user "))

def getFingerFactory(self):
f = protocol.ServerFactory()
f.protocol, f.getUser = FingerProtocol, self.getUser
return f

def getFingerSetterFactory(self):
f = protocol.ServerFactory()
f.protocol, f.setUser = FingerSetterProtocol, self.user s.__setitem__
return f

application = service.Application(’finger’, uid=1, gid= 1)
f = FingerService(’finger’, moshez=’Happy and well’)
serviceCollection = service.IServiceCollection(applic ation)
internet.TCPServer(79,f.getFingerFactory()

).setServiceParent(serviceCollection)
internet.TCPServer(1079,f.getFingerSetterFactory()

).setServiceParent(serviceCollection)

Source listing —finger13.py

2.7.4 Read Status File

This version shows how, instead of just letting users set their messages, we can read those from a centrally managed
file. We cache results, and every 30 seconds we refresh it. Services are useful for such scheduled tasks.

moshez: happy and well
shawn: alive

sample /etc/users file —etc.users

Read from file
from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer
from twisted.protocols import basic

class FingerProtocol(basic.LineReceiver):

CHAPTER 2. TUTORIAL 34

def lineReceived(self, user):
self.factory.getUser(user
).addErrback(lambda _: "Internal error in server"
).addCallback(lambda m:

(self.transport.write(m+"\r\n"),
self.transport.loseConnection()))

class FingerService(service.Service):
def __init__(self, filename):

self.users = {}
self.filename = filename

def _read(self):
for line in file(self.filename):

user, status = line.split(’:’, 1)
user = user.strip()
status = status.strip()
self.users[user] = status

self.call = reactor.callLater(30, self._read)
def startService(self):

self._read()
service.Service.startService(self)

def stopService(self):
service.Service.stopService(self)
self.call.cancel()

def getUser(self, user):
return defer.succeed(self.users.get(user, "No such user "))

def getFingerFactory(self):
f = protocol.ServerFactory()
f.protocol, f.getUser = FingerProtocol, self.getUser
return f

application = service.Application(’finger’, uid=1, gid= 1)
f = FingerService(’/etc/users’)
finger = internet.TCPServer(79, f.getFingerFactory())

finger.setServiceParent(service.IServiceCollection(application))
f.setServiceParent(service.IServiceCollection(appli cation))

Source listing —finger14.py

2.7.5 Announce on Web, Too

The same kind of service can also produce things useful for other protocols. For example, in twisted.web, the factory
itself (the site) is almost never subclassed – instead, it isgiven a resource, which represents the tree of resources
available via URLs. That hierarchy is navigated by site, andoverriding it dynamically is possible with getChild.

Read from file, announce on the web!
from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer
from twisted.protocols import basic
from twisted.web import resource, server, static
import cgi

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):

self.factory.getUser(user

CHAPTER 2. TUTORIAL 35

).addErrback(lambda _: "Internal error in server"
).addCallback(lambda m:

(self.transport.write(m+"\r\n"),
self.transport.loseConnection()))

class MotdResource(resource.Resource):

def __init__(self, users):
self.users = users
resource.Resource.__init__(self)

we treat the path as the username
def getChild(self, username, request):

motd = self.users.get(username)
username = cgi.escape(username)
if motd is not None:

motd = cgi.escape(motd)
text = ’<h1>%s</h1><p>%s</p>’ % (username,motd)

else:
text = ’<h1>%s</h1><p>No such user</p>’ % username

return static.Data(text, ’text/html’)

class FingerService(service.Service):
def __init__(self, filename):

self.filename = filename
self._read()

def _read(self):
self.users = {}
for line in file(self.filename):

user, status = line.split(’:’, 1)
user = user.strip()
status = status.strip()
self.users[user] = status

self.call = reactor.callLater(30, self._read)
def getUser(self, user):

return defer.succeed(self.users.get(user, "No such user "))
def getFingerFactory(self):

f = protocol.ServerFactory()
f.protocol, f.getUser = FingerProtocol, self.getUser
f.startService = self.startService
return f

def getResource(self):
r = MotdResource(self.users)
return r

application = service.Application(’finger’, uid=1, gid= 1)
f = FingerService(’/etc/users’)
serviceCollection = service.IServiceCollection(applic ation)
internet.TCPServer(79, f.getFingerFactory()

).setServiceParent(serviceCollection)
internet.TCPServer(8000, server.Site(f.getResource())

).setServiceParent(serviceCollection)

Source listing —finger15.py

CHAPTER 2. TUTORIAL 36

2.7.6 Announce on IRC, Too

This is the first time there is client code. IRC clients often act a lot like servers: responding to events from the
network. The reconnecting client factory will make sure that severed links will get re-established, with intelligent
tweaked exponential back-off algorithms. The IRC client itself is simple: the only real hack is getting the nickname
from the factory in connectionMade.

Read from file, announce on the web, irc
from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer
from twisted.words.protocols import irc
from twisted.protocols import basic
from twisted.web import resource, server, static
import cgi
class FingerProtocol(basic.LineReceiver):

def lineReceived(self, user):
self.factory.getUser(user
).addErrback(lambda _: "Internal error in server"
).addCallback(lambda m:

(self.transport.write(m+"\r\n"),
self.transport.loseConnection()))

class FingerSetterProtocol(basic.LineReceiver):
def connectionMade(self): self.lines = []
def lineReceived(self, line): self.lines.append(line)
def connectionLost(self,reason): self.factory.setUser (* self.lines[:2])

class IRCReplyBot(irc.IRCClient):
def connectionMade(self):

self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split(’!’)[0]
if self.nickname.lower() == channel.lower():

self.factory.getUser(msg
).addErrback(lambda _: "Internal error in server"
).addCallback(lambda m: irc.IRCClient.msg(self, user, m sg+’: ’+m))

class FingerService(service.Service):
def __init__(self, filename):

self.filename = filename
self._read()

def _read(self):
self.users = {}
for line in file(self.filename):

user, status = line.split(’:’, 1)
user = user.strip()
status = status.strip()
self.users[user] = status

self.call = reactor.callLater(30, self._read)
def getUser(self, user):

return defer.succeed(self.users.get(user, "No such user "))
def getFingerFactory(self):

f = protocol.ServerFactory()
f.protocol, f.getUser = FingerProtocol, self.getUser
return f

def getResource(self):
r = resource.Resource()
r.getChild = (lambda path, request:

static.Data(’<h1>%s</h1><p>%s</p>’ %

CHAPTER 2. TUTORIAL 37

tuple(map(cgi.escape,
[path,self.users.get(path,
"No such user <p/> usage: site/user")])),
’text/html’))

return r

def getIRCBot(self, nickname):
f = protocol.ReconnectingClientFactory()
f.protocol,f.nickname,f.getUser = IRCReplyBot,nicknam e,self.getUser
return f

application = service.Application(’finger’, uid=1, gid= 1)
f = FingerService(’/etc/users’)
serviceCollection = service.IServiceCollection(applic ation)
internet.TCPServer(79, f.getFingerFactory()

).setServiceParent(serviceCollection)
internet.TCPServer(8000, server.Site(f.getResource())

).setServiceParent(serviceCollection)
internet.TCPClient(’irc.freenode.org’, 6667, f.getIRC Bot(’fingerbot’)

).setServiceParent(serviceCollection)

Source listing —finger16.py

2.7.7 Add XML-RPC Support

In Twisted, XML-RPC support is handled just as though it was another resource. That resource will still support GET
calls normally through render(), but that is usually left unimplemented. Note that it is possible to return deferreds from
XML-RPC methods. The client, of course, will not get the answer until the deferred is triggered.

Read from file, announce on the web, irc, xml-rpc
from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer
from twisted.words.protocols import irc
from twisted.protocols import basic
from twisted.web import resource, server, static, xmlrpc
import cgi
class FingerProtocol(basic.LineReceiver):

def lineReceived(self, user):
self.factory.getUser(user
).addErrback(lambda _: "Internal error in server"
).addCallback(lambda m:

(self.transport.write(m+"\r\n"),
self.transport.loseConnection()))

class FingerSetterProtocol(basic.LineReceiver):
def connectionMade(self): self.lines = []
def lineReceived(self, line): self.lines.append(line)
def connectionLost(self,reason): self.factory.setUser (* self.lines[:2])

class IRCReplyBot(irc.IRCClient):
def connectionMade(self):

self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split(’!’)[0]
if self.nickname.lower() == channel.lower():

self.factory.getUser(msg
).addErrback(lambda _: "Internal error in server"

CHAPTER 2. TUTORIAL 38

).addCallback(lambda m: irc.IRCClient.msg(self, user, m sg+’: ’+m))

class FingerService(service.Service):
def __init__(self, filename):

self.filename = filename
self._read()

def _read(self):
self.users = {}
for line in file(self.filename):

user, status = line.split(’:’, 1)
user = user.strip()
status = status.strip()
self.users[user] = status

self.call = reactor.callLater(30, self._read)
def getUser(self, user):

return defer.succeed(self.users.get(user, "No such user "))
def getFingerFactory(self):

f = protocol.ServerFactory()
f.protocol, f.getUser = FingerProtocol, self.getUser
return f

def getResource(self):
r = resource.Resource()
r.getChild = (lambda path, request:

static.Data(’<h1>%s</h1><p>%s</p>’ %
tuple(map(cgi.escape,
[path,self.users.get(path, "No such user")])),
’text/html’))

x = xmlrpc.XMLRPC()
x.xmlrpc_getUser = self.getUser
r.putChild(’RPC2’, x)
return r

def getIRCBot(self, nickname):
f = protocol.ReconnectingClientFactory()
f.protocol,f.nickname,f.getUser = IRCReplyBot,nicknam e,self.getUser
return f

application = service.Application(’finger’, uid=1, gid= 1)
f = FingerService(’/etc/users’)
serviceCollection = service.IServiceCollection(applic ation)
internet.TCPServer(79, f.getFingerFactory()

).setServiceParent(serviceCollection)
internet.TCPServer(8000, server.Site(f.getResource())

).setServiceParent(serviceCollection)
internet.TCPClient(’irc.freenode.org’, 6667, f.getIRC Bot(’fingerbot’)

).setServiceParent(serviceCollection)

Source listing —finger17.py

A simple client to test the XMLRPC finger:

testing xmlrpc finger

import xmlrpclib
server = xmlrpclib.Server(’http://127.0.0.1:8000/RPC2 ’)
print server.getUser(’moshez’)

CHAPTER 2. TUTORIAL 39

Source listing —fingerXRclient.py

2.8 The Evolution of Finger: cleaning up the finger code

2.8.1 Introduction

This is the third part of the Twisted tutorialTwisted from Scratch, or The Evolution of Finger(page 26).
In this section of the tutorial, we’ll clean up our code so that it is closer to a readable and extendable style.

2.8.2 Write Readable Code

The last version of the application had a lot of hacks. We avoided sub-classing, didn’t support things like user listings
over the web, and removed all blank lines – all in the interestof code which is shorter. Here we take a step back,
subclass what is more naturally a subclass, make things which should take multiple lines take them, etc. This shows a
much better style of developing Twisted applications, though the hacks in the previous stages are sometimes used in
throw-away prototypes.

Do everything properly
from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer
from twisted.words.protocols import irc
from twisted.protocols import basic
from twisted.web import resource, server, static, xmlrpc
import cgi

def catchError(err):
return "Internal error in server"

class FingerProtocol(basic.LineReceiver):

def lineReceived(self, user):
d = self.factory.getUser(user)
d.addErrback(catchError)
def writeValue(value):

self.transport.write(value+’\r\n’)
self.transport.loseConnection()

d.addCallback(writeValue)

class FingerSetterProtocol(basic.LineReceiver):

def connectionMade(self):
self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self, reason):
self.factory.setUser(* self.lines[:2])

class IRCReplyBot(irc.IRCClient):

def connectionMade(self):

CHAPTER 2. TUTORIAL 40

self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split(’!’)[0]
if self.nickname.lower() == channel.lower():

d = self.factory.getUser(msg)
d.addErrback(catchError)
d.addCallback(lambda m: "Status of %s: %s" % (msg, m))
d.addCallback(lambda m: self.msg(user, m))

class UserStatusTree(resource.Resource):
def __init__(self, service):

resource.Resource.__init__(self)
self.service = service

def render_GET(self, request):
d = self.service.getUsers()
def formatUsers(users):

l = [’%s’ % (user, user)
for user in users]

return ’’+’’.join(l)+’’
d.addCallback(formatUsers)
d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

def getChild(self, path, request):
if path=="":

return UserStatusTree(self.service)
else:

return UserStatus(path, self.service)

class UserStatus(resource.Resource):

def __init__(self, user, service):
resource.Resource.__init__(self)
self.user = user
self.service = service

def render_GET(self, request):
d = self.service.getUser(self.user)
d.addCallback(cgi.escape)
d.addCallback(lambda m:

’<h1>%s</h1>’%self.user+’<p>%s</p>’%m)
d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

class UserStatusXR(xmlrpc.XMLRPC):

def __init__(self, service):
xmlrpc.XMLRPC.__init__(self)
self.service = service

CHAPTER 2. TUTORIAL 41

def xmlrpc_getUser(self, user):
return self.service.getUser(user)

class FingerService(service.Service):

def __init__(self, filename):
self.filename = filename
self._read()

def _read(self):
self.users = {}
for line in file(self.filename):

user, status = line.split(’:’, 1)
user = user.strip()
status = status.strip()
self.users[user] = status

self.call = reactor.callLater(30, self._read)

def getUser(self, user):
return defer.succeed(self.users.get(user, "No such user "))

def getUsers(self):
return defer.succeed(self.users.keys())

def getFingerFactory(self):
f = protocol.ServerFactory()
f.protocol = FingerProtocol
f.getUser = self.getUser
return f

def getResource(self):
r = UserStatusTree(self)
x = UserStatusXR(self)
r.putChild(’RPC2’, x)
return r

def getIRCBot(self, nickname):
f = protocol.ReconnectingClientFactory()
f.protocol = IRCReplyBot
f.nickname = nickname
f.getUser = self.getUser
return f

application = service.Application(’finger’, uid=1, gid= 1)
f = FingerService(’/etc/users’)
serviceCollection = service.IServiceCollection(applic ation)
internet.TCPServer(79, f.getFingerFactory()

).setServiceParent(serviceCollection)
internet.TCPServer(8000, server.Site(f.getResource())

).setServiceParent(serviceCollection)
internet.TCPClient(’irc.freenode.org’, 6667, f.getIRC Bot(’fingerbot’)

).setServiceParent(serviceCollection)

Source listing —finger18.py

CHAPTER 2. TUTORIAL 42

2.9 The Evolution of Finger: moving to a component based architecture

2.9.1 Introduction

This is the fourth part of the Twisted tutorialTwisted from Scratch, or The Evolution of Finger(page 26).
In this section of the tutorial, we’ll move our code to a component architecture so that adding new features is

trivial.

2.9.2 Write Maintainable Code

In the last version, the service class was three times longerthan any other class, and was hard to understand. This was
because it turned out to have multiple responsibilities. Ithad to know how to access user information, by rereading
the file every half minute, but also how to display itself in a myriad of protocols. Here, we used the component-based
architecture that Twisted provides to achieve a separationof concerns. All the service is responsible for, now, is
supporting getUser/getUsers. It declares its support via acall to zope.interface.implements. Then, adapters are used
to make this service look like an appropriate class for various things: for supplying a finger factory to TCPServer, for
supplying a resource to site’s constructor, and to provide an IRC client factory for TCPClient. All the adapters use are
the methods in FingerService they are declared to use: getUser/getUsers. We could, of course, skip the interfaces and
let the configuration code use things like FingerFactoryFromService(f) directly. However, using interfaces provides
the same flexibility inheritance gives: future subclasses can override the adapters.

Do everything properly, and componentize
from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer
from twisted.words.protocols import irc
from twisted.protocols import basic
from twisted.python import components
from twisted.web import resource, server, static, xmlrpc
from zope.interface import Interface, implements
import cgi

class IFingerService(Interface):

def getUser(user):
"""Return a deferred returning a string"""

def getUsers():
"""Return a deferred returning a list of strings"""

class IFingerSetterService(Interface):

def setUser(user, status):
"""Set the user’s status to something"""

def catchError(err):
return "Internal error in server"

class FingerProtocol(basic.LineReceiver):

def lineReceived(self, user):
d = self.factory.getUser(user)
d.addErrback(catchError)
def writeValue(value):

self.transport.write(value+’\r\n’)
self.transport.loseConnection()

d.addCallback(writeValue)

CHAPTER 2. TUTORIAL 43

class IFingerFactory(Interface):

def getUser(user):
"""Return a deferred returning a string"""

def buildProtocol(addr):
"""Return a protocol returning a string"""

class FingerFactoryFromService(protocol.ServerFactor y):

implements(IFingerFactory)

protocol = FingerProtocol

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(FingerFactoryFromService ,
IFingerService,
IFingerFactory)

class FingerSetterProtocol(basic.LineReceiver):

def connectionMade(self):
self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self, reason):
if len(self.lines) == 2:

self.factory.setUser(* self.lines)

class IFingerSetterFactory(Interface):

def setUser(user, status):
"""Return a deferred returning a string"""

def buildProtocol(addr):
"""Return a protocol returning a string"""

class FingerSetterFactoryFromService(protocol.Server Factory):

implements(IFingerSetterFactory)

protocol = FingerSetterProtocol

def __init__(self, service):
self.service = service

def setUser(self, user, status):

CHAPTER 2. TUTORIAL 44

self.service.setUser(user, status)

components.registerAdapter(FingerSetterFactoryFromS ervice,
IFingerSetterService,
IFingerSetterFactory)

class IRCReplyBot(irc.IRCClient):

def connectionMade(self):
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split(’!’)[0]
if self.nickname.lower() == channel.lower():

d = self.factory.getUser(msg)
d.addErrback(catchError)
d.addCallback(lambda m: "Status of %s: %s" % (msg, m))
d.addCallback(lambda m: self.msg(user, m))

class IIRCClientFactory(Interface):

"""
@ivar nickname
"""

def getUser(user):
"""Return a deferred returning a string"""

def buildProtocol(addr):
"""Return a protocol"""

class IRCClientFactoryFromService(protocol.ClientFac tory):

implements(IIRCClientFactory)

protocol = IRCReplyBot
nickname = None

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(IRCClientFactoryFromServ ice,
IFingerService,
IIRCClientFactory)

class UserStatusTree(resource.Resource):

implements(resource.IResource)

def __init__(self, service):

CHAPTER 2. TUTORIAL 45

resource.Resource.__init__(self)
self.service = service
self.putChild(’RPC2’, UserStatusXR(self.service))

def render_GET(self, request):
d = self.service.getUsers()
def formatUsers(users):

l = [’%s’ % (user, user)
for user in users]

return ’’+’’.join(l)+’’
d.addCallback(formatUsers)
d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

def getChild(self, path, request):
if path=="":

return UserStatusTree(self.service)
else:

return UserStatus(path, self.service)

components.registerAdapter(UserStatusTree, IFingerSe rvice,
resource.IResource)

class UserStatus(resource.Resource):

def __init__(self, user, service):
resource.Resource.__init__(self)
self.user = user
self.service = service

def render_GET(self, request):
d = self.service.getUser(self.user)
d.addCallback(cgi.escape)
d.addCallback(lambda m:

’<h1>%s</h1>’%self.user+’<p>%s</p>’%m)
d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

class UserStatusXR(xmlrpc.XMLRPC):

def __init__(self, service):
xmlrpc.XMLRPC.__init__(self)
self.service = service

def xmlrpc_getUser(self, user):
return self.service.getUser(user)

class FingerService(service.Service):

implements(IFingerService)

def __init__(self, filename):
self.filename = filename

CHAPTER 2. TUTORIAL 46

self._read()

def _read(self):
self.users = {}
for line in file(self.filename):

user, status = line.split(’:’, 1)
user = user.strip()
status = status.strip()
self.users[user] = status

self.call = reactor.callLater(30, self._read)

def getUser(self, user):
return defer.succeed(self.users.get(user, "No such user "))

def getUsers(self):
return defer.succeed(self.users.keys())

application = service.Application(’finger’, uid=1, gid= 1)
f = FingerService(’/etc/users’)
serviceCollection = service.IServiceCollection(applic ation)
internet.TCPServer(79, IFingerFactory(f)

).setServiceParent(serviceCollection)
internet.TCPServer(8000, server.Site(resource.IResou rce(f))

).setServiceParent(serviceCollection)
i = IIRCClientFactory(f)
i.nickname = ’fingerbot’
internet.TCPClient(’irc.freenode.org’, 6667, i

).setServiceParent(serviceCollection)

Source listing —finger19.py

2.9.3 Advantages of Latest Version

• Readable – each class is short

• Maintainable – each class knows only about interfaces

• Dependencies between code parts are minimized

• Example: writing a new IFingerService is easy

class IFingerSetterService(Interface):

def setUser(user, status):
"""Set the user’s status to something"""

Advantages of latest version

class MemoryFingerService(service.Service):

implements([IFingerService, IFingerSetterService])

def __init__(self, ** kwargs):
self.users = kwargs

def getUser(self, user):

CHAPTER 2. TUTORIAL 47

return defer.succeed(self.users.get(user, "No such user "))

def getUsers(self):
return defer.succeed(self.users.keys())

def setUser(self, user, status):
self.users[user] = status

f = MemoryFingerService(moshez=’Happy and well’)
serviceCollection = service.IServiceCollection(applic ation)
internet.TCPServer(1079, IFingerSetterFactory(f), int erface=’127.0.0.1’

).setServiceParent(serviceCollection)

Source listing —finger19achanges.py

Full source code here:

Do everything properly, and componentize
from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer
from twisted.words.protocols import irc
from twisted.protocols import basic
from twisted.python import components
from twisted.web import resource, server, static, xmlrpc
from zope.interface import Interface, implements
import cgi

class IFingerService(Interface):

def getUser(user):
"""Return a deferred returning a string"""

def getUsers():
"""Return a deferred returning a list of strings"""

class IFingerSetterService(Interface):

def setUser(user, status):
"""Set the user’s status to something"""

def catchError(err):
return "Internal error in server"

class FingerProtocol(basic.LineReceiver):

def lineReceived(self, user):
d = self.factory.getUser(user)
d.addErrback(catchError)
def writeValue(value):

self.transport.write(value+’\r\n’)
self.transport.loseConnection()

d.addCallback(writeValue)

class IFingerFactory(Interface):

CHAPTER 2. TUTORIAL 48

def getUser(user):
"""Return a deferred returning a string"""

def buildProtocol(addr):
"""Return a protocol returning a string"""

class FingerFactoryFromService(protocol.ServerFactor y):

implements(IFingerFactory)

protocol = FingerProtocol

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(FingerFactoryFromService ,
IFingerService,
IFingerFactory)

class FingerSetterProtocol(basic.LineReceiver):

def connectionMade(self):
self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self, reason):
if len(self.lines) == 2:

self.factory.setUser(* self.lines)

class IFingerSetterFactory(Interface):

def setUser(user, status):
"""Return a deferred returning a string"""

def buildProtocol(addr):
"""Return a protocol returning a string"""

class FingerSetterFactoryFromService(protocol.Server Factory):

implements(IFingerSetterFactory)

protocol = FingerSetterProtocol

def __init__(self, service):
self.service = service

def setUser(self, user, status):
self.service.setUser(user, status)

CHAPTER 2. TUTORIAL 49

components.registerAdapter(FingerSetterFactoryFromS ervice,
IFingerSetterService,
IFingerSetterFactory)

class IRCReplyBot(irc.IRCClient):

def connectionMade(self):
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split(’!’)[0]
if self.nickname.lower() == channel.lower():

d = self.factory.getUser(msg)
d.addErrback(catchError)
d.addCallback(lambda m: "Status of %s: %s" % (msg, m))
d.addCallback(lambda m: self.msg(user, m))

class IIRCClientFactory(Interface):

"""
@ivar nickname
"""

def getUser(user):
"""Return a deferred returning a string"""

def buildProtocol(addr):
"""Return a protocol"""

class IRCClientFactoryFromService(protocol.ClientFac tory):

implements(IIRCClientFactory)

protocol = IRCReplyBot
nickname = None

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(IRCClientFactoryFromServ ice,
IFingerService,
IIRCClientFactory)

class UserStatusTree(resource.Resource):

implements(resource.IResource)

def __init__(self, service):
resource.Resource.__init__(self)
self.service = service

CHAPTER 2. TUTORIAL 50

self.putChild(’RPC2’, UserStatusXR(self.service))

def render_GET(self, request):
d = self.service.getUsers()
def formatUsers(users):

l = [’%s’ % (user, user)
for user in users]

return ’’+’’.join(l)+’’
d.addCallback(formatUsers)
d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

def getChild(self, path, request):
if path=="":

return UserStatusTree(self.service)
else:

return UserStatus(path, self.service)

components.registerAdapter(UserStatusTree, IFingerSe rvice,
resource.IResource)

class UserStatus(resource.Resource):

def __init__(self, user, service):
resource.Resource.__init__(self)
self.user = user
self.service = service

def render_GET(self, request):
d = self.service.getUser(self.user)
d.addCallback(cgi.escape)
d.addCallback(lambda m:

’<h1>%s</h1>’%self.user+’<p>%s</p>’%m)
d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

class UserStatusXR(xmlrpc.XMLRPC):

def __init__(self, service):
xmlrpc.XMLRPC.__init__(self)
self.service = service

def xmlrpc_getUser(self, user):
return self.service.getUser(user)

class MemoryFingerService(service.Service):

implements([IFingerService, IFingerSetterService])

def __init__(self, ** kwargs):
self.users = kwargs

def getUser(self, user):
return defer.succeed(self.users.get(user, "No such user "))

CHAPTER 2. TUTORIAL 51

def getUsers(self):
return defer.succeed(self.users.keys())

def setUser(self, user, status):
self.users[user] = status

application = service.Application(’finger’, uid=1, gid= 1)
f = MemoryFingerService(moshez=’Happy and well’)
serviceCollection = service.IServiceCollection(applic ation)
internet.TCPServer(79, IFingerFactory(f)

).setServiceParent(serviceCollection)
internet.TCPServer(8000, server.Site(resource.IResou rce(f))

).setServiceParent(serviceCollection)
i = IIRCClientFactory(f)
i.nickname = ’fingerbot’
internet.TCPClient(’irc.freenode.org’, 6667, i

).setServiceParent(serviceCollection)
internet.TCPServer(1079, IFingerSetterFactory(f), int erface=’127.0.0.1’

).setServiceParent(serviceCollection)

Source listing —finger19a.py

2.9.4 Aspect-Oriented Programming

At last, an example of aspect-oriented programming that isn’t about logging or timing. This code is actually useful!
Watch how aspect-oriented programming helps you write lesscode and have fewer dependencies!

2.10 The Evolution of Finger: pluggable backends

2.10.1 Introduction

This is the fifth part of the Twisted tutorialTwisted from Scratch, or The Evolution of Finger(page 26).
In this part we will add new several new backends to our finger service using the component-based architecture

developed inThe Evolution of Finger: moving to a component based architecture(page 42). This will show just how
convenient it is to implement new back-ends when we move to a component based architecture. Note that here we also
use an interface we previously wrote, FingerSetterFactory, by supporting one single method. We manage to preserve
the service’s ignorance of the network.

2.10.2 Another Back-end

from twisted.internet import protocol, reactor, defer, ut ils
import pwd

Another back-end

class LocalFingerService(service.Service):

implements(IFingerService)

def getUser(self, user):
need a local finger daemon running for this to work

return utils.getProcessOutput("finger", [user])

def getUsers(self):

CHAPTER 2. TUTORIAL 52

return defer.succeed([])

f = LocalFingerService()

Source listing —finger19bchanges.py

Full source code here:

Do everything properly, and componentize
from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer, ut ils
from twisted.words.protocols import irc
from twisted.protocols import basic
from twisted.python import components
from twisted.web import resource, server, static, xmlrpc
from zope.interface import Interface, implements
import cgi
import pwd

class IFingerService(Interface):

def getUser(user):
"""Return a deferred returning a string"""

def getUsers():
"""Return a deferred returning a list of strings"""

class IFingerSetterService(Interface):

def setUser(user, status):
"""Set the user’s status to something"""

class IFingerSetterService(Interface):

def setUser(user, status):
"""Set the user’s status to something"""

def catchError(err):
return "Internal error in server"

class FingerProtocol(basic.LineReceiver):

def lineReceived(self, user):
d = self.factory.getUser(user)
d.addErrback(catchError)
def writeValue(value):

self.transport.write(value+’\r\n’)
self.transport.loseConnection()

d.addCallback(writeValue)

class IFingerFactory(Interface):

def getUser(user):
"""Return a deferred returning a string"""

CHAPTER 2. TUTORIAL 53

def buildProtocol(addr):
"""Return a protocol returning a string"""

class FingerFactoryFromService(protocol.ServerFactor y):

implements(IFingerFactory)

protocol = FingerProtocol

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(FingerFactoryFromService ,
IFingerService,
IFingerFactory)

class FingerSetterProtocol(basic.LineReceiver):

def connectionMade(self):
self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self, reason):
if len(self.lines) == 2:

self.factory.setUser(* self.lines)

class IFingerSetterFactory(Interface):

def setUser(user, status):
"""Return a deferred returning a string"""

def buildProtocol(addr):
"""Return a protocol returning a string"""

class FingerSetterFactoryFromService(protocol.Server Factory):

implements(IFingerSetterFactory)

protocol = FingerSetterProtocol

def __init__(self, service):
self.service = service

def setUser(self, user, status):
self.service.setUser(user, status)

components.registerAdapter(FingerSetterFactoryFromS ervice,
IFingerSetterService,

CHAPTER 2. TUTORIAL 54

IFingerSetterFactory)

class IRCReplyBot(irc.IRCClient):

def connectionMade(self):
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split(’!’)[0]
if self.nickname.lower() == channel.lower():

d = self.factory.getUser(msg)
d.addErrback(catchError)
d.addCallback(lambda m: "Status of %s: %s" % (msg, m))
d.addCallback(lambda m: self.msg(user, m))

class IIRCClientFactory(Interface):

"""
@ivar nickname
"""

def getUser(user):
"""Return a deferred returning a string"""

def buildProtocol(addr):
"""Return a protocol"""

class IRCClientFactoryFromService(protocol.ClientFac tory):

implements(IIRCClientFactory)

protocol = IRCReplyBot
nickname = None

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(IRCClientFactoryFromServ ice,
IFingerService,
IIRCClientFactory)

class UserStatusTree(resource.Resource):

implements(resource.IResource)

def __init__(self, service):
resource.Resource.__init__(self)
self.service = service
self.putChild(’RPC2’, UserStatusXR(self.service))

def render_GET(self, request):

CHAPTER 2. TUTORIAL 55

d = self.service.getUsers()
def formatUsers(users):

l = [’%s’ % (user, user)
for user in users]

return ’’+’’.join(l)+’’
d.addCallback(formatUsers)
d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

def getChild(self, path, request):
if path=="":

return UserStatusTree(self.service)
else:

return UserStatus(path, self.service)

components.registerAdapter(UserStatusTree, IFingerSe rvice,
resource.IResource)

class UserStatus(resource.Resource):

def __init__(self, user, service):
resource.Resource.__init__(self)
self.user = user
self.service = service

def render_GET(self, request):
d = self.service.getUser(self.user)
d.addCallback(cgi.escape)
d.addCallback(lambda m:

’<h1>%s</h1>’%self.user+’<p>%s</p>’%m)
d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

class UserStatusXR(xmlrpc.XMLRPC):

def __init__(self, service):
xmlrpc.XMLRPC.__init__(self)
self.service = service

def xmlrpc_getUser(self, user):
return self.service.getUser(user)

class FingerService(service.Service):

implements(IFingerService)

def __init__(self, filename):
self.filename = filename
self._read()

def _read(self):
self.users = {}
for line in file(self.filename):

CHAPTER 2. TUTORIAL 56

user, status = line.split(’:’, 1)
user = user.strip()
status = status.strip()
self.users[user] = status

self.call = reactor.callLater(30, self._read)

def getUser(self, user):
return defer.succeed(self.users.get(user, "No such user "))

def getUsers(self):
return defer.succeed(self.users.keys())

Another back-end

class LocalFingerService(service.Service):

implements(IFingerService)

def getUser(self, user):
need a local finger daemon running for this to work

return utils.getProcessOutput("finger", [user])

def getUsers(self):
return defer.succeed([])

application = service.Application(’finger’, uid=1, gid= 1)
f = LocalFingerService()
serviceCollection = service.IServiceCollection(applic ation)
internet.TCPServer(79, IFingerFactory(f)

).setServiceParent(serviceCollection)
internet.TCPServer(8000, server.Site(resource.IResou rce(f))

).setServiceParent(serviceCollection)
i = IIRCClientFactory(f)
i.nickname = ’fingerbot’
internet.TCPClient(’irc.freenode.org’, 6667, i

).setServiceParent(serviceCollection)

Source listing —finger19b.py

We’ve already written this, but now we get more for less work:the network code is completely separate from the
back-end.

2.10.3 Yet Another Back-end: Doing the Standard Thing

from twisted.internet import protocol, reactor, defer, ut ils
import pwd
import os

Yet another back-end

class LocalFingerService(service.Service):

implements(IFingerService)

def getUser(self, user):

CHAPTER 2. TUTORIAL 57

user = user.strip()
try:

entry = pwd.getpwnam(user)
except KeyError:

return defer.succeed("No such user")
try:

f = file(os.path.join(entry[5],’.plan’))
except (IOError, OSError):

return defer.succeed("No such user")
data = f.read()
data = data.strip()
f.close()
return defer.succeed(data)

def getUsers(self):
return defer.succeed([])

f = LocalFingerService()

Source listing —finger19cchanges.py

Full source code here:

Do everything properly, and componentize
from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer, ut ils
from twisted.words.protocols import irc
from twisted.protocols import basic
from twisted.python import components
from twisted.web import resource, server, static, xmlrpc
from zope.interface import Interface, implements
import cgi
import pwd
import os

class IFingerService(Interface):

def getUser(user):
"""Return a deferred returning a string"""

def getUsers():
"""Return a deferred returning a list of strings"""

class IFingerSetterService(Interface):

def setUser(user, status):
"""Set the user’s status to something"""

class IFingerSetterService(Interface):

def setUser(user, status):
"""Set the user’s status to something"""

def catchError(err):
return "Internal error in server"

CHAPTER 2. TUTORIAL 58

class FingerProtocol(basic.LineReceiver):

def lineReceived(self, user):
d = self.factory.getUser(user)
d.addErrback(catchError)
def writeValue(value):

self.transport.write(value+’\r\n’)
self.transport.loseConnection()

d.addCallback(writeValue)

class IFingerFactory(Interface):

def getUser(user):
"""Return a deferred returning a string"""

def buildProtocol(addr):
"""Return a protocol returning a string"""

class FingerFactoryFromService(protocol.ServerFactor y):

implements(IFingerFactory)

protocol = FingerProtocol

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(FingerFactoryFromService ,
IFingerService,
IFingerFactory)

class FingerSetterProtocol(basic.LineReceiver):

def connectionMade(self):
self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self, reason):
if len(self.lines) == 2:

self.factory.setUser(* self.lines)

class IFingerSetterFactory(Interface):

def setUser(user, status):
"""Return a deferred returning a string"""

def buildProtocol(addr):
"""Return a protocol returning a string"""

CHAPTER 2. TUTORIAL 59

class FingerSetterFactoryFromService(protocol.Server Factory):

implements(IFingerSetterFactory)

protocol = FingerSetterProtocol

def __init__(self, service):
self.service = service

def setUser(self, user, status):
self.service.setUser(user, status)

components.registerAdapter(FingerSetterFactoryFromS ervice,
IFingerSetterService,
IFingerSetterFactory)

class IRCReplyBot(irc.IRCClient):

def connectionMade():
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split(’!’)[0]
if self.nickname.lower() == channel.lower():

d = self.factory.getUser(msg)
d.addErrback(catchError)
d.addCallback(lambda m: "Status of %s: %s" % (msg, m))
d.addCallback(lambda m: self.msg(user, m))

class IIRCClientFactory(Interface):

"""
@ivar nickname
"""

def getUser(user):
"""Return a deferred returning a string"""

def buildProtocol(addr):
"""Return a protocol"""

class IRCClientFactoryFromService(protocol.ClientFac tory):

implements(IIRCClientFactory)

protocol = IRCReplyBot
nickname = None

def __init__(self, service):
self.service = service

CHAPTER 2. TUTORIAL 60

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(IRCClientFactoryFromServ ice,
IFingerService,
IIRCClientFactory)

class UserStatusTree(resource.Resource):

implements(resource.IResource)

def __init__(self, service):
resource.Resource.__init__(self)
self.service = service
self.putChild(’RPC2’, UserStatusXR(self.service))

def render_GET(self, request):
d = self.service.getUsers()
def formatUsers(users):

l = [’%s’ % (user, user)
for user in users]

return ’’+’’.join(l)+’’
d.addCallback(formatUsers)
d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

def getChild(self, path, request):
if path=="":

return UserStatusTree(self.service)
else:

return UserStatus(path, self.service)

components.registerAdapter(UserStatusTree, IFingerSe rvice,
resource.IResource)

class UserStatus(resource.Resource):

def __init__(self, user, service):
resource.Resource.__init__(self)
self.user = user
self.service = service

def render_GET(self, request):
d = self.service.getUser(self.user)
d.addCallback(cgi.escape)
d.addCallback(lambda m:

’<h1>%s</h1>’%self.user+’<p>%s</p>’%m)
d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

class UserStatusXR(xmlrpc.XMLRPC):

def __init__(self, service):
xmlrpc.XMLRPC.__init__(self)

CHAPTER 2. TUTORIAL 61

self.service = service

def xmlrpc_getUser(self, user):
return self.service.getUser(user)

class FingerService(service.Service):

implements(IFingerService)

def __init__(self, filename):
self.filename = filename
self._read()

def _read(self):
self.users = {}
for line in file(self.filename):

user, status = line.split(’:’, 1)
user = user.strip()
status = status.strip()
self.users[user] = status

self.call = reactor.callLater(30, self._read)

def getUser(self, user):
return defer.succeed(self.users.get(user, "No such user "))

def getUsers(self):
return defer.succeed(self.users.keys())

Yet another back-end

class LocalFingerService(service.Service):

implements(IFingerService)

def getUser(self, user):
user = user.strip()
try:

entry = pwd.getpwnam(user)
except KeyError:

return defer.succeed("No such user")
try:

f = file(os.path.join(entry[5],’.plan’))
except (IOError, OSError):

return defer.succeed("No such user")
data = f.read()
data = data.strip()
f.close()
return defer.succeed(data)

def getUsers(self):
return defer.succeed([])

application = service.Application(’finger’, uid=1, gid= 1)
f = LocalFingerService()
serviceCollection = service.IServiceCollection(applic ation)

CHAPTER 2. TUTORIAL 62

internet.TCPServer(79, IFingerFactory(f)
).setServiceParent(serviceCollection)

internet.TCPServer(8000, server.Site(resource.IResou rce(f))
).setServiceParent(serviceCollection)

i = IIRCClientFactory(f)
i.nickname = ’fingerbot’
internet.TCPClient(’irc.freenode.org’, 6667, i

).setServiceParent(serviceCollection)

Source listing —finger19c.py

Not much to say except that now we can be churn out backends like crazy. Feel like doing a back-end for Advogato,
for example? Dig out the XML-RPC client support Twisted has,and get to work!

2.11 The Evolution of Finger: a web frontend

2.11.1 Introduction

This is the sixth part of the Twisted tutorialTwisted from Scratch, or The Evolution of Finger(page 26).
In this part, we demonstrate adding a web frontend using simple twisted.web.resource.Resource ob-

jects: UserStatusTree , which will produce a listing of all users at the base URL (/) of our site;UserStatus ,
which gives the status of each user at the locaton/username ; andUserStatusXR , which exposes an XMLRPC
interface togetUser andgetUsers functions at the URL/RPC2.

In this example we construct HTML segments manually. If the web interface was less trivial, we would want to use
more sophisticated web templating and design our system so that HTML rendering and logic were clearly separated.

Do everything properly, and componentize
from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer
from twisted.words.protocols import irc
from twisted.protocols import basic
from twisted.python import components
from twisted.web import resource, server, static, xmlrpc, microdom
from zope.interface import Interface, implements
import cgi

class IFingerService(Interface):

def getUser(user):
"""Return a deferred returning a string"""

def getUsers():
"""Return a deferred returning a list of strings"""

class IFingerSetterService(Interface):

def setUser(user, status):
"""Set the user’s status to something"""

def catchError(err):
return "Internal error in server"

class FingerProtocol(basic.LineReceiver):

def lineReceived(self, user):
d = self.factory.getUser(user)
d.addErrback(catchError)

CHAPTER 2. TUTORIAL 63

def writeValue(value):
self.transport.write(value+’\r\n’)
self.transport.loseConnection()

d.addCallback(writeValue)

class IFingerFactory(Interface):

def getUser(user):
"""Return a deferred returning a string"""

def buildProtocol(addr):
"""Return a protocol returning a string"""

class FingerFactoryFromService(protocol.ServerFactor y):

implements(IFingerFactory)

protocol = FingerProtocol

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(FingerFactoryFromService ,
IFingerService,
IFingerFactory)

class FingerSetterProtocol(basic.LineReceiver):

def connectionMade(self):
self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self, reason):
if len(self.lines) == 2:

self.factory.setUser(* self.lines)

class IFingerSetterFactory(Interface):

def setUser(user, status):
"""Return a deferred returning a string"""

def buildProtocol(addr):
"""Return a protocol returning a string"""

class FingerSetterFactoryFromService(protocol.Server Factory):

implements(IFingerSetterFactory)

CHAPTER 2. TUTORIAL 64

protocol = FingerSetterProtocol

def __init__(self, service):
self.service = service

def setUser(self, user, status):
self.service.setUser(user, status)

components.registerAdapter(FingerSetterFactoryFromS ervice,
IFingerSetterService,
IFingerSetterFactory)

class IRCReplyBot(irc.IRCClient):

def connectionMade(self):
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split(’!’)[0]
if self.nickname.lower() == channel.lower():

d = self.factory.getUser(msg)
d.addErrback(catchError)
d.addCallback(lambda m: "Status of %s: %s" % (msg, m))
d.addCallback(lambda m: self.msg(user, m))

class IIRCClientFactory(Interface):

"""
@ivar nickname
"""

def getUser(user):
"""Return a deferred returning a string"""

def buildProtocol(addr):
"""Return a protocol"""

class IRCClientFactoryFromService(protocol.ClientFac tory):

implements(IIRCClientFactory)

protocol = IRCReplyBot
nickname = None

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(IRCClientFactoryFromServ ice,
IFingerService,
IIRCClientFactory)

CHAPTER 2. TUTORIAL 65

class UserStatusTree(resource.Resource):

def __init__(self, service):
resource.Resource.__init__(self)
self.service=service

add a specific child for the path "RPC2"
self.putChild("RPC2", UserStatusXR(self.service))

need to do this for resources at the root of the site
self.putChild("", self)

def _cb_render_GET(self, users, request):
userOutput = ’’.join(["%s" % (user, user)

for user in users])
request.write("""

<html><head><title>Users</title></head><body>
<h1>Users</h1>

%s
</body></html>""" % userOutput)

request.finish()

def render_GET(self, request):
d = self.service.getUsers()
d.addCallback(self._cb_render_GET, request)

signal that the rendering is not complete
return server.NOT_DONE_YET

def getChild(self, path, request):
return UserStatus(user=path, service=self.service)

components.registerAdapter(UserStatusTree, IFingerSe rvice, resource.IResource)

class UserStatus(resource.Resource):

def __init__(self, user, service):
resource.Resource.__init__(self)
self.user = user
self.service = service

def _cb_render_GET(self, status, request):
request.write("""<html><head><title>%s</title></hea d>
<body><h1>%s</h1>
<p>%s</p>
</body></html>""" % (self.user, self.user, status))
request.finish()

def render_GET(self, request):
d = self.service.getUser(self.user)
d.addCallback(self._cb_render_GET, request)

signal that the rendering is not complete
return server.NOT_DONE_YET

CHAPTER 2. TUTORIAL 66

class UserStatusXR(xmlrpc.XMLRPC):

def __init__(self, service):
xmlrpc.XMLRPC.__init__(self)
self.service = service

def xmlrpc_getUser(self, user):
return self.service.getUser(user)

def xmlrpc_getUsers(self):
return self.service.getUsers()

class FingerService(service.Service):

implements(IFingerService)

def __init__(self, filename):
self.filename = filename
self._read()

def _read(self):
self.users = {}
for line in file(self.filename):

user, status = line.split(’:’, 1)
user = user.strip()
status = status.strip()
self.users[user] = status

self.call = reactor.callLater(30, self._read)

def getUser(self, user):
return defer.succeed(self.users.get(user, "No such user "))

def getUsers(self):
return defer.succeed(self.users.keys())

application = service.Application(’finger’, uid=1, gid= 1)
f = FingerService(’/etc/users’)
serviceCollection = service.IServiceCollection(applic ation)
internet.TCPServer(79, IFingerFactory(f)

).setServiceParent(serviceCollection)
internet.TCPServer(8000, server.Site(resource.IResou rce(f))

).setServiceParent(serviceCollection)
i = IIRCClientFactory(f)
i.nickname = ’fingerbot’
internet.TCPClient(’irc.freenode.org’, 6667, i

).setServiceParent(serviceCollection)

Source listing —finger20.py

CHAPTER 2. TUTORIAL 67

2.12 The Evolution of Finger: Twisted client support using Perspective Bro-
ker

2.12.1 Introduction

This is the seventh part of the Twisted tutorialTwisted from Scratch, or The Evolution of Finger(page 26).
In this part, we add a Perspective Broker service to the fingerapplication so that Twisted clients can access the

finger server.

2.12.2 Use Perspective Broker

We add support for perspective broker, Twisted’s native remote object protocol. Now, Twisted clients will not have to
go through XML-RPCish contortions to get information aboutusers.

