The Twisted Documentation

The Twisted Development Team

June 15, 2008

Contents

1 Introduction

1.1 TheVision FOr TWIStEd v v v oo e e e e e
1.2 High-Level Overview of Twisted e e e e e
1.3 Asynchronous Programming with TWIStEd . . o o o e e e
1.3.1 Introduction to concurrent programming et e
1.3.2 DEferreds . . . o o oo
1.3.3 The Problem that Deferreds SOIVE o e e e
1.3.4 Deferreds - a signal that data is yet to COMe v v o oo v v e
1.3.5 Conclusion e e e
1.4 Overview of Twisted INtErNet o
2 Tutorial
2.1 Writing SEIVEIS . . o o o e e e
2.1.1 OVEIVIEW o e e e e e e e e e e e
2.1.2 Protocols e e e e
2.1.3 FACIOMES .« « o o o oo e e e e e
2.2 WIHHNG CHENS . . . o o o e e e e e e e e e e
221 OVEIVIEW . . . e e e e e e e
222 ProtocOl . . . o i,
2.2.3 Simple, single-use CHENtS . . o o e e
224 CHEMFACIONY . . . o o oot e e
2.2.5 AHigher-Level Example: ircLOGBOt v v v oo e
2.2.6 FurtherReading e e e
2.3 Setting up the TwistedQuotes application oo i
231 Goal. e
2.3.2 Setting up the TwistedQuotes project directory
2.4 Designing Twisted APPlICAtIONS . . « « o« v v v e
241 GOoalS e e e
2.4.2 Example of a modular design: TwistedQUOteS v v oo
2.5 Twisted from Scratch, or The Evolutionof Finger
2.5.1 IntroducCtion e e e e e e
252 CONMENMS . o v oo oot e e e e e e e e
2.6 The Evolution of Finger: building a simple finger service
2.6.1 INrOdUCHON . . . o o e
2.6.2 Refuse CoNNections e e e
2.6.3 DoNothing e
2.6.4 DropConnections i i i e e e e e e
2.6.5 ReadUsername, Drop Connections i
2.6.6 Read Username, Output Error, Drop CONNECLIONS . . . o v v oo
2.6.7 Output From Empty Factd)ry
2.6.8 Output from Non-empty Factd)ry
2.6.9 USEDEIEITEUS o o o ot oo e
2.6.10 RUN’finger Locally o v v oo
2.6.11 Read Status fromtheWeb e
2.6.12 Use Application e

CONTENTS 2

2.6.13 WIS . . o o o 31

2.7 The Evolution of Finger: adding features to the fingeviser. 31
2.7.1 Introduction e e e e e 31
2.7.2 Setting Message By Local Users i i e 31
2.7.3 Use Services to Make DependenciesSane cicieer v i i e i o, 32
27.4 ReadStatusFile e e 33
275 Announce onWeb, TOO o v v o e 34
2.7.6 Announce on IRC, Tbo 36
2.7.7 AddXML-RPC SUpport e e e e e 37

2.8 _The Evolution of Finger: cleaning up the fingercode 39
2.8.1 IntroduCtion e e e 39
2.8.2 WriteReadable COde v o o ot e 39

2.9 The Evolution of Finger: moving to a component basediggcture 42
2.9.1 Introduction e e e e 42
2.9.2 Write Maintainable Code e e e 42
2.9.3 Advantages of LatestVersion e e 46
2.9.4 Aspect-Oriented Programming 0 0 it i e e 51
2.10 The Evolution of Finger: pluggablebackends L 51
2.10.1 Introduction e e e e e 51
2.10.2 ANOther Back-eNdo o i it 51
2.10.3 Yet Another Back-end: Doing the Standard T\hing 56

2.11 The Evolution of Finger: awebfrontend o 62
2110 INtrodUCHON . .« « o o v v 62

2.12 The Evolution of Finger: Twisted client support usireg$pective Broker 67
2.12.1 Introduction e e e e e e e 67
2.12.2 Use Perspective Broker e e e e e 67

2.13 The Evolution of Finger: using a single factory for riplé protocols 72
2131 INrOdUCHON « « « o o v o e e e 72
2.13.2 SUPPOItHTTPS . . o o o e e e e e e e 72
2.14 The Evolution of Finger: a Twisted finger client 78
2.14.1 Introduction L e e e e e e 78
2.14.2 FINGEr ProXy o o i e e e e 78
2.15 The Evolution of Finger: making afingerlibrary, 80
2.15.1 Introduction e e e e e e e e 80
2.15.2 Organization e e e e 80
2.15.3 Easy CONfIQUIAtion oo o vttt e e 81

2.16 The Evolution of Finger: configuration and packagintheffinger service 83
2.16.1 INUOAUCHON . .« .« o o o e e e e e e e e 83
2.16.2 Plugiﬂs .. 83
2.16.3 OSIntegration e 89
3 Low-Level Twisted 90
3.1 REACOr OVEIVIEW . . .« o o o o o e e e e 90
3.1.1 ReactorBasiCs e e 90
3.1.2 Usingthereactorobject e e 90

3.2 UDP NEtWOrKiNG o v oo e e e e e e e e e e e e 91
321 OVEIVIEW . . . o o e e e e e e e e e e 91
3.2.2 DatagramProtoéoI .. 91
3.2.3 Connected UDP e 91
3.2.4 MulticastUDP e e e e 92
3.25 ACKNOWIEAGEMENLS o o oot e 93

3.3 USING PIOCESSES . « « « o o o e e e e 93
331 OVEIVIEW . . o o oo 93
3.3.2 Running Another PrOCESS .« « o o o ot e e e e 94
3.3.3 Writing a ProcessProtocol e e 94
3.3.4 Things that can happen to your ProcessProtocol 95
3.3.5 Things you can do from your ProcessProtocol 96

CONTENTS 3

3.3.6 Verbose Example 96
3.3.7 Doingitthe EasyWay e e 97
3.3.8 Mapping File Descriptdrs 98
3.4 Deferred REFEIENCE v v v o o e e e e 100
3.4.1 Callbacks e e e e e 101
342 EMDACKS . o . ot e 105
3.4.3 Handling either synchronous or asynchronousresults 106
3.4.4 DeferredList e e 107
345 ClasSSOVEIVIBW o o o oo oo e e e e e 109
346 SERAISO 109
3.5 Generating DEfEITEAS o v o o e e 110
351 CIaSSOVEIVIEW . . .\ o v o o e e e e e 110
3.5.2 What Deferreds don't do: make your code asynchronous 110
3.5.3 Advanced Processing Chain CoNtrol oo v 111
3.5.4 Returning Deferreds from synchronous functionso v i ... 111
3.5.5 Integrating blocking code with Twisted 112
3.5.6 POSSIbIE SOUICES Of €ITOF o o o o o e e 113
3.6 Deferreds are beautifull (ATULOMRI) oot o 113
3.6.1 Introduction e e e e 113
3.6.2 Asimpleexample 114
3.6.3 EMDACKS . . . ot 115
3.6.4 addBoth: the deferred version offinally, 122
3.6.5 addCallbacks: decision making based on previousssar failure 125
3.6.6 Hints, tips, common mistakes, and miscellaney 130
3.6.7 __Conclusion e e 134
3.7 _Scheduling tasks for the future 134
3.8 Using Threadsin Twisted e e e e e e 135
3.8.1 Running code in athread-safemanner 135
3.8.2 Runningcodeinthreads e 135
3.8.3 Utility Methods e 135
3.8.4 Managingthe Thread Pool e e 136
3.9 Choosing a Reactor and GUI Toolkit Integrationo v v v v e o 137
B9 OVEIVIEW . . o o oot e e e e 137
3.9.2 Reactor Functionality e e 137
3.9.3 General Purpose Reactors e e e 137
3.9.4 Platform-Specific REaCtOrS o v v v e e 138
3.9.5 GUIINtegration REACIOIS o o oo it e 139
3.9.6 Non-Reactor GUI INtErationo v vt e e e 139
4 High-Level Twisted 141
4.1 TheBASIGS o oo ot 141
411 APPlCAtioON o 141
A.1.2 WWISH . o o 141
4.1.3 ta 2dab .. 141
414 1AP2IPIM . o o o 142
4.2 The Twisted PIUGIN SYSIEM . . . o v o o o e e e e e e 142
4.2.1 Writing Extensible Programs 142
4.2.2 Extending an Existing Progrlam 143
4.2.3 Alternate Plugin Packad;es 144
4.2.4 PluginCaching e e e 144
4.25 FurtherReading e 144
4.3 Writing @ twistd PIUGIN o o e e 144
431 GOAIS . . oo 145
4.3.2 Anoteon.tapfiles e e 145
4.3.3 Alternatives to twistd plugins 145
434 Creatingthe plugin o 145
435 Usingcredwithyour TAP oot 146

CONTENTS 4

4.3.6 CONCIUSION . . . o oo oo 147
4.4 Components: Interfaces and Adapters oL 147
4.4.1 Interfaces and Componentsin Twistedcode 150
4.5 Cred: Pluggable AUtheNtiCation v v v o e e e e e 153
4.5.1 Goals e 153
452 CredobjectS i 154
45.3 Responsibilitiés .. 156
45.4 Cred plugiﬁs ... 158
455 Conclusion e e 159
4.6 Using the Twisted Application Frameworko oo 159
4.6.1 Introduction e 159
4.6.2 OVEIVIEW e e e 160
4.6.3 Using application e 160
5 Utilities 163
5.1 Using usage.Options e e e e 163
5.1.1 Introduction e e e e 163
5.1.2 Boolean Options e e e 163
5.1.3 Parameters e e e e e 164
5.1.4 Option Subcommands e e 165
5.1.5 Generic Code FOr OPtioNS o v v v vt e e e 166
5.1.6 Parsing Arguments e e e 166
5.1.7 POStProcessing o e e e 167
5.1.8 _Typeenforcement. e e 167
5.2 Logging with twisted.python.log L e 168
5.2.1 Basic USAOE . . o v v o e e e e e e e e e e 168
5.2.2 Wting log 0DSEIVEIS o 169
5.3 DIirDBM: Directory-based StOrage oo 169
5.3.1 dirdbm.DirDBM e e 169
5.3.2 dirdbm.Shelf e 170
5.4 Using telnet to manipulate atwisted server oo o 170
5.5 Writing tests for Twisted code e e e 171
551 TrialbasiCs e e 171
5.5.2 Twisted-specific quirks: reactor, Deferreds, caltka. 171
6 Twisted RDBMS support 173
6.1 twisted.enterprise.adbapi: Twisted RDBMS SUPPOMt o o o o oo oo e et 173
B.LL ADSHACE . . o o o e 173
6.1.2 Whatyoushouldalready know L 173
6.1.3 Quick Overview e e 173
6.1.4 Howdoluseadbapi?. e e 174
6.1.5 Examples of various database adapters oL 175
6.1.6 Andthat'sitl e 175
6.2 Twisted Enterprise ROWODJECES o oot e 175
6.2.1 ClassDefinitions e e 175
6.2.2 Initialization L 176
6.2.3 Creating Row Objects e 176
6.2.4 Relationships Between TabIES . . e 177
6.2.5 Duplicate ROWOBJECES oo it 177
6.2.6 Updating ROW ODBJECES o oo it e e 177
6.2.7 DeletingRow Objects e 177

CONTENTS 5

7 Perspective Broker 178
7.1 Overview of Twisted SPread oot 178
7.1.1 Rationale e e 178
7.2 Introduction to Perspective BroKEr o v v o e 178
7.2.1 Introduction e e e e 178
7.22 ObjectRoadmap e e e 179
7.2.3 Things you can Call Remotbly 179
7.2.4 Things you can Copy Remoﬂely 180

7.3 Using Perspective BIOKET o o v o e e 181
7.3.1 BasicExample e e 181
7.3.2 Complete EXampleo 183
7.3.3 Passingmorereferences e e e 185
7.3.4 References cancomebacktoyou o 186
7.3.5 References to client-side objécts 188
7.3.6 _Raising Remote EXCEPLIONS e e 189
7.3.7 Try/Exceptblocks and Failure.trap o vt v i 191

7.4 PB Copyable: Passing Complex TYPeS i i i i e e 194
741 OQVEIVIEW . . . o e e e e e e e 194
742 MOWVALON . . . o oo 194
743 PassiNgODJEELS o . oo 194
7.4.4 ph.Copyable e 195
7.4.5 ph.Cacheable e e 201
7.5 Authentication with Perspective BrOKEr . o o o o 205
751 OVEIVIEW e e e e e e 205
7.5.2 Compartmentalizing SEIVICES o v v v e 205
7.5.3 Avatars and PErSpeCctiveS oo o e e 209
7.5.4 Perspective Examples e e 210
755 USINQAVAIAIS . . . o o o oo oo e 217

8 Manual Pages 222
8.1 MANHOLE.L . .\ ot o o e e e e 222
8.1.1 NAME e 222
8.1.2 SYNOPSIS e e e e 222
8.1.3 DESCRIPTION e e e e e e e e e 222
8.1.4 AUTHOR . . . e e e 222
8.1.5 REPORTING BUGS e e e e e s e s s e 222
8.1.6 COPYRIGHT o oottt e e e 222

8.2 MKTAP.L . . . e e e 223
8.2.1 NAME e e 223
8.2.2 SYNOPSIS e e e 223
8.2.3 DESCRIPTION . . . o e e e e e e e e 223
8.2.4 portforward OptionS 223
8.25 weboptions e e e e 223
8.2.6 toc optioﬁs .. 224
8.2.7 MalOPHONS o o o e 224
8.2.8 telnetoplions e e e e 224

8.2.9 s0CkS OptiONS e e e 224
8.2.10 ftpoptionNs e e e 224
8.2.11 manhole optiohs ... 225
8.2.12 WOrdSOPHONS o o oo oo e 225
8.2.13 AUTHOR . . . o o ottt e 225
8.2.14 REPORTING BUGS e e e e e e s e e e e 225
8.2.15 COPYRIGHT ottt 225
8.216 SEEALSO . . . o ot ot 225

8.3 TAP2DEB.L . . . o oot 226
8.3.1 NAME e e 226
8.3.2 SYNOPSIS e e 226

CONTENTS 6
8.3.3 DESCRIPTION . . o o ot oo e e 226
8.3.4 AUTHOR . . . o o o 226
8.3.5 REPORTING BUGS o o oot e, 226
8.3.6 COPYRIGHT o o oo 226
8.3.7 SEEALSO . . o o ot o e, 226

8.4 TAP2RPM.L . . o o oo oo e e 227
8.4.1 NAME . . o oot 227
8.4.2 SYNOPSIS . . o oo e e 227
8.4.3 DESCRIPTION . . . o ottt 227
8.4.4 AUTHOR o o 227
8.45 REPORTINGBUGS o oottt s, 227
8.4.6 COPYRIGHT . . . o o 227
8.4.7 SEEALSO . . o o oo, 227

85 TAPCONVERT.L . . o o oo oo e e e e 228
8.5.1 NAME . . o ottt 228
8.5.2 SYNOPSIS . . o o oo e e 228
8.5.3 DESCRIPTION . . . o ottt 228
85.4 AUTHOR . . . o oo 228
855 REPORTING BUGS o oottt e s, 228
8.5.6 COPYRIGHT o oo 228
8.5.7 SEEALSO . . o o ot o e, 228

8.6 TRIALL. . . o o o 229
8.6.1 NAME . . o oot e 229
8.6.2 SYNOPSIS . . o o oo e e 229
8.6.3 DESCRIPTION . . . o ottt 229
8.6.4 AUTHOR o o 230
8.6.5 REPORTING BUGS o s oot e s, 230
8.6.6 COPYRIGHT o 230

8.7 TWISTD.L . . v v oo e e e e 231
8.7.1 NAME . . o oot 231
8.7.2 SYNOPSIS . . o o ot oo 231
8.7.3 DESCRIPTION . . . o ottt e e 231
8.7.4 AUTHOR . . . o o o 232
8.75 REPORTING BUGS o o ot et e s, 232
8.7.6 COPYRIGHT o 232
8.7.7 SEEALSO . . o o o oo e, 232

9 Appendi% 233

9.1 TheTWisted FAQ . . o o o o o e e e e e 233
9.1.1 Gener]al .. 233
9.1.2 Stability o 233
9.1.3 Installation e e e e e 234
9.1.4 COre TWISIEA . . o o v e e e e e e e e 234
9.1.5 Requestsand Contributing 236
9.1.6 DOCUMENAtiON v o e e e e e e e e e e e e e e 237
9.1.7 CommunicatingWwithus e e e 237

9.2 TWisted GIOSSAIY o o o i 238

9.3 Banana Protocol Specifications 240
9.3.1 Introduction e e e e e e 240
9.3.2 BananaEncodings e 240
9.3.3 ElementTYPES e e e e e e 240
9.3.4 Profiles e e 241
9.3.5 Protocol Handshake and Behaviour @ . @ wuu o i 242

Chapter 1

Introduction

1.1 The Vision For Twisted

Many other documents in this repository are dedicated tmefiwhat Twisted is. Here, | will attempt to explain not
what Twisted is, but what it should be, once I've met my goaté .

First, Twisted should be fun. It began as a game, it is beieg sgesmmercially in games, and it will be, | hope, an
interactive and entertaining experience for the end-user.

Twisted is a platform for developing internet applicatioMghile python, by itself, is a very powerful language,
there are many facilities it lacks which other languageshspent great attention to adding. It can do this now;
Twisted is a good (if somewhat idiosyncratic) pure-pyth@nfework or library, depending on how you treat it, and it
continues to improve.

As a platform, Twisted should be focused on integration.allge all functionality will be accessible through
all protocols. Failing that, all functionality should berdimyurable through at least one protocol, with a seamless
and consistent user-interface. The next phase of developwi# be focusing strongly on a configuration system
which will unify many disparate pieces of the current infrasture, and allow them to be tacked together by a non-
programmer.

1.2 High-Level Overview of Twisted

CHAPTER 1. INTRODUCTION

GUIl Integration
Tk, GTK, OT, w=Windows

Reactor

Event loop core

Services
Event handlers

string ports

Port description language

Twisted. Application

The Framework of Your Intemet

Services, Persistance, and Security |

Twisted:

Twisted.Spread

Remote object access

Nevow
Web Application frmaewaork

Perspective Broker Twisted Xish
Comrmunication Hl-ish DOM and XPath-ish engine
Twisted.Internat
TGP, UDP, S5L, 10, ... T Twisted Crad
+ Jelly Authentication
v Seralization
Twisted.Protocols T Twisted.Enterprise
HTTP, SWTP, ONS, IRC, TELNET, POP3, 55H, ... Banana Oracle My3 0L, PostgreSOL, ...
harshalling

Twisted Persisted
Object persistence

Twisted Flow

Asynchronous data flows

Misc
Warious useful functionality

bin/twistd
Run Twisted applications

binfmktap

Create twisted servers

bin/trial
Run unit tests

binflore

Convert documentation formats

Executables

Twisted Web Twisted.Mail Twisted Words

Web server e-mail server Chat services
Other Twisted. Names Twisted.Conch

FTP, SOCKS, Telnet, Manhole DNE server Secure shell

Twisted.Servers

1.3 Asynchronous Programming with Twisted

This document is a introduction to the asynchronous progreag model, and to Twisted’s Deferred abstraction,
which symbolises a 'promised’ result and which can pass anterl result to handler functions.

This document is for readers new to Twisted who are familidh wthe Python programming language and, at
least conceptually, with core networking conepts such agsg clients and sockets. This document will give you
a high level overview of concurrent programming (interiegvseveral tasks) and of Twisted’s concurrency model:
non-blocking coder asynchronous code

After discussing the concurrency model of which Deferremsaapart, it will introduce the methods of handling
results when a function returns a Deferred object.

131

Many computing tasks take some time to complete, and therevarreasons why a task might take some time:

Introduction to concurrent programming

1. it is computationally intensive (for example factorgilarge numbers) and requires a certain amount of CPU
time to calculate the answer; or

2. itis not computationally intensive but has to wait foraltd be available to produce a result.

Waiting for answers

A fundamental feature of network programming is that of magifor data. Imagine you have a function which sends
an email summarising some information. This function ndea®nnect to a remote server, wait for the remote server
to reply, check that the remote server can process the emggtifor the reply, send the email, wait for the confirmation,
and then disconnect.

Any one of these steps may take a long period of time. Yourjaragnight use the simplest of all possible models,
in which it actually sits and waits for data to be sent andikeck but in this case it has some very obvious and basic
limitations: it can’t send many emails at once; and in facain’t do anything else while it is sending an email.

Hence, all but the simplest network programs avoid this rhodeu can use one of several different models to
allow your program to keep doing whatever tasks it has on larit it is waiting for something to happen before a
particular task can continue.

CHAPTER 1. INTRODUCTION 9

Not waiting on data

There are many ways to write network programs. The main omes a

1. handle each connection in a separate operating systamgs;dn which case the operating system will take care
of letting other processes run while one is waiting;

2. handle each connection in a separate tHremarhich the threading framework takes care of letting othezads
run while one is waiting; or

3. use non-blocking system calls to handle all connectiomse thread.

Non-blocking calls

The normal model when using the Twisted framework is thelthiodel: non-blocking calls.

When dealing with many connections in one thread, the schegpligl the responsibility of the application, not the
operating system, and is usually implemented by callinggéstered function when each connection is ready to for
reading or writing — commonly known @synchronousevent-driveror callback-basegrogramming.

In this model, the earlier email sending function would wedknething like this:

1. it calls a connection function to connect to the remoteeser

2. the connection function returns immediately, with thelication that the notify the email sending library will
be called when the connect has been made; and

3. once the connection is made, the connect mechanism sdtiéeemail sending function that the connection is
ready.

What advantage does the above sequence have over our ohilgioking sequence? The advantage is that while
the email sending function can’t do the next part of its jokilduhe connection is open, the rest of the program can do
other tasks, like begin the opening sequence for other eroailections. Hence, the entire program is not waiting for
the connection.

Callbacks

The typical asynchronous model for alerting an applicatiat some data is ready for it is known asalback The
application calls a function to request some data, and sncidtl, it also passes a callback function that should bedall
when the data is ready with the data as an argument. The clalibaction should therefore perform whatever tasks it
was that the application needed that data for.

In synchonous programming, a function requests data, faithe data, and then processes it. In asynchronous
programming, a function requests the data, and lets tharlilmall the callback function when the data is ready.

1.3.2 Deferreds

Twisted uses th®eferred object to manage the callback sequence. The client applicattaches a series of
functions to the deferred to be called in order when the tesidlthe asychronous request are available (this series of
functions is known as a seriesadllbacks or acallback chair), together with a series of functions to be called if there
is an error in the asychronous request (known as a seriestmdcksor anerrback chain. The asychronous library
code calls the first callback when the result is availableheffirst errback when an error occurs, andBtederred

object then hands the results of each callback or errbaakibmto the next function in the chain.

1.3.3 The Problem that Deferreds Solve

It is the second class of concurrency problem — non-comjomalty intensive tasks that involve an appreciable delay
— that Deferreds are designed to help solve. Functions thidtom hard drive access, database access, and network
access all fall into this class, although the time delayesari

Deferreds are designed to enable Twisted programs to wadiata without hanging until that data arrives. They
do this by giving a simple management interface for callsaolibraries and applications. Libraries know that they

1There are variations on this method, such as a limited-sizegidloreads servicing all connections, which are essdnpijia$t optimizations of
the same idea.

CHAPTER 1. INTRODUCTION 10

always make their results available by callibgferred.callback and errors by callingpeferred.errback
Applications set up result handlers by attaching callbaciserrbacks to deferreds in the order they want them called.

The basic idea behind Deferreds, and other solutions tgtbislem, is to keep the CPU as active as possible. If
one task is waiting on data, rather than have the CPU (and tiggam!) idle waiting for that data (a process normally
called "blocking”), the program performs other operatiomshe meantime, and waits for some signal that data is
ready to be processed before returning to that process.

In Twisted, a function signals to the calling function thiaisiwaiting by returning a Deferred. When the data is
available, the program activates the callbacks on thatribefeo process the data.

1.3.4 Deferreds - a signal that data is yet to come

In our email sending example above, a parent function cdllmetion to connect to the remote server. Asynchrony
requires that this connection function retumithout waiting for the resulso that the parent function can do other
things. So how does the parent function or its controllinggpam know that the connection doesn't exist yet, and how
does it use the connection once it does exist?

Twisted has an object that signals this situation. When theection function returns, it signals that the operation
is incomplete by returning &visted.internet.defer.Deferred object.

The Deferred has two purposes. The first is that it says "I aigreakthat the result of whatever you wanted me to
do is still pending.” The second is that you can ask the Detkto run things when the data does arrive.

Callbacks

The way you tell a Deferred what to do with the data once ivagis by adding a callback — asking the Deferred to
call a function once the data arrives.

One Twisted library function that returns a Deferredvissted.web.client.getPage . In this example,
we callgetPage , which returns a Deferred, and we attach a callback to hahdleontents of the page once the data
is available:

from twisted.web.client import getPage
from twisted.internet import reactor

def printContents(contents):
This is the ’callback’ function, added to the Deferred and ca lled by
it when the promised data is available

print "The Deferred has called printContents with the follo wing contents:
print contents

Stop the Twisted event handling system -- this is usually ha ndled
in higher level ways
reactor.stop()

call getPage, which returns immediately with a Deferred, p romising to
pass the page contents onto our callbacks when the contents are available
deferred = getPage(http://twistedmatrix.com/’)

add a callback to the deferred -- request that it run printCo ntents when
the page content has been downloaded
deferred.addCallback(printContents)

Begin the Twisted event handling system to manage the proce ss -- again this
isn't the usual way to do this
reactor.run()

A very common use of Deferreds is to attach two callbacks.rékelt of the first callback is passed to the second
callback:

CHAPTER 1. INTRODUCTION 11

from twisted.web.client import getPage
from twisted.internet import reactor

def lowerCaseContents(contents):

This is a ’'callback’ function, added to the Deferred and call ed by
it when the promised data is available. It converts all the da ta to
lower case

return contents.lower()

def printContents(contents):
This a ’callback’ function, added to the Deferred after lowe rCaseContents
and called by it with the results of lowerCaseContents

print contents
reactor.stop()

deferred = getPage(http://twistedmatrix.com/’)

add two callbacks to the deferred -- request that it run lowe rCaseContents
when the page content has been downloaded, and then run prin tContents with
the result of lowerCaseContents

deferred.addCallback(lowerCaseContents)

deferred.addCallback(printContents)

reactor.run()

Error handling: errbacks

Just as a asynchronous function returns before its resalaigable, it may also return before it is possible to detect
errors: failed connections, erroneous data, protocokgriand so on. Just as you can add callbacks to a Deferred
which it calls when the data you are expecting is availalbe,gan add error handlers (‘errbacks’) to a Deferred for it
to call when an error occurs and it cannot obtain the data:

from twisted.web.client import getPage
from twisted.internet import reactor

def errorHandler(error):
This is an ’errback’ function, added to the Deferred which wi Il call
it in the event of an error

this isn't a very effective handling of the error, we just pr int it out:
print "An error has occurred: <%s>" % str(error)

and then we stop the entire process:

reactor.stop()

def printContents(contents):

This a ’callback’ function, added to the Deferred and called by it with
the page content

CHAPTER 1. INTRODUCTION 12

print contents
reactor.stop()

We request a page which doesn't exist in order to demonstrat e the
error chain
deferred = getPage(http://twistedmatrix.com/does-not -exist’)

add the callback to the Deferred to handle the page content
deferred.addCallback(printContents)

add the errback to the Deferred to handle any errors
deferred.addErrback(errorHandler)

reactor.run()

1.3.5 Conclusion

In this document, you have:
1. seen why non-trivial network programs need to have somme &6 concurrency;
. learnt that the Twisted framework supports concurrendié form of asynchronous calls;

. learnt that the Twisted framework has Deferred objeasnianage callback chains;

2
3
4. seen how thgetPage function returns a Deferred object;
5. attached callbacks and errbacks to that Deferred; and

6

. seen the Deferred’s callback chain and errback chain fire.

See also

Since the Deferred abstraction is such a core part of pragiagwith Twisted, there are several other detailed guides
to it:

1. Using Deferred{page 100), a more complete guide to using Deferreds, imzjudeferred chaining.
2. Generating Deferred@age 110), a guide to creating Deferreds and firing theibaak chains.

1.4 Overview of Twisted Internet

Twisted Internet is a compatible collection of event-lodps Python. It contains the code to dispatch events to
interested observers, and a portable API so that obsergedsnot care about which event loop is running. Thus, it is
possible to use the same code for different loops, from Balisthasic, yet portablsglect -based loop to the loops
of various GUI toolkits like GTK+ or Tk. Twisted Internet al€ontains a powerful persistence API so that network
programs can be shutdown and then resurrected with mos¢ abithe unaware of this.

Twisted Internet contains the various interfaces to thetoeaAPI, whose usage is documented in the low-level
chapter. Those APIs al®eactorCore , IReactorTCP , IReactorSSL , IReactorUNIX , IReactorUDP
IReactorTime , IReactorProcess andIReactorThreads . The reactor APIs allow non-persistent calls to
be made.

Twisted Internet also covers the interfaces for the vartoaissports, inTransport and friends. These inter-
faces allow Twisted network code to be written without regarthe underlying implementation of the transport.

ThelProtocolFactory dictates how factories, which are usually a large part @fitharty code, are written.

Chapter 2

Tutorial

2.1 Writing Servers

2.1.1 Overview

Twisted is a framework designed to be very flexible and letwadte powerful servers. The cost of this flexibility is a
few layers in the way to writing your server.

This document describes tiReotocol layer, where you implement protocol parsing and handlifiggol are
implementing an application then you should read this dantreecond, after first reading the top level overview of
how to begin writing your Twisted application, Writing Plug-Ins for Twistedpagéd 142). This document is only
relevant to TCP, SSL and Unix socket servers, theresiparate documerpage 91) for UDP.

Your protocol handling class will usually subclassgsted.internet.protocol.Protocol . Most pro-
tocol handlers inherit either from this class or from onetsftionvenience children. An instance of the protocol class
might be instantiated per-connection, on demand, and rgiyhtvay when the connection is finished. This means that
persistent configuration is not saved in f®tocol

The persistent configuration is kept in a Factory class, Wwhisually inherits fromtwisted.internet.
protocol.Factory . The default factory class just instantiates eRebtocol , and then sets on it an attribute
calledfactory which points to itself. This lets evelyrotocol access, and possibly modify, the persistent con-
figuration.

It is usually useful to be able to offer the same service ortiplalports or network addresses. This is why the
Factory does not listen to connections, and in fact does not knowhamytabout the network. Sedwisted.
internet.interfaces.IReactorTCP.listenTCP , and the othetReactor =*.listen * APIs for more
information.

This document will explain each step of the way.

2.1.2 Protocols

As mentioned above, this, along with auxiliary classes andtions, is where most of the code is. A Twisted protocol
handles data in an asynchronous manner. What this meand ihéharotocol never waits for an event, but rather
responds to events as they arrive from the network.

Here is a simple example:

from twisted.internet.protocol import Protocol
class Echo(Protocol):

def dataReceived(self, data):
self.transport.write(data)

This is one of the simplest protocols. It simply writes badkatever is written to it, and does not respond to all
events. Here is an example of a Protocol responding to anetieat:

from twisted.internet.protocol import Protocol

13

CHAPTER 2. TUTORIAL 14

class QOTD(Protocol):

def connectionMade(self):
self.transport.write("An apple a day keeps the doctor away \r\n™)
self.transport.loseConnection()

This protocol responds to the initial connection with a vkelbwn quote, and then terminates the connection.

The connectionMade event is usually where set up of the atiomeobject happens, as well as any initial greetings
(asinthe QOTD protocol above, which is actually based on B6%). TheconnectionLost eventis where tearing
down of any connection-specific objects is done. Here is amgie:

from twisted.internet.protocol import Protocol
class Echo(Protocol):

def connectionMade(self):
self.factory.numProtocols = self.factory.numProtocols +1
if self.factory.numProtocols > 100:
self.transport.write("Too many connections, try later")
self.transport.loseConnection()

def connectionLost(self, reason):
self.factory.numProtocols = self.factory.numProtocols -1

def dataReceived(self, data):
self.transport.write(data)

HereconnectionMade andconnectionLost cooperate to keep a count of the active protocols in thefacto
connectionMade immediately closes the connection if there are too manyeagtiotocols.
Using the Protocol

In this section, | will explain how to test your protocol dgs{In order to see how you should write a production-grade
Twisted server, though, you should read Weting Plug-Ins for Twistedpage 142) HOWTO as well).
Here is code that will run the QOTD server discussed earlier

from twisted.internet.protocol import Protocol, Factory
from twisted.internet import reactor

class QOTD(Protocol):

def connectionMade(self):
self.transport.write("An apple a day keeps the doctor away \r\n™)
self.transport.loseConnection()

Next lines are magic:
factory = Factory()
factory.protocol = QOTD

8007 is the port you want to run under. Choose something >102 4
reactor.listenTCP(8007, factory)
reactor.run()

Don’t worry about the last 6 magic lines — you will understavttat they do later in the document.

Helper Protocols

Many protocols build upon similar lower-level abstractidiime most popular in internet protocols is being line-based
Lines are usually terminated with a CR-LF combinations.

CHAPTER 2. TUTORIAL 15

However, quite a few protocols are mixed - they have linestasections and then raw data sections. Examples
include HTTP/1.1 and the Freenet protocol.

For those cases, there is thimeReceiver protocol. This protocol dispatches to two different eveadiers
- lineReceived andrawDataReceived . By default, onlylineReceived will be called, once for each line.
However, if setRawMode is called, the protocol will calfawDataReceived until setLineMode is called,
which returns it to usingineReceived

Here is an example for a simple use of the line receiver:

from twisted.protocols.basic import LineReceiver
class Answer(LineReceiver):
answers = {'How are you?’: 'Fine’, None : "I don’t know what yo u mean"}

def lineReceived(self, line):
if self.answers.has_key(line):
self.sendLine(self.answers][line])
else:
self.sendLine(self.answers[None])

Note that the delimiter is not part of the line.
Several other, less popular, helpers exist, such as aingtised protocol and a prefixed-message-length protocol.
State Machines

Many Twisted protocol handlers need to write a state madioimecord the state they are at. Here are some pieces of
advice which help to write state machines:

e Don't write big state machines. Prefer to write a state maehvhich deals with one level of abstraction at a
time.

e Use Python’s dynamicity to create open ended state mactaes for example, the code for the SMTP client.
e Don’t mix application-specific code with Protocol handliogde. When the protocol handler has to make an
application-specific call, keep it as a method call.

2.1.3 Factories

As mentioned before, usually the claessted.internet.protocol.Factory works, and there is no need
to subclass it. However, sometimes there can be factorgifgpeonfiguration of the protocols, or other consideragion
In those cases, there is a need to subdfassory

For a factory which simply instantiates instances of a sjpeprotocol class, simply instantiatéactory , and
sets itgprotocol attribute:

from twisted.internet.protocol import Factory
from twisted.protocols.wire import Echo

myFactory = Factory()
myFactory.protocol = Echo

If there is a need to easily construct factories for a spectitfiguration, a factory function is often useful:
from twisted.internet.protocol import Factory, Protocol
class QOTD(Protocol):
def connectionMade(self):

self.transport.write(self.factory.quote+\r\n’)
self.transport.loseConnection()

CHAPTER 2. TUTORIAL 16

def makeQOTDFactory(quote=None):
factory = Factory()
factory.protocol = QOTD
factory.quote = quote or 'An apple a day keeps the doctor away '
return factory

A Factory has two methods to perform application-specifiddng up and tearing down (since a Factory is
frequently persisted, it is often not appropriate to do tHam.init __ or __del __, and would frequently be too
early or too late).

Here is an example of a factory which allows its Protocols tibento a special log-file:

from twisted.internet.protocol import Factory
from twisted.protocols.basic import LineReceiver

class LoggingProtocol(LineReceiver):
def lineReceived(self, line):
self.factory.fp.write(line+'\n’)
class LodgfileFactory(Factory):

protocol = LoggingProtocol

def __init_ (self, fileName):
self.file = fileName

def startFactory(self):
self.fp = open(self.file, 'a’)

def stopFactory(self):
self.fp.close()
Putting it All Together

So, you know what factories are, and want to run the QOTD wathfigurable quote server, do you? No problems,
here is an example.

from twisted.internet.protocol import Factory, Protocol
from twisted.internet import reactor

class QOTD(Protocol):
def connectionMade(self):

self.transport.write(self.factory.quote+'\r\n’)
self.transport.loseConnection()

class QOTDFactory(Factory):

protocol = QOTD

def __init__ (self, quote=None):

self.quote = quote or 'An apple a day keeps the doctor away’
reactor.listenTCP(8007, QOTDFactory("configurable quo te")
reactor.run()

CHAPTER 2. TUTORIAL 17

The only lines you might not understand are the last two.

listenTCP is the method which connectsFactory to the network. It uses the reactor interface, which lets
many different loops handle the networking code, withoutifying end-user code, like this. As mentioned above, if
you want to write your code to be a production-grade Twisesder, and not a mere 20-line hack, you will want to
usethe Application objectpagée 159).

2.2 Writing Clients

2.2.1 Overview

Twisted is a framework designed to be very flexible, and letwoite powerful clients. The cost of this flexibility is a
few layers in the way to writing your client. This documenvers creating clients that can be used for TCP, SSL and
Unix sockets, UDP is coverdd a different documerpage 91).

At the base, the place where you actually implement the pobtparsing and handling, is the Protocol class.
This class will usually be decended framisted.internet.protocol.Protocol . Most protocol handlers
inherit either from this class or from one of its conveniert@dren. An instance of the protocol class will be
instantiated when you connect to the server, and will go awhgn the connection is finished. This means that
persistent configuration is not saved in the Protocol.

The persistent configuration is kept in a Factory class, Wwhisually inherits fromtwisted.internet.
protocol.ClientFactory . The default factory class just instantiate the Protoaud, then sets on it an attribute
calledfactory which points to itself. This let the Protocol access, andiihg modify, the persistent configuration.

2.2.2 Protocol

As mentioned above, this, and auxiliary classes and fumgtis where most of the code is. A Twisted protocol handles
data in an asynchronous manner. What this means is that ttecproever waits for an event, but rather responds to
events as they arrive from the network.

Here is a simple example:

from twisted.internet.protocol import Protocol
from sys import stdout

class Echo(Protocol):
def dataReceived(self, data):
stdout.write(data)

This is one of the simplest protocols. It simply writes tonstard output whatever it reads from the connection.
There are many events it does not respond to. Here is an eearhplProtocol responding to another event.

from twisted.internet.protocol import Protocol

class WelcomeMessage(Protocol):
def connectionMade(self):
self.transport.write("Hello server, | am the clientl\r\n "
self.transport.loseConnection()

This protocol connects to the server, sends it a welcomeagesand then terminates the connection.
The connectionMade event is usually where set up of the Bobtibject happens, as well as any initial greetings
(as in the WelcomeMessage protocol above). Any tearing ddywnotocol-specific objects is done in connectionLost.

2.2.3 Simple, single-use clients

In many cases, the protocol only needs to connect to thersamee, and the code just wants to get a connected instance
of the protocol. In those caséwisted.internet.protocol.ClientCreator provides the appropriate
API.

from twisted.internet import reactor
from twisted.internet.protocol import Protocol, ClientC reator

CHAPTER 2. TUTORIAL 18

class Greeter(Protocol):
def sendMessage(self, msg):
self.transport.write("MESSAGE %s\n" % msQ)

def gotProtocol(p):
p.sendMessage("Hello")
reactor.callLater(1, p.sendMessage, "This is sent in a sec ond")
reactor.callLater(2, p.transport.loseConnection)

¢ = ClientCreator(reactor, Greeter)
c.connectTCP("localhost”, 1234).addCallback(gotProto col)

2.2.4 ClientFactory

We use reactor.connect* and a ClientFactory. The Cliettifads in charge of creating the Protocol, and also receives
events relating to the connection state. This allows it tthifigs like reconnect on the event of a connection erroreHer
is an example of a simple ClientFactory that uses the Echimgob(above) and also prints what state the connection
isin.

from twisted.internet.protocol import Protocol, ClientF actory

from sys import stdout

class Echo(Protocol):
def dataReceived(self, data):
stdout.write(data)

class EchoClientFactory(ClientFactory):
def startedConnecting(self, connector):
print 'Started to connect.’

def buildProtocol(self, addr):
print 'Connected.’
return Echo()

def clientConnectionLost(self, connector, reason):
print ’Lost connection. Reason:’, reason

def clientConnectionFailed(self, connector, reason):
print 'Connection failed. Reason:’, reason

To connect this EchoClientFactory to a server, you couldhisecode:

from twisted.internet import reactor
reactor.connectTCP(host, port, EchoClientFactory())
reactor.run()

Note thatclientConnectionFailed is called when a connection could not be established, andlibat
ConnectionLost is called when a connection was made and then disconnected.
Reconnection

Many times, the connection of a client will be lost unintentglly due to network errors. One way to reconnect after
a disconnection would be to calbnnector.connect() when the connection is lost:

from twisted.internet.protocol import ClientFactory

class EchoClientFactory(ClientFactory):
def clientConnectionLost(self, connector, reason):
connector.connect()

CHAPTER 2. TUTORIAL

19

The connector passed as the first argument is the interfasede a connection and a protocol. When the con-
nection fails and the factory receives the clientConnettist event, the factory can calbnnector.connect()

to start the connection over again from scratch.