Do everything properly, and componentize
from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer
from twisted.words.protocols import irc
from twisted.protocols import basic
from twisted.python import components
from twisted.web import resource, server, static, xmlrpc, microdom
from twisted.spread import pb
from zope.interface import Interface, implements
import cgi

class IFingerService(Interface):

def getUser(user):
"""Return a deferred returning a string"""

def getUsers():
"""Return a deferred returning a list of strings"""

class IFingerSetterService(Interface):

def setUser(user, status):
"""Set the user’s status to something"""

def catchError(err):
return "Internal error in server"

class FingerProtocol(basic.LineReceiver):

def lineReceived(self, user):
d = self.factory.getUser(user)
d.addErrback(catchError)
def writeValue(value):

self.transport.write(value+’\r\n’)
self.transport.loseConnection()

d.addCallback(writeValue)

class IFingerFactory(Interface):

def getUser(user):
"""Return a deferred returning a string"""

CHAPTER 2. TUTORIAL 68

def buildProtocol(addr):
"""Return a protocol returning a string"""

class FingerFactoryFromService(protocol.ServerFactor y):

implements(IFingerFactory)

protocol = FingerProtocol

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(FingerFactoryFromService ,
IFingerService,
IFingerFactory)

class FingerSetterProtocol(basic.LineReceiver):

def connectionMade(self):
self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self, reason):
if len(self.lines) == 2:

self.factory.setUser(* self.lines)

class IFingerSetterFactory(Interface):

def setUser(user, status):
"""Return a deferred returning a string"""

def buildProtocol(addr):
"""Return a protocol returning a string"""

class FingerSetterFactoryFromService(protocol.Server Factory):

implements(IFingerSetterFactory)

protocol = FingerSetterProtocol

def __init__(self, service):
self.service = service

def setUser(self, user, status):
self.service.setUser(user, status)

components.registerAdapter(FingerSetterFactoryFromS ervice,
IFingerSetterService,

CHAPTER 2. TUTORIAL 69

IFingerSetterFactory)

class IRCReplyBot(irc.IRCClient):

def connectionMade(self):
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split(’!’)[0]
if self.nickname.lower() == channel.lower():

d = self.factory.getUser(msg)
d.addErrback(catchError)
d.addCallback(lambda m: "Status of %s: %s" % (msg, m))
d.addCallback(lambda m: self.msg(user, m))

class IIRCClientFactory(Interface):

"""
@ivar nickname
"""

def getUser(user):
"""Return a deferred returning a string"""

def buildProtocol(addr):
"""Return a protocol"""

class IRCClientFactoryFromService(protocol.ClientFac tory):

implements(IIRCClientFactory)

protocol = IRCReplyBot
nickname = None

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(IRCClientFactoryFromServ ice,
IFingerService,
IIRCClientFactory)

class UserStatusTree(resource.Resource):

def __init__(self, service):
resource.Resource.__init__(self)
self.service=service

add a specific child for the path "RPC2"
self.putChild("RPC2", UserStatusXR(self.service))

need to do this for resources at the root of the site

CHAPTER 2. TUTORIAL 70

self.putChild("", self)

def _cb_render_GET(self, users, request):
userOutput = ’’.join(["%s" % (user, user)

for user in users])
request.write("""

<html><head><title>Users</title></head><body>
<h1>Users</h1>

%s
</body></html>""" % userOutput)

request.finish()

def render_GET(self, request):
d = self.service.getUsers()
d.addCallback(self._cb_render_GET, request)

signal that the rendering is not complete
return server.NOT_DONE_YET

def getChild(self, path, request):
return UserStatus(user=path, service=self.service)

components.registerAdapter(UserStatusTree, IFingerSe rvice, resource.IResource)

class UserStatus(resource.Resource):

def __init__(self, user, service):
resource.Resource.__init__(self)
self.user = user
self.service = service

def _cb_render_GET(self, status, request):
request.write("""<html><head><title>%s</title></hea d>
<body><h1>%s</h1>
<p>%s</p>
</body></html>""" % (self.user, self.user, status))
request.finish()

def render_GET(self, request):
d = self.service.getUser(self.user)
d.addCallback(self._cb_render_GET, request)

signal that the rendering is not complete
return server.NOT_DONE_YET

class UserStatusXR(xmlrpc.XMLRPC):

def __init__(self, service):
xmlrpc.XMLRPC.__init__(self)
self.service = service

def xmlrpc_getUser(self, user):
return self.service.getUser(user)

def xmlrpc_getUsers(self):
return self.service.getUsers()

CHAPTER 2. TUTORIAL 71

class IPerspectiveFinger(Interface):

def remote_getUser(username):
"""return a user’s status"""

def remote_getUsers():
"""return a user’s status"""

class PerspectiveFingerFromService(pb.Root):

implements(IPerspectiveFinger)

def __init__(self, service):
self.service = service

def remote_getUser(self, username):
return self.service.getUser(username)

def remote_getUsers(self):
return self.service.getUsers()

components.registerAdapter(PerspectiveFingerFromSer vice,
IFingerService,
IPerspectiveFinger)

class FingerService(service.Service):

implements(IFingerService)

def __init__(self, filename):
self.filename = filename
self._read()

def _read(self):
self.users = {}
for line in file(self.filename):

user, status = line.split(’:’, 1)
user = user.strip()
status = status.strip()
self.users[user] = status

self.call = reactor.callLater(30, self._read)

def getUser(self, user):
return defer.succeed(self.users.get(user, "No such user "))

def getUsers(self):
return defer.succeed(self.users.keys())

application = service.Application(’finger’, uid=1, gid= 1)
f = FingerService(’/etc/users’)
serviceCollection = service.IServiceCollection(applic ation)
internet.TCPServer(79, IFingerFactory(f)

).setServiceParent(serviceCollection)

CHAPTER 2. TUTORIAL 72

internet.TCPServer(8000, server.Site(resource.IResou rce(f))
).setServiceParent(serviceCollection)

i = IIRCClientFactory(f)
i.nickname = ’fingerbot’
internet.TCPClient(’irc.freenode.org’, 6667, i

).setServiceParent(serviceCollection)
internet.TCPServer(8889, pb.PBServerFactory(IPerspec tiveFinger(f))

).setServiceParent(serviceCollection)

Source listing —finger21.py

A simple client to test the perspective broker finger:

test the PB finger on port 8889
this code is essentially the same as
the first example in howto/pb-usage

from twisted.spread import pb
from twisted.internet import reactor

def gotObject(object):
print "got object:", object
object.callRemote("getUser","moshez").addCallback(g otData)

or
object.callRemote("getUsers").addCallback(gotData)

def gotData(data):
print ’server sent:’, data
reactor.stop()

def gotNoObject(reason):
print "no object:",reason
reactor.stop()

factory = pb.PBClientFactory()
reactor.connectTCP("127.0.0.1",8889, factory)
factory.getRootObject().addCallbacks(gotObject,gotN oObject)
reactor.run()

Source listing —fingerPBclient.py

2.13 The Evolution of Finger: using a single factory for multiple protocols

2.13.1 Introduction

This is the eighth part of the Twisted tutorialTwisted from Scratch, or The Evolution of Finger(page 26).
In this part, we add HTTPS support to our web frontend, showing how to have a single factory listen on multiple

ports.

2.13.2 Support HTTPS

All we need to do to code an HTTPS site is just write a context factory (in this case, which loads the certificate from a
certain file) and then use the twisted.application.internet.SSLServer method. Note that one factory (in this case, a site)
can listen on multiple ports with multiple protocols.

CHAPTER 2. TUTORIAL 73

Do everything properly, and componentize
from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer
from twisted.words.protocols import irc
from twisted.protocols import basic
from twisted.python import components
from twisted.web import resource, server, static, xmlrpc, microdom
from twisted.spread import pb
from zope.interface import Interface, implements
from OpenSSL import SSL
import cgi

class IFingerService(Interface):

def getUser(user):
"""Return a deferred returning a string"""

def getUsers():
"""Return a deferred returning a list of strings"""

class IFingerSetterService(Interface):

def setUser(user, status):
"""Set the user’s status to something"""

def catchError(err):
return "Internal error in server"

class FingerProtocol(basic.LineReceiver):

def lineReceived(self, user):
d = self.factory.getUser(user)
d.addErrback(catchError)
def writeValue(value):

self.transport.write(value+’\r\n’)
self.transport.loseConnection()

d.addCallback(writeValue)

class IFingerFactory(Interface):

def getUser(user):
"""Return a deferred returning a string"""

def buildProtocol(addr):
"""Return a protocol returning a string"""

class FingerFactoryFromService(protocol.ServerFactor y):

implements(IFingerFactory)

protocol = FingerProtocol

def __init__(self, service):
self.service = service

CHAPTER 2. TUTORIAL 74

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(FingerFactoryFromService ,
IFingerService,
IFingerFactory)

class FingerSetterProtocol(basic.LineReceiver):

def connectionMade(self):
self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self, reason):
if len(self.lines) == 2:

self.factory.setUser(* self.lines)

class IFingerSetterFactory(Interface):

def setUser(user, status):
"""Return a deferred returning a string"""

def buildProtocol(addr):
"""Return a protocol returning a string"""

class FingerSetterFactoryFromService(protocol.Server Factory):

implements(IFingerSetterFactory)

protocol = FingerSetterProtocol

def __init__(self, service):
self.service = service

def setUser(self, user, status):
self.service.setUser(user, status)

components.registerAdapter(FingerSetterFactoryFromS ervice,
IFingerSetterService,
IFingerSetterFactory)

class IRCReplyBot(irc.IRCClient):

def connectionMade(self):
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split(’!’)[0]
if self.nickname.lower() == channel.lower():

d = self.factory.getUser(msg)
d.addErrback(catchError)

CHAPTER 2. TUTORIAL 75

d.addCallback(lambda m: "Status of %s: %s" % (msg, m))
d.addCallback(lambda m: self.msg(user, m))

class IIRCClientFactory(Interface):

"""
@ivar nickname
"""

def getUser(user):
"""Return a deferred returning a string"""

def buildProtocol(addr):
"""Return a protocol"""

class IRCClientFactoryFromService(protocol.ClientFac tory):

implements(IIRCClientFactory)

protocol = IRCReplyBot
nickname = None

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(IRCClientFactoryFromServ ice,
IFingerService,
IIRCClientFactory)

class UserStatusTree(resource.Resource):

def __init__(self, service):
resource.Resource.__init__(self)
self.service=service

add a specific child for the path "RPC2"
self.putChild("RPC2", UserStatusXR(self.service))

need to do this for resources at the root of the site
self.putChild("", self)

def _cb_render_GET(self, users, request):
userOutput = ’’.join(["%s" % (user, user)

for user in users])
request.write("""

<html><head><title>Users</title></head><body>
<h1>Users</h1>

%s
</body></html>""" % userOutput)

request.finish()

CHAPTER 2. TUTORIAL 76

def render_GET(self, request):
d = self.service.getUsers()
d.addCallback(self._cb_render_GET, request)

signal that the rendering is not complete
return server.NOT_DONE_YET

def getChild(self, path, request):
return UserStatus(user=path, service=self.service)

components.registerAdapter(UserStatusTree, IFingerSe rvice, resource.IResource)

class UserStatus(resource.Resource):

def __init__(self, user, service):
resource.Resource.__init__(self)
self.user = user
self.service = service

def _cb_render_GET(self, status, request):
request.write("""<html><head><title>%s</title></hea d>
<body><h1>%s</h1>
<p>%s</p>
</body></html>""" % (self.user, self.user, status))
request.finish()

def render_GET(self, request):
d = self.service.getUser(self.user)
d.addCallback(self._cb_render_GET, request)

signal that the rendering is not complete
return server.NOT_DONE_YET

class UserStatusXR(xmlrpc.XMLRPC):

def __init__(self, service):
xmlrpc.XMLRPC.__init__(self)
self.service = service

def xmlrpc_getUser(self, user):
return self.service.getUser(user)

def xmlrpc_getUsers(self):
return self.service.getUsers()

class IPerspectiveFinger(Interface):

def remote_getUser(username):
"""return a user’s status"""

def remote_getUsers():
"""return a user’s status"""

class PerspectiveFingerFromService(pb.Root):

implements(IPerspectiveFinger)

CHAPTER 2. TUTORIAL 77

def __init__(self, service):
self.service = service

def remote_getUser(self, username):
return self.service.getUser(username)

def remote_getUsers(self):
return self.service.getUsers()

components.registerAdapter(PerspectiveFingerFromSer vice,
IFingerService,
IPerspectiveFinger)

class FingerService(service.Service):

implements(IFingerService)

def __init__(self, filename):
self.filename = filename
self._read()

def _read(self):
self.users = {}
for line in file(self.filename):

user, status = line.split(’:’, 1)
user = user.strip()
status = status.strip()
self.users[user] = status

self.call = reactor.callLater(30, self._read)

def getUser(self, user):
return defer.succeed(self.users.get(user, "No such user "))

def getUsers(self):
return defer.succeed(self.users.keys())

class ServerContextFactory:

def getContext(self):
"""Create an SSL context.

This is a sample implementation that loads a certificate fro m a file
called ’server.pem’."""
ctx = SSL.Context(SSL.SSLv23_METHOD)
ctx.use_certificate_file(’server.pem’)
ctx.use_privatekey_file(’server.pem’)
return ctx

application = service.Application(’finger’, uid=1, gid= 1)
f = FingerService(’/etc/users’)
serviceCollection = service.IServiceCollection(applic ation)
internet.TCPServer(79, IFingerFactory(f)

).setServiceParent(serviceCollection)

CHAPTER 2. TUTORIAL 78

site = server.Site(resource.IResource(f))
internet.TCPServer(8000, site

).setServiceParent(serviceCollection)
internet.SSLServer(443, site, ServerContextFactory()

).setServiceParent(serviceCollection)
i = IIRCClientFactory(f)
i.nickname = ’fingerbot’
internet.TCPClient(’irc.freenode.org’, 6667, i

).setServiceParent(serviceCollection)
internet.TCPServer(8889, pb.PBServerFactory(IPerspec tiveFinger(f))

).setServiceParent(serviceCollection)

Source listing —finger22.py

2.14 The Evolution of Finger: a Twisted finger client

2.14.1 Introduction

This is the ninth part of the Twisted tutorialTwisted from Scratch, or The Evolution of Finger(page 26).
In this part, we develop a client for the finger server: a proxyfinger server which forwards requests to another

finger server.

2.14.2 Finger Proxy

Writing new clients with Twisted is much like writing new servers. We implement the protocol, which just gathers up
all the data, and give it to the factory. The factory keeps a deferred which is triggered if the connection either fails or
succeeds. When we use the client, we first make sure the deferred will never fail, by producing a message in that case.
Implementing a wrapper around client which just returns thedeferred is a common pattern. While less flexible than
using the factory directly, it’s also more convenient.

finger proxy
from twisted.application import internet, service
from twisted.internet import defer, protocol, reactor
from twisted.protocols import basic
from twisted.python import components
from zope.interface import Interface, implements

def catchError(err):
return "Internal error in server"

class IFingerService(Interface):

def getUser(user):
"""Return a deferred returning a string"""

def getUsers():
"""Return a deferred returning a list of strings"""

class IFingerFactory(Interface):

def getUser(user):
"""Return a deferred returning a string"""

CHAPTER 2. TUTORIAL 79

def buildProtocol(addr):
"""Return a protocol returning a string"""

class FingerProtocol(basic.LineReceiver):

def lineReceived(self, user):
d = self.factory.getUser(user)
d.addErrback(catchError)
def writeValue(value):

self.transport.write(value)
self.transport.loseConnection()

d.addCallback(writeValue)

class FingerFactoryFromService(protocol.ClientFactor y):

implements(IFingerFactory)

protocol = FingerProtocol

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(FingerFactoryFromService ,
IFingerService,
IFingerFactory)

class FingerClient(protocol.Protocol):

def connectionMade(self):
self.transport.write(self.factory.user+"\r\n")
self.buf = []

def dataReceived(self, data):
self.buf.append(data)

def connectionLost(self, reason):
self.factory.gotData(’’.join(self.buf))

class FingerClientFactory(protocol.ClientFactory):

protocol = FingerClient

def __init__(self, user):
self.user = user
self.d = defer.Deferred()

def clientConnectionFailed(self, _, reason):
self.d.errback(reason)

def gotData(self, data):
self.d.callback(data)

CHAPTER 2. TUTORIAL 80

def finger(user, host, port=79):
f = FingerClientFactory(user)
reactor.connectTCP(host, port, f)
return f.d

class ProxyFingerService(service.Service):
implements(IFingerService)

def getUser(self, user):
try:

user, host = user.split(’@’, 1)
except:

user = user.strip()
host = ’127.0.0.1’

ret = finger(user, host)
ret.addErrback(lambda _: "Could not connect to remote host ")
return ret

def getUsers(self):
return defer.succeed([])

application = service.Application(’finger’, uid=1, gid= 1)
f = ProxyFingerService()
internet.TCPServer(7779, IFingerFactory(f)).setServi ceParent(

service.IServiceCollection(application))

Source listing —fingerproxy.py

2.15 The Evolution of Finger: making a finger library

2.15.1 Introduction

This is the tenth part of the Twisted tutorialTwisted from Scratch, or The Evolution of Finger(page 26).
In this part, we separate the application code that launchesa finger service from the library code which defines a

finger service, placing the application in a Twisted Application Configuration (.tac) file. We also move configuration
(such as HTML templates) into separate files.

2.15.2 Organization

Now this code, while quite modular and well-designed, isn’tproperly organized. Everything above the
application= belongs in a module, and the HTML templates all belong in separate files.

We can use the templateFile and templateDirectory attributes to indicate what HTML template file to use for each
Page, and where to look for it.

organized-finger.tac
eg: twistd -ny organized-finger.tac

import finger

from twisted.internet import protocol, reactor, defer
from twisted.spread import pb
from twisted.web import resource, server

CHAPTER 2. TUTORIAL 81

from twisted.application import internet, service, strpo rts
from twisted.python import log

application = service.Application(’finger’, uid=1, gid= 1)
f = finger.FingerService(’/etc/users’)
serviceCollection = service.IServiceCollection(applic ation)
internet.TCPServer(79, finger.IFingerFactory(f)

).setServiceParent(serviceCollection)

site = server.Site(resource.IResource(f))
internet.TCPServer(8000, site

).setServiceParent(serviceCollection)

internet.SSLServer(443, site, finger.ServerContextFac tory()
).setServiceParent(serviceCollection)

i = finger.IIRCClientFactory(f)
i.nickname = ’fingerbot’
internet.TCPClient(’irc.freenode.org’, 6667, i

).setServiceParent(serviceCollection)

internet.TCPServer(8889, pb.PBServerFactory(finger.I PerspectiveFinger(f))
).setServiceParent(serviceCollection)

Source listing —organized-finger.tac

Note that our program is now quite separated. We have:

• Code (in the module)

• Configuration (file above)

• Presentation (templates)

• Content (/etc/users)

• Deployment (twistd)

Prototypes don’t need this level of separation, so our earlier examples all bunched together. However, real applications
do. Thankfully, if we write our code correctly, it is easy to achieve a good separation of parts.

2.15.3 Easy Configuration

We can also supply easy configuration for common cases with a makeService method that will also help build .tap
files later:

Easy configuration
makeService from finger module

def makeService(config):
finger on port 79
s = service.MultiService()
f = FingerService(config[’file’])
h = internet.TCPServer(79, IFingerFactory(f))
h.setServiceParent(s)

website on port 8000
r = resource.IResource(f)
r.templateDirectory = config[’templates’]

CHAPTER 2. TUTORIAL 82

site = server.Site(r)
j = internet.TCPServer(8000, site)
j.setServiceParent(s)

ssl on port 443
if config.get(’ssl’):

k = internet.SSLServer(443, site, ServerContextFactory())
k.setServiceParent(s)

irc fingerbot
if config.has_key(’ircnick’):

i = IIRCClientFactory(f)
i.nickname = config[’ircnick’]
ircserver = config[’ircserver’]
b = internet.TCPClient(ircserver, 6667, i)
b.setServiceParent(s)

Pespective Broker on port 8889
if config.has_key(’pbport’):

m = internet.TCPServer(
int(config[’pbport’]),
pb.PBServerFactory(IPerspectiveFinger(f)))

m.setServiceParent(s)

return s

Source listing —finger config.py

And we can write simpler files now:

simple-finger.tac
eg: twistd -ny simple-finger.tac

from twisted.application import service

import finger

options = { ’file’: ’/etc/users’,
’templates’: ’/usr/share/finger/templates’,
’ircnick’: ’fingerbot’,
’ircserver’: ’irc.freenode.net’,
’pbport’: 8889,
’ssl’: ’ssl=0’ }

ser = finger.makeService(options)
application = service.Application(’finger’, uid=1, gid= 1)
ser.setServiceParent(service.IServiceCollection(app lication))

Source listing —simple-finger.tac

% twisted -ny simple-finger.tac

Note: the fingeruserstill has ultimate power: he can use makeService, or he can use the lower-level interface if he
has specific needs (maybe an IRC server on some other port? maybe we want the non-SSL webserver to listen only
locally? etc. etc.) This is an important design principle: never force a layer of abstraction: allow usage of layers of
abstractions.

The pasta theory of design:

CHAPTER 2. TUTORIAL 83

• Spaghetti: each piece of code interacts with every other piece of code [can be implemented with GOTO, func-
tions, objects]

• Lasagna: code has carefully designed layers. Each layer is,in theory independent. However low-level layers
usually cannot be used easily, and high-level layers dependon low-level layers.

• Ravioli: each part of the code is useful by itself. There is a thin layer of interfaces between various parts [the
sauce]. Each part can be usefully be used elsewhere.

• ...but sometimes, the user just wants to order “Ravioli”, soone coarse-grain easily definable layer of abstraction
on top of it all can be useful.

2.16 The Evolution of Finger: configuration and packaging of the finger
service

2.16.1 Introduction

This is the eleventh part of the Twisted tutorialTwisted from Scratch, or The Evolution of Finger(page 26).
In this part, we make it easier for non-programmers to configure a finger server, and show how to package it in the

.deb and RPM package formats.

2.16.2 Plugins

So far, the user had to be somewhat of a programmer to be able toconfigure stuff. Maybe we can eliminate even that?
Move old code to finger/init .py and...

Full source code for finger module here:

finger.py module

from zope.interface import Interface, implements

from twisted.application import internet, service, strpo rts
from twisted.internet import protocol, reactor, defer
from twisted.words.protocols import irc
from twisted.protocols import basic
from twisted.python import components
from twisted.web import resource, server, static, xmlrpc, microdom
from twisted.web.woven import page, model, interfaces
from twisted.spread import pb
from OpenSSL import SSL
import cgi

class IFingerService(Interface):

def getUser(user):
"""Return a deferred returning a string"""

def getUsers():
"""Return a deferred returning a list of strings"""

class IFingerSetterService(Interface):

def setUser(user, status):
"""Set the user’s status to something"""

def catchError(err):
return "Internal error in server"

CHAPTER 2. TUTORIAL 84

class FingerProtocol(basic.LineReceiver):

def lineReceived(self, user):
d = self.factory.getUser(user)
d.addErrback(catchError)
def writeValue(value):

self.transport.write(value+’\n’)
self.transport.loseConnection()

d.addCallback(writeValue)

class IFingerFactory(Interface):

def getUser(user):
"""Return a deferred returning a string"""

def buildProtocol(addr):
"""Return a protocol returning a string"""

class FingerFactoryFromService(protocol.ServerFactor y):
implements(IFingerFactory)

protocol = FingerProtocol

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(FingerFactoryFromService ,
IFingerService,
IFingerFactory)

class FingerSetterProtocol(basic.LineReceiver):

def connectionMade(self):
self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self, reason):
if len(self.lines) == 2:

self.factory.setUser(* self.lines)

class IFingerSetterFactory(Interface):

def setUser(user, status):
"""Return a deferred returning a string"""

def buildProtocol(addr):
"""Return a protocol returning a string"""

CHAPTER 2. TUTORIAL 85

class FingerSetterFactoryFromService(protocol.Server Factory):

implements(IFingerSetterFactory)

protocol = FingerSetterProtocol

def __init__(self, service):
self.service = service

def setUser(self, user, status):
self.service.setUser(user, status)

components.registerAdapter(FingerSetterFactoryFromS ervice,
IFingerSetterService,
IFingerSetterFactory)

class IRCReplyBot(irc.IRCClient):

def connectionMade(self):
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split(’!’)[0]
if self.nickname.lower() == channel.lower():

d = self.factory.getUser(msg)
d.addErrback(catchError)
d.addCallback(lambda m: "Status of %s: %s" % (msg, m))
d.addCallback(lambda m: self.msg(user, m))

class IIRCClientFactory(Interface):

"""
@ivar nickname
"""

def getUser(user):
"""Return a deferred returning a string"""

def buildProtocol(addr):
"""Return a protocol"""

class IRCClientFactoryFromService(protocol.ClientFac tory):

implements(IIRCClientFactory)

protocol = IRCReplyBot
nickname = None

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

CHAPTER 2. TUTORIAL 86

components.registerAdapter(IRCClientFactoryFromServ ice,
IFingerService,
IIRCClientFactory)

class UsersModel(model.MethodModel):

def initialize(self, * args, ** kwargs):
self.service=args[0]

def wmfactory_users(self, request):
return self.service.getUsers()

components.registerAdapter(UsersModel, IFingerServic e, interfaces.IModel)

class UserStatusTree(page.Page):

template = """<html><head><title>Users</title></head> <body>
<h1>Users</h1>
<ul model="users" view="List">
<li pattern="listItem">
</body></html>"""

def initialize(self, * args, ** kwargs):
self.service=args[0]

def getDynamicChild(self, path, request):
return UserStatus(user=path, service=self.service)

def wchild_RPC2 (self, request):
return UserStatusXR(self.service)

components.registerAdapter(UserStatusTree, IFingerSe rvice, resource.IResource)

class UserStatus(page.Page):

template=’’’<html><head><title view="Text" model="use r"/></head>
<body><h1 view="Text" model="user"/>
<p model="status" view="Text" />
</body></html>’’’

def initialize(self, ** kwargs):
self.user = kwargs[’user’]
self.service = kwargs[’service’]

def wmfactory_user(self, request):
return self.user

def wmfactory_status(self, request):
return self.service.getUser(self.user)

class UserStatusXR(xmlrpc.XMLRPC):

def __init__(self, service):
xmlrpc.XMLRPC.__init__(self)

CHAPTER 2. TUTORIAL 87

self.service = service

def xmlrpc_getUser(self, user):
return self.service.getUser(user)

def xmlrpc_getUsers(self):
return self.service.getUsers()

class IPerspectiveFinger(Interface):

def remote_getUser(username):
"""return a user’s status"""

def remote_getUsers():
"""return a user’s status"""

class PerspectiveFingerFromService(pb.Root):

implements(IPerspectiveFinger)

def __init__(self, service):
self.service = service

def remote_getUser(self, username):
return self.service.getUser(username)

def remote_getUsers(self):
return self.service.getUsers()

components.registerAdapter(PerspectiveFingerFromSer vice,
IFingerService,
IPerspectiveFinger)

class FingerService(service.Service):

implements(IFingerService)

def __init__(self, filename):
self.filename = filename
self._read()

def _read(self):
self.users = {}
for line in file(self.filename):

user, status = line.split(’:’, 1)
user = user.strip()
status = status.strip()
self.users[user] = status

self.call = reactor.callLater(30, self._read)

def getUser(self, user):
return defer.succeed(self.users.get(user, "No such user "))

def getUsers(self):
return defer.succeed(self.users.keys())

CHAPTER 2. TUTORIAL 88

class ServerContextFactory:

def getContext(self):
"""Create an SSL context.

This is a sample implementation that loads a certificate fro m a file
called ’server.pem’."""
ctx = SSL.Context(SSL.SSLv23_METHOD)
ctx.use_certificate_file(’server.pem’)
ctx.use_privatekey_file(’server.pem’)
return ctx

Easy configuration

def makeService(config):
finger on port 79
s = service.MultiService()
f = FingerService(config[’file’])
h = internet.TCPServer(79, IFingerFactory(f))
h.setServiceParent(s)

website on port 8000
r = resource.IResource(f)
r.templateDirectory = config[’templates’]
site = server.Site(r)
j = internet.TCPServer(8000, site)
j.setServiceParent(s)

ssl on port 443
if config.get(’ssl’):
k = internet.SSLServer(443, site, ServerContextFactory ())
k.setServiceParent(s)

irc fingerbot
if config.has_key(’ircnick’):

i = IIRCClientFactory(f)
i.nickname = config[’ircnick’]
ircserver = config[’ircserver’]
b = internet.TCPClient(ircserver, 6667, i)
b.setServiceParent(s)

Pespective Broker on port 8889
if config.has_key(’pbport’):

m = internet.TCPServer(
int(config[’pbport’]),
pb.PBServerFactory(IPerspectiveFinger(f)))

m.setServiceParent(s)

return s

CHAPTER 2. TUTORIAL 89

finger module —finger.py

finger/tap.py
from twisted.application import internet, service
from twisted.internet import interfaces
from twisted.python import usage
import finger

class Options(usage.Options):

optParameters = [
[’file’, ’f’, ’/etc/users’],
[’templates’, ’t’, ’/usr/share/finger/templates’],
[’ircnick’, ’n’, ’fingerbot’],
[’ircserver’, None, ’irc.freenode.net’],
[’pbport’, ’p’, 8889],
]

optFlags = [[’ssl’, ’s’]]

def makeService(config):
return finger.makeService(config)

finger/tap.py —tap.py

And register it all:

#finger/plugins.tml
register(’finger’, ’finger.tap’,
description=’Build a finger server tap’,
type=’tap’, tapname=’finger’)

finger/plugins.tml —plugins.tml

And now, the following works

% mktap finger --file=/etc/users --ircnick=fingerbot
% sudo twistd -nf finger.tap

2.16.3 OS Integration

If we already have the “finger” package installed in PYTHONPATH (e.g. we added it to site-packages), we can achieve
easy integration:

Debian

% tap2deb --unsigned -m "Foo <foo@example.com>" --type=py thon finger.tac
% sudo dpkg -i .build/ * .deb

Red Hat / Mandrake

% tap2rpm --type=python finger.tac #[maybe other options n eeded]
% sudo rpm -i .build/ * .rpm

Will properly register the tap/tac, init.d scripts, etc. for the given file.
If it doesn’t work on your favorite OS: patches accepted!

Chapter 3

Low-Level Twisted

3.1 Reactor Overview

This HOWTO introduces the Twisted reactor, describes the basics of the reactor and links to

3.1.1 Reactor Basics

The reactor is the core of the event loop within Twisted – the loop which drives applications using Twisted. The
reactor provides basic interfaces to a number of services, including network communications, threading, and event
dispatching.

For information about using the reactor and the Twisted event loop, see:

• the event dispatching howtos:Scheduling(page 134) andUsing Deferreds(page 100);

• the communication howtos:TCP servers(page 13),TCP clients(page 17),UDP networking(page 91) and
Using processes(page 93); and

• Using threads(page 135).

There are multiple implementations of the reactor, each modified to provide better support for specialized features
over the default implementation. More information about these and how to use a particular implementation is available
via Choosing a Reactor(page 137).

Twisted applications can use the interfaces intwisted.application.service to configure and run the
application instead of using boilerplate reactor code. SeeUsing Application(page 159) for an introduction to Appli-
cation.

3.1.2 Using the reactor object

You can get to thereactor object using the following code:

from twisted.internet import reactor

The reactor usually implements a set of interfaces, but depending on the chosen reactor and the platform, some of
the interfaces may not be implemented:

• IReactorCore : Core (required) functionality.

• IReactorFDSet : Use FileDescriptor objects.

• IReactorProcess : Process management. Read theUsing Processes(page 93) document for more informa-
tion.

• IReactorSSL : SSL networking support.

• IReactorTCP : TCP networking support. More information can be found in theWriting Servers(page 13) and
Writing Clients(page 17) documents.

90

CHAPTER 3. LOW-LEVEL TWISTED 91

• IReactorThreads : Threading use and management. More information can be found within Threading In
Twisted(page 135).

• IReactorTime : Scheduling interface. More information can be found within Scheduling Tasks(page 134).

• IReactorUDP : UDP networking support. More information can be found within UDP Networking(this page).

• IReactorUNIX : UNIX socket support.

3.2 UDP Networking

3.2.1 Overview

Unlike TCP, UDP has no notion of connections. A UDP socket canreceive datagrams from any server on the network,
and send datagrams to any host on the network. In addition, datagrams may arrive in any order, never arrive at all, or
be duplicated in transit.

Since there are no multiple connections, we only use a singleobject, a protocol, for each UDP socket. We then use
the reactor to connect this protocol to a UDP transport, using thetwisted.internet.interfaces.IReactor
UDPreactor API.

3.2.2 DatagramProtocol

At the base, the place where you actually implement the protocol parsing and handling, is the DatagramProtocol
class. This class will usually be decended fromtwisted.internet.protocol.DatagramProtocol . Most
protocol handlers inherit either from this class or from oneof its convenience children. The DatagramProtocol class
receives datagrams, and can send them out over the network. Received datagrams include the address they were sent
from, and when sending datagrams the address to send to must be specified.

Here is a simple example:

from twisted.internet.protocol import DatagramProtocol
from twisted.internet import reactor

class Echo(DatagramProtocol):

def datagramReceived(self, data, (host, port)):
print "received %r from %s:%d" % (data, host, port)
self.transport.write(data, (host, port))

reactor.listenUDP(9999, Echo())
reactor.run()

As you can see, the protocol is registed with the reactor. This means it may be persisted if it’s added to an
application, and thus it hastwisted.internet.protocol.DatagramProtocol.startPro tocol and
twisted.internet.protocol.DatagramProtocol.stopProt ocol methods that will get called when
the protocol is connected and disconnected from a UDP socket.

The protocol’s transport attribute will implement the twisted.internet.interfaces.
IUDPTransport interface. Notice that thehost argument should be an IP, not a hostname. If you only
have the hostname usereactor.resolve() to resolve the address (seetwisted.internet.interfaces.
IReactorCore.resolve).

3.2.3 Connected UDP

A connected UDP socket is slighly different from a standard one - it can only send and receive datagrams to/from
a single address, but this does not in any way imply a connection. Datagrams may still arrive in any order, and the
port on the other side may have no one listening. The benefit ofthe connected UDP socket is that it itmayprovide
notification of undelivered packages. This depends on many factors, almost all of which are out of the control of the
application, but it still presents certain benefits which occassionally make it useful.

Unlike a regular UDP protocol, we do not need to specify whereto send datagrams to, and are not told where they
came from since they can only come from address the socket is ’connected’ to.

CHAPTER 3. LOW-LEVEL TWISTED 92

from twisted.internet.protocol import DatagramProtocol
from twisted.internet import reactor

class Helloer(DatagramProtocol):

def startProtocol(self):
self.transport.connect("192.168.1.1", 1234)
print "we can only send to %s now" % str((host, port))
self.transport.write("hello") # no need for address

def datagramReceived(self, data, (host, port)):
print "received %r from %s:%d" % (data, host, port)

Possibly invoked if there is no server listening on the
address to which we are sending.
def connectionRefused(self):

print "No one listening"

0 means any port, we don’t care in this case
reactor.listenUDP(0, Helloer())
reactor.run()

Note thatconnect() , like write() will only accept IP addresses, not unresolved domain names.To obtain
the IP of a domain name usereactor.resolve() , e.g.:

from twisted.internet import reactor

def gotIP(ip):
print "IP of ’example.com’ is", ip

reactor.resolve(’example.com’).addCallback(gotIP)

Connecting to a new address after a previous connection, or making a connected port unconnected are not currently
supported, but will likely be supported in the future.

3.2.4 Multicast UDP

A multicast UDP socket can send and receive datagrams from multiple clients. The interesting and useful feature of
the multicast is that a client can contact multiple servers with a single packet, without knowing the specific IP of any
of the hosts.

from twisted.internet.protocol import DatagramProtocol
from twisted.internet import reactor
from twisted.application.internet import MulticastServ er

class MulticastServerUDP(DatagramProtocol):
def startProtocol(self):

print ’Started Listening’
Join a specific multicast group, which is the IP we will resp ond to
self.transport.joinGroup(’224.0.0.1’)

def datagramReceived(self, datagram, address):
The uniqueID check is to ensure we only service requests fro m
ourselves
if datagram == ’UniqueID’:

print "Server Received:" + repr(datagram)
self.transport.write("data", address)

Note that the join function is picky about having a unique ob ject

CHAPTER 3. LOW-LEVEL TWISTED 93

on which to call join. To avoid using startProtocol, the fol lowing is
sufficient:
#reactor.listenMulticast(8005, MulticastServerUDP()) .join(’224.0.0.1’)

Listen for multicast on 224.0.0.1:8005
reactor.listenMulticast(8005, MulticastServerUDP())
reactor.run()

Source listing —MulticastServer.py

The server protocol is very simple, and closely resembles a normal listenUDP implementation. The main difference
is that instead of listenUDP, listenMulticast is called with a specified port number. The server must also call joinGroup
to specify on which multicast IP address it will service requests. Another item of interest is the contents of the
datagram. Many different applications use multicast as a way of device discovery, which leads to an abundance of
packets flying around. Checking the payload can ensure that we only service requests from our specific clients.

from twisted.internet.protocol import DatagramProtocol
from twisted.internet import reactor
from twisted.application.internet import MulticastServ er

class MulticastClientUDP(DatagramProtocol):

def datagramReceived(self, datagram, address):
print "Received:" + repr(datagram)

Send multicast on 224.0.0.1:8005, on our dynamically allo cated port
reactor.listenUDP(0, MulticastClientUDP()).write(’Un iqueID’,

(’224.0.0.1’, 8005))
reactor.run()

MulticastServer.py —MulticastClient.py

This is a mirror implementation of a standard UDP client. Theonly difference is that the destination IP is the
multicast address. This datagram will be distributed to every server listening on 224.0.0.1 and port 8005. Note that
the client port is specified as 0, as we have no need to keep track of what port the client is listening on.

3.2.5 Acknowledgements

Thank you to all contributors to this document, including:

• Kyle Robertson, author of the explanation and examples of multicast

3.3 Using Processes

3.3.1 Overview

Along with connection to servers across the internet, Twisted also connects to local processes with much the same
API. The API is described in more detail in the documentationof:

• twisted.internet.interfaces.IReactorProcess

• twisted.internet.interfaces.IProcessTransport

• twisted.internet.protocol.ProcessProtocol

CHAPTER 3. LOW-LEVEL TWISTED 94

3.3.2 Running Another Process

Processes are run through the reactor, usingreactor.spawnProcess() . Pipes are created to the child process,
and added to the reactor core so that the application will notblock while sending data into or pulling data out of the new
process. reactor.spawnProcess() requires two arguments, processProtocol and executable, and optionally
takes six more: arguments, environment, path, userID, groupID, and usePTY.

from twisted.internet import reactor

mypp = MyProcessProtocol()
reactor.spawnProcess(processProtocol, executable, arg s=[program, arg1, arg2],

env={’HOME’: os.environ[’HOME’]}, path,
uid, gid, usePTY, childFDs)

• processProtocol should be an instance of a subclass oftwisted.internet.protocol.Process
Protocol . The interface is described below.

• executable is the full path of the program to run. It will be connected to processProtocol.

• args is a list of command line arguments to be passed to the process. args[0] should be the name of the
process.

• env is a dictionary containing the environment to pass through to the process.

• path is the directory to run the process in. The child will switch to the given directory just before starting the
new program. The default is to stay in the current directory.

• uid andgid are the user ID and group ID to run the subprocess as. Of course, changing identities will be more
likely to succeed if you start as root.

• usePTY specifies whether the child process should be run with a pty, or if it should just get a pair of pipes.
Interactive programs (where you don’t know when it may read or write) need to be run with ptys.

• childFDs lets you specify how the child’s file descriptors should be set up. Each key is a file descriptor
number (an integer) as seen by the child. 0, 1, and 2 are usually stdin, stdout, and stderr, but some programs
may be instructed to use additional fds through command-line arguments or environment variables. Each value
is either an integer specifying one of the parent’s current file descriptors, the string “r” which creates a pipe that
the parent can read from, or the string “w” which creates a pipe that the parent can write to. IfchildFDs is
not provided, a default is used which creates the usual stdin-writer, stdout-reader, and stderr-reader pipes.

args andenv have empty default values, but many programs depend upon them to be set correctly. At the very
least,args[0] should probably be the same asexecutable . If you just provideos.environ for env , the child
program will inherit the environment from the current process, which is usually the civilized thing to do (unless you
want to explicitly clean the environment as a security precaution). The default is to give an emptyenv to the child.

reactor.spawnProcess() returns an instance that implements thetwisted.internet.
interfaces.IProcessTransport .

3.3.3 Writing a ProcessProtocol

The ProcessProtocol you pass to spawnProcess is your interaction with the process. It has a very similar signature to
a regular Protocol, but it has several extra methods to deal with events specific to a process. In our example, we will
interface with ’wc’ to create a word count of user-given text. First, we’ll start by importing the required modules, and
writing the initialization for our ProcessProtocol.

from twisted.internet import protocol
class WCProcessProtocol(protocol.ProcessProtocol):

def __init__(self, text):
self.text = text

When the ProcessProtocol is connected to the protocol, it hasthe connectionMade method called. In our protocol,
we will write our text to the standard input of our process andthen close standard input, to the let the process know
we are done writing to it.

CHAPTER 3. LOW-LEVEL TWISTED 95

def connectionMade(self):
self.transport.write(self.text)
self.transport.closeStdin()

At this point, the process has receieved the data, and it’s time for us to read the results. Instead of being receieved
in dataReceived, data from standard output is receieve in outReceived. This is to distinguish it from data on standard
error.

def outReceived(self, data):
fieldLength = len(data) / 3
lines = int(data[:fieldLength])
words = int(data[fieldLength:fieldLength * 2])
chars = int(data[fieldLength * 2:])
self.transport.loseConnection()
self.receiveCounts(lines, words, chars)

Now, the process has parsed the output, and ended the connection to the process. Then it sends the results on to
the final method, receiveCounts. This is for users of the class to override, so as to do other things with the data. For
our demonstration, we will just print the results.

def receiveCounts(self, lines, words, chars):
print ’Received counts from wc.’
print ’Lines:’, lines
print ’Words:’, words
print ’Characters:’, chars

We’re done! To use our WCProcessProtocol, we create an instance, and pass it to spawnProcess.

from twisted.internet import reactor
wcProcess = WCProcessProtocol("accessing protocols thro ugh Twisted is fun!\n")
reactor.spawnProcess(wcProcess, ’wc’, [’wc’])
reactor.run()

3.3.4 Things that can happen to your ProcessProtocol

These are the methods that you can usefully override in your subclass ofProcessProtocol :

• .connectionMade : This is called when the program is started, and makes a good place to write data into the
stdin pipe (usingself.transport.write()).

• .outReceived(data) : This is called with data that was received from the process’stdout pipe. Pipes tend
to provide data in larger chunks than sockets (one kilobyte is a common buffer size), so you may not experience
the “random dribs and drabs” behavior typical of network sockets, but regardless you should be prepared to deal
if you don’t get all your data in a single call. To do it properly, outReceived ought to simply accumulate the
data and put off doing anything with it until the process has finished.

• .errReceived(data) : This is called with data from the process’ stderr pipe. It behaves just likeout
Received .

• .inConnectionLost : This is called when the reactor notices that the process’ stdin pipe has closed. Pro-
grams don’t typically close their own stdin, so this will probably get called when your ProcessProtocol has shut
down the write side withself.transport.loseConnection() .

• .outConnectionLost : This is called when the program closes its stdout pipe. Thisusually happens when
the program terminates.

• .errConnectionLost : Same asoutConnectionLost , but for stderr instead of stdout.

• .processEnded(status) : This is called when the child process has been reaped, and receives information
about the process’ exit status. The status is passed in the form of aFailure instance, created with a.value
that either holds aProcessDone object if the process terminated normally (it died of natural causes instead
of receiving a signal, and if the exit code was 0), or aProcessTerminated object (with an.exitCode

CHAPTER 3. LOW-LEVEL TWISTED 96

attribute) if something went wrong. This scheme may seem a bit weird, but I trust that it proves useful when
dealing with exceptions that occur in asynchronous code.

This will always be calledafterinConnectionLost , outConnectionLost , and errConnection
Lost are called.

The base-class definitions of these functions are all no-ops. This will result in all stdout and stderr being thrown
away. Note that it is important for data you don’t care about to be thrown away: if the pipe were not read, the child
process would eventually block as it tried to write to a full pipe.

3.3.5 Things you can do from your ProcessProtocol

The following are the basic ways to control the child process:

• self.transport.write(data) : Stuff some data in the stdin pipe. Note that thiswrite method will
queue any data that can’t be written immediately. Writing will resume in the future when the pipe becomes
writable again.

• self.transport.closeStdin : Close the stdin pipe. Programs which act as filters (readingfrom stdin,
modifying the data, writing to stdout) usually take this as asign that they should finish their job and terminate.
For these programs, it is important to close stdin when you’re done with it, otherwise the child process will
never quit.

• self.transport.closeStdout : Not usually called, since you’re putting the process into astate where
any attempt to write to stdout will cause a SIGPIPE error. This isn’t a nice thing to do to the poor process.

• self.transport.closeStderr : Not usually called, same reason ascloseStdout .

• self.transport.loseConnection : Close all three pipes.

• self.transport.signalProcess(’KILL’) : Kill the child process. This will eventually result in
processEnded being called.

3.3.6 Verbose Example

Here is an example that is rather verbose about exactly when all the methods are called. It writes a number of lines
into thewc program and then parses the output.

#! /usr/bin/python

from twisted.internet import protocol
from twisted.internet import reactor
import re

class MyPP(protocol.ProcessProtocol):
def __init__(self, verses):

self.verses = verses
self.data = ""

def connectionMade(self):
print "connectionMade!"
for i in range(self.verses):

self.transport.write("Aleph-null bottles of beer on the w all,\n" +
"Aleph-null bottles of beer,\n" +
"Take one down and pass it around,\n" +
"Aleph-null bottles of beer on the wall.\n")

self.transport.closeStdin() # tell them we’re done
def outReceived(self, data):

print "outReceived! with %d bytes!" % len(data)
self.data = self.data + data

def errReceived(self, data):
print "errReceived! with %d bytes!" % len(data)

CHAPTER 3. LOW-LEVEL TWISTED 97

def inConnectionLost(self):
print "inConnectionLost! stdin is closed! (we probably did it)"

def outConnectionLost(self):
print "outConnectionLost! The child closed their stdout!"
now is the time to examine what they wrote
#print "I saw them write:", self.data
(dummy, lines, words, chars, file) = re.split(r’\s+’, self .data)
print "I saw %s lines" % lines

def errConnectionLost(self):
print "errConnectionLost! The child closed their stderr."

def processEnded(self, status_object):
print "processEnded, status %d" % status_object.value.ex itCode
print "quitting"
reactor.stop()

pp = MyPP(10)
reactor.spawnProcess(pp, "wc", ["wc"], {})
reactor.run()

Source listing —process.py

The exact output of this program depends upon the relative timing of some un-synchronized events. In particular,
the program may observe the child process close its stderr pipe before or after it reads data from the stdout pipe. One
possible transcript would look like this:

% ./process.py
connectionMade!
inConnectionLost! stdin is closed! (we probably did it)
errConnectionLost! The child closed their stderr.
outReceived! with 24 bytes!
outConnectionLost! The child closed their stdout!
I saw 40 lines
processEnded, status 0
quitting
Main loop terminated.
%

3.3.7 Doing it the Easy Way

Frequently, one just needs a simple way to get all the output from a program. In the blocking world, you might use
commands.getoutput from the standard library, but using that in an event-drivenprogram will cause everything
else to stall until the command finishes. (in addition, the SIGCHLD handler used by that function does not play well
with Twisted’s own signal handling). For these cases, thetwisted.internet.utils.getProcessOutput
function can be used. Here is a simple example:

from twisted.internet import protocol, utils, reactor
from twisted.python import failure
from cStringIO import StringIO

class FortuneQuoter(protocol.Protocol):

fortune = ’/usr/games/fortune’

def connectionMade(self):
output = utils.getProcessOutput(self.fortune)
output.addCallbacks(self.writeResponse, self.noRespo nse)

def writeResponse(self, resp):

CHAPTER 3. LOW-LEVEL TWISTED 98

self.transport.write(resp)
self.transport.loseConnection()

def noResponse(self, err):
self.transport.loseConnection()

if __name__ == ’__main__’:
f = protocol.Factory()
f.protocol = FortuneQuoter
reactor.listenTCP(10999, f)
reactor.run()

Source listing —quotes.py

If you only need the final exit code (likecommands.getstatusoutput(cmd)[0]), the twisted.
internet.utils.getProcessValue function is useful. Here is an example:

from twisted.internet import utils, reactor

def printTrueValue(val):
print "/bin/true exits with rc=%d" % val
output = utils.getProcessValue(’/bin/false’)
output.addCallback(printFalseValue)

def printFalseValue(val):
print "/bin/false exits with rc=%d" % val
reactor.stop()

output = utils.getProcessValue(’/bin/true’)
output.addCallback(printTrueValue)
reactor.run()

Source listing —trueandfalse.py

3.3.8 Mapping File Descriptors

“stdin”, “stdout”, and “stderr” are just conventions. Programs which operate as filters generally accept input on fd0,
write their output on fd1, and emit error messages on fd2. This is common enough that the standard C library provides
macros like “stdin” to mean fd0, and shells interpret the pipe character “—” to mean “redirect fd1 from one command
into fd0 of the next command”.

But these are just conventions, and programs are free to use additional file descriptors or even ignore the standard
three entirely. The “childFDs” argument allows you to specify exactly what kind of files descriptors the child process
should be given.

Each child FD can be put into one of three states:

• Mapped to a parent FD: this causes the child’s reads and writes to come from or go to the same source/destination
as the parent.

• Feeding into a pipe which can be read by the parent.

• Feeding from a pipe which the parent writes into.

Mapping the child FDs to the parent’s is very commonly used tosend the child’s stderr output to the same place
as the parent’s. When you run a program from the shell, it will typically leave fds 0, 1, and 2 mapped to the shell’s 0,
1, and 2, allowing you to see the child program’s output on thesame terminal you used to launch the child. Likewise,
inetd will typically map both stdin and stdout to the networksocket, and may map stderr to the same socket or to some

CHAPTER 3. LOW-LEVEL TWISTED 99

kind of logging mechanism. This allows the child program to be implemented with no knowledge of the network: it
merely speaks its protocol by doing reads on fd0 and writes onfd1.

Feeding into a parent’s read pipe is used to gather output from the child, and is by far the most common way of
interacting with child processes.

Feeding from a parent’s write pipe allows the parent to control the child. Programs like “bc” or “ftp” can be
controlled this way, by writing commands into their stdin stream.

The “childFDs” dictionary maps file descriptor numbers (as will be seen by the child process) to one of these three
states. To map the fd to one of the parent’s fds, simply provide the fd number as the value. To map it to a read pipe,
use the string “r” as the value. To map it to a write pipe, use the string “w”.

For example, the default mapping sets up the standard stdin/stdout/stderr pipes. It is implemented with the follow-
ing dictionary:

childFDs = { 0: "w", 1: "r", 2: "r" }

To launch a process which reads and writes to the same places that the parent python program does, use this:

childFDs = { 0: 0, 1: 1, 2: 2}

To write into an additional fd (say it is fd number 4), use this:

childFDs = { 0: "w", 1: "r", 2: "r" , 4: "w"}

ProcessProtocols with extra file descriptors

When you provide a “childFDs” dictionary with more than the normal three fds, you need addtional methods to
access those pipes. These methods are more generalized thanthe .outReceived ones described above. In fact,
those methods (outReceived anderrReceived) are actually just wrappers left in for compatibility with older
code, written before this generalized fd mapping was implemented. The new list of things that can happen to your
ProcessProtocol is as follows:

• .connectionMade : This is called when the program is started.

• .childDataReceived(childFD, data) : This is called with data that was received from one of the
process’ output pipes (i.e. where the childFDs value was “r”. The actual file number (from the point of view
of the child process) is in “childFD”. For compatibility, the default implementation of.dataReceived dis-
patches to.outReceived or .errReceived when “childFD” is 1 or 2.

• .childConnectionLost(childFD) : This is called when the reactor notices that one of the process’ pipes
has been closed. This either means you have just closed down the parent’s end of the pipe (with.transport.
closeChildFD), the child closed the pipe explicitly (sometimes to indicate EOF), or the child process has
terminated and the kernel has closed all of its pipes. The “childFD” argument tells you which pipe was closed.
Note that you can only find out about file descriptors which were mapped to pipes: when they are mapped to
existing fds the parent has no way to notice when they’ve beenclosed. For compatibility, the default implemen-
tation dispatches to.inConnectionLost , .outConnectionLost , or .errConnectionLost .

• .processEnded(status) : This is called when the child process has been reaped, and all pipes have been
closed. This insures that all data written by the child priorto its death will be received before.process
Ended is invoked.

In addition to those methods, there are other methods available to influence the child process:

• self.transport.writeToChild(childFD, data) : Stuff some data into an input pipe..write
simply writes to childFD=0.

• self.transport.closeChildFD(childFD) : Close one of the child’s pipes. Closing an input pipe is
a common way to indicate EOF to the child process. Closing an output pipe is neither very friendly nor very
useful.

CHAPTER 3. LOW-LEVEL TWISTED 100

Examples

GnuPG, the encryption program, can use additional file descriptors to accept a passphrase and emit status output.
These are distinct from stdin (used to accept the crypttext), stdout (used to emit the plaintext), and stderr (used to emit
human-readable status/warning messages). The passphraseFD reads until the pipe is closed and uses the resulting
string to unlock the secret key that performs the actual decryption. The status FD emits machine-parseable status
messages to indicate the validity of the signature, which key the message was encrypted to, etc.

gpg accepts command-line arguments to specify what these fds are, and then assumes that they have been opened
by the parent before the gpg process is started. It simply performs reads and writes to these fd numbers.

To invoke gpg in decryption/verification mode, you would do something like the following:

class GPGProtocol(ProcessProtocol):
def __init__(self, crypttext):

self.crypttext = crypttext
self.plaintext = ""
self.status = ""

def connectionMade(self):
self.transport.writeToChild(3, self.passphrase)
self.transport.closeChildFD(3)
self.transport.writeToChild(0, self.crypttext)
self.transport.closeChildFD(0)

def childDataReceived(self, childFD, data):
if childFD == 1: self.plaintext += data
if childFD == 4: self.status += data

def processEnded(self, status):
rc = status.value.exitCode
if rc == 0:

self.deferred.callback(self)
else:

self.deferred.errback(rc)

def decrypt(crypttext):
gp = GPGProtocol(crypttext)
gp.deferred = Deferred()
cmd = ["gpg", "--decrypt", "--passphrase-fd", "3", "--sta tus-fd", "4",

"--batch"]
p = reactor.spawnProcess(gp, cmd[0], cmd, env=None,

childFDs={0:"w", 1:"r", 2:2, 3:"w", 4:"r"})
return gp.deferred

In this example, the status output could be parsed after the fact. It could, of course, be parsed on the fly, as it is a
simple line-oriented protocol. Methods from LineReceivercould be mixed in to make this parsing more convenient.

The stderr mapping (“2:2”) used will cause any GPG errors to be emitted by the parent program, just as if those
errors had caused in the parent itself. This is sometimes desireable (it roughly corresponds to letting exceptions
propagate upwards), especially if you do not expect to encounter errors in the child process and want them to be more
visible to the end user. The alternative is to map stderr to a read-pipe and handle any such output from within the
ProcessProtocol (roughly corresponding to catching the exception locally).

3.4 Deferred Reference

This document is a guide to the behaviour of thetwisted.internet.defer.Deferred object, and to various
ways you can use them when they are returned by functions.

This document assumes that you are familiar with the basic principle that the Twisted framework is structured
around: asynchronous, callback-based programming, whereinstead of having blocking code in your program or using
threads to run blocking code, you have functions that returnimmediately and then begin a callback chain when data is
available.

See these documents for more information:

CHAPTER 3. LOW-LEVEL TWISTED 101

• Asynchronous Programming with Twisted(page 8)

After reading this document, the reader should expect to be able to deal with most simple APIs in Twisted and
Twisted-using code that return Deferreds.

• what sorts of things you can do when you get a Deferred from a function call; and

• how you can write your code to robustly handle errors in Deferred code.

Unless you’re already very familiar with asynchronous programming, it’s strongly recommended you read the
Deferreds section(page 9) of the Asynchronous programming document to get an idea of why Deferreds exist.

3.4.1 Callbacks

A twisted.internet.defer.Deferred is a promise that a function will at some point have a result. We can
attach callback functions to a Deferred, and once it gets a result these callbacks will be called. In addition Deferreds
allow the developer to register a callback for an error, withthe default behavior of logging the error. The deferred
mechanism standardizes the application programmer’s interface with all sorts of blocking or delayed operations.

from twisted.internet import reactor, defer

def getDummyData(x):
"""
This function is a dummy which simulates a delayed result and
returns a Deferred which will fire with that result. Don’t tr y too
hard to understand this.
"""
d = defer.Deferred()
simulate a delayed result by asking the reactor to fire the
Deferred in 2 seconds time with the result x * 3
reactor.callLater(2, d.callback, x * 3)
return d

def printData(d):
"""
Data handling function to be added as a callback: handles the
data by printing the result
"""
print d

d = getDummyData(3)
d.addCallback(printData)

manually set up the end of the process by asking the reactor t o
stop itself in 4 seconds time
reactor.callLater(4, reactor.stop)
start up the Twisted reactor (event loop handler) manually
reactor.run()

Multiple callbacks

Multiple callbacks can be added to a Deferred. The first callback in the Deferred’s callback chain will be called with
the result, the second with the result of the first callback, and so on. Why do we need this? Well, consider a Deferred
returned by twisted.enterprise.adbapi - the result of a SQLquery. A web widget might add a callback that converts
this result into HTML, and pass the Deferred onwards, where the callback will be used by twisted to return the result
to the HTTP client. The callback chain will be bypassed in case of errors or exceptions.

from twisted.internet import reactor, defer

class Getter:

CHAPTER 3. LOW-LEVEL TWISTED 102

def gotResults(self, x):
"""
The Deferred mechanism provides a mechanism to signal error
conditions. In this case, odd numbers are bad.

This function demonstrates a more complex way of starting
the callback chain by checking for expected results and
choosing whether to fire the callback or errback chain
"""
if x % 2 == 0:

self.d.callback(x * 3)
else:

self.d.errback(ValueError("You used an odd number!"))

def _toHTML(self, r):
"""
This function converts r to HTML.

It is added to the callback chain by getDummyData in
order to demonstrate how a callback passes its own result
to the next callback
"""
return "Result: %s" % r

def getDummyData(self, x):
"""
The Deferred mechanism allows for chained callbacks.
In this example, the output of gotResults is first
passed through _toHTML on its way to printData.

Again this function is a dummy, simulating a delayed result
using callLater, rather than using a real asynchronous
setup.
"""
self.d = defer.Deferred()
simulate a delayed result by asking the reactor to schedule
gotResults in 2 seconds time
reactor.callLater(2, self.gotResults, x)
self.d.addCallback(self._toHTML)
return self.d

def printData(d):
print d

def printError(failure):
import sys
sys.stderr.write(str(failure))

this series of callbacks and errbacks will print an error me ssage
g = Getter()
d = g.getDummyData(3)
d.addCallback(printData)
d.addErrback(printError)

this series of callbacks and errbacks will print "Result: 1 2"
g = Getter()
d = g.getDummyData(4)

CHAPTER 3. LOW-LEVEL TWISTED 103

d.addCallback(printData)
d.addErrback(printError)

reactor.callLater(4, reactor.stop); reactor.run()

Visual Explanation

1. Requesting method (data sink) requests data, gets Deferred object.

2. Requesting method attaches callbacks to Deferred object.

CHAPTER 3. LOW-LEVEL TWISTED 104

CHAPTER 3. LOW-LEVEL TWISTED 105

1. When the result is ready, give it to the Deferred object..callback(result) if the operation succeeded,
.errback(failure) if it failed. Note thatfailure is typically an instance of atwisted.python.
failure.Failure instance.

2. Deferred object triggers previously-added (call/err)back with theresult or failure . Execution then follows
the following rules, going down the chain of callbacks to be processed.

• Result of the callback is always passed as the first argument to the next callback, creating a chain of
processors.

• If a callback raises an exception, switch to errback.

• An unhandled failure gets passed down the line of errbacks, this creating an asynchronous analog to a
series to a series ofexcept: statements.

• If an errback doesn’t raise an exception or return atwisted.python.failure.Failure instance,
switch to callback.

3.4.2 Errbacks

Deferred’s error handling is modeled after Python’s exception handling. In the case that no errors occur, all the
callbacks run, one after the other, as described above.

If the errback is called instead of the callback (e.g. because a DB query raised an error), then atwisted.
python.failure.Failure is passed into the first errback (you can add multiple errbacks, just like with call-
backs). You can think of your errbacks as being likeexcept blocks of ordinary Python code.

Unless you explicitlyraise an error in except block, theException is caught and stops propagating, and
normal execution continues. The same thing happens with errbacks: unless you explicitlyreturn a Failure or
(re-)raise an exception, the error stops propagating, and normal callbacks continue executing from that point (using
the value returned from the errback). If the errback does returns aFailure or raise an exception, then that is passed
to the next errback, and so on.

Note: If an errback doesn’t return anything, then it effectively returnsNone, meaning that callbacks will continue
to be executed after this errback. This may not be what you expect to happen, so be careful. Make sure your errbacks
return aFailure (probably the one that was passed to it), or a meaningful return value for the next callback.

Also, twisted.python.failure.Failure instances have a useful method called trap, allowing you to
effectively do the equivalent of:

try:
code that may throw an exception
cookSpamAndEggs()

except (SpamException, EggException):
Handle SpamExceptions and EggExceptions
...

You do this by:

def errorHandler(failure):
failure.trap(SpamException, EggException)
Handle SpamExceptions and EggExceptions

d.addCallback(cookSpamAndEggs)
d.addErrback(errorHandler)

If none of arguments passed tofailure.trap match the error encapsulated in thatFailure , then it re-raises
the error.

There’s another potential “gotcha” here. There’s a methodtwisted.internet.defer.Deferred.add
Callbacks which is similar to, but not exactly the same as,addCallback followed byaddErrback . In partic-
ular, consider these two cases:

Case 1
d = getDeferredFromSomewhere()
d.addCallback(callback1) # A
d.addErrback(errback1) # B

CHAPTER 3. LOW-LEVEL TWISTED 106

d.addCallback(callback2)
d.addErrback(errback2)

Case 2
d = getDeferredFromSomewhere()
d.addCallbacks(callback1, errback1) # C
d.addCallbacks(callback2, errback2)

If an error occurs incallback1 , then for Case 1errback1 will be called with the failure. For Case 2,
errback2 will be called. Be careful with your callbacks and errbacks.

What this means in a practical sense is in Case 1, ”A” will handle a success condition fromgetDeferredFrom
Somewhere, and ”B” will handle any errors that occurfrom either the upstream source, or that occur in ’A’. In Case
2, ”C”’s errback1will only handle an error condition raised bygetDeferredFromSomewhere, it will not do any
handling of errors raised in callback1.

Unhandled Errors

If a Deferred is garbage-collected with an unhandled error (i.e. it would call the next errback if there was one), then
Twisted will write the error’s traceback to the log file. Thismeans that you can typically get away with not adding
errbacks and still get errors logged. Be careful though; if you keep a reference to the Deferred around, preventing it
from being garbage-collected, then you may never see the error (and your callbacks will mysteriously seem to have
never been called). If unsure, you should explicitly add an errback after your callbacks, even if all you do is:

Make sure errors get logged
from twisted.python import log
d.addErrback(log.err)

3.4.3 Handling either synchronous or asynchronous results

In some applications, there are functions that might be either asynchronous or synchronous. For example, a user
authentication function might be able to check in memory whether a user is authenticated, allowing the authentication
function to return an immediate result, or it may need to waiton network data, in which case it should return a Deferred
to be fired when that data arrives. However, a function that wants to check if a user is authenticated will then need to
accept both immediate resultsandDeferreds.

In this example, the library functionauthenticateUser uses the application functionisValidUser to
authenticate a user:

def authenticateUser(isValidUser, user):
if isValidUser(user):

print "User is authenticated"
else:

print "User is not authenticated"

However, it assumes thatisValidUser returns immediately, whereasisValidUser may actually authen-
ticate the user asynchronously and return a Deferred. It is possible to adapt this trivial user authentication code to
accept either a synchronousisValidUser or an asynchronousisValidUser , allowing the library to handle ei-
ther type of function. It is, however, also possible to adaptsynchronous functions to return Deferreds. This section
describes both alternatives: handling functions that might be synchronous or asynchronous in the library function
(authenticateUser) or in the application code.

Handling possible Deferreds in the library code

Here is an example of a synchronous user authentication function that might be passed toauthenticateUser :

def synchronousIsValidUser(user):
’’’
Return true if user is a valid user, false otherwise
’’’
return user in ["Alice", "Angus", "Agnes"]

CHAPTER 3. LOW-LEVEL TWISTED 107

Source listing —synch-validation.py

However, here’s anasynchronousIsValidUser function that returns a Deferred:

from twisted.internet import reactor

def asynchronousIsValidUser(d, user):
d = Deferred()
reactor.callLater(2, d.callback, user in ["Alice", "Angu s", "Agnes"])
return d

Our original implementation ofauthenticateUser expectedisValidUser to be synchronous, but now we
need to change it to handle both synchronous and asynchronous implementations ofisValidUser . For this, we
usemaybeDeferred to call isValidUser , ensuring that the result ofisValidUser is a Deferred, even ifis
ValidUser is a synchronous function:

from twisted.internet import defer

def printResult(result):
if result:

print "User is authenticated"
else:

print "User is not authenticated"

def authenticateUser(isValidUser, user):
d = defer.maybeDeferred(isValidUser, user)
d.addCallback(printResult)

Now isValidUser could be eithersynchronousIsValidUser or asynchronousIsValidUser .
It is also possible to modifysynchronousIsValidUser to return a Deferred, seeGenerating Deferreds(page

110) for more information.

3.4.4 DeferredList

Sometimes you want to be notified after several different events have all happened, rather than waiting for each one
individually. For example, you may want to wait for all the connections in a list to close.twisted.internet.
defer.DeferredList is the way to do this.

To create a DeferredList from multiple Deferreds, you simply pass a list of the Deferreds you want it to wait for:

Creates a DeferredList
dl = defer.DeferredList([deferred1, deferred2, deferred 3])

You can now treat the DeferredList like an ordinary Deferred; you can calladdCallbacks and so on. The
DeferredList will call its callback when all the deferreds have completed. The callback will be called with a list of the
results of the Deferreds it contains, like so:

def printResult(result):
print result

deferred1 = defer.Deferred()
deferred2 = defer.Deferred()
deferred3 = defer.Deferred()
dl = defer.DeferredList([deferred1, deferred2, deferred 3])
dl.addCallback(printResult)
deferred1.callback(’one’)
deferred2.errback(’bang!’)
deferred3.callback(’three’)
At this point, dl will fire its callback, printing:
[(1, ’one’), (0, ’bang!’), (1, ’three’)]
(note that defer.SUCCESS == 1, and defer.FAILURE == 0)

CHAPTER 3. LOW-LEVEL TWISTED 108

A standard DeferredList will never call errback.

Note:
If you want to apply callbacks to the individual Deferreds that go into the DeferredList, you should

be careful about when those callbacks are added. The act of adding a Deferred to a DeferredList inserts
a callback into that Deferred (when that callback is run, it checks to see if the DeferredList has been
completed yet). The important thing to remember is that it isthis callbackwhich records the value that
goes into the result list handed to the DeferredList’s callback.

Therefore, if you add a callback to the Deferredafter adding the Deferred to the DeferredList, the
value returned by that callback will not be given to the DeferredList’s callback. To avoid confusion, we
recommend not adding callbacks to a Deferred once it has beenused in a DeferredList.

def printResult(result):
print result

def addTen(result):
return result + " ten"

Deferred gets callback before DeferredList is created
deferred1 = defer.Deferred()
deferred2 = defer.Deferred()
deferred1.addCallback(addTen)
dl = defer.DeferredList([deferred1, deferred2])
dl.addCallback(printResult)
deferred1.callback("one") # fires addTen, checks Deferre dList, stores "one ten"
deferred2.callback("two")
At this point, dl will fire its callback, printing:
[(1, ’one ten’), (1, ’two’)]

Deferred gets callback after DeferredList is created
deferred1 = defer.Deferred()
deferred2 = defer.Deferred()
dl = defer.DeferredList([deferred1, deferred2])
deferred1.addCallback(addTen) # will run * after * DeferredList gets its value
dl.addCallback(printResult)
deferred1.callback("one") # checks DeferredList, stores "one", fires addTen
deferred2.callback("two")
At this point, dl will fire its callback, printing:
[(1, ’one), (1, ’two’)]

Other behaviours

DeferredList accepts three keyword arguments that modify its behaviour:fireOnOneCallback , fireOnOne
Errback and consumeErrors . If fireOnOneCallback is set, the DeferredList will immediately call its
callback as soon as any of its Deferreds call their callback.Similarly, fireOnOneErrback will call errback as soon
as any of the Deferreds call their errback. Note that DeferredList is still one-shot, like ordinary Deferreds, so after
a callback or errback has been called the DeferredList will do nothing further (it will just silently ignore any other
results from its Deferreds).

The fireOnOneErrback option is particularly useful when you want to wait for all the results if everything
succeeds, but also want to know immediately if something fails.

TheconsumeErrors argument will stop the DeferredList from propagating any errors along the callback chains
of any Deferreds it contains (usually creating a DeferredList has no effect on the results passed along the callbacks
and errbacks of their Deferreds). Stopping errors at the DeferredList with this option will prevent “Unhandled error in
Deferred” warnings from the Deferreds it contains without needing to add extra errbacks1.

1Unless of course a later callback starts a fresh error — but aswe’ve already noted, adding callbacks to a Deferred after its used in a DeferredList
is confusing and usually avoided.

CHAPTER 3. LOW-LEVEL TWISTED 109

3.4.5 Class Overview

This is an overview API reference for Deferred from the pointof using a Deferred returned by a function. It is not
meant to be a substitute for the docstrings in the Deferred class, but can provide guidelines for its use.

There is a parallel overview of functions used by the Deferred’s creator in Generating Deferreds(page 110).

Basic Callback Functions

• addCallbacks(self, callback[, errback, callbackArgs, ca llbackKeywords,
errbackArgs, errbackKeywords])

This is the method you will use to interact with Deferred. It adds a pair of callbacks “parallel” to each other (see
diagram above) in the list of callbacks made when the Deferred is called back to. The signature of a method
added using addCallbacks should bemyMethod(result, * methodArgs, ** methodKeywords) . If
your method is passed in the callback slot, for example, all arguments in the tuplecallbackArgs will be
passed as* methodArgs to your method.

There are various convenience methods that are derivative of addCallbacks. I will not cover them in detail here,
but it is important to know about them in order to create concise code.

– addCallback(callback, * callbackArgs, ** callbackKeywords)

Adds your callback at the next point in the processing chain,while adding an errback that will re-raise its
first argument, not affecting further processing in the error case.

Note that, while addCallbacks (plural) requires the arguments to be passed in a tuple, addCallback (sin-
gular) takes all its remaining arguments as things to be passed to the callback function. The reason is
obvious: addCallbacks (plural) cannot tell whether the arguments are meant for the callback or the er-
rback, so they must be specifically marked by putting them into a tuple. addCallback (singular) knows
that everything is destined to go to the callback, so it can use Python’s “*” and “**” syntax to collect the
remaining arguments.

– addErrback(errback, * errbackArgs, ** errbackKeywords)

Adds your errback at the next point in the processing chain, while adding a callback that will return its first
argument, not affecting further processing in the success case.

– addBoth(callbackOrErrback, * callbackOrErrbackArgs, ** callbackOrErrback
Keywords)

This method adds the same callback into both sides of the processing chain at both points. Keep in mind
that the type of the first argument is indeterminate if you usethis method! Use it forfinally: style
blocks.

Chaining Deferreds

If you need one Deferred to wait on another, all you need to do is return a Deferred from a method added to addCall-
backs. Specifically, if you return Deferred B from a method added to Deferred A using A.addCallbacks, Deferred A’s
processing chain will stop until Deferred B’s .callback() method is called; at that point, the next callback in A will be
passed the result of the last callback in Deferred B’s processing chain at the time.

If this seems confusing, don’t worry about it right now – whenyou run into a situation where you need this
behavior, you will probably recognize it immediately and realize why this happens. If you want to chain deferreds
manually, there is also a convenience method to help you.

• chainDeferred(otherDeferred)

Add otherDeferred to the end of this Deferred’s processing chain. When self.callback is called, the result
of my processing chain up to this point will be passed tootherDeferred.callback . Further additions to
my callback chain do not affectotherDeferred

This is the same asself.addCallbacks(otherDeferred.callback, otherDefer red.
errback)

3.4.6 See also

1. Generating Deferreds(page 110), an introduction to writing asynchronous functions that return Deferreds.

CHAPTER 3. LOW-LEVEL TWISTED 110

3.5 Generating Deferreds

Deferred objects are signals that a function you have called does not yet have the data you want available. When a
function returns a Deferred object, your calling function attaches callbacks to it to handle the data when available.

This document addresses the other half of the question: writing functions that return Deferreds, that is, constructing
Deferred objects, arranging for them to be returned immediately without blocking until data is available, and firing
their callbacks when the data is available.

This document assumes that you are familiar with theasynchronous model(page 8) used by Twisted, and with
using deferreds returned by functions(page 100).

3.5.1 Class overview

This is an overview API reference for Deferred from the pointof creating a Deferred and firing its callbacks and
errbacks. It is not meant to be a substitute for the docstrings in the Deferred class, but can provide guidelines for its
use.

There is a parallel overview of functions used by calling function which the Deferred is returned to atUsing
Deferreds(page 108).

Basic Callback Functions

• callback(result)

Run success callbacks with the given result.This can only be run once.Later calls to this orerrback will
raisetwisted.internet.defer.AlreadyCalledError . If further callbacks or errbacks are added
after this point, addCallbacks will run the callbacks immediately.

• errback(failure)

Run error callbacks with the given failure.This can only be run once.Later calls to this orcallback will
raisetwisted.internet.defer.AlreadyCalledError . If further callbacks or errbacks are added
after this point, addCallbacks will run the callbacks immediately.

3.5.2 What Deferreds don’t do: make your code asynchronous

Deferreds do not make the code magically not block.
Let’s take this function as an example:

from twisted.internet import defer

TARGET = 10000

def largeFibonnaciNumber():
create a Deferred object to return:
d = defer.Deferred()

calculate the ten thousandth Fibonnaci number

first = 0
second = 1

for i in xrange(TARGET - 1):
new = first + second
first = second
second = new
if i % 100 == 0:

print "Progress: calculating the %dth Fibonnaci number" % i

give the Deferred the answer to pass to the callbacks:
d.callback(second)

CHAPTER 3. LOW-LEVEL TWISTED 111

return the Deferred with the answer:
return d

import time

timeBefore = time.time()

call the function and get our Deferred
d = largeFibonnaciNumber()

timeAfter = time.time()

print "Total time taken for largeFibonnaciNumber call: %0. 3f seconds" % \
(timeAfter - timeBefore)

add a callback to it to print the number

def printNumber(number):
print "The %dth Fibonacci number is %d" % (TARGET, number)

print "Adding the callback now."

d.addCallback(printNumber)

You will notice that despite creating a Deferred in thelargeFibonnaciNumber function, these things hap-
pened:

• the ”Total time taken for largeFibonnaciNumber call” output shows that the function did not return immediately
as asynchronous functions are expected to do; and

• rather than the callback being added before the result was available and called after the result is available, it isn’t
even added until after the calculation has been completed.

The function completed its calculation before returning, blocking the process until it had finished, which is exactly
what asynchronous functions are not meant to do. Deferreds are not a non-blocking talisman: they are a signal for
asynchronous functions touse to pass results onto callbacks, but using them does not guarantee that you have an
asynchronous function.

3.5.3 Advanced Processing Chain Control

• pause()

Cease calling any methods as they are added, and do not respond to callback , until self.unpause() is
called.

• unpause()

If callback has been called on this Deferred already, call all the callbacks that have been added to this
Deferred sincepause was called.

Whether it was called or not, this will put this Deferred in a state where further calls toaddCallbacks or
callback will work as normal.

3.5.4 Returning Deferreds from synchronous functions

Sometimes you might wish to return a Deferred from a synchronous function. There are several reasons why, the major
two are maintaining API compatibility with another versionof your function which returns a Deferred, or allowing for
the possiblity that in the future your function might need tobe asynchronous.

In theUsing Deferreds(page 100) reference, we gave the following example of a synchronous function:

CHAPTER 3. LOW-LEVEL TWISTED 112

def synchronousIsValidUser(user):
’’’
Return true if user is a valid user, false otherwise
’’’
return user in ["Alice", "Angus", "Agnes"]

Source listing —synch-validation.py

While we can require that callers of our function wrap our synchronous result in a Deferred usingmaybe
Deferred , for the sake of API compatibility it is better to return a Deferred ourself usingdefer.succeed :

from twisted.internet import defer

def immediateIsValidUser(user):
’’’
Returns a Deferred resulting in true if user is a valid user, f alse
otherwise
’’’

result = user in ["Alice", "Angus", "Agnes"]

return a Deferred object already called back with the value of result
return defer.succeed(result)

There is an equivalentdefer.fail method to return a Deferred with the errback chain already fired.

3.5.5 Integrating blocking code with Twisted

At some point, you are likely to need to call a blocking function: many functions in third party libraries will have long
running blocking functions. There is no way to ’force’ a function to be asynchronous: it must be written that way
specifically. When using Twisted, your own code should be asynchronous, but there is no way to make third party
functions asynchronous other than rewriting them.

In this case, Twisted provides the ability to run the blocking code in a separate thread rather than letting it block
your application. Thetwisted.internet.threads.deferToThread function will set up a thread to run
your blocking function, return a Deferred and later fire thatDeferred when the thread completes.

Let’s assume ourlargeFibonnaciNumber function from above is in a third party library (returning the result
of the calculation, not a Deferred) and is not easily modifiable to be finished in discrete blocks. This example shows it
being called in a thread, unlike in the earlier section we’llsee that the operation does not block our entire program:

def largeFibonnaciNumber():
"""
Represent a long running blocking function by calculating
the TARGETth Fibonnaci number
"""
TARGET = 10000

first = 0
second = 1

for i in xrange(TARGET - 1):
new = first + second
first = second
second = new

return second

from twisted.internet import threads, reactor

CHAPTER 3. LOW-LEVEL TWISTED 113

def fibonacciCallback(result):
"""
Callback which manages the largeFibonnaciNumber result by
printing it out
"""
print "largeFibonnaciNumber result =", result
make sure the reactor stops after the callback chain finish es,
just so that this example terminates
reactor.stop()

def run():
"""
Run a series of operations, deferring the largeFibonnaciNu mber
operation to a thread and performing some other operations a fter
adding the callback
"""
get our Deferred which will be called with the largeFibonna ciNumber result
d = threads.deferToThread(largeFibonnaciNumber)
add our callback to print it out
d.addCallback(fibonacciCallback)
unless the largeFibonnaciNumber thread returns very fast , these print
#lines should happen first
print "1st line after the addition of the callback"
print "2nd line after the addition of the callback"

if __name__ == ’__main__’:
run()
reactor.run()

3.5.6 Possible sources of error

Deferreds greatly simplify the process of writing asynchronous code by providing a standard for registering callbacks,
but there are some subtle and sometimes confusing rules thatyou need to follow if you are going to use them. This
mostly applies to people who are writing new systems that useDeferreds internally, and not writers of applications
that just add callbacks to Deferreds produced and processedby other systems. Nevertheless, it is good to know.

Firing Deferreds more than once is impossible

Deferreds are one-shot. You can only callDeferred.callback or Deferred.errback once. The processing
chain continues each time you add new callbacks to an already-called-back-to Deferred.

Synchronous callback execution

If a Deferred already has a result available, addCallbackmaycall the callback synchronously: that is, immediately
after it’s been added. In situations where callbacks modifystate, it is might be desirable for the chain of processing to
halt until all callbacks are added. For this, it is possible to pause andunpause a Deferred’s processing chain while
you are adding lots of callbacks.

Be careful when you use these methods! If youpause a Deferred, it isyour responsibility to make sure that you
unpause it. The function adding the callbacks must unpause apaused Deferred, it shouldneverbe the responsibility of
the code that actually fires the callback chain by callingcallback or errback as this would negate its usefulness!

3.6 Deferreds are beautiful! (A Tutorial)

3.6.1 Introduction

Deferreds are quite possibly the single most confusing topic that a newcomer to Twisted has to deal with. I am going
to forgo the normal talk about what deferreds are, what they aren’t, and why they’re used in Twisted. Instead, I’m

CHAPTER 3. LOW-LEVEL TWISTED 114

going show you the logic behind what theydo.
A deferred allows you to encapsulate the logic that you’d normally use to make a series of function calls after

receiving a result into a single object. In the examples thatfollow, I’ll first show you what’s going to go on behind the
scenes in the deferred chain, then show you the deferred API calls that set up that chain. All of these examples are
runnable code, so feel free to play around with them.

3.6.2 A simple example

First, a simple example so that we have something to talk about:

#!/usr/bin/python2.3

from twisted.internet import defer
from twisted.python import failure, util

"""
here we have the simplest case, a single callback and a single errback
"""

num = 0

def handleFailure(f):
print "errback"
print "we got an exception: %s" % (f.getTraceback(),)
f.trap(RuntimeError)

def handleResult(result):
global num; num += 1
print "callback %s" % (num,)
print "\tgot result: %s" % (result,)
return "yay! handleResult was successful!"

def behindTheScenes(result):
equivalent to d.callback(result)

if not isinstance(result, failure.Failure): # ---- callba ck
try:

result = handleResult(result)
except:

result = failure.Failure()
else: # ---- errback

pass

if not isinstance(result, failure.Failure): # ---- callba ck
pass

else: # ---- errback
try:

result = handleFailure(result)
except:

result = failure.Failure()

def deferredExample():
d = defer.Deferred()
d.addCallback(handleResult)
d.addErrback(handleFailure)

CHAPTER 3. LOW-LEVEL TWISTED 115

d.callback("success")

if __name__ == ’__main__’:
behindTheScenes("success")
print "\n--- ------\n"
global num; num = 0
deferredExample()

Source listing —deferredex.py

And the output: (since both methods in the example produce the same output, it will only be shown once.)

callback 1
got result: success

Here we have the simplest case. A deferred with a single callback and a single errback. Normally, a function would
create a deferred and hand it back to you when you request an operation that needs to wait for an event for completion.
The object you called then doesd.callback(result) when the results are in.

The thing to notice is that there is only one result that is passed from method to method, and that the result returned
from a method is the argument to the next method in the chain. In case of an exception, result is set to an instance of
Failure that describes the exception.

3.6.3 Errbacks

Failure in requested operation

Things don’t always go as planned, and sometimes the function that returned the deferred needs to alert the callback
chain that an error has occurred.

#!/usr/bin/python2.3

from twisted.internet import defer
from twisted.python import failure, util

"""
this example is analogous to a function calling .errback(fa ilure)
"""

class Counter(object):
num = 0

def handleFailure(f):
print "errback"
print "we got an exception: %s" % (f.getTraceback(),)
f.trap(RuntimeError)

def handleResult(result):
Counter.num += 1
print "callback %s" % (Counter.num,)
print "\tgot result: %s" % (result,)
return "yay! handleResult was successful!"

def failAtHandlingResult(result):
Counter.num += 1
print "callback %s" % (Counter.num,)

CHAPTER 3. LOW-LEVEL TWISTED 116

print "\tgot result: %s" % (result,)
print "\tabout to raise exception"
raise RuntimeError, "whoops! we encountered an error"

def behindTheScenes(result):
if not isinstance(result, failure.Failure): # ---- callba ck

try:
result = handleResult(result)

except:
result = failure.Failure()

else: # ---- errback
pass

if not isinstance(result, failure.Failure): # ---- callba ck
pass

else: # ---- errback
try:

result = handleFailure(result)
except:

result = failure.Failure()

def deferredExample(result):
d = defer.Deferred()
d.addCallback(handleResult)
d.addCallback(failAtHandlingResult)
d.addErrback(handleFailure)

d.errback(result)

if __name__ == ’__main__’:
result = None
try:

raise RuntimeError, " * doh* ! failure!"
except:

result = failure.Failure()
behindTheScenes(result)
print "\n--- ------\n"
Counter.num = 0
deferredExample(result)

Source listing —deferredex1a.py

errback
we got an exception: Traceback (most recent call last):
--- exception caught here ---

File "deferred_ex1a.py", line 73, in ?
raise RuntimeError, " * doh* ! failure!"

exceptions.RuntimeError: * doh* ! failure!

The important thing to note (as it will come up again in later examples) is that the callback isn’t touched, the
failure goes right to the errback. Also note that the errbacktrap()s the expected exception type. If you don’t trap the
exception, an error will be logged when the deferred is garbage-collected.

CHAPTER 3. LOW-LEVEL TWISTED 117

Exceptions raised in callbacks

Now let’s see what happens whenour callbackraises an exception

#!/usr/bin/python2.3

from twisted.internet import defer
from twisted.python import failure, util

"""
here we have a slightly more involved case. The deferred is ca lled back with a
result. the first callback returns a value, the second callb ack, however
raises an exception, which is handled by the errback.
"""

class Counter(object):
num = 0

def handleFailure(f):
print "errback"
print "we got an exception: %s" % (f.getTraceback(),)
f.trap(RuntimeError)

def handleResult(result):
Counter.num += 1
print "callback %s" % (Counter.num,)
print "\tgot result: %s" % (result,)
return "yay! handleResult was successful!"

def failAtHandlingResult(result):
Counter.num += 1
print "callback %s" % (Counter.num,)
print "\tgot result: %s" % (result,)
print "\tabout to raise exception"
raise RuntimeError, "whoops! we encountered an error"

def behindTheScenes(result):
if not isinstance(result, failure.Failure): # ---- callba ck

try:
result = handleResult(result)

except:
result = failure.Failure()

else: # ---- errback
pass

if not isinstance(result, failure.Failure): # ---- callba ck
try:

result = failAtHandlingResult(result)
except:

result = failure.Failure()
else: # ---- errback

pass

if not isinstance(result, failure.Failure): # ---- callba ck

CHAPTER 3. LOW-LEVEL TWISTED 118

pass
else: # ---- errback

try:
result = handleFailure(result)

except:
result = failure.Failure()

def deferredExample():
d = defer.Deferred()
d.addCallback(handleResult)
d.addCallback(failAtHandlingResult)
d.addErrback(handleFailure)

d.callback("success")

if __name__ == ’__main__’:
behindTheScenes("success")
print "\n--- ------\n"
Counter.num = 0
deferredExample()

Source listing —deferredex1b.py

And the output: (note, tracebacks will be edited slightly toconserve space)

callback 1
got result: success

callback 2
got result: yay! handleResult was successful!
about to raise exception

errback
we got an exception: Traceback (most recent call last):
--- <exception caught here> ---

File "/home/slyphon/Projects/Twisted/trunk/twisted/i nternet/defer.py", line
326, in _runCallbacks

self.result = callback(self.result, * args, ** kw)
File "./deferred_ex1.py", line 32, in failAtHandlingResu lt

raise RuntimeError, "whoops! we encountered an error"
exceptions.RuntimeError: whoops! we encountered an error

If your callback raises an exception, the next method to be called will be the next errback in your chain.

Exceptions will only be handled by errbacks

If a callback raises an exception the next method to be calledwill be next errback in the chain. If the chain is started
off with a failure, the first method to be called will be the first errback.

#!/usr/bin/python2.3

from twisted.internet import defer
from twisted.python import failure, util

"""
this example shows an important concept that many deferred n ewbies
(myself included) have trouble understanding.

CHAPTER 3. LOW-LEVEL TWISTED 119

when an error occurs in a callback, the first errback after th e error
occurs will be the next method called. (in the next example we ’ll
see what happens in the ’chain’ after an errback)

"""

class Counter(object):
num = 0

def handleFailure(f):
print "errback"
print "we got an exception: %s" % (f.getTraceback(),)
f.trap(RuntimeError)

def handleResult(result):
Counter.num += 1
print "callback %s" % (Counter.num,)
print "\tgot result: %s" % (result,)
return "yay! handleResult was successful!"

def failAtHandlingResult(result):
Counter.num += 1
print "callback %s" % (Counter.num,)
print "\tgot result: %s" % (result,)
print "\tabout to raise exception"
raise RuntimeError, "whoops! we encountered an error"

def behindTheScenes(result):
equivalent to d.callback(result)

now, let’s make the error happen in the first callback

if not isinstance(result, failure.Failure): # ---- callba ck
try:

result = failAtHandlingResult(result)
except:

result = failure.Failure()
else: # ---- errback

pass

note: this callback will be skipped because
result is a failure

if not isinstance(result, failure.Failure): # ---- callba ck
try:

result = handleResult(result)
except:

result = failure.Failure()
else: # ---- errback

pass

if not isinstance(result, failure.Failure): # ---- callba ck
pass

CHAPTER 3. LOW-LEVEL TWISTED 120

else: # ---- errback
try:

result = handleFailure(result)
except:

result = failure.Failure()

def deferredExample():
d = defer.Deferred()
d.addCallback(failAtHandlingResult)
d.addCallback(handleResult)
d.addErrback(handleFailure)

d.callback("success")

if __name__ == ’__main__’:
behindTheScenes("success")
print "\n--- ------\n"
Counter.num = 0
deferredExample()

Source listing —deferredex2.py

callback 1
got result: success
about to raise exception

errback
we got an exception: Traceback (most recent call last):

File "./deferred_ex2.py", line 85, in ?
nonDeferredExample("success")

--- <exception caught here> ---
File "./deferred_ex2.py", line 46, in nonDeferredExample

result = failAtHandlingResult(result)
File "./deferred_ex2.py", line 35, in failAtHandlingResu lt

raise RuntimeError, "whoops! we encountered an error"
exceptions.RuntimeError: whoops! we encountered an error

You can see that our second callback, handleResult was not called because failAtHandlingResult raised an excep-
tion

Handling an exception and continuing on

In this example, we see an errback handle an exception raisedin the preceeding callback. Take note that it could just
as easily been an exception fromany otherpreceeding method. You’ll see that after the exception is handled in the
errback (i.e. the errback does not return a failure or raise an exception) the chain continues on with the next callback.

#!/usr/bin/python2.3

from twisted.internet import defer
from twisted.python import failure, util

"""
now we see how an errback can handle errors. if an errback
does not raise an exception, the next callback in the chain
will be called

CHAPTER 3. LOW-LEVEL TWISTED 121

"""

class Counter(object):
num = 0

def handleFailure(f):
print "errback"
print "we got an exception: %s" % (f.getTraceback(),)
f.trap(RuntimeError)
return "okay, continue on"

def handleResult(result):
Counter.num += 1
print "callback %s" % (Counter.num,)
print "\tgot result: %s" % (result,)
return "yay! handleResult was successful!"

def failAtHandlingResult(result):
Counter.num += 1
print "callback %s" % (Counter.num,)
print "\tgot result: %s" % (result,)
print "\tabout to raise exception"
raise RuntimeError, "whoops! we encountered an error"

def callbackAfterErrback(result):
Counter.num += 1
print "callback %s" % (Counter.num,)
print "\tgot result: %s" % (result,)

def behindTheScenes(result):
equivalent to d.callback(result)

if not isinstance(result, failure.Failure): # ---- callba ck
try:

result = handleResult(result)
except:

result = failure.Failure()
else: # ---- errback

pass

if not isinstance(result, failure.Failure): # ---- callba ck
try:

result = failAtHandlingResult(result)
except:

result = failure.Failure()
else: # ---- errback

pass

if not isinstance(result, failure.Failure): # ---- callba ck
pass

else: # ---- errback

CHAPTER 3. LOW-LEVEL TWISTED 122

try:
result = handleFailure(result)

except:
result = failure.Failure()

if not isinstance(result, failure.Failure): # ---- callba ck
try:

result = callbackAfterErrback(result)
except:

result = failure.Failure()
else: # ---- errback

pass

def deferredExample():
d = defer.Deferred()
d.addCallback(handleResult)
d.addCallback(failAtHandlingResult)
d.addErrback(handleFailure)
d.addCallback(callbackAfterErrback)

d.callback("success")

if __name__ == ’__main__’:
behindTheScenes("success")
print "\n--- ------\n"
Counter.num = 0
deferredExample()

Source listing —deferredex3.py

callback 1
got result: success
about to raise exception

errback
we got an exception: Traceback (most recent call last):
--- <exception caught here> ---

File "/home/slyphon/Projects/Twisted/trunk/twisted/i nternet/defer.py", line
326, in _runCallbacks

self.result = callback(self.result, * args, ** kw)
File "./deferred_ex2.py", line 35, in failAtHandlingResu lt

raise RuntimeError, "whoops! we encountered an error"
exceptions.RuntimeError: whoops! we encountered an error

3.6.4 addBoth: the deferred version of finally

Now we see how deferreds dofinally, with .addBoth. The callback that gets added as addBoth willbe called if the
result is a failure or non-failure. We’ll also see in this example, that our doThisNoMatterWhat() method follows a
common idiom in deferred callbacks by acting as a passthru, returning the value that it received to allow processing
the chain to continue, but appearing transparent in terms ofthe result.

#!/usr/bin/python2.3

from twisted.internet import defer

CHAPTER 3. LOW-LEVEL TWISTED 123

from twisted.python import failure, util

"""
now we’ll see what happens when you use ’addBoth’

"""

class Counter(object):
num = 0

def handleFailure(f):
print "errback"
print "we got an exception: %s" % (f.getTraceback(),)
f.trap(RuntimeError)
return "okay, continue on"

def handleResult(result):
Counter.num += 1
print "callback %s" % (Counter.num,)
print "\tgot result: %s" % (result,)
return "yay! handleResult was successful!"

def failAtHandlingResult(result):
Counter.num += 1
print "callback %s" % (Counter.num,)
print "\tgot result: %s" % (result,)
print "\tabout to raise exception"
raise RuntimeError, "whoops! we encountered an error"

def doThisNoMatterWhat(arg):
Counter.num += 1
print "both %s" % (Counter.num,)
print "\tgot argument %r" % (arg,)
print "\tdoing something very important"
we pass the argument we received to the next phase here
return arg

def behindTheScenes(result):
equivalent to d.callback(result)

if not isinstance(result, failure.Failure): # ---- callba ck
try:

result = handleResult(result)
except:

result = failure.Failure()
else: # ---- errback

pass

if not isinstance(result, failure.Failure): # ---- callba ck
try:

result = failAtHandlingResult(result)
except:

result = failure.Failure()

CHAPTER 3. LOW-LEVEL TWISTED 124

else: # ---- errback
pass

---- this is equivalent to addBoth(doThisNoMatterWhat)

if not isinstance(result, failure.Failure):
try:

result = doThisNoMatterWhat(result)
except:

result = failure.Failure()
else:

try:
result = doThisNoMatterWhat(result)

except:
result = failure.Failure()

if not isinstance(result, failure.Failure): # ---- callba ck
pass

else: # ---- errback
try:

result = handleFailure(result)
except:

result = failure.Failure()

def deferredExample():
d = defer.Deferred()
d.addCallback(handleResult)
d.addCallback(failAtHandlingResult)
d.addBoth(doThisNoMatterWhat)
d.addErrback(handleFailure)

d.callback("success")

if __name__ == ’__main__’:
behindTheScenes("success")
print "\n--- ------\n"
Counter.num = 0
deferredExample()

Source listing —deferredex4.py

callback 1
got result: success

callback 2
got result: yay! handleResult was successful!
about to raise exception

both 3
got argument <twisted.python.failure.Failure exception s.RuntimeError>
doing something very important

errback
we got an exception: Traceback (most recent call last):
--- <exception caught here> ---

CHAPTER 3. LOW-LEVEL TWISTED 125

File "/home/slyphon/Projects/Twisted/trunk/twisted/i nternet/defer.py", line
326, in _runCallbacks

self.result = callback(self.result, * args, ** kw)
File "./deferred_ex4.py", line 32, in failAtHandlingResu lt

raise RuntimeError, "whoops! we encountered an error"
exceptions.RuntimeError: whoops! we encountered an error

You can see that the errback is called, (and consequently, the failure is trapped). This is because doThisNoMatter-
What method returned the value it received, a failure.

3.6.5 addCallbacks: decision making based on previous success or failure

As we’ve been seeing in the examples, the callback is a pair ofcallback/errback. Using addCallback or addErrback is
actually a special case where one of the pair is a pass statement. If you want to make a decision based on whether or
not the previous result in the chain was a failure or not (which is very rare, but included here for completeness), you
use addCallbacks. Note that this isnot the same thing as an addCallback followed by an addErrback.

#!/usr/bin/python2.3

from twisted.internet import defer
from twisted.python import failure, util

"""
now comes the more nuanced addCallbacks, which allows us to m ake a
yes/no (branching) decision based on whether the result at a given point is
a failure or not.

"""

class Counter(object):
num = 0

def handleFailure(f):
print "errback"
print "we got an exception: %s" % (f.getTraceback(),)
f.trap(RuntimeError)
return "okay, continue on"

def handleResult(result):
Counter.num += 1
print "callback %s" % (Counter.num,)
print "\tgot result: %s" % (result,)
return "yay! handleResult was successful!"

def failAtHandlingResult(result):
Counter.num += 1
print "callback %s" % (Counter.num,)
print "\tgot result: %s" % (result,)
print "\tabout to raise exception"
raise RuntimeError, "whoops! we encountered an error"

def yesDecision(result):
Counter.num += 1
print "yes decision %s" % (Counter.num,)
print "\twasn’t a failure, so we can plow ahead"
return "go ahead!"

CHAPTER 3. LOW-LEVEL TWISTED 126

def noDecision(result):
Counter.num += 1
result.trap(RuntimeError)
print "no decision %s" % (Counter.num,)
print "\t * doh* ! a failure! quick! damage control!"
return "damage control successful!"

def behindTheScenes(result):

if not isinstance(result, failure.Failure): # ---- callba ck
try:

result = failAtHandlingResult(result)
except:

result = failure.Failure()
else: # ---- errback

pass

this is equivalent to addCallbacks(yesDecision, noDecis ion)

if not isinstance(result, failure.Failure): # ---- callba ck
try:

result = yesDecision(result)
except:

result = failure.Failure()
else: # ---- errback

try:
result = noDecision(result)

except:
result = failure.Failure()

if not isinstance(result, failure.Failure): # ---- callba ck
try:

result = handleResult(result)
except:

result = failure.Failure()
else: # ---- errback

pass

this is equivalent to addCallbacks(yesDecision, noDecis ion)

if not isinstance(result, failure.Failure): # ---- callba ck
try:

result = yesDecision(result)
except:

result = failure.Failure()
else: # ---- errback

try:
result = noDecision(result)

except:
result = failure.Failure()

CHAPTER 3. LOW-LEVEL TWISTED 127

if not isinstance(result, failure.Failure): # ---- callba ck
try:

result = handleResult(result)
except:

result = failure.Failure()
else: # ---- errback

pass

if not isinstance(result, failure.Failure): # ---- callba ck
pass

else: # ---- errback
try:

result = handleFailure(result)
except:

result = failure.Failure()

def deferredExample():
d = defer.Deferred()
d.addCallback(failAtHandlingResult)
d.addCallbacks(yesDecision, noDecision) # noDecision wi ll be called
d.addCallback(handleResult) # - A -
d.addCallbacks(yesDecision, noDecision) # yesDecision w ill be called
d.addCallback(handleResult)
d.addErrback(handleFailure)

d.callback("success")

if __name__ == ’__main__’:
behindTheScenes("success")
print "\n--- ------\n"
Counter.num = 0
deferredExample()

Source listing —deferredex5.py

callback 1
got result: success
about to raise exception

no decision 2

* doh* ! a failure! quick! damage control!
callback 3

got result: damage control successful!
yes decision 4

wasn’t a failure, so we can plow ahead
callback 5

got result: go ahead!