However, most programs that want this functionality shaomiglementReconnectingClientFactory in-
stead, which tries to reconnect if a connection is lost dsfand which exponentially delays repeated reconnect

attempts.

Here is the Echo protocol implemented with a Reconnectiieg@actory:

from twisted.internet.protocol import Protocol, Reconne ctingClientFactory
from sys import stdout

class Echo(Protocol):

def dataReceived(self, data):
stdout.write(data)

class EchoClientFactory(ReconnectingClientFactory):

def startedConnecting(self, connector):
print 'Started to connect.’

def buildProtocol(self, addr):
print ’Connected.’
print 'Resetting reconnection delay’
self.resetDelay()
return Echo()

def clientConnectionLost(self, connector, reason):
print 'Lost connection. Reason:’, reason
ReconnectingClientFactory.clientConnectionLost(self , connector, reason)

def clientConnectionFailed(self, connector, reason):
print 'Connection failed. Reason:’, reason
ReconnectingClientFactory.clientConnectionFailed(se If, connector,

reason)

2.2.5 AHigher-Level Example: ircLogBot

Overview of ircLogBot

The clients so far have been fairly simple.

doc/examples directory.

twisted imports

from twisted.words.protocols import irc
from twisted.internet import reactor, protocol
from twisted.python import log

system imports
import time, sys

class Messagelogger:

A more complidagxample comes with Twisted Words in the

An independent logger class (because separation of applica tion
and protocol logic is a good thing).
def __init_ (self, file):

self.file = file

CHAPTER 2. TUTORIAL

def log(self, message):
"""Write a message to the file.
timestamp = time.strftime("[%H:%M:%S]", time.localtime
self .file.write('%s %s\n’ % (timestamp, message))
self.file.flush()

def close(self):
self.file.close()

class LogBot(irc.IRCClient):

""A logging IRC bot."™
nickname = "twistedbot"

def connectionMade(self):
irc.IRCClient.connectionMade(self)
self.logger = MessageLogger(open(self.factory.filenam
self.logger.log("[connected at %s]" %
time.asctime(time.localtime(time.time())))

def connectionLost(self, reason):
irc.IRCClient.connectionLost(self, reason)
self.logger.log(“[disconnected at %s]" %
time.asctime(time.localtime(time.time())))
self.logger.close()

callbacks for events

def signedOn(self):
""Called when bot has succesfully signed on to server.
self.join(self.factory.channel)

def joined(self, channel):
"""This will get called when the bot joins the channel.
self.logger.log("[l have joined %s]" % channel)

def privmsg(self, user, channel, msg):
"""This will get called when the bot receives a message.
user = user.split(’!’, 1)[0]
self.logger.log("<%s> %s" % (user, msg))

Check to see if they're sending me a private message
if channel == self.nickname:

msg = "It isn’'t nice to whisper! Play nice with the group."

self.msg(user, msg)
return

Otherwise check to see if it is a message directed at me

if msg.startswith(self.nickname + ""):
msg = "%s: | am a log bot" % user
self.msg(channel, msg)
self.logger.log("<%s> %s" % (self.nickname, msg))

def action(self, user, channel, msg):

""This will get called when the bot sees someone do an action

(time.time()))

"a))

20

CHAPTER 2. TUTORIAL 21

user = user.split(’!”, 1)[0]
self.logger.log(" * %s %s" % (user, msg))

irc callbacks

def irc_NICK(self, prefix, params):
""Called when an IRC user changes their nickname.""
old_nick = prefix.split('"")[0]
new_nick = params[0]
self.logger.log("%s is now known as %s" % (old_nick, new_ni ck))

class LogBotFactory(protocol.ClientFactory):
""A factory for LogBots.

A new protocol instance will be created each time we connect t o the server.

the class of the protocol to build when new connection is mad e
protocol = LogBot

def __init_ (self, channel, filename):
self.channel = channel
self.flename = filename

def clientConnectionLost(self, connector, reason):
""If we get disconnected, reconnect to server."™
connector.connect()

def clientConnectionFailed(self, connector, reason):
print "connection failed:", reason
reactor.stop()

if _name__ == '_ main__"
initialize logging
log.startLogging(sys.stdout)

create factory protocol and application
f = LogBotFactory(sys.argv[1], sys.argv[2])

connect factory to this host and port
reactor.connectTCP("irc.freenode.net", 6667, f)

run bot
reactor.run()

Source listing —ircLogBot.py

ircLogBot.py connects to an IRC server, joins a channellagsl all traffic on it to a file. It demonstrates some of
the connection-level logic of reconnecting on a lost cotinacas well as storing persistent data in the Factory.

Persistent Data in the Factory

Since the Protocol instance is recreated each time the ctonés made, the client needs some way to keep track of
data that should be persisted. In the case of the loggingtbaeds to know which channel it is logging, and where
to log it to.

CHAPTER 2. TUTORIAL 22

from twisted.internet import protocol
from twisted.protocols import irc

class LogBot(irc.IRCClient):

def connectionMade(self):
irc.IRCClient.connectionMade(self)
self.logger = MessageLogger(open(self.factory.filenam e, "a")
self.logger.log("[connected at %s]" %
time.asctime(time.localtime(time.time())))

def signedOn(self):
self.join(self.factory.channel)

class LogBotFactory(protocol.ClientFactory):
protocol = LogBot

def __init_ (self, channel, filename):
self.channel = channel
self.flename = filename

When the protocol is created, it gets a reference to the faet®self.factory. It can then access attributes of the
factory in its logic. In the case of LogBot, it opens the filelamnnects to the channel stored in the factory.

2.2.6 Further Reading

TheProtocol class used throughout this document is a base implementti®rotocol used in most Twisted
applications for convenience. To learn about the com{itettocol interface, see the API documentation for
IProtocol

Thetransport attribute used in some examples in this document provideslfFrCPTransport interface.
To learn about the complete interface, see the API docurtient®r ITCPTransport

Interface classes are a way of specifying what methods aridueiés an object has and how they behave. See the
Components: Interfaces and Adaptéprage 147) document.

2.3 Setting up the TwistedQuotes application
2.3.1 Goal

This document describes how to set up the TwistedQuotegcafiph used in a number of other documents, such as
designing Twisted applicatior{page 24).
2.3.2 Setting up the TwistedQuotes project directory
In order to run the Twisted Quotes example, you will need ttheédfollowing:
1. Make aTwistedQuotes directory on your system
2. Place the following files in th&wistedQuotes directory:

e ""Twisted Quotes.

Source listing —_init__.py

(this file marks it as a package, see this seltimfithe Python tutorial for more on packages);

http://www.python.org/doc/current/tut/node8. html#SEGN008400000000000000000

CHAPTER 2. TUTORIAL

e from zope.interface import Interface, implements

from random import choice

class IQuoter(Interface):
""An object that returns quotes.™™

def getQuote():
""Return a quote.

class StaticQuoter:
""Return a static quote.

implements(lQuoter)

def __init_ (self, quote):
self.quote = quote

def getQuote(self):
return self.quote

class FortuneQuoter:
""Load quotes from a fortune-format file.""

implements(IQuoter)

def _ init_ (self, filenames):
self.flenames = filenames

def getQuote(self):
return choice(open(choice(self.filenames)).read().sp

Source listing —quoters.py
e from twisted.internet.protocol import Factory, Protocol
class QOTD(Protocol):

def connectionMade(self):
self.transport.write(self.factory.quoter.getQuote()
self.transport.loseConnection()

class QOTDFactory(Factory):
protocol = QOTD
def __init_ (self, quoter):

self.quoter = quoter

Source listing —quoteproto.py

and

e register("Quote of the Day TAP Builder",
"TwistedQuotes.quotetap”,
description=""

lit("\n%\n"))

+\r\n’)

23

CHAPTER 2. TUTORIAL 24

Example of a TAP builder module.

type="tap",
tapname="qotd")

Source listing —plugins.tml

3. Add theTwistedQuotes directory’sparentto your Python path. For example, if the TwistedQuotes direc
tory’s path is/tmp/TwistedQuotes add/tmp to your Python path. On UNIX this would bexport
PYTHONPATH=/my/stuff:$PYTHONPATH , on Microsoft Windows change theYTHONPATHariable
through the Systems Properites dialog to Adyg/stuff; at the beginning.

4. Test your package by trying to import it in the Python ipteter:

Python 2.1.3 (#1, Apr 20 2002, 22:45:31)

[GCC 2.95.4 20011002 (Debian prerelease)] on linux2

Type "copyright", "credits" or "license" for more informat ion.
>>> jmport TwistedQuotes

>>> # No traceback means you're fine.

2.4 Designing Twisted Applications
241 Goals

This document describes how a good Twisted applicationrigtstred. It should be useful for beginning Twisted
developers who want to structure their code in a clean, miaiable way that reflects current best practices.

Readers will want to be familiar withsynchonous programming using Deferréoiage 8) and with writingervers
(page 13) andlients(page 17) using Twisted.

2.4.2 Example of a modular design: TwistedQuotes

TwistedQuotes is a very simple plugin which is a great demonstration of T@ds power. It will export a small
kernel of functionality — Quote of the Day — which can be aseeghrough every interface that Twisted supports: web
pages, e-mail, instant messaging, a specific Quote of thepizagcol, and more.

Set up the project directory

See the description aletting up the TwistedQuotes examigage 22).

A Look at the Heart of the Application

from zope.interface import Interface, implements

from random import choice

class IQuoter(Interface):
""An object that returns quotes."™

def getQuote():
""Return a quote.

class StaticQuoter:
""Return a static quote.

implements(IQuoter)

CHAPTER 2. TUTORIAL 25

def __init_ (self, quote):
self.quote = quote

def getQuote(self):
return self.quote

class FortuneQuoter:
""Load quotes from a fortune-format file.

implements(IQuoter)

def _ init_ (self, filenames):
self.flenames = filenames

def getQuote(self):
return choice(open(choice(self.filenames)).read().sp lit(\n%\n"))

Twisted Quotes Central Abstraction guoters.py

This code listing shows us what the Twisted Quotes systetthabaut. The code doesn't have any way of talking
to the outside world, but it provides a library which is a claad uncluttered abstraction: “give me the quote of the
day”.

Note that this module does not import any Twisted functidypait all! The reason for doing things this way is
integration. If your “business objects” are not stuck to yoser interface, you can make a module that can integrate
those objects with different protocols, GUIs, and file fotsaaHaving such classes provides a way to decouple your
components from each other, by allowing each to be used amntkmtly.

In this manner, Twisted itself has minimal impact on the ¢ogf your program. Although the Twisted “dot
products” are highly interoperable, they also follow thipeoach. You can use them independently because they are
not stuck to each other. They communicate in well-definedswagd only when that communication provides some
additional feature. Thus, you can usasted.web with twisted.enterprise , but neither requires the other,
because they are integrated around the concepetdrreds(page 100).

Your Twisted applications should follow this style as mushpassible. Have (at least) one module which imple-
ments your specific functionality, independent of any ustarface code.

Next, we're going to need to associate this abstract logilh some way of displaying it to the user. We’'ll do this
by writing a Twisted server protocol, which will respond teetclients that connect to it by sending a quote to the
client and then closing the connection. Note: don’t get tmmused on the details of this — different ways to interface
with the user are 90% of what Twisted does, and there are latsauments describing the different ways to do it.

from twisted.internet.protocol import Factory, Protocol
class QOTD(Protocol):
def connectionMade(self):
self.transport.write(self.factory.quoter.getQuote() +\r\n’)
self.transport.loseConnection()
class QOTDFactory(Factory):
protocol = QOTD

def __init__ (self, quoter):
self.quoter = quoter

Twisted Quotes Protocol Implementation ggoteproto.py

CHAPTER 2. TUTORIAL 26

This is a very straightforwarBrotocol implementation, and the pattern described above is repbate. The
Protocol contains essentially no logic of its own, just egtoto tie together an object which can generate quotes (a
Quoter) and an object which can relay bytes to a TCP connectidirdasport). When a client connects to this
server, QOTDOnstance is created, and itennectionMade method is called.

The QOTDFactory ’s role is to specify to the Twisted framework how to createratocol instance that will
handle the connection. Twisted will not instantiat®@@TDFactory ; you will do that yourself later, in thenktap
plug-in below.

Note: you can read more specificsRibtocol andFactory in the Writing Servergpage 18) HOWTO.

Once we have an abstraction -Qaioter — and we have a mechanism to connect it to the network Q&D
protocol — the next thing to do is to put the last link in theiohaf functionality between abstraction and user. This
last link will allow a user to choose@uoter and configure the protocol. Writing this configuration is a@ekin the
Application HOWTQpage 159).

2.5 Twisted from Scratch, or The Evolution of Finger

2.5.1 Introduction
Twisted is a big system. People are often daunted when th@pagh it. It's hard to know where to start looking.

This guide builds a full-fledged Twisted application frone thround up, using most of the important bits of the
framework. There is a lot of code, but don't be afraid.

The application we are looking at is a “finger” service, altimg lines of the familiar service traditionally provided
by UNIX servers. We will extend this service slightly beyahé standard, in order to demonstrate some of Twisted’s
higher-level features.

2.5.2 Contents
This tutorial is split into eleven parts:
1. The Evolution of Finger: building a simple finger serviteis page)
. The Evolution of Finger: adding features to the finger sez¢frage 31)
. The Evolution of Finger: cleaning up the finger cqgage 39)
. The Evolution of Finger: moving to a component based archite (page 42)
. The Evolution of Finger: pluggable backengsmge 51)
. The Evolution of Finger: a web fronter{dage 62)
. The Evolution of Finger: Twisted client support using Pexstpve Brokepage 67)

. The Evolution of Finger: using a single factory for multipetocols(page 72)

© 00 N o o b~ W DN

. The Evolution of Finger: a Twisted finger cliefstage 78)

[y
o

. The Evolution of Finger: making a finger librapage 80)
11. The Evolution of Finger: configuration and packaging of timgéir servicgpage 83)

2.6 The Evolution of Finger: building a simple finger service

2.6.1 Introduction

This is the first part of the Twisted tutori@visted from Scratch, or The Evolution of Fingémis page).
By the end of this section of the tutorial, our finger servdt annswer TCP finger requests on port 1079, and will
read data from the web.

CHAPTER 2. TUTORIAL 27

2.6.2 Refuse Connections

from twisted.internet import reactor
reactor.run()

Source listing —finger01.py

This example only runs the reactor. Nothing at all will happmtil we interrupt the program. It will consume
almost no CPU resources. Not very useful, perhaps — butghreei skeleton inside which the Twisted program will
grow.

The Reactor

You don't call Twisted, Twisted calls you. Theactor is Twisted’s main event loop. There is exactly one reactor in
any running Twisted application. Once started it loops @vet over again, responding to network events, and making
scheduled calls to code.

2.6.3 Do Nothing

from twisted.internet import protocol, reactor
class FingerProtocol(protocol.Protocol):
pass
class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol
reactor.listenTCP(1079, FingerFactory())
reactor.run()

Source listing —finger02.py

Here, we start listening on port 1079. The 1079 is a reminat ¢ventually, we want to run on port 79, the
standard port for finger servers. We define a protocol whidsdmt respond to any events. Thus, connections to 1079
will be accepted, but the input ignored.

2.6.4 Drop Connections

from twisted.internet import protocol, reactor
class FingerProtocol(protocol.Protocol):
def connectionMade(self):
self.transport.loseConnection()
class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol
reactor.listenTCP(1079, FingerFactory())
reactor.run()

Source listing —finger03.py

Here we add to the protocol the ability to respond to the eweétieginning a connection — by terminating it.
Perhaps not an interesting behavior, but it is already dlodgehaving according to the letter of the protocol. After
all, there is no requirement to send any data to the remoteemion in the standard. The only problem, as far as the
standard is concerned, is that we terminate the connect@sdon. A client which is slow enough will see his send()
of the username result in an error.

2.6.5 Read Username, Drop Connections

from twisted.internet import protocol, reactor
from twisted.protocols import basic
class FingerProtocol(basic.LineReceiver):

CHAPTER 2. TUTORIAL 28

def lineReceived(self, user):
self.transport.loseConnection()
class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol
reactor.listenTCP(1079, FingerFactory())
reactor.run()

Source listing —finger04.py

Here we makéingerProtocol inherit fromLineReceiver , so that we get data-based events on a line-by-
line basis. We respond to the event of receiving the line wlitlitting down the connection.

Congratulations, this is the first standard-compliantieersf the code. However, usually people actually expect
some data about users to be transmitted.

2.6.6 Read Username, Output Error, Drop Connections

from twisted.internet import protocol, reactor
from twisted.protocols import basic
class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):
self.transport.write("No such user\r\n")
self.transport.loseConnection()
class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol
reactor.listenTCP(1079, FingerFactory())
reactor.run()

Source listing —finger05.py

Finally, a useful version. Granted, the usefulness is sdmeélimited by the fact that this version only prints out a
“No such user” message. It could be used for devastatingtaffdnoney-pots, of course.

2.6.7 Output From Empty Factory

Read username, output from empty factory, drop connection s
from twisted.internet import protocol, reactor
from twisted.protocols import basic
class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):
self.transport.write(self.factory.getUser(user)+"\r \n")
self.transport.loseConnection()
class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol
def getUser(self, user): return "No such user”
reactor.listenTCP(1079, FingerFactory())
reactor.run()

Source listing —finger06.py

The same behavior, but finally we see what usefulness therjalcas: as something that does not get constructed
for every connection, it can be in charge of the user dataldlasgarticular, we won't have to change the protocol if
the user database back-end changes.

2.6.8 Output from Non-empty Factory

Read username, output from non-empty factory, drop connec tions

CHAPTER 2. TUTORIAL 29

from twisted.internet import protocol, reactor
from twisted.protocols import basic
class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):
self.transport.write(self.factory.getUser(user)+"\r \n")
self.transport.loseConnection()
class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol
def __init__ (self, * kwargs): self.users = kwargs
def getUser(self, user):
return self.users.get(user, "No such user")
reactor.listenTCP(1079, FingerFactory(moshez="Happy a nd well’))
reactor.run()

Source listing —finger07.py

Finally, a really useful finger database. While it does notpbumformation about logged in users, it could be
used to distribute things like office locations and inteiwffice numbers. As hinted above, the factory is in charge of
keeping the user database: note that the protocol instaagadt changed. This is starting to look good: we really
won't have to keep tweaking our protocol.

2.6.9 Use Deferreds

Read username, output from non-empty factory, drop connec tions
Use deferreds, to minimize synchronicity assumptions
from twisted.internet import protocol, reactor, defer
from twisted.protocols import basic
class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):
self.factory.getUser(user
).addErrback(lambda _: "Internal error in server"
).addCallback(lambda m:
(self.transport.write(m+"\r\n"),
self.transport.loseConnection()))
class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol
def _ init_ (self, * kwargs): self.users = kwargs
def getUser(self, user):
return defer.succeed(self.users.get(user, "No such user ")
reactor.listenTCP(1079, FingerFactory(moshez="Happy a nd well’))
reactor.run()

Source listing —finger08.py

But, here we tweak it just for the hell of it. Yes, while the yirais version worked, it did assume the result of
getUser is always immediately available. But what if indte&an in memory database, we would have to fetch result
from a remote Oracle? Or from the web? Or, or...

2.6.10 Run 'finger’ Locally

Read username, output from factory interfacing to OS, drop connections
from twisted.internet import protocol, reactor, defer, ut ils
from twisted.protocols import basic
class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):
self.factory.getUser(user

CHAPTER 2. TUTORIAL 30

).addErrback(lambda _: "Internal error in server"
).addCallback(lambda m:
(self.transport.write(m+"\r\n"),
self.transport.loseConnection()))
class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol
def getUser(self, user):
return utils.getProcessOutput("finger”, [user])
reactor.listenTCP(1079, FingerFactory())
reactor.run()

Source listing —finger09.py

...from running a local command? Yes, this version runs fihgeally with whatever arguments it is given, and
returns the standard output. This is probably insecurepagyobably don’t want a real server to do this without a lot
more validation of the user input. This will do exactly whia¢ tstandard version of the finger server does.

2.6.11 Read Status from the Web

The web. That invention which has infiltrated homes aroumdvtbrld finally gets through to our invention. Here
we use the built-in Twisted web client, which also returneteded. Finally, we manage to have examples of three
different database back-ends, which do not change thequiattass. In fact, we will not have to change the protocol
again until the end of this tutorial: we have achieved, hene, truly usable class.

Read username, output from factory interfacing to web, dro p connections
from twisted.internet import protocol, reactor, defer, ut ils
from twisted.protocols import basic
from twisted.web import client
class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):
self.factory.getUser(user
).addErrback(lambda _: "Internal error in server"
).addCallback(lambda m:
(self.transport.write(m+"\r\n"),
self.transport.loseConnection()))
class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol
def __init_ (self, prefix): self.prefix=prefix
def getUser(self, user):
return client.getPage(self.prefix+user)
reactor.listenTCP(1079, FingerFactory(prefix="http:/ llivejournal.com/™))
reactor.run()

Source listing —finger10.py

2.6.12 Use Application

Up until now, we faked. We kept using port 1079, becausey,ealio wants to run a finger server with root privileges?
Well, the common solution is “privilege shedding”: aftending to the network, become a different, less privileged
user. We could have done it ourselves, but Twisted has aibuiy to do it. We will create a snippet as above, but
now we will define an application object. That object will bavid and gid attributes. When running it (later we will
see how) it will bind to ports, shed privileges and then run.

After saving the next example (finger11.py) as “finger.tae&d on to find out how to run this code using the twistd
utility.

Read username, output from non-empty factory, drop connec tions

CHAPTER 2. TUTORIAL 31

Use deferreds, to minimize synchronicity assumptions
Write application. Save in ‘finger.tpy’
from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer
from twisted.protocols import basic
class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):
self.factory.getUser(user
).addErrback(lambda _: "Internal error in server"
).addCallback(lambda m:
(self.transport.write(m+"\r\n"),
self.transport.loseConnection()))
class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol

def __init__ (self, * kwargs): self.users = kwargs
def getUser(self, user):
return defer.succeed(self.users.get(user, "No such user)
application = service.Application(finger’, uid=1, gid= 1)

factory = FingerFactory(moshez="Happy and well’)
internet. TCPServer(79, factory).setServiceParent(
service.lServiceCollection(application))

Source listing —finger11.py

2.6.13 twistd

This is how to run “Twisted Applications”— files which defina a@pplication’. twistd (TWISTed Daemonizer) does
everything a daemon can be expected to — shuts down stdint&terr, disconnects from the terminal and can even
change runtime directory, or even the root filesystems. dntsh does everything so the Twisted application develope
can concentrate on writing his networking code.

root% twistd -ny finger.tac # just like before

root% twistd -y finger.tac # daemonize, keep pid in twistd.p id

root% twistd -y finger.tac --pidfile=finger.pid

root% twistd -y finger.tac --rundir=/

root% twistd -y finger.tac --chroot=/var

root% twistd -y finger.tac -1 /var/log/finger.log

root% twistd -y finger.tac --syslog # just log to syslog

root% twistd -y finger.tac --syslog --prefix=twistedfing er # use given prefix

2.7 The Evolution of Finger: adding features to the finger service

2.7.1 Introduction

This is the second part of the Twisted tutofafisted from Scratch, or The Evolution of Findpage 26).
In this section of the tutorial, our finger server will contento sprout features: the ability for users to set finger
announces, and using our finger service to send those argments on the web, on IRC and over XML-RPC.

2.7.2 Setting Message By Local Users

Now that port 1079 is free, maybe we can run on it a differentesgone which will let people set their messages. It
does no access control, so anyone who can login to the macaimset any message. We assume this is the desired
behavior in our case. Testing it can be done by simply:

CHAPTER 2. TUTORIAL

% nc localhost 1079 # or telnet localhost 1079
moshez

Giving a tutorial now, sorry!

D

But let's try and fix setting away messages, shall we?
from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer
from twisted.protocols import basic
class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):
self.factory.getUser(user
).addErrback(lambda _: "Internal error in server"
).addCallback(lambda m:
(self.transport.write(m+"\r\n"),
self.transport.loseConnection()))

class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol
def __init__ (self, ** kwargs): self.users = kwargs
def getUser(self, user):
return defer.succeed(self.users.get(user, "No such user

class FingerSetterProtocol(basic.LineReceiver):
def connectionMade(self): self.lines = []
def lineReceived(self, line): self.lines.append(line)
def connectionLost(self, reason):
self.factory.setUser(* self.lines[:2])
first line: user second line: status

class FingerSetterFactory(protocol.ServerFactory):
protocol = FingerSetterProtocol
def _ init_ (self, ff): self.setUser = ff.users.__setite

ff = FingerFactory(moshez="Happy and well’)
fsf = FingerSetterFactory(ff)

application = service.Application(finger’, uid=1, gid=
serviceCollection = service.lServiceCollection(applic
internet. TCPServer(79,ff).setServiceParent(serviceC
internet. TCPServer(1079,fsf).setServiceParent(servi

Source listing —finger12.py

2.7.3 Use Services to Make Dependencies Sane

The previous version had the setter poke at the innards dirtger factory.

32

")

1)
ation)
ollection)
ceCollection)

. It's usually not a good idea: this version

makes both factories symmetric by making them both look &tglesobject. Services are useful for when an object is

needed which is not related to a specific network server. herenoved all

responsibility for manufacturing factories

into the service. Note that we stopped subclassing: thecsesimply puts useful methods and attributes inside the

factories. We are getting better at protocol design: nonauofprotocol cl
have to change until the end of the tutorial.

Fix asymmetry
from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer

asses had to be changed, and neither will

CHAPTER 2. TUTORIAL 33

from twisted.protocols import basic
class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):
self.factory.getUser(user
).addErrback(lambda _: "Internal error in server"
).addCallback(lambda m:
(self.transport.write(m+"\r\n"),

self.transport.loseConnection()))

class FingerSetterProtocol(basic.LineReceiver):
def connectionMade(self): self.lines = []
def lineReceived(self, line): self.lines.append(line)
def connectionLost(self,reason): self.factory.setUser (* self.lines[:2])
first line: user second line: status

class FingerService(service.Service):
def __init_ (self, *args, ** kwargs):
self.parent.__init__(self, * args)
self.users = kwargs
def getUser(self, user):
return defer.succeed(self.users.get(user, "No such user ")
def getFingerFactory(self):
f = protocol.ServerFactory()
f.protocol, f.getUser = FingerProtocol, self.getUser
return f
def getFingerSetterFactory(self):
f = protocol.ServerFactory()

f.protocol, f.setUser = FingerSetterProtocol, self.user s.__setitem_
return f

application = service.Application(‘finger’, uid=1, gid= 1)

f = FingerService('finger’, moshez="Happy and well’)

serviceCollection = service.lServiceCollection(applic ation)

internet. TCPServer(79,f.getFingerFactory()
).setServiceParent(serviceCollection)

internet. TCPServer(1079,f.getFingerSetterFactory()
).setServiceParent(serviceCollection)

Source listing —finger13.py

2.7.4 Read Status File

This version shows how, instead of just letting users sét thessages, we can read those from a centrally managed
file. We cache results, and every 30 seconds we refresh iticBerare useful for such scheduled tasks.

moshez: happy and well
shawn: alive

sample /etc/users file -etc.users

Read from file

from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer
from twisted.protocols import basic

class FingerProtocol(basic.LineReceiver):

CHAPTER 2. TUTORIAL

def lineReceived(self, user):
self.factory.getUser(user
).addErrback(lambda _: "Internal error in server"
).addCallback(lambda m:
(self.transport.write(m+"\r\n"),
self.transport.loseConnection()))

class FingerService(service.Service):
def __init_ (self, filename):
self.users = {}
self.flename = filename
def _read(self):
for line in file(self.flename):
user, status = line.split(:’, 1)
user = user.strip()
status = status.strip()
self.users[user] = status
self.call = reactor.callLater(30, self._read)
def startService(self):
self._read()
service.Service.startService(self)
def stopService(self):
service.Service.stopService(self)
self.call.cancel()
def getUser(self, user):

return defer.succeed(self.users.get(user, "No such user

def getFingerFactory(self):
f = protocol.ServerFactory()
f.protocol, f.getUser = FingerProtocol, self.getUser
return f

application = service.Application(’finger’, uid=1, gid=
f = FingerService('/etc/users’)
finger = internet. TCPServer(79, f.getFingerFactory())

finger.setServiceParent(service.lServiceCollection(
f.setServiceParent(service.lServiceCollection(appli

Source listing —finger14.py

2.7.5 Announce on Web, Too

34

")

1)

application))
cation))

The same kind of service can also produce things useful fFargirotocols. For example, in twisted.web, the factory
itself (the site) is almost never subclassed — instead, dgivisn a resource, which represents the tree of resources
available via URLs. That hierarchy is navigated by site, avetriding it dynamically is possible with getChild.

Read from file, announce on the web!

from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer
from twisted.protocols import basic

from twisted.web import resource, server, static
import cgi

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):
self.factory.getUser(user

CHAPTER 2. TUTORIAL

).addErrback(lambda _: "Internal error in server"

).addCallback(lambda m:
(self.transport.write(m+"\r\n"),
self.transport.loseConnection()))

class MotdResource(resource.Resource):

def __init_ (self, users):
self.users = users
resource.Resource.__init__ (self)

we treat the path as the username
def getChild(self, username, request):
motd = self.users.get(username)
username = cgi.escape(username)
if motd is not None:
motd = cgi.escape(motd)
text = '<h1>%s</h1><p>%s</p>" % (username,motd)
else:
text = '<h1>%s</h1><p>No such user</p>' % username
return static.Data(text, 'text/html’)

class FingerService(service.Service):
def _ init_ (self, filename):
self.filename = filename
self._read()
def _read(self):
self.users = {}
for line in file(self.flename):
user, status = line.split(:’, 1)
user = user.strip()
status = status.strip()
self.users[user] = status
self.call = reactor.callLater(30, self._read)
def getUser(self, user):
return defer.succeed(self.users.get(user, "No such user ")
def getFingerFactory(self):
f = protocol.ServerFactory()
f.protocol, f.getUser = FingerProtocol, self.getUser
f.startService = self.startService
return f

def getResource(self):
r = MotdResource(self.users)

return r
application = service.Application(‘finger’, uid=1, gid= 1)
f = FingerService(/etc/users’)
serviceCollection = service.lServiceCollection(applic ation)

internet. TCPServer(79, f.getFingerFactory()
).setServiceParent(serviceCollection)

internet. TCPServer(8000, server.Site(f.getResource())
).setServiceParent(serviceCollection)

Source listing —fingerl5.py

CHAPTER 2. TUTORIAL 36

2.7.6 Announce on IRC, Too

This is the first time there is client code. IRC clients often a lot like servers: responding to events from the
network. The reconnecting client factory will make surettbavered links will get re-established, with intelligent
tweaked exponential back-off algorithms. The IRC clieséltis simple: the only real hack is getting the nickname
from the factory in connectionMade.

Read from file, announce on the web, irc
from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer
from twisted.words.protocols import irc
from twisted.protocols import basic
from twisted.web import resource, server, static
import cgi
class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):
self.factory.getUser(user
).addErrback(lambda _: "Internal error in server"
).addCallback(lambda m:
(self.transport.write(m+"\r\n"),
self.transport.loseConnection()))
class FingerSetterProtocol(basic.LineReceiver):
def connectionMade(self): self.lines =]
def lineReceived(self, line): self.lines.append(line)
def connectionLost(self,reason): self.factory.setUser (* self.lines[:2])
class IRCReplyBot(irc.IRCClient):
def connectionMade(self):
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)
def privmsg(self, user, channel, msg):
user = user.split('!)[0]
if self.nickname.lower() == channel.lower():
self.factory.getUser(msg
).addErrback(lambda _: "Internal error in server"

).addCallback(lambda m: irc.IRCClient.msg(self, user, m sg+: '+m))

class FingerService(service.Service):
def _ init_ (self, filename):
self.flename = filename
self._read()
def _read(self):
self.users = {}
for line in file(self.flename):
user, status = line.split(:’, 1)
user = user.strip()
status = status.strip()
self.users[user] = status
self.call = reactor.callLater(30, self._read)
def getUser(self, user):
return defer.succeed(self.users.get(user, "No such user ")
def getFingerFactory(self):
f = protocol.ServerFactory()
f.protocol, f.getUser = FingerProtocol, self.getUser
return f
def getResource(self):
r = resource.Resource()
r.getChild = (lambda path, request:
static.Data('<h1>%s</h1><p>%s</p>" %

CHAPTER 2. TUTORIAL 37

tuple(map(cgi.escape,
[path,self.users.get(path,
“"No such user <p/> usage: site/user")])),
‘text/html’))

return r

def getIRCBot(self, nickname):
f = protocol.ReconnectingClientFactory()

f.protocol,f.nickname,f.getUser = IRCReplyBot,nicknam e,self.getUser
return f

application = service.Application(‘finger’, uid=1, gid= 1)

f = FingerService('/etc/users’)

serviceCollection = service.lServiceCollection(applic ation)

internet. TCPServer(79, f.getFingerFactory()
).setServiceParent(serviceCollection)

internet. TCPServer(8000, server.Site(f.getResource())
).setServiceParent(serviceCollection)

internet. TCPClient('irc.freenode.org’, 6667, f.getIRC Bot(’'fingerbot’)
).setServiceParent(serviceCollection)

Source listing —finger16.py

2.7.7 Add XML-RPC Support

In Twisted, XML-RPC support is handled just as though it wasther resource. That resource will still support GET
calls normally through render(), but that is usually lefimplemented. Note that it is possible to return deferredsfr
XML-RPC methods. The client, of course, will not get the aasuntil the deferred is triggered.

Read from file, announce on the web, irc, xml-rpc
from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer
from twisted.words.protocols import irc
from twisted.protocols import basic
from twisted.web import resource, server, static, xmirpc
import cgi
class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):
self.factory.getUser(user
).addErrback(lambda _: "Internal error in server"
).addCallback(lambda m:
(self.transport.write(m+"\r\n"),
self.transport.loseConnection()))
class FingerSetterProtocol(basic.LineReceiver):
def connectionMade(self): self.lines = []
def lineReceived(self, line): self.lines.append(line)
def connectionLost(self,reason): self.factory.setUser (* self.lines[:2])
class IRCReplyBot(irc.IRCClient):
def connectionMade(self):
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)
def privmsg(self, user, channel, msg):
user = user.split('!)[0]
if self.nickname.lower() == channel.lower():
self.factory.getUser(msg
).addErrback(lambda _: "Internal error in server"

CHAPTER 2. TUTORIAL

).addCallback(lambda m: irc.IRCClient.msg(self, user, m sg+’: +m))

class FingerService(service.Service):
def __init_ (self, filename):
self.flename = filename
self._read()
def _read(self):
self.users = {}
for line in file(self.flename):
user, status = line.split(’:’, 1)
user = user.strip()
status = status.strip()
self.users[user] = status
self.call = reactor.callLater(30, self._read)
def getUser(self, user):
return defer.succeed(self.users.get(user, "No such user ")
def getFingerFactory(self):
f = protocol.ServerFactory()
f.protocol, f.getUser = FingerProtocol, self.getUser
return f
def getResource(self):
r = resource.Resource()
r.getChild = (lambda path, request:
static.Data('<h1>%s</h1><p>%s</p>" %
tuple(map(cgi.escape,
[path,self.users.get(path, "No such user")])),
‘text/html’))
x = xmlrpc.XMLRPC()
x.xmlrpc_getUser = self.getUser
r.putChild(RPC2’, x)
return r
def getlIRCBot(self, nickname):
f = protocol.ReconnectingClientFactory()

f.protocol,f.nickname,f.getUser = IRCReplyBot,nicknam e,self.getUser
return f

application = service.Application(’finger’, uid=1, gid= 1)

f = FingerService('/etc/users’)

serviceCollection = service.lServiceCollection(applic ation)

internet. TCPServer(79, f.getFingerFactory()
).setServiceParent(serviceCollection)

internet. TCPServer(8000, server.Site(f.getResource())
).setServiceParent(serviceCollection)

internet. TCPClient(’irc.freenode.org’, 6667, f.getIRC Bot('fingerbot’)
).setServiceParent(serviceCollection)

Source listing —finger17.py

A simple client to test the XMLRPC finger:

testing xmirpc finger
import xmlirpclib

server = xmirpclib.Server(’http://127.0.0.1:8000/RPC2)
print server.getUser(’'moshez’)

38

CHAPTER 2. TUTORIAL 39

Source listing —fingerXRclient.py

2.8 The Evolution of Finger: cleaning up the finger code

2.8.1 Introduction

This is the third part of the Twisted tutori@visted from Scratch, or The Evolution of Findpage 26).
In this section of the tutorial, we’'ll clean up our code sattihés closer to a readable and extendable style.

2.8.2 Write Readable Code

The last version of the application had a lot of hacks. Wedeaisub-classing, didn’t support things like user listings
over the web, and removed all blank lines — all in the inteadstode which is shorter. Here we take a step back,
subclass what is more naturally a subclass, make thingdwshiould take multiple lines take them, etc. This shows a
much better style of developing Twisted applications, titothe hacks in the previous stages are sometimes used in
throw-away prototypes.

Do everything properly

from twisted.application import internet, service

from twisted.internet import protocol, reactor, defer
from twisted.words.protocols import irc

from twisted.protocols import basic

from twisted.web import resource, server, static, xmirpc
import cgi

def catchError(err):
return "Internal error in server"

class FingerProtocol(basic.LineReceiver):

def lineReceived(self, user):
d = self.factory.getUser(user)
d.addErrback(catchError)
def writeValue(value):
self.transport.write(value+\r\n’)
self.transport.loseConnection()
d.addCallback(writeValue)

class FingerSetterProtocol(basic.LineReceiver):

def connectionMade(self):
self.lines =]

def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self, reason):
self.factory.setUser(* self.lines[:2])

class IRCReplyBot(irc.IRCClient):

def connectionMade(self):

CHAPTER 2. TUTORIAL

self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split('!)[0]
if self.nickname.lower() == channel.lower():
d = self.factory.getUser(msg)
d.addErrback(catchError)
d.addCallback(lambda m: "Status of %s: %s" % (msg, m))
d.addCallback(lambda m: self.msg(user, m))

class UserStatusTree(resource.Resource):
def __init_ (self, service):

resource.Resource.__init__(self)
self.service = service

def render_GET(self, request):
d = self.service.getUsers()
def formatUsers(users):
| = [%s" % (user, user)
for user in users]
return '+".join(l)+'’
d.addCallback(formatUsers)
d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

def getChild(self, path, request):
if path=="":
return UserStatusTree(self.service)
else:
return UserStatus(path, self.service)

class UserStatus(resource.Resource):

def __init_ (self, user, service):
resource.Resource.__init__ (self)
self.user = user
self.service = service

def render_GET(self, request):
d = self.service.getUser(self.user)
d.addCallback(cgi.escape)
d.addCallback(lambda m:

'<h1>%s</h1>'%self.user+'<p>%s</p>'%m)

d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

class UserStatusXR(xmlrpc.XMLRPC):

def __init_ (self, service):
xmlrpc. XMLRPC.__init__(self)
self.service = service

40

CHAPTER 2. TUTORIAL

def xmlrpc_getUser(self, user):
return self.service.getUser(user)

class FingerService(service.Service):

def __init_ (self, filename):
self.filename = filename
self._read()

def _read(self):

self.users = {}

for line in file(self.flename):
user, status = line.split(:’, 1)
user = user.strip()
status = status.strip()
self.users[user] = status

self.call = reactor.callLater(30, self._read)

def getUser(self, user):
return defer.succeed(self.users.get(user, "No such user ")

def getUsers(self):
return defer.succeed(self.users.keys())

def getFingerFactory(self):
f = protocol.ServerFactory()
f.protocol = FingerProtocol
f.getUser = self.getUser
return f

def getResource(self):
r = UserStatusTree(self)
X = UserStatusXR(self)
r.putChild('RPC2’, x)
return r

def getIRCBot(self, nickname):
f = protocol.ReconnectingClientFactory()
f.protocol = IRCReplyBot
f.nickname = nickname
f.getUser = self.getUser

return f
application = service.Application(finger’, uid=1, gid= 1)
f = FingerService('/etc/users’)
serviceCollection = service.lServiceCollection(applic ation)

internet. TCPServer(79, f.getFingerFactory()
).setServiceParent(serviceCollection)

internet. TCPServer(8000, server.Site(f.getResource())
).setServiceParent(serviceCollection)

internet. TCPClient(’irc.freenode.org’, 6667, f.getIRC Bot(’'fingerbot’)
).setServiceParent(serviceCollection)

Source listing —finger18.py

CHAPTER 2. TUTORIAL 42

2.9 The Evolution of Finger: moving to a component based architecture

2.9.1 Introduction

This is the fourth part of the Twisted tutori@visted from Scratch, or The Evolution of Findeage 26).
In this section of the tutorial, we’ll move our code to a coment architecture so that adding new features is
trivial.