Notice that our errback is never called. The noDecision method returns a non-failure so processing continues with
the next callback. If we wanted to skip the callback at ”- A -” because of the error, but do some kind of processing
in response to the error, we would have used a passthru, and returned the failure we received, as we see in this next
example:

#!/usr/bin/python2.3

CHAPTER 3. LOW-LEVEL TWISTED 128

from twisted.internet import defer
from twisted.python import failure, util

"""
now comes the more nuanced addCallbacks, which allows us to m ake a
yes/no (branching) decision based on whether the result at a given point is
a failure or not.

here, we return the failure from noDecisionPassthru, the er rback argument to
the first addCallbacks method invocation, and see what happ ens

"""

class Counter(object):
num = 0

def handleFailure(f):
print "errback"
print "we got an exception: %s" % (f.getTraceback(),)
f.trap(RuntimeError)
return "okay, continue on"

def handleResult(result):
Counter.num += 1
print "callback %s" % (Counter.num,)
print "\tgot result: %s" % (result,)
return "yay! handleResult was successful!"

def failAtHandlingResult(result):
Counter.num += 1
print "callback %s" % (Counter.num,)
print "\tgot result: %s" % (result,)
print "\tabout to raise exception"
raise RuntimeError, "whoops! we encountered an error"

def yesDecision(result):
Counter.num += 1
print "yes decision %s" % (Counter.num,)
print "\twasn’t a failure, so we can plow ahead"
return "go ahead!"

def noDecision(result):
Counter.num += 1
result.trap(RuntimeError)
print "no decision %s" % (Counter.num,)
print "\t * doh* ! a failure! quick! damage control!"
return "damage control successful!"

def noDecisionPassthru(result):
Counter.num += 1
print "no decision %s" % (Counter.num,)
print "\t * doh* ! a failure! don’t know what to do, returning failure!"
return result

def behindTheScenes(result):

CHAPTER 3. LOW-LEVEL TWISTED 129

if not isinstance(result, failure.Failure): # ---- callba ck
try:

result = failAtHandlingResult(result)
except:

result = failure.Failure()
else: # ---- errback

pass

this is equivalent to addCallbacks(yesDecision, noDecis ion)

if not isinstance(result, failure.Failure): # ---- callba ck
try:

result = yesDecision(result)
except:

result = failure.Failure()
else: # ---- errback

try:
result = noDecisionPassthru(result)

except:
result = failure.Failure()

if not isinstance(result, failure.Failure): # ---- callba ck
try:

result = handleResult(result)
except:

result = failure.Failure()
else: # ---- errback

pass

this is equivalent to addCallbacks(yesDecision, noDecis ion)

if not isinstance(result, failure.Failure): # ---- callba ck
try:

result = yesDecision(result)
except:

result = failure.Failure()
else: # ---- errback

try:
result = noDecision(result)

except:
result = failure.Failure()

if not isinstance(result, failure.Failure): # ---- callba ck
try:

result = handleResult(result)
except:

result = failure.Failure()
else: # ---- errback

pass

if not isinstance(result, failure.Failure): # ---- callba ck

CHAPTER 3. LOW-LEVEL TWISTED 130

pass
else: # ---- errback

try:
result = handleFailure(result)

except:
result = failure.Failure()

def deferredExample():
d = defer.Deferred()
d.addCallback(failAtHandlingResult)

noDecisionPassthru will be called
d.addCallbacks(yesDecision, noDecisionPassthru)
d.addCallback(handleResult) # - A -

noDecision will be called
d.addCallbacks(yesDecision, noDecision)
d.addCallback(handleResult) # - B -
d.addErrback(handleFailure)

d.callback("success")

if __name__ == ’__main__’:
behindTheScenes("success")
print "\n--- ------\n"
Counter.num = 0
deferredExample()

Source listing —deferredex6.py

callback 1
got result: success
about to raise exception

no decision 2

* doh* ! a failure! don’t know what to do, returning failure!
no decision 3

* doh* ! a failure! quick! damage control!
callback 4

got result: damage control successful!

Two things to note here. First, ”- A -” was skipped, like we wanted it to, and the second thing is that after ”- A
-”, noDecision is called, becauseit is the next errback that exists in the chain. It returns a non-failure, so processing
continues with the next callback at ”- B -”, and the errback atthe end of the chain is never called

3.6.6 Hints, tips, common mistakes, and miscellaney

The deferred callback chain is stateful

A deferred that has been called back will call it’s addCallback and addErrback methods as appropriate in the order
they are added, when they are added. So we see in the followingexample, deferredExample1 and deferredExample2
are equivalent. The first sets up the processing chain beforehand and then executes it, the other executes the chain as
it is being constructed. This is because deferreds arestateful.

#!/usr/bin/python2.3

from twisted.internet import defer

CHAPTER 3. LOW-LEVEL TWISTED 131

from twisted.python import failure, util

"""
The deferred callback chain is stateful, and can be executed before
or after all callbacks have been added to the chain
"""

class Counter(object):
num = 0

def handleFailure(f):
print "errback"
print "we got an exception: %s" % (f.getTraceback(),)
f.trap(RuntimeError)

def handleResult(result):
Counter.num += 1
print "callback %s" % (Counter.num,)
print "\tgot result: %s" % (result,)
return "yay! handleResult was successful!"

def failAtHandlingResult(result):
Counter.num += 1
print "callback %s" % (Counter.num,)
print "\tgot result: %s" % (result,)
print "\tabout to raise exception"
raise RuntimeError, "whoops! we encountered an error"

def deferredExample1():
this is another common idiom, since all add * methods
return the deferred instance, you can just chain your
calls to addCallback and addErrback

d = defer.Deferred().addCallback(failAtHandlingResult
).addCallback(handleResult
).addErrback(handleFailure)

d.callback("success")

def deferredExample2():
d = defer.Deferred()

d.callback("success")

d.addCallback(failAtHandlingResult)
d.addCallback(handleResult)
d.addErrback(handleFailure)

if __name__ == ’__main__’:
deferredExample1()
print "\n--- ------\n"
Counter.num = 0
deferredExample2()

Source listing —deferredex7.py

CHAPTER 3. LOW-LEVEL TWISTED 132

callback 1
got result: success
about to raise exception

errback
we got an exception: Traceback (most recent call last):
--- <exception caught here> ---

File "/home/slyphon/Projects/Twisted/trunk/twisted/i nternet/defer.py", line
326, in _runCallbacks

self.result = callback(self.result, * args, ** kw)
File "./deferred_ex7.py", line 35, in failAtHandlingResu lt

raise RuntimeError, "whoops! we encountered an error"
exceptions.RuntimeError: whoops! we encountered an error

callback 1
got result: success
about to raise exception

errback
we got an exception: Traceback (most recent call last):
--- <exception caught here> ---

File "/home/slyphon/Projects/Twisted/trunk/twisted/i nternet/defer.py", line
326, in _runCallbacks

self.result = callback(self.result, * args, ** kw)
File "./deferred_ex7.py", line 35, in failAtHandlingResu lt

raise RuntimeError, "whoops! we encountered an error"
exceptions.RuntimeError: whoops! we encountered an error

This example also shows you the common idiom of chaining calls to addCallback and addErrback.

Don’t call .callback() on deferreds you didn’t create!

It is an error to reinvoke deferreds callback or errback method, therefore if you didn’t create a deferred,do not under
any circumstancescall its callback or errback. doing so will raise an exception

Callbacks can return deferreds

If you need to call a method that returns a deferred within your callback chain, just return that deferred, and the result
of the secondary deferred’s processing chain will become the result that gets passed to the next callback of the primary
deferreds processing chain

#!/usr/bin/python2.3

from twisted.internet import defer
from twisted.python import failure, util

"""
"""

class Counter(object):
num = 0
let = ’a’

def incrLet(cls):
cls.let = chr(ord(cls.let) + 1)

incrLet = classmethod(incrLet)

CHAPTER 3. LOW-LEVEL TWISTED 133

def handleFailure(f):
print "errback"
print "we got an exception: %s" % (f.getTraceback(),)
return f

def subCb_B(result):
print "sub-callback %s" % (Counter.let,)
Counter.incrLet()
s = " beautiful!"
print "\tadding %r to result" % (s,)
result += s
return result

def subCb_A(result):
print "sub-callback %s" % (Counter.let,)
Counter.incrLet()
s = " are "
print "\tadding %r to result" % (s,)
result += s
return result

def mainCb_1(result):
Counter.num += 1
print "callback %s" % (Counter.num,)
print "\tgot result: %s" % (result,)
result += " Deferreds "

d = defer.Deferred().addCallback(subCb_A
).addCallback(subCb_B)

d.callback(result)
return d

def mainCb_2(result):
Counter.num += 1
print "callback %s" % (Counter.num,)
print "\tgot result: %s" % (result,)

def deferredExample():
d = defer.Deferred().addCallback(mainCb_1

).addCallback(mainCb_2)

d.callback("I hope you’ll agree: ")

if __name__ == ’__main__’:
deferredExample()

Source listing —deferredex8.py

callback 1
got result: I hope you’ll agree:

sub-callback a
adding ’ are ’ to result

sub-callback b

CHAPTER 3. LOW-LEVEL TWISTED 134

adding ’ beautiful!’ to result
callback 2

got result: I hope you’ll agree: Deferreds are beautiful!

3.6.7 Conclusion

Deferreds can be confusing, but only because they’re so elegant and simple. There is a lot of logical power that can
expressed with a deferred’s processing chain, and once you see what’s going on behind the curtain, it’s a lot easier to
understand how to make use of what deferreds have to offer.

3.7 Scheduling tasks for the future

Let’s say we want to run a task X seconds in the future. The way to do that is defined in the reactor interfacetwisted.
internet.interfaces.IReactorTime :

from twisted.internet import reactor

def f(s):
print "this will run 3.5 seconds after it was scheduled: %s" % s

reactor.callLater(3.5, f, "hello, world")

f() will only be called if the event loop is started.
reactor.run()

If the result of the function is important or if it may be necessary to handle exceptions it raises, then thetwisted.
internet.task.deferLater utility conveniently takes care of creating aDeferred and setting up a delayed
call:

from twisted.internet import task
from twisted.internet import reactor

def f(s):
return "This will run 3.5 seconds after it was scheduled: %s" % s

d = task.deferLater(reactor, 3.5, f, "hello, world")
def called(result):

print result
d.addCallback(called)

f() will only be called if the event loop is started.
reactor.run()

If we want a task to run every X seconds repeatedly, we can usetwisted.internet.task.LoopingCall :

from twisted.internet import task
from twisted.internet import reactor

def runEverySecond():
print "a second has passed"

l = task.LoopingCall(runEverySecond)
l.start(1.0) # call every second

l.stop() will stop the looping calls
reactor.run()

If we want to cancel a task that we’ve scheduled:

CHAPTER 3. LOW-LEVEL TWISTED 135

from twisted.internet import reactor

def f():
print "I’ll never run."

callID = reactor.callLater(5, f)
callID.cancel()
reactor.run()

As with all reactor-based code, in order for scheduling to work the reactor must be started usingreactor.
run() .

3.8 Using Threads in Twisted

3.8.1 Running code in a thread-safe manner

Most code in Twisted is not thread-safe. For example, writing data to a transport from a protocol is not thread-safe.
Therefore, we want a way to schedule methods to be run in the main event loop. This can be done using the function
twisted.internet.interfaces.IReactorThreads.callFro mThread :

from twisted.internet import reactor

def notThreadSafe(x):
"""do something that isn’t thread-safe"""
...

def threadSafeScheduler():
"""Run in thread-safe manner."""
reactor.callFromThread(notThreadSafe, 3) # will run ’not ThreadSafe(3)’

in the event loop

3.8.2 Running code in threads

Sometimes we may want to run methods in threads - for example,in order to access blocking APIs. Twisted pro-
vides methods for doing so using the IReactorThreads API (twisted.internet.interfaces.IReactor
Threads). Additional utility functions are provided intwisted.internet.threads . Basically, these meth-
ods allow us to queue methods to be run by a thread pool.

For example, to run a method in a thread we can do:

from twisted.internet import reactor

def aSillyBlockingMethod(x):
import time
time.sleep(2)
print x

run method in thread
reactor.callInThread(aSillyBlockingMethod, "2 seconds have passed")

3.8.3 Utility Methods

The utility methods are not part of thetwisted.internet.reactor APIs, but are implemented intwisted.
internet.threads .

If we have multiple methods to run sequentially within a thread, we can do:

from twisted.internet import threads

def aSillyBlockingMethodOne(x):

CHAPTER 3. LOW-LEVEL TWISTED 136

import time
time.sleep(2)
print x

def aSillyBlockingMethodTwo(x):
print x

run both methods sequentially in a thread
commands = [(aSillyBlockingMethodOne, ["Calling First"] , {})]
commands.append((aSillyBlockingMethodTwo, ["And the se cond"], {}))
threads.callMultipleInThread(commands)

For functions whose results we wish to get, we can have the result returned as a Deferred:

from twisted.internet import threads

def doLongCalculation():
.... do long calculation here ...
return 3

def printResult(x):
print x

run method in thread and get result as defer.Deferred
d = threads.deferToThread(doLongCalculation)
d.addCallback(printResult)

If you wish to call a method in the reactor thread and get its result, you can useblockingCallFromThread :

from twisted.internet import threads, reactor, defer
from twisted.web.client import getPage
from twisted.web.error import Error

def inThread():
try:

result = threads.blockingCallFromThread(
reactor, getPage, "http://twistedmatrix.com/")

except Error, exc:
print exc

else:
print result

reactor.callFromThread(reactor.stop)

reactor.callInThread(inThread)
reactor.run()

blockingCallFromThread will return the object or raise the exception returned or raised by the function
passed to it. If the function passed to it returns a Deferred,it will return the value the Deferred is called back with or
raise the exception it is errbacked with.

3.8.4 Managing the Thread Pool

The thread pool is implemented bytwisted.python.threadpool.ThreadPool .
We may want to modify the size of the threadpool, increasing or decreasing the number of threads in use. We can

do this do this quite easily:

from twisted.internet import reactor

reactor.suggestThreadPoolSize(30)

CHAPTER 3. LOW-LEVEL TWISTED 137

The default size of the thread pool depends on the reactor being used; the default reactor uses a minimum size of 5
and a maximum size of 10. Be careful that you understand threads and their resource usage before drastically altering
the thread pool sizes.

3.9 Choosing a Reactor and GUI Toolkit Integration

3.9.1 Overview

Twisted provides a variety of implementations of thetwisted.internet.reactor . The specialized implemen-
tations are suited for different purposes and are designed to integrate better with particular platforms.

The general purpose reactor implementations are:

• The select()-based reactor(this page)

• The poll()-based reactor(page 138)

Platform-specific reactor implementations exist for:

• KQueue for FreeBSD and OS X(page 138)

• Win32 (WFMO)(page 138)

• Win32 (IOCP)(page 138)

• Mac OS X(page 139)

• Epoll for Linux 2.6(page 138)

The remaining custom reactor implementations provide support for integrating with the native event loops of
various graphical toolkits. This lets your Twisted application use all of the usual Twisted APIs while still being a
graphical application.

Twisted currently integrates with the following graphicaltoolkits:

• GTK+ 1.2 and 2.0(page 139)

• Tkinter (page 139)

• WxPython(page 139)

• Win32(page 138)

• CoreFoundation(page 139)

• PyUI (page 140)

When using applications that runnable usingtwistd , e.g. TAPs or plugins, there is no need to choose a reactor
explicitly, since this can be chosen usingtwistd ’s -r option.

In all cases, the event loop is started by callingreactor.run() . In all cases, the event loop should be stopped
with reactor.stop() .

IMPORTANT: installing a reactor should be the first thing done in the app,since any code that doesfrom
twisted.internet import reactor will automatically install the default reactor if the code hasen’t already
installed one.

3.9.2 Reactor Functionality

3.9.3 General Purpose Reactors

Select()-based Reactor

The select reactor is currently the default reactor on all platforms. The following code will install it, if no other reactor
has been installed:

from twisted.internet import reactor

In the future, if another reactor becomes the default, but the select reactor is desired, it may be installed via:

from twisted.internet import selectreactor
selectreactor.install()

CHAPTER 3. LOW-LEVEL TWISTED 138

Status TCP SSL UDP Threading Processes Scheduling Platforms
select() Stable Y Y Y Y Y Y Unix, Win32
poll() Stable Y Y Y Y Y Y Unix
Win32 (WFMO) Experimental Y Y Y Y Y Y Win32
Win32 (IOCP) Experimental Y N N N N Y Win32
CoreFoundation Unmaintained Y Y Y Y Y Y OS X
epoll Stable Y Y Y Y Y Y Linux 2.6
Gtk Stable Y Y Y Y Y Y Unix, Win32
wx Experimental Y Y Y Y Y Y Unix, Win32
kqueue Experimental Y Y Y Y Y Y FreeBSD

Table 3.1: Summary of reactor features

Poll()-based Reactor

The PollReactor will work on any platform that providespoll() . With larger numbers of connected sockets, it may
provide for better performance.

from twisted.internet import pollreactor
pollreactor.install()

3.9.4 Platform-Specific Reactors

KQueue

The KQueue Reactor allows Twisted to use FreeBSD’s kqueue mechanism for event scheduling. See instructions in
thetwisted.internet.kqreactor ’s docstring for installation notes.

from twisted.internet import kqreactor
kqreactor.install()

Win32 (WFMO)

The Win32 reactor is not yet complete and has various limitations and issues that need to be addressed. The reactor
supports GUI integration with the win32gui module, so it canbe used for native Win32 GUI applications.

from twisted.internet import win32eventreactor
win32eventreactor.install()

Win32 (IOCP)

Windows provides a fast, scalable event notification systemknown as IO Completion Ports, or IOCP for short. An
extremely experimental reactor based on IOCP is provided with Twisted.

from twisted.internet import iocpreactor
iocpreactor.install()

Epoll-based Reactor

The EPollReactor will work on any platform that providesepoll , today only Linux 2.6 and over. The implementation
of the epoll reactor currently use the Level Triggered interface, which is basically like poll() but scales much better.

from twisted.internet import epollreactor
epollreactor.install()

CHAPTER 3. LOW-LEVEL TWISTED 139

3.9.5 GUI Integration Reactors

GTK+

Twisted integrates with PyGTK2, versions 1.2 (gtkreactor) and 2.0 (gtk2reactor). Sample applications using
GTK+ and Twisted are available in the Twisted SVN.

GTK-2.0 split the event loop out of the GUI toolkit, into a separate module called “glib”. To run an application
using the glib event loop, use theglib2reactor . This will be slightly faster thangtk2reactor (and does not
require a working X display), but cannot be used to run GUI applications.

from twisted.internet import gtkreactor # for gtk-1.2
gtkreactor.install()

from twisted.internet import gtk2reactor # for gtk-2.0
gtk2reactor.install()

from twisted.internet import glib2reactor # for non-GUI ap ps
glib2reactor.install()

CoreFoundation

Twisted integrates with PyObjC3, version 1.0. Sample applications using Cocoa and Twisted are available in the
examples directory underCocoa .

from twisted.internet import cfreactor
cfreactor.install()

3.9.6 Non-Reactor GUI Integration

Tkinter

The support for Tkinter4 doesn’t use a specialized reactor. Instead, there is some specialized support code:

from Tkinter import *
from twisted.internet import tksupport

root = Tk()

Install the Reactor support
tksupport.install(root)

at this point build Tk app as usual using the root object,
and start the program with "reactor.run()", and stop it
with "reactor.stop()".

wxPython

Twisted currently supports two methods of integrating wxPython. Unfortunately, neither method will work on all
wxPython platforms (such as GTK2 or Windows). It seems that the only portable way to integrate with wxPython is
to run it in a separate thread. One of these methods may be sufficient if your wx app is limited to a single platform.

As with Tkinter (this page), the support for integrating Twisted with a wxPython5 application uses specialized
support code rather than a simple reactor.

from wxPython.wx import *
from twisted.internet import wxsupport, reactor

myWxAppInstance = wxApp(0)
wxsupport.install(myWxAppInstance)

2http://www.daa.com.au/˜james/pygtk/
3http://pyobjc.sf.net/
4http://www.python.org/topics/tkinter/
5http://www.wxpython.org

CHAPTER 3. LOW-LEVEL TWISTED 140

However, this has issues when running on Windows, so Twistednow comes with alternative wxPython support
using a reactor. Using this method is probably better. Initialization is done in two stages. In the first, the reactor is
installed:

from twisted.internet import wxreactor
wxreactor.install()

Later, once awxApp instance has been created, but beforereactor.run() is called:

myWxAppInstance = wxApp(0)
reactor.registerWxApp(myWxAppInstance)

An example Twisted application that uses WxWindows can be found indoc/examples/wxdemo.py .

PyUI

As with Tkinter(page 139), the support for integrating Twisted with a PyUI6 application uses specialized support code
rather than a simple reactor.

from twisted.internet import pyuisupport, reactor

pyuisupport.install(args=(640, 480), kw={’renderer’: ’ gl’})

An example Twisted application that uses PyUI can bve found in doc/examples/pyuidemo.py .

6http://pyui.sourceforge.net

Chapter 4

High-Level Twisted

4.1 The Basics

4.1.1 Application

Twisted programs usually work withtwisted.application.service.Application . This class usually
holds all persistent configuration of a running server – ports to bind to, places where connections to must be kept or
attempted, periodic actions to do and almost everything else. It is the root object in a tree of services implementing
IService .

Other HOWTOs describe how to write custom code for Applications, but this one describes how to use already
written code (which can be part of Twisted or from a third-party Twisted plugin developer). The Twisted distribution
comes with an important tool to deal with Applications,twistd .

Application s are just Python objects, which can be created and manipulated in the same ways as any other
object.

4.1.2 twistd

The Twisted Daemon is a program that knows how to run Applications. This program istwistd(1) . Strictly
speaking,twistd is not necessary – fetching the application, getting theIService component, callingstart
Service , schedulingstopService when the reactor shuts down, and then callingreactor.run() could be
done manually.twistd(1) , however, supplies many options which are highly useful forprogram set up.

twistd supports choosing a reactor (for more on reactors, seeChoosing a Reactor(page 137)), logging to
a logfile, daemonizing and more.twistd supports all Applications mentioned above – and an additional one.
Sometimes it is convenient to write the code for building a class in straight Python. One big source of such Python
files is thedoc/examples directory. When a straight Python file which defines anApplication object called
application is used, use the-y option.

Whentwistd runs, it records its process id in atwistd.pid file (this can be configured via a command line
switch). In order to shutdown thetwistd process, kill that pid (usually you would dokill ‘cat twistd.
pid‘).

As always, the gory details are in the manual page.

4.1.3 tap2deb

For Twisted-based server application developers who want to deploy on Debian, Twisted supplies thetap2deb
program. This program wraps a Twisted Application file (of any of the supported formats – Python, source, xml or
pickle) in a Debian package, including correct installation and removal scripts andinit.d scripts. This frees the
installer from manually stopping or starting the service, and will make sure it goes properly up on startup and down
on shutdown and that it obeys the init levels.

For the more savvy Debian users, thetap2deb also generates the source package, allowing her to modify and
polish things which automated software cannot detect (suchas dependencies or relationships to virtual packages). In
addition, the Twisted team itself intends to produce Debianpackages for some common services, such as web servers
and an inetd replacement. Those packages will enjoy the bestof all worlds – both the consistency which comes from

141

CHAPTER 4. HIGH-LEVEL TWISTED 142

being based on thetap2deb and the delicate manual tweaking of a Debian maintainer, insuring perfect integration
with Debian.

Right now, there is a beta Debian archive of a web server available at Moshe’s archive1.

4.1.4 tap2rpm

tap2rpm is similar totap2deb , except that it generates RPMs for Redhat and other related platforms.

4.2 The Twisted Plugin System

The purpose of this guide is to describe the preferred way to write extensible Twisted applications (and consequently,
also to describe how to extend applications written in such away). This extensibility is achieved through the definition
of one or more APIs and a mechanism for collecting code plugins which implement this API to provide some additional
functionality. At the base of this system is thetwisted.plugin module.

Making an application extensible using the plugin system has several strong advantages over other techniques:

• It allows third-party developers to easily enhance your software in a way that is loosely coupled: only the plugin
API is required to remain stable.

• It allows new plugins to be discovered flexibly. For example,plugins can be loaded and saved when a program
is first run, or re-discovered each time the program starts up, or they can be polled for repeatedly at runtime
(allowing the discovery of new plugins installed after the program has started).

4.2.1 Writing Extensible Programs

Taking advantage oftwisted.plugin is a two step process:

1. Define an interface which plugins will be required to implement. This is done using thezope.interface
package in the same way one would define an interface for any other purpose.

A convention for defining interfaces is do so in a file named like ProjectName/projectname/iprojectname.py.
The rest of this document will follow that convention: consider the following interface definition be in
Matsim/matsim/imatsim.py , an interface definition module for a hypothetical materialsimulation pack-
age.

2. At one or more places in your program, invoketwisted.plugin.getPlugins and iterate over its result.

As an example of the first step, consider the following interface definition for a physical modelling system.

from zope.interface import Interface, Attribute

class IMaterial(Interface):
"""
An object with specific physical properties
"""
def yieldStress(temperature):

"""
Returns the pressure this material can support without
fracturing at the given temperature.

@type temperature: C{float}
@param temperature: Kelvins

@rtype: C{float}
@return: Pascals

"""

dielectricConstant = Attribute("""

1http://twistedmatrix.com/users/moshez/apt

CHAPTER 4. HIGH-LEVEL TWISTED 143

@type dielectricConstant: C{complex}
@ivar dielectricConstant: The relative permittivity, wit h the
real part giving reflective surface properties and the
imaginary part giving the radio absorption coefficient.
""")

In another module, we might have a function that operates on objects providing theIMaterial interface:

def displayMaterial(m):
print ’A material with yield stress %s at 500 K’ % (m.yieldStr ess(500),)
print ’Also a dielectric constant of %s.’ % (m.dielectricCo nstant,)

The last piece of required code is that which collectsIMaterial providers and passes them to thedisplay
Material function.

from twisted.plugin import getPlugins
from matsim import imatsim

def displayAllKnownMaterials():
for material in getPlugins(imatsim.IMaterial):

displayMaterial(material)

Third party developers may now contribute different materials to be used by this modelling system by implement-
ing one or more plugins for theIMaterial interface.

4.2.2 Extending an Existing Program

The above code demonstrates how an extensible program mightbe written using Twisted’s plugin system. How do we
write plugins for it, though? Essentially, we create objects which provide the required interface and then make them
available at a particular location. Consider the followingexample.

from twisted.plugin import IPlugin
from matsim import imatsim

class SimpleMaterial(object):
implements(IPlugin, imatsim.IMaterial)

def __init__(self, yieldStressFactor, dielectricConsta nt):
self._yieldStressFactor = yieldStressFactor
self.dielectricConstant = dielectricConstant

def yieldStress(self, temperature):
return self._yieldStressFactor * temperature

steelPlate = SimpleMaterial(2.06842719e11, 2.7 + 0.2j)
brassPlate = SimpleMaterial(1.03421359e11, 1.4 + 0.5j)

steelPlate andbrassPlate now provide bothIPlugin andIMaterial . All that remains is to make this
module available at an appropriate location. For this, there are two options. The first of these is primarily useful during
development: if a directory which has been added tosys.path (typically by adding it to the PYTHONPATH
environment variable) contains adirectory namedtwisted/plugins/ , each.py file in that directory will be
loaded as a source of plugins. This directorymust notbe a Python package: includinginit .py will cause the
directory to be skipped and no plugins loaded from it. Second, each module in the installed version of Twisted’s
twisted.plugins package will also be loaded as a source of plugins.

Once this plugin is installed in one of these two ways,displayAllKnownMaterials can be run and we will
see two pairs of output: one for a steel plate and one for a brass plate.

CHAPTER 4. HIGH-LEVEL TWISTED 144

4.2.3 Alternate Plugin Packages

getPlugins takes one additional argument not mentioned above. If passed in, the 2nd argument should be a module
or package to be used instead oftwisted.plugins as the plugin meta-package. If you are writing a plugin for a
Twisted interface, you should never need to pass this argument. However, if you have developed an interface of your
own, you may want to mandate that plugins for it are installedin your own plugins package, rather than in Twisted’s.
In this case, you probably also want to supportyourproject/plugins/ directories for ease of development. To
do so, you should make theinit .py for that package contain at least the following lines.

from twisted.plugin import pluginPackagePaths
__path__.extend(pluginPackagePaths(__name__))
__all__ = []

The key behavior here is that interfaces are essentially paired with a particular plugin package. If plugins are
installed in a different package than the one the code which relies on the interface they provide, they will not be found
when the application goes to load them.

4.2.4 Plugin Caching

In the course of using the Twisted plugin system, you may noticedropin.cache files appearing at various locations.
These files are used to cache information about what plugins are present in the directory which contains them. At times,
this cached information may become out of date. Twisted usesthe mtimes of various files involved in the plugin system
to determine when this cache may have become invalid. Twisted will try to re-write the cache each time it tries to use
it but finds it out of date.

For a site-wide install, it may not (indeed, should not) be possible for applications running as normal users to
rewrite the cache file. While these applications will still run and find correct plugin information, they may run more
slowly than they would if the cache was up to date, and they mayalso report exceptions if certain plugins have been
removed but which the cache still references. For these reasons, when installing or removing software which provides
Twisted plugins, the site administrator should be sure the cache is regenerated. Well-behaved package managers for
such software should take this task upon themselves, since it is trivially automatable. The canonical way to regenerate
the cache is to run the following Python code:

from twisted.plugin import IPlugin, getPlugins
list(getPlugins(IPlugin))

As mentioned, it is normal for exceptions to be raisedoncehere if plugins have been removed.

4.2.5 Further Reading

• Components: Interfaces and Adapters(page 147)

4.3 Writing a twistd Plugin

This document describes adding subcommands to thetwistd command, as a way to facilitate the deployment of
your applications.(This feature was added in Twisted 2.5)

The target audience of this document are those that have developed a Twisted application which needs a command
line-based deployment mechanism.

There are a few prerequisites to understanding this document:

• A basic understanding of the Twisted Plugin System (i.e., the twisted.plugin module) is necessary, how-
ever, step-by-step instructions will be given. ReadingThe Twisted Plugin System(page 142) is recommended,
in particular the “Extending an Existing Program” section.

• The Application(page 159) infrastructure is used intwistd plugins; in particular, you should know how to
expose your program’s functionality as a Service.

• In order to parse command line arguments, thetwistd plugin mechanism relies ontwisted.python.
usage , which is documented inUsing usage.Options(page 163).

CHAPTER 4. HIGH-LEVEL TWISTED 145

4.3.1 Goals

After reading this document, the reader should be able to expose their Service-using application as a subcommand of
twistd , taking into consideration whatever was passed on the command line.

4.3.2 A note on .tap files

Readers may be confused about a historical file type associated with Twisted, the.tap file. This was a kind of
file that was generated by a program namedmktap and whichtwistd can read..tap files are deprecated; this
document has nothing to do with them, although the technology described herein is very closely related to the old
system. Existing plugins that were written for the mktap system are compatible with thistwistd plugin system; the
following commands,

$ mktap [foo] [options...]
$ twistd -n -f [foo].tap

are equivalent to the command:

$ twistd -n [foo] [options...]

4.3.3 Alternatives to twistd plugins

The major alternative to the twistd plugin mechanism is the.tac file, which is a simple script to be used with
the twistd-y/--python parameter. The twistd plugin mechanism exists to offer a more extensible command-
line-driven interface to your application. For more information on.tac files, see the documentUsing the Twisted
Application Framework(page 159).

4.3.4 Creating the plugin

The following directory structure is assumed of your project:

• MyProject- Top level directory

– myproject- Python package

∗ init .py

During development of your project, Twisted plugins can be loaded from a special directory in your project, as-
suming your top level directory ends up in sys.path. Create adirectory namedtwisted containing a directory named
plugins , and add a file namedmyproject plugin.py to it. This file will contain your plugin. Note that you
shouldnot add any init .py files to this directory structure, and the plugin file should not be namedmyproject.
py (because that would conflict with your project’s module name).

In this file, define an object whichprovides the interfacestwisted.plugin.IPlugin and twisted.
application.service.IServiceMaker .

The tapname attribute of your IServiceMaker provider will be used as thesubcommand name in a command
like twistd [subcommand] [args...] , and theoptions attribute (which should be ausage.Options
subclass) will be used to parse the given args.

from zope.interface import implements

from twisted.python import usage
from twisted.plugin import IPlugin
from twisted.application.service import IServiceMaker
from twisted.application import internet

from myproject import MyFactory

class Options(usage.Options):
optParameters = [["port", "p", 1235, "The port number to lis ten on."]]

CHAPTER 4. HIGH-LEVEL TWISTED 146

class MyServiceMaker(object):
implements(IServiceMaker, IPlugin)
tapname = "myproject"
description = "Run this! It’ll make your dog happy."
options = Options

def makeService(self, options):
"""
Construct a TCPServer from a factory defined in myproject.
"""
return internet.TCPServer(int(options["port"]), MyFac tory())

Now construct an object which * provides * the relevant interfaces
The name of this variable is irrelevant, as long as there is * some*
name bound to a provider of IPlugin and IServiceMaker.

serviceMaker = MyServiceMaker()

Now runningtwistd --help should printmyproject in the list of available subcommands, followed by the
description that we specified in the plugin.twistd -n myproject would, assuming we defined aMyFactory
factory insidemyproject , start a listening server on port 1235 with that factory.

4.3.5 Using cred with your TAP

Twisted ships with a robust authentication framework to usewith your application. If your server needs authentication
functionality, and you haven’t read abouttwisted.cred(page 153) yet, read up on it first.

If you are building a twistd plugin and you want to support a wide variety of authentication patterns, Twisted
provides an easy-to-use mixin for your Options subclass:strcred.AuthOptionMixin . The following code is
an example of using this mixin:

from twisted.cred import credentials, portal, strcred
from twisted.python import usage
from twisted.plugin import IPlugin
from twisted.application.service import IServiceMaker
from myserver import myservice

class ServerOptions(usage.Options, strcred.AuthOption Mixin):
This part is optional; it tells AuthOptionMixin what
kinds of credential interfaces the user can give us.
supportedInterfaces = (credentials.IUsernamePassword,)

optParameters = [
["port", "p", 1234, "Server port number"],
["host", "h", "localhost", "Server hostname"]]

class MyServerServiceMaker(object):
implements(IServiceMaker, IPlugin)
tapname = "myserver"
description = "This server does nothing productive."
options = ServerOptions

def makeService(self, options):
"""Construct a service object."""
The realm is a custom object that your server defines.
realm = myservice.MyServerRealm(options["host"])

CHAPTER 4. HIGH-LEVEL TWISTED 147

The portal is something Cred can provide, as long as
you have a list of checkers that you’ll support. This
list is provided my AuthOptionMixin.
portal = portal.Portal(realm, options["credCheckers"])

OR, if you know you might get multiple interfaces, and
only want to give your application one of them, you
also have that option with AuthOptionMixin:
interface = credentials.IUsernamePassword
portal = portal.Portal(realm, options["credInterfaces"][interface])

The protocol factory is, like the realm, something you impl ement.
factory = myservice.ServerFactory(realm, portal)

Finally, return a service that will listen for connections .
return internet.TCPServer(int(options["port"]), facto ry)

As in our example above, we have to construct an object that
provides the IPlugin and IServiceMaker interfaces.

serviceMaker = MyServerServiceMaker()

Now that you have your TAP configured to support any authentication we can throw at it, you’re ready to use it.
Here is an example of starting your server using the /etc/passwd file for authentication. (Clearly, this won’t work on
servers with shadow passwords.)

$ twistd myserver --auth passwd:/etc/passwd

For a full list of cred plugins supported, seetwisted.plugins , or use the command-line help:

$ twistd myserver --help-auth
$ twistd myserver --help-auth-type passwd

4.3.6 Conclusion

You should now be able to

• Create a twistd plugin

• Incorporate authentication into your plugin

• Use it from your development environment

• Install it correctly and use it in deployment

4.4 Components: Interfaces and Adapters

Object oriented programming languages allow programmers to reuse portions of existing code by creating new
“classes” of objects which subclass another class. When a class subclasses another, it is said toinherit all of its
behaviour. The subclass can then “override” and “extend” the behavior provided to it by the superclass. Inheritance is
very useful in many situations, but because it is so convenient to use, often becomes abused in large software systems,
especially when multiple inheritance is involved. One solution is to usedelegationinstead of “inheritance” where ap-
propriate. Delegation is simply the act of askinganotherobject to perform a task for an object. To support this design
pattern, which is often referred to as thecomponentspattern because it involves many small interacting components,
interfacesandadapterswere created by the Zope 3 team.

“Interfaces” are simply markers which objects can use to say“I implement this interface”. Other objects may
then make requests like “Please give me an object which implements interface X for object type Y”. Objects which
implement an interface for another object type are called “adapters”.

The superclass-subclass relationship is said to be anis-a relationship. When designing object hierarchies, object
modellers use subclassing when they can say that the subclass is the same class as the superclass. For example:

CHAPTER 4. HIGH-LEVEL TWISTED 148

class Shape:
sideLength = 0
def getSideLength(self):

return self.sideLength

def setSideLength(self, sideLength):
self.sideLength = sideLength

def area(self):
raise NotImplementedError, "Subclasses must implement ar ea"

class Triangle(Shape):
def area(self):

return (self.sideLength * self.sideLength) / 2

class Square(Shape):
def area(self):

return self.sideLength * self.sideLength

In the above example, a Triangleis-a Shape, so it subclasses Shape, and a Squareis-a Shape, so it also subclasses
Shape.

However, subclassing can get complicated, especially whenMultiple Inheritance enters the picture. Multiple In-
heritance allows a class to inherit from more than one base class. Software which relies heavily on inheritance often
ends up having both very wide and very deep inheritance trees, meaning that one class inherits from many superclasses
spread throughout the system. Since subclassing with Multiple Inheritance meansimplementation inheritance, locat-
ing a method’s actual implementation and ensuring the correct method is actually being invoked becomes a challenge.
For example:

class Area:
sideLength = 0
def getSideLength(self):

return self.sideLength

def setSideLength(self, sideLength):
self.sideLength = sideLength

def area(self):
raise NotImplementedError, "Subclasses must implement ar ea"

class Color:
color = None
def setColor(self, color):

self.color = color

def getColor(self):
return self.color

class Square(Area, Color):
def area(self):

return self.sideLength * self.sideLength

The reason programmers like using implementation inheritance is because it makes code easier to read since the
implementation details of Area are in a separate place than the implementation details of Color. This is nice, because
conceivably an object could have a color but not an area, or anarea but not a color. The problem, though, is that Square
is not really an Area or a Color, but has an area and color. Thus, we should really be using another object oriented
technique calledcomposition, which relies on delegation rather than inheritance to break code into small reusable
chunks. Let us continue with the Multiple Inheritance example, though, because it is often used in practice.

What if both the Color and the Area base class defined the same method, perhapscalculate ? Where would
the implementation come from? The implementation that is located forSquare().calculate() depends on

CHAPTER 4. HIGH-LEVEL TWISTED 149

the method resolution order, or MRO, and can change when programmers change seemingly unrelated things by
refactoring classes in other parts of the system, causing obscure bugs. Our first thought might be to change the calculate
method name to avoid name clashes, to perhapscalculateArea andcalculateColor . While explicit, this
change could potentially require a large number of changes throughout a system, and is error-prone, especially when
attempting to integrate two systems which you didn’t write.

Let’s imagine another example. We have an electric appliance, say a hair dryer. The hair dryer is american voltage.
We have two electric sockets, one of them an american 110 Voltsocket, and one of them a foreign 220 Volt socket.
If we plug the hair dryer into the 220 Volt socket, it is going to expect 110 Volt current and errors will result. Going
back and changing the hair dryer to support bothplug110Volt andplug220Volt methods would be tedious,
and what if we decided we needed to plug the hair dryer into yetanother type of socket? For example:

class HairDryer:
def plug(self, socket):

if socket.voltage() == 110:
print "I was plugged in properly and am operating."

else:
print "I was plugged in improperly and "
print "now you have no hair dryer any more."

class AmericanSocket:
def voltage(self):

return 110

class ForeignSocket:
def voltage(self):

return 220

Given these classes, the following operations can be performed:

>>> hd = HairDryer()
>>> am = AmericanSocket()
>>> hd.plug(am)
I was plugged in properly and am operating.
>>> fs = ForeignSocket()
>>> hd.plug(fs)
I was plugged in improperly and
now you have no hair dryer any more.

We are going to attempt to solve this problem by writing an Adapter for theForeignSocket which converts
the voltage for use with an American hair dryer. An Adapter isa class which is constructed with one and only one
argument, the “adaptee” or “original” object. In this example, we will show all code involved for clarity:

class AdaptToAmericanSocket:
def __init__(self, original):

self.original = original

def voltage(self):
return self.original.voltage() / 2

Now, we can use it as so:

>>> hd = HairDryer()
>>> fs = ForeignSocket()
>>> adapted = AdaptToAmericanSocket(fs)
>>> hd.plug(adapted)
I was plugged in properly and am operating.

So, as you can see, an adapter can ’override’ the original implementation. It can also ’extend’ the interface of the
original object by providing methods the original object did not have. Note that an Adapter must explicitly delegate
any method calls it does not wish to modify to the original, otherwise the Adapter cannot be used in places where
the original is expected. Usually this is not a problem, as anAdapter is created to conform an object to a particular
interface and then discarded.

CHAPTER 4. HIGH-LEVEL TWISTED 150

4.4.1 Interfaces and Components in Twisted code

Adapters are a useful way of using multiple classes to factorcode into discrete chunks. However, they are not very
interesting without some more infrastructure. If each piece of code which wished to use an adapted object had to
explicitly construct the adapter itself, the coupling between components would be too tight. We would like to achieve
“loose coupling”, and this is wheretwisted.python.components comes in.

First, we need to discuss Interfaces in more detail. As we mentioned earlier, an Interface is nothing more than a
class which is used as a marker. Interfaces should be subclasses ofzope.interface.Interface , and have a
very odd look to python programmers not used to them:

from zope.interface import Interface

class IAmericanSocket(Interface):
def voltage():

"""Return the voltage produced by this socket object, as an i nteger.
"""

Notice how it looks just like a regular class definition, other than inheriting fromInterface ? However, the
method definitions inside the class block do not have any method body! Since Python does not have any native
language-level support for Interfaces like Java does, thisis what distinguishes an Interface definition from a Class.

Now that we have a defined Interface, we can talk about objectsusing terms like this: “TheAmericanSocket
class implements theIAmericanSocket interface” and “Please give me an object which adaptsForeignSocket
to theIAmericanSocket interface”. We can makedeclarationsabout what interfaces a certain class implements,
and we can request adapters which implement a certain interface for a specific class.

Let’s look at how we declare that a class implements an interface:

from zope.interface import implements

class AmericanSocket:

implements(IAmericanSocket)

def voltage(self):
return 110

So, to declare that a class implements an interface, we simply call zope.interface.implements at the
class level.

Now, let’s say we want to rewrite theAdaptToAmericanSocket class as a real adapter. In this case we also
specify it as implementingIAmericanSocket :

from zope.interface import implements

class AdaptToAmericanSocket:

implements(IAmericanSocket)

def __init__(self, original):
"""
Pass the original ForeignSocket object as original
"""
self.original = original

def voltage(self):
return self.original.voltage() / 2

Notice how we placed the implements declaration on this adapter class. So far, we have not achieved anything by
using components other than requiring us to type more. In order for components to be useful, we must use thecom-
ponent registry. SinceAdaptToAmericanSocket implementsIAmericanSocket and regulates the voltage of
aForeignSocket object, we canregisterAdaptToAmericanSocket as anIAmericanSocket adapter for
theForeignSocket class. It is easier to see how this is done in code than to describe it:

CHAPTER 4. HIGH-LEVEL TWISTED 151

from zope.interface import Interface, implements
from twisted.python import components

class IAmericanSocket(Interface):
def voltage():

"""Return the voltage produced by this socket object, as an i nteger.
"""

class AmericanSocket:
implements(IAmericanSocket)

def voltage(self):
return 110

class ForeignSocket:
def voltage(self):

return 220

class AdaptToAmericanSocket:

implements(IAmericanSocket)

def __init__(self, original):
self.original = original

def voltage(self):
return self.original.voltage() / 2

components.registerAdapter(
AdaptToAmericanSocket,
ForeignSocket,
IAmericanSocket)

Now, if we run this script in the interactive interpreter, wecan discover a little more about how to use components.
The first thing we can do is discover whether an object implements an interface or not:

>>> IAmericanSocket.implementedBy(AmericanSocket)
True
>>> IAmericanSocket.implementedBy(ForeignSocket)
False
>>> as = AmericanSocket()
>>> fs = ForeignSocket()
>>> IAmericanSocket.providedBy(as)
True
>>> IAmericanSocket.providedBy(fs)
False

As you can see, theAmericanSocket instance claims to implementIAmericanSocket , but theForeign
Socket does not. If we wanted to use theHairDryer with theAmericanSocket , we could know that it would
be safe to do so by checking whether it implementsIAmericanSocket . However, if we decide we want to use
HairDryer with aForeignSocket instance, we mustadaptit to IAmericanSocket before doing so. We use
the interface object to do this:

>>> IAmericanSocket(fs)
<__main__.AdaptToAmericanSocket instance at 0x1a5120>

When calling an interface with an object as an argument, the interface looks in the adapter registry for an adapter
which implements the interface for the given instance’s class. If it finds one, it constructs an instance of the Adapter
class, passing the constructor the original instance, and returns it. Now theHairDryer can safely be used with

CHAPTER 4. HIGH-LEVEL TWISTED 152

the adaptedForeignSocket . But what happens if we attempt to adapt an object which already implements
IAmericanSocket ? We simply get back the original instance:

>>> IAmericanSocket(as)
<__main__.AmericanSocket instance at 0x36bff0>

So, we could write a new “smart”HairDryer which automatically looked up an adapter for the socket you tried
to plug it into:

class HairDryer:
def plug(self, socket):

adapted = IAmericanSocket(socket)
assert adapted.voltage() == 110, "BOOM"
print "I was plugged in properly and am operating"

Now, if we create an instance of our new “smart”HairDryer and attempt to plug it in to various sockets, the
HairDryer will adapt itself automatically depending on the type of socket it is plugged in to:

>>> as = AmericanSocket()
>>> fs = ForeignSocket()
>>> hd = HairDryer()
>>> hd.plug(as)
I was plugged in properly and am operating
>>> hd.plug(fs)
I was plugged in properly and am operating

Voila; the magic of components.

Components and Inheritance

If you inherit from a class which implements some interface,and your new subclass declares that it implements another
interface, the implements will be inherited by default.

For example,pb.Root (actually defined inflavors.Root) is a class which implementsIPBRoot . This
interface indicates that an object has remotely-invokablemethods and can be used as the initial object served by a new
Broker instance. It has animplements setting like:

from zope.interface import implements

class Root(Referenceable):
implements(IPBRoot)

Suppose you have your own class which implements yourIMyInterface interface:

from zope.interface import implements, Interface

class IMyInterface(Interface):
pass

class MyThing:
implements(IMyInterface)

Now if you want to make this class inherit frompb.Root , the interfaces code will automatically determine that
it also implementsIPBRoot :

from twisted.spread import pb
from zope.interface import implements, Interface

class IMyInterface(Interface):
pass

class MyThing(pb.Root):
implements(IMyInterface)

CHAPTER 4. HIGH-LEVEL TWISTED 153

>>> from twisted.spread.flavors import IPBRoot
>>> IPBRoot.implementedBy(MyThing)
True

If you want MyThing to inherit from pb.Root but not implement IPBRoot like pb.Root does, use
implementOnly :

from twisted.spread import pb
from zope.interface import implementsOnly, Interface

class IMyInterface(Interface):
pass

class MyThing(pb.Root):
implementsOnly(IMyInterface)

>>> from twisted.spread.flavors import IPBRoot
>>> IPBRoot.implementedBy(MyThing)
False

4.5 Cred: Pluggable Authentication

4.5.1 Goals

Cred is a pluggable authentication system for servers. It allows any number of network protocols to connect and
authenticate to a system, and communicate to those aspects of the system which are meaningful to the specific protocol.
For example, Twisted’s POP3 support passes a “username and password” set of credentials to get back a mailbox for
the specified email account. IMAP does the same, but retrieves a slightly different view of the same mailbox, enabling
those features specific to IMAP which are not available in other mail protocols.

Cred is designed to allow both the backend implementation ofthe business logic - called theavatar - and the
authentication database - called thecredential checker- to be decided during deployment. For example, the same
POP3 server should be able to authenticate against the localUNIX password database or an LDAP server without
having to know anything about how or where mail is stored.

To sketch out how this works - a “Realm” corresponds to an application domain and is in charge of avatars, which
are network-accessible business logic objects. To connectthis to an authentication database, a top-level object called a
Portal stores a realm, and a number of credential checkers. Something that wishes to log in, such as aProtocol ,
stores a reference to the portal. Login consists of passing credentials and a request interface (e.g. POP3’sIMailbox)
to the portal. The portal passes the credentials to the appropriate credential checker, which returns an avatar ID. The ID
is passed to the realm, which returns the appropriate avatar. For a Portal that has a realm that creates mailbox objects
and a credential checker that checks /etc/passwd, login consists of passing in a username/password and the IMailbox
interface to the portal. The portal passes this to the /etc/passwd credential checker, gets back a avatar ID corresponding
to an email account, passes that to the realm and gets back a mailbox object for that email account.