2.9.2 Write Maintainable Code

In the last version, the service class was three times lahgerany other class, and was hard to understand. This was
because it turned out to have multiple responsibilitiehad to know how to access user information, by rereading
the file every half minute, but also how to display itself in griad of protocols. Here, we used the component-based
architecture that Twisted provides to achieve a separaticconcerns. All the service is responsible for, now, is
supporting getUser/getUsers. It declares its support gallao zope.interface.implements. Then, adapters arg use
to make this service look like an appropriate class for wexithings: for supplying a finger factory to TCPServer, for
supplying a resource to site’s constructor, and to providHR& client factory for TCPClient. All the adapters use are
the methods in FingerService they are declared to use: getiggUsers. We could, of course, skip the interfaces and
let the configuration code use things like FingerFactorgi3ervice(f) directly. However, using interfaces provides
the same flexibility inheritance gives: future subclassesaverride the adapters.

Do everything properly, and componentize

from twisted.application import internet, service

from twisted.internet import protocol, reactor, defer
from twisted.words.protocols import irc

from twisted.protocols import basic

from twisted.python import components

from twisted.web import resource, server, static, xmlrpc
from zope.interface import Interface, implements

import cgi

class IFingerService(Interface):

def getUser(user):
""Return a deferred returning a string™"
def getUsers():
""Return a deferred returning a list of strings

class IFingerSetterService(Interface):

def setUser(user, status):

""Set the user’'s status to something""
def catchError(err):

return "Internal error in server"

class FingerProtocol(basic.LineReceiver):

def lineReceived(self, user):
d = self.factory.getUser(user)
d.addErrback(catchError)
def writeValue(value):
self.transport.write(value+'\r\n’)
self.transport.loseConnection()
d.addCallback(writeValue)

CHAPTER 2. TUTORIAL

class IFingerFactory(Interface):

def getUser(user):
""Return a deferred returning a string

def buildProtocol(addr):
""Return a protocol returning a string

class FingerFactoryFromService(protocol.ServerFactor
implements(IFingerFactory)
protocol = FingerProtocol

def __init__ (self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(FingerFactoryFromService
IFingerService,
IFingerFactory)

class FingerSetterProtocol(basic.LineReceiver):

def connectionMade(self):
self.lines =]

def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self, reason):
if len(self.lines) ==
self.factory.setUser(* self.lines)

class IFingerSetterFactory(Interface):

def setUser(user, status):
""Return a deferred returning a string

def buildProtocol(addr):
""Return a protocol returning a string

class FingerSetterFactoryFromService(protocol.Server
implements(IFingerSetterFactory)
protocol = FingerSetterProtocol

def __init_ (self, service):
self.service = service

def setUser(self, user, status):

y):

Factory):

43

CHAPTER 2. TUTORIAL 44

self.service.setUser(user, status)

components.registerAdapter(FingerSetterFactoryFromS ervice,
IFingerSetterService,
IFingerSetterFactory)

class IRCReplyBot(irc.IRCClient):

def connectionMade(self):
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split('!")[0]
if self.nickname.lower() == channel.lower():
d = self.factory.getUser(msg)
d.addErrback(catchError)
d.addCallback(lambda m: "Status of %s: %s" % (msg, m))
d.addCallback(lambda m: self.msg(user, m))

class IIRCClientFactory(Interface):

@ivar nickname

def getUser(user):
""Return a deferred returning a string

def buildProtocol(addr):
""Return a protocol

class IRCClientFactoryFromService(protocol.ClientFac tory):
implements(IIRCClientFactory)

protocol = IRCReplyBot
nickname = None

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(IRCClientFactoryFromServ ice,
IFingerService,
IIRCClientFactory)

class UserStatusTree(resource.Resource):

implements(resource.lResource)

def __init_ (self, service):

CHAPTER 2. TUTORIAL

resource.Resource.__init__ (self)
self.service = service
self.putChild(RPC2’, UserStatusXR(self.service))

def render_GET(self, request):
d = self.service.getUsers()
def formatUsers(users):
| = [%s" % (user, user)
for user in users]
return ''+".join(l)+'’
d.addCallback(formatUsers)
d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

def getChild(self, path, request):
if path=="":
return UserStatusTree(self.service)
else:
return UserStatus(path, self.service)

components.registerAdapter(UserStatusTree, IFingerSe rvice,

resource.lResource)
class UserStatus(resource.Resource):

def __init_ (self, user, service):
resource.Resource.__init__ (self)
self.user = user
self.service = service

def render_GET(self, request):
d = self.service.getUser(self.user)
d.addCallback(cgi.escape)
d.addCallback(lambda m:

'<h1>%s</h1>"%self.user+'<p>%s</p>'%m)

d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

class UserStatusXR(xmlrpc.XMLRPC):
def __init_ (self, service):
xmlrpc. XMLRPC.__init__(self)
self.service = service
def xmlrpc_getUser(self, user):
return self.service.getUser(user)
class FingerService(service.Service):
implements(IFingerService)

def _ init_ (self, filename):
self.flename = filename

45

CHAPTER 2. TUTORIAL

self._read()

def _read(self):

self.users = {}

for line in file(self.filename):
user, status = line.split(:’, 1)
user = user.strip()
status = status.strip()
self.users[user] = status

self.call = reactor.callLater(30, self._read)

def getUser(self, user):

return defer.succeed(self.users.get(user, "No such user

def getUsers(self):
return defer.succeed(self.users.keys())

application = service.Application(finger’, uid=1, gid=

f = FingerService('/etc/users’)

serviceCollection = service.lServiceCollection(applic

internet. TCPServer(79, IFingerFactory(f)
).setServiceParent(serviceCollection)

internet. TCPServer(8000, server.Site(resource.lResou
).setServiceParent(serviceCollection)

i = lIIRCClientFactory(f)

i.nickname = ’fingerbot’

internet. TCPClient(’irc.freenode.org’, 6667, i
).setServiceParent(serviceCollection)

Source listing —finger19.py

2.9.3 Advantages of Latest Version

e Readable — each class is short
e Maintainable — each class knows only about interfaces
e Dependencies between code parts are minimized

e Example: writing a new IFingerService is easy

class IFingerSetterService(Interface):

def setUser(user, status):
""Set the user's status to something

Advantages of latest version
class MemoryFingerService(service.Service):

implements([IFingerService, IFingerSetterService])

def __init_ (self, ** kwargs):
self.users = kwargs

def getUser(self, user):

46

")

1)

ation)

rce(f))

CHAPTER 2. TUTORIAL

return defer.succeed(self.users.get(user, "No such user ")

def getUsers(self):
return defer.succeed(self.users.keys())

def setUser(self, user, status):
self.users[user] = status

f = MemoryFingerService(moshez="Happy and well’)

serviceCollection = service.lServiceCollection(applic ation)

internet. TCPServer(1079, IFingerSetterFactory(f), int erface="127.0.0.1’
).setServiceParent(serviceCollection)

Source listing —fingerl9achanges.py

Full source code here:

Do everything properly, and componentize

from twisted.application import internet, service

from twisted.internet import protocol, reactor, defer
from twisted.words.protocols import irc

from twisted.protocols import basic

from twisted.python import components

from twisted.web import resource, server, static, xmirpc
from zope.interface import Interface, implements

import cgi

class IFingerService(Interface):

def getUser(user):
""Return a deferred returning a string™"
def getUsers():
""Return a deferred returning a list of strings

class IFingerSetterService(Interface):

def setUser(user, status):

""Set the user's status to something""
def catchError(err):

return "Internal error in server"

class FingerProtocol(basic.LineReceiver):

def lineReceived(self, user):
d = self.factory.getUser(user)
d.addErrback(catchError)
def writeValue(value):
self.transport.write(value+\r\n’)
self.transport.loseConnection()
d.addCallback(writeValue)

class IFingerFactory(Interface):

47

CHAPTER 2. TUTORIAL

def getUser(user):
""Return a deferred returning a string

def buildProtocol(addr):
""Return a protocol returning a string

class FingerFactoryFromService(protocol.ServerFactor
implements(IFingerFactory)
protocol = FingerProtocol

def __init_ (self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(FingerFactoryFromService
IFingerService,
IFingerFactory)

class FingerSetterProtocol(basic.LineReceiver):

def connectionMade(self):
selflines =]

def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self, reason):
if len(self.lines) == 2:
self.factory.setUser(* self.lines)

class IFingerSetterFactory(Interface):

def setUser(user, status):
""Return a deferred returning a string

def buildProtocol(addr):
""™Return a protocol returning a string

class FingerSetterFactoryFromService(protocol.Server
implements(IFingerSetterFactory)
protocol = FingerSetterProtocol

def __init_ (self, service):
self.service = service

def setUser(self, user, status):
self.service.setUser(user, status)

y):

Factory):

48

CHAPTER 2. TUTORIAL 49

components.registerAdapter(FingerSetterFactoryFromS ervice,
IFingerSetterService,
IFingerSetterFactory)

class IRCReplyBot(irc.IRCClient):

def connectionMade(self):
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split('!)[0]
if self.nickname.lower() == channel.lower():
d = self.factory.getUser(msg)
d.addErrback(catchError)
d.addCallback(lambda m: "Status of %s: %s" % (msg, m))
d.addCallback(lambda m: self.msg(user, m))

class lIRCClientFactory(Interface):

@ivar nickname

def getUser(user):
"“Return a deferred returning a string

def buildProtocol(addr):
""Return a protocol

class IRCClientFactoryFromService(protocol.ClientFac tory):
implements(lIIRCClientFactory)

protocol = IRCReplyBot
nickname = None

def __init_ (self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(IRCClientFactoryFromServ ice,
IFingerService,
IIRCClientFactory)
class UserStatusTree(resource.Resource):
implements(resource.lResource)
def __init_ (self, service):

resource.Resource.__init__(self)
self.service = service

CHAPTER 2. TUTORIAL

self.putChild(RPC2’, UserStatusXR(self.service))

def render_GET(self, request):
d = self.service.getUsers()
def formatUsers(users):

| = [%s' % (user, user)

for user in users]
return '+".join(l)+'’
d.addCallback(formatUsers)
d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

def getChild(self, path, request):
if path==""
return UserStatusTree(self.service)
else:

return UserStatus(path, self.service)

components.registerAdapter(UserStatusTree, IFingerSe
resource.lResource)

class UserStatus(resource.Resource):

def __init_ (self, user, service):
resource.Resource.__init__(self)
self.user = user
self.service = service

def render_GET(self, request):
d = self.service.getUser(self.user)
d.addCallback(cgi.escape)
d.addCallback(lambda m:

rvice,

'<h1>%s</h1>'%self.user+'<p>%s</p>'%m)

d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET
class UserStatusXR(xmlrpc.XMLRPC):
def __init__ (self, service):
xmirpc.XMLRPC.__init__(self)

self.service = service

def xmlrpc_getUser(self, user):
return self.service.getUser(user)

class MemoryFingerService(service.Service):
implements([IFingerService, IFingerSetterService])

def __init__ (self, ** kwargs):
self.users = kwargs

def getUser(self, user):

return defer.succeed(self.users.get(user, "No such user

")

50

CHAPTER 2. TUTORIAL 51

def getUsers(self):
return defer.succeed(self.users.keys())

def setUser(self, user, status):
self.users[user] = status

application = service.Application(‘finger’, uid=1, gid= 1)
f = MemoryFingerService(moshez="Happy and well’)
serviceCollection = service.lServiceCollection(applic ation)

internet. TCPServer(79, IFingerFactory(f)
).setServiceParent(serviceCollection)

internet. TCPServer(8000, server.Site(resource.lResou rce(f))
).setServiceParent(serviceCollection)

i = IIRCClientFactory(f)

i.nickname = ’fingerbot’

internet. TCPClient(’irc.freenode.org’, 6667, i
).setServiceParent(serviceCollection)

internet. TCPServer(1079, IFingerSetterFactory(f), int erface="127.0.0.1’
).setServiceParent(serviceCollection)

Source listing —finger19a.py

2.9.4 Aspect-Oriented Programming

At last, an example of aspect-oriented programming that &out logging or timing. This code is actually useful!
Watch how aspect-oriented programming helps you writedede and have fewer dependencies!

2.10 The Evolution of Finger: pluggable backends

2.10.1 Introduction

This is the fifth part of the Twisted tutoridwisted from Scratch, or The Evolution of Fingdpage 26).

In this part we will add new several new backends to our fingevise using the component-based architecture
developed inThe Evolution of Finger: moving to a component based archite (page 42). This will show just how
convenient it is to implement new back-ends when we move tovgponent based architecture. Note that here we also
use an interface we previously wrote, FingerSetterFachyrgupporting one single method. We manage to preserve
the service’s ignorance of the network.

2.10.2 Another Back-end

from twisted.internet import protocol, reactor, defer, ut ils
import pwd

Another back-end

class LocalFingerService(service.Service):
implements(IFingerService)
def getUser(self, user):
need a local finger daemon running for this to work

return utils.getProcessOutput(“finger”, [user])

def getUsers(self):

CHAPTER 2. TUTORIAL

return defer.succeed([])

f = LocalFingerService()

Source listing —finger19hchanges.py

Full source code here:

Do everything properly, and componentize

from twisted.application import internet, service

from twisted.internet import protocol, reactor, defer, ut ils
from twisted.words.protocols import irc

from twisted.protocols import basic

from twisted.python import components

from twisted.web import resource, server, static, xmirpc

from zope.interface import Interface, implements

import cgi

import pwd

class IFingerService(Interface):

def getUser(user):
""Return a deferred returning a string™"
def getUsers():
""Return a deferred returning a list of strings

class IFingerSetterService(Interface):

def setUser(user, status):
""Set the user’s status to something

class IFingerSetterService(Interface):

def setUser(user, status):

""Set the user's status to something™"
def catchError(err):

return "Internal error in server"

class FingerProtocol(basic.LineReceiver):

def lineReceived(self, user):
d = self.factory.getUser(user)
d.addErrback(catchError)
def writeValue(value):
self.transport.write(value+'\r\n’)
self.transport.loseConnection()
d.addCallback(writeValue)

class IFingerFactory(Interface):

def getUser(user):
""Return a deferred returning a string

52

CHAPTER 2. TUTORIAL

def buildProtocol(addr):
""Return a protocol returning a string

class FingerFactoryFromService(protocol.ServerFactor
implements(IFingerFactory)
protocol = FingerProtocol

def __init_ (self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(FingerFactoryFromService
IFingerService,
IFingerFactory)

class FingerSetterProtocol(basic.LineReceiver):

def connectionMade(self):
self.lines =]

def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self, reason):
if len(self.lines) ==
self.factory.setUser(* self.lines)

class IFingerSetterFactory(Interface):

def setUser(user, status):
""Return a deferred returning a string

def buildProtocol(addr):
""Return a protocol returning a string

class FingerSetterFactoryFromService(protocol.Server
implements(IFingerSetterFactory)
protocol = FingerSetterProtocol

def __init_ (self, service):
self.service = service

def setUser(self, user, status):

self.service.setUser(user, status)

components.registerAdapter(FingerSetterFactoryFromS
IFingerSetterService,

y):

Factory):

ervice,

53

CHAPTER 2. TUTORIAL

IFingerSetterFactory)
class IRCReplyBot(irc.IRCClient):

def connectionMade(self):
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split('!")[0]
if self.nickname.lower() == channel.lower():
d = self.factory.getUser(msg)
d.addErrback(catchError)
d.addCallback(lambda m: "Status of %s: %s" % (msg, m))
d.addCallback(lambda m: self.msg(user, m))

class IIRCClientFactory(Interface):

@ivar nickname

def getUser(user):
""Return a deferred returning a string

def buildProtocol(addr):
""Return a protocol

class IRCClientFactoryFromService(protocol.ClientFac tory):
implements(IIRCClientFactory)

protocol = IRCReplyBot
nickname = None

def __init_ (self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(IRCClientFactoryFromServ ice,
IFingerService,
IIRCClientFactory)
class UserStatusTree(resource.Resource):
implements(resource.lResource)
def __init_ (self, service):
resource.Resource.__init__ (self)
self.service = service

self.putChild(RPC2’, UserStatusXR(self.service))

def render_GET(self, request):

CHAPTER 2. TUTORIAL

d = self.service.getUsers()
def formatUsers(users):
| = [%s" % (user, user)
for user in users]
return ''+".join(l)+'’
d.addCallback(formatUsers)
d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

def getChild(self, path, request):
if path=="":
return UserStatusTree(self.service)
else:

return UserStatus(path, self.service)

components.registerAdapter(UserStatusTree, IFingerSe rvice,
resource.lResource)

class UserStatus(resource.Resource):

def __init_ (self, user, service):
resource.Resource.__init__(self)
self.user = user
self.service = service

def render_GET(self, request):
d = self.service.getUser(self.user)
d.addCallback(cgi.escape)
d.addCallback(lambda m:

'<h1>%s</h1>"%self.user+'<p>%s</p>'%m)

d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

class UserStatusXR(xmlrpc.XMLRPC):
def __init_ (self, service):
xmlrpc. XMLRPC.__init__(self)
self.service = service
def xmlrpc_getUser(self, user):
return self.service.getUser(user)
class FingerService(service.Service):
implements(IFingerService)
def _ init_ (self, filename):
self.filename = filename
self._read()
def _read(self):

self.users = {}
for line in file(self.flename):

55

CHAPTER 2. TUTORIAL

user, status = line.split(:’, 1)
user = user.strip()
status = status.strip()
self.users[user] = status
self.call = reactor.callLater(30, self._read)

def getUser(self, user):

return defer.succeed(self.users.get(user, "No such user

def getUsers(self):
return defer.succeed(self.users.keys())

Another back-end
class LocalFingerService(service.Service):
implements(IFingerService)

def getUser(self, user):

need a local finger daemon running for this to work

return utils.getProcessOutput(“finger”, [user])

def getUsers(self):
return defer.succeed([])

application = service.Application(’finger’, uid=1, gid=

f = LocalFingerService()

serviceCollection = service.lServiceCollection(applic

internet. TCPServer(79, IFingerFactory(f)
).setServiceParent(serviceCollection)

internet. TCPServer(8000, server.Site(resource.lResou
).setServiceParent(serviceCollection)

i = IIRCClientFactory(f)

i.nickname = ’fingerbot’

internet. TCPClient(’irc.freenode.org’, 6667, i
).setServiceParent(serviceCollection)

Source listing —finger19b.py

56

")

1)

ation)

rce(f)

We've already written this, but now we get more for less wdhe network code is completely separate from the

back-end.

2.10.3 Yet Another Back-end: Doing the Standard Thing

from twisted.internet import protocol, reactor, defer, ut
import pwd

import os

Yet another back-end

class LocalFingerService(service.Service):

implements(IFingerService)

def getUser(self, user):

ils

CHAPTER 2. TUTORIAL

user = user.strip()
try:

entry = pwd.getpwnam(user)
except KeyError:

return defer.succeed("No such user")
try:

f = file(os.path.join(entry[5],".plan’))
except (IOError, OSError):

return defer.succeed("No such user")
data = f.read()
data = data.strip()
f.close()
return defer.succeed(data)

def getUsers(self):
return defer.succeed([])

f = LocalFingerService()

Source listing —finger19cchanges.py

Full source code here:

Do everything properly, and componentize

from twisted.application import internet, service

from twisted.internet import protocol, reactor, defer, ut
from twisted.words.protocols import irc

from twisted.protocols import basic

from twisted.python import components

from twisted.web import resource, server, static, xmirpc
from zope.interface import Interface, implements
import cgi

import pwd

import os

class IFingerService(Interface):

def getUser(user):
""Return a deferred returning a string™"
def getUsers():
""Return a deferred returning a list of strings

class IFingerSetterService(Interface):

def setUser(user, status):
""Set the user's status to something

class IFingerSetterService(Interface):

def setUser(user, status):

""Set the user's status to something""
def catchError(err):

return "Internal error in server"

ils

57

CHAPTER 2. TUTORIAL

class FingerProtocol(basic.LineReceiver):

def lineReceived(self, user):
d = self.factory.getUser(user)
d.addErrback(catchError)
def writeValue(value):
self.transport.write(value+'\r\n’)
self.transport.loseConnection()
d.addCallback(writeValue)

class IFingerFactory(Interface):

def getUser(user):
""Return a deferred returning a string

def buildProtocol(addr):
""Return a protocol returning a string

class FingerFactoryFromService(protocol.ServerFactor
implements(IFingerFactory)
protocol = FingerProtocol

def __init_ (self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(FingerFactoryFromService
IFingerService,
IFingerFactory)

class FingerSetterProtocol(basic.LineReceiver):

def connectionMade(self):
self.lines =]

def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self, reason):
if len(self.lines) ==
self.factory.setUser(* self.lines)

class IFingerSetterFactory(Interface):

def setUser(user, status):
""Return a deferred returning a string™"
def buildProtocol(addr):
""Return a protocol returning a string

y):

58

CHAPTER 2. TUTORIAL 59

class FingerSetterFactoryFromService(protocol.Server Factory):
implements(IFingerSetterFactory)
protocol = FingerSetterProtocol

def __init_ (self, service):
self.service = service

def setUser(self, user, status):
self.service.setUser(user, status)

components.registerAdapter(FingerSetterFactoryFromS ervice,
IFingerSetterService,
IFingerSetterFactory)

class IRCReplyBot(irc.IRCClient):

def connectionMade():
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split('!)[0]
if self.nickname.lower() == channel.lower():
d = self.factory.getUser(msg)
d.addErrback(catchError)
d.addCallback(lambda m: "Status of %s: %s" % (msg, m))
d.addCallback(lambda m: self.msg(user, m))

class IIRCClientFactory(Interface):

@ivar nickname

def getUser(user):
""Return a deferred returning a string

def buildProtocol(addr):
""Return a protocol

class IRCClientFactoryFromService(protocol.ClientFac tory):
implements(IIRCClientFactory)

protocol = IRCReplyBot
nickname = None

def __init_ (self, service):
self.service = service

CHAPTER 2. TUTORIAL

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(IRCClientFactoryFromServ ice,

IFingerService,
IIRCClientFactory)

class UserStatusTree(resource.Resource):
implements(resource.lResource)

def __init_ (self, service):
resource.Resource.__init__(self)
self.service = service
self.putChild(RPC2’, UserStatusXR(self.service))

def render_GET(self, request):
d = self.service.getUsers()
def formatUsers(users):
| = [%s" % (user, user)
for user in users]
return '+".join(l)+'’
d.addCallback(formatUsers)
d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

def getChild(self, path, request):
if path=="":
return UserStatusTree(self.service)
else:
return UserStatus(path, self.service)

components.registerAdapter(UserStatusTree, IFingerSe
resource.lResource)

class UserStatus(resource.Resource):

def __init_ (self, user, service):
resource.Resource.__init__(self)
self.user = user
self.service = service

def render_GET(self, request):
d = self.service.getUser(self.user)
d.addCallback(cgi.escape)
d.addCallback(lambda m:

rvice,

'<h1>%s</h1>'%self.user+'<p>%s</p>'%m)

d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

class UserStatusXR(xmlrpc.XMLRPC):

def __init_ (self, service):
xmlrpc. XMLRPC.__init__(self)

60

CHAPTER 2. TUTORIAL

self.service = service

def xmirpc_getUser(self, user):
return self.service.getUser(user)

class FingerService(service.Service):
implements(IFingerService)

def __init_ (self, filename):
self.flename = filename
self._read()

def _read(self):

self.users = {}

for line in file(self.flename):
user, status = line.split(:’, 1)
user = user.strip()
status = status.strip()
self.users[user] = status

self.call = reactor.callLater(30, self._read)

def getUser(self, user):
return defer.succeed(self.users.get(user, "No such user

def getUsers(self):
return defer.succeed(self.users.keys())

Yet another back-end
class LocalFingerService(service.Service):
implements(IFingerService)

def getUser(self, user):
user = user.strip()
try:
entry = pwd.getpwnam(user)
except KeyError:
return defer.succeed("No such user")
try:
f = file(os.path.join(entry[5],".plan’))
except (IOError, OSError):
return defer.succeed("No such user")
data = f.read()
data = data.strip()
f.close()
return defer.succeed(data)

def getUsers(self):
return defer.succeed([])

application = service.Application(finger’, uid=1, gid=
f = LocalFingerService()
serviceCollection = service.lServiceCollection(applic

1)

ation)

")

61

CHAPTER 2. TUTORIAL 62

internet. TCPServer(79, IFingerFactory(f)
).setServiceParent(serviceCollection)

internet. TCPServer(8000, server.Site(resource.lResou rce(f))
).setServiceParent(serviceCollection)

i = IIRCClientFactory(f)

i.nickname = ’fingerbot’

internet. TCPClient(’irc.freenode.org’, 6667, i
).setServiceParent(serviceCollection)

Source listing —finger19c.py

Not much to say except that now we can be churn out backerelsrlilzy. Feel like doing a back-end for Advogato,
for example? Dig out the XML-RPC client support Twisted reag] get to work!

2.11 The Evolution of Finger: a web frontend

2.11.1 Introduction

This is the sixth part of the Twisted tutori@visted from Scratch, or The Evolution of Findpage 26).

In this part, we demonstrate adding a web frontend usinglsitagsted.web.resource.Resource ob-
jects: UserStatusTree , which will produce a listing of all users at the base URL ¢f our site;UserStatus
which gives the status of each user at the locdtisername ; andUserStatusXR , which exposes an XMLRPC
interface togetUser andgetUsers functions at the URLRPC2.

In this example we construct HTML segments manually. If tidwiterface was less trivial, we would want to use
more sophisticated web templating and design our systefmes&iTML rendering and logic were clearly separated.

Do everything properly, and componentize

from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer
from twisted.words.protocols import irc

from twisted.protocols import basic

from twisted.python import components

from twisted.web import resource, server, static, xmirpc, microdom
from zope.interface import Interface, implements
import cgi

class IFingerService(Interface):

def getUser(user):
""Return a deferred returning a string"™
def getUsers():
""Return a deferred returning a list of strings

class IFingerSetterService(Interface):

def setUser(user, status):

""Set the user's status to something""
def catchError(err):

return "Internal error in server"

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):

d = self.factory.getUser(user)
d.addErrback(catchError)

CHAPTER 2. TUTORIAL

def writeValue(value):
self.transport.write(value+'\r\n’)
self.transport.loseConnection()

d.addCallback(writeValue)

class IFingerFactory(Interface):

def getUser(user):
""Return a deferred returning a string

def buildProtocol(addr):
""Return a protocol returning a string

class FingerFactoryFromService(protocol.ServerFactor
implements(IFingerFactory)
protocol = FingerProtocol

def __init_ (self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(FingerFactoryFromService
IFingerService,
IFingerFactory)

class FingerSetterProtocol(basic.LineReceiver):

def connectionMade(self):
self.lines =]

def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self, reason):
if len(self.lines) ==
self.factory.setUser(* self.lines)

class IFingerSetterFactory(Interface):

def setUser(user, status):
""Return a deferred returning a string

def buildProtocol(addr):
""Return a protocol returning a string

class FingerSetterFactoryFromService(protocol.Server

implements(IFingerSetterFactory)

y):

Factory):

63

CHAPTER 2. TUTORIAL

protocol = FingerSetterProtocol

def __init_ (self, service):
self.service = service

def setUser(self, user, status):
self.service.setUser(user, status)

components.registerAdapter(FingerSetterFactoryFromS ervice,
IFingerSetterService,
IFingerSetterFactory)

class IRCReplyBot(irc.IRCClient):

def connectionMade(self):
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split('!)[0]
if self.nickname.lower() == channel.lower():
d = self.factory.getUser(msg)
d.addErrback(catchError)
d.addCallback(lambda m: "Status of %s: %s" % (msg, m))
d.addCallback(lambda m: self.msg(user, m))

class IIRCClientFactory(Interface):

@ivar nickname

def getUser(user):
""Return a deferred returning a string

def buildProtocol(addr):
""Return a protocol

class IRCClientFactoryFromService(protocol.ClientFac tory):
implements(IIRCClientFactory)

protocol = IRCReplyBot
nickname = None

def __init_ (self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(IRCClientFactoryFromServ ice,
IFingerService,
IIRCClientFactory)

CHAPTER 2. TUTORIAL

class UserStatusTree(resource.Resource):

def __init_ (self, service):
resource.Resource.__init__ (self)
self.service=service

add a specific child for the path "RPC2"
self.putChild("RPC2", UserStatusXR(self.service))

need to do this for resources at the root of the site
self.putChild("™, self)

def _cb_render_GET(self, users, request):
userOutput = ".join(["%s"
for user in users])

request.write(""
<htmI><head><title>Users</title></head><body>
<hl>Users</h1>

%s
</body></html>""" % userQutput)

request.finish()

def render_GET(self, request):
d = self.service.getUsers()
d.addCallback(self._cb_render_GET, request)

signal that the rendering is not complete
return server.NOT_DONE_YET

def getChild(self, path, request):
return UserStatus(user=path, service=self.service)

components.registerAdapter(UserStatusTree, IFingerSe
class UserStatus(resource.Resource):

def __init_ (self, user, service):
resource.Resource.__init__(self)
self.user = user
self.service = service

def _cb_render_GET(self, status, request):
request.write("""<htmi><head><title>%s</title></hea
<body><h1>%s</h1>
<p>%s</p>
</body></htmI>"" % (self.user, self.user, status))
request.finish()

def render_GET(self, request):
d = self.service.getUser(self.user)
d.addCallback(self._cb_render_GET, request)

signal that the rendering is not complete
return server.NOT_DONE_YET

d>

% (user, user)

rvice, resource.lResource)

65

CHAPTER 2. TUTORIAL

class UserStatusXR(xmlrpc.XMLRPC):

def __init_ (self, service):
xmlrpc.XMLRPC.__init__(self)
self.service = service

def xmlrpc_getUser(self, user):
return self.service.getUser(user)

def xmirpc_getUsers(self):
return self.service.getUsers()

class FingerService(service.Service):
implements(IFingerService)

def __init_ (self, filename):
self.filename = filename
self._read()

def _read(self):

self.users = {}

for line in file(self.flename):
user, status = line.split(’:’, 1)
user = user.strip()
status = status.strip()
self.users[user] = status

self.call = reactor.callLater(30, self._read)

def getUser(self, user):
return defer.succeed(self.users.get(user, "No such user ")

def getUsers(self):
return defer.succeed(self.users.keys())

application = service.Application(finger’, uid=1, gid= 1)
f = FingerService('/etc/users’)
serviceCollection = service.lServiceCollection(applic ation)

internet. TCPServer(79, IFingerFactory(f)
).setServiceParent(serviceCollection)

internet. TCPServer(8000, server.Site(resource.lResou rce(f))
).setServiceParent(serviceCollection)

i = IIRCClientFactory(f)

i.nickname = ’fingerbot’

internet. TCPClient(’irc.freenode.org’, 6667, i
).setServiceParent(serviceCollection)

Source listing —finger20.py

CHAPTER 2. TUTORIAL 67

2.12 The Evolution of Finger: Twisted client support using Perspectie Bro-
ker

2.12.1 Introduction

This is the seventh part of the Twisted tutorTalisted from Scratch, or The Evolution of Fingeage 26).
In this part, we add a Perspective Broker service to the fiagetication so that Twisted clients can access the
finger server.

2.12.2 Use Perspective Broker

We add support for perspective broker, Twisted's nativeatenobject protocol. Now, Twisted clients will not have to
go through XML-RPCish contortions to get information aboseérs.

Do everything properly, and componentize

from twisted.application import internet, service

from twisted.internet import protocol, reactor, defer

from twisted.words.protocols import irc

from twisted.protocols import basic

from twisted.python import components

from twisted.web import resource, server, static, xmirpc, microdom
from twisted.spread import pb

from zope.interface import Interface, implements

import cgi

class IFingerService(Interface):

def getUser(user):
""Return a deferred returning a string"™
def getUsers():
""Return a deferred returning a list of strings

class IFingerSetterService(Interface):

def setUser(user, status):

""Set the user's status to something""
def catchError(err):

return "Internal error in server"

class FingerProtocol(basic.LineReceiver):

def lineReceived(self, user):
d = self.factory.getUser(user)
d.addErrback(catchError)
def writeValue(value):
self.transport.write(value+'\r\n’)
self.transport.loseConnection()
d.addCallback(writeValue)

class IFingerFactory(Interface):

def getUser(user):
"“Return a deferred returning a string

CHAPTER 2. TUTORIAL

def buildProtocol(addr):
""Return a protocol returning a string

class FingerFactoryFromService(protocol.ServerFactor
implements(IFingerFactory)
protocol = FingerProtocol

def __init_ (self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(FingerFactoryFromService
IFingerService,
IFingerFactory)

class FingerSetterProtocol(basic.LineReceiver):

def connectionMade(self):
self.lines =]

def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self, reason):
if len(self.lines) ==
self.factory.setUser(* self.lines)

class IFingerSetterFactory(Interface):

def setUser(user, status):
""Return a deferred returning a string

def buildProtocol(addr):
""Return a protocol returning a string

class FingerSetterFactoryFromService(protocol.Server
implements(IFingerSetterFactory)
protocol = FingerSetterProtocol

def __init_ (self, service):
self.service = service

def setUser(self, user, status):

self.service.setUser(user, status)

components.registerAdapter(FingerSetterFactoryFromS
IFingerSetterService,

y):

Factory):

ervice,

68

CHAPTER 2. TUTORIAL
IFingerSetterFactory)

class IRCReplyBot(irc.IRCClient):

def connectionMade(self):
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split('!")[0]
if self.nickname.lower() == channel.lower():
d = self.factory.getUser(msg)
d.addErrback(catchError)
d.addCallback(lambda m: "Status of %s: %s" % (msg, m))
d.addCallback(lambda m: self.msg(user, m))

class IIRCClientFactory(Interface):

@ivar nickname

def getUser(user):
""Return a deferred returning a string

def buildProtocol(addr):
""Return a protocol

class IRCClientFactoryFromService(protocol.ClientFac tory):
implements(IIRCClientFactory)

protocol = IRCReplyBot
nickname = None

def __init_ (self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(IRCClientFactoryFromServ ice,

IFingerService,
IIRCClientFactory)

class UserStatusTree(resource.Resource):
def __init_ (self, service):
resource.Resource.__init__(self)

self.service=service

add a specific child for the path "RPC2"
self.putChild("RPC2", UserStatusXR(self.service))

need to do this for resources at the root of the site

CHAPTER 2. TUTORIAL

self.putChild("™, self)

def _cb_render_GET(self, users, request):
userOutput = ".join(["%s" % (user, user)
for user in users])

request.write(""
<htmI><head><title>Users</title></head><body>
<hl>Users</h1>

%s
</body></html>""" % userQutput)

request.finish()

def render_GET(self, request):
d = self.service.getUsers()
d.addCallback(self._cb_render_GET, request)

signal that the rendering is not complete
return server.NOT_DONE_YET

def getChild(self, path, request):
return UserStatus(user=path, service=self.service)

components.registerAdapter(UserStatusTree, IFingerSe rvice, resource.lResource)
class UserStatus(resource.Resource):

def __init_ (self, user, service):
resource.Resource.__init__(self)
self.user = user
self.service = service

def _cb_render_GET(self, status, request):
request.write(""'<htmi><head><title>%s</title></hea d>
<body><h1>%s</h1>
<p>%s</p>
</body></htmI>"" % (self.user, self.user, status))
request.finish()

def render_GET(self, request):
d = self.service.getUser(self.user)
d.addCallback(self._cb_render_GET, request)

signal that the rendering is not complete
return server.NOT_DONE_YET

class UserStatusXR(xmlrpc.XMLRPC):
def __init_ (self, service):
xmlrpc. XMLRPC.__init__(self)

self.service = service

def xmlrpc_getUser(self, user):
return self.service.getUser(user)

def xmirpc_getUsers(self):
return self.service.getUsers()

CHAPTER 2. TUTORIAL

class IPerspectiveFinger(Interface):

def remote_getUser(username):
""return a user’'s status™"

def remote_getUsers():
""return a user’'s status

class PerspectiveFingerFromService(pb.Root):
implements(IPerspectiveFinger)

def __init_ (self, service):
self.service = service

def remote_getUser(self, username):
return self.service.getUser(username)

def remote_getUsers(self):
return self.service.getUsers()

components.registerAdapter(PerspectiveFingerFromSer vice,
IFingerService,
IPerspectiveFinger)

class FingerService(service.Service):
implements(IFingerService)

def __init_ (self, filename):
self.flename = filename
self._read()

def _read(self):

self.users = {}

for line in file(self.flename):
user, status = line.split(:’, 1)
user = user.strip()
status = status.strip()
self.users[user] = status

self.call = reactor.callLater(30, self._read)

def getUser(self, user):
return defer.succeed(self.users.get(user, "No such user ")

def getUsers(self):
return defer.succeed(self.users.keys())

application = service.Application(’finger’, uid=1, gid= 1)
f = FingerService('/etc/users’)
serviceCollection = service.lServiceCollection(applic ation)

internet. TCPServer(79, IFingerFactory(f)
).setServiceParent(serviceCollection)

CHAPTER 2. TUTORIAL 72

internet. TCPServer(8000, server.Site(resource.lResou rce(f))
).setServiceParent(serviceCollection)

i = IIRCClientFactory(f)

i.nickname = ’fingerbot’

internet. TCPClient(’irc.freenode.org’, 6667, i
).setServiceParent(serviceCollection)

internet. TCPServer(8889, pb.PBServerFactory(IPerspec tiveFinger(f))
).setServiceParent(serviceCollection)

Source listing —finger21.py

A simple client to test the perspective broker finger:

test the PB finger on port 8889
this code is essentially the same as
the first example in howto/pb-usage

from twisted.spread import pb
from twisted.internet import reactor

def gotObiject(object):
print "got object:", object
object.callRemote("getUser","
or

object.callRemote("getUsers").addCallback(gotData)

moshez").addCallback(g otData)

def gotData(data):
print 'server sent.’, data
reactor.stop()

def gotNoObject(reason):
print "no object:",reason
reactor.stop()

factory = pb.PBClientFactory()

reactor.connectTCP("127.0.0.1",8889, factory)
factory.getRootObject().addCallbacks(gotObject,gotN oObiject)
reactor.run()

Source listing —fingerPBclient.py

2.13 The Evolution of Finger: using a single factory for multiple protocols

2.13.1 Introduction

This is the eighth part of the Twisted tutoriBwisted from Scratch, or The Evolution of Fingpage 26).
In this part, we add HTTPS support to our web frontend, shgwiow to have a single factory listen on multiple
ports.

2.13.2 Support HTTPS

All we need to do to code an HTTPS site is just write a contextioiyy (in this case, which loads the certificate from a
certain file) and then use the twisted.application.inte8%8L_Server method. Note that one factory (in this casde si
can listen on multiple ports with multiple protocols.