Putting all this together, here’s how a login request will typically be processed:

CHAPTER 4. HIGH-LEVEL TWISTED 154

4.5.2 Cred objects

The Portal

This is the the core of login, the point of integration between all the objects in the cred system. There is one concrete
implementation of Portal, and no interface - it does a very simple task. APortal associates one (1) Realm with a
collection of CredentialChecker instances. (More on thoselater.)

If you are writing a protocol that needs to authenticate against something, you will need a reference to a Portal,
and to nothing else. This has only 2 methods -

• login(credentials, mind, * interfaces)

The docstring is quite expansive (seetwisted.cred.portal), but in brief, this is what you call when you
need to call in order to connect a user to the system. Typically you only pass in one interface, and the mind
is None. The interfaces are the possible interfaces the returned avatar is expected to implement, in order of
preference. The result is a deferred which fires a tuple of:

– interface the avatar implements (which was one of the interfaces passed in the *interfaces tuple)

– an object that implements that interface (an avatar)

– logout, a 0-argument callable which disconnects the connection that was established by this call to login

The logout method has to be called when the avatar is logged out. For POP3 this means when the protocol is
disconnected or logged out, etc..

• registerChecker(checker, * credentialInterfaces)

which adds a CredentialChecker to the portal. The optional list of interfaces are interfaces of credentials that the
checker is able to check.

CHAPTER 4. HIGH-LEVEL TWISTED 155

The CredentialChecker

This is an object implementingICredentialsChecker which resolves some Credentials to an avatar ID. Some
examples of CredentialChecker implementations would be: InMemoryUsernamePassword, ApacheStyleHTAccess-
File, UNIXPasswordDatabase, SSHPublicKeyDatabase. A credential checker stipulates some requirements of the
credentials it can check by specifying a credentialInterfaces attribute, which is a list of interfaces. Credentials passed
to its requestAvatarId method must implement one of those interfaces.

For the most part, these things will just check usernames andpasswords and produce the username as the result, but
hopefully we will be seeing some public-key, challenge-response, and certificate based credential checker mechanisms
soon.

A credential checker should raise an error if it cannot authenticate the user, and returntwisted.cred.
checkers.ANONYMOUS for anonymous access.

The Credentials

Oddly enough, this represents some credentials that the user presents. Usually this will just be a small static blob of
data, but in some cases it will actually be an object connected to a network protocol. For example, a username/password
pair is static, but a challenge/response server is an activestate-machine that will require several method calls in order
to determine a result.

Twisted comes with a number of credentials interfaces and implementations in thetwisted.cred.
credentials module, such asIUsernamePassword andIUsernameHashedPassword .

The Realm

A realm is an interface which connects your universe of “business objects” to the authentication system.
IRealm is another one-method interface:

• requestAvatar(avatarId, mind, * interfaces)

This method will typically be called from ’Portal.login’. The avatarId is the one returned by a CredentialChecker.

Note:Note thatavatarId must always be a string. In particular, do not use unicode strings. If
internationalized support is needed, it is recommended to use UTF-8, and take care of decoding in
the realm.

The important thing to realize about this method is that if itis being called,the user has already authenticated.
Therefore, if possible, the Realm should create a new user ifone does not already exist whenever possible.
Of course, sometimes this will be impossible without more information, and that is the case that the interfaces
argument is for.

Since requestAvatar should be called from a Deferred callback, it may return a Deferred or a synchronous result.

The Avatar

An avatar is a business logic object for a specific user. For POP3, it’s a mailbox, for a first-person-shooter it’s the object
that interacts with the game, the actor as it were. Avatars are specific to an application, and each avatar represents a
single “user”.

The Mind

As mentioned before, the mind is usually None, so you can skipthis bit if you want.
Masters of Perspective Broker already know this object as the ill-named “client object”. There is no “mind” class,

or even interface, but it is an object which serves an important role - any notifications which are to be relayed to an
authenticated client are passed through a ’mind’. In addition, it allows passing more information to the realm during
login in addition to the avatar ID.

The name may seem rather unusual, but considering that a Mindis representative of the entity on the “other end”
of a network connection that is both receiving updates and issuing commands, I believe it is appropriate.

Although many protocols will not use this, it serves an important role. It is provided as an argument both to the
Portal and to the Realm, although a CredentialChecker should interact with a client program exclusively through a
Credentials instance.

CHAPTER 4. HIGH-LEVEL TWISTED 156

Unlike the original Perspective Broker “client object”, a Mind’s implementation is most often dictated by the
protocol that is connecting rather than the Realm. A Realm which requires a particular interface to issue notifications
will need to wrap the Protocol’s mind implementation with anadapter in order to get one that conforms to its expected
interface - however, Perspective Broker will likely continue to use the model where the client object has a pre-specified
remote interface.

(If you don’t quite understand this, it’s fine. It’s hard to explain, and it’s not used in simple usages of cred, so feel
free to pass None until you find yourself requiring somethinglike this.)

4.5.3 Responsibilities

Server protocol implementation

The protocol implementor should define the interface the avatar should implement, and design the protocol to have
a portal attached. When a user logs in using the protocol, a credential object is created, passed to the portal, and an
avatar with the appropriate interface is requested. When theuser logs out or the protocol is disconnected, the avatar
should be logged out.

The protocol designer should not hardcode how users are authenticated or the realm implemented. For example, a
POP3 protocol implementation would require a portal whose realm returns avatars implementing IMailbox and whose
credential checker accepts username/password credentials, but that is all. Here’s a sketch of how the code might look
- note that USER and PASS are the protocol commands used to login, and the DELE command can only be used after
you are logged in:

from zope.interface import Interface

from twisted.protocols import basic
from twisted.python import log
from twisted.cred import credentials, error
from twisted.internet import defer

class IMailbox(Interface):
"""Interface specification for mailbox."""
def deleteMessage(index): pass

class POP3(basic.LineReceiver):
...
def __init__(self, portal):

self.portal = portal

def do_DELE(self, i):
uses self.mbox, which is set after login
i = int(i)-1
self.mbox.deleteMessage(i)
self.successResponse()

def do_USER(self, user):
self._userIs = user
self.successResponse(’USER accepted, send PASS’)

def do_PASS(self, password):
if self._userIs is None:

self.failResponse("USER required before PASS")
return

user = self._userIs
self._userIs = None
d = defer.maybeDeferred(self.authenticateUserPASS, use r, password)
d.addCallback(self._cbMailbox, user)

CHAPTER 4. HIGH-LEVEL TWISTED 157

def authenticateUserPASS(self, user, password):
if self.portal is not None:

return self.portal.login(
cred.credentials.UsernamePassword(user, password),
None,
IMailbox

)
raise error.UnauthorizedLogin()

def _cbMailbox(self, ial, user):
interface, avatar, logout = ial

if interface is not IMailbox:
self.failResponse(’Authentication failed’)
log.err("_cbMailbox() called with an interface other than IMailbox")
return

self.mbox = avatar
self._onLogout = logout
self.successResponse(’Authentication succeeded’)
log.msg("Authenticated login for " + user)

Application implementation

The application developer can implement realms and credential checkers. For example, she might implement a realm
that returns IMailbox implementing avatars, using MySQL for storage, or perhaps a credential checker that uses LDAP
for authentication. In the following example, the Realm fora simple remote object service (using Twisted’s Perspective
Broker protocol) is implemented:

from twisted.spread import pb
from twisted.cred.portal import IRealm

class SimplePerspective(pb.Avatar):

def perspective_echo(self, text):
print ’echoing’,text
return text

def logout(self):
print self, "logged out"

class SimpleRealm:
implements(IRealm)

def requestAvatar(self, avatarId, mind, * interfaces):
if pb.IPerspective in interfaces:

avatar = SimplePerspective()
return pb.IPerspective, avatar, avatar.logout

else:
raise NotImplementedError("no interface")

Deployment

Deployment involves tying together a protocol, an appropriate realm and a credential checker. For example, a POP3
server can be constructed by attaching to it a portal that wraps the MySQL-based realm and an /etc/passwd credential
checker, or perhaps the LDAP credential checker if that is more useful. The following example shows how the
SimpleRealm in the previous example is deployed using an in-memory credential checker:

CHAPTER 4. HIGH-LEVEL TWISTED 158

from twisted.spread import pb
from twisted.internet import reactor
from twisted.cred.portal import Portal
from twisted.cred.checkers import InMemoryUsernamePass wordDatabaseDontUse

portal = Portal(SimpleRealm())
checker = InMemoryUsernamePasswordDatabaseDontUse()
checker.addUser("guest", "password")
portal.registerChecker(checker)
reactor.listenTCP(9986, pb.PBServerFactory(portal))
reactor.run()

4.5.4 Cred plugins

Authentication with cred plugins

Cred offers a plugin architecture for authentication methods. The primary API for this architecture is the command-
line; the plugins are meant to be specified by the end-user when deploying a TAP (twistd plugin).

For more information on writing a twistd plugin and using cred plugins for your application, please refer to the
Writing a twistd plugin(page 144) document.

Building a cred plugin

To build a plugin for cred, you should first define anauthType , a short one-word string that defines your plugin
to the command-line. Once you have this, the convention is tocreate a file namedcred (authtype).py in the
twisted.plugins module path.

Below is an example file structure for an application that defines such a plugin:

• MyApplication/

– setup.py

– myapp/

∗ init .py

∗ cred.py

∗ server.py

– twisted/

∗ init .py

∗ plugins/

· init .py

· credspecial.py

Once you have created this structure within your application, you can create the code for your cred plugin by build-
ing a factory class which implementsICheckerFactory . These factory classes should not consist of a tremendous
amount of code. Most of the real application logic should reside in the cred checker itself. (For help on building those,
scroll up.)

The core purpose of the CheckerFactory is to translate anargstring , which is passed on the command line, into
a suitable set of initialization parameters for a Checker class. In most cases this should be little more than constructing
a dictionary or a tuple of arguments, then passing them alongto a new checker instance.

from twisted import plugin
from twisted.cred import checkers
from zope.interface import implements
from myapp.cred import SpecialChecker

class SpecialCheckerFactory(object):
"""
A checker factory for a specialized (fictional) API.

CHAPTER 4. HIGH-LEVEL TWISTED 159

"""
The class needs to implement both of these interfaces
for the plugin system to find our factory.
implements(checkers.ICheckerFactory, plugin.IPlugin)

This tells AuthOptionsMixin how to find this factory.
authType = "special"

This is a one-line explanation of what arguments, if any,
your particular cred plugin requires at the command-line.
argStringFormat = "A colon-separated key=value list."

This help text can be multiple lines. It will be displayed
when someone uses the "--help-auth-type special" command .
authHelp = """Some help text goes here ..."""

This will be called once per command-line.
def generateChecker(self, argstring=""):

argdict = dict((x.split(’=’) for x in argstring.split(’:’)))
return SpecialChecker(** dict)

We need to instantiate our class for the plugin to work.
theSpecialCheckerFactory = SpecialCheckerFactory()

For more information on how your plugin can be used in your application (and by other application developers),
please see theWriting a twistd plugin(page 144) document.

4.5.5 Conclusion

After reading through this tutorial, you should be able to

• Understand how the cred architecture applies to your application

• Integrate your application with cred’s object model

• Deploy an application that uses cred for authentication

• Allow your users to use command-line authentication plugins

4.6 Using the Twisted Application Framework

4.6.1 Introduction

Audience

The target audience of this document is a Twisted user who wants to deploy a significant amount of Twisted code in
a re-usable, standard and easily configurable fashion. A Twisted user who wishes to use the Application framework
needs to be familiar with developing Twistedservers(page 13) and/orclients(page 17).

Goals

• To introduce the Twisted Application infrastructure.

• To explain how to deploy your Twisted application using.tac files andtwistd

• To outline the existing Twisted services.

CHAPTER 4. HIGH-LEVEL TWISTED 160

4.6.2 Overview

The Twisted Application infrastructure takes care of running and stopping your application. Using this infrastructure
frees you from from having to write a large amount of boilerplate code by hooking your application into existing tools
that manage daemonization, logging,choosing a reactor(page 137) and more.

The major tool that manages Twisted applications is a command-line utility called twistd . twistd is cross
platform, and is the recommended tool for running Twisted applications.

The core component of the Twisted Application infrastructure is thetwisted.application.service.
Application object — an object which represents your application. However, Application doesn’t provide any-
thing that you’d want to manipulate directly. Instead, Application acts as a container of any “Services” (objects imple-
mentingIService) that your application provides. Most of your interaction with the Application infrastructure will
be done through Services.

By “Service”, we mean anything in your application that can be started and stopped. Typical services include
web servers, FTP servers and SSH clients. Your Application object can contain many services, and can even contain
structured heirarchies of Services usingIServiceCollection s.

Here’s a simple example of constructing an Application object which represents an echo server that runs on TCP
port 7001.

from twisted.application import internet, service
from somemodule import EchoFactory

port = 7001
factory = EchoFactory()

this is the important bit
application = service.Application("echo") # create the Ap plication
echoService = internet.TCPServer(port, factory) # create the service
add the service to the application
echoService.setServiceParent(application)

SeeWriting Servers(page 13) for an explanation of EchoFactory.
This example creates a simple heirarchy:

application
|
‘- echoService

More complicated heirarchies of services can be created using IServiceCollection. You will most likely want to do
this to manage Services which are dependent on other Services. For example, a proxying Twisted application might
want its server Service to only start up after the associatedClient service.

4.6.3 Using application

twistd and tac

To handle start-up and configuration of your Twisted application, the Twisted Application infrastructure uses.tac
files. .tac are Python files which configure anApplication object and assign this object to the top-level variable
“application ”.

The following is a simple example of a.tac file:

"""
This is an example .tac file which starts a webserver on port 8 080 and
serves files from the current working directory.

The important part of this, the part that makes it a .tac file, is
the final root-level section, which sets up the object calle d ’application’
which twistd will look for
"""

import os

CHAPTER 4. HIGH-LEVEL TWISTED 161

from twisted.application import service, internet
from twisted.web import static, server

def getWebService():
"""
Return a service suitable for creating an application objec t.

This service is a simple web server that serves files on port 8 080 from
underneath the current working directory.
"""
create a resource to serve static files
fileServer = server.Site(static.File(os.getcwd()))
return internet.TCPServer(8080, fileServer)

this is the core part of any tac file, the creation of the root -level
application object
application = service.Application("Demo application")

attach the service to its parent application
service = getWebService()
service.setServiceParent(application)

Source listing —service.tac

twistd is a program that runs Twisted applications using a.tac file. In its most simple form, it takes a sin-
gle argument-y and a tac file name. For example, you can run the above server with the commandtwistd -y
service.tac .

By default,twistd daemonizes and logs to a file calledtwistd.log . More usually, when debugging, you will
want your application to run in the foreground and log to the command line. To run the above file like this, use the
commandtwistd -noy service.tac

For more information, see thetwistd man page.

Services provided by Twisted

Twisted provides several services that you want to know about.
Each of these services (except TimerService) has a corresponding “connect” or “listen” method on the reactor,

and the constructors for the services take the same arguments as the reactor methods. The “connect” methods are
for clients and the “listen” methods are for servers. For example, TCPServer corresponds to reactor.listenTCP and
TCPClient corresponds to reactor.connectTCP.

TCPServer

TCPClient Services which allow you to make connections and listen for connections on TCP ports.

• listenTCP

• connectTCP

UNIXServer

UNIXClient Services which listen and make connections over UNIX sockets.

• listenUNIX

• connectUNIX

SSLServer

SSLClient Services which allow you to make SSL connections and run SSL servers.

• listenSSL

CHAPTER 4. HIGH-LEVEL TWISTED 162

• connectSSL

UDPServer

UDPClient Services which allow you to send and receive data over UDP

• listenUDP

• connectUDP

See also theUDP documentation(page 91).

UNIXDatagramServer

UNIXDatagramClient Services which send and receive data over UNIX datagram sockets.

• listenUNIXDatagram

• connectUNIXDatagram

MulticastServer A server for UDP socket methods that support multicast.

• listenMulticast

TimerService A service to periodically call a function.

Service Collection

IServiceCollection objects containIService objects. IService objects can be added to IServiceCollection
by callingsetServiceParent and detached by usingdisownServiceParent .

The standard implementation of IServiceCollection isMultiService , which also implements IService. Multi-
Service is useful for creating a new Service which combines two or more existing Services. For example, you could
create a DNS Service as a MultiService which has a TCP and a UDPService as children.

from twisted.application import internet, service
from twisted.names import server, dns, hosts

port = 53

Create a MultiService, and hook up a TCPServer and a UDPServ er to it as
children.
dnsService = service.MultiService()
hostsResolver = hosts.Resolver(’/etc/hosts’)
tcpFactory = server.DNSServerFactory([hostsResolver])
internet.TCPServer(port, tcpFactory).setServiceParen t(dnsService)
udpFactory = dns.DNSDatagramProtocol(tcpFactory)
internet.UDPServer(port, udpFactory).setServiceParen t(dnsService)

Create an application as normal
application = service.Application("DNSExample")

Connect our MultiService to the application, just like a no rmal service.
dnsService.setServiceParent(application)

Chapter 5

Utilities

5.1 Using usage.Options

5.1.1 Introduction

There is frequently a need for programs to parse a UNIX-like command line program: options preceded by- or -- ,
sometimes followed by a parameter, followed by a list of arguments. Thetwisted.python.usage provides a
class,Options , to facilitate such parsing.

While Python has thegetopt module for doing this, it provides a very low level of abstraction for options.
Twisted has a higher level of abstraction, in the classtwisted.python.usage.Options . It uses Python’s
reflection facilities to provide an easy to use yet flexible interface to the command line. While most command line
processors either force the application writer to write herown loops, or have arbitrary limitations on the command line
(the most common one being not being able to have more then oneinstance of a specific option, thus rendering the
idiom program -v -v -v impossible), Twisted allows the programmer to decide how much control she wants.

The Options class is used by subclassing. Since a lot of time it will be used in the twisted.tap package,
where the local conventions require the specific options parsing class to also be calledOptions , it is usually imported
with

from twisted.python import usage

5.1.2 Boolean Options

For simple boolean options, define the attributeoptFlags like this:

class Options(usage.Options):

optFlags = [["fast", "f", "Act quickly"], ["safe", "s", "Ac t safely"]]

optFlags should be a list of 3-lists. The first element is the long name,and will be used on the command line
as--fast . The second one is the short name, and will be used on the command line as-f . The last element is a
description of the flag and will be used to generate the usage information text. The long name also determines the
name of the key that will be set on the Options instance. Its value will be 1 if the option was seen, 0 otherwise. Here
is an example for usage:

class Options(usage.Options):

optFlags = [
["fast", "f", "Act quickly"],
["good", "g", "Act well"],
["cheap", "c", "Act cheaply"]

]

command_line = ["-g", "--fast"]

options = Options()

163

CHAPTER 5. UTILITIES 164

try:
options.parseOptions(command_line)

except usage.UsageError, errortext:
print ’%s: %s’ % (sys.argv[0], errortext)
print ’%s: Try --help for usage details.’ % (sys.argv[0])
sys.exit(1)

if options[’fast’]:
print "fast",

if options[’good’]:
print "good",

if options[’cheap’]:
print "cheap",

print

The above will printfast good .
Note here that Options fully supports the mapping interface. You can access it mostly just like you can access any

other dict. Options are stored as mapping items in the Options instance: parameters as ’paramname’: ’value’ and flags
as ’flagname’: 1 or 0.

Inheritance, Or: How I Learned to Stop Worrying and Love the Superclass

Sometimes there is a need for several option processors witha unifying core. Perhaps you want all your commands to
understand-q /--quiet means to be quiet, or something similar. On the face of it, this looks impossible: in Python,
the subclass’soptFlags would shadow the superclass’s. However,usage.Options uses special reflection code
to get all of theoptFlags defined in the hierarchy. So the following:

class BaseOptions(usage.Options):

optFlags = [["quiet", "q", None]]

class SpecificOptions(BaseOptions):

optFlags = [
["fast", "f", None], ["good", "g", None], ["cheap", "c", No ne]

]

Is the same as:

class SpecificOptions(BaseOptions):

optFlags = [
["quiet", "q", "Silence output"],
["fast", "f", "Run quickly"],
["good", "g", "Don’t validate input"],
["cheap", "c", "Use cheap resources"]

]

5.1.3 Parameters

Parameters are specified using the attributeoptParameters . Theymustbe given a default. If you want to make
sure you got the parameter from the command line, give a non-string default. Since the command line only has strings,
this is completely reliable.

Here is an example:

from twisted.python import usage

class Options(usage.Options):

optFlags = [

CHAPTER 5. UTILITIES 165

["fast", "f", "Run quickly"],
["good", "g", "Don’t validate input"],
["cheap", "c", "Use cheap resources"]

]
optParameters = [["user", "u", None, "The user name"]]

config = Options()
try:

config.parseOptions() # When given no argument, parses sys .argv[1:]
except usage.UsageError, errortext:

print ’%s: %s’ % (sys.argv[0], errortext)
print ’%s: Try --help for usage details.’ % (sys.argv[0])
sys.exit(1)

if config[’user’] is not None:
print "Hello", config[’user’]

print "So, you want it:"

if config[’fast’]:
print "fast",

if config[’good’]:
print "good",

if config[’cheap’]:
print "cheap",

print

Like optFlags , optParameters works smoothly with inheritance.

5.1.4 Option Subcommands

It is useful, on occassion, to group a set of options togetherbased on the logical “action” to which they belong. For
this, theusage.Options class allows you to define a set of “subcommands”, each of which can provide its own
usage.Options instance to handle its particular options.

Here is an example for an Options class that might parse options like those the cvs program takes

from twisted.python import usage

class ImportOptions(usage.Options):
optParameters = [

[’module’, ’m’, None, None], [’vendor’, ’v’, None, None],
[’release’, ’r’, None]

]

class CheckoutOptions(usage.Options):
optParameters = [[’module’, ’m’, None, None], [’tag’, ’r’, None, None]]

class Options(usage.Options):
subCommands = [[’import’, None, ImportOptions, "Do an Impo rt"],

[’checkout’, None, CheckoutOptions, "Do a Checkout"]]

optParameters = [
[’compression’, ’z’, 0, ’Use compression’],
[’repository’, ’r’, None, ’Specify an alternate repositor y’]

]

config = Options(); config.parseOptions()
if config.subCommand == ’import’:

doImport(config.subOptions)

CHAPTER 5. UTILITIES 166

elif config.subCommand == ’checkout’:
doCheckout(config.subOptions)

The subCommands attribute ofOptions directs the parser to the two otherOptions subclasses when the
strings"import" or "checkout" are present on the command line. All options after the given command string
are passed to the specified Options subclass for further parsing. Only one subcommand may be specified at a time.
After parsing has completed, the Options instance has two new attributes -subCommand and subOptions -
which hold the command string and the Options instance used to parse the remaining options.

5.1.5 Generic Code For Options

Sometimes, just setting an attribute on the basis of the options is not flexible enough. In those cases, Twisted does not
even attempt to provide abstractions such as “counts” or “lists”, but rathers lets you call your own method, which will
be called whenever the option is encountered.

Here is an example of counting verbosity

from twisted.python import usage

class Options(usage.Options):

def __init__(self):
usage.Options.__init__(self)
self[’verbosity’] = 0 # default

def opt_verbose(self):
self[’verbosity’] = self[’verbosity’]+1

def opt_quiet(self):
self[’verbosity’] = self[’verbosity’]-1

opt_v = opt_verbose
opt_q = opt_quiet

Command lines that look likecommand -v -v -v -v will increase verbosity to 4, whilecommand -q -q
-q will decrease verbosity to -3.

The usage.Options class knows that these are parameter-less options, since the methods do not receive an
argument. Here is an example for a method with a parameter:

from twisted.python import usage

class Options(usage.Options):

def __init__(self):
usage.Options.__init__(self)
self[’symbols’] = []

def opt_define(self, symbol):
self[’symbols’].append(symbol)

opt_D = opt_define

This example is useful for the common idiom of havingcommand -DFOO -DBARto define symbols.

5.1.6 Parsing Arguments

usage.Options does not stop helping when the last parameter is gone. All theother arguments are sent into a
function which should deal with them. Here is an example for acmp like command.

CHAPTER 5. UTILITIES 167

from twisted.python import usage

class Options(usage.Options):

optParameters = [["max_differences", "d", 1, None]]

def parseArgs(self, origin, changed):
self[’origin’] = origin
self[’changed’] = changed

The command should look likecommand origin changed .
If you want to have a variable number of left-over arguments,just usedef parseArgs(self, * args): .

This is useful for commands like the UNIXcat(1) .

5.1.7 Post Processing

Sometimes, you want to perform post processing of options topatch up inconsistencies, and the like. Here is an
example:

from twisted.python import usage

class Options(usage.Options):

optFlags = [
["fast", "f", "Run quickly"],
["good", "g", "Don’t validate input"],
["cheap", "c", "Use cheap resources"]

]

def postOptions(self):
if self[’fast’] and self[’good’] and self[’cheap’]:

raise usage.UsageError, "can’t have it all, brother"

5.1.8 Type enforcement

By default, all options are handled as strings. You may want to enforce the type of your option in some specific case,
the classic example being port number. Any callable can be specified in the fifth row ofoptParameters and will
be called with the string value passed in parameter.

from twisted.python import usage

class Options(usage.Options):
optParameters = [["shiny_integer", "s", 1, None, int]]
optParameters = [["dummy_float", "d", 3.14159, None, floa t]]

Note that default values are not coerced, so you should either declare it with the good type (as above) or handle it
when you use your options.

The coerce function may have a coerceDoc attribute, the content of which will be printed after the documentation
of the option. It’s particularly useful for reusing the function at multiple places.

def oneTwoThree(val):
val = int(val)
if val not in range(1, 4):

raise ValueError("Not in range")
return val

oneTwoThree.coerceDoc = "Must be 1, 2 or 3."

from twisted.python import usage

CHAPTER 5. UTILITIES 168

class Options(usage.Options):
optParameters = [["one_choice", "o", 1, None, oneTwoThree]]

This example code will print the following help when added toyour program:

$ python myprogram.py --help
Usage: myprogram [options]
Options:

-o, --one_choice= [default: 0]. Must be 1, 2 or 3.

5.2 Logging with twisted.python.log

5.2.1 Basic usage

Twisted provides a simple and flexible logging system in thetwisted.python.log module. It has three com-
monly used functions:

msg Logs a new message. For example:

from twisted.python import log
log.msg(’Hello, world.’)

err Writes a failure to the log, including traceback information(if any). You can pass it aFailure or Exception
instance, or nothing. If you pass something else, it will be converted to a string withrepr and logged. If you
pass nothing, it will construct a Failure from the currentlyactive exception, which makes it convenient to use in
anexcept clause:

try:
x = 1 / 0

except:
log.err() # will log the ZeroDivisionError

startLogging Starts logging to a given file-like object. For example:

log.startLogging(open(’/var/log/foo.log’, ’w’))

or:

log.startLogging(sys.stdout)

By default,startLogging will also redirect anything written tosys.stdout andsys.stderr to the
log. You can disable this by passingsetStdout=False to startLogging .

BeforestartLogging is called, log messages will be discarded and errors will be written to stderr.

Logging and twistd

If you are usingtwistd to run your daemon, it will take care of callingstartLogging for you, and will also
rotate log files. Seetwistd and tac(page 160) and thetwistd man page for details of using twistd.

Log files

Thetwisted.python.logfile module provides some standard classes suitable for use withstartLogging ,
such asDailyLogFile , which will rotate the log to a new file once per day.

CHAPTER 5. UTILITIES 169

Using the Python logging module

If your application uses the logging module or you want to useits ease of configuration but don’t want to lose twisted-
produced messages, the observerPythonLoggingObserver should be useful to you

You just start it like any other observers:

observer = log.PythonLoggingObserver()
observer.start()

And then you’ll just have to configure logging to do what you want: logging documentation1.
This method allows you to customize the log level received bythe logging module using thelogLevel keyword:

log.msg("This is important!", logLevel=logging.CRITICA L)
log.msg("Don’t mind", logLevel=logging.DEBUG)

Unless logLevel is provided, logging.INFO is used forlog.msg and logging.ERROR is used forlog.err .
One special care should be made when you use special configuration of the python logging module: some handlers

(e.g. SMTP, HTTP) uses network so can block inside the reactor loop. Nothingin the bridge is done to prevent that.

5.2.2 Writing log observers

Log observers are the basis of the Twisted logging system. Anexample of a log observer in Twisted is theFileLog
Observer used bystartLogging that writes events to a log file. A log observer is just a callable that accepts a
dictionary as its only argument. You can then register it to receive all log events (in addition to any other observers):

twisted.python.log.addObserver(yourCallable)

The dictionary will have at least two items:

messageThe message (a list, usually of strings) for this log event, as passed tolog.msg or the message in the failure
passed tolog.err .

isError This is a boolean that will be true if this event came from a call to log.err . If this is set, there may be a
failure item in the dictionary as will, with a Failure object in it.

Other items the built in logging functionality may add include:

printed This message was captured fromsys.stdout , i.e. this message came from aprint statement. Ifis
Error is also true, it came fromsys.stderr .

You can pass additional items to the event dictionary by passing keyword arguments tolog.msg andlog.err .
The standard log observers will ignore dictionary items they don’t use.

Important notes:

• Never raise an exception from a log observer. If your log observer raises an exception, it will be removed.

• Never block in a log observer, as it may run in main Twisted thread. This means you can’t use socket or syslog
Python-logging backends.

• The observer needs to be thread safe if you anticipate using threads in your program.

5.3 DirDBM: Directory-based Storage

5.3.1 dirdbm.DirDBM

twisted.persisted.dirdbm.DirDBM is a DBM-like storage system. That is, it stores mappings between keys
and values, like a Python dictionary, except that it stores the values in files in a directory - each entry is a different file.
The keys must always be strings, as are the values. Other thanthat,DirDBM objects act just like Python dictionaries.

DirDBM is useful for cases when you want to store small amounts of data in an organized fashion, without having
to deal with the complexity of a RDBMS or other sophisticateddatabase. It is simple, easy to use, cross-platform, and
doesn’t require any external C libraries, unlike Python’s built-in DBM modules.

1http://docs.python.org/lib/module-logging.html

CHAPTER 5. UTILITIES 170

>>> from twisted.persisted import dirdbm
>>> d = dirdbm.DirDBM("/tmp/dir")
>>> d["librarian"] = "ook"
>>> d["librarian"]
’ook’
>>> d.keys()
[’librarian’]
>>> del d["librarian"]
>>> d.items()
[]

5.3.2 dirdbm.Shelf

Sometimes it is neccessary to persist more complicated objects than strings. With some care,dirdbm.Shelf can
transparently persist them.Shelf works exactly likeDirDBM , except that the values (but not the keys) can be
arbitrary picklable objects. However, notice that mutating an object after it has been stored in theShelf has no effect
on the Shelf. When mutating objects, it is neccessary to explictly store them back in theShelf afterwards:

>>> from twisted.persisted import dirdbm
>>> d = dirdbm.Shelf("/tmp/dir2")
>>> d["key"] = [1, 2]
>>> d["key"]
[1, 2]
>>> l = d["key"]
>>> l.append(3)
>>> d["key"]
[1, 2]
>>> d["key"] = l
>>> d["key"]
[1, 2, 3]

5.4 Using telnet to manipulate a twisted server

To start things off, we’re going to create a simple server that just gives you remote access to a Python interpreter. We
will use a telnet client to access this server.

Runmktap telnet -p 4040 -u admin -w admin at your shell prompt. If you list the contents of your
current directory, you’ll notice a new file –telnet.tap . After you do this, runtwistd -f telnet.tap . Since
the Application has a telnet server that you specified to be onport 4040, it will start listening for connections on this
port. Try connecting with your favorite telnet utility to 127.0.0.1 port 4040.

$ telnet localhost 4040
Trying 127.0.0.1...
Connected to localhost.
Escape character is ’ˆ]’.

twisted.manhole.telnet.ShellFactory
Twisted 1.1.0
username: admin
password: admin
>>>

Now, you should see a Python prompt –>>>. You can type any valid Python code here. Let’s try looking around.

>>> dir()
[’__builtins__’]

Ok, not much. let’s play a little more:

CHAPTER 5. UTILITIES 171

>>> import __main__
>>> dir(__main__)
[’__builtins__’, ’__doc__’, ’__name__’, ’os’, ’run’, ’st ring’, ’sys’]

>>> service
<twisted.application.internet.TCPServer instance at 0x 10270f48>
>>> service._port
<twisted.manhole.telnet.ShellFactory on 4040>
>>> service.parent
<twisted.application.service.MultiService instance at 0x1024d7a8>

The service object is the service used to serve the telnet shell, and that it is listening on port 4040 with something
called aShellFactory . Its parent is atwisted.application.service.MultiService , a collection of
services. We can keep getting the parent attribute of services until we hit the root of all services in this tap.

As you can see, this is quite useful - we can introspect a running process, see the internal objects, and even change
their attributes. We can add telnet support to existing tap like so: mktap --append=foo.tap telnet -p
4040 -u user -w pass . The telnet server can of coursed be used from straight Python code as well. You can
see how to do this by reading the code fortwisted.tap.telnet .

A final note - if you want access to be more secure, you can even have the telnet server use SSL. Assuming you have
the appropriate certificate and private key files, you canmktap telnet -p ssl:443:privateKey=mykey.
pem:certKey=cert.pem -u admin -w admin . Seetwisted.application.strports for more ex-
amples of options for listening on a port.

5.5 Writing tests for Twisted code

5.5.1 Trial basics

Trial is Twisted’s testing framework. It provides a library for writing test cases and utility functions for working with
the Twisted environment in your tests, and a command-line utility for running your tests. Trial is built on the Python
standard library’sunittest module.

To run all the Twisted tests, do:

$ trial twisted

Refer to the Trial man page for other command-line options.

5.5.2 Twisted-specific quirks: reactor, Deferreds, callLater

The standard Pythonunittest framework, from which Trial is derived, is ideal for testingcode with a fairly linear
flow of control. Twisted is an asynchronous networking framework which provides a clean, sensible way to establish
functions that are run in response to events (like timers andincoming data), which creates a highly non-linear flow of
control. Trial has a few extensions which help to test this kind of code. This section provides some hints on how to
use these extensions and how to best structure your tests.

Leave the Reactor as you found it

Trial runs the entire test suite (over two thousand tests) ina single process, with a single reactor. Therefore it is
important that your test leave the reactor in the same state as it found it. Leftover timers may expire during somebody
else’s unsuspecting test. Leftover connection attempts may complete (and fail) during a later test. These lead to
intermittent failures that wander from test to test and are very time-consuming to track down.

Your test is responsible for cleaning up after itself. ThetearDown method is an ideal place for this cleanup code:
it is always run regardless of whether your test passes or fails (like a bareexcept clause in a try-except construct).
Exceptions intearDown are flagged as errors and flunk the test.

If your code uses Deferreds or depends on the reactor running, you can return a Deferred from your test method,
setUp, or tearDown and Trial will do the right thing. That is,it will run the reactor for you until the Deferred
has triggered and its callbacks have been run. Don’t usereactor.run() , reactor.stop() , or reactor.
iterate() in your tests.

CHAPTER 5. UTILITIES 172

Calls to reactor.callLater createIDelayedCall s. These need to be run or cancelled during a test,
otherwise they will outlive the test. This would be bad, because they could interfere with a later test, causing confusing
failures in unrelated tests! For this reason, Trial checks the reactor to make sure there are no leftoverIDelayed
Call s in the reactor after a test, and will fail the test if there are. The cleanest and simplest way to make sure this all
works is to return a Deferred from your test.

Similarly, sockets created during a test should be closed bythe end of the test. This applies to both listening ports
and client connections. So, calls toreactor.listenTCP (and listenUNIX , and so on) returnIListening
Port s, and these should be cleaned up before a test ends by callingtheir stopListening method. Calls
to reactor.connectTCP return IConnector s, which should be cleaned up by calling theirdisconnect
method. Trial will warn about unclosed sockets.

The golden rule is: If your tests call a function which returns a Deferred, your test should return a Deferred.

Using Timers to Detect Failing Tests

It is common for tests to establish some kind of fail-safe timeout that will terminate the test in case something unex-
pected has happened and none of the normal test-failure paths are followed. This timeout puts an upper bound on the
time that a test can consume, and prevents the entire test suite from stalling because of a single test. This is especially
important for the Twisted test suite, because it is run automatically by the buildbot whenever changes are committed
to the Subversion repository.

The way to do this in Trial is to set the.timeout attribute on your unit test method. Set the attribute to the
number of seconds you wish to elapse before the test raises a timeout error.

Chapter 6

Twisted RDBMS support

6.1 twisted.enterprise.adbapi: Twisted RDBMS support

6.1.1 Abstract

Twisted is an asynchronous networking framework, but most database API implementations unfortunately have block-
ing interfaces – for this reason,twisted.enterprise.adbapi was created. It is a non-blocking interface to the
standardized DB-API 2.0 API, which allows you to access a number of different RDBMSes.

6.1.2 What you should already know

• Python :-)

• How to write a simple Twisted Server (seethis tutorial (page 13) to learn how)

• Familiarity with using database interfaces (see the documentation for DBAPI 2.01 or this article2 by Andrew
Kuchling)

6.1.3 Quick Overview

Twisted is an asynchronous framework. This means standard database modules cannot be used directly, as they
typically work something like:

Create connection...
db = dbmodule.connect(’mydb’, ’andrew’, ’password’)
...which blocks for an unknown amount of time

Create a cursor
cursor = db.cursor()

Do a query...
resultset = cursor.query(’SELECT * FROM table WHERE ...’)
...which could take a long time, perhaps even minutes.

Those delays are unacceptable when using an asynchronous framework such as Twisted. For this reason, twisted
providestwisted.enterprise.adbapi , an asynchronous wrapper for any DB-API 2.03-compliant module.

enterprise.adbapi will do blocking database operations in seperate threads, which trigger callbacks in the
originating thread when they complete. In the meantime, theoriginal thread can continue doing normal work, like
servicing other requests.

1http://www.python.org/topics/database/DatabaseAPI-2.0.html
2http://www.amk.ca/python/writing/DB-API.html
3http://www.python.org/topics/database/DatabaseAPI-2.0.html

173

CHAPTER 6. TWISTED RDBMS SUPPORT 174

6.1.4 How do I use adbapi?

Rather than creating a database connection directly, use theadbapi.ConnectionPool class to manage a connec-
tions for you. This allowsenterprise.adbapi to use multiple connections, one per thread. This is easy:

Using the "dbmodule" from the previous example, create a Co nnectionPool
from twisted.enterprise import adbapi
dbpool = adbapi.ConnectionPool("dbmodule", ’mydb’, ’and rew’, ’password’)

Things to note about doing this:

• There is no need to import dbmodule directly. You just pass the name toadbapi.ConnectionPool ’s
constructor.

• The parameters you would pass to dbmodule.connect are passed as extra arguments toadbapi.Connection
Pool ’s constructor. Keyword parameters work as well.

Now we can do a database query:

equivalent of cursor.execute(statement), return cursor .fetchall():
def getAge(user):

return dbpool.runQuery("SELECT age FROM users WHERE name = ?", user)

def printResult(l):
if l:

print l[0][0], "years old"
else:

print "No such user"

getAge("joe").addCallback(printResult)

This is straightforward, except perhaps for the return value of getAge . It returns atwisted.internet.
defer.Deferred , which allows arbitrary callbacks to be called upon completion (or upon failure). More docu-
mentation on Deferred is availablehere(page 100).

In addition to runQuery , there is alsorunOperation , and runInteraction that gets called with a
callable (e.g. a function). The function will be called in the thread with atwisted.enterprise.adbapi.
Transaction , which basically mimics a DB-API cursor. In all cases a database transaction will be commited after
your database usage is finished, unless an exception is raised in which case it will be rolled back.

def _getAge(txn, user):
this will run in a thread, we can use blocking calls
txn.execute("SELECT * FROM foo")
... other cursor commands called on txn ...
txn.execute("SELECT age FROM users WHERE name = ?", user)
result = txn.fetchall()
if result:

return result[0][0]
else:

return None

def getAge(user):
return dbpool.runInteraction(_getAge, user)

def printResult(age):
if age != None:

print age, "years old"
else:

print "No such user"

getAge("joe").addCallback(printResult)

CHAPTER 6. TWISTED RDBMS SUPPORT 175

Also worth noting is that these examples assumes that dbmodule uses the “qmarks” paramstyle (see the DB-API
specification). If your dbmodule uses a different paramstyle (e.g. pyformat) then use that. Twisted doesn’t attempt to
offer any sort of magic paramater munging –runQuery(query, params, ...) maps directly ontocursor.
execute(query, params, ...) .

6.1.5 Examples of various database adapters

Notice that the first argument is the module name you would usually import and getconnect(...) from, and that
following arguments are whatever arguments you’d callconnect(...) with.

from twisted.enterprise import adbapi

Gadfly
cp = adbapi.ConnectionPool("gadfly", "test", "/tmp/gadf lyDB")

PostgreSQL PyPgSQL
cp = adbapi.ConnectionPool("pyPgSQL.PgSQL", database=" test")

MySQL
cp = adbapi.ConnectionPool("MySQLdb", db="test")

6.1.6 And that’s it!

That’s all you need to know to use a database from within Twisted. You probably should read the adbapi module’s
documentation to get an idea of the other functions it has, but hopefully this document presents the core ideas.

6.2 Twisted Enterprise Row Objects

Note:
Due to lack of maintenance,twisted.enterprise.row and twisted.enterprise.

reflector have been deprecated since Twisted 8.0.
This documentation is maintained only for users with an existing codebase.

The twisted.enterprise.row module is a method of interfacing simple python objects withrows in rela-
tional database tables. It has two components: theRowObject class which developers sub-class for each relational
table that their code interacts with, and theReflector which is responsible for updates, inserts, queries and deletes
against the database.

The row module is intended for applications such as on-line games, and websites that require a back-end database
interface. It is not a full functioned object-relational mapper for python - it deals best with simple data types structured
in ways that can be easily represented in a relational database. It is well suited to building a python interface to an
existing relational database, and slightly less suited to added database persistance to an existing python application.

If row does not fit your model, you will be best off using the low-level database API (page 173) directly, or writing
your own object/relational layer on top of it.

6.2.1 Class Definitions

To interface to relational database tables, the developer must create a class derived from thetwisted.
enterprise.row.RowObject class for each table. These derived classes must define a number of class at-
tributes which contains information about the database table that class corresponds to. The required class attributes
are:

• rowColumns - list of the column names and types in the table with the correct case

• rowKeyColumns - list of key columns in form:[(columnName, typeName)]

• rowTableName - the name of the database table

There are also two optional class attributes that can be specified:

CHAPTER 6. TWISTED RDBMS SUPPORT 176

• rowForeignKeys - list of foreign keys to other database tables in the form: [(tableName, [(child
ColumnName, childColumnType), ...], [(parentColumnName , parentColumnType),
...], containerMethodName, autoLoad]

• rowFactoryMethod - a method that creates instances of this class

For example:

class RoomRow(row.RowObject):
rowColumns = [("roomId", "int"),

("town_id", "int"),
("name", "varchar"),
("owner", "varchar"),
("posx", "int"),
("posy", "int"),
("width", "int"),
("height", "int")]

rowKeyColumns = [("roomId", "int4")]
rowTableName = "testrooms"
rowFactoryMethod = [testRoomFactory]

The items in the rowColumns list will become data members of classes of this type when they are created by the
Reflector.

6.2.2 Initialization

The initialization phase builds the SQL for the database interactions. It uses the system catalogs of the database to do
this, but requires some basic information to get started. The class attributes of the classes derived from RowClass are
used for this. Those classes are passed to a Reflector when it is created.

There are currently two available reflectors in Twisted Enterprise, the SQL Reflector for relational databases which
uses the python DB API, and the XML Reflector which uses a file system containing XML files. The XML reflector
is currently extremely slow.

An example class list for the RoomRow class we specified aboveusing the SQLReflector:

from twisted.enterprise.sqlreflector import SQLReflect or

dbpool = adbapi.ConnectionPool("pyPgSQL.PgSQL")
reflector = SQLReflector(dbpool, [RoomRow])

6.2.3 Creating Row Objects

There are two methods of creating RowObjects - loading from the database, and creating a new instance ready to be
inserted.

To load rows from the database and create RowObject instances for each of the rows, use the loadObjectsFrom
method of the Reflector. This takes a tableName, an optional “user data” parameter, and an optional “where clause”.
The where clause may be omitted which will retrieve all the rows from the table. For example:

def gotRooms(rooms):
for room in rooms:

print "Got room:", room.id

d = reflector.loadObjectsFrom("testrooms",
whereClause=[("id", reflector.EQUAL, 5)])

d.addCallback(gotRooms)

For more advanced RowObject construction, loadObjectsFrom may use a factoryMethod that was specified as a
class attribute for the RowClass derived class. This methodwill be called for each of the rows with the class object, the
userData parameter, and a dictionary of data from the database keyed by column name. This factory method should
return a fully populated RowObject instance and may be used to do pre-processing, lookups, and data transformations
before exposing the data to user code. An example factory method:

CHAPTER 6. TWISTED RDBMS SUPPORT 177

def testRoomFactory(roomClass, userData, kw):
newRoom = roomClass(userData)
newRoom.__dict__.update(kw)
return newRoom

The last method of creating a row object is for new instances that do not already exist in the database table. In this
case, create a new instance and assign its primary key attributes and all of its member data attributes, then pass it to
the insertRow method of the Reflector. For example:

newRoom = RoomRow()
newRoom.assignKeyAttr("roomI", 11)
newRoom.town_id = 20
newRoom.name = ’newRoom1’
newRoom.owner = ’fred’
newRoom.posx = 100
newRoom.posy = 100
newRoom.width = 15
newRoom.height = 20
reflector.insertRow(newRoom).addCallback(onInsert)

This will insert a new row into the database table for this newRowObject instance. Note that theassignKey
Attr method must be used to set primary key attributes - regular attribute assignment of a primary key attribute of a
rowObject will raise an exception. This prevents the database identity of RowObject from being changed by mistake.

6.2.4 Relationships Between Tables

Specifying a foreign key for a RowClass creates a relationship between database tables. WhenloadObjectsFrom
is called for a table, it will automatically load all the children rows for the rows from the specified table. The child rows
will be put into a list member variable of the rowObject instance with the namechildRows or if a containerMethod
is specified for the foreign key relationship, that method will be called on the parent row object for each row that is
being added to it as a child.

TheautoLoadmember of the foreign key definition is a flag that specifies whether child rows should be auto-loaded
for that relationship when a parent row is loaded.

6.2.5 Duplicate Row Objects

If a reflector tries to load an instance of a rowObject that is already loaded, it will return a reference to the existing
rowObject rather than creating a new instance. The reflectormaintains a cache of weak references to all loaded row
objects by their unique keys for this purpose.

6.2.6 Updating Row Objects

RowObjects have adirty member attribute that is set to 1 when any of the member attributes of the instance that
map to database columns are changed. This dirty flag can be used to tell when RowObjects need to be updated back
to the database. In addition, thesetDirty method can be overridden to provide more complex automated handling
such as dirty lists (be sure to call the base class setDirty though!).

When it is determined that a RowObject instance is dirty and need to have its state updated into the database, pass
that object to theupdateRow method of the Reflector. For example:

reflector.updateRow(room).addCallback(onUpdated)

For more complex behavior, the reflector can generate the SQLfor the update but not perform the update. This can
be useful for batching up multiple updates into single requests. For example:

updateSQL = reflector.updateRowSQL(room)

6.2.7 Deleting Row Objects

To delete a row from a database pass the RowObject instance for that row to the ReflectordeleteRow method.
Deleting the python Rowobject instance doesnotautomatically delete the row from the database. For example:

reflector.deleteRow(room)

Chapter 7

Perspective Broker

7.1 Overview of Twisted Spread

Perspective Broker (affectionately known as “PB”) is an asynchronous, symmetric1 network protocol for secure, re-
mote method calls and transferring of objects. PB is “translucent, not transparent”, meaning that it is very visible and
obvious to see the difference between local method calls andpotentially remote method calls, but remote method calls
are still extremely convenient to make, and it is easy to emulate them to have objects which work both locally and
remotely.

PB supports user-defined serialized data in return values, which can be either copied each time the value is returned,
or “cached”: only copied once and updated by notifications.

PB gets its name from the fact that access to objects is through a “perspective”. This means that when you are
responding to a remote method call, you can establish who is making the call.

7.1.1 Rationale

No other currently existing protocols have all the properties of PB at the same time. The particularly interesting
combination of attributes, though, is that PB is flexible andlightweight, allowing for rapid development, while still
powerful enough to do two-way method calls and user-defined data types.