CHAPTER 2. TUTORIAL

Do everything properly, and componentize

from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer
from twisted.words.protocols import irc

from twisted.protocols import basic

from twisted.python import components

from twisted.web import resource, server, static, xmirpc,

from twisted.spread import pb

from zope.interface import Interface, implements
from OpenSSL import SSL

import cgi

class IFingerService(Interface):

def getUser(user):
""Return a deferred returning a string"™

def getUsers():

""Return a deferred returning a list of strings

class IFingerSetterService(Interface):

def setUser(user, status):
""Set the user's status to something""

def catchError(err):
return "Internal error in server"

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):
d = self.factory.getUser(user)
d.addErrback(catchError)
def writeValue(value):
self.transport.write(value+'\r\n’)
self.transport.loseConnection()
d.addCallback(writeValue)

class IFingerFactory(Interface):

def getUser(user):
""Return a deferred returning a string"™

def buildProtocol(addr):
""Return a protocol returning a string""
class FingerFactoryFromService(protocol.ServerFactor
implements(IFingerFactory)
protocol = FingerProtocol

def __init_ (self, service):
self.service = service

y):

microdom

73

CHAPTER 2. TUTORIAL

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(FingerFactoryFromService ,
IFingerService,
IFingerFactory)

class FingerSetterProtocol(basic.LineReceiver):

def connectionMade(self):
self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self, reason):
if len(self.lines) ==
self.factory.setUser(* self.lines)

class IFingerSetterFactory(Interface):

def setUser(user, status):
""Return a deferred returning a string""
def buildProtocol(addr):
"™Return a protocol returning a string

class FingerSetterFactoryFromService(protocol.Server Factory):

implements(IFingerSetterFactory)
protocol = FingerSetterProtocol

def __init_ (self, service):
self.service = service

def setUser(self, user, status):
self.service.setUser(user, status)

components.registerAdapter(FingerSetterFactoryFromS ervice,
IFingerSetterService,
IFingerSetterFactory)

class IRCReplyBot(irc.IRCClient):

def connectionMade(self):
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split('!)[0]
if self.nickname.lower() == channel.lower():
d = self.factory.getUser(msg)
d.addErrback(catchError)

74

CHAPTER 2. TUTORIAL

d.addCallback(lambda m: "Status of %s: %s" % (msg, m))
d.addCallback(lambda m: self.msg(user, m))

class lIRCClientFactory(Interface):

@ivar nickname

def getUser(user):
""Return a deferred returning a string™"

def buildProtocol(addr):
""Return a protocol

class IRCClientFactoryFromService(protocol.ClientFac tory):
implements(lIIRCClientFactory)

protocol = IRCReplyBot
nickname = None

def __init_ (self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(IRCClientFactoryFromServ ice,
IFingerService,
IIRCClientFactory)

class UserStatusTree(resource.Resource):

def __init__ (self, service):
resource.Resource.__init__ (self)
self.service=service

add a specific child for the path "RPC2"
self.putChild("RPC2", UserStatusXR(self.service))

need to do this for resources at the root of the site
self.putChild("", self)

def _cb_render_GET(self, users, request):
userOutput = ".join(["%s" % (user, user)
for user in users])

request.write(""
<htmlI><head><title>Users</title></head><body>
<h1>Users</h1>

%s
</body></htmI>""" % userOutput)

request.finish()

CHAPTER 2. TUTORIAL

def render_GET(self, request):
d = self.service.getUsers()
d.addCallback(self._cb_render_GET, request)

signal that the rendering is not complete
return server.NOT_DONE_YET

def getChild(self, path, request):
return UserStatus(user=path, service=self.service)

components.registerAdapter(UserStatusTree, IFingerSe
class UserStatus(resource.Resource):

def __init_ (self, user, service):
resource.Resource.__init__ (self)
self.user = user
self.service = service

def _cb_render_GET(self, status, request):
request.write(""'<html><head><title>%s</title></hea
<body><h1>%s</h1>
<p>%s</p>
</body></htmI>"" % (self.user, self.user, status))
request.finish()

def render_GET(self, request):
d = self.service.getUser(self.user)
d.addCallback(self._cb_render_GET, request)

signal that the rendering is not complete
return server.NOT_DONE_YET

class UserStatusXR(xmlrpc.XMLRPC):
def __init_ (self, service):
xmirpc. XMLRPC.__init__(self)

self.service = service

def xmirpc_getUser(self, user):
return self.service.getUser(user)

def xmlrpc_getUsers(self):
return self.service.getUsers()
class IPerspectiveFinger(Interface):

def remote_getUser(username):
return a user’'s status™"

def remote_getUsers():
""return a user’s status™"

class PerspectiveFingerFromService(pb.Root):

implements(IPerspectiveFinger)

rvice, resource.lResource)

d>

76

CHAPTER 2. TUTORIAL

def __init_ (self, service):
self.service = service

def remote_getUser(self, username):
return self.service.getUser(username)

def remote_getUsers(self):
return self.service.getUsers()

components.registerAdapter(PerspectiveFingerFromSer vice,
IFingerService,
IPerspectiveFinger)

class FingerService(service.Service):
implements(IFingerService)

def __init_ (self, filename):
self.flename = filename
self._read()

def _read(self):

self.users = {}

for line in file(self.flename):
user, status = line.split(:’, 1)
user = user.strip()
status = status.strip()
self.users[user] = status

self.call = reactor.callLater(30, self._read)

def getUser(self, user):
return defer.succeed(self.users.get(user, "No such user)

def getUsers(self):
return defer.succeed(self.users.keys())

class ServerContextFactory:

def getContext(self):
""Create an SSL context.

This is a sample implementation that loads a certificate fro
called 'server.pem’."™"

ctx = SSL.Context(SSL.SSLv23_METHOD)
ctx.use_certificate_file('server.pem’)

ctx.use_privatekey_file('server.pem’)

return ctx
application = service.Application(’finger’, uid=1, gid= 1)
f = FingerService('/etc/users’)
serviceCollection = service.lServiceCollection(applic ation)

internet. TCPServer(79, IFingerFactory(f)
).setServiceParent(serviceCollection)

m a file

77

CHAPTER 2. TUTORIAL 78

site = server.Site(resource.lResource(f))

internet. TCPServer(8000, site
).setServiceParent(serviceCollection)

internet.SSLServer(443, site, ServerContextFactory()
).setServiceParent(serviceCollection)

i = IIRCClientFactory(f)

i.nickname = ’fingerbot’

internet. TCPClient(’irc.freenode.org’, 6667, i
).setServiceParent(serviceCollection)

internet. TCPServer(8889, pb.PBServerFactory(IPerspec tiveFinger(f))
).setServiceParent(serviceCollection)

Source listing —finger22.py

2.14 The Evolution of Finger: a Twisted finger client

2.14.1 Introduction

This is the ninth part of the Twisted tutori@ivisted from Scratch, or The Evolution of Findeage 26).
In this part, we develop a client for the finger server: a prmger server which forwards requests to another
finger server.

2.14.2 Finger Proxy

Writing new clients with Twisted is much like writing new serg. We implement the protocol, which just gathers up
all the data, and give it to the factory. The factory keepsfarded which is triggered if the connection either fails or
succeeds. When we use the client, we first make sure the défeitt@ever fail, by producing a message in that case.
Implementing a wrapper around client which just returnsdbterred is a common pattern. While less flexible than
using the factory directly, it's also more convenient.

finger proxy

from twisted.application import internet, service
from twisted.internet import defer, protocol, reactor
from twisted.protocols import basic

from twisted.python import components

from zope.interface import Interface, implements

def catchError(err):
return "Internal error in server

class IFingerService(Interface):

def getUser(user):
""Return a deferred returning a string"™
def getUsers():
""Return a deferred returning a list of strings

class IFingerFactory(Interface):

def getUser(user):
""Return a deferred returning a string

CHAPTER 2. TUTORIAL

def buildProtocol(addr):
""Return a protocol returning a string

class FingerProtocol(basic.LineReceiver):

def lineReceived(self, user):
d = self.factory.getUser(user)
d.addErrback(catchError)
def writeValue(value):
self.transport.write(value)
self.transport.loseConnection()
d.addCallback(writeValue)

class FingerFactoryFromService(protocol.ClientFactor
implements(IFingerFactory)
protocol = FingerProtocol

def __init_ (self, service):
self.service = service

def getUser(self, user):

return self.service.getUser(user)

components.registerAdapter(FingerFactoryFromService
IFingerService,
IFingerFactory)

class FingerClient(protocol.Protocol):
def connectionMade(self):
self.transport.write(self.factory.user+"\r\n")

self.buf = [

def dataReceived(self, data):
self.buf.append(data)

def connectionLost(self, reason):
self.factory.gotData(”.join(self.buf))

class FingerClientFactory(protocol.ClientFactory):
protocol = FingerClient
def __init_ (self, user):
self.user = user

self.d = defer.Deferred()

def clientConnectionFailed(self, _, reason):
self.d.errback(reason)

def gotData(self, data):
self.d.callback(data)

y):

79

CHAPTER 2. TUTORIAL 80

def finger(user, host, port=79):
f = FingerClientFactory(user)
reactor.connectTCP(host, port, f)
return f.d

class ProxyFingerService(service.Service):
implements(IFingerService)

def getUser(self, user):
try:
user, host = user.split(@’, 1)
except:
user = user.strip()
host = '127.0.0.1’
ret = finger(user, host)
ret.addErrback(lambda _: "Could not connect to remote host ")
return ret

def getUsers(self):
return defer.succeed([])

application = service.Application(‘finger’, uid=1, gid= 1)
f = ProxyFingerService()
internet. TCPServer(7779, IFingerFactory(f)).setServi ceParent(

service.lServiceCollection(application))

Source listing —fingerproxy.py

2.15 The Evolution of Finger: making a finger library

2.15.1 Introduction

This is the tenth part of the Twisted tutoriBivisted from Scratch, or The Evolution of Findpage 26).

In this part, we separate the application code that launaleger service from the library code which defines a
finger service, placing the application in a Twisted Apgiiza Configuration (.tac) file. We also move configuration
(such as HTML templates) into separate files.

2.15.2 Organization

Now this code, while quite modular and well-designed, ispibperly organized. Everything above the
application= belongs in a module, and the HTML templates all belong in Epdiles.

We can use the templateFile and templateDirectory atehtd indicate what HTML template file to use for each
Page, and where to look for it.

organized-finger.tac
eg: twistd -ny organized-finger.tac

import finger
from twisted.internet import protocol, reactor, defer

from twisted.spread import pb
from twisted.web import resource, server

CHAPTER 2. TUTORIAL 81

from twisted.application import internet, service, strpo rts
from twisted.python import log

application = service.Application(‘finger’, uid=1, gid= 1)
f = finger.FingerService(/etc/users’)
serviceCollection = service.lServiceCollection(applic ation)

internet. TCPServer(79, finger.IFingerFactory(f)
).setServiceParent(serviceCollection)

site = server.Site(resource.lResource(f))
internet. TCPServer(8000, site
).setServiceParent(serviceCollection)

internet.SSLServer(443, site, finger.ServerContextFac tory()
).setServiceParent(serviceCollection)

i = finger.lIRCClientFactory(f)

i.nickname = ’fingerbot’

internet. TCPClient(’irc.freenode.org’, 6667, i
).setServiceParent(serviceCollection)

internet. TCPServer(8889, pb.PBServerFactory(finger.l PerspectiveFinger(f))
).setServiceParent(serviceCollection)

Source listing —organized-finger.tac

Note that our program is now quite separated. We have:
e Code (in the module)

e Configuration (file above)

e Presentation (templates)

e Content (/etc/users)

e Deployment (twistd)

Prototypes don’t need this level of separation, so oureraghamples all bunched together. However, real applicatio
do. Thankfully, if we write our code correctly, it is easy tthéeve a good separation of parts.

2.15.3 Easy Configuration

We can also supply easy configuration for common cases withle8ervice method that will also help build .tap
files later:

Easy configuration
makeService from finger module

def makeService(config):
finger on port 79
s = service.MultiService()
f = FingerService(config[file'])
h = internet. TCPServer(79, IFingerFactory(f))
h.setServiceParent(s)

website on port 8000

r = resource.IlResource(f)

r.templateDirectory = config['templates’]

CHAPTER 2. TUTORIAL 82

site = server.Site(r)
j = internet. TCPServer(8000, site)
j-setServiceParent(s)

ssl on port 443

if config.get(’ssl’):
k = internet.SSLServer(443, site, ServerContextFactory()
k.setServiceParent(s)

irc fingerbot
if config.has_key('ircnick’):
i = IIRCClientFactory(f)
i.nickname = config['ircnick’]
ircserver = config['ircserver’]
b = internet. TCPClient(ircserver, 6667, i)
b.setServiceParent(s)

Pespective Broker on port 8889
if config.has_key('pbport’):
m = internet. TCPServer(
int(config['pbport?),
pb.PBServerFactory(IPerspectiveFinger(f)))
m.setServiceParent(s)

return s

Source listing —finger.config.py

And we can write simpler files now:

simple-finger.tac
eg: twistd -ny simple-finger.tac

from twisted.application import service
import finger

options = { ‘file’: 'letc/users’,
'templates’: ’/usr/share/finger/templates’,
"ircnick’: “fingerbot’,
'ircserver’: irc.freenode.net’,
'pbport’: 8889,
'ssl: 'ssl=0" }

ser = finger.makeService(options)
application = service.Application(‘finger’, uid=1, gid= 1)
ser.setServiceParent(service.lServiceCollection(app lication))

Source listing —simple-finger.tac

% twisted -ny simple-finger.tac

Note: the fingeuserstill has ultimate power: he can use makeService, or he cathedower-level interface if he
has specific needs (maybe an IRC server on some other portemaywant the non-SSL webserver to listen only
locally? etc. etc.) This is an important design principlever force a layer of abstraction: allow usage of layers of
abstractions.

The pasta theory of design:

CHAPTER 2. TUTORIAL 83

e Spaghetti: each piece of code interacts with every othexepié code [can be implemented with GOTO, func-
tions, objects]

e Lasagna: code has carefully designed layers. Each layer tiseory independent. However low-level layers
usually cannot be used easily, and high-level layers deperidw-level layers.

e Ravioli: each part of the code is useful by itself. There ikia tayer of interfaces between various parts [the
sauce]. Each part can be usefully be used elsewhere.

e ...but sometimes, the user just wants to order “Ravioli'pse coarse-grain easily definable layer of abstraction
on top of it all can be useful.

2.16 The Evolution of Finger: configuration and packaging of the finger
service

2.16.1 Introduction

This is the eleventh part of the Twisted tutorfaisted from Scratch, or The Evolution of Fingdpage 26).
In this part, we make it easier for non-programmers to condigufinger server, and show how to package it in the
.deb and RPM package formats.

2.16.2 Plugins

So far, the user had to be somewhat of a programmer to be atbatigure stuff. Maybe we can eliminate even that?
Move old code to finget/init__.py and...
Full source code for finger module here:

finger.py module
from zope.interface import Interface, implements

from twisted.application import internet, service, strpo rts

from twisted.internet import protocol, reactor, defer

from twisted.words.protocols import irc

from twisted.protocols import basic

from twisted.python import components

from twisted.web import resource, server, static, xmirpc, microdom
from twisted.web.woven import page, model, interfaces

from twisted.spread import pb

from OpenSSL import SSL

import cgi

class IFingerService(Interface):

def getUser(user):
""Return a deferred returning a string"™"
def getUsers():
""Return a deferred returning a list of strings

class IFingerSetterService(Interface):

def setUser(user, status):

""Set the user's status to something™"
def catchError(err):

return "Internal error in server"

CHAPTER 2. TUTORIAL

class FingerProtocol(basic.LineReceiver):

def lineReceived(self, user):
d = self.factory.getUser(user)
d.addErrback(catchError)
def writeValue(value):
self.transport.write(value+'\n’)
self.transport.loseConnection()
d.addCallback(writeValue)

class IFingerFactory(Interface):

def getUser(user):
""Return a deferred returning a string™"
def buildProtocol(addr):
""Return a protocol returning a string

class FingerFactoryFromService(protocol.ServerFactor
implements(IFingerFactory)

protocol = FingerProtocol

def __init_ (self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(FingerFactoryFromService
IFingerService,
IFingerFactory)

class FingerSetterProtocol(basic.LineReceiver):

def connectionMade(self):
self.lines =]

def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self, reason):
if len(self.lines) ==
self.factory.setUser(* self.lines)

class IFingerSetterFactory(Interface):

def setUser(user, status):
""Return a deferred returning a string™"
def buildProtocol(addr):
""Return a protocol returning a string

y):

84

CHAPTER 2. TUTORIAL 85

class FingerSetterFactoryFromService(protocol.Server Factory):
implements(IFingerSetterFactory)
protocol = FingerSetterProtocol

def __init_ (self, service):
self.service = service

def setUser(self, user, status):
self.service.setUser(user, status)

components.registerAdapter(FingerSetterFactoryFromS ervice,
IFingerSetterService,
IFingerSetterFactory)

class IRCReplyBot(irc.IRCClient):

def connectionMade(self):
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split('!")[0]
if self.nickname.lower() == channel.lower():
d = self.factory.getUser(msg)
d.addErrback(catchError)
d.addCallback(lambda m: "Status of %s: %s" % (msg, m))
d.addCallback(lambda m: self.msg(user, m))

class IIRCClientFactory(Interface):

@ivar nickname

def getUser(user):
""Return a deferred returning a string

def buildProtocol(addr):
""Return a protocol

class IRCClientFactoryFromService(protocol.ClientFac tory):
implements(lIRCClientFactory)

protocol = IRCReplyBot
nickname = None

def __init__ (self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

CHAPTER 2. TUTORIAL

components.registerAdapter(IRCClientFactoryFromServ
IFingerService,
IIRCClientFactory)

class UsersModel(model.MethodModel):

def initialize(self, xargs, ** kwargs):
self.service=args|[0]

def wmfactory_users(self, request):
return self.service.getUsers()

components.registerAdapter(UsersModel, IFingerServic
class UserStatusTree(page.Page):

template = ""<html><head><title>Users</title></head>
<hl>Users</h1>

<ul model="users" view="List">

<li pattern="listitem">
</body></htm|>"""

def initialize(self, xargs, ** kwargs):
self.service=args|[0]

def getDynamicChild(self, path, request):
return UserStatus(user=path, service=self.service)

def wchild_RPC2 (self, request):
return UserStatusXR(self.service)

components.registerAdapter(UserStatusTree, IFingerSe

class UserStatus(page.Page):
template=""<htmI><head><title view="Text" model="use
<body><hl view="Text" model="user"/>

<p model="status" view="Text" />

</body></htmI>""

def initialize(self, * Kwargs):
self.user = kwargs['user’]
self.service = kwargs['service’]

def wmfactory_user(self, request):
return self.user

def wmfactory_status(self, request):
return self.service.getUser(self.user)
class UserStatusXR(xmlrpc.XMLRPC):

def __init_ (self, service):
xmlrpc. XMLRPC.__init__(self)

86

ice,

e, interfaces.IModel)

<body>

rvice, resource.lResource)

r‘/></head>

CHAPTER 2. TUTORIAL

self.service = service

def xmirpc_getUser(self, user):
return self.service.getUser(user)

def xmirpc_getUsers(self):
return self.service.getUsers()

class IPerspectiveFinger(Interface):

def remote_getUser(username):
""return a user’'s status™"

def remote_getUsers():
""return a user’s status

class PerspectiveFingerFromService(pb.Root):
implements(IPerspectiveFinger)

def __init_ (self, service):
self.service = service

def remote_getUser(self, username):
return self.service.getUser(username)

def remote_getUsers(self):
return self.service.getUsers()

components.registerAdapter(PerspectiveFingerFromSer
IFingerService,
IPerspectiveFinger)

class FingerService(service.Service):
implements(IFingerService)

def _ init_ (self, filename):
self.flename = filename
self._read()

def _read(self):

self.users = {}

for line in file(self.flename):
user, status = line.split(’:’, 1)
user = user.strip()
status = status.strip()
self.users[user] = status

self.call = reactor.callLater(30, self._read)

def getUser(self, user):

vice,

return defer.succeed(self.users.get(user, "No such user

def getUsers(self):
return defer.succeed(self.users.keys())

")

87

CHAPTER 2. TUTORIAL

class ServerContextFactory:

def getContext(self):
""Create an SSL context.

This is a sample implementation that loads a certificate fro
called ’'server.pem’."™"

ctx = SSL.Context(SSL.SSLv23_METHOD)
ctx.use_certificate_file('server.pem’)
ctx.use_privatekey_file('server.pem’)

return ctx

Easy configuration

def makeService(config):

H H

finger on port 79

s = service.MultiService()

f = FingerService(config[file'])

h = internet. TCPServer(79, IFingerFactory(f))
h.setServiceParent(s)

website on port 8000

r = resource.IResource(f)
r.templateDirectory = config['templates’]
site = server.Site(r)

j = internet. TCPServer(8000, site)
j-setServiceParent(s)

ssl on port 443

if config.get('ssl’):
k = internet.SSLServer(443, site, ServerContextFactory
k.setServiceParent(s)

irc fingerbot
if config.has_key('ircnick’):
i = IIRCClientFactory(f)
i.nickname = config[’ircnick’]
ircserver = config['ircserver’]
b = internet. TCPClient(ircserver, 6667, i)
b.setServiceParent(s)

Pespective Broker on port 8889
if config.has_key('pbport’):
m = internet. TCPServer(
int(config['pbport?),
pb.PBServerFactory(IPerspectiveFinger(f)))
m.setServiceParent(s)

return s

0)

m a file

88

CHAPTER 2. TUTORIAL 89

finger module —finger.py

finger/tap.py

from twisted.application import internet, service
from twisted.internet import interfaces

from twisted.python import usage

import finger

class Options(usage.Options):

optParameters = [
[file’, 'f, ’letc/users’],
[templates’, 't', 'lusr/share/finger/templates’],
[ircnick’, 'n’, ‘fingerbotT],
[ircserver’, None, ’irc.freenode.net?,
['pbport’, 'p’, 8889],
]

optFlags = [['ssl’, 'sT]

def makeService(config):
return finger.makeService(config)

finger/tap.py —tap.py

And register it all:

#finger/plugins.tml

register('finger’, ‘finger.tap’,
description="Build a finger server tap’,
type="tap’, tapname="finger’)

finger/plugins.tml —plugins.tml

And now, the following works

% mktap finger --file=/etc/users --ircnick=fingerbot
% sudo twistd -nf finger.tap

2.16.3 OS Integration

If we already have the “finger” package installed in PYTHONPXe.g. we added it to site-packages), we can achieve
easy integration:

Debian

% tap2deb --unsigned -m "Foo <foo@example.com>" --type=py thon finger.tac

% sudo dpkg -i .build/ *.deb

Red Hat / Mandrake

% tap2rpm --type=python finger.tac #[maybe other options n eeded]
% sudo rpm -i .build/ *.rpm

Will properly register the tap/tac, init.d scripts, etcr fbe given file.
If it doesn’t work on your favorite OS: patches accepted!

Chapter 3

Low-Level Twisted

3.1 Reactor Overview

This HOWTO introduces the Twisted reactor, describes thieba$ the reactor and links to

3.1.1 Reactor Basics

The reactor is the core of the event loop within Twisted — thaplwhich drives applications using Twisted. The
reactor provides basic interfaces to a number of servioefyding network communications, threading, and event
dispatching.

For information about using the reactor and the Twisted Eo@p, see:

e the event dispatching howtoSchedulingpage 134) antlsing Deferred€page 100);

e the communication howtosTCP servergpage_13),TCP clients(page 17),UDP networking(page_91) and
Using processepage 93); and

e Using threadg{page 135).

There are multiple implementations of the reactor, eachifieddo provide better support for specialized features
over the default implementation. More information aboetsnand how to use a particular implementation is available
via Choosing a Reactofpage 137).

Twisted applications can use the interfacedvitsted.application.service to configure and run the
application instead of using boilerplate reactor code. $siag Application(pagd 159) for an introduction to Appli-
cation.

3.1.2 Using the reactor object
You can get to theeactor object using the following code:
from twisted.internet import reactor

The reactor usually implements a set of interfaces, butmidipg on the chosen reactor and the platform, some of
the interfaces may not be implemented:

e IReactorCore : Core (required) functionality.
e IReactorFDSet : Use FileDescriptor objects.

e IReactorProcess : Process management. Readltlsing Processefpage 93) document for more informa-
tion.

e |IReactorSSL : SSL networking support.

IReactorTCP : TCP networking support. More information can be found i\Writing Servergpage 13) and
Writing Clients(page 17) documents.

90

CHAPTER 3. LOW-LEVEL TWISTED 91

e IReactorThreads : Threading use and management. More information can bedfauthin Threading In
Twisted(page 135).

¢ IReactorTime : Scheduling interface. More information can be found witBtheduling Task@gage 134).
e |IReactorUDP : UDP networking support. More information can be found witdDP Networking(this page).

e IReactorUNIX : UNIX socket support.

3.2 UDP Networking

3.2.1 Overview

Unlike TCP, UDP has no notion of connections. A UDP socketrearive datagrams from any server on the network,
and send datagrams to any host on the network. In additidagdans may arrive in any order, never arrive at all, or
be duplicated in transit.

Since there are no multiple connections, we only use a sotgjét, a protocol, for each UDP socket. We then use
the reactor to connect this protocol to a UDP transport,giiatwisted.internet.interfaces.|Reactor
UDPreactor API.

3.2.2 DatagramProtocol

At the base, the place where you actually implement the pobtparsing and handling, is the DatagramProtocol
class. This class will usually be decended fromisted.internet.protocol. DatagramProtocol . Most
protocol handlers inherit either from this class or from ofi@s convenience children. The DatagramProtocol class
receives datagrams, and can send them out over the netweckived datagrams include the address they were sent
from, and when sending datagrams the address to send to ensebified.

Here is a simple example:

from twisted.internet.protocol import DatagramProtocol
from twisted.internet import reactor

class Echo(DatagramProtocol):

def datagramReceived(self, data, (host, port)):
print "received %r from %s:%d" % (data, host, port)
self.transport.write(data, (host, port))

reactor.listenUDP(9999, Echo())
reactor.run()

As you can see, the protocol is registed with the reactor.s Tintans it may be persisted if it's added to an

application, and thus it hasvisted.internet.protocol.DatagramProtocol.startPro tocol and
twisted.internet.protocol. DatagramProtocol.stopProt ocol methods that will get called when
the protocol is connected and disconnected from a UDP socket

The protocol's transport attribute will implement the twisted.internet.interfaces.
IUDPTransport interface. Notice that thénost argument should be an IP, not a hostname. If you only
have the hostname useactor.resolve() to resolve the address (siésted.internet.interfaces.
IReactorCore.resolve).

3.2.3 Connected UDP

A connected UDP socket is slighly different from a standand eit can only send and receive datagrams to/from
a single address, but this does not in any way imply a cormecatagrams may still arrive in any order, and the
port on the other side may have no one listening. The benefiteo€onnected UDP socket is that iniay provide
notification of undelivered packages. This depends on magtpifs, almost all of which are out of the control of the
application, but it still presents certain benefits whichassionally make it useful.

Unlike a regular UDP protocol, we do not need to specify whersend datagrams to, and are not told where they
came from since they can only come from address the sockegnsécted’ to.

CHAPTER 3. LOW-LEVEL TWISTED 92

from twisted.internet.protocol import DatagramProtocol
from twisted.internet import reactor

class Helloer(DatagramProtocol):

def startProtocol(self):
self.transport.connect("192.168.1.1", 1234)
print "we can only send to %s now" % str((host, port))
self.transport.write("hello”) # no need for address

def datagramReceived(self, data, (host, port)):
print "received %r from %s:%d" % (data, host, port)

Possibly invoked if there is no server listening on the
address to which we are sending.
def connectionRefused(self):

print "No one listening"

0 means any port, we don't care in this case
reactor.listenUDP(0, Helloer())
reactor.run()

Note thatconnect() , like write() will only accept IP addresses, not unresolved domain nafe®btain
the IP of a domain name useactor.resolve() , .0

from twisted.internet import reactor

def gotlP(ip):
print "IP of 'example.com’ is", ip

reactor.resolve('example.com’).addCallback(gotIP)

Connecting to a new address after a previous connectionakingia connected port unconnected are not currently
supported, but will likely be supported in the future.

3.2.4 Multicast UDP

A multicast UDP socket can send and receive datagrams froltipteiclients. The interesting and useful feature of
the multicast is that a client can contact multiple serveth & single packet, without knowing the specific IP of any
of the hosts.

from twisted.internet.protocol import DatagramProtocol
from twisted.internet import reactor
from twisted.application.internet import MulticastServ er

class MulticastServerUDP(DatagramProtocol):
def startProtocol(self):
print 'Started Listening’
Join a specific multicast group, which is the IP we will resp ond to
self.transport.joinGroup('224.0.0.1")

def datagramReceived(self, datagram, address):

The uniquelD check is to ensure we only service requests fro m
ourselves
if datagram == 'UniquelD’

print "Server Received:" + repr(datagram)
self.transport.write("data", address)

Note that the join function is picky about having a unique ob ject

CHAPTER 3. LOW-LEVEL TWISTED 93

on which to call join. To avoid using startProtocol, the fol lowing is
sufficient:
#reactor.listenMulticast(8005, MulticastServerUDP()) join('224.0.0.1")

Listen for multicast on 224.0.0.1:8005
reactor.listenMulticast(8005, MulticastServerUDP())
reactor.run()

Source listing —MulticastServer.py

The server protocol is very simple, and closely resemblesmal listenUDP implementation. The main difference
is that instead of listenUDP, listenMulticast is calledwét specified port number. The server must also call joinGroup
to specify on which multicast IP address it will service regts. Another item of interest is the contents of the
datagram. Many different applications use multicast as y efalevice discovery, which leads to an abundance of
packets flying around. Checking the payload can ensure thanly service requests from our specific clients.

from twisted.internet.protocol import DatagramProtocol
from twisted.internet import reactor
from twisted.application.internet import MulticastServ er

class MulticastClientUDP(DatagramProtocol):

def datagramReceived(self, datagram, address):
print "Received:" + repr(datagram)

Send multicast on 224.0.0.1:8005, on our dynamically allo cated port
reactor.listenUDP(0, MulticastClientUDP()).write("Un iquelD’,

('224.0.0.1", 8005))
reactor.run()

MulticastServer.py —MulticastClient.py

This is a mirror implementation of a standard UDP client. Dimy difference is that the destination IP is the
multicast address. This datagram will be distributed taegerver listening on 224.0.0.1 and port 8005. Note that
the client port is specified as 0, as we have no need to kedpdfachat port the client is listening on.

3.2.5 Acknowledgements

Thank you to all contributors to this document, including:

¢ Kyle Robertson, author of the explanation and examples dticast

3.3 Using Processes

3.3.1 Overview

Along with connection to servers across the internet, Buisilso connects to local processes with much the same
API. The APl is described in more detail in the documentatibn

¢ twisted.internet.interfaces.IReactorProcess
o twisted.internet.interfaces.IProcessTransport

¢ twisted.internet.protocol.ProcessProtocol

CHAPTER 3. LOW-LEVEL TWISTED 94

3.3.2 Running Another Process

Processes are run through the reactor, ustagtor.spawnProcess() . Pipes are created to the child process,
and added to the reactor core so that the application wibloak while sending data into or pulling data out of the new
process. reactor.spawnProcess() requires two arguments, processProtocol and executatdeptionally
takes six more: arguments, environment, path, userlD mwand usePTY.

from twisted.internet import reactor

mypp = MyProcessProtocol()

reactor.spawnProcess(processProtocol, executable, arg s=[program, argl, arg2],
env={"HOME’: os.environ[HOME']}, path,
uid, gid, usePTY, childFDs)

e processProtocol should be an instance of a subclassvated.internet.protocol.Process
Protocol . The interface is described below.

e executable s the full path of the program to run. It will be connected togessProtocol.

e args is a list of command line arguments to be passed to the proeegs[0] should be the name of the
process.

e env is a dictionary containing the environment to pass throughé process.

e path is the directory to run the process in. The child will switchtlte given directory just before starting the
new program. The default is to stay in the current directory.

e uid andgid are the user ID and group ID to run the subprocess as. Of cairarging identities will be more
likely to succeed if you start as root.

e usePTY specifies whether the child process should be run with a pty,ibshould just get a pair of pipes.
Interactive programs (where you don’t know when it may readite) need to be run with ptys.

e childFDs lets you specify how the child’s file descriptors should bewge Each key is a file descriptor
number (an integer) as seen by the child. 0, 1, and 2 are ystdlh, stdout, and stderr, but some programs
may be instructed to use additional fds through commareldiguments or environment variables. Each value
is either an integer specifying one of the parent’s currémtiscriptors, the string “r’ which creates a pipe that
the parent can read from, or the string “w” which creates & piiyat the parent can write to. ¢hildFDs is
not provided, a default is used which creates the usual-stdier, stdout-reader, and stderr-reader pipes.

args andenv have empty default values, but many programs depend upamtthbe set correctly. At the very
least,args[0] should probably be the sameesecutable . If you just provideos.environ for env, the child
program will inherit the environment from the current prsgewhich is usually the civilized thing to do (unless you
want to explicitly clean the environment as a security pugioa). The default is to give an empénv to the child.

reactor.spawnProcess() returns an instance that implements thevisted.internet.
interfaces.IProcessTransport

3.3.3 Writing a ProcessProtocol

The ProcessProtocol you pass to spawnProcess is yourdtideravith the process. It has a very similar signature to
a regular Protocol, but it has several extra methods to ditalevents specific to a process. In our example, we will
interface with 'wc’ to create a word count of user-given textst, we'll start by importing the required modules, and
writing the initialization for our ProcessProtocol.

from twisted.internet import protocol
class WCProcessProtocol(protocol.ProcessProtocol):

def __init_ (self, text):
self.text = text

When the ProcessProtocol is connected to the protocol, thieasonnectionMade method called. In our protocol,
we will write our text to the standard input of our process #meh close standard input, to the let the process know
we are done writing to it.

CHAPTER 3. LOW-LEVEL TWISTED 95

def connectionMade(self):
self.transport.write(self.text)
self.transport.closeStdin()

At this point, the process has receieved the data, andriits tor us to read the results. Instead of being receieved
in dataReceived, data from standard output is receievetRemeived. This is to distinguish it from data on standard
error.

def outReceived(self, data):
fieldLength = len(data) / 3
lines = int(data[:fieldLength])
words = int(data[fieldLength:fieldLength *2])
chars = int(data[fieldLength *2:])
self.transport.loseConnection()
self.receiveCounts(lines, words, chars)

Now, the process has parsed the output, and ended the cimmecthe process. Then it sends the results on to
the final method, receiveCounts. This is for users of thesda®verride, so as to do other things with the data. For
our demonstration, we will just print the results.

def receiveCounts(self, lines, words, chars):
print 'Received counts from wc.’
print 'Lines:’, lines
print 'Words:’, words
print 'Characters:’, chars

We're done! To use our WCProcessProtocol, we create an gestand pass it to spawnProcess.

from twisted.internet import reactor

wcProcess = WCProcessProtocol("accessing protocols thro ugh Twisted is fun\n")
reactor.spawnProcess(wcProcess, 'wc’, ['wc’])

reactor.run()

3.3.4 Things that can happen to your ProcessProtocol
These are the methods that you can usefully override in ythelass oProcessProtocol

e .connectionMade : Thisis called when the program is started, and makes a gaod {o write data into the
stdin pipe (usingelf.transport.write()).

.0utReceived(data) : This is called with data that was received from the procs&But pipe. Pipes tend

to provide data in larger chunks than sockets (one kilols/gedommon buffer size), so you may not experience
the “random dribs and drabs” behavior typical of networki&as, but regardless you should be prepared to deal
if you don't get all your data in a single call. To do it propgidutReceived ought to simply accumulate the
data and put off doing anything with it until the process hasfied.

e .errReceived(data) . This is called with data from the process’ stderr pipe. Ihdes just likeout
Received .
e .inConnectionLost . This is called when the reactor notices that the procedsi glipe has closed. Pro-

grams don't typically close their own stdin, so this will pably get called when your ProcessProtocol has shut
down the write side witlself.transport.loseConnection()

e .outConnectionLost : This is called when the program closes its stdout pipe. Uikislly happens when
the program terminates.

e .errConnectionLost : Same asutConnectionLost , but for stderr instead of stdout.

e .processEnded(status) : This is called when the child process has been reaped, aeiyes information

about the process’ exit status. The status is passed intimedfoa Failure instance, created with.galue
that either holds #rocessDone object if the process terminated normally (it died of natgeuses instead
of receiving a signal, and if the exit code was 0), dPr@cessTerminated object (with an.exitCode

CHAPTER 3. LOW-LEVEL TWISTED 96

attribute) if something went wrong. This scheme may seem wdiird, but | trust that it proves useful when
dealing with exceptions that occur in asynchronous code.

This will always be calledafterinConnectionLost , outConnectionLost , and errConnection
Lost are called.

The base-class definitions of these functions are all no-6ps will result in all stdout and stderr being thrown
away. Note that it is important for data you don'’t care aboubé thrown away: if the pipe were not read, the child
process would eventually block as it tried to write to a fujiex

3.3.5 Things you can do from your ProcessProtocol
The following are the basic ways to control the child process

¢ self.transport.write(data) . Stuff some data in the stdin pipe. Note that thiste method will
gueue any data that can't be written immediately. Writind wvésume in the future when the pipe becomes
writable again.

¢ self.transport.closeStdin : Close the stdin pipe. Programs which act as filters (reafilorg stdin,
modifying the data, writing to stdout) usually take this asign that they should finish their job and terminate.
For these programs, it is important to close stdin when wodwne with it, otherwise the child process will

never quit.

¢ self.transport.closeStdout : Not usually called, since you're putting the process intiade where
any attempt to write to stdout will cause a SIGPIPE errorsT$m't a nice thing to do to the poor process.

¢ self.transport.closeStderr : Not usually called, same reasoncksseStdout

¢ self.transport.loseConnection : Close all three pipes.

e self.transport.signalProcess('KILL") : Kill the child process. This will eventually result in

processEnded being called.

3.3.6 Verbose Example

Here is an example that is rather verbose about exactly wihémeamethods are called. It writes a number of lines
into thewc program and then parses the output.

#! Jusr/bin/python

from twisted.internet import protocol
from twisted.internet import reactor
import re

class MyPP(protocol.ProcessProtocol):
def __init__ (self, verses):
self.verses = verses
self.data = ™
def connectionMade(self):
print "connectionMade!"
for i in range(self.verses):
self.transport.write("Aleph-null bottles of beer on the w all\n" +
"Aleph-null bottles of beer\n" +
"Take one down and pass it around\n" +
"Aleph-null bottles of beer on the wall.\n")
self.transport.closeStdin() # tell them we’re done
def outReceived(self, data):
print "outReceived! with %d bytes!" % len(data)
self.data = self.data + data
def errReceived(self, data):
print "errReceived! with %d bytes!" % len(data)

CHAPTER 3. LOW-LEVEL TWISTED 97

def inConnectionLost(self):
print "inConnectionLost! stdin is closed! (we probably did it)"
def outConnectionLost(self):
print "outConnectionLost! The child closed their stdout!"
now is the time to examine what they wrote
#print "l saw them write:", self.data
(dummy, lines, words, chars, file) = re.split(r\s+’, self .data)
print "I saw %s lines" % lines
def errConnectionLost(self):
print "errConnectionLost! The child closed their stderr."
def processEnded(self, status_object):
print "processEnded, status %d" % status_object.value.ex itCode
print "quitting”
reactor.stop()

pp = MyPP(10)
reactor.spawnProcess(pp, "wc", ["wc"], {})
reactor.run()

Source listing —process.py

The exact output of this program depends upon the relativiag of some un-synchronized events. In particular,
the program may observe the child process close its stdeeri@fore or after it reads data from the stdout pipe. One
possible transcript would look like this:

% ./process.py

connectionMade!

inConnectionLost! stdin is closed! (we probably did it)
errConnectionLost! The child closed their stderr.
outReceived! with 24 bytes!

outConnectionLost! The child closed their stdout!
| saw 40 lines

processEnded, status 0

quitting

Main loop terminated.