It is important to have these attributes in order to allow fora protocol which is extensible. One of the facets of
this flexibility is that PB can integrate an arbitrary numberof services could be aggregated over a single connection,
as well as publish and call new methods on existing objects without restarting the server or client.

7.2 Introduction to Perspective Broker

7.2.1 Introduction

Suppose you find yourself in control of both ends of the wire: you have two programs that need to talk to each other,
and you get to use any protocol you want. If you can think of your problem in terms of objects that need to make
method calls on each other, then chances are good that you canuse twisted’s Perspective Broker protocol rather than
trying to shoehorn your needs into something like HTTP, or implementing yet another RPC mechanism2.

The Perspective Broker system (abbreviated “PB”, spawningnumerous sandwich-related puns) is based upon a
few central concepts:

• serialization: taking fairly arbitrary objects and types, turning them into a chunk of bytes, sending them over a
wire, then reconstituting them on the other end. By keeping careful track of object ids, the serialized objects can
contain references to other objects and the remote copy willstill be useful.

• remote method calls: doing something to a local object and causing a method to getrun on a distant one. The
local object is called aRemoteReference , and you “do something” by running its.callRemote method.

1There is a negotiation phase for banana with particular roles for listener and initiator, so it’s notcompletelysymmetric, but after the connection
is fully established, the protocol is completely symmetrical.

2Most of Twisted is like this. Hell, most of unix is like this: ifyou think it would be useful, someone else has probably thought that way in the
past, and acted on it, and you can take advantage of the tool they created to solve the same problem you’re facing now.

178

CHAPTER 7. PERSPECTIVE BROKER 179

This document will contain several examples that will (hopefully) appear redundant and verbose once you’ve
figured out what’s going on. To begin with, much of the code will just be labelled “magic”: don’t worry about how
these parts work yet. It will be explained more fully later.

7.2.2 Object Roadmap

To start with, here are the major classes, interfaces, and functions involved in PB, with links to the file where they are
defined (all of which are under twisted/, of course). Don’t worry about understanding what they all do yet: it’s easier
to figure them out through their interaction than explainingthem one at a time.

• Factory : internet/protocol.py

• PBServerFactory : spread/pb.py

• Broker : spread/pb.py

Other classes that are involved at some point:

• RemoteReference : spread/pb.py

• pb.Root : spread/pb.py , actually defined asRoot in spread/flavors.py

• pb.Referenceable : spread/pb.py , actually defined asReferenceable in spread/flavors.
py

Classes and interfaces that get involved when you start to care about authorization and security:

• Portal : cred/portal.py

• IRealm : cred/portal.py

• IPerspective : spread/pb.py , which you will usually be interacting with via pb.Avatar (abasic imple-
mentor of the interface).

Subclassing and Implementing

Technically you can subclass anything you want, but technically you could also write a whole new framework, which
would just waste a lot of time. Knowing which classes are useful to subclass or which interfaces to implement is one
of the bits of knowledge that’s crucial to using PB (and all ofTwisted) successfully. Here are some hints to get started:

• pb.Root , pb.Referenceable : you’ll subclass these to make remotely-referenceable objects (i.e., objects
which you can call methods on remotely) using PB. You don’t need to change any of the existing behavior, just
inherit all of it and add the remotely-accessible methods that you want to export.

• pb.Avatar : You’ll be subclassing this when you get into PB programmingwith authorization. This is an
implementor of IPerspective.

• ICredentialsChecker : Implement this if you want to authenticate your users against some sort of data
store: i.e., an LDAP database, an RDBMS, etc. There are already a few implementations of this for various
back-ends in twisted.cred.checkers.

XXX: add lists of useful-to-override methods here

7.2.3 Things you can Call Remotely

At this writing, there are three “flavors” of objects that canbe accessed remotely throughRemoteReference
objects. Each of these flavors has a rule for how thecallRemote message is transformed into a local method call on
the server. In order to use one of these “flavors”, subclass them and name your published methods with the appropriate
prefix.

CHAPTER 7. PERSPECTIVE BROKER 180

• twisted.spread.pb.IPerspective implementors

This is the first interface we deal with. It is a “perspective”onto your PB application. Perspectives are slightly
special because they are usually the first object that a givenuser can access in your application (after they log
on). A user should only receive a reference to theirownperspective. PB works hard to verify, as best it can, that
any method that can be called on a perspective directly is being called on behalf of the user who is represented
by that perspective. (Services with unusual requirements for “on behalf of”, such as simulations with the ability
to posess another player’s avatar, are accomplished by providing indirected access to another user’s perspective.)

Perspectives are not usually serialized as remote references, so do not return an IPerspective-implementor di-
rectly.

The way most people will want to implement IPerspective is bysubclassing pb.Avatar. Remotely accessible
methods on pb.Avatar instances are named with theperspective prefix.

• twisted.spread.flavors.Referenceable

Referenceable objects are the simplest kind of PB object. You can call methods on them and return them from
methods to provide access to other objects’ methods.

However, when a method is called on a Referenceable, it’s notpossible to tell who called it.

Remotely accessible methods on Referenceables are named with theremote prefix.

• twisted.spread.flavors.Viewable

Viewable objects are remotely referenceable objects whichhave the additional requirement that it must be possi-
ble to tell who is calling them. The argument list to a Viewable’s remote methods is modified in order to include
the Perspective representing the calling user.

Remotely accessible methods on Viewables are named with theview prefix.

7.2.4 Things you can Copy Remotely

In addition to returning objects that you can call remote methods on, you can return structured copies of local objects.
There are 2 basic flavors that allow for copying objects remotely. Again, you can use these by subclassing them.

In order to specify what state you want to have copied when these are serialized, you can either use the Python default
getstate or specialized method calls for that flavor.

• twisted.spread.flavors.Copyable

This is the simpler kind of object that can be copied. Every time this object is returned from a method or passed
as an argument, it is serialized and unserialized.

Copyable provides a method you can override,getStateToCopyFor(perspective) , which allows
you to decide what an object will look like for the perspective who is requesting it. Theperspective
argument will be the perspective which is either passing an argument or returning a result an instance of your
Copyable class.

For security reasons, in order to allow a particular Copyable class to actually be copied, you must declare a
RemoteCopy handler for that Copyable subclass. The easiest way to do this is to declare both in the same
module, like so:

from twisted.spread import flavors
class Foo(flavors.Copyable):

pass
class RemoteFoo(flavors.RemoteCopy):

pass
flavors.setCopierForClass(str(Foo), RemoteFoo)

In this case, each time a Foo is copied between peers, a RemoteFoo will be instantiated and populated with the
Foo’s state. If you do not do this, PB will complain that therehave been security violations, and it may close the
connection.

CHAPTER 7. PERSPECTIVE BROKER 181

• twisted.spread.flavors.Cacheable

Let me preface this with a warning: Cacheable may be hard to understand. The motivation for it may be unclear
if you don’t have some experience with real-world applications that use remote method calling of some kind.
Once you understand why you need it, what it does will likely seem simple and obvious, but if you get confused
by this, forget about it and come back later. It’s possible touse PB without understanding Cacheable at all.

Cacheable is a flavor which is designed to be copied only when necessary, and updated on the fly as changes are
made to it. When passed as an argument or a return value, if a Cacheable exists on the side of the connection it
is being copied to, it will be referred to by ID and not copied.

Cacheable is designed to minimize errors involved in replicating an object between multiple servers, espe-
cially those related to having stale information. In order to do this, Cacheable automatically registers observers
and queries state atomically, together. You can override the methodgetStateToCacheAndObserve
For(self, perspective, observer) in order to specify how your observers will be stored and up-
dated.

Similar to getStateToCopyFor , getStateToCacheAndObserveFor gets passed a perspective. It
also gets passed anobserver , which is a remote reference to a “secret” fourth referenceable flavor:Remote
Cache .

A RemoteCache is simply the object that represents yourCacheable on the other side of the connection. It
is registered using the same method asRemoteCopy , above. RemoteCache is different, however, in that it will
be referenced by its peer. It acts as a Referenceable, where all methods prefixed withobserve will be callable
remotely. It is recommended that your object maintain a list(note: library support for this is forthcoming!) of
observers, and update them usingcallRemote when the Cacheable changes in a way that should be noticeable
to its clients.

Finally, when all references to aCacheable from a given perspective are lost,stopped
Observing(perspective, observer) will be called on theCacheable , with the same perspec-
tive/observer pair thatgetStateToCacheAndObserveFor was originally called with. Any cleanup re-
mote calls can be made there, as well as removing the observerobject from any lists which it was previously in.
Any further calls to this observer object will be invalid.

7.3 Using Perspective Broker

7.3.1 Basic Example

The first example to look at is a complete (although somewhat trivial) application. It usesPBServerFactory()
on the server side, andPBClientFactory() on the client side.

from twisted.spread import pb
from twisted.internet import reactor

class Echoer(pb.Root):
def remote_echo(self, st):

print ’echoing:’, st
return st

if __name__ == ’__main__’:
reactor.listenTCP(8789, pb.PBServerFactory(Echoer()))
reactor.run()

Source listing —pbsimple.py

from twisted.spread import pb
from twisted.internet import reactor
from twisted.python import util

factory = pb.PBClientFactory()

CHAPTER 7. PERSPECTIVE BROKER 182

reactor.connectTCP("localhost", 8789, factory)
d = factory.getRootObject()
d.addCallback(lambda object: object.callRemote("echo" , "hello network"))
d.addCallback(lambda echo: ’server echoed: ’+echo)
d.addErrback(lambda reason: ’error: ’+str(reason.value))
d.addCallback(util.println)
d.addCallback(lambda _: reactor.stop())
reactor.run()

Source listing —pbsimpleclient.py

First we look at the server. This defines an Echoer class (derived from pb.Root), with a method called
remote echo() . pb.Root objects (because of their inheritance ofpb.Referenceable , described later) can
define methods with names of the formremote * ; a client which obtains a remote reference to thatpb.Root object
will be able to invoke those methods.

Thepb.Root -ish object is given to apb.PBServerFactory() . This is aFactory object like any other:
the Protocol objects it creates for new connections know how to speak the PB protocol. The object you give to
pb.PBServerFactory() becomes the “root object”, which simply makes it available for the client to retrieve.
The client may only request references to the objects you want to provide it: this helps you implement your security
model. Because it is so common to export just a single object (and because aremote * method on that one can
return a reference to any other object you might want to give out), the simplest example is one where thePBServer
Factory is given the root object, and the client retrieves it.

The client side usespb.PBClientFactory to make a connection to a given port. This is a two-step pro-
cess involving opening a TCP connection to a given host and port and requesting the root object using.getRoot
Object() .

Because.getRootObject() has to wait until a network connection has been made and exchange some data,
it may take a while, so it returns a Deferred, to which the gotObject() callback is attached. (See the documentation
onDeferring Execution(page 100) for a complete explanation ofDeferred s). If and when the connection succeeds
and a reference to the remote root object is obtained, this callback is run. The first argument passed to the callback is a
remote reference to the distant root object. (you can give other arguments to the callback too, see the other parameters
for .addCallback() and.addCallbacks()).

The callback does:

object.callRemote("echo", "hello network")

which causes the server’s.remote echo() method to be invoked. (running.callRemote("boom")
would cause.remote boom() to be run, etc). Again because of the delay involved,callRemote() returns a
Deferred . Assuming the remote method was run without causing an exception (including an attempt to invoke an
unknown method), the callback attached to thatDeferred will be invoked with any objects that were returned by
the remote method call.

In this example, the server’sEchoer object has a method invoked,exactlyas if some code on the server side had
done:

echoer_object.remote_echo("hello network")

and from the definition ofremote echo() we see that this just returns the same string it was given: “hello
network”.

From the client’s point of view, the remote call gets anotherDeferred object instead of that string.call
Remote() alwaysreturns aDeferred . This is why PB is described as a system for “translucent” remote method
calls instead of “transparent” ones: you cannot pretend that the remote object is really local. Trying to do so (as
some other RPC mechanisms do, coughCORBAcough) breaks downwhen faced with the asynchronous nature of the
network. Using Deferreds turns out to be a very clean way to deal with the whole thing.

The remote reference object (the one given togetRootObject() ’s success callback) is an instance theRemote
Reference class. This means you can use it to invoke methods on the remote object that it refers to. Only instances
of RemoteReference are eligible for.callRemote() . TheRemoteReference object is the one that lives
on the remote side (the client, in this case), not the local side (where the actual object is defined).

In our example, the local object is thatEchoer() instance, which inherits frompb.Root , which inherits from
pb.Referenceable . It is thatReferenceable class that makes the object eligible to be available for remote

CHAPTER 7. PERSPECTIVE BROKER 183

method calls3. If you have an object that is Referenceable, then any clientthat manages to get a reference to it can
invoke anyremote * methods they please.

Note:
Theonly thing they can do is invoke those methods. In particular, they cannot access attributes. From

a security point of view, you control what they can do by limiting what theremote * methods can do.
Also note: the other classes likeReferenceable allow access to other methods, in particular

perspective * and view * may be accessed. Don’t write local-only methods with these names,
because then remote callers will be able to do more than you intended.

Also also note: the other classes likepb.Copyable do allow access to attributes, but you control
which ones they can see.

You don’t have to be apb.Root to be remotely callable, but you do have to bepb.Referenceable . (Objects
that inherit frompb.Referenceable but not frompb.Root can be remotely called, but onlypb.Root -ish
objects can be given to thePBServerFactory .)

7.3.2 Complete Example

from twisted.spread import pb

class QuoteReader(pb.Root):

def __init__(self, quoter):
self.quoter = quoter

def remote_nextQuote(self):
return self.quoter.getQuote()

QuoteReader Root object —pbquote.py

For examples of these, we’re returning to the TwistedQuotesproject discussed inWriting Plugins(page 142). To
use the examples in this HOWTO, we need to make a TML file to referto our new set of examples:

register("Quote of the Day TAP Builder",
"TwistedQuotes.quotetap2",
description="""
Example of a TAP builder module.
""",
type="tap",
tapname="qotd")

Twisted Quotes Plug-in registration —plugins2.tml

The root object for TwistedQuotes is pretty small. The only thing it needs to keep track of for itself is the quoter
object.

The QuoteReader publishes one method. By subclassingRoot , we are declaring that all methods with the
remote prefix are remotely accessible.

In order to get this Root published, so that we can actually connect to it, we need to re-visit the TAP building
plugin, so we can actually get an Application that has a PBServerFactory listening on a port. (The default port for PB
is 8787.)

from TwistedQuotes import quoteproto # Protocol and Factor y
from TwistedQuotes import quoters # "give me a quote" code
from TwistedQuotes import pbquote # perspective broker bin ding

from twisted.application import service, internet

3There are a few other classes that can bestow this ability, but pb.Referenceable is the easiest to understand; see ’flavors’ below for details on
the others.

CHAPTER 7. PERSPECTIVE BROKER 184

from twisted.python import usage # twisted command-line pr ocessing
from twisted.spread import pb # Perspective Broker

class Options(usage.Options):
optParameters = [["port", "p", 8007,

"Port number to listen on for QOTD protocol."],
["static", "s", "An apple a day keeps the doctor away.",

"A static quote to display."],
["file", "f", None,

"A fortune-format text file to read quotes from."],
["pb", "b", None,

"Port to listen with PB server"]]

def makeService(config):
svc = service.MultiService()
if config["file"]: # If I was given a "file" option...

Read quotes from a file, selecting a random one each time,
quoter = quoters.FortuneQuoter([config[’file’]])

else: # otherwise,
read a single quote from the command line (or use the default).
quoter = quoters.StaticQuoter(config[’static’])

port = int(config["port"]) # TCP port to listen on
factory = quoteproto.QOTDFactory(quoter) # here we create a QOTDFactory
Finally, set up our factory, with its custom quoter, to crea te QOTD
protocol instances when events arrive on the specified por t.
pbport = config[’pb’] # TCP PB port to listen on
if pbport:

pbfact = pb.PBServerFactory(pbquote.QuoteReader(quote r))
svc.addService(internet.TCPServer(int(pbport), pbfac t))

svc.addService(internet.TCPServer(port, factory))
return svc

TAP Plugin with PB Quotes support —quotetap2.py

In the TAP builder, all we need to do is create our QuoteReaderinstance (making sure to pass it our quoter object),
give it to a PBServerFactory, and create a TCPServer so that it can listen on a TCP port.

Accessing this through a client is fairly easy, as we use thepb.PBClientFactory.getRootObject
method.

from sys import stdout
from twisted.python import log
log.discardLogs()
from twisted.internet import reactor
from twisted.spread import pb

def connected(root):
root.callRemote(’nextQuote’).addCallbacks(success, f ailure)

def success(quote):
stdout.write(quote + "\n")
reactor.stop()

def failure(error):
stdout.write("Failed to obtain quote.\n")
reactor.stop()

factory = pb.PBClientFactory()
reactor.connectTCP(

CHAPTER 7. PERSPECTIVE BROKER 185

"localhost", # host name
pb.portno, # port number
factory, # factory
)

factory.getRootObject().addCallbacks(connected, # whe n we get the root
failure) # when we can’t

reactor.run() # start the main loop

PB Quotes Client Code —pbquoteclient.py

pb.PBClientFactory.getRootObject will handle all the details of waiting for the creation of a con-
nection. It returns aDeferred , which will have its callback called when the reactor connects to the remote server
andpb.PBClientFactory gets the root, and have itserrback called when the object-connection fails for any
reason, whether it was host lookup failure, connection refusal, or some server-side error.

In this example, theconnected callback should be made when the script is run. Looking at thecode, it should
be clear that in the event of a connection success, the clientwill print out a quote and exit. If you start up a server, you
can see:

% mktap qotd --pb 8787
% twistd -f qotd.tap
% python -c ’import TwistedQuotes.pbquoteclient’
An apple a day keeps the doctor away.

The argument to this callback,root , is aRemoteReference . It represents a reference to theQuoteReader
object.

RemoteReference objects have one method which is their purpose for being:callRemote . This method
allows you to call a remote method on the object being referred to by the Reference.RemoteReference.call
Remote , like pb.PBClientFactory.getRootObject , returns aDeferred . When a response to the method-
call being sent arrives, theDeferred ’s callback or errback will be made, depending on whether an error
occurred in processing the method call.

This introduction to PB does not showcase all of the featuresthat it provides, but hopefully it gives you a good
idea of where to get started setting up your own application.Here are some of the other building blocks you can use.

7.3.3 Passing more references

Here is an example of usingpb.Referenceable in a second class. The secondReferenceable object can
have remote methods invoked too, just like the first. In this example, the initial root object has a method that returns a
reference to the second object.

#! /usr/bin/python
from twisted.spread import pb

class Two(pb.Referenceable):
def remote_three(self, arg):

print "Two.three was given", arg

class One(pb.Root):
def remote_getTwo(self):

two = Two()
print "returning a Two called", two
return two

from twisted.internet import reactor
reactor.listenTCP(8800, pb.PBServerFactory(One()))
reactor.run()

CHAPTER 7. PERSPECTIVE BROKER 186

Source listing —pb1server.py

#! /usr/bin/python

from twisted.spread import pb
from twisted.internet import reactor

def main():
factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
def1 = factory.getRootObject()
def1.addCallbacks(got_obj1, err_obj1)
reactor.run()

def err_obj1(reason):
print "error getting first object", reason
reactor.stop()

def got_obj1(obj1):
print "got first object:", obj1
print "asking it to getTwo"
def2 = obj1.callRemote("getTwo")
def2.addCallbacks(got_obj2)

def got_obj2(obj2):
print "got second object:", obj2
print "telling it to do three(12)"
obj2.callRemote("three", 12)

main()

Source listing —pb1client.py

The root object has a method calledremote getTwo , which returns theTwo() instance. On the client end, the
callback gets aRemoteReference to that instance. The client can then invoke two’s.remote three() method.

You can use this technique to provide access to arbitrary sets of objects. Just remember that any object that might
get passed “over the wire” must inherit fromReferenceable (or one of the other flavors). If you try to pass a non-
Referenceable object (say, by returning one from aremote * method), you’ll get anInsecureJelly exception4.

7.3.4 References can come back to you

If your server gives a reference to a client, and then that client gives the reference back to the server, the server will
wind up with the same object it gave out originally. The serialization layer watches for returning reference identifiers
and turns them into actual objects. You need to stay aware of where the object lives: if it is on your side, you do actual
method calls. If it is on the other side, you do.callRemote() 5.

#! /usr/bin/python

from twisted.spread import pb
from twisted.internet import reactor

4This can be overridden, by subclassing one of the Serializable flavors and defining custom serialization code for your class. SeePassing
Complex Types(page 194) for details.

5The binary nature of this local vs. remote scheme works becauseyou cannot give RemoteReferences to a third party. If you could, then your
object A could go to B, B could give it to C, C might give it back toyou, and you would be hard pressed to tell if the object lived in C’s memory
space, in B’s, or if it was really your own object, tarnished and sullied after being handed down like a really ugly picturethat your great aunt owned
and which nobody wants but which nobody can bear to throw out.Ok, not really like that, but you get the idea.

CHAPTER 7. PERSPECTIVE BROKER 187

class Two(pb.Referenceable):
def remote_print(self, arg):

print "two.print was given", arg

class One(pb.Root):
def __init__(self, two):

#pb.Root.__init__(self) # pb.Root doesn’t implement __in it__
self.two = two

def remote_getTwo(self):
print "One.getTwo(), returning my two called", two
return two

def remote_checkTwo(self, newtwo):
print "One.checkTwo(): comparing my two", self.two
print "One.checkTwo(): against your two", newtwo
if two == newtwo:

print "One.checkTwo(): our twos are the same"

two = Two()
root_obj = One(two)
reactor.listenTCP(8800, pb.PBServerFactory(root_obj))
reactor.run()

Source listing —pb2server.py

#! /usr/bin/python

from twisted.spread import pb
from twisted.internet import reactor

def main():
foo = Foo()
factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
factory.getRootObject().addCallback(foo.step1)
reactor.run()

keeping globals around is starting to get ugly, so we use a si mple class
instead. Instead of hooking one function to the next, we hoo k one method
to the next.

class Foo:
def __init__(self):

self.oneRef = None

def step1(self, obj):
print "got one object:", obj
self.oneRef = obj
print "asking it to getTwo"
self.oneRef.callRemote("getTwo").addCallback(self.s tep2)

def step2(self, two):
print "got two object:", two
print "giving it back to one"
print "one is", self.oneRef
self.oneRef.callRemote("checkTwo", two)

CHAPTER 7. PERSPECTIVE BROKER 188

main()

Source listing —pb2client.py

The server gives aTwo() instance to the client, who then returns the reference back to the server. The server
compares the “two” given with the “two” received and shows that they are the same, and that both are real objects
instead of remote references.

A few other techniques are demonstrated inpb2client.py . One is that the callbacks are are added with.add
Callback instead of.addCallbacks . As you can tell from theDeferred (page 100) documentation,.add
Callback is a simplified form which only adds a success callback. The other is that to keep track of state from one
callback to the next (the remote reference to the main One() object), we create a simple class, store the reference in
an instance thereof, and point the callbacks at a sequence ofbound methods. This is a convenient way to encapsulate
a state machine. Each response kicks off the next method, andany data that needs to be carried from one state to the
next can simply be saved as an attribute of the object.

Remember that the client can give you back any remote reference you’ve given them. Don’t base your zillion-
dollar stock-trading clearinghouse server on the idea thatyou trust the client to give you back the right reference. The
security model inherent in PB means that they canonlygive you back a reference that you’ve given them for the current
connection (not one you’ve given to someone else instead, nor one you gave them last time before the TCP session
went down, nor one you haven’t yet given to the client), but just like with URLs and HTTP cookies, the particular
reference they give you is entirely under their control.

7.3.5 References to client-side objects

Anything that’s Referenceable can get passed across the wire, in either direction. The “client” can give a reference to
the “server”, and then the server can use .callRemote() to invoke methods on the client end. This fuzzes the distinction
between “client” and “server”: the only real difference is who initiates the original TCP connection; after that it’s all
symmetric.

#! /usr/bin/python

from twisted.spread import pb
from twisted.internet import reactor

class One(pb.Root):
def remote_takeTwo(self, two):

print "received a Two called", two
print "telling it to print(12)"
two.callRemote("print", 12)

reactor.listenTCP(8800, pb.PBServerFactory(One()))
reactor.run()

Source listing —pb3server.py

#! /usr/bin/python

from twisted.spread import pb
from twisted.internet import reactor

class Two(pb.Referenceable):
def remote_print(self, arg):

print "Two.print() called with", arg

def main():
two = Two()

CHAPTER 7. PERSPECTIVE BROKER 189

factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
def1 = factory.getRootObject()
def1.addCallback(got_obj, two) # hands our ’two’ to the cal lback
reactor.run()

def got_obj(obj, two):
print "got One:", obj
print "giving it our two"
obj.callRemote("takeTwo", two)

main()

Source listing —pb3client.py

In this example, the client gives a reference to its own object to the server. The server then invokes a remote
method on the client-side object.

7.3.6 Raising Remote Exceptions

Everything so far has covered what happens when things go right. What about when they go wrong? The Python Way
is to raise an exception of some sort. The Twisted Way is the same.

The only special thing you do is to define yourException subclass by deriving it frompb.Error . When
any remotely-invokable method (likeremote * or perspective *) raises apb.Error -derived exception, a
serialized form of that Exception object will be sent back over the wire6. The other side (which didcallRemote)
will have the “errback ” callback run with aFailure object that contains a copy of the exception object. This
Failure object can be queried to retrieve the error message and a stack traceback.

Failure is a special class, defined intwisted/python/failure.py , created to make it easier to handle
asynchronous exceptions. Just as exception handlers can benested,errback functions can be chained. If one errback
can’t handle the particular type of failure, it can be “passed along” to a errback handler further down the chain.

For simple purposes, think of theFailure as just a container for remotely-thrownException objects. To
extract the string that was put into the exception, use its.getErrorMessage() method. To get the type of the
exception (as a string), look at its.type attribute. The stack traceback is available too. The intentis to let the errback
function get just as much information about the exception asPython’s normaltry: clauses do, even though the
exception occurred in somebody else’s memory space at some unknown time in the past.

#! /usr/bin/python

from twisted.spread import pb
from twisted.internet import reactor

class MyError(pb.Error):
"""This is an Expected Exception. Something bad happened." ""
pass

class MyError2(Exception):
"""This is an Unexpected Exception. Something really bad ha ppened."""
pass

class One(pb.Root):
def remote_broken(self):

msg = "fall down go boom"
print "raising a MyError exception with data ’%s’" % msg
raise MyError(msg)

def remote_broken2(self):

6To be precise, the Failure will be sent ifanyexception is raised, not just pb.Error-derived ones. But the server will print ugly error messages if
you raise ones that aren’t derived from pb.Error.

CHAPTER 7. PERSPECTIVE BROKER 190

msg = "hadda owie"
print "raising a MyError2 exception with data ’%s’" % msg
raise MyError2(msg)

def main():
reactor.listenTCP(8800, pb.PBServerFactory(One()))
reactor.run()

if __name__ == ’__main__’:
main()

Source listing —excserver.py

#! /usr/bin/python

from twisted.spread import pb
from twisted.internet import reactor

def main():
factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
d = factory.getRootObject()
d.addCallbacks(got_obj)
reactor.run()

def got_obj(obj):
change "broken" into "broken2" to demonstrate an unhandle d exception
d2 = obj.callRemote("broken")
d2.addCallback(working)
d2.addErrback(broken)

def working():
print "erm, it wasn’t * supposed * to work.."

def broken(reason):
print "got remote Exception"
reason should be a Failure (or subclass) holding the MyErro r exception
print " .__class__ =", reason.__class__
print " .getErrorMessage() =", reason.getErrorMessage()
print " .type =", reason.type
reactor.stop()

main()

Source listing —excclient.py

% ./exc_client.py
got remote Exception

.__class__ = twisted.spread.pb.CopiedFailure

.getErrorMessage() = fall down go boom

.type = __main__.MyError
Main loop terminated.

Oh, and what happens if you raise some other kind of exception? Something thatisn’t subclassed frompb.
Error ? Well, those are called “unexpected exceptions”, which make Twisted think that something hasreally gone
wrong. These will raise an exception on theserverside. This won’t break the connection (the exception is trapped,

CHAPTER 7. PERSPECTIVE BROKER 191

just like most exceptions that occur in response to network traffic), but it will print out an unsightly stack trace on
the server’s stderr with a message that says “Peer Will Receive PB Traceback”, just as if the exception had happened
outside a remotely-invokable method. (This message will gothe current log target, iflog.startLogging was used
to redirect it). The client will get the sameFailure object in either case, but subclassing your exception frompb.
Error is the way to tell Twisted that you expect this sort of exception, and that it is ok to just let the client handle it
instead of also asking the server to complain. Look atexc client.py and change it to invokebroken2() instead
of broken() to see the change in the server’s behavior.

If you don’t add anerrback function to theDeferred , then a remote exception will still send aFailure
object back over, but it will get lodged in theDeferred with nowhere to go. When thatDeferred finally goes out
of scope, the side that didcallRemote will emit a message about an “Unhandled error in Deferred”, along with an
ugly stack trace. It can’t raise an exception at that point (after all, thecallRemote that triggered the problem is long
gone), but it will emit a traceback. So be a good programmer and always adderrback handlers, even if they are just
calls tolog.err .

7.3.7 Try/Except blocks and Failure.trap

To implement the equivalent of the Python try/except blocks(which can trap particular kinds of exceptions and pass
others “up” to higher-leveltry/except blocks), you can use the.trap() method in conjunction with multiple
errback handlers on theDeferred . Re-raising an exception in anerrback handler serves to pass that new
exception to the next handler in the chain. Thetrap method is given a list of exceptions to look for, and will re-raise
anything that isn’t on the list. Instead of passing unhandled exceptions “up” to an enclosingtry block, this has the
effect of passing the exception “off” to latererrback handlers on the sameDeferred . Thetrap calls are used in
chained errbacks to test for each kind of exception in sequence.

#! /usr/bin/python

from twisted.internet import reactor
from twisted.spread import pb

class MyException(pb.Error):
pass

class One(pb.Root):
def remote_fooMethod(self, arg):

if arg == "panic!":
raise MyException

return "response"
def remote_shutdown(self):

reactor.stop()

reactor.listenTCP(8800, pb.PBServerFactory(One()))
reactor.run()

Source listing —trap server.py

#! /usr/bin/python

from twisted.spread import pb, jelly
from twisted.python import log
from twisted.internet import reactor

class MyException(pb.Error): pass
class MyOtherException(pb.Error): pass

class ScaryObject:
not safe for serialization
pass

CHAPTER 7. PERSPECTIVE BROKER 192

def worksLike(obj):
the callback/errback sequence in class One works just like an
asynchronous version of the following:
try:

response = obj.callMethod(name, arg)
except pb.DeadReferenceError:

print " stale reference: the client disconnected or crashed "
except jelly.InsecureJelly:

print " InsecureJelly: you tried to send something unsafe to them"
except (MyException, MyOtherException):

print " remote raised a MyException" # or MyOtherException
except:

print " something else happened"
else:

print " method successful, response:", response

class One:
def worked(self, response):

print " method successful, response:", response
def check_InsecureJelly(self, failure):

failure.trap(jelly.InsecureJelly)
print " InsecureJelly: you tried to send something unsafe to them"
return None

def check_MyException(self, failure):
which = failure.trap(MyException, MyOtherException)
if which == MyException:

print " remote raised a MyException"
else:

print " remote raised a MyOtherException"
return None

def catch_everythingElse(self, failure):
print " something else happened"
log.err(failure)
return None

def doCall(self, explanation, arg):
print explanation
try:

deferred = self.remote.callRemote("fooMethod", arg)
deferred.addCallback(self.worked)
deferred.addErrback(self.check_InsecureJelly)
deferred.addErrback(self.check_MyException)
deferred.addErrback(self.catch_everythingElse)

except pb.DeadReferenceError:
print " stale reference: the client disconnected or crashed "

def callOne(self):
self.doCall("callOne: call with safe object", "safe strin g")

def callTwo(self):
self.doCall("callTwo: call with dangerous object", Scary Object())

def callThree(self):
self.doCall("callThree: call that raises remote exceptio n", "panic!")

def callShutdown(self):
print "telling them to shut down"
self.remote.callRemote("shutdown")

def callFour(self):

CHAPTER 7. PERSPECTIVE BROKER 193

self.doCall("callFour: call on stale reference", "dummy")

def got_obj(self, obj):
self.remote = obj
reactor.callLater(1, self.callOne)
reactor.callLater(2, self.callTwo)
reactor.callLater(3, self.callThree)
reactor.callLater(4, self.callShutdown)
reactor.callLater(5, self.callFour)
reactor.callLater(6, reactor.stop)

factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
deferred = factory.getRootObject()
deferred.addCallback(One().got_obj)
reactor.run()

Source listing —trap client.py

% ./trap_client.py
callOne: call with safe object

method successful, response: response
callTwo: call with dangerous object

InsecureJelly: you tried to send something unsafe to them
callThree: call that raises remote exception

remote raised a MyException
telling them to shut down
callFour: call on stale reference

stale reference: the client disconnected or crashed
%

In this example,callTwo tries to send an instance of a locally-defined class throughcallRemote . The default
security model implemented bypb.Jelly on the remote end will not allow unknown classes to be unserialized (i.e.
taken off the wire as a stream of bytes and turned back into an object: a living, breathing instance of some class):
one reason is that it does not know which local class ought to be used to create an instance that corresponds to the
remote object7. The receiving end of the connection gets to decide what to accept and what to reject. It indicates
its disapproval by raising apb.InsecureJelly exception. Because it occurs at the remote end, the exception is
returned to the caller asynchronously, so anerrback handler for the associatedDeferred is run. That errback
receives aFailure which wraps theInsecureJelly .

Remember thattrap re-raises exceptions that it wasn’t asked to look for. You can only check for one set of
exceptions per errback handler: all others must be checked in a subsequent handler.check MyException shows
how multiple kinds of exceptions can be checked in a single errback: give a list of exception types totrap , and it
will return the matching member. In this case, the kinds of exceptions we are checking for (MyException andMy
OtherException) may be raised by the remote end: they inherit frompb.Error .

The handler can returnNone to terminate processing of the errback chain (to be precise,it switches to the callback
that follows the errback; if there is no callback then processing terminates). It is a good idea to put an errback that
will catch everything (notrap tests, no possible chance of raising more exceptions, always returnsNone) at the end
of the chain. Just as with regulartry: except: handlers, you need to think carefully about ways in which your
errback handlers could themselves raise exceptions. The extra importance in an asynchronous environment is that an
exception that falls off the end of theDeferred will not be signalled until thatDeferred goes out of scope, and at

7The naive approach of simply doingimport SomeClass to match a remote caller who claims to have an object of type “Some-
Class” could have nasty consequences for some modules that do significant operations in their init methods (thinktelnetlib.
Telnet(host=’localhost’, port=’chargen’) , or even more powerful classes that you have available in yourserver program). Al-
lowing a remote entity to create arbitrary classes in your namespace is nearly equivalent to allowing them to run arbitrarycode.

Thepb.InsecureJelly exception arises because the class being sent over the wire has not been registered with the serialization layer (known
asjelly). The easiest way to make it possible to copy entire class instances over the wire is to have them inherit frompb.Copyable , and then
to usesetUnjellyableForClass(remoteClass, localClass) on the receiving side. SeePassing Complex Types(page 194) for an
example.

CHAPTER 7. PERSPECTIVE BROKER 194

that point may only cause a log message (which could even be thrown away iflog.startLogging is not used to
point it at stdout or a log file). In contrast, a synchronous exception that is not handled by any otherexcept: block
will very visibly terminate the program immediately with a noisy stack trace.

callFour shows another kind of exception that can occur while usingcallRemote : pb.DeadReference
Error . This one occurs when the remote end has disconnected or crashed, leaving the local side with a stale reference.
This kind of exception happens to be reported right away (XXX: is this guaranteed? probably not), so must be caught
in a traditional synchronoustry: except pb.DeadReferenceError block.

Yet another kind that can occur is apb.PBConnectionLost exception. This occurs (asynchronously) if the
connection was lost while you were waiting for acallRemote call to complete. When the line goes dead, all
pending requests are terminated with this exception. Note that you have no way of knowing whether the request made
it to the other end or not, nor how far along in processing it they had managed before the connection was lost. XXX:
explain transaction semantics, find a decent reference.

7.4 PB Copyable: Passing Complex Types

7.4.1 Overview

This chapter focuses on how to use PB to pass complex types (specifically class instances) to and from a remote
process. The first section is on simply copying the contents of an object to a remote process (pb.Copyable). The
second covers how to copy those contents once, then update them later when they change (Cacheable).

7.4.2 Motivation

From theprevious chapter(page 181), you’ve seen how to pass basic types to a remote process, by using them in
the arguments or return values of acallRemote function. However, if you’ve experimented with it, you may have
discovered problems when trying to pass anything more complicated than a primitive int/list/dict/string type, or another
pb.Referenceable object. At some point you want to pass entire objects betweenprocesses, instead of having to
reduce them down to dictionaries on one end and then re-instantiating them on the other.

7.4.3 Passing Objects

The most obvious and straightforward way to send an object toa remote process is with something like the following
code. It also happens that this code doesn’t work, as will be explained below.

class LilyPond:
def __init__(self, frogs):

self.frogs = frogs

pond = LilyPond(12)
ref.callRemote("sendPond", pond)

If you try to run this, you might hope that a suitable remote end which implements theremote sendPond
method would see that method get invoked with an instance from theLilyPond class. But instead, you’ll encounter
the dreadedInsecureJelly exception. This is Twisted’s way of telling you that you’ve violated a security restric-
tion, and that the receiving end refuses to accept your object.

Security Options

What’s the big deal? What’s wrong with just copying a class intoanother process’ namespace?
Reversing the question might make it easier to see the issue:what is the problem with accepting a stranger’s request

to create an arbitrary object in your local namespace? The real question is how much power you are granting them:
what actions can they convince you to take on the basis of the bytes they are sending you over that remote connection.

Objects generally represent more power than basic types like strings and dictionaries because they also contain (or
reference) code, which can modify other data structures when executed. Once previously-trusted data is subverted, the
rest of the program is compromised.

The built-in Python “batteries included” classes are relatively tame, but you still wouldn’t want to let a foreign
program use them to create arbitrary objects in your namespace or on your computer. Imagine a protocol that involved
sending a file-like object with aread() method that was supposed to used later to retrieve a document. Then

CHAPTER 7. PERSPECTIVE BROKER 195

imagine what if that object were created withos.fdopen("˜/.gnupg/secring.gpg") . Or an instance of
telnetlib.Telnet("localhost", "chargen") .

Classes you’ve written for your own program are likely to have far more power. They may run code during
init , or even have special meaning simply because of their existence. A program might haveUser objects to

represent user accounts, and have a rule that says allUser objects in the system are referenced when authorizing a
login session. (In this system,User. init would probably add the object to a global list of known users). The
simple act of creating an object would give access to somebody. If you could be tricked into creating a bad object, an
unauthorized user would get access.

So object creation needs to be part of a system’s security design. The dotted line between “trusted inside” and
“untrusted outside” needs to describe what may be done in response to outside events. One of those events is the
receipt of an object through a PB remote procedure call, which is a request to create an object in your “inside”
namespace. The question is what to do in response to it. For this reason, you must explicitly specific what remote
classes will be accepted, and how their local representatives are to be created.

What class to use?

Another basic question to answer before we can do anything useful with an incoming serialized object is: what class
should we create? The simplistic answer is to create the “same kind” that was serialized on the sender’s end of the
wire, but this is not as easy or as straightforward as you might think. Remember that the request is coming from a
different program, using a potentially different set of class libraries. In fact, since PB has also been implemented in
Java, Emacs-Lisp, and other languages, there’s no guarantee that the sender is even running Python! All we know on
the receiving end is a list of two things which describe the instance they are trying to send us: the name of the class,
and a representation of the contents of the object.

PB lets you specify the mapping from remote class names to local classes with thesetUnjellyableFor
Class function8. This function takes a remote/sender class reference (either the fully-qualified name as used by the
sending end, or a class object from which the name can be extracted), and a local/recipient class (used to create the
local representation for incoming serialized objects). Whenever the remote end sends an object, the class name that
they transmit is looked up in the table controlled by this function. If a matching class is found, it is used to create the
local object. If not, you get theInsecureJelly exception.

In general you expect both ends to share the same codebase: either you control the program that is running on
both ends of the wire, or both programs share some kind of common language that is implemented in code which
exists on both ends. You wouldn’t expect them to send you an object of the MyFooziWhatZit class unless you also
had a definition for that class. So it is reasonable for the Jelly layer to reject all incoming classes except the ones that
you have explicitly marked withsetUnjellyableForClass . But keep in mind that the sender’s idea of aUser
object might differ from the recipient’s, either through namespace collisions between unrelated packages, version skew
between nodes that haven’t been updated at the same rate, or amalicious intruder trying to cause your code to fail in
some interesting or potentially vulnerable way.

7.4.4 pb.Copyable

Ok, enough of this theory. How do you send a fully-fledged object from one side to the other?

#! /usr/bin/python

from twisted.spread import pb, jelly
from twisted.python import log
from twisted.internet import reactor

class LilyPond:
def setStuff(self, color, numFrogs):

self.color = color

8Note that, in this context, “unjelly” is a verb with the opposite meaning of “jelly”. The verb “to jelly” means to serialize an object or data
structure into a sequence of bytes (or other primitive transmittable/storable representation), while “to unjelly” meansto unserialize the bytestream
into a live object in the receiver’s memory space. “Unjellyable” is a noun, (notan adjective), referring to the the class that serves as a destination or
recipient of the unjellying process. “A is unjellyable intoB” means that a serialized representation A (of some remote object) can be unserialized
into a local object of type B. It is these objects “B” that are the “Unjellyable” second argument of thesetUnjellyableForClass function.

In particular, “unjellyable” doesnot mean “cannot be jellied”.Unpersistable means “not persistable”, but “unjelly”, “unserialize”, and
“unpickle” mean to reverse the operations of “jellying”, “serializing”, and “pickling”.

CHAPTER 7. PERSPECTIVE BROKER 196

self.numFrogs = numFrogs
def countFrogs(self):

print "%d frogs" % self.numFrogs

class CopyPond(LilyPond, pb.Copyable):
pass

class Sender:
def __init__(self, pond):

self.pond = pond

def got_obj(self, remote):
self.remote = remote
d = remote.callRemote("takePond", self.pond)
d.addCallback(self.ok).addErrback(self.notOk)

def ok(self, response):
print "pond arrived", response
reactor.stop()

def notOk(self, failure):
print "error during takePond:"
if failure.type == jelly.InsecureJelly:

print " InsecureJelly"
else:

print failure
reactor.stop()
return None

def main():
from copy_sender import CopyPond # so it’s not __main__.Cop yPond
pond = CopyPond()
pond.setStuff("green", 7)
pond.countFrogs()
class name:
print ".".join([pond.__class__.__module__, pond.__cla ss__.__name__])

sender = Sender(pond)
factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
deferred = factory.getRootObject()
deferred.addCallback(sender.got_obj)
reactor.run()

if __name__ == ’__main__’:
main()

Source listing —copysender.py

"""PB copy receiver example.

This is a Twisted Application Configuration (tac) file. Run with e.g.
twistd -ny copy_receiver.tac

See the twistd(1) man page or
http://twistedmatrix.com/documents/current/howto/ap plication for details.
"""

CHAPTER 7. PERSPECTIVE BROKER 197

import sys
if __name__ == ’__main__’:

print __doc__
sys.exit(1)

from twisted.application import service, internet
from twisted.internet import reactor
from twisted.spread import pb
from copy_sender import LilyPond, CopyPond

from twisted.python import log
#log.startLogging(sys.stdout)

class ReceiverPond(pb.RemoteCopy, LilyPond):
pass

pb.setUnjellyableForClass(CopyPond, ReceiverPond)

class Receiver(pb.Root):
def remote_takePond(self, pond):

print " got pond:", pond
pond.countFrogs()
return "safe and sound" # positive acknowledgement

def remote_shutdown(self):
reactor.stop()

application = service.Application("copy_receiver")
internet.TCPServer(8800, pb.PBServerFactory(Receiver ())).setServiceParent(

service.IServiceCollection(application))

Source listing —copy receiver.tac

The sending side has a class calledLilyPond . To make this eligble for transport throughcallRemote (either
as an argument, a return value, or something referenced by either of those [like a dictionary value]), it must inherit
from one of the fourSerializable classes. In this section, we focus onCopyable . The copyable subclass of
LilyPond is calledCopyPond . We create an instance of it and send it throughcallRemote as an argument to
the receiver’sremote takePond method. The Jelly layer will serialize (“jelly”) that object as an instance with a
class name of “copysender.CopyPond” and some chunk of data that represents theobject’s state.pond. class .

module and pond. class . name are used to derive the class name string. The object’sgetState
ToCopy method is used to get the state: this is provided bypb.Copyable , and the default just retrievesself.

dict . This works just like the optional getstate method used bypickle . The pair of name and state are
sent over the wire to the receiver.

The receiving end defines a local class namedReceiverPond to represent incomingLilyPond instances. This
class derives from the sender’sLilyPond class (with a fully-qualified name ofcopy sender.LilyPond), which
specifies how we expect it to behave. We trust that this is the sameLilyPond class as the sender used. (At the very
least, we hope ours will be able to accept a state created by theirs). It also inherits frompb.RemoteCopy , which is
a requirement for all classes that act in this local-representative role (those which are given to the second argument of
setUnjellyableForClass). RemoteCopy provides the methods that tell the Jelly layer how to create the local
object from the incoming serialized state.

ThensetUnjellyableForClass is used to register the two classes. This has two effects: instances of the
remote class (the first argument) will be allowed in through the security layer, and instances of the local class (the
second argument) will be used to contain the state that is transmitted when the sender serializes the remote object.

When the receiver unserializes (“unjellies”) the object, itwill create an instance of the localReceiverPond
class, and hand the transmitted state (usually in the form ofa dictionary) to that object’ssetCopyableState
method. This acts just like thesetstate method thatpickle uses when unserializing an object.getState
ToCopy /setCopyableState are distinct from getstate / setstate to allow objects to be persisted
(across time) differently than they are transmitted (across [memory]space).

When this is run, it produces the following output:

CHAPTER 7. PERSPECTIVE BROKER 198

[-] twisted.spread.pb.PBServerFactory starting on 8800
[-] Starting factory <twisted.spread.pb.PBServerFactor y instance at
0x406159cc>
[Broker,0,127.0.0.1] got pond: <__builtin__.ReceiverPo nd instance at
0x406ec5ec>
[Broker,0,127.0.0.1] 7 frogs

% ./copy_sender.py
7 frogs
copy_sender.CopyPond
pond arrived safe and sound
Main loop terminated.
%

Controlling the Copied State

By overridinggetStateToCopy andsetCopyableState , you can control how the object is transmitted over
the wire. For example, you might want perform some data-reduction: pre-compute some results instead of sending all
the raw data over the wire. Or you could replace references toa local object on the sender’s side with markers before
sending, then upon receipt replace those markers with references to a receiver-side proxy that could perform the same
operations against a local cache of data.

Another good use forgetStateToCopy is to implement “local-only” attributes: data that is only accessible by
the local process, not to any remote users. For example, a.password attribute could be removed from the object
state before sending to a remote system. Combined with the fact thatCopyable objects return unchanged from a
round trip, this could be used to build a challenge-responsesystem (in fact PB does this withpb.Referenceable
objects to implement authorization as describedhere(page 205)).

WhatevergetStateToCopy returns from the sending object will be serialized and sent over the wire;set
CopyableState gets whatever comes over the wire and is responsible for setting up the state of the object it lives
in.