%

3.3.7 Doing it the Easy Way

Frequently, one just needs a simple way to get all the output &2 program. In the blocking world, you might use
commands.getoutput from the standard library, but using that in an event-drigezgram will cause everything
else to stall until the command finishes. (in addition, the SHLD handler used by that function does not play well
with Twisted’s own signal handling). For these cases,ttfisted.internet.utils.getProcessOutput

function can be used. Here is a simple example:

from twisted.internet import protocol, utils, reactor
from twisted.python import failure
from cStringlO import StringlO
class FortuneQuoter(protocol.Protocol):
fortune = ’/usr/games/fortune’
def connectionMade(self):
output = utils.getProcessOutput(self.fortune)
output.addCallbacks(self.writeResponse, self.noRespo nse)

def writeResponse(self, resp):

CHAPTER 3. LOW-LEVEL TWISTED 98

self.transport.write(resp)
self.transport.loseConnection()

def noResponse(self, err):
self.transport.loseConnection()

if _name__ == "'_ main__"
f = protocol.Factory()
f.protocol = FortuneQuoter
reactor.listenTCP(10999, f)
reactor.run()

Source listing —guotes.py

If you only need the final exit code (likeommands.getstatusoutput(cmd)[0]), the twisted.
internet.utils.getProcessValue function is useful. Here is an example:

from twisted.internet import utils, reactor

def printTrueValue(val):
print "/bin/true exits with rc=%d" % val
output = utils.getProcessValue('/bin/false’)
output.addCallback(printFalseValue)

def printFalseValue(val):
print “/bin/false exits with rc=%d" % val
reactor.stop()

output = utils.getProcessValue('/bin/true’)
output.addCallback(printTrueValue)
reactor.run()

Source listing —trueandfalse.py

3.3.8 Mapping File Descriptors

“stdin”, “stdout”, and “stderr” are just conventions. Prags which operate as filters generally accept input on fdO,
write their output on fd1, and emit error messages on fd2s Ehtommon enough that the standard C library provides
macros like “stdin” to mean fdO, and shells interpret theemgparacter “—” to mean “redirect fd1 from one command
into fdO of the next command”.

But these are just conventions, and programs are free todaomal file descriptors or even ignore the standard
three entirely. The “childFDs” argument allows you to sfgeixactly what kind of files descriptors the child process
should be given.

Each child FD can be put into one of three states:

e Mapped to a parent FD: this causes the child’s reads andsitoitome from or go to the same source/destination
as the parent.

e Feeding into a pipe which can be read by the parent.
e Feeding from a pipe which the parent writes into.

Mapping the child FDs to the parent’s is very commonly useseiod the child’s stderr output to the same place
as the parent’'s. When you run a program from the shell, it wiidally leave fds 0, 1, and 2 mapped to the shell’s 0,
1, and 2, allowing you to see the child program’s output orstirae terminal you used to launch the child. Likewise,
inetd will typically map both stdin and stdout to the netwedcket, and may map stderr to the same socket or to some

CHAPTER 3. LOW-LEVEL TWISTED 99

kind of logging mechanism. This allows the child program ¢éoitmplemented with no knowledge of the network: it
merely speaks its protocol by doing reads on fd0 and writefslbn

Feeding into a parent’s read pipe is used to gather outpot fhe child, and is by far the most common way of
interacting with child processes.

Feeding from a parent’s write pipe allows the parent to adrttre child. Programs like “bc” or “ftp” can be
controlled this way, by writing commands into their stdiresim.

The “childFDs” dictionary maps file descriptor numbers (alslve seen by the child process) to one of these three
states. To map the fd to one of the parent’s fds, simply pette fd number as the value. To map it to a read pipe,
use the string “r" as the value. To map it to a write pipe, usesthing “w”.

For example, the default mapping sets up the standard stiout/stderr pipes. It is implemented with the follow-
ing dictionary:

childFDs = { 0: "w", 1: "r", 2: "r" }

To launch a process which reads and writes to the same plaatethe parent python program does, use this:
childFDs = { 0: 0, 1: 1, 2: 2}

To write into an additional fd (say it is fd number 4), use this

childFDs = { 0: "w", 1: "r", 2: " , 4: "w"}

ProcessProtocols with extra file descriptors

When you provide a “childFDs” dictionary with more than thermal three fds, you need addtional methods to
access those pipes. These methods are more generalizetth¢hantReceived ones described above. In fact,
those methodso{uitReceived anderrReceived) are actually just wrappers left in for compatibility witthder
code, written before this generalized fd mapping was implatied. The new list of things that can happen to your
ProcessProtocol is as follows:

.connectionMade : This is called when the program is started.

.childDataReceived(childFD, data) : This is called with data that was received from one of the
process’ output pipes (i.e. where the childFDs value was Tiie actual file number (from the point of view
of the child process) is in “childFD”. For compatibility, étdefault implementation oflataReceived dis-
patches tooutReceived or.errReceived when “childFD” is 1 or 2.

¢ .childConnectionLost(childFD) : This is called when the reactor notices that one of the ESige#pes
has been closed. This either means you have just closed tievpatent’s end of the pipe (wittransport.
closeChildFD), the child closed the pipe explicitly (sometimes to inticEOF), or the child process has
terminated and the kernel has closed all of its pipes. Thidieb” argument tells you which pipe was closed.
Note that you can only find out about file descriptors whicheumapped to pipes: when they are mapped to
existing fds the parent has no way to notice when they've trsed. For compatibility, the default implemen-
tation dispatches tanConnectionLost , .outConnectionLost , or.errConnectionLost

e .processEnded(status) : This is called when the child process has been reaped, bpigpes have been
closed. This insures that all data written by the child ptmits death will be received beforprocess
Ended is invoked.

In addition to those methods, there are other methods alaila influence the child process:

e self.transport.writeToChild(childFD, data) : Stuff some data into an input pipewrite
simply writes to childFD=0.

e self.transport.closeChildFD(childFD) : Close one of the child’s pipes. Closing an input pipe is
a common way to indicate EOF to the child process. Closinguput pipe is neither very friendly nor very
useful.

CHAPTER 3. LOW-LEVEL TWISTED 100

Examples

GnuPG, the encryption program, can use additional file geecs to accept a passphrase and emit status output.
These are distinct from stdin (used to accept the crypitstdput (used to emit the plaintext), and stderr (used to emi
human-readable status/warning messages). The passpidasads until the pipe is closed and uses the resulting
string to unlock the secret key that performs the actualyggiom. The status FD emits machine-parseable status
messages to indicate the validity of the signature, whighthke message was encrypted to, etc.

gpg accepts command-line arguments to specify what thesaréj and then assumes that they have been opened
by the parent before the gpg process is started. It simpfpes reads and writes to these fd numbers.

To invoke gpg in decryption/verification mode, you would @orething like the following:

class GPGProtocol(ProcessProtocol):
def __init_ (self, crypttext):
self.crypttext = crypttext
self.plaintext = "™
self.status = ™
def connectionMade(self):
self.transport.writeToChild(3, self.passphrase)
self.transport.closeChildFD(3)
self.transport.writeToChild(0, self.crypttext)
self.transport.closeChildFD(0)
def childDataReceived(self, childFD, data):
if childFD == 1: self.plaintext += data
if childFD == 4: self.status += data
def processEnded(self, status):
rc = status.value.exitCode
if rc ==
self.deferred.callback(self)
else:
self.deferred.errback(rc)

def decrypt(crypttext):
gp = GPGProtocol(crypttext)
gp.deferred = Deferred()
cmd = ['gpg”, "--decrypt’, "--passphrase-fd", "3", "--sta tus-fd", "4",
"--batch"]
p = reactor.spawnProcess(gp, cmd[0], cmd, env=None,
childFDs={0:"w", 1:"r", 2:2, 3:"w", 4:"r'})
return gp.deferred

In this example, the status output could be parsed aftesitte it could, of course, be parsed on the fly, asitis a
simple line-oriented protocol. Methods from LineReceiveuld be mixed in to make this parsing more convenient.

The stderr mapping (“2:2”) used will cause any GPG errorsed@imitted by the parent program, just as if those
errors had caused in the parent itself. This is sometimeseddde (it roughly corresponds to letting exceptions
propagate upwards), especially if you do not expect to emeowerrors in the child process and want them to be more
visible to the end user. The alternative is to map stderr teaapipe and handle any such output from within the
ProcessProtocol (roughly corresponding to catching tleegtion locally).

3.4 Deferred Reference

This document is a guide to the behaviour of thésted.internet.defer.Deferred object, and to various
ways you can use them when they are returned by functions.

This document assumes that you are familiar with the basicipte that the Twisted framework is structured
around: asynchronous, callback-based programming, vihgtesd of having blocking code in your program or using
threads to run blocking code, you have functions that rétumediately and then begin a callback chain when data is
available.

See these documents for more information:

CHAPTER 3. LOW-LEVEL TWISTED 101

e Asynchronous Programming with Twist@zhge 8)

After reading this document, the reader should expect tobbeta deal with most simple APls in Twisted and
Twisted-using code that return Deferreds.

e what sorts of things you can do when you get a Deferred frormetifon call; and
e how you can write your code to robustly handle errors in Defécode.

Unless you're already very familiar with asynchronous paogming, it's strongly recommended you read the
Deferreds sectiofpage 9) of the Asynchronous programming document to gedemaf why Deferreds exist.

3.4.1 Callbacks

A twisted.internet.defer.Deferred is a promise that a function will at some point have a result.cah
attach callback functions to a Deferred, and once it getsatrthese callbacks will be called. In addition Deferreds
allow the developer to register a callback for an error, whith default behavior of logging the error. The deferred
mechanism standardizes the application programmer’dacewith all sorts of blocking or delayed operations.

from twisted.internet import reactor, defer

def getDummyData(x):
This function is a dummy which simulates a delayed result and
returns a Deferred which will fire with that result. Don't tr y too
hard to understand this.
d = defer.Deferred()
simulate a delayed result by asking the reactor to fire the

Deferred in 2 seconds time with the result x * 3
reactor.callLater(2, d.callback, x * 3)
return d

def printData(d):
Data handling function to be added as a callback: handles the
data by printing the result

print d

d = getDummyData(3)
d.addCallback(printData)

manually set up the end of the process by asking the reactor t 0
stop itself in 4 seconds time

reactor.callLater(4, reactor.stop)

start up the Twisted reactor (event loop handler) manually

reactor.run()

Multiple callbacks

Multiple callbacks can be added to a Deferred. The first aaktin the Deferred’s callback chain will be called with
the result, the second with the result of the first callbaokl, 0 on. Why do we need this? Well, consider a Deferred
returned by twisted.enterprise.adbapi - the result of a §@dry. A web widget might add a callback that converts
this result into HTML, and pass the Deferred onwards, whiseectllback will be used by twisted to return the result
to the HTTP client. The callback chain will be bypassed irecafserrors or exceptions.

from twisted.internet import reactor, defer

class Getter:

CHAPTER 3. LOW-LEVEL TWISTED 102

def gotResults(self, x):
The Deferred mechanism provides a mechanism to signal error
conditions. In this case, odd numbers are bad.

This function demonstrates a more complex way of starting
the callback chain by checking for expected results and
choosing whether to fire the callback or errback chain
if Xx % 2 == 0:

self.d.callback(x * 3)
else:

self.d.errback(ValueError("You used an odd number!"))

def _toHTML(self, r):

This function converts r to HTML.

It is added to the callback chain by getbummyData in
order to demonstrate how a callback passes its own result
to the next callback

return "Result: %s" % r

def getDummyData(self, x):
The Deferred mechanism allows for chained callbacks.
In this example, the output of gotResults is first
passed through toHTML on its way to printData.

Again this function is a dummy, simulating a delayed result
using callLater, rather than using a real asynchronous

setup.

self.d = defer.Deferred()

simulate a delayed result by asking the reactor to schedule
gotResults in 2 seconds time

reactor.callLater(2, self.gotResults, x)
self.d.addCallback(self._toHTML)

return self.d

def printData(d):
print d

def printError(failure):
import sys
sys.stderr.write(str(failure))

this series of callbacks and errbacks will print an error me ssage
g = Getter()

d = g.getDummyData(3)

d.addCallback(printData)

d.addErrback(printError)

this series of callbacks and errbacks will print "Result: 1 2"
Getter()

#
g
d = g.getDummyData(4)

CHAPTER 3. LOW-LEVEL TWISTED

d.addCallback(printData)
d.addErrback(printError)

reactor.callLater(4, reactor.stop); reactor.run()

Visual Explanation

1

103

Data Sink

mimim

Returns Defaerreaed

Reguests Data From

Data Source

3

ol ject

errhbacks

Attaches

1. Requesting method (data sink) requests data, gets Péfebject.

2. Requesting method attaches callbacks to Deferred object

CHAPTER 3. LOW-LEVEL TWISTED 104

Data Source

result or| failure

Deferraed
olbject

=0 W T
Moo Lok R

CHAPTER 3. LOW-LEVEL TWISTED 105

1. When the result is ready, give it to the Deferred objecallback(result) if the operation succeeded,
.errback(failure) if it failed. Note thatfailure is typically an instance of awisted.python.
failure.Failure instance.

2. Deferred object triggers previously-added (call/excjbwith theresult orfailure . Execution then follows
the following rules, going down the chain of callbacks to begessed.

e Result of the callback is always passed as the first argunoetitet next callback, creating a chain of
processors.

o If a callback raises an exception, switch to errback.

e An unhandled failure gets passed down the line of errbatks,creating an asynchronous analog to a
series to a series @xcept: statements.

¢ If an errback doesn't raise an exception or retutwiated.python.failure.Failure instance,
switch to callback.

3.4.2 Errbacks

Deferred’s error handling is modeled after Python’s exioephandling. In the case that no errors occur, all the
callbacks run, one after the other, as described above.

If the errback is called instead of the callback (e.g. beeau®B query raised an error), themaisted.
python.failure.Failure is passed into the first errback (you can add multiple erriajcist like with call-
backs). You can think of your errbacks as being eept blocks of ordinary Python code.

Unless you explicitlyraise an error in except block, thException is caught and stops propagating, and
normal execution continues. The same thing happens wibllaeks: unless you explicitlyeturn — a Failure or
(re-)raise an exception, the error stops propagating, anghal callbacks continue executing from that point (using
the value returned from the errback). If the errback doasgmstaFailure or raise an exception, then that is passed
to the next errback, and so on.

Note: If an errback doesn't return anything, then it effectivedyurnsNone, meaning that callbacks will continue
to be executed after this errback. This may not be what yoe@xp happen, so be careful. Make sure your errbacks
return aFailure (probably the one that was passed to it), or a meaningfutretaiue for the next callback.

Also, twisted.python.failure.Failure instances have a useful method called trap, allowing you to
effectively do the equivalent of:

try:
code that may throw an exception
cookSpamAndEggs()

except (SpamException, EggException):
Handle SpamExceptions and EggExceptions

You do this by:

def errorHandler(failure):
failure.trap(SpamException, EggException)
Handle SpamExceptions and EggExceptions

d.addCallback(cookSpamAndEggs)
d.addErrback(errorHandler)

If none of arguments passedftolure.trap match the error encapsulated in tRailure , then it re-raises
the error.

There’s another potential “gotcha” here. There’s a mettvadted.internet.defer.Deferred.add
Callbacks which is similar to, but not exactly the same addCallback followed byaddErrback . In partic-
ular, consider these two cases:

Case 1
d = getDeferredFromSomewhere()
d.addCallback(callbackl) # A

d.addErrback(errbackl) # B

CHAPTER 3. LOW-LEVEL TWISTED 106

d.addCallback(callback?2)
d.addErrback(errback2)

Case 2

d = getDeferredFromSomewhere()
d.addCallbacks(callbackl, errbackl) # C
d.addCallbacks(callback2, errback2)

If an error occurs incallbackl , then for Case Zrrbackl will be called with the failure. For Case 2,
errback?2 will be called. Be careful with your callbacks and errbacks.

What this means in a practical sense is in Case 1, "A” will haredéuccess condition frogetDeferredFrom
Somewhere, and "B” will handle any errors that occtnom either the upstream source, or that occur in."l Case
2, "C"'s errbacklwill only handle an error condition raised hyet Def er r edFr onmSonewher e, it will not do any
handling of errors raised in callbackl.

Unhandled Errors

If a Deferred is garbage-collected with an unhandled eirer {t would call the next errback if there was one), then
Twisted will write the error’s traceback to the log file. Thiseans that you can typically get away with not adding
errbacks and still get errors logged. Be careful thoughpif ikeep a reference to the Deferred around, preventing it
from being garbage-collected, then you may never see toe @mnd your callbacks will mysteriously seem to have
never been called). If unsure, you should explicitly add mhaek after your callbacks, even if all you do is:

Make sure errors get logged
from twisted.python import log
d.addErrback(log.err)

3.4.3 Handling either synchronous or asynchronous results

In some applications, there are functions that might beeeittsynchronous or synchronous. For example, a user
authentication function might be able to check in memorytiweea user is authenticated, allowing the authentication
function to return an immediate result, or it may need to waihetwork data, in which case it should return a Deferred
to be fired when that data arrives. However, a function thaitsveo check if a user is authenticated will then need to
accept both immediate resulesxd Deferreds.

In this example, the library functioauthenticateUser uses the application functicisValidUser to
authenticate a user:

def authenticateUser(isValidUser, user):
if isValidUser(user):
print "User is authenticated"
else:
print "User is not authenticated"

However, it assumes th&ValidUser returns immediately, whereasValidUser may actually authen-
ticate the user asynchronously and return a Deferred. lbssiple to adapt this trivial user authentication code to
accept either a synchronoisd/alidUser or an asynchronousValidUser , allowing the library to handle ei-
ther type of function. It is, however, also possible to adgpichronous functions to return Deferreds. This section
describes both alternatives: handling functions that migghsynchronous or asynchronous in the library function
(authenticateUser) or in the application code.

Handling possible Deferreds in the library code
Here is an example of a synchronous user authenticatioiéumihat might be passed suthenticateUser

def synchronouslsValidUser(user):

1

Return true if user is a valid user, false otherwise

return user in ["Alice", "Angus", "Agnes"]

CHAPTER 3. LOW-LEVEL TWISTED 107

Source listing —synch-validation.py

However, here’s aasynchronouslsValidUser function that returns a Deferred:

from twisted.internet import reactor

def asynchronouslsValidUser(d, user):
d = Deferred()

reactor.callLater(2, d.callback, user in ["Alice", "Angu s", "Agnes'])
return d
Our original implementation aiuthenticateUser expectedsValidUser to be synchronous, but now we
need to change it to handle both synchronous and asynctsommlementations ofValidUser . For this, we

usemaybeDeferred to callisvValidUser , ensuring that the result igValidUser is a Deferred, even is
ValidUser is a synchronous function:

from twisted.internet import defer

def printResult(result):
if result:
print "User is authenticated"
else:
print "User is not authenticated”

def authenticateUser(isValidUser, user):
d = defer.maybeDeferred(isValidUser, user)
d.addCallback(printResult)

Now isValidUser could be eithesynchronouslsValidUser or asynchronouslsValidUser
Itis also possible to modifgynchronousisValidUser to return a Deferred, s€generating Deferred@age
[110) for more information.

3.4.4 DeferredList

Sometimes you want to be notified after several differenh&svbave all happened, rather than waiting for each one
individually. For example, you may want to wait for all thentections in a list to closewisted.internet.
defer.DeferredList is the way to do this.

To create a DeferredList from multiple Deferreds, you symdss a list of the Deferreds you want it to wait for:

Creates a DeferredList
dl = defer.DeferredList([deferredl, deferred2, deferred 3D

You can now treat the DeferredList like an ordinary Deferrgdu can calladdCallbacks and so on. The
DeferredList will call its callback when all the deferreds/e completed. The callback will be called with a list of the
results of the Deferreds it contains, like so:

def printResult(result):

print result
deferredl = defer.Deferred()
deferred2 = defer.Deferred()
deferred3 = defer.Deferred()

dl = defer.DeferredList([deferredl, deferred2, deferred 3D
dl.addCallback(printResult)

deferredl.callback(’one’)

deferred2.errback(’bang!’)

deferred3.callback('three’)

At this point, dl will fire its callback, printing:

[(2, 'one’), (0, 'bang!), (1, 'three’)]

(note that defer.SUCCESS == 1, and defer.FAILURE == 0)

CHAPTER 3. LOW-LEVEL TWISTED 108

A standard DeferredList will never call errback.

Note:

If you want to apply callbacks to the individual Deferredattlyo into the DeferredList, you should
be careful about when those callbacks are added. The actiofgpd Deferred to a DeferredList inserts
a callback into that Deferred (when that callback is runhieeks to see if the DeferredList has been
completed yet). The important thing to remember is that fhis callbackwhich records the value that
goes into the result list handed to the DeferredList’s ealko

Therefore, if you add a callback to the Deferr&iter adding the Deferred to the DeferredList, the
value returned by that callback will not be given to the DefdList’s callback. To avoid confusion, we
recommend not adding callbacks to a Deferred once it hasumeshin a DeferredList.

def printResult(result):
print result

def addTen(result):
return result +

ten

Deferred gets callback before DeferredList is created

deferredl = defer.Deferred()

deferred2 = defer.Deferred()

deferredl.addCallback(addTen)

dl = defer.DeferredList([deferredl, deferred2])

dl.addCallback(printResult)

deferredl.callback("one") # fires addTen, checks Deferre dList, stores "one ten"
deferred2.callback("two")

At this point, dl will fire its callback, printing:

[(1, 'one ten’), (1, 'two’)]

Deferred gets callback after DeferredList is created
deferredl = defer.Deferred()

deferred2 = defer.Deferred()

dl = defer.DeferredList([deferredl, deferred2])

deferredl.addCallback(addTen) # will run +after * DeferredList gets its value
dl.addCallback(printResult)
deferredl.callback("one") # checks DeferredList, stores "one", fires addTen

deferred2.callback("two")
At this point, dl will fire its callback, printing:
[(1, ‘one), (1, 'two’)]

Other behaviours

DeferredList accepts three keyword arguments that motsfypéhaviour:fireOnOneCallback , fireOnOne
Errback andconsumeErrors . If fireOnOneCallback is set, the DeferredList will immediately call its
callback as soon as any of its Deferreds call their callb&akilarly, fireOnOneErrback will call errback as soon
as any of the Deferreds call their errback. Note that Defiiis is still one-shot, like ordinary Deferreds, so after
a callback or errback has been called the DeferredList wilhdthing further (it will just silently ignore any other
results from its Deferreds).

The fireOnOneErrback option is particularly useful when you want to wait for alkthesults if everything
succeeds, but also want to know immediately if somethirg.fai

TheconsumeErrors argument will stop the DeferredList from propagating anpes along the callback chains
of any Deferreds it contains (usually creating a Deferretlhas no effect on the results passed along the callbacks
and errbacks of their Deferreds). Stopping errors at theedList with this option will prevent “Unhandled error in
Deferred” warnings from the Deferreds it contains withoegeding to add extra errbatks

1Unless of course a later callback starts a fresh error — bueag already noted, adding callbacks to a Deferred aferded in a DeferredList
is confusing and usually avoided.

CHAPTER 3. LOW-LEVEL TWISTED 109

3.4.5 Class Overview

This is an overview API reference for Deferred from the pahtising a Deferred returned by a function. It is not
meant to be a substitute for the docstrings in the Deferr@sscbut can provide guidelines for its use.
There is a parallel overview of functions used by the Defésrereatorin Generating Deferredgage 110).

Basic Callback Functions

e addCallbacks(self, callback|, errback, callbackArgs, ca llbackKeywords,
errbackArgs, errbackKeywords])

This is the method you will use to interact with Deferred.dtla a pair of callbacks “parallel” to each other (see
diagram above) in the list of callbacks made when the Dedeisealled back to. The signature of a method
added using addCallbacks shouldrbgMethod(result, * methodArgs, * methodKeywords) . If
your method is passed in the callback slot, for example,rgliments in the tupleallbackArgs will be
passed asmethodArgs to your method.

There are various convenience methods that are derivatagdCallbacks. | will not cover them in detail here,
but it is important to know about them in order to create cemciode.

— addCallback(callback, * callbackArgs, » callbackKeywords)

Adds your callback at the next point in the processing chahile adding an errback that will re-raise its
first argument, not affecting further processing in the recese.

Note that, while addCallbacks (plural) requires the arguisi¢o be passed in a tuple, addCallback (sin-
gular) takes all its remaining arguments as things to beepbgs the callback function. The reason is
obvious: addCallbacks (plural) cannot tell whether theuargnts are meant for the callback or the er-
rback, so they must be specifically marked by putting them @ntuple. addCallback (singular) knows
that everything is destined to go to the callback, so it canRyghon’s “*” and “**” syntax to collect the
remaining arguments.

— addErrback(errback, * errbackArgs, *+ errbackKeywords)

Adds your errback at the next point in the processing challgvadding a callback that will return its first
argument, not affecting further processing in the succass.c

— addBoth(callbackOrErrback, * callbackOrErrbackArgs, ++ callbackOrErrback
Keywords)

This method adds the same callback into both sides of theepsatg chain at both points. Keep in mind
that the type of the first argument is indeterminate if you tiée method! Use it fofinally: style
blocks.

Chaining Deferreds

If you need one Deferred to wait on another, all you need tesdeturn a Deferred from a method added to addCall-
backs. Specifically, if you return Deferred B from a methodextito Deferred A using A.addCallbacks, Deferred A's
processing chain will stop until Deferred B'’s .callback@timod is called; at that point, the next callback in A will be
passed the result of the last callback in Deferred B’s pigingschain at the time.

If this seems confusing, don’t worry about it right now — whgsu run into a situation where you need this
behavior, you will probably recognize it immediately andliee why this happens. If you want to chain deferreds
manually, there is also a convenience method to help you.

e chainDeferred(otherDeferred)
Add otherDeferred to the end of this Deferred’s processing chain. When sellbaek is called, the result

of my processing chain up to this point will be passedtteerDeferred.callback . Further additions to
my callback chain do not affectherDeferred

This is the same asself.addCallbacks(otherDeferred.callback, otherDefer red.
errback)

3.4.6 Seealso

1. Generating Deferred@age 110), an introduction to writing asynchronous funtithat return Deferreds.

CHAPTER 3. LOW-LEVEL TWISTED 110

3.5 Generating Deferreds

Deferred objects are signals that a function you have called doesetdtgve the data you want available. When a
function returns a Deferred object, your calling functigtaehes callbacks to it to handle the data when available.
This document addresses the other half of the questioning/fitnctions that return Deferreds, that is, constructing
Deferred objects, arranging for them to be returned imnteljiavithout blocking until data is available, and firing
their callbacks when the data is available.
This document assumes that you are familiar withadkgnchronous modépage 8) used by Twisted, and with
using deferreds returned by functiofmage 100).

3.5.1 Class overview

This is an overview API reference for Deferred from the paiftreating a Deferred and firing its callbacks and
errbacks. It is not meant to be a substitute for the docstringhe Deferred class, but can provide guidelines for its
use.

There is a parallel overview of functions used by callingdtion which the Deferred is returned to ldsing
Deferredg(page 108).

Basic Callback Functions

o callback(result)

Run success callbacks with the given resilhis can only be run oncd.ater calls to this oerrback will
raisetwisted.internet.defer.AlreadyCalledError . If further callbacks or errbacks are added
after this point, addCallbacks will run the callbacks imnagely.

e errback(failure)

Run error callbacks with the given failur@his can only be run onced.ater calls to this ocallback will
raisetwisted.internet.defer.AlreadyCalledError . If further callbacks or errbacks are added
after this point, addCallbacks will run the callbacks imnagely.

3.5.2 What Deferreds don’t do: make your code asynchronous

Deferreds do not make the code magically not block.
Let’s take this function as an example:

from twisted.internet import defer
TARGET = 10000

def largeFibonnaciNumber():
create a Deferred object to return:
d = defer.Deferred()

calculate the ten thousandth Fibonnaci number

first = 0
second = 1

for i in xrange(TARGET - 1):
new = first + second
first = second
second = new
if i % 100 == O:
print "Progress: calculating the %dth Fibonnaci number" % i

give the Deferred the answer to pass to the callbacks:
d.callback(second)

CHAPTER 3. LOW-LEVEL TWISTED 111

return the Deferred with the answer:
return d

import time
timeBefore = time.time()

call the function and get our Deferred
d = largeFibonnaciNumber()

timeAfter = time.time()

print "Total time taken for largeFibonnaciNumber call: %0. 3f seconds" % \
(timeAfter - timeBefore)

add a callback to it to print the number

def printNumber(number):
print "The %dth Fibonacci number is %d" % (TARGET, number)

print "Adding the callback now."

d.addCallback(printNumber)

You will notice that despite creating a Deferred in taegeFibonnaciNumber function, these things hap-
pened:

o the "Total time taken for largeFibonnaciNumber call” outphows that the function did not return immediately
as asynchronous functions are expected to do; and

¢ rather than the callback being added before the result vakgble and called after the result is available, it isn’t
even added until after the calculation has been completed.

The function completed its calculation before returnirigcking the process until it had finished, which is exactly
what asynchronous functions are not meant to do. Defermedaa a non-blocking talisman: they are a signal for
asynchronous functions taseto pass results onto callbacks, but using them does not igpegréhat you have an
asynchronous function.

3.5.3 Advanced Processing Chain Control

e pause()
Cease calling any methods as they are added, and do not detsprailback , until self.unpause() is
called.

e unpause()

If callback has been called on this Deferred already, call all the celibahat have been added to this
Deferred sincgpause was called.

Whether it was called or not, this will put this Deferred in atstwhere further calls taddCallbacks or
callback will work as normal.

3.5.4 Returning Deferreds from synchronous functions

Sometimes you might wish to return a Deferred from a synabuerfiunction. There are several reasons why, the major
two are maintaining API compatibility with another versioihyour function which returns a Deferred, or allowing for
the possiblity that in the future your function might needéoasynchronous.

In the Using Deferred§page 100) reference, we gave the following example of arsgmous function:

CHAPTER 3. LOW-LEVEL TWISTED 112

def synchronouslsValidUser(user):

Return true if user is a valid user, false otherwise

return user in ['Alice”, "Angus”, "Agnes"]

Source listing —synch-validation.py

While we can require that callers of our function wrap our $ypoous result in a Deferred usingaybe
Deferred |, for the sake of API compatibility it is better to return a Bekd ourself usingefer.succeed

from twisted.internet import defer

def immediatelsValidUser(user):
Returns a Deferred resulting in true if user is a valid user, f alse
otherwise

result = user in ["Alice", "Angus", "Agnes"]

return a Deferred object already called back with the value of result
return defer.succeed(result)

There is an equivalemtefer.fail method to return a Deferred with the errback chain alreadd fir

3.5.5 Integrating blocking code with Twisted

At some point, you are likely to need to call a blocking funati many functions in third party libraries will have long
running blocking functions. There is no way to 'force’ a ftioo to be asynchronous: it must be written that way
specifically. When using Twisted, your own code should be @symnous, but there is no way to make third party
functions asynchronous other than rewriting them.

In this case, Twisted provides the ability to run the blogkaode in a separate thread rather than letting it block
your application. Thewisted.internet.threads.deferToThread function will set up a thread to run
your blocking function, return a Deferred and later fire thaferred when the thread completes.

Let’'s assume ouargeFibonnaciNumber function from above is in a third party library (returningethesult
of the calculation, not a Deferred) and is not easily modiéiab be finished in discrete blocks. This example shows it
being called in a thread, unlike in the earlier section waek that the operation does not block our entire program:

def largeFibonnaciNumber():

Represent a long running blocking function by calculating
the TARGETth Fibonnaci number

TARGET = 10000

first = 0
second = 1

for i in xrange(TARGET - 1):
new = first + second
first = second
second = new

return second

from twisted.internet import threads, reactor

CHAPTER 3. LOW-LEVEL TWISTED 113

def fibonacciCallback(result):
Callback which manages the largeFibonnaciNumber result by
printing it out

print "largeFibonnaciNumber result =", result

make sure the reactor stops after the callback chain finish es,
just so that this example terminates

reactor.stop()

def run():
Run a series of operations, deferring the largeFibonnaciNu mber
operation to a thread and performing some other operations a fter

adding the callback
get our Deferred which will be called with the largeFibonna ciNumber result
d = threads.deferToThread(largeFibonnaciNumber)
add our callback to print it out
d.addCallback(fibonacciCallback)
unless the largeFibonnaciNumber thread returns very fast , these print
#lines should happen first
print "1st line after the addition of the callback"
print "2nd line after the addition of the callback”
if name__ == ' main__ "
run()
reactor.run()

3.5.6 Possible sources of error

Deferreds greatly simplify the process of writing asynetoes code by providing a standard for registering callbacks
but there are some subtle and sometimes confusing rulegdhateed to follow if you are going to use them. This
mostly applies to people who are writing new systems thatDeferreds internally, and not writers of applications
that just add callbacks to Deferreds produced and procdssetther systems. Nevertheless, it is good to know.

Firing Deferreds more than once is impossible

Deferreds are one-shot. You can only dadiferred.callback or Deferred.errback once. The processing
chain continues each time you add new callbacks to an alrealtd-back-to Deferred.

Synchronous callback execution

If a Deferred already has a result available, addCallbaek call the callback synchronously: that is, immediately
after it's been added. In situations where callbacks mastdiye, it is might be desirable for the chain of processing to
halt until all callbacks are added. For this, it is possiblpause andunpause a Deferred’s processing chain while
you are adding lots of callbacks.

Be careful when you use these methods! If yawse a Deferred, it isjour responsibility to make sure that you
unpause it. The function adding the callbacks must unpapsesed Deferred, it shoufgeverbe the responsibility of
the code that actually fires the callback chain by caltialipack orerrback as this would negate its usefulness!

3.6 Deferreds are beautiful! (A Tutorial)

3.6.1 Introduction

Deferreds are quite possibly the single most confusingttiEit a newcomer to Twisted has to deal with. | am going
to forgo the normal talk about what deferreds are, what tmeyp'a and why they're used in Twisted. Instead, I'm

CHAPTER 3. LOW-LEVEL TWISTED

going show you the logic behind what thdg.

114

A deferred allows you to encapsulate the logic that you'dhmaidly use to make a series of function calls after
receiving a result into a single object. In the examplesfiiiw, I'll first show you what’s going to go on behind the
scenes in the deferred chain, then show you the deferred @RItbat set up that chain. All of these examples are

runnable code, so feel free to play around with them.

3.6.2 A simple example
First, a simple example so that we have something to talktabou
#!/usr/bin/python2.3

from twisted.internet import defer
from twisted.python import failure, util

here we have the simplest case, a single callback and a single

num = 0

def handleFailure(f):
print "errback"
print "we got an exception: %s" % (f.getTraceback(),)
f.trap(RuntimeError)

def handleResult(result):
global num; num += 1
print "callback %s" % (num,)
print "\tgot result: %s" % (result,)
return "yay! handleResult was successful!”

def behindTheScenes(result):
equivalent to d.callback(result)

if not isinstance(result, failure.Failure): # ---- callba
try:
result = handleResult(result)
except:
result = failure.Failure()
else: # ---- errback
pass
if not isinstance(result, failure.Failure): # ---- callba
pass
else: # ---- errback
try:
result = handleFailure(result)
except:
result = failure.Failure()

def deferredExample():
d = defer.Deferred()
d.addCallback(handleResult)
d.addErrback(handleFailure)

ck

ck

errback

CHAPTER 3. LOW-LEVEL TWISTED 115

d.callback("success")

if _name__ == ' main__ "
behindTheScenes("success")
PrNt "\Mommmmm e e \n"

global num; num = 0
deferredExample()

Source listing —deferredex.py

And the output: (since both methods in the example produgsame output, it will only be shown once.)

callback 1
got result: success

Here we have the simplest case. A deferred with a singleazziland a single errback. Normally, a function would
create a deferred and hand it back to you when you requesteaiatagn that needs to wait for an event for completion.
The object you called then dodscallback(result) when the results are in.

The thing to notice is that there is only one result that isped$rom method to method, and that the result returned
from a method is the argument to the next method in the chainase of an exception, result is set to an instance of
Failure that describes the exception.

3.6.3 Errbacks
Failure in requested operation

Things don't always go as planned, and sometimes the funttiat returned the deferred needs to alert the callback
chain that an error has occurred.

#!/usr/bin/python2.3

from twisted.internet import defer
from twisted.python import failure, util

this example is analogous to a function calling .errback(fa ilure)

class Counter(object):
num = 0

def handleFailure(f):
print "errback”
print "we got an exception: %s" % (f.getTraceback(),)
f.trap(RuntimeError)

def handleResult(result):
Counter.num += 1
print "callback %s" % (Counter.num,)
print "\tgot result: %s" % (result,)
return "yay! handleResult was successful!"

def failAtHandlingResult(result):
Counter.num += 1
print "callback %s" % (Counter.num,)

CHAPTER 3. LOW-LEVEL TWISTED 116

print "\tgot result: %s" % (result,)
print "\tabout to raise exception"
raise RuntimeError, "whoops! we encountered an error"

def behindTheScenes(result):

if not isinstance(result, failure.Failure): # ---- callba ck
try:
result = handleResult(result)
except:
result = failure.Failure()
else: # ---- errback
pass
if not isinstance(result, failure.Failure): # ---- callba ck
pass
else: # ---- errback
try:
result = handleFailure(result)
except:
result = failure.Failure()

def deferredExample(result):
d = defer.Deferred()
d.addCallback(handleResult)
d.addCallback(failAtHandlingResult)
d.addErrback(handleFailure)

d.errback(result)

if _name__ == "' main__"
result = None
try:
raise RuntimeError, " xdoh=*! failure!"
except:

result = failure.Failure()
behindTheScenes(result)
print "\N-------m-mmemmem e e \n
Counter.num = 0
deferredExample(result)

Source listing —deferredexla.py

errback
we got an exception: Traceback (most recent call last):
--- exception caught here ---
File "deferred_exla.py", line 73, in ?
raise RuntimeError, " +*doh=! failure!"
exceptions.RuntimeError: *»doh=! failure!

The important thing to note (as it will come up again in lateamples) is that the callback isn't touched, the
failure goes right to the errback. Also note that the errltaaf()s the expected exception type. If you don't trap the
exception, an error will be logged when the deferred is ggebzollected.

CHAPTER 3. LOW-LEVEL TWISTED

Exceptions raised in callbacks
Now let's see what happens whear callbackraises an exception

#!/usr/bin/python2.3

from twisted.internet import defer
from twisted.python import failure, util

here we have a slightly more involved case. The deferred is ca
result. the first callback returns a value, the second callb
raises an exception, which is handled by the errback.

class Counter(object):
num = 0

def handleFailure(f):
print "errback"
print "we got an exception: %s" % (f.getTraceback(),)
f.trap(RuntimeError)

def handleResult(result):
Counter.num += 1
print "callback %s" % (Counter.num,)
print "\tgot result: %s" % (result,)
return "yay! handleResult was successfull”

def failAtHandlingResult(result):
Counter.num += 1
print "callback %s" % (Counter.num,)
print "\tgot result: %s" % (result,)
print "\tabout to raise exception"
raise RuntimeError, "whoops! we encountered an error"

def behindTheScenes(result):

if not isinstance(result, failure.Failure): # ---- callba
try:
result = handleResult(result)
except:
result = failure.Failure()
else: # ---- errback
pass
if not isinstance(result, failure.Failure): # ---- callba
try:
result = failAtHandlingResult(result)
except:
result = failure.Failure()
else: # ---- errback
pass

if not isinstance(result, failure.Failure): # ---- callba

lled back with a
ack, however

ck

ck

ck

117

CHAPTER 3. LOW-LEVEL TWISTED 118

pass
else: # ---- errback
try:
result = handleFailure(result)
except:
result = failure.Failure()

def deferredExample():
d = defer.Deferred()
d.addCallback(handleResult)
d.addCallback(failAtHandlingResult)
d.addErrback(handleFailure)

d.callback("success"

if _name__ == "' main__"
behindTheScenes("success")
PrNt "\Nmmmmmmmmm e e \n
Counter.num = 0
deferredExample()

Source listing —deferredex1b.py

And the output: (note, tracebacks will be edited slightlgémserve space)

callback 1
got result: success
callback 2
got result: yay! handleResult was successful!
about to raise exception
errback
we got an exception: Traceback (most recent call last):
--- <exception caught here> ---

File "/home/slyphon/Projects/Twisted/trunk/twisted/i nternet/defer.py”, line
326, in _runCallbacks
self.result = callback(self.result, xargs, = kw)
File "./deferred_ex1.py", line 32, in failAtHandlingResu It

raise RuntimeError, "whoops! we encountered an error"
exceptions.RuntimeError: whoops! we encountered an error

If your callback raises an exception, the next method to Hecwill be the next errback in your chain.

Exceptions will only be handled by errbacks

If a callback raises an exception the next method to be caliéthe next errback in the chain. If the chain is started
off with a failure, the first method to be called will be the fiesrback.

#!/usr/bin/python2.3

from twisted.internet import defer
from twisted.python import failure, util

this example shows an important concept that many deferred n ewbies
(myself included) have trouble understanding.

CHAPTER 3. LOW-LEVEL TWISTED 119

when an error occurs in a callback, the first errback after th e error
occurs will be the next method called. (in the next example we ‘Nl
see what happens in the ’chain’ after an errback)

class Counter(object):
num = 0

def handleFailure(f):
print "errback"
print "we got an exception: %s" % (f.getTraceback(),)
f.trap(RuntimeError)

def handleResult(result):
Counter.num += 1
print "callback %s" % (Counter.num,)
print "\tgot result: %s" % (result,)
return "yay! handleResult was successful!"

def failAtHandlingResult(result):
Counter.num += 1
print "callback %s" % (Counter.num,)
print "\tgot result: %s" % (result,)
print "\tabout to raise exception”
raise RuntimeError, "whoops! we encountered an error"

def behindTheScenes(result):
equivalent to d.callback(result)

now, let's make the error happen in the first callback

if not isinstance(result, failure.Failure): # ---- callba ck
try:
result = failAtHandlingResult(result)
except:
result = failure.Failure()
else: # ---- errback
pass

note: this callback will be skipped because
result is a failure

if not isinstance(result, failure.Failure): # ---- callba ck
try:
result = handleResult(result)
except:
result = failure.Failure()
else: # ---- errback
pass
if not isinstance(result, failure.Failure): # ---- callba ck

pass

CHAPTER 3. LOW-LEVEL TWISTED 120

else: # ---- errback
try:
result = handleFailure(result)
except:
result = failure.Failure()

def deferredExample():
d = defer.Deferred()
d.addCallback(failAtHandlingResult)
d.addCallback(handleResult)
d.addErrback(handleFailure)

d.callback("success"

if _name__ == "' main__"
behindTheScenes("success")
PrNt "\Nmmmmmmmm e e \n"

Counter.num = 0
deferredExample()

Source listing —deferredex2.py

callback 1
got result: success
about to raise exception
errback
we got an exception: Traceback (most recent call last):
File "./deferred_ex2.py", line 85, in ?
nonDeferredExample("success")
--- <exception caught here> ---
File "./deferred_ex2.py", line 46, in nonDeferredExample
result = failAtHandlingResult(result)
File "./deferred_ex2.py", line 35, in failAtHandlingResu It
raise RuntimeError, "whoops! we encountered an error"
exceptions.RuntimeError: whoops! we encountered an error

You can see that our second callback, handleResult was Ihed tecause failAtHandlingResult raised an excep-
tion

Handling an exception and continuing on

In this example, we see an errback handle an exception rimighd preceeding callback. Take note that it could just
as easily been an exception frany otherpreceeding method. You'll see that after the exception mltel in the
errback (i.e. the errback does not return a failure or raisexaeption) the chain continues on with the next callback.

#!/usr/bin/python2.3

from twisted.internet import defer
from twisted.python import failure, util

now we see how an errback can handle errors. if an errback
does not raise an exception, the next callback in the chain
will be called

CHAPTER 3. LOW-LEVEL TWISTED 121

class Counter(object):
num = 0

def handleFailure(f):
print "errback"
print "we got an exception: %s" % (f.getTraceback(),)
f.trap(RuntimeError)
return "okay, continue on"

def handleResult(result):
Counter.num += 1
print "callback %s" % (Counter.num,)
print "\tgot result: %s" % (result,)
return "yay! handleResult was successful!"

def failAtHandlingResult(result):
Counter.num += 1
print "callback %s" % (Counter.num,)
print "\tgot result: %s" % (result,)
print "\tabout to raise exception"
raise RuntimeError, "whoops! we encountered an error"

def callbackAfterErrback(result):
Counter.num += 1
print "callback %s" % (Counter.num,)
print "\tgot result: %s" % (result,)

def behindTheScenes(result):
equivalent to d.callback(result)

if not isinstance(result, failure.Failure): # ---- callba ck
try:
result = handleResult(result)
except:
result = failure.Failure()
else: # ---- errback
pass
if not isinstance(result, failure.Failure): # ---- callba ck
try:
result = failAtHandlingResult(result)
except:
result = failure.Failure()
else: # ---- errback
pass
if not isinstance(result, failure.Failure): # ---- callba ck
pass

else: # ---- errback

CHAPTER 3. LOW-LEVEL TWISTED 122

try:
result = handleFailure(result)
except:
result = failure.Failure()
if not isinstance(result, failure.Failure): # ---- callba ck
try:
result = callbackAfterErrback(result)
except:
result = failure.Failure()
else: # ---- errback
pass

def deferredExample():
d = defer.Deferred()
d.addCallback(handleResult)
d.addCallback(failAtHandlingResult)
d.addErrback(handleFailure)
d.addCallback(callbackAfterErrback)

d.callback("success")

if _name__ == ' main__"
behindTheScenes("success")
PrNt "\M-m-mmmmm e e \n"

Counter.num = 0
deferredExample()

Source listing —deferredex3.py

callback 1
got result: success
about to raise exception
errback
we got an exception: Traceback (most recent call last):
--- <exception caught here> ---

File "/home/slyphon/Projects/Twisted/trunk/twisted/i nternet/defer.py"”, line
326, in _runCallbacks
self.result = callback(self.result, xargs, ** kw)
File "./deferred_ex2.py", line 35, in failAtHandlingResu It

raise RuntimeError, "whoops! we encountered an error"
exceptions.RuntimeError: whoops! we encountered an error

3.6.4 addBoth: the deferred version of finally

Now we see how deferreds dimally, with .addBoth. The callback that gets added as addBothbsiltalled if the
result is a failure or non-failure. We’'ll also see in this exae, that our doThisNoMatterWwhat() method follows a
common idiom in deferred callbacks by acting as a passtbturning the value that it received to allow processing
the chain to continue, but appearing transparent in terrtiseafesult.

#!/usr/bin/python2.3

from twisted.internet import defer

CHAPTER 3. LOW-LEVEL TWISTED 123

from twisted.python import failure, util

now we’ll see what happens when you use ’'addBoth’

class Counter(object):
num = 0

def handleFailure(f):
print "errback"
print "we got an exception: %s" % (f.getTraceback(),)
f.trap(RuntimeError)
return "okay, continue on"

def handleResult(result):
Counter.num += 1
print "callback %s" % (Counter.num,)
print "\tgot result: %s" % (result,)
return "yay! handleResult was successful!"

def failAtHandlingResult(result):
Counter.num += 1
print "callback %s" % (Counter.num,)
print "\tgot result: %s" % (result,)
print "\tabout to raise exception"
raise RuntimeError, "whoops! we encountered an error"

def doThisNoMatterWhat(arg):
Counter.num += 1
print "both %s" % (Counter.num,)
print "\tgot argument %r" % (arg,)
print "\tdoing something very important"
we pass the argument we received to the next phase here
return arg

def behindTheScenes(result):
equivalent to d.callback(result)

if not isinstance(result, failure.Failure): # ---- callba ck
try:
result = handleResult(result)
except:
result = failure.Failure()
else: # ---- errback
pass
if not isinstance(result, failure.Failure): # ---- callba ck
try:
result = failAtHandlingResult(result)
except:
result = failure.Failure()

CHAPTER 3. LOW-LEVEL TWISTED 124

else: # ---- errback
pass

---- this is equivalent to addBoth(doThisNoMatterWhat)

if not isinstance(result, failure.Failure):

try:
result = doThisNoMatterWhat(result)
except:
result = failure.Failure()
else:
try:
result = doThisNoMatterWhat(result)
except:
result = failure.Failure()
if not isinstance(result, failure.Failure): # ---- callba ck
pass
else: # ---- errback
try:
result = handleFailure(result)
except:
result = failure.Failure()

def deferredExample():
d = defer.Deferred()
d.addCallback(handleResult)
d.addCallback(failAtHandlingResult)
d.addBoth(doThisNoMatterWhat)
d.addErrback(handleFailure)

d.callback("success")

if _name__ ==’ main__":
behindTheScenes("success")
PrNt "\M-mommmmm e e \n"
Counter.num = 0
deferredExample()
Source listing —deferredex4.py
callback 1
got result: success
callback 2

got result: yay! handleResult was successful!
about to raise exception
both 3
got argument <twisted.python.failure.Failure exception s.RuntimeError>
doing something very important
errback
we got an exception: Traceback (most recent call last):
--- <exception caught here> ---

CHAPTER 3. LOW-LEVEL TWISTED 125

File "/home/slyphon/Projects/Twisted/trunk/twisted/i nternet/defer.py"”, line
326, in _runCallbacks
self.result = callback(self.result, *args, ** kw)
File "./deferred_ex4.py", line 32, in failAtHandlingResu It

raise RuntimeError, "whoops! we encountered an error"
exceptions.RuntimeError: whoops! we encountered an error

You can see that the errback is called, (and consequerglyatiure is trapped). This is because doThisNoMatter-
What method returned the value it received, a failure.

3.6.5 addCallbacks: decision making based on previous suess or failure

As we've been seeing in the examples, the callback is a pamlifack/errback. Using addCallback or addErrback is
actually a special case where one of the pair is a pass statethgou want to make a decision based on whether or
not the previous result in the chain was a failure or not (Whscvery rare, but included here for completeness), you
use addCallbacks. Note that thisnistthe same thing as an addCallback followed by an addErrback.

#!/usr/bin/python2.3

from twisted.internet import defer
from twisted.python import failure, util

now comes the more nuanced addCallbacks, which allows us to m ake a
yes/no (branching) decision based on whether the result at a given point is
a failure or not.

class Counter(object):
num = 0

def handleFailure(f):
print "errback"
print "we got an exception: %s" % (f.getTraceback(),)
f.trap(RuntimeError)
return "okay, continue on"

def handleResult(result):
Counter.num += 1
print "callback %s" % (Counter.num,)
print "\tgot result: %s" % (result,)
return "yay! handleResult was successful!"

def failAtHandlingResult(result):
Counter.num += 1
print "callback %s" % (Counter.num,)
print "\tgot result: %s" % (result,)
print "\tabout to raise exception”
raise RuntimeError, "whoops! we encountered an error"

def yesDecision(result):
Counter.num += 1
print "yes decision %s" % (Counter.num,)
print "\twasn't a failure, so we can plow ahead"
return "go ahead!"

CHAPTER 3. LOW-LEVEL TWISTED

def noDecision(result):
Counter.num += 1
result.trap(RuntimeError)
print "no decision %s" % (Counter.num,)
print "\t *doh+! a failure! quick! damage control!"
return "damage control successful!"

def behindTheScenes(result):

if not isinstance(result, failure.Failure): # ---- callba
try:
result = failAtHandlingResult(result)
except:
result = failure.Failure()
else: # ---- errback
pass

this is equivalent to addCallbacks(yesDecision, noDecis

if not isinstance(result, failure.Failure): # ---- callba
try:
result = yesDecision(result)
except:
result = failure.Failure()
else: # ---- errback
try:

result = noDecision(result)
except:
result = failure.Failure()

if not isinstance(result, failure.Failure): # ---- callba
try:
result = handleResult(result)
except:
result = failure.Failure()
else: # ---- errback
pass

this is equivalent to addCallbacks(yesDecision, noDecis

if not isinstance(result, failure.Failure): # ---- callba
try:
result = yesDecision(result)
except:
result = failure.Failure()
else: # ---- errback
try:
result = noDecision(result)
except:
result = failure.Failure()

126

ck

ion)

ck

ck

ion)

ck

CHAPTER 3. LOW-LEVEL TWISTED 127

if not isinstance(result, failure.Failure): # ---- callba ck
try:
result = handleResult(result)
except:
result = failure.Failure()
else: # ---- errback
pass
if not isinstance(result, failure.Failure): # ---- callba ck
pass
else: # ---- errback
try:
result = handleFailure(result)
except:
result = failure.Failure()

def deferredExample():
d = defer.Deferred()
d.addCallback(failAtHandlingResult)

d.addCallbacks(yesDecision, noDecision) # noDecision wi Il be called
d.addCallback(handleResult) # - A -
d.addCallbacks(yesDecision, noDecision) # yesDecision w ill be called

d.addCallback(handleResult)
d.addErrback(handleFailure)

d.callback("success")

if name_ == ' main__ "
behindTheScenes("success")
PriNt "Nmmmmmmmmm e e \n"

Counter.num = 0
deferredExample()

Source listing —deferredex5.py

callback 1

got result: success

about to raise exception
no decision 2

*doh+! a failure! quick! damage control!
callback 3

got result: damage control successful!
yes decision 4

wasn't a failure, so we can plow ahead
callback 5

got result: go ahead!

Notice that our errback is never called. The noDecision wettieturns a non-failure so processing continues with
the next callback. If we wanted to skip the callback at "- A €dause of the error, but do some kind of processing
in response to the error, we would have used a passthru, aurded the failure we received, as we see in this next
example:

#!/usr/bin/python2.3

CHAPTER 3. LOW-LEVEL TWISTED

from twisted.internet import defer
from twisted.python import failure, util

now comes the more nuanced addCallbacks, which allows us to m

yes/no (branching) decision based on whether the result at a
a failure or not.

here, we return the failure from noDecisionPassthru, the er
the first addCallbacks method invocation, and see what happ

class Counter(object):
num = 0

def handleFailure(f):
print "errback"
print "we got an exception: %s" % (f.getTraceback(),)
f.trap(RuntimeError)
return "okay, continue on"

def handleResult(result):
Counter.num += 1
print "callback %s" % (Counter.num,)
print "\tgot result: %s" % (result,)
return "yay! handleResult was successful!"

def failAtHandlingResult(result):
Counter.num += 1
print "callback %s" % (Counter.num,)
print "\tgot result: %s" % (result,)
print "\tabout to raise exception"
raise RuntimeError, "whoops! we encountered an error"

def yesDecision(result):
Counter.num += 1
print "yes decision %s" % (Counter.num,)
print "\twasn't a failure, so we can plow ahead"
return "go ahead!"

def noDecision(result):
Counter.num += 1
result.trap(RuntimeError)
print "no decision %s" % (Counter.num,)
print "\t »doh+! a failure! quick! damage control!"
return "damage control successfull

def noDecisionPassthru(result):
Counter.num += 1
print "no decision %s" % (Counter.num,)

ake a
given point is

rback argument to
ens

print "\t *doh+! a failure! don’'t know what to do, returning failure!"

return result

def behindTheScenes(result):

128

CHAPTER 3. LOW-LEVEL TWISTED 129

if not isinstance(result, failure.Failure): # ---- callba ck
try:
result = failAtHandlingResult(result)
except:
result = failure.Failure()
else: # ---- errback
pass
this is equivalent to addCallbacks(yesDecision, noDecis ion)
if not isinstance(result, failure.Failure): # ---- callba ck
try:
result = yesDecision(result)
except:
result = failure.Failure()
else: # ---- errback
try:
result = noDecisionPassthru(result)
except:
result = failure.Failure()
if not isinstance(result, failure.Failure): # ---- callba ck
try:
result = handleResult(result)
except:
result = failure.Failure()
else: # ---- errback
pass
this is equivalent to addCallbacks(yesDecision, noDecis ion)
if not isinstance(result, failure.Failure): # ---- callba ck
try:
result = yesDecision(result)
except:
result = failure.Failure()
else: # ---- errback
try:
result = noDecision(result)
except:
result = failure.Failure()
if not isinstance(result, failure.Failure): # ---- callba ck
try:
result = handleResult(result)
except:
result = failure.Failure()
else: # ---- errback
pass

if not isinstance(result, failure.Failure): # ---- callba ck

CHAPTER 3. LOW-LEVEL TWISTED 130

pass
else: # ---- errback
try:
result = handleFailure(result)
except:
result = failure.Failure()

def deferredExample():
d = defer.Deferred()
d.addCallback(failAtHandlingResult)

noDecisionPassthru will be called
d.addCallbacks(yesDecision, noDecisionPassthru)
d.addCallback(handleResult) # - A -

noDecision will be called
d.addCallbacks(yesDecision, noDecision)
d.addCallback(handleResult) # - B -
d.addErrback(handleFailure)

d.callback("success")

if name_ == ' main__ "
behindTheScenes("success")
Print "\Mememem s e \n"

Counter.num = 0
deferredExample()

Source listing —deferredex6.py

callback 1
got result: success
about to raise exception
no decision 2
*doh+! a failure! don't know what to do, returning failure!
no decision 3
+doh+! a failure! quick! damage control!
callback 4
got result: damage control successful!

Two things to note here. First, "- A -” was skipped, like we wethit to, and the second thing is that after "- A
-", noDecision is called, becausteis the next errback that exists in the chailh returns a non-failure, so processing
continues with the next callback at "- B -”, and the errbackhatend of the chain is never called

3.6.6 Hints, tips, common mistakes, and miscellaney
The deferred callback chain is stateful

A deferred that has been called back will call it's addCallband addErrback methods as appropriate in the order
they are added, when they are added. So we see in the foll@xargple, deferredExamplel and deferredExample2
are equivalent. The first sets up the processing chain befoceand then executes it, the other executes the chain as
it is being constructed. This is because deferredstateful

#!/usr/bin/python2.3

from twisted.internet import defer

CHAPTER 3. LOW-LEVEL TWISTED 131

from twisted.python import failure, util

The deferred callback chain is stateful, and can be executed before
or after all callbacks have been added to the chain

class Counter(object):
num = 0

def handleFailure(f):
print "errback"
print "we got an exception: %s" % (f.getTraceback(),)
f.trap(RuntimeError)

def handleResult(result):
Counter.num += 1
print "callback %s" % (Counter.num,)
print "\tgot result: %s" % (result,)
return "yay! handleResult was successfull”

def failAtHandlingResult(result):
Counter.num += 1
print "callback %s" % (Counter.num,)
print "\tgot result: %s" % (result,)
print "\tabout to raise exception”
raise RuntimeError, "whoops! we encountered an error"

def deferredExamplel():
this is another common idiom, since all add * methods
return the deferred instance, you can just chain your
calls to addCallback and addErrback

d = defer.Deferred().addCallback(failAtHandlingResult
).addCallback(handleResult
).addErrback(handleFailure)

d.callback("success")

def deferredExample2():
d = defer.Deferred()

d.callback("success")

d.addCallback(failAtHandlingResult)
d.addCallback(handleResult)
d.addErrback(handleFailure)

if _name__ == "' main__"
deferredExamplel()
PrNt "\Nmmmmmmmmm e e \n"
Counter.num = 0
deferredExample2()

Source listing —deferredex7.py

CHAPTER 3. LOW-LEVEL TWISTED 132

callback 1
got result: success
about to raise exception
errback
we got an exception: Traceback (most recent call last):
--- <exception caught here> ---

File "/home/slyphon/Projects/Twisted/trunk/twisted/i nternet/defer.py”, line
326, in _runCallbacks
self.result = callback(self.result, *args, ** kw)
File "./deferred_ex7.py", line 35, in failAtHandlingResu It

raise RuntimeError, "whoops! we encountered an error"
exceptions.RuntimeError: whoops! we encountered an error

callback 1
got result: success
about to raise exception
errback
we got an exception: Traceback (most recent call last):
--- <exception caught here> ---

File "/home/slyphon/Projects/Twisted/trunk/twisted/i nternet/defer.py”, line
326, in _runCallbacks
self.result = callback(self.result, *args, ** kw)
File "./deferred_ex7.py", line 35, in failAtHandlingResu It

raise RuntimeError, "whoops! we encountered an error"
exceptions.RuntimeError: whoops! we encountered an error

This example also shows you the common idiom of chaining ¢aladdCallback and addErrback.

Don't call .callback() on deferreds you didn’t create!

It is an error to reinvoke deferreds callback or errback metitherefore if you didn’t create a deferrelhy not under
any circumstancesall its callback or errback. doing so will raise an exceptio

Callbacks can return deferreds

If you need to call a method that returns a deferred withirryaliback chain, just return that deferred, and the result
of the secondary deferred’s processing chain will becoraedhult that gets passed to the next callback of the primary
deferreds processing chain

#1/usr/bin/python2.3

from twisted.internet import defer
from twisted.python import failure, util

class Counter(object):
num = 0
let = &

def incrLet(cls):
cls.let = chr(ord(cls.let) + 1)
incrLet = classmethod(incrLet)

CHAPTER 3. LOW-LEVEL TWISTED

def handleFailure(f):
print "errback"
print "we got an exception: %s" % (f.getTraceback(),)
return f

def subCb_B(result):
print "sub-callback %s" % (Counter.let,)
Counter.incrLet()

s = " beautiful!
print "\tadding %r to result" % (s,)
result += s

return result

def subCb_A(result):
print "sub-callback %s" % (Counter.let,)
Counter.incrLet()

s =" are
print "\tadding %r to result" % (s,)
result += s

return result

def mainCb_1(result):
Counter.num += 1
print "callback %s" % (Counter.num,)
print "\tgot result: %s" % (result,)
result += " Deferreds "

d = defer.Deferred().addCallback(subCbh_A
).addCallback(subCb_B)

d.callback(result)

return d

def mainCb_2(result):
Counter.num += 1
print "callback %s" % (Counter.num,)
print "\tgot result: %s" % (result,)

def deferredExample():
d = defer.Deferred().addCallback(mainCb_1
).addCallback(mainCb_2)

d.callback("l hope you'll agree: ")

if name__ == ' main__ "
deferredExample()

Source listing —deferredex8.py

callback 1

got result: | hope you'll agree:
sub-callback a

adding ' are
sub-callback b

to result

133

CHAPTER 3. LOW-LEVEL TWISTED 134

adding ' beautiful’ to result
callback 2
got result: | hope you'll agree: Deferreds are beautiful!

3.6.7 Conclusion

Deferreds can be confusing, but only because they're saeiemd simple. There is a lot of logical power that can
expressed with a deferred’s processing chain, and oncegmwlsat’s going on behind the curtain, it's a lot easier to
understand how to make use of what deferreds have to offer.

3.7 Scheduling tasks for the future

Let's say we want to run a task X seconds in the future. The wdpthat is defined in the reactor interfasgésted.
internet.interfaces.IReactorTime :

from twisted.internet import reactor

def f(s):
print "this will run 3.5 seconds after it was scheduled: %s" % S

reactor.callLater(3.5, f, "hello, world")

f() will only be called if the event loop is started.
reactor.run()

If the result of the function is important or if it may be nesasy to handle exceptions it raises, thentthisted.
internet.task.deferLater utility conveniently takes care of creatingoeferred and setting up a delayed
call:

from twisted.internet import task
from twisted.internet import reactor

def f(s):
return "This will run 3.5 seconds after it was scheduled: %s" % s

d = task.deferLater(reactor, 3.5, f, "hello, world")
def called(result):

print result
d.addCallback(called)

f() will only be called if the event loop is started.
reactor.run()

If we want a task to run every X seconds repeatedly, we catwisted.internet.task.LoopingCall

from twisted.internet import task
from twisted.internet import reactor

def runEverySecond():
print "a second has passed"

| = task.LoopingCall(runEverySecond)
I.start(1.0) # call every second

lstop() will stop the looping calls
reactor.run()

If we want to cancel a task that we've scheduled:

CHAPTER 3. LOW-LEVEL TWISTED 135

from twisted.internet import reactor

def f():
print "I'll never run."

calllD = reactor.callLater(5, f)
calllD.cancel()
reactor.run()

As with all reactor-based code, in order for scheduling tokwbhe reactor must be started usirgactor.
run()

3.8 Using Threads in Twisted

3.8.1 Running code in a thread-safe manner

Most code in Twisted is not thread-safe. For example, wgitlata to a transport from a protocol is not thread-safe.
Therefore, we want a way to schedule methods to be run in tlie éwant loop. This can be done using the function
twisted.internet.interfaces.|ReactorThreads.callFro mThread :

from twisted.internet import reactor

def notThreadSafe(x):
""do something that isn't thread-safe
..

def threadSafeScheduler():
""Run in thread-safe manner.
reactor.callFromThread(notThreadSafe, 3) # will run 'not ThreadSafe(3)’
in the event loop

3.8.2 Running code in threads

Sometimes we may want to run methods in threads - for examplarder to access blocking APIs. Twisted pro-
vides methods for doing so using the IReactorThreads ARkted.internet.interfaces.IReactor
Threads). Additional utility functions are provided itwisted.internet.threads . Basically, these meth-
ods allow us to queue methods to be run by a thread pool.

For example, to run a method in a thread we can do:

from twisted.internet import reactor

def aSillyBlockingMethod(x):
import time
time.sleep(2)
print x

run method in thread
reactor.callinThread(aSillyBlockingMethod, "2 seconds have passed")

3.8.3 Utility Methods

The utility methods are not part of theisted.internet.reactor APIs, but are implemented iwisted.
internet.threads
If we have multiple methods to run sequentially within a #dtewe can do:

from twisted.internet import threads

def aSillyBlockingMethodOne(x):

CHAPTER 3. LOW-LEVEL TWISTED 136

import time
time.sleep(2)
print x

def aSillyBlockingMethodTwo(x):
print X

run both methods sequentially in a thread

commands = [(aSillyBlockingMethodOne, ['Calling First"] . D]
commands.append((aSillyBlockingMethodTwo, ['And the se cond", {})
threads.callMultipleInThread(commands)

For functions whose results we wish to get, we can have thit resurned as a Deferred:

from twisted.internet import threads

def doLongCalculation():
. do long calculation here ...
return 3

def printResult(x):
print x

run method in thread and get result as defer.Deferred
d = threads.deferToThread(doLongCalculation)
d.addCallback(printResult)

If you wish to call a method in the reactor thread and get gslteyou can useblockingCallFromThread

from twisted.internet import threads, reactor, defer
from twisted.web.client import getPage
from twisted.web.error import Error

def inThread():
try:
result = threads.blockingCallFromThread(
reactor, getPage, "http://twistedmatrix.com/")
except Error, exc:
print exc
else:
print result
reactor.callFromThread(reactor.stop)

reactor.callinThread(inThread)
reactor.run()

blockingCallFromThread will return the object or raise the exception returned osediby the function
passed to it. If the function passed to it returns a Defeiited)l return the value the Deferred is called back with or
raise the exception it is errbacked with.

3.8.4 Managing the Thread Pool

The thread pool is implemented byisted.python.threadpool. ThreadPool
We may want to modify the size of the threadpool, increasindegreasing the number of threads in use. We can
do this do this quite easily:

from twisted.internet import reactor

reactor.suggestThreadPoolSize(30)

CHAPTER 3. LOW-LEVEL TWISTED 137

The default size of the thread pool depends on the reactoglvsied; the default reactor uses a minimum size of 5
and a maximum size of 10. Be careful that you understanddiraad their resource usage before drastically altering
the thread pool sizes.

3.9 Choosing a Reactor and GUI Toolkit Integration

3.9.1 Overview

Twisted provides a variety of implementations of tiwsted.internet.reactor . The specialized implemen-
tations are suited for different purposes and are designaddgrate better with particular platforms.
The general purpose reactor implementations are:

e The select()-based reacthis page)

e The poll()-based reactajpage 138)
Platform-specific reactor implementations exist for:
KQueue for FreeBSD and OS(Kage 138)

Win32 (WFMO)page 138)
Win32 (I0CP)(page 138)
Mac OS X(page 139)

Epoll for Linux 2.6(page 138)

The remaining custom reactor implementations provide supjr integrating with the native event loops of
various graphical toolkits. This lets your Twisted appiica use all of the usual Twisted APIs while still being a
graphical application.

Twisted currently integrates with the following graphitablkits:

e GTK+ 1.2 and 2.Qpage 139)
Tkinter (page 139)
WxPythorn(page 139)
Win32(page 138)
CoreFoundatior(page 139)
PyUl (page 140)

When using applications that runnable usimgstd , e.g. TAPs or plugins, there is no need to choose a reactor
explicitly, since this can be chosen usitwgstd ’s -r option.

In all cases, the event loop is started by calliagctor.run() . In all cases, the event loop should be stopped
with reactor.stop() .

IMPORTANT:installing a reactor should be the first thing done in the ap¢ce any code that dodsom
twisted.internet import reactor will automatically install the default reactor if the codaden’t already
installed one.

3.9.2 Reactor Functionality

3.9.3 General Purpose Reactors
Select()-based Reactor

The select reactor is currently the default reactor on alfptms. The following code will install it, if no other retac
has been installed:

from twisted.internet import reactor
In the future, if another reactor becomes the default, bustiect reactor is desired, it may be installed via:

from twisted.internet import selectreactor
selectreactor.install()

CHAPTER 3. LOW-LEVEL TWISTED 138

Status TCP SSL UDP Threading Processes Scheduling Platfosn
select() Stable Y Y Y Y Y Y Unix, Win32
poll() Stable Y Y Y Y Y Y Unix
Win32 (WFMO) Experimental Y Y Y Y Y Y Win32
Win32 (IOCP) Experimental Y N N N N Y Win32
CoreFoundation Unmaintained Y Y Y Y Y Y Os X
epoll Stable Y Y Y Y Y Y Linux 2.6
Gtk Stable Y Y Y Y Y Y Unix, Win32
WX Experimental Y Y Y Y Y Y Unix, Win32
kqueue Experimental Y Y Y Y Y Y FreeBSD

Table 3.1: Summary of reactor features

Poll()-based Reactor

The PollReactor will work on any platform that providesll() . With larger numbers of connected sockets, it may
provide for better performance.

from twisted.internet import pollreactor
pollreactor.install()

3.9.4 Platform-Specific Reactors
KQueue

The KQueue Reactor allows Twisted to use FreeBSD’s kquewhamism for event scheduling. See instructions in
thetwisted.internet.kqreactor ’s docstring for installation notes.

from twisted.internet import kqreactor
kgreactor.install()
Win32 (WFMO)

The Win32 reactor is not yet complete and has various lifoitatand issues that need to be addressed. The reactor
supports GUI integration with the win32gui module, so it tenused for native Win32 GUI applications.

from twisted.internet import win32eventreactor
win32eventreactor.install()
Win32 (IOCP)

Windows provides a fast, scalable event notification sydteown as |0 Completion Ports, or IOCP for short. An
extremely experimental reactor based on IOCP is providéd Wiisted.

from twisted.internet import iocpreactor
iocpreactor.install()
Epoll-based Reactor

The EPollReactor will work on any platform that providgsoll , today only Linux 2.6 and over. The implementation
of the epoll reactor currently use the Level Triggered ifisiez, which is basically like poll() but scales much better.

from twisted.internet import epollreactor
epollreactor.install()

CHAPTER 3. LOW-LEVEL TWISTED 139

3.9.5 GUI Integration Reactors
GTK+

Twisted integrates with PyGﬁ,(versions 1.2dtkreactor) and 2.0 ¢tk2reactor). Sample applications using
GTK+ and Twisted are available in the Twisted SVN.

GTK-2.0 split the event loop out of the GUI toolkit, into a seate module called “glib”. To run an application
using the glib event loop, use tiggib2reactor . This will be slightly faster thagtk2reactor (and does not
require a working X display), but cannot be used to run GUliappons.

from twisted.internet import gtkreactor # for gtk-1.2
gtkreactor.install()

from twisted.internet import gtk2reactor # for gtk-2.0
gtk2reactor.install()

from twisted.internet import glib2reactor # for non-GUI ap ps
glib2reactor.install()

CoreFoundation

Twisted integrates with Pyodﬁversion 1.0. Sample applications using Cocoa and Twisteda@ailable in the
examples directory und€ocoa.

from twisted.internet import cfreactor
cfreactor.install()

3.9.6 Non-Reactor GUI Integration

Tkinter

The support for Tkintérdoesn't use a specialized reactor. Instead, there is soevéatiped support code:
from Tkinter import *

from twisted.internet import tksupport

root = Tk()

Install the Reactor support
tksupport.install(root)

at this point build Tk app as usual using the root object,
and start the program with "reactor.run()", and stop it
with "reactor.stop()".

wxPython

Twisted currently supports two methods of integrating wkiey. Unfortunately, neither method will work on all
wxPython platforms (such as GTK2 or Windows). It seems thatanly portable way to integrate with wxPython is
to run it in a separate thread. One of these methods may beisnffif your wx app is limited to a single platform.

As with Tkinter (this page), the support for integrating Twisted with a \M)H@}E application uses specialized
support code rather than a simple reactor.

from wxPython.wx import *
from twisted.internet import wxsupport, reactor

myWxApplnstance = wxApp(0)
wxsupport.install(myWxApplnstance)

2http:/lwww.daa.com.au/ james/pygtk/
Shttp://pyobjc.sf.net/
“http://www.python.org/topics/tkinter/
Shttp://www.wxpython.org

CHAPTER 3. LOW-LEVEL TWISTED 140

However, this has issues when running on Windows, so Twisted comes with alternative wxPython support
using a reactor. Using this method is probably better. dlit@tion is done in two stages. In the first, the reactor is
installed:

from twisted.internet import wxreactor
wxreactor.install()

Later, once avxApp instance has been created, but befewctor.run() is called:

myWxApplInstance = wxApp(0)
reactor.registerWxApp(myWxApplnstance)

An example Twisted application that uses WxWindows can baddn doc/examples/wxdemo.py

PyUI

As with Tkinter (page 139), the support for integrating Twisted with a Iﬁ/&pplication uses specialized support code
rather than a simple reactor.

from twisted.internet import pyuisupport, reactor

pyuisupport.install(args=(640, 480), kw={renderer’: ’ g’}

An example Twisted application that uses PyUl can bve foardbc/examples/pyuidemo.py

Shttp://pyui.sourceforge.net

Chapter 4

High-Level Twisted

4.1 The Basics
4.1.1 Application

Twisted programs usually work wittwisted.application.service.Application . This class usually
holds all persistent configuration of a running server —twtbind to, places where connections to must be kept or
attempted, periodic actions to do and almost everything. disis the root object in a tree of services implementing
IService

Other HOWTOs describe how to write custom code for Applicajdout this one describes how to use already
written code (which can be part of Twisted or from a thirdtpawisted plugin developer). The Twisted distribution
comes with an important tool to deal with Applicatiohsjstd

Application s are just Python objects, which can be created and margguilatthe same ways as any other
object.

4.1.2 twistd

The Twisted Daemon is a program that knows how to run Appboat This program igwistd(1) . Strictly
speakingtwistd is not necessary — fetching the application, gettingl8&rvice component, callingtart
Service , schedulingstopService when the reactor shuts down, and then calliegctor.run() could be

done manuallytwistd(1) , however, supplies many options which are highly usefupfagram set up.

twistd supports choosing a reactor (for more on reactors,Gle@osing a Reacto(page 137)), logging to
a lodfile, daemonizing and moretwistd supports all Applications mentioned above — and an additione.
Sometimes it is convenient to write the code for building @sslin straight Python. One big source of such Python
files is thedoc/examples directory. When a straight Python file which definesAgplication object called
application is used, use they option.

Whentwistd runs, it records its process id intaistd.pid file (this can be configured via a command line
switch). In order to shutdown thisvistd process, Kill that pid (usually you would ddll ‘cat twistd.
pid*).

As always, the gory details are in the manual page.

4.1.3 tap2deb

For Twisted-based server application developers who wameploy on Debian, Twisted supplies ttegp2deb
program. This program wraps a Twisted Application file (of @f the supported formats — Python, source, xml or
pickle) in a Debian package, including correct installatamd removal scripts andit.d scripts. This frees the
installer from manually stopping or starting the serviaag avill make sure it goes properly up on startup and down
on shutdown and that it obeys the init levels.

For the more savvy Debian users, tiap2deb also generates the source package, allowing her to modify an
polish things which automated software cannot detect (agdtependencies or relationships to virtual packages). In
addition, the Twisted team itself intends to produce Delpiackages for some common services, such as web servers
and an inetd replacement. Those packages will enjoy thedbaditworlds — both the consistency which comes from

141

CHAPTER 4. HIGH-LEVEL TWISTED 142

being based on thep2deb and the delicate manual tweaking of a Debian maintaineuring perfect integration
with Debian.
Right now, there is a beta Debian archive of a web serverablailat Moshe’s archive

4.1.4 tap2rpm
tap2rpm is similar totap2deb , except that it generates RPMs for Redhat and other rel¢tfdqmms.

4.2 The Twisted Plugin System

The purpose of this guide is to describe the preferred wayrite wxtensible Twisted applications (and consequently,
also to describe how to extend applications written in sustayg). This extensibility is achieved through the definition
of one or more APIs and a mechanism for collecting code piaginich implement this API to provide some additional
functionality. At the base of this system is ttvésted.plugin module.

Making an application extensible using the plugin systesideveral strong advantages over other techniques:

¢ It allows third-party developers to easily enhance youtvgaife in a way that is loosely coupled: only the plugin
APl is required to remain stable.

¢ It allows new plugins to be discovered flexibly. For examplegins can be loaded and saved when a program
is first run, or re-discovered each time the program startoughey can be polled for repeatedly at runtime
(allowing the discovery of new plugins installed after thegram has started).

4.2.1 Writing Extensible Programs
Taking advantage dfvisted.plugin is a two step process:

1. Define an interface which plugins will be required to impént. This is done using thepe.interface
package in the same way one would define an interface for &y ptirpose.

A convention for defining interfaces is do so in a file nameeé FkojectName/projectname/iprojectname.py
The rest of this document will follow that convention: cafei the following interface definition be in

Matsim/matsim/imatsim.py , an interface definition module for a hypothetical matesiatulation pack-
age.
2. At one or more places in your program, invdakested.plugin.getPlugins and iterate over its result.

As an example of the first step, consider the following irsteef definition for a physical modelling system.

from zope.interface import Interface, Attribute

class IMaterial(Interface):

An object with specific physical properties

def yieldStress(temperature):

Returns the pressure this material can support without
fracturing at the given temperature.

@type temperature: C{float}
@param temperature: Kelvins

@rtype: Cf{float}
@return: Pascals

dielectricConstant = Attribute(""

Lhttp:/ftwistedmatrix.com/users/moshez/apt

CHAPTER 4. HIGH-LEVEL TWISTED 143

@type dielectricConstant: C{complex}

@ivar dielectricConstant: The relative permittivity, wit h the
real part giving reflective surface properties and the

imaginary part giving the radio absorption coefficient.

")

In another module, we might have a function that operatesfects providing théMaterial interface:

def displayMaterial(m):
print 'A material with yield stress %s at 500 K' % (m.yieldStr ess(500),)
print 'Also a dielectric constant of %s.” % (m.dielectricCo nstant,)

The last piece of required code is that which colldMsterial providers and passes them to thisplay
Material ~ function.

from twisted.plugin import getPlugins
from matsim import imatsim

def displayAllKnownMaterials():
for material in getPlugins(imatsim.IMaterial):
displayMaterial(material)

Third party developers may now contribute different matlsrto be used by this modelling system by implement-
ing one or more plugins for thidMaterial interface.

4.2.2 Extending an Existing Program

The above code demonstrates how an extensible program b@gintitten using Twisted’s plugin system. How do we
write plugins for it, though? Essentially, we create olgeghich provide the required interface and then make them
available at a particular location. Consider the followax@mple.

from twisted.plugin import IPlugin
from matsim import imatsim

class SimpleMaterial(object):
implements(IPlugin, imatsim.IMaterial)

def __init_ (self, yieldStressFactor, dielectricConsta nt):
self._yieldStressFactor = yieldStressFactor
self.dielectricConstant = dielectricConstant

def vyieldStress(self, temperature):
return self._yieldStressFactor * temperature

steelPlate = SimpleMaterial(2.06842719e11, 2.7 + 0.2))
brassPlate = SimpleMaterial(1.03421359e11, 1.4 + 0.5))

steelPlate andbrassPlate now provide botiPlugin andIMaterial . All that remains is to make this
module available at an appropriate location. For this glaee two options. The first of these is primarily useful dgrin
development: if a directory which has been added $gs.path (typically by adding it to the PYTHONPATH
environment variable) containsdirectory namedtwisted/plugins/ , each.py file in that directory will be
loaded as a source of plugins. This directonyst notbe a Python package: includingnit __.py will cause the
directory to be skipped and no plugins loaded from it. Sec@ath module in the installed version of Twisted'’s
twisted.plugins package will also be loaded as a source of plugins.

Once this plugin is installed in one of these two wagisplayAllKnownMaterials can be run and we will
see two pairs of output: one for a steel plate and one for & ipase.