#! /usr/bin/python

from twisted.spread import pb

class FrogPond:
def __init__(self, numFrogs, numToads):

self.numFrogs = numFrogs
self.numToads = numToads

def count(self):
return self.numFrogs + self.numToads

class SenderPond(FrogPond, pb.Copyable):
def getStateToCopy(self):

d = self.__dict__.copy()
d[’frogsAndToads’] = d[’numFrogs’] + d[’numToads’]
del d[’numFrogs’]
del d[’numToads’]
return d

class ReceiverPond(pb.RemoteCopy):
def setCopyableState(self, state):

self.__dict__ = state
def count(self):

return self.frogsAndToads

pb.setUnjellyableForClass(SenderPond, ReceiverPond)

CHAPTER 7. PERSPECTIVE BROKER 199

Source listing —copy2classes.py

#! /usr/bin/python

from twisted.spread import pb, jelly
from twisted.python import log
from twisted.internet import reactor
from copy2_classes import SenderPond

class Sender:
def __init__(self, pond):

self.pond = pond

def got_obj(self, obj):
d = obj.callRemote("takePond", self.pond)
d.addCallback(self.ok).addErrback(self.notOk)

def ok(self, response):
print "pond arrived", response
reactor.stop()

def notOk(self, failure):
print "error during takePond:"
if failure.type == jelly.InsecureJelly:

print " InsecureJelly"
else:

print failure
reactor.stop()
return None

def main():
pond = SenderPond(3, 4)
print "count %d" % pond.count()

sender = Sender(pond)
factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
deferred = factory.getRootObject()
deferred.addCallback(sender.got_obj)
reactor.run()

if __name__ == ’__main__’:
main()

Source listing —copy2sender.py

#! /usr/bin/python

from twisted.application import service, internet
from twisted.internet import reactor
from twisted.spread import pb
import copy2_classes # needed to get ReceiverPond register ed with Jelly

class Receiver(pb.Root):
def remote_takePond(self, pond):

print " got pond:", pond

CHAPTER 7. PERSPECTIVE BROKER 200

print " count %d" % pond.count()
return "safe and sound" # positive acknowledgement

def remote_shutdown(self):
reactor.stop()

application = service.Application("copy_receiver")
internet.TCPServer(8800, pb.PBServerFactory(Receiver ())).setServiceParent(

service.IServiceCollection(application))

Source listing —copy2receiver.py

In this example, the classes are defined in a separate source file, which also sets up the binding between them.
The SenderPond andReceiverPond are unrelated save for this binding: they happen to implement the same
methods, but use different internal instance variables to accomplish them.

The recipient of the object doesn’t even have to import the class definition into their namespace. It is sufficient
that they import the class definition (and thus execute thesetUnjellyableForClass statement). The Jelly layer
remembers the class definition until a matching object is received. The sender of the object needs the definition, of
course, to create the object in the first place.

When run, thecopy2 example emits the following:

% twistd -n -y copy2_receiver.py
[-] twisted.spread.pb.PBServerFactory starting on 8800
[-] Starting factory <twisted.spread.pb.PBServerFactor y instance at
0x40604b4c>
[Broker,0,127.0.0.1] got pond: <copy2_classes.Receiver Pond instance at
0x406eb2ac>
[Broker,0,127.0.0.1] count 7

% ./copy2_sender.py
count 7
pond arrived safe and sound
Main loop terminated.
%

Things To Watch Out For

• The first argument tosetUnjellyableForClass must refer to the classas known by the sender. The
sender has no way of knowing about how your localimport statements are set up, and Python’s flexible
namespace semantics allow you to access the same class through a variety of different names. You must match
whatever the sender does. Having both ends import the class from a separate file, using a canonical module
name (no “sibiling imports”), is a good way to get this right,especially when both the sending and the receiving
classes are defined together, with thesetUnjellyableForClass immediately following them. (XXX: this
works, but does this really get the right names into the table? Or does it only work because both are defined in
the same (wrong) place?)

• The class that is sent must inherit frompb.Copyable . The class that is registered to receive it must inherit
from pb.RemoteCopy 9.

• The same class can be used to send and receive. Just have it inherit from bothpb.Copyable andpb.Remote
Copy. This will also make it possible to send the same class symmetrically back and forth over the wire. But
don’t get confused about when it is coming (and usingsetCopyableState) versus when it is going (using
getStateToCopy).

• InsecureJelly exceptions are raised by the receiving end. They will be delivered asynchronously to an
errback handler. If you do not add one to theDeferred returned bycallRemote , then you will never
receive notification of the problem.

9pb.RemoteCopy is actually defined asflavors.RemoteCopy , butpb.RemoteCopy is the preferred way to access it

CHAPTER 7. PERSPECTIVE BROKER 201

• The class that is derived frompb.RemoteCopy will be created using a constructorinit method that
takes no arguments. All setup must be performed in thesetCopyableState method. As the docstring on
RemoteCopy says, don’t implement a constructor that requires arguments in a subclass ofRemoteCopy .
XXX: check this, the code around jelly.Unjellier.unjelly:489 tries to avoid calling init just in case the
constructor requires args.

More Information

• pb.Copyable is mostly implemented intwisted.spread.flavors , and the docstrings there are the
best source of additional information.

• Copyable is also used intwisted.web.distrib to deliver HTTP requests to other programs for render-
ing, allowing subtrees of URL space to be delegated to multiple programs (on multiple machines).

• twisted.manhole.explorer also usesCopyable to distribute debugging information from the program
under test to the debugging tool.

7.4.5 pb.Cacheable

Sometimes the object you want to send to the remote process isbig and slow. “big” means it takes a lot of data (storage,
network bandwidth, processing) to represent its state. “slow” means that state doesn’t change very frequently. It may
be more efficient to send the full state only once, the first time it is needed, then afterwards only send the differences
or changes in state whenever it is modified. Thepb.Cacheable class provides a framework to implement this.

pb.Cacheable is derived frompb.Copyable , so it is based upon the idea of an object’s state being captured
on the sending side, and then turned into a new object on the receiving side. This is extended to have an object
“publishing” on the sending side (derived frompb.Cacheable), matched with one “observing” on the receiving
side (derived frompb.RemoteCache).

To effectively usepb.Cacheable , you need to isolate changes to your object into accessor functions (specifi-
cally “setter” functions). Your object needs to get controleverysingle time some attribute is changed10.

You derive your sender-side class frompb.Cacheable , and you add two methods:getStateToCacheAnd
ObserveFor andstoppedObserving . The first is called when a remote caching reference is first created, and
retrieves the data with which the cache is first filled. It alsoprovides an object called the “observer”11 that points at
that receiver-side cache. Every time the state of the objectis changed, you give a message to the observer, informing
them of the change. The other method,stoppedObserving , is called when the remote cache goes away, so that
you can stop sending updates.

On the receiver end, you make your cache class inherit frompb.RemoteCache , and implement theset
CopyableState as you would for apb.RemoteCopy object. In addition, you must implement methods to receive
the updates sent to the observer by thepb.Cacheable : these methods should have names that start withobserve ,
and match thecallRemote invocations from the sender side just as the usualremote * andperspective *
methods match normalcallRemote calls.

The first time a reference to thepb.Cacheable object is sent to any particular recipient, a sender-side Observer
will be created for it, and thegetStateToCacheAndObserveFor method will be called to get the current state
and register the Observer. The state which that returns is sent to the remote end and turned into a local representation
usingsetCopyableState just likepb.RemoteCopy , described above (in fact it inherits from that class).

After that, your “setter” functions on the sender side should call callRemote on the Observer, which causes
observe * methods to run on the receiver, which are then supposed to update the receiver-local (cached) state.

When the receiver stops following the cached object and the last reference goes away, thepb.RemoteCache
object can be freed. Just before it dies, it tells the sender side it no longer cares about the original object. Whenthat
reference count goes to zero, the Observer goes away and thepb.Cacheable object can stop announcing every
change that takes place. ThestoppedObserving method is used to tell thepb.Cacheable that the Observer
has gone away.

With the pb.Cacheable and pb.RemoteCache classes in place, bound together by a call topb.set
UnjellyableForClass , all that remains is to pass a reference to yourpb.Cacheable over the wire to the

10of course you could be clever and add a hook tosetattr , along with magical change-announcing subclasses of the usual builtin types,
to detect changes that result from normal “=” set operations.The semi-magical “property attributes” that were introducedin Python-2.2 could be
useful too. The result might be hard to maintain or extend, though.

11 this is actually aRemoteCacheObserver , but it isn’t very useful to subclass or modify, so simply treatit as a little demon that sits in your
pb.Cacheable class and helps you distribute change notifications. The only useful thing to do with it is to run itscallRemote method, which
acts just like a normalpb.Referenceable ’s method of the same name.

CHAPTER 7. PERSPECTIVE BROKER 202

remote end. The correspondingpb.RemoteCache object will automatically be created, and the matching methods
will be used to keep the receiver-side slave object in sync with the sender-side master object.

Example

Here is a complete example, in which theMasterDuckPond is controlled by the sending side, and theSlaveDuck
Pond is a cache that tracks changes to the master:

#! /usr/bin/python

from twisted.spread import pb

class MasterDuckPond(pb.Cacheable):
def __init__(self, ducks):

self.observers = []
self.ducks = ducks

def count(self):
print "I have [%d] ducks" % len(self.ducks)

def addDuck(self, duck):
self.ducks.append(duck)
for o in self.observers: o.callRemote(’addDuck’, duck)

def removeDuck(self, duck):
self.ducks.remove(duck)
for o in self.observers: o.callRemote(’removeDuck’, duck)

def getStateToCacheAndObserveFor(self, perspective, ob server):
self.observers.append(observer)
you should ignore pb.Cacheable-specific state, like self .observers
return self.ducks # in this case, just a list of ducks

def stoppedObserving(self, perspective, observer):
self.observers.remove(observer)

class SlaveDuckPond(pb.RemoteCache):
This is a cache of a remote MasterDuckPond
def count(self):

return len(self.cacheducks)
def getDucks(self):

return self.cacheducks
def setCopyableState(self, state):

print " cache - sitting, er, setting ducks"
self.cacheducks = state

def observe_addDuck(self, newDuck):
print " cache - addDuck"
self.cacheducks.append(newDuck)

def observe_removeDuck(self, deadDuck):
print " cache - removeDuck"
self.cacheducks.remove(deadDuck)

pb.setUnjellyableForClass(MasterDuckPond, SlaveDuckP ond)

Source listing —cacheclasses.py

#! /usr/bin/python

from twisted.spread import pb, jelly
from twisted.python import log
from twisted.internet import reactor
from cache_classes import MasterDuckPond

CHAPTER 7. PERSPECTIVE BROKER 203

class Sender:
def __init__(self, pond):

self.pond = pond

def phase1(self, remote):
self.remote = remote
d = remote.callRemote("takePond", self.pond)
d.addCallback(self.phase2).addErrback(log.err)

def phase2(self, response):
self.pond.addDuck("ugly duckling")
self.pond.count()
reactor.callLater(1, self.phase3)

def phase3(self):
d = self.remote.callRemote("checkDucks")
d.addCallback(self.phase4).addErrback(log.err)

def phase4(self, dummy):
self.pond.removeDuck("one duck")
self.pond.count()
self.remote.callRemote("checkDucks")
d = self.remote.callRemote("ignorePond")
d.addCallback(self.phase5)

def phase5(self, dummy):
d = self.remote.callRemote("shutdown")
d.addCallback(self.phase6)

def phase6(self, dummy):
reactor.stop()

def main():
master = MasterDuckPond(["one duck", "two duck"])
master.count()

sender = Sender(master)
factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
deferred = factory.getRootObject()
deferred.addCallback(sender.phase1)
reactor.run()

if __name__ == ’__main__’:
main()

Source listing —cachesender.py

#! /usr/bin/python

from twisted.application import service, internet
from twisted.internet import reactor
from twisted.spread import pb
import cache_classes

class Receiver(pb.Root):
def remote_takePond(self, pond):

self.pond = pond
print "got pond:", pond # a DuckPondCache
self.remote_checkDucks()

CHAPTER 7. PERSPECTIVE BROKER 204

def remote_checkDucks(self):
print "[%d] ducks: " % self.pond.count(), self.pond.getDu cks()

def remote_ignorePond(self):
stop watching the pond
print "dropping pond"
gc causes __del__ causes ’decache’ msg causes stoppedObse rving
self.pond = None

def remote_shutdown(self):
reactor.stop()

application = service.Application("copy_receiver")
internet.TCPServer(8800, pb.PBServerFactory(Receiver ())).setServiceParent(

service.IServiceCollection(application))

Source listing —cachereceiver.py

When run, this example emits the following:

% twistd -n -y cache_receiver.py
[-] twisted.spread.pb.PBServerFactory starting on 8800
[-] Starting factory <twisted.spread.pb.PBServerFactor y instance at
0x40615acc>
[Broker,0,127.0.0.1] cache - sitting, er, setting ducks
[Broker,0,127.0.0.1] got pond: <cache_classes.SlaveDuc kPond instance at
0x406eb5ec>
[Broker,0,127.0.0.1] [2] ducks: [’one duck’, ’two duck’]
[Broker,0,127.0.0.1] cache - addDuck
[Broker,0,127.0.0.1] [3] ducks: [’one duck’, ’two duck’, ’ ugly duckling’]
[Broker,0,127.0.0.1] cache - removeDuck
[Broker,0,127.0.0.1] [2] ducks: [’two duck’, ’ugly duckli ng’]
[Broker,0,127.0.0.1] dropping pond
%

% ./cache_sender.py
I have [2] ducks
I have [3] ducks
I have [2] ducks
Main loop terminated.
%

Points to notice:

• There is oneObserver for each remote program that holds an active reference. Multiple references inside
the same program don’t matter: the serialization layer notices the duplicates and does the appropriate reference
counting12.

• Multiple Observers need to be kept in a list, and all of them need to be updated when something changes. By
sending the initial state at the same time as you add the observer to the list, in a single atomic action that cannot
be interrupted by a state change, you insure that you can sendthe same status update to all the observers.

• The observer.callRemote calls can still fail. If the remote side has disconnected very recently and
stoppedObserving has not yet been called, you may get aDeadReferenceError . It is a good idea
to add an errback to thosecallRemote s to throw away such an error. This is a useful idiom:

observer.callRemote(’foo’, arg).addErrback(lambda f: N one)

(XXX: verify that this is actually a concern)

12this applies to multiple references through the sameBroker . If you’ve managed to make multiple TCP connections to the same program, you
deserve whatever you get.

CHAPTER 7. PERSPECTIVE BROKER 205

• getStateToCacheAndObserverFor must return some object that represents the current state ofthe ob-
ject. This may simply be the object’sdict attribute. It is a good idea to remove thepb.Cacheable -
specific members of it before sending it to the remote end. Thelist of Observers, in particular, should be left
out, to avoid dizzying recursive Cacheable references. Themind boggles as to the potential consequences of
leaving in such an item.

• A perspective argument is available togetStateToCacheAndObserveFor , as well asstopped
Observing . I think the purpose of this is to allow viewer-specific changes to the way the cache is updated. If
all remote viewers are supposed to see the same data, it can beignored.

XXX: understand, then explain use of varying cached state depending upon perspective.

More Information

• The best source for information comes from the docstrings intwisted.spread.flavors , wherepb.
Cacheable is implemented.

• twisted.manhole.explorer usesCacheable , and does some fairly interesting things with it. (XXX:
I’ve heard explorer is currently broken, it might not be a good example to recommend)

• Thespread.publish module also usesCacheable , and might be a source of further information.

7.5 Authentication with Perspective Broker

7.5.1 Overview

The examples shown inUsing Perspective Broker(page 181) demonstrate how to do basic remote method calls, but
provided no facilities for authentication. In this context, authentication is about who gets which remote references,
and how to restrict access to the “right” set of people or programs.

As soon as you have a program which offers services to multiple users, where those users should not be allowed
to interfere with each other, you need to think about authentication. Many services use the idea of an “account”, and
rely upon fact that each user has access to only one account. Twisted uses a system calledcred (page 153) to handle
authentication issues, and Perspective Broker has code to make it easy to implement the most common use cases.

7.5.2 Compartmentalizing Services

Imagine how you would write a chat server using PB. The first step might be aChatServer object which had a
bunch ofpb.RemoteReference s that point at user clients. Pretend that those clients offered aremote print
method which lets the server print a message on the user’s console. In that case, the server might look something like
this:

class ChatServer(pb.Referenceable):

def __init__(self):
self.groups = {} # indexed by name
self.users = {} # indexed by name

def remote_joinGroup(self, username, groupname):
if not self.groups.has_key(groupname):

self.groups[groupname] = []
self.groups[groupname].append(self.users[username])

def remote_sendMessage(self, from_username, groupname, message):
group = self.groups[groupname]
if group:

send the message to all members of the group
for user in group:

user.callRemote("print",
"<%s> says: %s" % (from_username,

message))

CHAPTER 7. PERSPECTIVE BROKER 206

For now, assume that all clients have somehow acquired apb.RemoteReference to thisChatServer object,
perhaps usingpb.Root andgetRootObject as described in theprevious chapter(page 181). In this scheme,
when a user sends a message to the group, their client runs something like the following:

remotegroup.callRemote("sendMessage", "alice", "Hi, my name is alice.")

Incorrect Arguments

You’ve probably seen the first problem: users can trivially spoof each other. We depend upon the user to pass a correct
value in their “username” argument, and have no way to tell ifthey’re lying or not. There is nothing to prevent Alice
from modifying her client to do:

remotegroup.callRemote("sendMessage", "bob", "i like po rk")

much to the horror of Bob’s vegetarian friends.13

(In general, learn to get suspicious if you see any argument of a remotely-invokable method described as “must be
X”)

The best way to fix this is to keep track of the user’s name locally, rather than asking them to send it to the server
with each message. The best place to keep state is in an object, so this suggests we need a per-user object. Rather than
choosing an obvious name14, let’s call this theUser class.

class User(pb.Referenceable):
def __init__(self, username, server, clientref):

self.name = username
self.server = server
self.remote = clientref

def remote_joinGroup(self, groupname):
self.server.joinGroup(groupname, self)

def remote_sendMessage(self, groupname, message):
self.server.sendMessage(self.name, groupname, message)

def send(self, message):
self.remote.callRemote("print", message)

class ChatServer:
def __init__(self):

self.groups = {} # indexed by name
def joinGroup(self, groupname, user):

if not self.groups.has_key(groupname):
self.groups[groupname] = []

self.groups[groupname].append(user)
def sendMessage(self, from_username, groupname, message):

group = self.groups[groupname]
if group:

send the message to all members of the group
for user in group:

user.send("<%s> says: %s" % (from_username, message))

Again, assume that each remote client gets access to a singleUser object, which is created with the proper
username.

Note how theChatServer object has no remote access: it isn’t evenpb.Referenceable anymore. This
means that all access to it must be mediated through other objects, with code that is under your control.

As long as Alice only has access to her ownUser object, she can no longer spoof Bob. The only way for her
to invokeChatServer.sendMessage is to call herUser object’s remote sendMessage method, and that
method uses its own state to provide thefrom username argument. It doesn’t give her any way to change that state.

13Apparently Alice is one of those weirdos who has nothing better to do than to try and impersonate Bob. She will lie to her chatclient, send
incorrect objects to remote methods, even rewrite her local client code entirely to accomplish this juvenile prank. Given this adversarial relationship,
one must wonder why she and Bob seem to spend so much time together: their adventures are clearly documented by the cryptographic literature.

14the obvious name is clearlyServerSidePerUserObjectWhichNobodyElseHasAccessTo , but because python makes everything
else so easy to read, it only seems fair to make your audience work for something

CHAPTER 7. PERSPECTIVE BROKER 207

This restriction is important. TheUser object is able to maintain its own integrity because there isa wall between
the object and the client: the client cannot inspect or modify internal state, like the.name attribute. The only way
through this wall is via remote method invocations, and the only control Alice has over those invocations is when they
get invoked and what arguments they are given.

Note:
No object can maintain its integrity against local threats:by design, Python offers no mechanism for

class instances to hide their attributes, and once an intruder has a copy ofself. dict , they can do
everything the original object was able to do.

Unforgeable References

Now suppose you wanted to implement group parameters, for example a mode in which nobody was allowed to talk
about mattresses because some users were sensitive and calming them down after someone said “mattress” is a hassle
that were best avoided altogether. Again, per-group state implies a per-group object. We’ll go out on a limb and call
this theGroup object:

class User(pb.Referenceable):
def __init__(self, username, server, clientref):

self.name = username
self.server = server
self.remote = clientref

def remote_joinGroup(self, groupname, allowMattress=Tr ue):
return self.server.joinGroup(groupname, self)

def send(self, message):
self.remote.callRemote("print", message)

class Group(pb.Referenceable):
def __init__(self, groupname, allowMattress):

self.name = groupname
self.allowMattress = allowMattress
self.users = []

def remote_send(self, from_user, message):
if not self.allowMattress and message.find("mattress") ! = -1:

raise ValueError, "Don’t say that word"
for user in self.users:

user.send("<%s> says: %s" % (from_user.name, message))
def addUser(self, user):

self.users.append(user)

class ChatServer:
def __init__(self):

self.groups = {} # indexed by name
def joinGroup(self, groupname, user, allowMattress):

if not self.groups.has_key(groupname):
self.groups[groupname] = Group(groupname, allowMattres s)

self.groups[groupname].addUser(user)
return self.groups[groupname]

This example takes advantage of the fact thatpb.Referenceable objects sent over a wire can be returned to
you, and they will be turned into references to the same object that you originally sent. The client cannot modify the
object in any way: all they can do is point at it and invoke itsremote * methods. Thus, you can be sure that the
.name attribute remains the same as you left it. In this case, the client code would look something like this:

class ClientThing(pb.Referenceable):
def remote_print(self, message):

print message
def join(self):

d = self.remoteUser.callRemote("joinGroup", "#twisted" ,

CHAPTER 7. PERSPECTIVE BROKER 208

allowMattress=False)
d.addCallback(self.gotGroup)

def gotGroup(self, group):
group.callRemote("send", self.remoteUser, "hi everybod y")

TheUser object is sent from the server side, and is turned into apb.RemoteReference when it arrives at the
client. The client sends it back toGroup.remote send , and PB turns it back into a reference to the originalUser
when it gets there.Group.remote send can then use its.name attribute as the sender of the message.

Note:
Third party references (there aren’t any)
This technique also relies upon the fact that thepb.Referenceable reference canonlycome from

someone who holds a correspondingpb.RemoteReference . The design of the serialization mecha-
nism (implemented intwisted.spread.jelly : pb, jelly, spread.. get it? Also look for “banana”
and “marmalade”. What other networking framework can claim API names based on sandwich ingredi-
ents?) makes it impossible for a client to obtain a referencethat they weren’t explicitly given. References
passed over the wire are given id numbers and recorded in a per-connection dictionary. If you didn’t give
them the reference, the id number won’t be in the dict, and no amount of guessing by a malicious client
will give them anything else. The dict goes away when the connection is dropped, further limiting the
scope of those references.

Futhermore, it is not possible for Bob to sendhisUser reference to Alice (perhaps over some other
PB channel just between the two of them). Outside the contextof Bob’s connection to the server, that
reference is just a meaningless number. To prevent confusion, PB will tell you if you try to give it away:
when you try to hand apb.RemoteReference to a third party, you’ll get an exception (implemented
with an assert in pb.py:364 RemoteReference.jellyFor).

This helps the security model somewhat: only the client you gave the reference to can cause any
damage with it. Of course, the client might be a brainless zombie, simply doing anything some third
party wants. When it’s not proxyingcallRemote invocations, it’s probably terrorizing the living and
searching out human brains for sustenance. In short, if you don’t trust them, don’t give them that reference.

And remember that everything you’ve ever given them over that connection can come back to you.
If expect the client to invoke your method with some object A that you sent to them earlier, and instead
they send you object B (that you also sent to them earlier), and you don’t check it somehow, then you’ve
just opened up a security hole (we’ll see an example of this shortly). It may be better to keep such
objects in a dictionary on the server side, and have the client send you an index string instead. Doing
it that way makes it obvious that they can send you anything they want, and improves the chances that
you’ll remember to implement the right checks. (This is exactly what PB is doing underneath, with a
per-connection dictionary ofReferenceable objects, indexed by a number).

And, of course, you have to make sure you don’t accidentally hand out a reference to the wrong object.

But again, note the vulnerability. If Alice holds aRemoteReference to anyobject on the server side that has a
.name attribute, she can use that name as a spoofed “from” parameter. As a simple example, what if her client code
looked like:

class ClientThing(pb.Referenceable):
def join(self):

d = self.remoteUser.callRemote("joinGroup", "#twisted")
d.addCallback(self.gotGroup)

def gotGroup(self, group):
group.callRemote("send", from_user=group, "hi everybod y")

This would let her send a message that appeared to come from “#twisted” rather than “Alice”. If she joined a group
that happened to be named “bob” (perhaps it is the “How To Be Bob” channel, populated by Alice and countless others,
a place where they can share stories about their best impersonating-Bob moments), then she would be able to emit a
message that looked like “<bob> says: hi there”, and she has accomplished her lifelong goal.

Argument Typechecking

There are two techniques to close this hole. The first is to have your remotely-invokable methods do type-checking on
their arguments: ifGroup.remote send assertedisinstance(from user, User) then Alice couldn’t use
non-User objects to do her spoofing, and hopefully the rest ofthe system is designed well enough to prevent her from
obtaining access to somebody else’s User object.

CHAPTER 7. PERSPECTIVE BROKER 209

Objects as Capabilities

The second technique is to avoid having the client send you the objects altogether. If they don’t send you anything,
there is nothing to verify. In this case, you would have to have a per-user-per-group object, in which theremote send
method would only take a singlemessage argument. TheUserGroup object is created with references to the only
User andGroup objects that it will ever use, so no lookups are needed:

class UserGroup(pb.Referenceable):
def __init__(self, user, group):

self.user = user
self.group = group

def remote_send(self, message):
self.group.send(self.user.name, message)

class Group:
def __init__(self, groupname, allowMattress):

self.name = groupname
self.allowMattress = allowMattress
self.users = []

def send(self, from_user, message):
if not self.allowMattress and message.find("mattress") ! = -1:

raise ValueError, "Don’t say that word"
for user in self.users:

user.send("<%s> says: %s" % (from_user.name, message))
def addUser(self, user):

self.users.append(user)

The only message-sending method Alice has left isUserGroup.remote send , and it only accepts a message:
there are no remaining ways to influence the “from” name.

In this model, each remotely-accessible object representsa very small set of capabilities. Security is achieved by
only granting a minimal set of abilities to each remote user.

PB provides a shortcut which makes this technique easier to use. TheViewable class will be discussedbelow
(page 218).

7.5.3 Avatars and Perspectives

In Twisted’scred (page 153) system, an “Avatar” is an object that lives on the “server” side (defined here as the side
farthest from the human who is trying to get something done) which lets the remote user get something done. The
avatar isn’t really a particular class, it’s more like a description of a role that some object plays, as in “the Foo object
here is acting as the user’s avatar for this particular service”. Generally, the remote user has some way of getting their
avatar to run some code. The avatar object may enforce some security checks, and provide additional data, then call
other methods which get things done.

The two pieces in the cred puzzle (for any protocol, not just PB) are: “what serves as the Avatar?”, and “how does
the user get access to it?”.

For PB, the first question is easy. The Avatar is a remotely-accessible object which can run code: this is a perfect
description ofpb.Referenceable and its subclasses. We shall defer the second question untilthe next section.

In the example above, you can think of theChatServer andGroup objects as a service. TheUser object is
the user’s server-side representative: everything the user is capable of doing is done by running one of its methods.
Anything that the server wants to do to the user (change theirgroup membership, change their name, delete their pet
cat, whatever) is done by manipulating theUser object.

There are multiple User objects living in peace and harmony around the ChatServer. Each has a different point
of view on the services provided by the ChatServer and the Groups: each may belong to different groups, some
might have more permissions than others (like the ability tocreate groups). These different points of view are called
“Perspectives”. This is the origin of the term “Perspective” in “Perspective Broker”: PB provides and controls (i.e.
“brokers”) access to Perspectives.

Once upon a time, these local-representative objects were actually calledpb.Perspective . But this has
changed with the advent of the rewritten cred system, and nowthe more generic term for a local representative object

CHAPTER 7. PERSPECTIVE BROKER 210

is an Avatar. But you will still see reference to “Perspective” in the code, the docs, and the module names15. Just
remember that perspectives and avatars are basically the same thing.

Despite all we’ve beentelling you(page 153) about how Avatars are more of a concept than an actual class, the
base class from which you can create your server-side avatar-ish objects is, in fact, namedpb.Avatar 16. These
objects behave very much likepb.Referenceable . The only difference is that instead of offering “remoteFOO”
methods, they offer “perspectiveFOO” methods.

The other way in whichpb.Avatar differs frompb.Referenceable is that the avatar objects are designed
to be the first thing retrieved by a cred-using remote client.Just asPBClientFactory.getRootObject gives
the client access to apb.Root object (which can then provide access to all kinds of other objects), PBClient
Factory.login gives client access to apb.Avatar object (which can return other references).

So, the first half of using cred in your PB application is to create an Avatar object which implements
perspective methods and is careful to do useful things for the remote userwhile remaining vigilant against
being tricked with unexpected argument values. It must alsobe careful to never give access to objects that the user
should not have access to, whether by returning them directly, returning objects which contain them, or returning
objects which can be asked (remotely) to provide them.

The second half is how the user gets apb.RemoteReference to your Avatar. As explainedelsewhere(page
153), Avatars are obtained from a Realm. The Realm doesn’t deal with authentication at all (usernames, pass-
words, public keys, challenge-response systems, retinal scanners, real-time DNA sequencers, etc). It simply takes
an “avatarID” (which is effectively a username) and returnsan Avatar object. The Portal and its Checkers deal with
authenticating the user: by the time they are done, the remote user has proved their right to access the avatarID that is
given to the Realm, so the Realm can return a remotely-controllable object that has whatever powers you wish to grant
to this particular user.

For PB, the realm is expected to return apb.Avatar (or anything which implementspb.IPerspective ,
really, but there’s no reason to not return apb.Avatar subclass). This object will be given to the client just like a
pb.Root would be without cred, and the user can get access to other objects through it (if you let them).

The basic idea is that there is a separate IPerspective-implementing object (i.e. the Avatar subclass) (i.e. the
“perspective”) for each user, andonly the authorized user gets a remote reference to that object. You can store whatever
permissions or capabilities the user possesses in that object, and then use them when the user invokes a remote method.
You give the user access to the perspective object instead ofthe objects that do the real work.

7.5.4 Perspective Examples

Here is a brief example of using a pb.Avatar. Most of the support code is magic for now: we’ll explain it later.

One Client

#! /usr/bin/python

from zope.interface import implements

from twisted.spread import pb
from twisted.cred import checkers, portal
from twisted.internet import reactor

class MyPerspective(pb.Avatar):
def __init__(self, name):

self.name = name
def perspective_foo(self, arg):

print "I am", self.name, "perspective_foo(",arg,") calle d on", self

class MyRealm:

15We could just go ahead and rename Perspective Broker to be Avatar Broker, but 1) that would cause massive compatibility problems, and
2) “AB” doesn’t fit into the whole sandwich-themed naming schemenearly as well as “PB” does. If we changed it to AB, we’d probably have
to change Banana to be CD (CoderDecoder), and Jelly to be EF (EncapsulatorFragmentor). twisted.spread would then have tobe renamed
twisted.alphabetsoup, and then the whole food-pun thing would start all over again.

16The avatar-ish class is namedpb.Avatar becausepb.Perspective was already taken, by the (now obsolete) oldcred perspective-
ish class. It is a pity, but it simply wasn’t possible both replacepb.Perspective in-placeand maintain a reasonable level of backwards-
compatibility.

CHAPTER 7. PERSPECTIVE BROKER 211

implements(portal.IRealm)
def requestAvatar(self, avatarId, mind, * interfaces):

if pb.IPerspective not in interfaces:
raise NotImplementedError

return pb.IPerspective, MyPerspective(avatarId), lambd a:None

p = portal.Portal(MyRealm())
p.registerChecker(

checkers.InMemoryUsernamePasswordDatabaseDontUse(us er1="pass1"))
reactor.listenTCP(8800, pb.PBServerFactory(p))
reactor.run()

Source listing —pb5server.py

#! /usr/bin/python

from twisted.spread import pb
from twisted.internet import reactor
from twisted.cred import credentials

def main():
factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
def1 = factory.login(credentials.UsernamePassword("us er1", "pass1"))
def1.addCallback(connected)
reactor.run()

def connected(perspective):
print "got perspective ref:", perspective
print "asking it to foo(12)"
perspective.callRemote("foo", 12)

main()

Source listing —pb5client.py

Ok, so that wasn’t really very exciting. It doesn’t accomplish much more than the first PB example, and used a lot
more code to do it. Let’s try it again with two users this time.

Note:
When the client runslogin to request the Perspective, they can provide it with an optionalclient

argument (which must be apb.Referenceable object). If they do, then a reference to that object will
be handed to the realm’srequestAvatar in themind argument.

The server-side Perspective can use it to invoke remote methods on something in the client, so that
the client doesn’t always have to drive the interaction. In achat server, the client object would be the one
to which “display text” messages were sent. In a board game server, this would provide a way to tell the
clients that someone has made a move, so they can update theirgame boards.

Two Clients

#! /usr/bin/python

from zope.interface import implements

from twisted.spread import pb
from twisted.cred import checkers, portal
from twisted.internet import reactor

CHAPTER 7. PERSPECTIVE BROKER 212

class MyPerspective(pb.Avatar):
def __init__(self, name):

self.name = name
def perspective_foo(self, arg):

print "I am", self.name, "perspective_foo(",arg,") calle d on", self

class MyRealm:
implements(portal.IRealm)
def requestAvatar(self, avatarId, mind, * interfaces):

if pb.IPerspective not in interfaces:
raise NotImplementedError

return pb.IPerspective, MyPerspective(avatarId), lambd a:None

p = portal.Portal(MyRealm())
c = checkers.InMemoryUsernamePasswordDatabaseDontUse(user1="pass1",

user2="pass2")
p.registerChecker(c)
reactor.listenTCP(8800, pb.PBServerFactory(p))
reactor.run()

Source listing —pb6server.py

#! /usr/bin/python

from twisted.spread import pb
from twisted.internet import reactor
from twisted.cred import credentials

def main():
factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
def1 = factory.login(credentials.UsernamePassword("us er1", "pass1"))
def1.addCallback(connected)
reactor.run()

def connected(perspective):
print "got perspective1 ref:", perspective
print "asking it to foo(13)"
perspective.callRemote("foo", 13)

main()

Source listing —pb6client1.py

#! /usr/bin/python

from twisted.spread import pb
from twisted.internet import reactor

from twisted.spread import pb
from twisted.internet import reactor
from twisted.cred import credentials

def main():

CHAPTER 7. PERSPECTIVE BROKER 213

factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
def1 = factory.login(credentials.UsernamePassword("us er2", "pass2"))
def1.addCallback(connected)
reactor.run()

def connected(perspective):
print "got perspective2 ref:", perspective
print "asking it to foo(14)"
perspective.callRemote("foo", 14)

main()

Source listing —pb6client2.py

While pb6server.py is running, try starting pb6client1, then pb6client2. Compare the argument passed by the
.callRemote() in each client. You can see how each client gets connected to adifferent Perspective.

How that example worked

Let’s walk through the previous example and see what was going on.
First, we created a subclass calledMyPerspective which is our server-side Avatar. It implements a

perspective foo method that is exposed to the remote client.
Second, we created a realm (an object which implementsIRealm , and therefore implementsrequestAvatar).

This realm manufacturesMyPerspective objects. It makes as many as we want, and names each one with the
avatarID (a username) that comes out of the checkers. This MyRealm object returns two other objects as well, which
we will describe later.

Third, we created a portal to hold this realm. The portal’s job is to dispatch incoming clients to the credential
checkers, and then to request Avatars for any which survive the authentication process.

Fourth, we made a simple checker (an object which implementsIChecker) to hold valid user/password pairs.
The checker gets registered with the portal, so it knows who to ask when new clients connect. We use a checker named
InMemoryUsernamePasswordDatabaseDontUse , which suggests that 1: all the username/password pairs are
kept in memory instead of being saved to a database or something, and 2: you shouldn’t use it. The admonition against
using it is because there are better schemes: keeping everything in memory will not work when you have thousands
or millions of users to keep track of, the passwords will be stored in the .tap file when the application shuts down
(possibly a security risk), and finally it is a nuisance to addor remove users after the checker is constructed.

Fifth, we create apb.PBServerFactory to listen on a TCP port. This factory knows how to connect the
remote client to the Portal, so incoming connections will behanded to the authentication process. Other protocols
(non-PB) would do something similar: the factory that creates Protocol objects will give those objects access to the
Portal so authentication can take place.

On the client side, apb.PBClientFactory is created (asbefore(page 181)) and attached to a TCP connection.
When the connection completes, the factory will be asked to produce a Protocol, and it will create a PB object.
Unlike the previous chapter, where we used.getRootObject , here we usefactory.login to initiate the cred
authentication process. We provide acredentials object, which is the client-side agent for doing our half of
the authentication process. This process may involve several messages: challenges, responses, encrypted passwords,
secure hashes, etc. We give our credentials object everything it will need to respond correctly (in this case, a username
and password, but you could write a credential that used public-key encryption or even fancier techniques).

login returns a Deferred which, when it fires, will return apb.RemoteReference to the remote avatar. We
can then docallRemote to invoke aperspective foo method on that Avatar.

Anonymous Clients

#!/usr/bin/python
Copyright (c) 2007 Twisted Matrix Laboratories.
See LICENSE for details.

"""

CHAPTER 7. PERSPECTIVE BROKER 214

Implement the realm for and run on port 8800 a PB service which allows both
anonymous and username/password based access.

Successful username/password-based login requests given an instance of
MyPerspective with a name which matches the username with wh ich they
authenticated. Success anonymous login requests are given an instance of
MyPerspective with the name "Anonymous".
"""

from sys import stdout

from zope.interface import implements

from twisted.python.log import startLogging
from twisted.cred.checkers import ANONYMOUS, AllowAnony mousAccess
from twisted.cred.checkers import InMemoryUsernamePass wordDatabaseDontUse
from twisted.cred.portal import IRealm, Portal
from twisted.internet import reactor
from twisted.spread.pb import Avatar, IPerspective, PBSe rverFactory

class MyPerspective(Avatar):
"""
Trivial avatar exposing a single remote method for demonstr ative
purposes. All successful login attempts in this example wil l result in
an avatar which is an instance of this class.

@type name: C{str}
@ivar name: The username which was used during login or C{"An onymous"}
if the login was anonymous (a real service might want to avoid the
collision this introduces between anonoymous users and aut henticated
users named "Anonymous").
"""
def __init__(self, name):

self.name = name

def perspective_foo(self, arg):
"""
Print a simple message which gives the argument this method w as
called with and this avatar’s name.
"""
print "I am %s. perspective_foo(%s) called on %s." % (

self.name, arg, self)

class MyRealm(object):
"""
Trivial realm which supports anonymous and named users by cr eating
avatars which are instances of MyPerspective for either.
"""
implements(IRealm)

def requestAvatar(self, avatarId, mind, * interfaces):
if IPerspective not in interfaces:

raise NotImplementedError("MyRealm only handles IPerspe ctive")

CHAPTER 7. PERSPECTIVE BROKER 215

if avatarId is ANONYMOUS:
avatarId = "Anonymous"

return IPerspective, MyPerspective(avatarId), lambda: N one

def main():
"""
Create a PB server using MyRealm and run it on port 8800.
"""
startLogging(stdout)

p = Portal(MyRealm())

Here the username/password checker is registered.
c1 = InMemoryUsernamePasswordDatabaseDontUse(user1="p ass1", user2="pass2")
p.registerChecker(c1)

Here the anonymous checker is registered.
c2 = AllowAnonymousAccess()
p.registerChecker(c2)

reactor.listenTCP(8800, PBServerFactory(p))
reactor.run()

if __name__ == ’__main__’:
main()

Source listing —pbAnonServer.py

#!/usr/bin/python
Copyright (c) 2007 Twisted Matrix Laboratories.
See LICENSE for details.

"""
Client which will talk to the server run by pbAnonServer.py, logging in
either anonymously or with username/password credentials .
"""

from sys import stdout

from twisted.python.log import err, startLogging
from twisted.cred.credentials import Anonymous, Usernam ePassword
from twisted.internet import reactor
from twisted.internet.defer import gatherResults
from twisted.spread.pb import PBClientFactory

def error(why, msg):
"""
Catch-all errback which simply logs the failure. This isn’t expected to
be invoked in the normal case for this example.
"""
err(why, msg)

CHAPTER 7. PERSPECTIVE BROKER 216

def connected(perspective):
"""
Login callback which invokes the remote "foo" method on the p erspective
which the server returned.
"""
print "got perspective1 ref:", perspective
print "asking it to foo(13)"
return perspective.callRemote("foo", 13)

def finished(ignored):
"""
Callback invoked when both logins and method calls have fini shed to shut
down the reactor so the example exits.
"""
reactor.stop()

def main():
"""
Connect to a PB server running on port 8800 on localhost and lo g in to
it, both anonymously and using a username/password it will r ecognize.
"""
startLogging(stdout)
factory = PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)

anonymousLogin = factory.login(Anonymous())
anonymousLogin.addCallback(connected)
anonymousLogin.addErrback(error, "Anonymous login fail ed")

usernameLogin = factory.login(UsernamePassword("user1 ", "pass1"))
usernameLogin.addCallback(connected)
usernameLogin.addErrback(error, "Username/password lo gin failed")

bothDeferreds = gatherResults([anonymousLogin, usernam eLogin])
bothDeferreds.addCallback(finished)

reactor.run()

if __name__ == ’__main__’:
main()

Source listing —pbAnonClient.py

pbAnonServer.py implements a server based on pb6server.py, extending it to permit anonymous logins in ad-
dition to authenticated logins. AAllowAnonymousAccess checker and a InMemoryUsernamePassword
DatabaseDontUse checker are registered and the client’s choice of credentials object determines which is used to
authenticate the login. In either case, the realm will be called on to create an avatar for the login.AllowAnonymous
Access always produces anavatarId of ANONYMOUS.

On the client side, the only change is the use of an instance ofAnonymous when callingPBClientFactory.
login .

CHAPTER 7. PERSPECTIVE BROKER 217

7.5.5 Using Avatars

Avatar Interfaces

The first element of the 3-tuple returned byrequestAvatar indicates which Interface this Avatar implements. For
PB avatars, it will always bepb.IPerspective , because that’s the only interface these avatars implement.

This element is present becauserequestAvatar is actually presented with a list of possible Interfaces. The
question being posed to the Realm is: “do you have an avatar for (avatarID) that can implement one of the following
set of Interfaces?”. Some portals and checkers might give a list of Interfaces and the Realm could pick; the PB code
only knows how to do one, so we cannot take advantage of this feature.

Logging Out

The third element of the 3-tuple is a zero-argument callable, which will be invoked by the protocol when the connection
has been lost. We can use this to notify the Avatar when the client has lost its connection. This will be described in
more detail below.

Making Avatars

In the example above, we create Avatars upon request, duringrequestAvatar . Depending upon the service, these
Avatars might already exist before the connection is received, and might outlive the connection. The Avatars might
also accept multiple connections.

Another possibility is that the Avatars might exist ahead oftime, but in a different form (frozen in a pickle and/or
saved in a database). In this case,requestAvatar may need to perform a database lookup and then do something
with the result before it can provide an avatar. In this case,it would probably return a Deferred so it could provide the
real Avatar later, once the lookup had completed.

Here are some possible implementations ofMyRealm.requestAvatar :

pre-existing, static avatars
def requestAvatar(self, avatarID, mind, * interfaces):

assert pb.IPerspective in interfaces
avatar = self.avatars[avatarID]
return pb.IPerspective, avatar, lambda:None

database lookup and unpickling
def requestAvatar(self, avatarID, mind, * interfaces):

assert pb.IPerspective in interfaces
d = self.database.fetchAvatar(avatarID)
d.addCallback(self.doUnpickle)
return pb.IPerspective, d, lambda:None

def doUnpickle(self, pickled):
avatar = pickle.loads(pickled)
return avatar

everybody shares the same Avatar
def requestAvatar(self, avatarID, mind, * interfaces):

assert pb.IPerspective in interfaces
return pb.IPerspective, self.theOneAvatar, lambda:None

anonymous users share one Avatar, named users each get thei r own
def requestAvatar(self, avatarID, mind, * interfaces):

assert pb.IPerspective in interfaces
if avatarID == checkers.ANONYMOUS:

return pb.IPerspective, self.anonAvatar, lambda:None
else:

return pb.IPerspective, self.avatars[avatarID], lambda :None

anonymous users get independent (but temporary) Avatars
named users get their own persistent one

CHAPTER 7. PERSPECTIVE BROKER 218

def requestAvatar(self, avatarID, mind, * interfaces):
assert pb.IPerspective in interfaces
if avatarID == checkers.ANONYMOUS:

return pb.IPerspective, MyAvatar(), lambda:None
else:

return pb.IPerspective, self.avatars[avatarID], lambda :None

The last example, note that the newMyAvatar instance is not saved anywhere: it will vanish when the connection
is dropped. By contrast, the avatars that live in theself.avatars dictionary will probably get persisted into the
.tap file along with the Realm, the Portal, and anything else that is referenced by the top-level Application object. This
is an easy way to manage saved user profiles.

Connecting and Disconnecting

It may be useful for your Avatars to be told when remote clients gain (and lose) access to them. For example, and
Avatar might be updated by something in the server, and if there are clients attached, it should update them (through
the “mind” argument which lets the Avatar do callRemote on the client).

One common idiom which accomplishes this is to have the Realmtell the avatar that a remote client has just
attached. The Realm can also ask the protocol to let it know when the connection goes away, so it can then inform the
Avatar that the client has detached. The third member of therequestAvatar return tuple is a callable which will
be invoked when the connection is lost.

class MyPerspective(pb.Avatar):
def __init__(self):

self.clients = []
def attached(self, mind):

self.clients.append(mind)
print "attached to", mind

def detached(self, mind):
self.clients.remove(mind)
print "detached from", mind

def update(self, message):
for c in self.clients:

c.callRemote("update", message)

class MyRealm:
def requestAvatar(self, avatarID, mind, * interfaces):

assert pb.IPerspective in interfaces
avatar = self.avatars[avatarID]
avatar.attached(mind)
return pb.IPerspective, avatar, lambda a=avatar:a.detac hed(mind)

Viewable

Once you haveIPerspective objects (i.e. the Avatar) to represent users, theViewable class can come into
play. This class behaves a lot likeReferenceable : it turns into aRemoteReference when sent over the wire,
and certain methods can be invoked by the holder of that reference. However, the methods that can be called have
names that start withview instead ofremote , and those methods are always called with an extraperspective
argument that points to the Avatar through which the reference was sent:

class Foo(pb.Viewable):
def view_doFoo(self, perspective, arg1, arg2):

pass

This is useful if you want to let multiple clients share a reference to the same object. Theview methods can
use the “perspective” argument to figure out which client is calling them. This gives them a way to do additional
permission checks, do per-user accounting, etc.

This is the shortcut which makes per-user-per-group capability objects much easier to use. Instead of creating
such per-(user,group) objects, you just have per-group objects which inherit frompb.Viewable , and give the user

CHAPTER 7. PERSPECTIVE BROKER 219

references to them. The localpb.Avatar object will automatically show up as the “perspective” argument in the
view * method calls, give you a chance to involve the Avatar in the process.

Chat Server with Avatars

Combining all the above techniques, here is an example chat server which uses a fixed set of identities (say, for the
three members of your bridge club, who hang out in “#NeedAFourth” hoping that someone will discover your server,
guess somebody’s password, break in, join the group, and also be available for a game next saturday afternoon).

#! /usr/bin/python

from zope.interface import implements

from twisted.cred import portal, checkers
from twisted.spread import pb
from twisted.internet import reactor

class ChatServer:
def __init__(self):

self.groups = {} # indexed by name

def joinGroup(self, groupname, user, allowMattress):
if not self.groups.has_key(groupname):

self.groups[groupname] = Group(groupname, allowMattres s)
self.groups[groupname].addUser(user)
return self.groups[groupname]

class ChatRealm:
implements(portal.IRealm)
def requestAvatar(self, avatarID, mind, * interfaces):

assert pb.IPerspective in interfaces
avatar = User(avatarID)
avatar.server = self.server
avatar.attached(mind)
return pb.IPerspective, avatar, lambda a=avatar:a.detac hed(mind)

class User(pb.Avatar):
def __init__(self, name):

self.name = name
def attached(self, mind):

self.remote = mind
def detached(self, mind):

self.remote = None
def perspective_joinGroup(self, groupname, allowMattre ss=True):

return self.server.joinGroup(groupname, self, allowMat tress)
def send(self, message):

self.remote.callRemote("print", message)

class Group(pb.Viewable):
def __init__(self, groupname, allowMattress):

self.name = groupname
self.allowMattress = allowMattress
self.users = []

def addUser(self, user):
self.users.append(user)

def view_send(self, from_user, message):
if not self.allowMattress and message.find("mattress") ! = -1:

raise ValueError, "Don’t say that word"

CHAPTER 7. PERSPECTIVE BROKER 220

for user in self.users:
user.send("<%s> says: %s" % (from_user.name, message))

realm = ChatRealm()
realm.server = ChatServer()
checker = checkers.InMemoryUsernamePasswordDatabaseDo ntUse()
checker.addUser("alice", "1234")
checker.addUser("bob", "secret")
checker.addUser("carol", "fido")
p = portal.Portal(realm, [checker])

reactor.listenTCP(8800, pb.PBServerFactory(p))
reactor.run()

Source listing —chatserver.py

Notice that the client usesperspective joinGroup to both join a group and retrieve aRemoteReference
to theGroup object. However, the reference they get is actually to a special intermediate object called apb.View
Point . When they dogroup.callRemote("send", "message") , their avatar is inserted into the argument
list thatGroup.view send actually sees. This lets the group get their username out of the Avatar without giving
the client an opportunity to spoof someone else.

The client side code that joins a group and sends a message would look like this:

#! /usr/bin/python

from twisted.spread import pb
from twisted.internet import reactor
from twisted.cred import credentials

class Client(pb.Referenceable):

def remote_print(self, message):
print message

def connect(self):
factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
def1 = factory.login(credentials.UsernamePassword("al ice", "1234"),

client=self)
def1.addCallback(self.connected)
reactor.run()

def connected(self, perspective):
print "connected, joining group #lookingForFourth"
this perspective is a reference to our User object
d = perspective.callRemote("joinGroup", "#lookingForFo urth")
d.addCallback(self.gotGroup)

def gotGroup(self, group):
print "joined group, now sending a message to all members"
’group’ is a reference to the Group object (through a ViewPo int)
d = group.callRemote("send", "You can call me Al.")
d.addCallback(self.shutdown)

def shutdown(self, result):
reactor.stop()

CHAPTER 7. PERSPECTIVE BROKER 221

Client().connect()

Source listing —chatclient.py

Chapter 8

Manual Pages

8.1 MANHOLE.1

8.1.1 NAME

manhole - Connect to a Twisted Manhole service

8.1.2 SYNOPSIS

manhole

8.1.3 DESCRIPTION

manhole is a GTK interface to Twisted Manhole services. You can execute python code as if at an interactive Python
console inside a running Twisted process with this.

8.1.4 AUTHOR

Written by Chris Armstrong, copied from Moshe Zadka’s “faucet” manpage.

8.1.5 REPORTING BUGS

To report a bug, visithttp://twistedmatrix.com/bugs/

8.1.6 COPYRIGHT

Copyright c©2000 Matthew W. Lefkowitz This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

222

CHAPTER 8. MANUAL PAGES 223

8.2 MKTAP.1

8.2.1 NAME

mktap - create twisted.servers

8.2.2 SYNOPSIS

mktap[options] apptype[applicationoption]...
mktapapptype–help

8.2.3 DESCRIPTION

The–helpprints out a usage message to standard output.

–debug, -d Show debug information for plugin loading.

–progress, -p Show progress information for plugin loading.

–encrypted, -e Encrypt file before writing (will make the extension of the resultant file begin with ’e’).

–uid, -u<uid> Application belongs to this uid, and should run with its permissions.

–gid, -d<gid> Application belongs to this gid, and should run with its permissions.

–append, -a<file> Append given servers to given file, instead of creating a new one. File should be be a tap file.

–appname, -n<name> Use the specified name as the process name when the application is run withtwistd(1). This
option also causes some initialization code to be duplicated whentwistd(1)is run.

–type, -t<type> Specify the output file type. Available types are: pickle - (default) Output as a python pickle file.
xml - Output as a .tax XML file. source - Output as a .tas (AOT Python source) file.apptypeCan be ’web’,
’portforward’, ’toc’, ’coil’, ’words’, ’manhole’, ’im’, ’ news’, ’socks’, ’telnet’, ’parent’, ’sibling’, ’ftp’, and
’mail’. Each of those support different options.

8.2.4 portforward options

-h, –host<host> Proxy connections to<host>

-d, –destport<port> Proxy connections to<port> on remote host.

-p, –port<port> Listen locally on<port>

8.2.5 web options

-u, –user Makes a server with ˜/publichtml and ˜/.twistd-web-pb support for users.

–personal Instead of generating a webserver, generate a ResourcePublisher which listens on ˜/.twistd-web-pb

–path<path> <path> is either a specific file or a directory to be set as the root of the web server. Use this if you
have a directory full of HTML, cgi, php3, epy, or rpy files or any other files that you want to be served up raw.

-p, –port<port> <port> is a number representing which port you want to start the server on.

-m, –mime type<mimetype> <mimetype> is the default MIME type to use for files in a –path web server when
none can be determined for a particular extension. The default is ’text/html’.

–allow ignore ext Specify whether or not a request for ’foo’ should return ’foo.ext’. Default is off.

–ignore-ext.<extension> Specify that a request for ’foo’ should return ’foo.<extension>’.

-t, –telnet<port> Run a telnet server on<port>, for additional configuration later.

-i, –index<name> Use an index name other than “index.html”

CHAPTER 8. MANUAL PAGES 224

–https<port> Port to listen on for Secure HTTP.

-c, –certificate<filename> SSL certificate to use for HTTPS. [default: server.pem]

-k, –privkey<filename> SSL certificate to use for HTTPS. [default: server.pem]

–processor<ext>=<class name> Adds a processor to those file names. (Only usable if after–path)

–resource-script<script name> Sets the root as a resource script. This script will be re-evaluated on every request.

This creates a web.tap file that can be used by twistd. If you specify no arguments, it will be a demo webserver
that has the Test class from twisted.web.test in it.

8.2.6 toc options

-p<port> <port> is a number representing which port you want to start the server on.

8.2.7 mail options

-r, –relay<ip>,<port>=<queue directory> Relay mail to all unknown domains through given IP and port, using
queue directory as temporary place to place files.

-d, –domain<domain>=<path> generate an SMTP/POP3 virtual maildir domain named “domain” which saves to
“path”

-u, –username<name>=<password> add a user/password to the last specified domains

-b, –bounceto postmasterundelivered mails are sent to the postmaster, instead of being rejected.

-p, –pop<port> <port> is a number representing which port you want to start the pop3server on.

-s, –smtp<port> <port> is a number representing which port you want to start the smtpserver on.

This creates a mail.tap file that can be used by twistd(1)

8.2.8 telnet options

-p, –port<port> Run the telnet server on<port>

-u, –username<name> set the username to<name>

-w, –password<password> set the password to<password>

8.2.9 socks options

-i, –interface<interface> Listen on interface<interface>

-p, –port<port> Run the SOCKSv4 server on<port>

-l, –log<filename> log connection data to<filename>

8.2.10 ftp options

-a, –anonymousAllow anonymous logins

-3, –thirdparty Allow third party connections

–otp Use one time passwords (OTP)

-p, –port<port> Run the FTP server on<port>

-r, –root<path> Define the local root of the FTP server

–anonymoususer<username> Define the the name of the anonymous user

CHAPTER 8. MANUAL PAGES 225

8.2.11 manhole options

-p, –port<port> Run the manhole server on<port>

-u, –user<name> set the username to<name>

-w, –password<password> set the password to<password>

8.2.12 words options

-p, –port<port> Run the Words server on<port>

-i, –irc<port> Run IRC server on port<port>

-w, –web<port> Run web server on port<port>

8.2.13 AUTHOR

Written by Moshe Zadka, based on mktap’s help messages

8.2.14 REPORTING BUGS

To report a bug, visithttp://twistedmatrix.com/bugs/

8.2.15 COPYRIGHT

Copyright c©2000 Matthew W. Lefkowitz This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

8.2.16 SEE ALSO

twistd(1)

CHAPTER 8. MANUAL PAGES 226

8.3 TAP2DEB.1

8.3.1 NAME

tap2deb - create Debian packages which wrap .tap files

8.3.2 SYNOPSIS

tap2deb[options]

8.3.3 DESCRIPTION

Create a ready to upload Debian package in “.build”

-u, –unsigned do not sign the Debian package

-t, –tapfile<tapfile> Build the application around the given .tap (default twistd.tap)

-y, –type<type> The configuration has the given type . Allowable types aretap, source, xml andpython. The first
three types aremktap(1)output formats, while the last one is a manual building of application (seetwistd(1), the
-y option).

-p, –protocol<protocol> The name of the protocol this will be used to serve. This is intended as a part of the
description. Default is the name of the tapfile, minus any extensions.

-d, –debfile<debfile> The name of the debian package. Default is ’twisted-’+protocol.

-V, –set-version<version> The version of the Debian package. The default is 1.0

-e, –description<description> The one-line description. Default is uninteresting.

-l, –long description<long description> A multi-line description. Default is explanation about this being an auto-
matic package created from tap2deb.

-m, –maintainer<maintainer> The maintainer, as “Name Lastname<email address>”. This will go in the meta-
files, as well as be used as the id to sign the package.

-v, –version Output version information and exit.

8.3.4 AUTHOR

Written by Moshe Zadka, based on twistd’s help messages

8.3.5 REPORTING BUGS

To report a bug, visithttp://twistedmatrix.com/bugs/

8.3.6 COPYRIGHT

Copyright c©2000 Matthew W. Lefkowitz This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

8.3.7 SEE ALSO

mktap(1)

CHAPTER 8. MANUAL PAGES 227

8.4 TAP2RPM.1

8.4.1 NAME

tap2rpm - create RPM packages which wrap .tap files

8.4.2 SYNOPSIS

tap2rpm[options]

8.4.3 DESCRIPTION

Create a set of RPM/SRPM packages in the current directory

-u, –unsigned do not sign the RPM package

-t, –tapfile<tapfile> Build the application around the given .tap (default twistd.tap)

-y, –type<type> The configuration has the given type . Allowable types aretap, source, xml andpython. The first
three types aremktap(1)output formats, while the last one is a manual building of application (seetwistd(1), the
-y option).

-p, –protocol<protocol> The name of the protocol this will be used to serve. This is intended as a part of the
description. Default is the name of the tapfile, minus any extensions.

-d, –rpmfile<rpmfile> The name of the RPM package. Default is ’twisted-’+protocol.

-V, –set-version<version> The version of the RPM package. The default is 1.0

-e, –description<description> The one-line description. Default is uninteresting.

-l, –long description<long description> A multi-line description. Default is explanation about this being an auto-
matic package created from tap2rpm.

-m, –maintainer<maintainer> The maintainer, as “Name Lastname<email address>”. This will go in the meta-
files, as well as be used as the id to sign the package.

-v, –version Output version information and exit.

8.4.4 AUTHOR

tap2rpm was written by Sean Reifschneider based on tap2deb by Moshe Zadka. This man page is heavily based on
the tap2deb man page by Moshe Zadka.

8.4.5 REPORTING BUGS

To report a bug, visithttp://twistedmatrix.com/bugs/

8.4.6 COPYRIGHT

Copyright c©2000 Matthew W. Lefkowitz This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

8.4.7 SEE ALSO

mktap(1)

CHAPTER 8. MANUAL PAGES 228

8.5 TAPCONVERT.1

8.5.1 NAME

tapconvert - convert Twisted configurations from one formatto another

8.5.2 SYNOPSIS

tapconvert-i input -o output[-f input-type] [-t output-type] [-d] [-e]
tapconvert–help

8.5.3 DESCRIPTION

The–helpprints out a usage message to standard output.

–in, -i<input file> The name of the input configuration.

–out, -o<output file> The name of the output configuration.

–typein, -f<input type> The type of the input file. Can be either ’guess’, ’python’, ’pickle’, ’xml’, or ’source’.
Default is ’guess’.

–typeout, -t<output type> The type of the output file. Can be either ’pickle’, ’xml’, or ’source’. Default is ’source’.

–decrypt, -d Decrypt input.

–encrypt, -e Encrypt output.

8.5.4 AUTHOR

Written by Moshe Zadka, based on tapconvert’s help messages

8.5.5 REPORTING BUGS

To report a bug, visithttp://twistedmatrix.com/bugs/

8.5.6 COPYRIGHT

Copyright c©2000 Matthew W. Lefkowitz This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

8.5.7 SEE ALSO

mktap(1)

CHAPTER 8. MANUAL PAGES 229

8.6 TRIAL.1

8.6.1 NAME

trial - run unit tests

8.6.2 SYNOPSIS

trial [options] [[file—package—module—TestCase—testmethod]...]
trial –help

8.6.3 DESCRIPTION

trial loads and executes a suite of unit tests, obtained frommodules, packages and files listed on the command line.
trial will take either filenames or fully qualified Python names as arguments. Thus ’trial myproject/foo.py’, ’trial

myproject.foo’ and ’trial myproject.foo.SomeTestCase.test method’ are all valid ways to invoke trial.

-b, –debug Run the tests in the Python debugger. Also does post-mortem debugging on exceptions.

-B, –debug-stacktracesReport Deferred creation and callback stack traces

–coverageGenerate coverage information intrial temp/coverage/. Requires Python 2.3 or higher.

–disablegcDisable the garbage collector. I don’t know why this is in trial.

-e, –rterrors Print tracebacks to standard output as soon as they occur

–force-gc Run gc.collect() before and after each test case. This can beused to isolate errors that occur when objects
get collected. This option would be the default, except it makes tests run about ten times slower.

-h, –help Print a usage message to standard output, then exit.

–help-reportersPrint a list of valid reporters to standard output, then exit.

–help-reactorsList the names of possibly available reactors.

-l, –logfile<logfile> Direct the log to a different file. The default file is ’test.log’. <logfile> is relative to trial temp.

-n, –dry-run Go through all the tests and make them pass without running.

-N, –no-recurseBy default, trial recurses through packages to find every module inside every subpackage. Unless,
that is, you specify this option.

–nopm Don’t automatically jump into debugger for post-mortem analysis of exceptions. Only usable in conjunction
with –debug.

–profile I don’t know what this option does.

-r, –reactor<reactor> Choose which reactor to use. See –help-reactors for a list.

–recursionlimit Set Python’s recursion limit. I don’t know why this is in trial.

–reporter Select the reporter to use for Trial’s output. Use the –help-reporters option to see a list of valid reporters.

–spewPrint an insanely verbose log of everything that happens. Useful when debugging freezes or locks in complex
code.

–tbformat<format> Format to display tracebacks with. Acceptable values are ’default’, ’brief’ and ’verbose’. ’brief’
produces tracebacks that play nicely with Emacs’ GUD.

–temp-directory<directory> WARNING: Do not use this options unless you know what you are doing. By default,
trial creates a directory calledtrial temp under the current working directory. When trial runs, itfirst deletes
this directory, then creates it, then changes into the directory to run the tests. The log file and any coverage files
are stored here. Use this option if you wish to have trial run in a directory other thantrial temp. Be warned,
trial will deletethe directory before re-creating it.

CHAPTER 8. MANUAL PAGES 230

–testmodule<filename> Ask trial to look into<filename> and run any tests specified using the Emacs-style buffer
variable ’test-case-name’.

–unclean-warningsAs of Twisted 8.0, trial will report an error if the reactor isleft unclean at the end of the test. This
option is provided to assist in migrating from Twisted 2.5 toTwisted 8.0 and later. Enabling this option will turn
the errors into warnings.

-u, –until-failure Keep looping the tests until one of them raises an error or a failure. This is particularly useful for
reproducing intermittent failures.

–without-module<modulenames> Simulate the lack of the specified comma-separated list of modules. This makes
it look like the modules are not present in the system, causing tests to check the behavior for that configuration.

-z, –random [<seed>] Run the tests in random order using the specified seed.

8.6.4 AUTHOR

Written by Jonathan M. Lange

8.6.5 REPORTING BUGS

To report a bug, visithttp://twistedmatrix.com/bugs/

8.6.6 COPYRIGHT

Copyright c©2003-2007 Twisted Matrix Laboratories This is free software; see the source for copying conditions.
There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

CHAPTER 8. MANUAL PAGES 231

8.7 TWISTD.1

8.7.1 NAME

twistd - run Twisted applications (TACs, TAPs)

8.7.2 SYNOPSIS

twistd[options]

8.7.3 DESCRIPTION

Read an twisted.application.service.Application out of afile and runs it.

-n, –nodaemonDon’t daemonize (stay in foreground)

-q, –quiet No-op for backwards compatibility.

-p, –profile<profile output> Run the application under the profiler, dumping results to the specified file.

–profiler<profiler name> Specify the profiler to use, default to the ’hotshot’ profiler.

–savestatsSave the Stats object rather than the text output of the profiler.

-b, –debug Run the application in the Python Debugger (implies nodaemon option). Sending a SIGUSR2 signal to
the process will drop it into the debugger.

-o, –no save Do not save shutdown state

–originalname Behave as though the specified Application has no process name set, and run with the standard process
name (the python binary in most cases).

-l, –logfile<logfile> Log to a specified file, - for stdout (default twistd.log). Thelog file will be rotated on SIGUSR1.

–pidfile<pidfile> Save pid in specified file (default twistd.pid)

–chroot<directory> Chroot to a supplied directory before running (default – don’t chroot). Chrooting is done before
changing the current directory.

-d, –rundir<directory> Change to a supplied directory before running (default .)

-r, –reactor<reactor> Choose which reactor to use. See –help-reactors for a list.

–help-reactorsList the names of possibly available reactors.

–spewWrite an extremely verbose log of everything that happens. Useful for debugging freezes or locks in complex
code.

-f, –file<tap file> Read the given .tap file (default twistd.tap)

-x, –xml<tax file> Load an Application from the given .tax (XML) file.

-s, –source<tas file> Load an Application from the given .tas (AOT Python source) file.

-y, –python<python file> Use the variable “application” from the given Python file. This setting, if given, overrides
-f. This option implies–no save.

-g, –plugin<plugin name> Read config.tac from a plugin package, as with-y.

–syslogLog to syslog, not to file.

–prefix<prefix> Use the specified prefix when logging to logfile. Default is “twisted”.

Note that iftwistd is run as root, the working directory isnotsearched for Python modules.

CHAPTER 8. MANUAL PAGES 232

8.7.4 AUTHOR

Written by Moshe Zadka, based on twistd’s help messages

8.7.5 REPORTING BUGS

To report a bug, visithttp://twistedmatrix.com/bugs/

8.7.6 COPYRIGHT

Copyright c©2001-2008 Twisted Matrix Laboratories. This is free software; see the source for copying conditions.
There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

8.7.7 SEE ALSO

mktap(1)

Chapter 9

Appendix

9.1 The Twisted FAQ

9.1.1 General

What is “Twisted”?

Please see Twisted1

Why should I use Twisted?

See The Twisted Advantage2

I have a problem “getting” Twisted.

Did you check the HOWTO collection? There are so many documents there that they might overwhelm you... try
starting from the index, reading through the overviews and seeing if there seems to be a chapter which explains what
you need to. You can try reading the PostScript or PDF formatted books, inside the distribution. And, remember, the
source will be with you... always.

Why are there so many parts and subprojects? Isn’t Twisted just Twisted?

As of version 2.0, Twisted was split up into many subprojects, because it was getting too much to handle in a monolithic
release, and we believe breaking the project into smaller chunks will help people understand the things they need to
understand (There used to be a FAQ entry here asking “Why is Twisted so big?”). More information is available in the
Split FAQ3.

9.1.2 Stability

Does the 1.0 release mean that all of Twisted’s APIs are stable?

No, only specific parts of Twisted are stable, i.e. we only promise backwards compatibility for some parts of Twisted.
While these APIs may be extended, they will not change in ways that break existing code that uses them.

While other parts of Twisted are not stable, we will however doour best to make sure that there is backwards
compatibility for these parts as well. In general, the more the module or package are used, and the closer they are to
being feature complete, the more we will concentrate on providing backwards compatibility when API changes take
place.

1http://twistedmatrix.com/products/twisted
2http://twistedmatrix.com/services/twisted-advantage
3http://twistedmatrix.com/products/splitfaq

233

CHAPTER 9. APPENDIX 234

Which parts of Twisted are stable?

Only modules explictily marked as such can be considered stable. Semi-stable modules may change, but not in a large
way and some sort of backwards-compatibily will probably beprovided. If no comment about API stability is present,
assume the module is unstable.

In Twisted 1.1,most of twisted.internet, .cred and .application are completely stable(excepting of course code
marked as deprecated).

But as always, the only accurate way of knowing a module’s stability is reading the module’s docstrings.

9.1.3 Installation

I run mktap (from site-packages/twisted/scripts/mktap.py) and nothing happens!

Don’t run scripts out ofsite-packages . The Windows installer should install executable scripts to someplace like
C: \Python22 \scripts \, *nix installers put them in$PREFIX/bin , which should be in your $PATH.

Why do the Debian packages for Alphas and Release Candidates have weird versions containing old version
numbers?

An example: 1.0.6+1.0.7rc1-1
In Debian versioning, 1.0.7rc1 isgreater than1.0.7. This means that if you install a package with Version:1.0.7rc1,

and then that package gets a new version 1.0.7, apt will not upgrade it for you, because 1.0.7 looks like an older version.
So, we prefix the previous version to the actual version. 1.0.6+1.0.7rc1 isless than1.0.7.

9.1.4 Core Twisted

How can I access self.factory from my Protocol’s init ?

You can’t. A Protocol doesn’t have a Factory when it is created. Instead, you should probably be doing that in your
Protocol’sconnectionMade method.

Similarly you shouldn’t be doing “real” work, like connecting to databases, in a Factory’sinit either. Instead,
do that instartFactory .

SeeWriting Servers(page 13) andWriting Clients(page 17) for more details.

Where can I find out how to write Twisted servers?

Try Writing Servers(page 13).

When I try to install my reactor, I get errors about a reactor al ready being installed. What gives?

Here’s the rule - installing a reactor should always be thefirst thing you do, and I do mean first. Importing other stuff
before you install the reactor can break your code.

Tkinter and wxPython support, as they do not install a new reactor, can be done at any point, IIRC.

twistd won’t load my .tap file! What’s this Ephemeral nonsense?

When the pickled application state cannot be loaded for some reason, it is common to get a rather opaque error like
so:

% twistd -f test2.tap

Failed to load application: global name ’initRun’ is not def ined

The rest of the error will try to explain how to solve this problem, but a short comment first: this error is indeed
terse – but there is probably more data available elsewhere –namely, thetwistd.log file. Open it up to see the full
exception.

The error might also look like this:

Failed to load application: <twisted.persisted.styles.E phemeral instance at
0x82450a4> is not safe for unpickling

CHAPTER 9. APPENDIX 235

To load a.tap file, as with any unpickling operation, all the classes used by all the objects inside it must be
accessible at the time of the reload. This may require the PYTHONPATH variable to have the same directories as were
available when the application was first pickled.

A common problem occurs in single-file programs which define afew classes, then create instances of those classes
for use in a server of some sort. If the class is used directly,the name of the class will be recorded in the.tap file
as something like main .MyProtocol . When the application is reloaded, it will look for the class definition in

main , which probably won’t have it. The unpickling routines needto know the module name, and therefore the
source file, from which the class definition can be loaded.

The way to fix this is to import the class from the same source file that defines it: if your source file is called
myprogram.py and defines a class calledMyProtocol , you will need to do afrom myprogram import My
Protocol before (and in the same namespace as) the code that references the MyProtocol class. This makes it
important to write the module cleanly: doing animport myprogram should only define classes, and should not
cause any other subroutines to get run. All the code that builds the Application and saves it out to a.tap file must be
inside anif name == ’ main ’ clause to make sure it is not run twice (or more).

When you import the class from the module using an “external” name, that name will be recorded in the pickled
.tap file. When the.tap is reloaded bytwistd , it will look for myprogram.py to provide the definition ofMy
Protocol .

Here is a short example of this technique:

file dummy.py
from twisted.internet import protocol
class Dummy(protocol.Protocol): pass
if __name__ == ’__main__’:

from twisted.application import service, internet
a = service.Application("dummy")
import dummy
f = protocol.Factory()
f.protocol = dummy.Dummy # Note! Not "Dummy"
internet.TCPServer(2000, f).setServiceParent(a)
a.save()

I get “Interrupted system call” errors when I use os.popen2. How do I read results from a sub-process in
Twisted?

You should be usingreactor.spawnProcess (seeinterfaces.IReactorProcess.spawnProcess).
There’s also a convenience function,getProcessOutput , in twisted.internet.utils .

Why don’t my spawnProcess programs see my environment variables?

spawnProcess defaults to clearing the environment of child processes as asecurity feature. You can either provide
a dictionary with exactly the name-value pairs you want the child to use, or you can simply pass inos.environ to
inherit the complete environment.

My Deferred or DeferredList never fires, so my program just mysteriously hangs! What’s wrong?

It really depends on what your program is doing, but the most common cause is this: itis firing – but it’s an error, not
a success, and you have forgotten to add anerrback(page 238), so nothing happens. Always add errbacks!

The reason Deferred can’t automatically show your errors isbecause a Deferred can still have callbacks and
errbacks added to it even after a result is available – so we have no reasonable place to put a logging call that wouldn’t
result in spurious tracebacks thatare handled later on. There is a facility for printing tracebacks when the Deferreds
are garbage collected – call defer.setDebugging(True) to enable it.

My exceptions and tracebacks aren’t getting printed!

See previous question.

CHAPTER 9. APPENDIX 236

How do I use Deferreds to make my blocking code non-blocking?

You don’t. Deferreds don’t magically turn a blocking function call into a non-blocking one. A Deferred is just a
simple object that represents adeferred result, with methods to allow convenient adding of callbacks. (This is a
common misunderstanding; suggestions on how to make this clearer in theDeferred Execution(page 100) howto are
welcome!)

If you have blocking code that you want to use non-blockinglyin Twisted, either rewrite it to be non-blocking, or
run it in a thread. There is a convenience function,deferToThread , to help you with the threaded approach – but
be sure to readUsing Threads in Twisted(page 135).

I get “exceptions.ValueError: signal only works in main thr ead” when I try to run my Twisted program! What’s
wrong?

The default reactor, by default, will install signal handlers to catch events like Ctrl-C, SIGTERM, and so on. However,
you can’t install signal handlers from non-main threads in Python, which means thatreactor.run() will cause an
error. Pass theinstallSignalHandlers=0 keyword argument toreactor.run to work around this.

I’m trying to stop my program with sys.exit(), but Twisted seems to catch it! How do I exit my program?

Usereactor.stop() instead. This will cleanly shutdown the reactor.

How do I find out the IP address of the other end of my connection?

The.transport object (which implements theITransport interface) offers a pair of methods namedgetPeer
and getHost . getPeer will give you a tuple that describes the address of the systemat the other end of the
connection. For example:

class MyProtocol(protocol.Protocol):
def connectionMade(self):

print "connection from", self.transport.getPeer()

Why don’t Twisted’s network methods support Unicode objectsas well as strings?

In general, such methods (egFileDescriptor ’s write) are designed to send bytes over the network. These
methods use non-Unicode string objects as a container for the bytes that they send and receive.

Unicode objects are not byte-based and are an abstraction used for representing strings of human readable text. In
order to send Unicode strings using these methods, you should explicitly specify a byte-based encoding for them, for
example:s.encode("utf-8") and explicitly decode them at the receiving end.

Twisted cannot choose an encoding for you at this level: yourencoding choice will be protocol specific and may
need to be specified in the message you send (for example, HTTPheaders include a encoding specification).

For a more complete discussion of the distinction between Unicode strings and specific encodings of Unicode
strings, see the following articles:

• Dan Sugalski’s What the heck is: A string4; and

• Joel Spolsky’s The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About
Unicode and Character Sets (No Excuses!)5.

9.1.5 Requests and Contributing

Twisted is cool, but I need to add more functionality.

Great! Read our the docs, and if you’re feeling generous, contribute patches.

I have a patch. How do I maximize the chances the Twisted developers will include it?

Use unified diff. Either usesvn diff or, better yet, make a clean checkout and usediff -urN between them.
Make sure your patch applies cleanly. In your post to the mailing list, make sure it is inlined and without any word
wrapping.

4http://www.sidhe.org/˜dan/blog/archives/000255.html
5http://www.joelonsoftware.com/articles/Unicode.html

CHAPTER 9. APPENDIX 237

And to whom do I send it?

Add it to the bug tracker6, and if it’s an urgent or important issue you may want to tell the mailing list7. about the issue
you added

My company would love to use Twisted, but it’s missing featureX, can you implement it?

You have 3 options:

• Pay one of the Twisted developers to implement the feature.

• Implement the feature yourself.

• Add a feature request to our bug tracker. We will try to implement the feature, but there are no guarantees when
and if this will happen.

9.1.6 Documentation

Twisted really needs documentation for X, Y or Z - how come it’s not documented?.

Twisted’s documentation is a work in progress, and one that we would appreciate assistance with. If you notice a gap
or flaw in the documentation, please file a bug in the Twisted bug tracker8 and mark it as having topic ’documentation’.
Patches appreciated.

Wow the Twisted documentation is nice! I want my docs to look like that too!

Now you can, with Lore9.

9.1.7 Communicating with us

There’s a bug in Twisted. Where do I report it?

Unless it is a show-stopper bug, we usually won’t fix it if it’salready fixed in Subversion10, so check if it is fixed
there. If it is not fixed in Subversion, you should add it to thebug tracker11, including pertinent information about the
bug (hopefully as much information needed to reproduce it: OS, Subversion versions of any important files, Python
version, code you wrote or things you did to trigger the bug, etc. If the bug appears to be severe, you should also raise
it on the mailing list12, with a pointer to the issue already filed in the bug tracker.

Where do I go for help?

Ask for help where the Twisted team hangs out13

How do I e-mail a Twisted developer?

First, note that in many cases this is the wrong thing to do: ifyou have a question about a part of Twisted, it’s usually
better to e-mail the mailing list. However, the preferred e-mail addresses for all Twisted developers are listed in the
file “CREDITS” in the Subversion repository.

6http://twistedmatrix.com/bugs/
7http://twistedmatrix.com/cgi-bin/mailman/listinfo/twisted-python
8http://twistedmatrix.com/bugs/
9http://twistedmatrix.com/projects/lore

10http://twistedmatrix.com/developers/cvs
11http://twistedmatrix.com/bugs/
12http://twistedmatrix.com/cgi-bin/mailman/listinfo/twisted-python
13http://twistedmatrix.com/services/online-help

CHAPTER 9. APPENDIX 238

9.2 Twisted Glossary

adaptee An object that has been adapted, also called “original”. SeeAdapter(page 238).

Adapter An object whose sole purpose is to implement an Interface foranother object. SeeInterfaces and Adapters
(page 147).

Application A twisted.application.service.Application . There are HOWTOs oncreating and
manipulating(page 141) them as a system-administrator, as well asusing(page 159) them in your code.

Avatar (from Twisted Cred(this page)) business logic for specific user. For example, in PB (page 239) these are
perspectives, in pop3 these are mailboxes, and so on.

Banana The low-level data marshalling layer ofTwisted Spread(page 239). Seetwisted.spread.banana .

Broker A twisted.spread.pb.Broker , the object request broker forTwisted Spread(page 239).

cache A way to store data in readily accessible place for later reuse. Caching data is often done because the data is
expensive to produce or access. Caching data risks being stale, or out of sync with the original data.

component A special kind of (persistent)Adapter that works with atwisted.python.components.
Componentized . See alsoInterfaces and Adapters(page 147).

Componentized A Componentized object is a collection of information, separated into domain-specific or role-
specific instances, that all stick together and refer to eachother. Each object is anAdapter , which, in the
context of Componentized, we call “components”. See alsoInterfaces and Adapters(page 147).

conch Twisted’s SSH implementation.

Connector Object used to interface between client connections and protocols, usually used with atwisted.
internet.protocol.ClientFactory to give you control over how a client connection reconnects.See
twisted.internet.interfaces.IConnector andWriting Clients(page 17).

Consumer An object that consumes data from aProducer(page 239). Seetwisted.internet.interfaces.
IConsumer .

Cred Twisted’s authentication API,twisted.cred . SeeIntroduction to Twisted Cred(page 153) andTwisted Cred
usage(page 205).

credentials A username/password, public key, or some other informationused for authentication.

credential checker Where authentication actually happens. SeeICredentialChecker .

CVSToys A nifty set of tools for CVS, available at http://twistedmatrix.com/users/acapnotic/wares/code/CVSToys/.

Deferred A instance oftwisted.internet.defer.Deferred , an abstraction for handling chains of call-
backs and error handlers (“errbacks”). See theDeferring Execution(page 100) HOWTO.

Enterprise Twisted’s RDBMS support. It containstwisted.enterprise.adbapi for asynchronous access to
any standard DB-API 2.0 module, andtwisted.enterprise.row , a “Relational Object Wrapper(page
239)”. SeeIntroduction to Twisted Enterprise(page 173) andTwisted Enterprise Row Objects(page 175) for
more details.

errback A callback attached to aDeferred(this page) with.addErrback to handle errors.

Factory In general, an object that constructs other objects. In Twisted, a Factory usually refers to atwisted.
internet.protocol.Factory , which constructsProtocol(page 239) instances for incoming or outgoing
connections. SeeWriting Servers(page 13) andWriting Clients(page 17).

Failure Basically, an asynchronous exception that contains traceback information; these are used for passing errors
through asynchronous callbacks.

im, t-im Abbreviation of “(Twisted)Instance Messenger(page 239)”.

CHAPTER 9. APPENDIX 239

Instance MessengerInstance Messenger is a multi-protocol chat program that comes with Twisted. It can communi-
cate via TOC with the AOL servers, via IRC, as well as viaPB (page 239) withTwisted Words(page 240). See
twisted.im .

Interface A class that defines and documents methods that a class conforming to that interface needs to have. A
collection of core twisted.internet interfaces can be found in twisted.internet.interfaces . See also
Interfaces and Adapters(page 147).

Jelly The serialization layer forTwisted Spread(this page), although it can be used seperately from TwistedSpread as
well. It is similar in purpose to Python’s standardpickle module, but is more network-friendly, and depends
on a separate marshaller (Banana(page 238), in most cases). Seetwisted.spread.jelly .

Lore Lore14 is Twisted’s documentation system. The source format is a subset of XHTML, and output formats include
HTML and LaTeX.

Manhole A debugging/administration interface to a Twisted application.

Microdom A partial DOM implementation usingSUX (this page). It is simple and pythonic, rather than strictly
standards-compliant. Seetwisted.web.microdom .

Names Twisted’s DNS server, found intwisted.names .

Nevow The successor toWoven(page 240), a web framework available at nevow.com15.

PB Abbreviation of “Perspective Broker(this page)”.

Perspective Broker The high-level object layer of TwistedSpread(this page), implementing semantics for method
calling and object copying, caching, and referencing. Seetwisted.spread.pb .

Portal Gluescredential checkers(page 238) andrealm(this page)s together.

Producer An object that generates data a chunk at a time, usually to be processed by aConsumer(page 238). See
twisted.internet.interfaces.IProducer .

Protocol In general each network connection has its own Protocol instance to manage connection-specific state.
There is a collection of standard protocol implementationsin twisted.protocols . See alsoWriting
Servers(page 13) andWriting Clients(page 17).

PSU There is no PSU.

Reactor The core event-loop of a Twisted application. SeeReactor Basics(page 90).

Reality See “Twisted Reality(page 240)”

realm (in Twisted Cred(page 238)) storesavatars(page 238) and perhaps general business logic. SeeIRealm .

Resource A twisted.web.resource.Resource , which are served by Twisted Web. Resources can be as
simple as a static file on disk, or they can have dynamically generated content.

ROW RelationalObjectWrapper, an object-oriented interface to a relational database. SeeTwisted Enterprise Row
Objects(page 175).

Service A twisted.application.service.Service . SeeApplication howto(page 159) for a description
of how they relate toApplications(page 238).

Spread Twisted Spread16 is Twisted’s remote-object suite. It consists of three layers: Perspective Broker(this page),
Jelly (this page) andBanana.(page 238) SeeWriting Applications with Perspective Broker(page 178).

SUX Small UncomplicatedXML, Twisted’s simple XML parser written in pure Python. Seetwisted.
protocols.sux .

TAP TwistedApplicationPickle, or simply just aTwistedAPplication. A serialised application that created with
mktap and runnable bytwistd . SeeUsing the Utilities(page 141).

Trial twisted.trial , Twisted’s unit-testing framework, modelled after pyunit17. See alsoWriting tests for
14http://twistedmatrix.com/projects/lore/
15http://nevow.com/
16http://twistedmatrix.com/products/spread
17http://pyunit.sourceforge.net/

CHAPTER 9. APPENDIX 240

Twisted code(page 171).

Twisted Matrix Laboratories The team behind Twisted. http://twistedmatrix.com/.

Twisted Reality In days of old, the Twisted Reality18 multiplayer text-based interactive-fiction system was themain
focus of Twisted Matrix Labs; Twisted, the general networking framework, grew out of Reality’s need for better
network functionality. Twisted Reality has since been broken off into a separate project.

usage The twisted.python.usage module, a replacement for the standardgetopt module for parsing
command-lines which is much easier to work with. SeeParsing command-lines(page 163).

Words Twisted Words is a multi-protocol chat server that uses thePerspective Broker(page 239) protocol as its native
communication style. Seetwisted.words .

Woven WebObjectVisualizationEnvironment. A deprecated web templating system based on XML and the Model-
View-Controller design pattern. This has been deprecated in favor of Nevow19.

9.3 Banana Protocol Specifications

9.3.1 Introduction

Banana is an efficient, extendable protocol for sending and receiving s-expressions. A s-expression in this context is a
list composed of byte strings, integers, large integers, floats and/or s-expressions.

9.3.2 Banana Encodings

The banana protocol is a stream of data composed of elements.Each element has the following general structure -
first, the length of element encoded in base-128, least signficant bit first. For example length 4674 will be sent as
0x42 0x24 . For certain element types the length will be omitted (e.g. float) or have a different meaning (it is the
actual value of integer elements).

Following the length is a delimiter byte, which tells us whatkind of element this is. Depending on the element
type, there will then follow the number of bytes specified in the length. The byte’s high-bit will always be set, so that
we can differentiate between it and the length (since the length bytes use 128-base, their high bit will never be set).

9.3.3 Element Types

Given a series of bytes that gave us length N, these are the different delimiter bytes:

List – 0x80 The following bytes are a list of N elements. Lists may be nested, and a child list counts as only one
element to its parent (regardless of how many elements the child list contains).

Integer – 0x81 The value of this element is the positive integer N. Following bytes are not part of this element.
Integers can have values of 0<= N <= 2147483647.

String – 0x82 The following N bytes are a string element.

Negative Integer – 0x83The value of this element is the integer N * -1, i.e. -N. Following bytes are not part of this
element. Negative integers can have values of 0>= -N >= -2147483648.

Float - 0x84 The next 8 bytes are the float encoded in IEEE 754 floating-point “double format” bit layout. No length
bytes should have been defined.

Large Integer – 0x85 The value of this element is the positive large integer N. Following bytes are not part of this
element. Large integers have no size limitation.

Large Negative Integer – 0x86The value of this element is the negative large integer -N. Following bytes are not
part of this element. Large integers have no size limitation.

Large integers are intended for arbitary length integers. Regular integers types (positive and negative) are limited
to 32-bit values.

18http://twistedmatrix.com/products/reality
19http://nevow.com/

CHAPTER 9. APPENDIX 241

Examples

Here are some examples of elements and their encodings - the type bytes are marked in bold:

1 0x01 0x81

-1 0x01 0x83

1.5 0x84 0x3f 0xf8 0x00 0x00 0x00 0x00 0x00 0x00

"hello" 0x05 0x82 0x68 0x65 0x6c 0x6c 0x6f

[] 0x00 0x80

[1, 23] 0x02 0x80 0x01 0x81 0x17 0x81

123456789123456789 0x15 0x3e 0x41 0x66 0x3a 0x69 0x26 0x5b 0x01 0x85

[1, ["hello"]] 0x02 0x80 0x01 0x81 0x01 0x80 0x05 0x82 0x68 0x65 0x6c 0x6c
0x6f

9.3.4 Profiles

The Banana protocol is extendable. Therefore, it supports the concept of profiles. Profiles allow developers to extend
the banana protocol, adding new element types, while still keeping backwards compatability with implementations
that don’t support the extensions. The profile used in each session is determined at the handshake stage (see below.)

A profile is specified by a unique string. This specification defines two profiles -"none" and "pb" . The
"none" profile is the standard profile that should be supported by allBanana implementations. Additional profiles
may be added in the future.

The ”none” Profile

The"none" profile is identical to the delimiter types listed above. It is highly recommended that all Banana clients
and servers support the"none" profile.

The ”pb” Profile

The "pb" profile is intended for use with the Perspective Broker protocol, that runs on top of Banana. Basically, it
converts commonly used PB strings into shorter versions, thus minimizing bandwidth usage. It does this by adding an
additional delimiter byte, 0x87. This byte should not be prefixed by a length. It should be followed by a single byte,
which tells us to which string element to convert it:

0x01 ’None’

0x02 ’class’

0x03 ’dereference’

0x04 ’reference’

0x05 ’dictionary’

0x06 ’function’

0x07 ’instance’

0x08 ’list’

0x09 ’module’

0x0a ’persistent’

0x0b ’tuple’

0x0c ’unpersistable’

CHAPTER 9. APPENDIX 242

0x0d ’copy’

0x0e ’cache’

0x0f ’cached’

0x10 ’remote’

0x11 ’local’

0x12 ’lcache’

0x13 ’version’

0x14 ’login’

0x15 ’password’

0x16 ’challenge’

0x17 ’logged in’

0x18 ’not loggedin’

0x19 ’cachemessage’

0x1a ’message’

0x1b ’answer’

0x1c ’error’

0x1d ’decref’

0x1e ’decache’

0x1f ’uncache’

9.3.5 Protocol Handshake and Behaviour

The initiating side of the connection will be referred to as “client”, and the other side as “server”.
Upon connection, the server will send the client a list of string elements, signifying the profiles it supports. It is

recommended that"none" be included in this list. The client then sends the server a string from this list, telling the
server which profile it wants to use. At this point the whole session will use this profile.

Once a profile has been established, the two sides may start exchanging elements. There is no limitation on order
or dependencies of messages. Any such limitation (e.g. “server can only send an element to client in response to a
request from client”) is application specific.

Upon receiving illegal messages, failed handshakes, etc.,a Banana client or server should close its connection.

	Introduction
	The Vision For Twisted
	High-Level Overview of Twisted
	Asynchronous Programming with Twisted
	Introduction to concurrent programming
	Deferreds
	The Problem that Deferreds Solve
	Deferreds - a signal that data is yet to come
	Conclusion

	Overview of Twisted Internet

	Tutorial
	Writing Servers
	Overview
	Protocols
	Factories

	Writing Clients
	Overview
	Protocol
	Simple, single-use clients
	ClientFactory
	A Higher-Level Example: ircLogBot
	Further Reading

	Setting up the TwistedQuotes application
	Goal
	Setting up the TwistedQuotes project directory

	Designing Twisted Applications
	Goals
	Example of a modular design: TwistedQuotes

	Twisted from Scratch, or The Evolution of Finger
	Introduction
	Contents

	The Evolution of Finger: building a simple finger service
	Introduction
	Refuse Connections
	Do Nothing
	Drop Connections
	Read Username, Drop Connections
	Read Username, Output Error, Drop Connections
	Output From Empty Factory
	Output from Non-empty Factory
	Use Deferreds
	Run 'finger' Locally
	Read Status from the Web
	Use Application
	twistd

	The Evolution of Finger: adding features to the finger service
	Introduction
	Setting Message By Local Users
	Use Services to Make Dependencies Sane
	Read Status File
	Announce on Web, Too
	Announce on IRC, Too
	Add XML-RPC Support

	The Evolution of Finger: cleaning up the finger code
	Introduction
	Write Readable Code

	The Evolution of Finger: moving to a component based architecture
	Introduction
	Write Maintainable Code
	Advantages of Latest Version
	Aspect-Oriented Programming

	The Evolution of Finger: pluggable backends
	Introduction
	Another Back-end
	Yet Another Back-end: Doing the Standard Thing

	The Evolution of Finger: a web frontend
	Introduction

	The Evolution of Finger: Twisted client support using Perspective Broker
	Introduction
	Use Perspective Broker

	The Evolution of Finger: using a single factory for multiple protocols
	Introduction
	Support HTTPS

	The Evolution of Finger: a Twisted finger client
	Introduction
	Finger Proxy

	The Evolution of Finger: making a finger library
	Introduction
	Organization
	Easy Configuration

	The Evolution of Finger: configuration and packaging of the finger service
	Introduction
	Plugins
	OS Integration

	Low-Level Twisted
	Reactor Overview
	Reactor Basics
	Using the reactor object

	UDP Networking
	Overview
	DatagramProtocol
	Connected UDP
	Multicast UDP
	Acknowledgements

	Using Processes
	Overview
	Running Another Process
	Writing a ProcessProtocol
	Things that can happen to your ProcessProtocol
	Things you can do from your ProcessProtocol
	Verbose Example
	Doing it the Easy Way
	Mapping File Descriptors

	Deferred Reference
	Callbacks
	Errbacks
	Handling either synchronous or asynchronous results
	DeferredList
	Class Overview
	See also

	Generating Deferreds
	Class overview
	What Deferreds don't do: make your code asynchronous
	Advanced Processing Chain Control
	Returning Deferreds from synchronous functions
	Integrating blocking code with Twisted
	Possible sources of error

	Deferreds are beautiful! (A Tutorial)
	Introduction
	A simple example
	Errbacks
	addBoth: the deferred version of finally
	addCallbacks: decision making based on previous success or failure
	Hints, tips, common mistakes, and miscellaney
	Conclusion

	Scheduling tasks for the future
	Using Threads in Twisted
	Running code in a thread-safe manner
	Running code in threads
	Utility Methods
	Managing the Thread Pool

	Choosing a Reactor and GUI Toolkit Integration
	Overview
	Reactor Functionality
	General Purpose Reactors
	Platform-Specific Reactors
	GUI Integration Reactors
	Non-Reactor GUI Integration

	High-Level Twisted
	The Basics
	Application
	twistd
	tap2deb
	tap2rpm

	The Twisted Plugin System
	Writing Extensible Programs
	Extending an Existing Program
	Alternate Plugin Packages
	Plugin Caching
	Further Reading

	Writing a twistd Plugin
	Goals
	A note on .tap files
	Alternatives to twistd plugins
	Creating the plugin
	Using cred with your TAP
	Conclusion

	Components: Interfaces and Adapters
	Interfaces and Components in Twisted code

	Cred: Pluggable Authentication
	Goals
	Cred objects
	Responsibilities
	Cred plugins
	Conclusion

	Using the Twisted Application Framework
	Introduction
	Overview
	Using application

	Utilities
	Using usage.Options
	Introduction
	Boolean Options
	Parameters
	Option Subcommands
	Generic Code For Options
	Parsing Arguments
	Post Processing
	Type enforcement

	Logging with twisted.python.log
	Basic usage
	Writing log observers

	DirDBM: Directory-based Storage
	dirdbm.DirDBM
	dirdbm.Shelf

	Using telnet to manipulate a twisted server
	Writing tests for Twisted code
	Trial basics
	Twisted-specific quirks: reactor, Deferreds, callLater

	Twisted RDBMS support
	twisted.enterprise.adbapi: Twisted RDBMS support
	Abstract
	What you should already know
	Quick Overview
	How do I use adbapi?
	Examples of various database adapters
	And that's it!

	Twisted Enterprise Row Objects
	Class Definitions
	Initialization
	Creating Row Objects
	Relationships Between Tables
	Duplicate Row Objects
	Updating Row Objects
	Deleting Row Objects

	Perspective Broker
	Overview of Twisted Spread
	Rationale

	Introduction to Perspective Broker
	Introduction
	Object Roadmap
	Things you can Call Remotely
	Things you can Copy Remotely

	Using Perspective Broker
	Basic Example
	Complete Example
	Passing more references
	References can come back to you
	References to client-side objects
	Raising Remote Exceptions
	Try/Except blocks and Failure.trap

	PB Copyable: Passing Complex Types
	Overview
	Motivation
	Passing Objects
	pb.Copyable
	pb.Cacheable

	Authentication with Perspective Broker
	Overview
	Compartmentalizing Services
	Avatars and Perspectives
	Perspective Examples
	Using Avatars

	Manual Pages
	MANHOLE.1
	NAME
	SYNOPSIS
	DESCRIPTION
	AUTHOR
	REPORTING BUGS
	COPYRIGHT

	MKTAP.1
	NAME
	SYNOPSIS
	DESCRIPTION
	portforward options
	web options
	toc options
	mail options
	telnet options
	socks options
	ftp options
	manhole options
	words options
	AUTHOR
	REPORTING BUGS
	COPYRIGHT
	SEE ALSO

	TAP2DEB.1
	NAME
	SYNOPSIS
	DESCRIPTION
	AUTHOR
	REPORTING BUGS
	COPYRIGHT
	SEE ALSO

	TAP2RPM.1
	NAME
	SYNOPSIS
	DESCRIPTION
	AUTHOR
	REPORTING BUGS
	COPYRIGHT
	SEE ALSO

	TAPCONVERT.1
	NAME
	SYNOPSIS
	DESCRIPTION
	AUTHOR
	REPORTING BUGS
	COPYRIGHT
	SEE ALSO

	TRIAL.1
	NAME
	SYNOPSIS
	DESCRIPTION
	AUTHOR
	REPORTING BUGS
	COPYRIGHT

	TWISTD.1
	NAME
	SYNOPSIS
	DESCRIPTION
	AUTHOR
	REPORTING BUGS
	COPYRIGHT
	SEE ALSO

	Appendix
	The Twisted FAQ
	General
	Stability
	Installation
	Core Twisted
	Requests and Contributing
	Documentation
	Communicating with us

	Twisted Glossary
	Banana Protocol Specifications
	Introduction
	Banana Encodings
	Element Types
	Profiles
	Protocol Handshake and Behaviour