CHAPTER 4. HIGH-LEVEL TWISTED 144

4.2.3 Alternate Plugin Packages

getPlugins takes one additional argument not mentioned above. If dassthe 2nd argument should be a module
or package to be used insteadtwfsted.plugins as the plugin meta-package. If you are writing a plugin for a
Twisted interface, you should never need to pass this argurkwever, if you have developed an interface of your
own, you may want to mandate that plugins for it are instaitlegbur own plugins package, rather than in Twisted’s.
In this case, you probably also want to suppatirproject/plugins/ directories for ease of development. To

do so, you should make thanit __.py for that package contain at least the following lines.

from twisted.plugin import pluginPackagePaths
__path___.extend(pluginPackagePaths(__name_))
_al__ =1

The key behavior here is that interfaces are essentiallegavith a particular plugin package. If plugins are
installed in a different package than the one the code wigilihsron the interface they provide, they will not be found
when the application goes to load them.

4.2.4 Plugin Caching

In the course of using the Twisted plugin system, you maycedtiopin.cache files appearing at various locations.
These files are used to cache information about what pluginsrasent in the directory which contains them. Attimes,
this cached information may become out of date. Twisted tiasitimes of various files involved in the plugin system
to determine when this cache may have become invalid. Tevistitry to re-write the cache each time it tries to use
it but finds it out of date.

For a site-wide install, it may not (indeed, should not) besiole for applications running as normal users to
rewrite the cache file. While these applications will stilhrand find correct plugin information, they may run more
slowly than they would if the cache was up to date, and they atsty report exceptions if certain plugins have been
removed but which the cache still references. For thesensaghen installing or removing software which provides
Twisted plugins, the site administrator should be sure #uhe is regenerated. Well-behaved package managers for
such software should take this task upon themselves, dircctivially automatable. The canonical way to regenerate
the cache is to run the following Python code:

from twisted.plugin import IPlugin, getPlugins
list(getPlugins(IPlugin))

As mentioned, it is normal for exceptions to be raisedehere if plugins have been removed.

4.2.5 Further Reading
e Components: Interfaces and Adaptéprage 147)

4.3 Writing a twistd Plugin

This document describes adding subcommands tavileed command, as a way to facilitate the deployment of
your applications(This feature was added in Twisted 2.5)

The target audience of this document are those that havéogevka Twisted application which needs a command
line-based deployment mechanism.

There are a few prerequisites to understanding this doctzmen

e A basic understanding of the Twisted Plugin System (i.e twhsted.plugin module) is necessary, how-
ever, step-by-step instructions will be given. Readiimg Twisted Plugin Systefpage 142) is recommended,
in particular the “Extending an Existing Program” section.

e The Application(page 159) infrastructure is usedtimistd plugins; in particular, you should know how to
expose your program'’s functionality as a Service.

e In order to parse command line arguments, tiiistd plugin mechanism relies otwisted.python.
usage , which is documented ibJsing usage.Optiongage 168).

CHAPTER 4. HIGH-LEVEL TWISTED 145

431 Goals

After reading this document, the reader should be able tosxtheir Service-using application as a subcommand of
twistd , taking into consideration whatever was passed on the caomhtirze.

4.3.2 A note on .tap files

Readers may be confused about a historical file type asedcigith Twisted, thetap file. This was a kind of
file that was generated by a program namadap and whichtwistd can read..tap files are deprecated; this
document has nothing to do with them, although the techiyottascribed herein is very closely related to the old
system. Existing plugins that were written for the mktaptegsare compatible with thisvistd plugin system; the
following commands,

$ mktap [foo] [options...]
$ twistd -n -f [foo].tap

are equivalent to the command:

$ twistd -n [foo] [options...]

4.3.3 Alternatives to twistd plugins

The major alternative to the twistd plugin mechanism is tiae file, which is a simple script to be used with
the twistd-y/--python parameter. The twistd plugin mechanism exists to offer aenextensible command-
line-driven interface to your application. For more infation on.tac files, see the documehising the Twisted
Application FrameworKpage 159).

4.3.4 Creating the plugin
The following directory structure is assumed of your prajec
e MyProject- Top level directory
— myproject- Python package
* __init__.py

During development of your project, Twisted plugins can deded from a special directory in your project, as-
suming your top level directory ends up in sys.path. Crediesgtory namedwisted containing a directory named
plugins , and add a file nameghyproject _plugin.py toit. This file will contain your plugin. Note that you
shouldnotadd any__init__.py files to this directory structure, and the plugin file slkdawotbe namednyproject.
py (because that would conflict with your project’s module name

In this file, define an object whicbrovidesthe interfaceswisted.plugin.IPlugin and twisted.
application.service.lServiceMaker .

Thetapname attribute of your 1ServiceMaker provider will be used as subcommand name in a command
like twistd [subcommand] [args...] , and theoptions attribute (which should be asage.Options
subclass) will be used to parse the given args.

from zope.interface import implements

from twisted.python import usage

from twisted.plugin import IPlugin

from twisted.application.service import IServiceMaker
from twisted.application import internet

from myproject import MyFactory

class Options(usage.Options):
optParameters = [["port", "p", 1235, "The port number to lis ten on."]]

CHAPTER 4. HIGH-LEVEL TWISTED 146

class MyServiceMaker(object):
implements(IServiceMaker, 1Plugin)
tapname = "myproject"
description = "Run this! It'll make your dog happy.”
options = Options

def makeService(self, options):

Construct a TCPServer from a factory defined in myproject.

return internet. TCPServer(int(options["port"]), MyFac tory())
Now construct an object which *provides = the relevant interfaces
The name of this variable is irrelevant, as long as there is * somex

name bound to a provider of IPlugin and IServiceMaker.

serviceMaker = MyServiceMaker()

Now runningtwistd --help should printmyproject in the list of available subcommands, followed by the
description that we specified in the plugiwistd -n myproject would, assuming we definedMyFactory
factory insidemyproject , start a listening server on port 1235 with that factory.

4.3.5 Using cred with your TAP

Twisted ships with a robust authentication framework towigk your application. If your server needs authentication
functionality, and you haven't read abdutisted.credpage 153) yet, read up on it first.

If you are building a twistd plugin and you want to support alevivariety of authentication patterns, Twisted
provides an easy-to-use mixin for your Options subclassred.AuthOptionMixin . The following code is
an example of using this mixin:

from twisted.cred import credentials, portal, strcred
from twisted.python import usage
from twisted.plugin import IPlugin
from twisted.application.service import 1ServiceMaker
from myserver import myservice

class ServerOptions(usage.Options, strcred.AuthOption Mixin):
This part is optional; it tells AuthOptionMixin what
kinds of credential interfaces the user can give us.
supportedinterfaces = (credentials.lUsernamePassword,)

optParameters = [
['port", "p", 1234, "Server port number"],
['host", "h", "localhost", "Server hostname"]]

class MyServerServiceMaker(object):
implements(IServiceMaker, IPlugin)
tapname = "myserver"
description = "This server does nothing productive."
options = ServerOptions

def makeService(self, options):
""Construct a service object.
The realm is a custom object that your server defines.
realm = myservice.MyServerRealm(options['host"])

CHAPTER 4. HIGH-LEVEL TWISTED 147

The portal is something Cred can provide, as long as
you have a list of checkers that you'll support. This
list is provided my AuthOptionMixin.

portal = portal.Portal(realm, options[‘credCheckers"])

OR, if you know you might get multiple interfaces, and

only want to give your application one of them, you

also have that option with AuthOptionMixin:

interface = credentials.lUsernamePassword

portal = portal.Portal(realm, options["credinterfaces" |linterface])

The protocol factory is, like the realm, something you impl ement.
factory = myservice.ServerFactory(realm, portal)

Finally, return a service that will listen for connections
return internet. TCPServer(int(options['port"]), facto ry)

As in our example above, we have to construct an object that
provides the IPlugin and IServiceMaker interfaces.

serviceMaker = MyServerServiceMaker()

Now that you have your TAP configured to support any authatitio we can throw at it, you're ready to use it.
Here is an example of starting your server using the /etsfpadile for authentication. (Clearly, this won't work on
servers with shadow passwords.)

$ twistd myserver --auth passwd:/etc/passwd
For a full list of cred plugins supported, segsted.plugins , or use the command-line help:

$ twistd myserver --help-auth
$ twistd myserver --help-auth-type passwd

4.3.6 Conclusion

You should now be able to

e Create a twistd plugin
¢ Incorporate authentication into your plugin
e Use it from your development environment

¢ Install it correctly and use it in deployment

4.4 Components: Interfaces and Adapters

Object oriented programming languages allow programmenetise portions of existing code by creating new
“classes” of objects which subclass another class. Whenss slabclasses another, it is saidirtberit all of its
behaviour. The subclass can then “override” and “extend'tishavior provided to it by the superclass. Inheritance is
very useful in many situations, but because it is so convemieuse, often becomes abused in large software systems,
especially when multiple inheritance is involved. One tohuis to usedelegationinstead of “inheritance” where ap-
propriate. Delegation is simply the act of askangptherobject to perform a task for an object. To support this design
pattern, which is often referred to as tbemponentpattern because it involves many small interacting comptsne
interfacesandadapterswere created by the Zope 3 team.

“Interfaces” are simply markers which objects can use to“sayplement this interface”. Other objects may
then make requests like “Please give me an object which immgaiés interface X for object type Y”. Objects which
implement an interface for another object type are callefxers”.

The superclass-subclass relationship is said to be-amelationship. When designing object hierarchies, object
modellers use subclassing when they can say that the ssixths same class as the superclass. For example:

CHAPTER 4. HIGH-LEVEL TWISTED 148

class Shape:
sideLength = 0O
def getSideLength(self):
return self.sideLength

def setSideLength(self, sideLength):
self.sideLength = sideLength

def area(self):
raise NotimplementedError, "Subclasses must implement ar ea

class Triangle(Shape):
def area(self):
return (self.sideLength * self.sideLength) / 2

class Square(Shape):
def area(self):
return self.sideLength * self.sideLength

In the above example, a Triangkea Shape, so it subclasses Shape, and a Sdgrar8hape, so it also subclasses
Shape.

However, subclassing can get complicated, especially Wwhdtiple Inheritance enters the picture. Multiple In-
heritance allows a class to inherit from more than one bassclSoftware which relies heavily on inheritance often
ends up having both very wide and very deep inheritance,meeaning that one class inherits from many superclasses
spread throughout the system. Since subclassing with pllellihheritance mearimplementation inheritangéocat-
ing a method’s actual implementation and ensuring the comethod is actually being invoked becomes a challenge.
For example:

class Area:
sideLength = 0O
def getSideLength(self):
return self.sideLength

def setSideLength(self, sideLength):
self.sideLength = sideLength

def area(self):
raise NotimplementedError, "Subclasses must implement ar ea

class Color:
color = None
def setColor(self, color):
self.color = color

def getColor(self):
return self.color

class Square(Area, Color):
def area(self):
return self.sideLength * self.sideLength

The reason programmers like using implementation inheréas because it makes code easier to read since the
implementation details of Area are in a separate place timmiplementation details of Color. This is nice, because
conceivably an object could have a color but not an area, arembut not a color. The problem, though, is that Square
is not really an Area or a Color, but has an area and color. ,Tlwasshould really be using another object oriented
technique calledcomposition which relies on delegation rather than inheritance to loiale into small reusable
chunks. Let us continue with the Multiple Inheritance exémfhough, because it is often used in practice.

What if both the Color and the Area base class defined the sari®d)gerhapsalculate ? Where would
the implementation come from? The implementation that éatled forSquare().calculate() depends on

CHAPTER 4. HIGH-LEVEL TWISTED 149

the method resolution order, or MRO, and can change whenrgmogers change seemingly unrelated things by
refactoring classes in other parts of the system, causisguob bugs. Our first thought might be to change the calculate
method name to avoid name clashes, to perltapsulateArea and calculateColor . While explicit, this
change could potentially require a large number of charfyesighout a system, and is error-prone, especially when
attempting to integrate two systems which you didn't write.

Let's imagine another example. We have an electric appdiasery a hair dryer. The hair dryer is american voltage.
We have two electric sockets, one of them an american 110sdgket, and one of them a foreign 220 Volt socket.
If we plug the hair dryer into the 220 Volt socket, it is goiryexpect 110 Volt current and errors will result. Going
back and changing the hair dryer to support boeittg110Volt andplug220Volt methods would be tedious,
and what if we decided we needed to plug the hair dryer int@gether type of socket? For example:

class HairDryer:
def plug(self, socket):
if socket.voltage() == 110:
print "I was plugged in properly and am operating."
else:
print "I was plugged in improperly and "
print "now you have no hair dryer any more."

class AmericanSocket:
def voltage(self):
return 110

class ForeignSocket:
def voltage(self):
return 220

Given these classes, the following operations can be peeir

>>> hd = HairDryer()

>>> am = AmericanSocket()

>>> hd.plug(am)

| was plugged in properly and am operating.
>>> fs = ForeignSocket()

>>> hd.plug(fs)

| was plugged in improperly and

now you have no hair dryer any more.

We are going to attempt to solve this problem by writing an ptdafor theForeignSocket ~ which converts
the voltage for use with an American hair dryer. An Adaptea idass which is constructed with one and only one
argument, the “adaptee” or “original” object. In this exdempve will show all code involved for clarity:

class AdaptToAmericanSocket:
def __init__ (self, original):
self.original = original

def voltage(self):
return self.original.voltage() / 2

Now, we can use it as Sso:

>>> hd = HairDryer()

>>> fs = ForeignSocket()

>>> adapted = AdaptToAmericanSocket(fs)
>>> hd.plug(adapted)

| was plugged in properly and am operating.

So, as you can see, an adapter can 'override’ the origindemmgntation. It can also 'extend’ the interface of the
original object by providing methods the original objeat diot have. Note that an Adapter must explicitly delegate
any method calls it does not wish to modify to the originahestvise the Adapter cannot be used in places where
the original is expected. Usually this is not a problem, ag\dapter is created to conform an object to a particular
interface and then discarded.

CHAPTER 4. HIGH-LEVEL TWISTED 150

4.4.1 Interfaces and Components in Twisted code

Adapters are a useful way of using multiple classes to famtde into discrete chunks. However, they are not very
interesting without some more infrastructure. If each @iet code which wished to use an adapted object had to
explicitly construct the adapter itself, the coupling beén components would be too tight. We would like to achieve

“loose coupling”, and this is whetgvisted.python.components comes in.
First, we need to discuss Interfaces in more detail. As wetioreed earlier, an Interface is nothing more than a
class which is used as a marker. Interfaces should be ssbslagzope.interface.Interface , and have a

very odd look to python programmers not used to them:

from zope.interface import Interface

class IAmericanSocket(Interface):
def voltage():
""Return the voltage produced by this socket object, as an i nteger.

Notice how it looks just like a regular class definition, otligan inheriting frominterface ? However, the
method definitions inside the class block do not have any edetfody! Since Python does not have any native
language-level support for Interfaces like Java doesjshighat distinguishes an Interface definition from a Class.

Now that we have a defined Interface, we can talk about objesitgy terms like this: “ThémericanSocket
class implements tH&mericanSocket interface” and “Please give me an object which ad&pteignSocket
to thelAmericanSocket interface”. We can makdeclarationsabout what interfaces a certain class implements,
and we can request adapters which implement a certainawtefér a specific class.

Let's look at how we declare that a class implements an imtetf

from zope.interface import implements
class AmericanSocket:
implements(IAmericanSocket)

def voltage(self):
return 110

So, to declare that a class implements an interface, we wioghl zope.interface.implements at the
class level.

Now, let's say we want to rewrite th&daptToAmericanSocket class as a real adapter. In this case we also
specify it as implementingAmericanSocket

from zope.interface import implements
class AdaptToAmericanSocket:
implements(IAmericanSocket)

def __init_ (self, original):

Pass the original ForeignSocket object as original

self.original = original

def voltage(self):
return self.original.voltage() / 2

Notice how we placed the implements declaration on this ®daass. So far, we have not achieved anything by
using components other than requiring us to type more. Ierdat components to be useful, we must usedbm-
ponent registry SinceAdaptToAmericanSocket implementdAmericanSocket and regulates the voltage of
aForeignSocket object, we camegisterAdapt ToAner i canSocket as anl Aneri canSocket adapter for
theFor ei gnSocket class It is easier to see how this is done in code than to describe it

CHAPTER 4. HIGH-LEVEL TWISTED 151

from zope.interface import Interface, implements
from twisted.python import components

class IAmericanSocket(Interface):
def voltage():
""Return the voltage produced by this socket object, as an i nteger.

class AmericanSocket:
implements(IAmericanSocket)

def voltage(self):
return 110

class ForeignSocket:
def voltage(self):
return 220

class AdaptToAmericanSocket:
implements(lAmericanSocket)

def __init_ (self, original):
self.original = original

def voltage(self):
return self.original.voltage() / 2

components.registerAdapter(
AdaptToAmericanSocket,
ForeignSocket,
IAmericanSocket)

Now, if we run this script in the interactive interpreter, aan discover a little more about how to use components.
The first thing we can do is discover whether an object implgman interface or not:

>>> |AmericanSocket.implementedBy(AmericanSocket)
True

>>> |AmericanSocket.implementedBy(ForeignSocket)
False

>>> as = AmericanSocket()

>>> fs = ForeignSocket()

>>> |AmericanSocket.providedBy(as)

True

>>> |AmericanSocket.providedBy(fs)

False

As you can see, th@mericanSocket instance claims to implemeimericanSocket , but theForeign
Socket does not. If we wanted to use thairDryer with the AmericanSocket , we could know that it would
be safe to do so by checking whether it implemdAtsiericanSocket . However, if we decide we want to use
HairDryer with aForeignSocket instance, we mustdaptit to IAmericanSocket before doing so. We use
the interface object to do this:

>>> |AmericanSocket(fs)
<__main__.AdaptToAmericanSocket instance at 0x1a5120>

When calling an interface with an object as an argument, tteeface looks in the adapter registry for an adapter
which implements the interface for the given instance’s<ldf it finds one, it constructs an instance of the Adapter
class, passing the constructor the original instance, andns it. Now theHairDryer can safely be used with

CHAPTER 4. HIGH-LEVEL TWISTED 152

the adapted-oreignSocket . But what happens if we attempt to adapt an object which djremplements
IAmericanSocket ? We simply get back the original instance:

>>> |AmericanSocket(as)
<__main__.AmericanSocket instance at 0x36bff0>

So, we could write a new “smaitfairDryer which automatically looked up an adapter for the socket yiewl t
to plug it into:

class HairDryer:
def plug(self, socket):
adapted = |AmericanSocket(socket)
assert adapted.voltage() == 110, "BOOM"
print "I was plugged in properly and am operating”

Now, if we create an instance of our new “smatdlirDryer and attempt to plug it in to various sockets, the
HairDryer will adapt itself automatically depending on the type oflstat is plugged in to:

>>> as = AmericanSocket()
>>> fs = ForeignSocket()

>>> hd = HairDryer()

>>> hd.plug(as)

| was plugged in properly and am operating
>>> hd.plug(fs)

| was plugged in properly and am operating

Voila; the magic of components.

Components and Inheritance

If you inherit from a class which implements some interfa® your new subclass declares that it implements another
interface, the implements will be inherited by default.

For examplepb.Root (actually defined irflavors.Root) is a class which implement®BRoot . This
interface indicates that an object has remotely-invokai#¢éhods and can be used as the initial object served by a new
Broker instance. It has damplements setting like:

from zope.interface import implements

class Root(Referenceable):
implements(IPBRoot)

Suppose you have your own class which implements {iyinterface interface:

from zope.interface import implements, Interface

class IMylnterface(Interface):
pass

class MyThing:
implements(IMylInterface)

Now if you want to make this class inherit fropl.Root , the interfaces code will automatically determine that
it also implement$PBRoot :

from twisted.spread import pb
from zope.interface import implements, Interface

class IMylnterface(Interface):
pass

class MyThing(pb.Root):
implements(IMylInterface)

CHAPTER 4. HIGH-LEVEL TWISTED 153

>>> from twisted.spread.flavors import IPBRoot
>>> |PBRoot.implementedBy(MyThing)
True

If you want MyThing to inherit from pb.Root but not implementIPBRoot like pb.Root does, use
implementOnly

from twisted.spread import pb
from zope.interface import implementsOnly, Interface

class IMylnterface(Interface):
pass

class MyThing(pb.Root):
implementsOnly(IMylnterface)

>>> from twisted.spread.flavors import IPBRoot
>>> |PBRoot.implementedBy(MyThing)
False

4.5 Cred: Pluggable Authentication
45.1 Goals

Cred is a pluggable authentication system for servers.ldwalany number of network protocols to connect and
authenticate to a system, and communicate to those asp#utssystem which are meaningful to the specific protocol.
For example, Twisted's POP3 support passes a “usernameaasd/@rd” set of credentials to get back a mailbox for
the specified email account. IMAP does the same, but refi@etightly different view of the same mailbox, enabling
those features specific to IMAP which are not available ireothail protocols.

Cred is designed to allow both the backend implementatioth@fbusiness logic - called trevatar - and the
authentication database - called ttredential checker to be decided during deployment. For example, the same
POP3 server should be able to authenticate against thethtid password database or an LDAP server without
having to know anything about how or where mail is stored.

To sketch out how this works - a “Realm” corresponds to aniegfibn domain and is in charge of avatars, which
are network-accessible business logic objects. To coithisdb an authentication database, a top-level objectdall
Portal stores a realm, and a number of credential checkers. Samgdttat wishes to log in, such assotocol
stores a reference to the portal. Login consists of passetgatials and a request interface (e.g. PORa&lbox)
to the portal. The portal passes the credentials to the pppte credential checker, which returns an avatar ID. The |
is passed to the realm, which returns the appropriate aveda®la Portal that has a realm that creates mailbox objects
and a credential checker that checks /etc/passwd, logisisterof passing in a username/password and the IMailbox
interface to the portal. The portal passes this to the /assiyd credential checker, gets back a avatar ID correspgndi
to an email account, passes that to the realm and gets backmxnabject for that email account.

Putting all this together, here’s how a login request witlibally be processed:

CHAPTER 4. HIGH-LEVEL TWISTED 154

1. Login 8. Continue processing,

request Protocol / del_egating business
logic to the avatar.

{e.g. POP3)
2. Pass credentials to portal 7. Return avatar
ask for avatar by interface and logout callable
3. Get cred checker
matching the credentials'
interface Portal

&, Return avatar

Credential checkers
i (registered with portal.registerChecker)

H 4, Check Realm
Cred Checker credentials,
(e.q. lUsernamePassword) return avatariD

5, Get avatar
by avatarlD

Cred Checker
(e.g. lUsernameHashedPassword)

4.5.2 Cred objects
The Portal

This is the the core of login, the point of integration betwed the objects in the cred system. There is one concrete
implementation of Portal, and no interface - it does a vemyp$é task. APortal associates one (1) Realm with a
collection of CredentialChecker instances. (More on tHates.)

If you are writing a protocol that needs to authenticate mgjasomething, you will need a reference to a Portal,
and to nothing else. This has only 2 methods -

¢ login(credentials, mind, *interfaces)
The docstring is quite expansive (d@gsted.cred.portal), but in brief, this is what you call when you
need to call in order to connect a user to the system. Typigalll only pass in one interface, and the mind
is None. The interfaces are the possible interfaces the returnathais expected to implement, in order of
preference. The result is a deferred which fires a tuple of:
— interface the avatar implements (which was one of the iatex passed in the *interfaces tuple)
— an object that implements that interface (an avatar)
— logout, a 0-argument callable which disconnects the cdiorethat was established by this call to login
The logout method has to be called when the avatar is loggedrou POP3 this means when the protocol is
disconnected or logged out, etc..
e registerChecker(checker, * credentiallnterfaces)

which adds a CredentialChecker to the portal. The optigstadt interfaces are interfaces of credentials that the
checker is able to check.

CHAPTER 4. HIGH-LEVEL TWISTED 155

The CredentialChecker

This is an object implementiniCredentialsChecker which resolves some Credentials to an avatar ID. Some
examples of CredentialChecker implementations would b&emoryUsernamePassword, ApacheStyleHTAccess-
File, UNIXPasswordDatabase, SSHPublicKkeyDatabase. Aettgal checker stipulates some requirements of the
credentials it can check by specifying a credentiallntex$aattribute, which is a list of interfaces. Credentiakssed

to its requestAvatarld method must implement one of thosafaces.

For the most part, these things will just check usernamegassivords and produce the username as the result, but
hopefully we will be seeing some public-key, challengepresse, and certificate based credential checker mechanisms
soon.

A credential checker should raise an error if it cannot antibhate the user, and retutwisted.cred.
checkers. ANONYMOUS for anonymous access.

The Credentials

Oddly enough, this represents some credentials that theptesents. Usually this will just be a small static blob of
data, butin some cases it will actually be an object condota network protocol. For example, a username/password
pair is static, but a challenge/response server is an agte-machine that will require several method calls ireord
to determine a result.

Twisted comes with a number of credentials interfaces anglementations in thewisted.cred.
credentials module, such akJsernamePassword andlUsernameHashedPassword

The Realm

A realm is an interface which connects your universe of “bess objects” to the authentication system.
IRealm is another one-method interface:

e requestAvatar(avatarld, mind, * interfaces)
This method will typically be called from 'Portal.login’.lie avatarld is the one returned by a CredentialChecker.

Note:Note thatavatarld must always be a string. In particular, do not use unicodegsr If
internationalized support is needed, it is recommended¢oUIlF-8, and take care of decoding in
the realm.

The important thing to realize about this method is thatis ibeing calledthe user has already authenticated
Therefore, if possible, the Realm should create a new usaméfdoes not already exist whenever possible.
Of course, sometimes this will be impossible without mofferimation, and that is the case that the interfaces
argument is for.

Since requestAvatar should be called from a Deferred agdliamay return a Deferred or a synchronous result.

The Avatar

An avatar is a business logic object for a specific user. F®F@'s a mailbox, for a first-person-shooter it’s the obbjec
that interacts with the game, the actor as it were. Avataspecific to an application, and each avatar represents a
single “user”.

The Mind

As mentioned before, the mind is usually None, so you cantsliggbit if you want.

Masters of Perspective Broker already know this object aslitmamed “client object”. There is no “mind” class,
or even interface, but it is an object which serves an impbmale - any notifications which are to be relayed to an
authenticated client are passed through a 'mind’. In aaldjtit allows passing more information to the realm during
login in addition to the avatar ID.

The name may seem rather unusual, but considering that aislnegresentative of the entity on the “other end”
of a network connection that is both receiving updates aswngf commands, | believe it is appropriate.

Although many protocols will not use this, it serves an imaot role. It is provided as an argument both to the
Portal and to the Realm, although a CredentialChecker dhntéract with a client program exclusively through a
Credentials instance.

CHAPTER 4. HIGH-LEVEL TWISTED 156

Unlike the original Perspective Broker “client object”, aifd’s implementation is most often dictated by the
protocol that is connecting rather than the Realm. A Realrchviequires a particular interface to issue notifications
will need to wrap the Protocol’s mind implementation withaatapter in order to get one that conforms to its expected
interface - however, Perspective Broker will likely cont@ito use the model where the client object has a pre-specified
remote interface.

(If you don't quite understand this, it’s fine. It's hard topdain, and it's not used in simple usages of cred, so feel
free to pass None until you find yourself requiring somethikey this.)

4.5.3 Responsibilities
Server protocol implementation

The protocol implementor should define the interface théamvehould implement, and design the protocol to have
a portal attached. When a user logs in using the protocol,dent&l object is created, passed to the portal, and an
avatar with the appropriate interface is requested. Whengbelogs out or the protocol is disconnected, the avatar
should be logged out.

The protocol designer should not hardcode how users aremtithted or the realm implemented. For example, a
POP3 protocol implementation would require a portal whesénn returns avatars implementing IMailbox and whose
credential checker accepts username/password credebtidthat is all. Here’s a sketch of how the code might look
- note that USER and PASS are the protocol commands useditg égl the DELE command can only be used after
you are logged in:

from zope.interface import Interface

from twisted.protocols import basic

from twisted.python import log

from twisted.cred import credentials, error
from twisted.internet import defer

class IMailbox(Interface):
""Interface specification for mailbox.
def deleteMessage(index): pass

class POP3(basic.LineReceiver):
..
def __init__ (self, portal):
self.portal = portal

def do_DELE(self, i):
uses self.mbox, which is set after login
i = int(i)-1
self.mbox.deleteMessage(i)
self.successResponse()

def do_USER(self, user):
self._userls = user
self.successResponse('USER accepted, send PASS’)

def do_PASS(self, password):
if self._userls is None:
self.failResponse("USER required before PASS")
return
user = self._userls
self._userls = None
d = defer.maybeDeferred(self.authenticateUserPASS, use r, password)
d.addCallback(self._cbMailbox, user)

CHAPTER 4. HIGH-LEVEL TWISTED 157

def authenticateUserPASS(self, user, password):
if self.portal is not None:
return self.portal.login(
cred.credentials.UsernamePassword(user, password),
None,
IMailbox
)

raise error.UnauthorizedLogin()

def _cbMailbox(self, ial, user):
interface, avatar, logout = ial

if interface is not IMailbox:
self.failResponse(’Authentication failed’)
log.err("_cbMailbox() called with an interface other than IMailbox")
return

self.mbox = avatar

self._onLogout = logout
self.successResponse(’Authentication succeeded’)
log.msg("Authenticated login for " + user)

Application implementation

The application developer can implement realms and credehieckers. For example, she might implement a realm
that returns IMailbox implementing avatars, using MySQL dtwrage, or perhaps a credential checker that uses LDAP
for authentication. In the following example, the Realmd@imple remote object service (using Twisted’s Perspectiv
Broker protocol) is implemented:

from twisted.spread import pb
from twisted.cred.portal import IRealm

class SimplePerspective(pb.Avatar):

def perspective_echo(self, text):
print 'echoing’,text
return text

def logout(self):
print self, "logged out"

class SimpleRealm:
implements(IRealm)

def requestAvatar(self, avatarld, mind, * interfaces):
if pb.IPerspective in interfaces:
avatar = SimplePerspective()
return pb.IPerspective, avatar, avatar.logout
else:
raise NotimplementedError("no interface")

Deployment

Deployment involves tying together a protocol, an apprerrealm and a credential checker. For example, a POP3
server can be constructed by attaching to it a portal thapsvilae MySQL-based realm and an /etc/passwd credential
checker, or perhaps the LDAP credential checker if that isemmeful. The following example shows how the
SimpleRealm in the previous example is deployed using aneémory credential checker:

CHAPTER 4. HIGH-LEVEL TWISTED 158

from twisted.spread import pb

from twisted.internet import reactor

from twisted.cred.portal import Portal

from twisted.cred.checkers import InMemoryUsernamePass wordDatabaseDontUse

portal = Portal(SimpleRealm())

checker = InMemoryUsernamePasswordDatabaseDontUse()
checker.addUser("guest”, "password")
portal.registerChecker(checker)

reactor.listenTCP(9986, pb.PBServerFactory(portal))
reactor.run()

4.5.4 Cred plugins
Authentication with cred plugins

Cred offers a plugin architecture for authentication mdthorhe primary API for this architecture is the command-
line; the plugins are meant to be specified by the end-usenwbploying a TAP (twistd plugin).

For more information on writing a twistd plugin and usingd@@ugins for your application, please refer to the
Writing a twistd plugin(page 144) document.

Building a cred plugin

To build a plugin for cred, you should first define anthType , a short one-word string that defines your plugin
to the command-line. Once you have this, the convention sdate a file namedred _(authtype).py in the
twisted.plugins module path.

Below is an example file structure for an application thatraefisuch a plugin:

e MyApplication/

— setup.py

— myapp/
* __init__.py
x cred.py
% server.py

— twisted/

* __init__.py
x plugins/

- _init__.py
- credspecial.py

Once you have created this structure within your applicatfou can create the code for your cred plugin by build-
ing a factory class which implemenriSheckerFactory . These factory classes should not consist of a tremendous
amount of code. Most of the real application logic shouldde# the cred checker itself. (For help on building those,
scroll up.)

The core purpose of the CheckerFactory is to translategstring , which is passed on the command line, into
a suitable set of initialization parameters for a Checkas<l In most cases this should be little more than constaucti
a dictionary or a tuple of arguments, then passing them atmagiew checker instance.

from twisted import plugin

from twisted.cred import checkers

from zope.interface import implements
from myapp.cred import SpecialChecker

class SpecialCheckerFactory(object):

A checker factory for a specialized (fictional) API.

CHAPTER 4. HIGH-LEVEL TWISTED 159

The class needs to implement both of these interfaces
for the plugin system to find our factory.
implements(checkers.ICheckerFactory, plugin.IPlugin)

This tells AuthOptionsMixin how to find this factory.
authType = "special"

This is a one-line explanation of what arguments, if any,
your particular cred plugin requires at the command-line.
argStringFormat = "A colon-separated key=value list."

This help text can be multiple lines. It will be displayed
when someone uses the "--help-auth-type special" command
authHelp = ""Some help text goes here ..."™

This will be called once per command-line.

def generateChecker(self, argstring=""):
argdict = dict((x.split('=") for x in argstring.split(":’)
return SpecialChecker(*x dict)

We need to instantiate our class for the plugin to work.
theSpecialCheckerFactory = SpecialCheckerFactory()

For more information on how your plugin can be used in youliapfion (and by other application developers),
please see thé/riting a twistd plugin(page 144) document.

455 Conclusion

After reading through this tutorial, you should be able to
e Understand how the cred architecture applies to your agjiic
e Integrate your application with cred’s object model
e Deploy an application that uses cred for authentication

¢ Allow your users to use command-line authentication plagin

4.6 Using the Twisted Application Framework

4.6.1 Introduction
Audience

The target audience of this document is a Twisted user whastardeploy a significant amount of Twisted code in
a re-usable, standard and easily configurable fashion. Atédiuser who wishes to use the Application framework
needs to be familiar with developing Twistedrvers(page 13) and/oclients(page 17).

Goals
e To introduce the Twisted Application infrastructure.
e To explain how to deploy your Twisted application usiter files andtwistd

e To outline the existing Twisted services.

CHAPTER 4. HIGH-LEVEL TWISTED 160

4.6.2 Overview

The Twisted Application infrastructure takes care of ruxgnand stopping your application. Using this infrastruetur
frees you from from having to write a large amount of boilatplcode by hooking your application into existing tools
that manage daemonization, loggiehposing a reactofpage 137) and more.

The major tool that manages Twisted applications is a condrtiae utility calledtwistd . twistd is cross
platform, and is the recommended tool for running Twistepliaptions.

The core component of the Twisted Application infrastroetis thetwisted.application.service.

Application object — an object which represents your application. HameXpplication doesn’t provide any-
thing that you'd want to manipulate directly. Instead, Apation acts as a container of any “Services” (objects imple
mentinglService) that your application provides. Most of your interactioithithe Application infrastructure will
be done through Services.

By “Service”, we mean anything in your application that candbarted and stopped. Typical services include
web servers, FTP servers and SSH clients. Your Applicatip@ab can contain many services, and can even contain
structured heirarchies of Services usiBgrviceCollection S.

Here’s a simple example of constructing an Application objehich represents an echo server that runs on TCP
port 7001.

from twisted.application import internet, service
from somemodule import EchoFactory

port = 7001
factory = EchoFactory()

this is the important bit

application = service.Application("echo") # create the Ap plication
echoService = internet. TCPServer(port, factory) # create the service
add the service to the application

echoService.setServiceParent(application)

SeeWriting Servergpage 13) for an explanation of EchoFactory.
This example creates a simple heirarchy:

application

- echoService

More complicated heirarchies of services can be createtdyuSierviceCollection. You will most likely want to do
this to manage Services which are dependent on other Senkce example, a proxying Twisted application might
want its server Service to only start up after the associatit service.

4.6.3 Using application
twistd and tac

To handle start-up and configuration of your Twisted apfilica the Twisted Application infrastructure us¢ac
files. .tac are Python files which configure @pplication object and assign this object to the top-level variable
“application "

The following is a simple example of.tac file:

This is an example .tac file which starts a webserver on port 8 080 and
serves files from the current working directory.

The important part of this, the part that makes it a .tac file, is
the final root-level section, which sets up the object calle d ’'application’
which twistd will look for

import os

CHAPTER 4. HIGH-LEVEL TWISTED 161

from twisted.application import service, internet
from twisted.web import static, server

def getWebService():

Return a service suitable for creating an application objec t.

This service is a simple web server that serves files on port 8 080 from
underneath the current working directory.

create a resource to serve static files
fileServer = server.Site(static.File(os.getcwd()))
return internet. TCPServer(8080, fileServer)

this is the core part of any tac file, the creation of the root -level
application object
application = service.Application("Demo application™)

attach the service to its parent application
service = getWebService()
service.setServiceParent(application)

Source listing —service.tac

twistd is a program that runs Twisted applications usingga file. In its most simple form, it takes a sin-
gle argumenty and a tac file name. For example, you can run the above sertretivei commandwistd -y
service.tac

By default,twistd daemonizes and logs to a file calliedstd.log . More usually, when debugging, you will
want your application to run in the foreground and log to tbenmand line. To run the above file like this, use the
commandwistd -noy service.tac

For more information, see theistd man page.

Services provided by Twisted

Twisted provides several services that you want to know abou

Each of these services (except TimerService) has a conmdspp“connect” or “listen” method on the reactor,
and the constructors for the services take the same argsrasrihe reactor methods. The “connect” methods are
for clients and the “listen” methods are for servers. Fomepia, TCPServer corresponds to reactor.listenTCP and
TCPClient corresponds to reactor.connectTCP.

TCPSer ver
TCPC i ent Services which allow you to make connections and listen danections on TCP ports.

e listenTCP
e connectTCP

UNI XSer ver
UNI XCl i ent Services which listen and make connections over UNIX sacket

e listenUNIX
e connectUNIX

SSLSer ver
SSLd i ent Services which allow you to make SSL connections and run @Bless.

e listenSSL

CHAPTER 4. HIGH-LEVEL TWISTED 162

e connectSSL
UDPSer ver
UDPCl i ent Services which allow you to send and receive data over UDP

e listenUDP
e connectUDP

See also th&/DP documentatiofpage 91).
UNI XDat agr anSer ver
UNI XDat agr anCl i ent Services which send and receive data over UNIX datagranmessck

e listenUNIXDatagram
e connectUNIXDatagram

Mul ti cast Server A server for UDP socket methods that support multicast.
e listenMulticast

Ti mer Ser vi ce A service to periodically call a function.

Service Collection

IServiceCollection objects containService objects. IService objects can be added to IServiceCallecti
by callingsetServiceParent and detached by usirdisownServiceParent

The standard implementation of IServiceCollectioMigltiService , which also implements IService. Multi-
Service is useful for creating a new Service which combingsdr more existing Services. For example, you could
create a DNS Service as a MultiService which has a TCP and aS#DRce as children.

from twisted.application import internet, service
from twisted.names import server, dns, hosts

port = 53

Create a MultiService, and hook up a TCPServer and a UDPServ er to it as
children.

dnsService = service.MultiService()

hostsResolver = hosts.Resolver(’/etc/hosts’)

tcpFactory = server.DNSServerFactory([hostsResolver])

internet. TCPServer(port, tcpFactory).setServiceParen t(dnsService)
udpFactory = dns.DNSDatagramProtocol(tcpFactory)
internet.UDPServer(port, udpFactory).setServiceParen t(dnsService)

Create an application as normal
application = service.Application("DNSExample")

Connect our MultiService to the application, just like a no rmal service.
dnsService.setServiceParent(application)

Chapter 5
Utilities

5.1 Using usage.Options

5.1.1 Introduction

There is frequently a need for programs to parse a UNIX-likamand line program: options preceded-bgr -- |
sometimes followed by a parameter, followed by a list of argnts. Thawisted.python.usage provides a
class,Options , to facilitate such parsing.

While Python has thgetopt module for doing this, it provides a very low level of abstrae for options.
Twisted has a higher level of abstraction, in the clagisted.python.usage.Options . It uses Python's
reflection facilities to provide an easy to use yet flexibleiface to the command line. While most command line
processors either force the application writer to writedven loops, or have arbitrary limitations on the command line
(the most common one being not being able to have more themstance of a specific option, thus rendering the
idiom program -v -v -v impossible), Twisted allows the programmer to decide howhmaontrol she wants.

The Options class is used by subclassing. Since a lot of time it will bedusehetwisted.tap package,
where the local conventions require the specific optionsipgrclass to also be call€btions , itis usually imported
with

from twisted.python import usage

5.1.2 Boolean Options
For simple boolean options, define the attribop¢Flags like this:

class Options(usage.Options):

optFlags = [['fast", "f', "Act quickly"], ['safe", "s", "Ac t safely"]

optFlags should be a list of 3-lists. The first element is the long naamel will be used on the command line
as--fast . The second one is the short name, and will be used on the codhline as-f . The last element is a
description of the flag and will be used to generate the usafgeniation text. The long name also determines the
name of the key that will be set on the Options instance. lisewill be 1 if the option was seen, 0 otherwise. Here
is an example for usage:

class Options(usage.Options):
optFlags = [
[‘fast", "f", "Act quickly"],
['good”, "g", "Act well],
['‘cheap”, "c", "Act cheaply"]
]
command_line = ["-g", "--fast"]

options = Options()

163

CHAPTER 5. UTILITIES 164

try:
options.parseOptions(command_line)
except usage.UsageError, errortext:
print '%s: %s’ % (sys.argv[0], errortext)
print '%s: Try --help for usage details.” % (sys.argv[0])
sys.exit(1)
if options[fast’]:
print "fast",
if options['good’]:
print "good",
if options['cheap:
print "cheap",
print

The above will prinfast good

Note here that Options fully supports the mapping interf&@a can access it mostly just like you can access any
other dict. Options are stored as mapping items in the Opiitstance: parameters as 'paramname’: 'value’ and flags
as 'flagname’; 1 or 0.

Inheritance, Or: How | Learned to Stop Worrying and Love the Superclass

Sometimes there is a need for several option processorawitlifying core. Perhaps you want all your commands to
understandq /--quiet means to be quiet, or something similar. On the face of i, ltoks impossible: in Python,
the subclass’sptFlags would shadow the superclass’s. Howewesage.Options uses special reflection code
to get all of theoptFlags defined in the hierarchy. So the following:

class BaseOptions(usage.Options):
optFlags = [["quiet", "g", None]]
class SpecificOptions(BaseOptions):

optFlags = [
['fast", "f", None], ['good", "g", None], ['cheap", "c", No nej

]

Is the same as:
class SpecificOptions(BaseOptions):
optFlags = [
['quiet”, "q", "Silence output"],
['fast", "f", "Run quickly"],

['good", "g", "Don’t validate input"],
['cheap”, "c", "Use cheap resources"]

5.1.3 Parameters

Parameters are specified using the attritapg#Parameters . Theymustbe given a default. If you want to make
sure you got the parameter from the command line, give a trorgslefault. Since the command line only has strings,
this is completely reliable.

Here is an example:

from twisted.python import usage
class Options(usage.Options):

optFlags = [

CHAPTER 5. UTILITIES 165

[‘fast”, "f", "Run quickly"],
['good", "g", "Don’t validate input"],
['cheap”, "c", "Use cheap resources"]

]

optParameters = [['user”,

u", None, "The user name']]

config = Options()
try:

config.parseOptions() # When given no argument, parses sys .argv[1:]
except usage.UsageError, errortext:

print '%s: %s’ % (sys.argv[0], errortext)

print '%s: Try --help for usage details.” % (sys.argv|[0])

sys.exit(1)

if config['user] is not None:
print "Hello", config['user’]
print "So, you want it:"

if config['fast’]:
print "fast",

if config['good’]:
print "good",

if config['cheap’]:
print "cheap",

print

Like optFlags , optParameters works smoothly with inheritance.

5.1.4 Option Subcommands

It is useful, on occassion, to group a set of options togdihsed on the logical “action” to which they belong. For
this, theusage.Options class allows you to define a set of “subcommands”, each oftwtém provide its own
usage.Options instance to handle its particular options.

Here is an example for an Options class that might parseroplike those the cvs program takes

from twisted.python import usage

class ImportOptions(usage.Options):
optParameters = [
[module’, 'm’, None, None], ['vendor’, 'v', None, None],
[release’, 'r’, None]

]

class CheckoutOptions(usage.Options):
optParameters = [['module’, 'm’, None, None], [tag’, 'r, None, None]]

class Options(usage.Options):
subCommands = [['import’, None, ImportOptions, "Do an Impo rt'],
[checkout’, None, CheckoutOptions, "Do a Checkout"]]

optParameters = [
[compression’, 'z’, 0, 'Use compression’],
['repository’, 'r’, None, 'Specify an alternate repositor Y]

]

config = Options(); config.parseOptions()
if config.subCommand == 'import”
dolmport(config.subOptions)

CHAPTER 5. UTILITIES 166

elif config.subCommand == ’checkout’
doCheckout(config.subOptions)

The subCommands attribute ofOptions directs the parser to the two oth@®ptions subclasses when the
strings"import” or "checkout" are present on the command line. All options after the givenroand string
are passed to the specified Options subclass for furtheingar®nly one subcommand may be specified at a time.
After parsing has completed, the Options instance has twoattzibutes -subCommandand subOptions -
which hold the command string and the Options instance wspdrse the remaining options.

5.1.5 Generic Code For Options

Sometimes, just setting an attribute on the basis of th@epis not flexible enough. In those cases, Twisted does not
even attempt to provide abstractions such as “counts” sts™i but rathers lets you call your own method, which will
be called whenever the option is encountered.

Here is an example of counting verbosity

from twisted.python import usage
class Options(usage.Options):

def __init__ (self):
usage.Options.__init__ (self)
self['verbosity’] = 0 # default

def opt_verbose(self):
self['verbosity’] = self['verbosity’]+1

def opt_quiet(self):
self['verbosity’] = self['verbosity’]-1

opt_v = opt_verbose
opt_q = opt_quiet

Command lines that look likeommand -v -v -v -v will increase verbosity to 4, whileommand -q -q
-q will decrease verbosity to -3.

The usage.Options class knows that these are parameter-less options, siaaadthods do not receive an
argument. Here is an example for a method with a parameter:

from twisted.python import usage
class Options(usage.Options):

def __init_ (self):
usage.Options.__init__ (self)
self'symbols’] = []

def opt_define(self, symbol):
self['symbols’].append(symbol)

opt D = opt_define

This example is useful for the common idiom of havocgmmand -DFOO -DBARo define symbols.

5.1.6 Parsing Arguments

usage.Options does not stop helping when the last parameter is gone. Albther arguments are sent into a
function which should deal with them. Here is an example fomg like command.

CHAPTER 5. UTILITIES 167

from twisted.python import usage
class Options(usage.Options):
optParameters = [["'max_differences”, "d", 1, None]]

def parseArgs(self, origin, changed):
self['originl = origin
self['changed’] = changed

The command should look likesommand origin changed
If you want to have a variable number of left-over argumejust usedef parseArgs(self, *args):
This is useful for commands like the UNIeat(1)

5.1.7 Post Processing

Sometimes, you want to perform post processing of optiorgatoh up inconsistencies, and the like. Here is an
example:

from twisted.python import usage
class Options(usage.Options):

optFlags = [
['fast", "f", "Run quickly"],
['good", "g", "Don’t validate input"],
['‘cheap”, "c", "Use cheap resources"]

]

def postOptions(self):
if self['fast’] and self'good’] and self['cheap:
raise usage.UsageError, "can’'t have it all, brother"

5.1.8 Type enforcement

By default, all options are handled as strings. You may wawetiforce the type of your option in some specific case,
the classic example being port number. Any callable can beifigd in the fifth row ofoptParameters and will
be called with the string value passed in parameter.

from twisted.python import usage

class Options(usage.Options):
optParameters = [['shiny_integer", "s", 1, None, int]]
optParameters = [["dummy_float", "d", 3.14159, None, floa t]]

Note that default values are not coerced, so you shouldraith@are it with the good type (as above) or handle it
when you use your options.

The coerce function may have a coerceDoc attribute, thesnbof which will be printed after the documentation
of the option. It's particularly useful for reusing the fuiom at multiple places.

def oneTwoThree(val):
val = int(val)
if val not in range(1, 4):
raise ValueError("Not in range")
return val
oneTwoThree.coerceDoc = "Must be 1, 2 or 3."

from twisted.python import usage

CHAPTER 5. UTILITIES 168
class Options(usage.Options):
optParameters = [["one_choice", "0", 1, None, oneTwoThree 1l
This example code will print the following help when added¢mir program:

$ python myprogram.py --help
Usage: myprogram [options]
Options:
-0, --one_choice= [default: 0]. Must be 1, 2 or 3.

5.2 Logging with twisted.python.log

5.2.1 Basic usage

Twisted provides a simple and flexible logging system intthisted.python.log module. It has three com-
monly used functions:

nsg Logs a new message. For example:

from twisted.python import log
log.msg('Hello, world.’)

err Writes a failure to the log, including traceback informati@gfrany). You can pass it &ailure or Exception
instance, or nothing. If you pass something else, it will beverted to a string withepr and logged. If you
pass nothing, it will construct a Failure from the curreratttive exception, which makes it convenient to use in
anexcept clause:

try:
x=11/0
except:
log.err() # will log the ZeroDivisionError

start Loggi ng Starts logging to a given file-like object. For example:
log.startLogging(open(’/var/log/foo.log’, 'w’))
or:
log.startLogging(sys.stdout)

By default, startLogging will also redirect anything written tgys.stdout andsys.stderr to the
log. You can disable this by passiegtStdout=False to startLogging

BeforestartLogging is called, log messages will be discarded and errors will bem to stderr.

Logging and twistd

If you are usingtwistd to run your daemon, it will take care of callirgjartLogging for you, and will also
rotate log files. Sedwistd and taqpage 160) and thisvistd man page for details of using twistd.

Log files

Thetwisted.python.logfile module provides some standard classes suitable for usetaitihogging ,
such adailyLogFile , which will rotate the log to a new file once per day.

CHAPTER 5. UTILITIES 169

Using the Python logging module

If your application uses the logging module or you want toitssease of configuration but don’t want to lose twisted-
produced messages, the obseRgthonLoggingObserver should be useful to you
You just start it like any other observers:

observer = log.PythonLoggingObserver()
observer.start()

And then you'll just have to configure logging to do what yountvdogging documentatidn
This method allows you to customize the log level receivethieylogging module using tHegLevel keyword:

log.msg("This is important!", logLevel=logging.CRITICA L)
log.msg("Don’t mind", logLevel=logging.DEBUG)

Unless logLevel is provided, logging.INFO is used limg.msg and logging.ERROR is used ftog.err
One special care should be made when you use special cotifiguoithe python logging module: some handlers
(e.g. SMTP, HTTP) uses network so can block inside the reémdp. Nothingin the bridge is done to prevent that.

5.2.2 Writing log observers

Log observers are the basis of the Twisted logging systemexample of a log observer in Twisted is thigeLog
Observer used bystartLogging that writes events to a log file. A log observer is just a cddldbat accepts a
dictionary as its only argument. You can then register ieteive all log events (in addition to any other observers):

twisted.python.log.addObserver(yourCallable)
The dictionary will have at least two items:

messageThe message (a list, usually of strings) for this log evenpassed ting.msg or the message in the failure
passed tdog.err

isError This is a boolean that will be true if this event came from dtalog.err . If this is set, there may be a
failure item in the dictionary as will, with a Failure object in it.

Other items the built in logging functionality may add ind&i

printed This message was captured frays.stdout , i.e. this message came fronpant statement. lfis
Error is also true, it came frorays.stderr

You can pass additional items to the event dictionary byipgdseyword arguments tog.msg andlog.err
The standard log observers will ignore dictionary itemgy tihen’t use.
Important notes:

¢ Never raise an exception from a log observer. If your log okeseraises an exception, it will be removed.

e Never block in a log observer, as it may run in main Twiste@ala. This means you can't use socket or syslog
Python-logging backends.

e The observer needs to be thread safe if you anticipate usiegds in your program.

5.3 DirDBM: Directory-based Storage

5.3.1 dirdbm.DirDBM

twisted.persisted.dirdbm.DirDBM is a DBM-like storage system. That s, it stores mappingaeenh keys

and values, like a Python dictionary, except that it stdnes/alues in files in a directory - each entry is a different file

The keys must always be strings, as are the values. OthetttagBirDBM objects act just like Python dictionaries.
DirDBM is useful for cases when you want to store small amounts afidatn organized fashion, without having

to deal with the complexity of a RDBMS or other sophisticadethbase. It is simple, easy to use, cross-platform, and

doesn’t require any external C libraries, unlike Pythonigtin DBM modules.

Ihttp://docs.python.org/lib/module-logging.html

CHAPTER 5. UTILITIES 170

>>> from twisted.persisted import dirdbm
>>> d = dirdom.DirDBM("/tmp/dir")

>>> d["librarian”] = "ook"

>>> d["librarian"]

'00K’

>>> d.keys()

[librarian’]

>>> del d["librarian”]

>>> d.items()

I

5.3.2 dirdbm.Shelf

Sometimes it is neccessary to persist more complicatedtstjean strings. With some camirdbm.Shelf can
transparently persist themShelf works exactly likeDirDBM, except that the values (but not the keys) can be
arbitrary picklable objects. However, notice that mutgim object after it has been stored in 8teelf has no effect

on the Shelf. When mutating objects, it is neccessary to ekpktore them back in th8helf afterwards:

>>> from twisted.persisted import dirdbm
>>> d = dirdom.Shelf("/tmp/dir2")
>>> dl'key"] = [1, 2]

>>> d['key’]

(1, 2]

>>> | = d["key"]

>>> |.append(3)

>>> d['key']

(1, 2]

>>> d['key"] = |

>>> d['key’]

[1, 2, 3]

5.4 Using telnet to manipulate a twisted server

To start things off, we're going to create a simple servet jilnst gives you remote access to a Python interpreter. We
will use a telnet client to access this server.

Runmktap telnet -p 4040 -u admin -w admin at your shell prompt. If you list the contents of your
current directory, you'll notice a new filetelnet.tap . After you do this, runwistd -f telnet.tap . Since
the Application has a telnet server that you specified to bpash4040, it will start listening for connections on this
port. Try connecting with your favorite telnet utility to 72.0.1 port 4040.

$ telnet localhost 4040
Trying 127.0.0.1...

Connected to localhost.
Escape character is 7.

twisted.manhole.telnet.ShellFactory
Twisted 1.1.0

username: admin

password: admin

>>>

Now, you should see a Python prompt>>. You can type any valid Python code here. Let's try lookinguzd.

>>> dir()
[__builtins__

Ok, not much. let’s play a little more:

CHAPTER 5. UTILITIES 171

>>> import __main__

>>> dir(__main__)

[_builtins__’, ’'__doc__’, ' _name__’, 'os’, 'run’, st ring’, 'sys’]
>>> gervice

<twisted.application.internet. TCPServer instance at 0x 10270f48>
>>> service._port

<twisted.manhole.telnet.ShellFactory on 4040>

>>> service.parent

<twisted.application.service.MultiService instance at 0x1024d7a8>

The service object is the service used to serve the telndt ahd that it is listening on port 4040 with something
called aShellFactory . Its parent is dwisted.application.service.MultiService , a collection of
services. We can keep getting the parent attribute of sesviatil we hit the root of all services in this tap.

As you can see, this is quite useful - we can introspect a ngnmiocess, see the internal objects, and even change
their attributes. We can add telnet support to existing tieg $0: mktap --append=foo.tap telnet -p
4040 -u user -w pass . The telnet server can of coursed be used from straight Rytbde as well. You can
see how to do this by reading the code tiwisted.tap.telnet

A final note - if you want access to be more secure, you can esanthe telnet server use SSL. Assuming you have
the appropriate certificate and private key files, youréaap telnet -p ssl:443:privateKey=mykey.
pem:certKey=cert.pem -u admin -w admin . Seetwisted.application.strports for more ex-
amples of options for listening on a port.

5.5 Writing tests for Twisted code
5.5.1 Trial basics

Trial is Twisted’s testing framework. It provides a library foritimg test cases and utility functions for working with
the Twisted environment in your tests, and a command-litiéyuor running your tests. Trial is built on the Python
standard library'sinittest module.

To run all the Twisted tests, do:

$ trial twisted

Refer to the Trial man page for other command-line options.

5.5.2 Twisted-specific quirks: reactor, Deferreds, callLagr

The standard Pythomnittest ~ framework, from which Trial is derived, is ideal for testingde with a fairly linear
flow of control. Twisted is an asynchronous networking framik which provides a clean, sensible way to establish
functions that are run in response to events (like timersimemming data), which creates a highly non-linear flow of
control. Trial has a few extensions which help to test thiglkdf code. This section provides some hints on how to
use these extensions and how to best structure your tests.

Leave the Reactor as you found it

Trial runs the entire test suite (over two thousand tests) gingle process, with a single reactor. Therefore it is
important that your test leave the reactor in the same sgatd@und it. Leftover timers may expire during somebody
else’s unsuspecting test. Leftover connection attemptg coaplete (and fail) during a later test. These lead to
intermittent failures that wander from test to test and &y time-consuming to track down.

Your test is responsible for cleaning up after itself. Té&Down method is an ideal place for this cleanup code:
it is always run regardless of whether your test passes lar(fide a bareexcept clause in a try-except construct).
Exceptions irntearDown are flagged as errors and flunk the test.

If your code uses Deferreds or depends on the reactor runyingcan return a Deferred from your test method,
setUp, or tearDown and Trial will do the right thing. That iswill run the reactor for you until the Deferred
has triggered and its callbacks have been run. Don’treaetor.run() , reactor.stop() , Or reactor.
iterate() in your tests.

CHAPTER 5. UTILITIES 172

Calls toreactor.callLater createlDelayedCall s. These need to be run or cancelled during a test,
otherwise they will outlive the test. This would be bad, hessathey could interfere with a later test, causing contusin
failures in unrelated tests! For this reason, Trial chetlesreactor to make sure there are no leftaelayed
Call sin the reactor after a test, and will fail the test if there. &rhe cleanest and simplest way to make sure this all
works is to return a Deferred from your test.

Similarly, sockets created during a test should be closatidgnd of the test. This applies to both listening ports
and client connections. So, callsreactor.listenTCP (andlistenUNIX , and so on) returtiListening
Port s, and these should be cleaned up before a test ends by cilirgstopListening method. Calls
to reactor.connectTCP return IConnector s, which should be cleaned up by calling thdisconnect
method. Trial will warn about unclosed sockets.

The golden rule is: If your tests call a function which remimDeferred, your test should return a Deferred.

Using Timers to Detect Failing Tests

It is common for tests to establish some kind of fail-safestiut that will terminate the test in case something unex-
pected has happened and none of the normal test-failure pegtfollowed. This timeout puts an upper bound on the
time that a test can consume, and prevents the entire téstisam stalling because of a single test. This is especially
important for the Twisted test suite, because it is run aatarally by the buildbot whenever changes are committed
to the Subversion repository.

The way to do this in Trial is to set thémeout attribute on your unit test method. Set the attribute to the
number of seconds you wish to elapse before the test raigegaLit error.

Chapter 6

Twisted RDBMS support

6.1 twisted.enterprise.adbapi: Twisted RDBMS support

6.1.1 Abstract

Twisted is an asynchronous networking framework, but mattfthse APl implementations unfortunately have block-
ing interfaces — for this reasotwisted.enterprise.adbapi was created. It is a non-blocking interface to the
standardized DB-API 2.0 API, which allows you to access almemof different RDBMSes.

6.1.2 What you should already know
e Python :-)
e How to write a simple Twisted Server (stwgs tutorial (page 13) to learn how)

e Familiarity with using database interfaces (see the doctmtien for DBAPI 2.8 or this articl€ by Andrew
Kuchling)

6.1.3 Quick Overview

Twisted is an asynchronous framework. This means standaabase modules cannot be used directly, as they
typically work something like:

Create connection...
db = dbmodule.connect('mydb’, 'andrew’, 'password’)
...which blocks for an unknown amount of time

Create a cursor
cursor = db.cursor()

Do a query...
resultset = cursor.query('SELECT * FROM table WHERE ...")
..which could take a long time, perhaps even minutes.

Those delays are unacceptable when using an asynchroaousviork such as Twisted. For this reason, twisted
providestwisted.enterprise.adbapi , an asynchronous wrapper for any DB-APIE"z(fbmpliant module.

enterprise.adbapi will do blocking database operations in seperate threalighvirigger callbacks in the
originating thread when they complete. In the meantime otinginal thread can continue doing normal work, like
servicing other requests.

Lhttp:/Avww.python.org/topics/database/Database ABIkEm|
2http://www.amk.ca/python/writing/DB-API.html
Shttp://www.python.org/topics/database/DatabaseABIREm|

173

CHAPTER 6. TWISTED RDBMS SUPPORT 174

6.1.4 How do | use adbapi?

Rather than creating a database connection directly, eseltrapi.ConnectionPool class to manage a connec-
tions for you. This allowenterprise.adbapi to use multiple connections, one per thread. This is easy:

Using the "dbmodule" from the previous example, create a Co nnectionPool

from twisted.enterprise import adbapi

dbpool = adbapi.ConnectionPool("dbmodule”, 'mydb’, 'and rew’, 'password’)

Things to note about doing this:

e There is no need to import domodule directly. You just pagssrthme toadbapi.ConnectionPool 'S
constructor.

e The parameters you would pass to dbmodule.connect aredoassatra arguments &albapi.Connection
Pool ’s constructor. Keyword parameters work as well.

Now we can do a database query:

equivalent of cursor.execute(statement), return cursor fetchall():
def getAge(user):
return dbpool.runQuery("SELECT age FROM users WHERE name = ?", user)

def printResult(l):
if I
print 1[0][0], "years old"
else:
print "No such user"

getAge("joe").addCallback(printResult)

This is straightforward, except perhaps for the return eafigetAge . It returns atwisted.internet.

defer.Deferred , which allows arbitrary callbacks to be called upon conipte{or upon failure). More docu-
mentation on Deferred is availaltere(page 100).
In addition torunQuery , there is alsaunOperation , and runinteraction that gets called with a

callable (e.g. a function). The function will be called iretthread with awisted.enterprise.adbapi.
Transaction , which basically mimics a DB-API cursor. In all cases a databtransaction will be commited after
your database usage is finished, unless an exception id raigghich case it will be rolled back.

def _getAge(txn, user):
this will run in a thread, we can use blocking calls
txn.execute("SELECT * FROM foo")
... other cursor commands called on txn ...
txn.execute("SELECT age FROM users WHERE name = ?", user)
result = txn.fetchall()
if result:
return result[0][0]
else:
return None

def getAge(user):
return dbpool.runinteraction(_getAge, user)

def printResult(age):
if age != None:
print age, "years old"
else:
print "No such user"

getAge("joe").addCallback(printResult)

CHAPTER 6. TWISTED RDBMS SUPPORT 175

Also worth noting is that these examples assumes that dbimodes the “gmarks” paramstyle (see the DB-API
specification). If your dbomodule uses a different paranestglg. pyformat) then use that. Twisted doesn'’t attempt to
offer any sort of magic paramater mungingmQuery(query, params, ...) maps directly ont@ursor.
execute(query, params,

6.1.5 Examples of various database adapters

Notice that the first argument is the module name you wouldliysimport and getonnect(...) from, and that
following arguments are whatever arguments you'd cafinect(...) with.

from twisted.enterprise import adbapi

Gadfly

cp = adbapi.ConnectionPool("gadfly”, "test", "/tmp/gadf lyDB")
PostgreSQL PyPgSQL

cp = adbapi.ConnectionPool("pyPgSQL.PgSQL", database=" test")
MySQL

cp = adbapi.ConnectionPool("MySQLdb", db="test")

6.1.6 And that's it!

That's all you need to know to use a database from within BaistYou probably should read the adbapi module’s
documentation to get an idea of the other functions it hashbpefully this document presents the core ideas.

6.2 Twisted Enterprise Row Objects

Note:

Due to lack of maintenancetwisted.enterprise.row and twisted.enterprise.
reflector have been deprecated since Twisted 8.0.

This documentation is maintained only for users with antegscodebase.

Thetwisted.enterprise.row module is a method of interfacing simple python objects wtls in rela-
tional database tables. It has two componentsRinObject class which developers sub-class for each relational
table that their code interacts with, and fReflector ~ which is responsible for updates, inserts, queries andatele
against the database.

The row module is intended for applications such as on-lamaes, and websites that require a back-end database
interface. Itis not a full functioned object-relational ppeer for python - it deals best with simple data types stmectu
in ways that can be easily represented in a relational ds¢abais well suited to building a python interface to an
existing relational database, and slightly less suitedltted database persistance to an existing python apphcatio

If row does not fit your model, you will be best off using the-level database API (page 173) directly, or writing
your own object/relational layer on top of it.

6.2.1 Class Definitions

To interface to relational database tables, the developest mreate a class derived from theisted.
enterprise.row.RowObject class for each table. These derived classes must define aenwhblass at-
tributes which contains information about the databaske titat class corresponds to. The required class attributes
are:

e rowColumns - list of the column names and types in the tabik thie correct case
e rowKeyColumns - list of key columns in fornficolumnName, typeName)]
e rowTableName - the name of the database table

There are also two optional class attributes that can befigabc

CHAPTER 6. TWISTED RDBMS SUPPORT 176

e rowForeignKeys - list of foreign keys to other databasedsbh the form: [(tableName, [(child
ColumnName, childColumnType), ...], [(parentColumnName , parentColumnType),
...], containerMethodName, autoLoad]

e rowFactoryMethod - a method that creates instances of ldss ¢
For example:

class RoomRow(row.RowObject):

rowColumns = [("roomld", "int"),
("town_id", "int"),
("name", "varchar"),
("owner", "varchar"),
("posx”, "int"),
(‘posy’, 'int),
("width", "int"),

("height", "int")]
rowKeyColumns = [("roomId", "int4")]
rowTableName = "testrooms"
rowFactoryMethod = [testRoomFactory]

The items in the rowColumns list will become data memberdasdses of this type when they are created by the
Reflector.

6.2.2 Initialization

The initialization phase builds the SQL for the databaseradtions. It uses the system catalogs of the database to do
this, but requires some basic information to get starte@ diass attributes of the classes derived from RowClass are
used for this. Those classes are passed to a Reflector wisesrétited.

There are currently two available reflectors in Twisted Eurise, the SQL Reflector for relational databases which
uses the python DB API, and the XML Reflector which uses a fitesy containing XML files. The XML reflector
is currently extremely slow.

An example class list for the RoomRow class we specified absiveg the SQLReflector:

from twisted.enterprise.sqlreflector import SQLReflect or

dbpool = adbapi.ConnectionPool("pyPgSQL.PgSQL")
reflector = SQLReflector(dbpool, [RoomRow])

6.2.3 Creating Row Objects

There are two methods of creating RowObjects - loading floendatabase, and creating a new instance ready to be
inserted.

To load rows from the database and create RowObiject ingtdoceach of the rows, use the loadObjectsFrom
method of the Reflector. This takes a tableName, an optiarsar‘data”’ parameter, and an optional “where clause”.
The where clause may be omitted which will retrieve all thegdrom the table. For example:

def gotRooms(rooms):
for room in rooms:
print "Got room:", room.id

d = reflector.loadObjectsFrom("testrooms”,
whereClause=[("id", reflector.EQUAL, 5)])
d.addCallback(gotRooms)

For more advanced RowObject construction, loadObjectsFmay use a factoryMethod that was specified as a
class attribute for the RowClass derived class. This methbfe called for each of the rows with the class object, the
userData parameter, and a dictionary of data from the dsgakeyed by column name. This factory method should
return a fully populated RowObject instance and may be used pre-processing, lookups, and data transformations
before exposing the data to user code. An example factoriyadet

CHAPTER 6. TWISTED RDBMS SUPPORT 177

def testRoomFactory(roomClass, userData, kw):
newRoom = roomClass(userData)
newRoom.__dict__.update(kw)
return newRoom

The last method of creating a row object is for new instanleasdo not already exist in the database table. In this
case, create a new instance and assign its primary keyuadisiland all of its member data attributes, then pass it to
theinsertRow method of the Reflector. For example:

newRoom = RoomRow()
newRoom.assignKeyAttr("rooml”, 11)
newRoom.town_id = 20
newRoom.name = 'newRooml’
newRoom.owner = 'fred’
newRoom.posx = 100
newRoom.posy = 100
newRoom.width = 15
newRoom.height = 20
reflector.insertRow(newRoom).addCallback(onInsert)

This will insert a new row into the database table for this fewODbject instance. Note that thssignKey
Attr method must be used to set primary key attributes - reguidiiEte assignment of a primary key attribute of a
rowObject will raise an exception. This prevents the dagabdentity of RowObject from being changed by mistake.

6.2.4 Relationships Between Tables

Specifying a foreign key for a RowClass creates a relatiprisétween database tables. WheadObjectsFrom
is called for a table, it will automatically load all the athien rows for the rows from the specified table. The child rows
will be put into a list member variable of the rowObject imsta with the namehildRows or if a containerMethod
is specified for the foreign key relationship, that method ke called on the parent row object for each row that is
being added to it as a child.

TheautoLoadmember of the foreign key definition is a flag that specifiestiwiechild rows should be auto-loaded
for that relationship when a parent row is loaded.

6.2.5 Duplicate Row Objects

If a reflector tries to load an instance of a rowObject thatrisaaly loaded, it will return a reference to the existing
rowObject rather than creating a new instance. The reflectontains a cache of weak references to all loaded row
objects by their unique keys for this purpose.

6.2.6 Updating Row Objects

RowObjects have dirty member attribute that is set to 1 when any of the member atébof the instance that
map to database columns are changed. This dirty flag can beasell when RowObjects need to be updated back
to the database. In addition, teetDirty =~ method can be overridden to provide more complex automatedlimg
such as dirty lists (be sure to call the base class setDiotygh!).

When it is determined that a RowObject instance is dirty aretiie have its state updated into the database, pass
that object to theipdateRow method of the Reflector. For example:

reflector.updateRow(room).addCallback(onUpdated)

For more complex behavior, the reflector can generate thef8Qhe update but not perform the update. This can
be useful for batching up multiple updates into single ratgie~or example:

updateSQL = reflector.updateRowSQL(room)

6.2.7 Deleting Row Objects

To delete a row from a database pass the RowObject instantbaorow to the ReflectodeleteRow method.
Deleting the python Rowobject instance doesautomatically delete the row from the database. For example

reflector.deleteRow(room)

Chapter 7

Perspective Broker

7.1 Overview of Twisted Spread

Perspective Broker (affectionately known as “PB”) is anra$yonous, symmetetwork protocol for secure, re-
mote method calls and transferring of objects. PB is “tnacesht, not transparent”, meaning that it is very visible and
obvious to see the difference between local method callpatahtially remote method calls, but remote method calls
are still extremely convenient to make, and it is easy to atsuhem to have objects which work both locally and
remotely.

PB supports user-defined serialized data in return valugishvean be either copied each time the value is returned,
or “cached”: only copied once and updated by notifications.

PB gets its name from the fact that access to objects is thraugerspective”. This means that when you are
responding to a remote method call, you can establish whalsng the call.

7.1.1 Rationale

No other currently existing protocols have all the progstof PB at the same time. The particularly interesting
combination of attributes, though, is that PB is flexible #igtweight, allowing for rapid development, while still
powerful enough to do two-way method calls and user-defired types.

It is important to have these attributes in order to allowdqgurotocol which is extensible. One of the facets of
this flexibility is that PB can integrate an arbitrary numbéservices could be aggregated over a single connection,
as well as publish and call new methods on existing objedtsont restarting the server or client.

7.2 Introduction to Perspective Broker

7.2.1 Introduction

Suppose you find yourself in control of both ends of the wirgu frave two programs that need to talk to each other,
and you get to use any protocol you want. If you can think ofrymoblem in terms of objects that need to make
method calls on each other, then chances are good that yaiseawisted’s Perspective Broker protocol rather than
trying to shoehorn your needs into something like HTTP, gslementing yet another RPC mecharmfsm

The Perspective Broker system (abbreviated “PB”, spawnimgerous sandwich-related puns) is based upon a
few central concepts:

e serialization taking fairly arbitrary objects and types, turning thertoia chunk of bytes, sending them over a
wire, then reconstituting them on the other end. By keepargful track of object ids, the serialized objects can
contain references to other objects and the remote coptililbe useful.

e remote method caliddoing something to a local object and causing a method tougetn a distant one. The
local object is called &emoteReference , and you “do something” by running itsallRemote method.

1There is a negotiation phase for banana with particulasrilelistener and initiator, so it's n@bmpletelysymmetric, but after the connection
is fully established, the protocol is completely symmetrical.

2Most of Twisted is like this. Hell, most of unix is like this: youthink it would be useful, someone else has probably thougtitwiay in the
past, and acted on it, and you can take advantage of the ®ypttkated to solve the same problem you're facing now.

178

CHAPTER 7. PERSPECTIVE BROKER 179

This document will contain several examples that will (Hofg) appear redundant and verbose once you've
figured out what's going on. To begin with, much of the codd just be labelled “magic”: don’t worry about how
these parts work yet. It will be explained more fully later.

7.2.2 Object Roadmap

To start with, here are the major classes, interfaces, amdifuns involved in PB, with links to the file where they are
defined (all of which are under twisted/, of course). Don’ry@bout understanding what they all do yet: it's easier
to figure them out through their interaction than explairtimgm one at a time.

e Fact ory : internet/protocol.py

e PBSer ver Fact ory : spread/pb.py

e Broker : spread/pb.py

Other classes that are involved at some point:

e Renot eRef er ence : spread/pb.py

e pb. Root : spread/pb.py , actually defined aRoot in spread/flavors.py

e pb. Ref er enceabl e : spread/pb.py , actually defined aReferenceable in spread/flavors.
py

Classes and interfaces that get involved when you startréatsout authorization and security:
e Portal : cred/portal.py
e | Real m: cred/portal.py

e | Perspecti ve : spread/pb.py , which you will usually be interacting with via pb.Avatarifasic imple-
mentor of the interface).

Subclassing and Implementing

Technically you can subclass anything you want, but te@ligigou could also write a whole new framework, which
would just waste a lot of time. Knowing which classes are wistef subclass or which interfaces to implement is one
of the bits of knowledge that’s crucial to using PB (and allafisted) successfully. Here are some hints to get started:

e pb.Root , pb.Referenceable : you'll subclass these to make remotely-referenceablecbbji.e., objects
which you can call methods on remotely) using PB. You dorédh change any of the existing behavior, just
inherit all of it and add the remotely-accessible methods you want to export.

e pb.Avatar : You'll be subclassing this when you get into PB programmivith authorization. This is an
implementor of IPerspective.

e ICredentialsChecker . Implement this if you want to authenticate your users agfasome sort of data
store: i.e., an LDAP database, an RDBMS, etc. There areddiradew implementations of this for various
back-ends in twisted.cred.checkers.

XXX: add lists of useful-to-override methods here

7.2.3 Things you can Call Remotely

At this writing, there are three “flavors” of objects that ca@ accessed remotely througfemoteReference
objects. Each of these flavors has a rule for howctilRemote message is transformed into a local method call on
the server. In order to use one of these “flavors”, subclass nd name your published methods with the appropriate
prefix.

CHAPTER 7. PERSPECTIVE BROKER 180

e twisted.spread.pb.IPerspective implementors

This is the first interface we deal with. It is a “perspectiegito your PB application. Perspectives are slightly
special because they are usually the first object that a gisencan access in your application (after they log
on). A user should only receive a reference to th@inperspective. PB works hard to verify, as best it can, that
any method that can be called on a perspective directly iggbelled on behalf of the user who is represented
by that perspective. (Services with unusual requirememt&h behalf of”, such as simulations with the ability
to posess another player’s avatar, are accomplished bidimgindirected access to another user’s perspective.)

Perspectives are not usually serialized as remote refeseso do not return an IPerspective-implementor di-
rectly.

The way most people will want to implement IPerspective isshigclassing pb.Avatar. Remotely accessible
methods on pb.Avatar instances are named witlpdrepective _ prefix.

o twisted.spread.flavors.Referenceable

Referenceable objects are the simplest kind of PB objeat.cdm call methods on them and return them from
methods to provide access to other objects’ methods.

However, when a method is called on a Referenceable, it'posgible to tell who called it.
Remotely accessible methods on Referenceables are narteith@riemote _ prefix.

e twisted.spread.flavors.Viewable

Viewable objects are remotely referenceable objects whiéele the additional requirement that it must be possi-
ble to tell who is calling them. The argument list to a Viewglbremote methods is modified in order to include
the Perspective representing the calling user.

Remotely accessible methods on Viewables are named withidte _ prefix.

7.2.4 Things you can Copy Remotely

In addition to returning objects that you can call remotehds on, you can return structured copies of local objects.

There are 2 basic flavors that allow for copying objects refgotAgain, you can use these by subclassing them.
In order to specify what state you want to have copied whesetlage serialized, you can either use the Python default
__getstate __or specialized method calls for that flavor.

e twisted.spread.flavors.Copyable

This is the simpler kind of object that can be copied. Evangtthis object is returned from a method or passed
as an argument, it is serialized and unserialized.

Copyable provides a method you can overridggtStateToCopyFor(perspective) , which allows
you to decide what an object will look like for the perspeetiwho is requesting it. Thperspective
argument will be the perspective which is either passingrgaraent or returning a result an instance of your
Copyable class.

For security reasons, in order to allow a particular Copyatthss to actually be copied, you must declare a
RemoteCopy handler for that Copyable subclass. The easiest way to ddsho declare both in the same
module, like so:

from twisted.spread import flavors
class Foo(flavors.Copyable):
pass
class RemoteFoo(flavors.RemoteCopy):
pass
flavors.setCopierForClass(str(Foo), RemoteFo0)

In this case, each time a Foo is copied between peers, a Renaotéll be instantiated and populated with the
Foo’s state. If you do not do this, PB will complain that theese been security violations, and it may close the
connection.

CHAPTER 7. PERSPECTIVE BROKER 181

e twisted.spread.flavors.Cacheable

Let me preface this with a warning: Cacheable may be harddenstand. The motivation for it may be unclear
if you don't have some experience with real-world applicas that use remote method calling of some kind.
Once you understand why you need it, what it does will likedgrs simple and obvious, but if you get confused
by this, forget about it and come back later. It's possiblage PB without understanding Cacheable at alll.

Cacheable is a flavor which is designed to be copied only wkeassary, and updated on the fly as changes are
made to it. When passed as an argument or a return value, iftee@lle exists on the side of the connection it
is being copied to, it will be referred to by ID and not copied.

Cacheable is designed to minimize errors involved in ragilig an object between multiple servers, espe-
cially those related to having stale information. In ordedo this, Cacheable automatically registers observers
and queries state atomically, together. You can overrigentiethodgetStateToCacheAndObserve
For(self, perspective, observer) in order to specify how your observers will be stored and up-
dated.

Similar to getStateToCopyFor , getStateToCacheAndObserveFor gets passed a perspective. It
also gets passed abserver , which is a remote reference to a “secret” fourth referebleefiavor: Remote
Cache.

A RemoteCache is simply the object that represents y@acheable on the other side of the connection. It
is registered using the same methodrasnoteCopy, above. RemoteCache is different, however, in that it will

be referenced by its peer. It acts as a Referenceable, wherethods prefixed witlobserve _will be callable
remotely. It is recommended that your object maintain &(liste: library support for this is forthcoming!) of

observers, and update them ustiadjRemote when the Cacheable changes in a way that should be noticeable

to its clients.

Finally, when all references to &acheable from a given perspective are loststopped
Observing(perspective, observer) will be called on theCacheable , with the same perspec-
tive/observer pair thagetStateToCacheAndObserveFor was originally called with. Any cleanup re-
mote calls can be made there, as well as removing the obsarjemt from any lists which it was previously in.
Any further calls to this observer object will be invalid.

7.3 Using Perspective Broker

7.3.1 Basic Example

The first example to look at is a complete (although somewhaéal) application. It use®®BServerFactory()
on the server side, arRBClientFactory() on the client side.

from twisted.spread import pb
from twisted.internet import reactor

class Echoer(pb.Root):
def remote_echo(self, st):
print 'echoing:’, st
return st
if _name__ ==’ main__":
reactor.listenTCP(8789, pb.PBServerFactory(Echoer()))
reactor.run()

Source listing —pbsimple.py

from twisted.spread import pb
from twisted.internet import reactor
from twisted.python import util

factory = pb.PBClientFactory()

CHAPTER 7. PERSPECTIVE BROKER 182

reactor.connectTCP("localhost", 8789, factory)

d = factory.getRootObject()

d.addCallback(lambda object: object.callRemote("echo" , "hello network"))
d.addCallback(lambda echo: ’'server echoed: '+echo)

d.addErrback(lambda reason: ’'error: '+str(reason.value)
d.addCallback(util.printin)

d.addCallback(lambda _: reactor.stop())

reactor.run()

Source listing —pbsimpleclient.py

First we look at the server. This defines an Echoer classviterirom pb.Root), with a method called
remote _echo() . pb.Root objects (because of their inheritancepdif Referenceable , described later) can
define methods with names of the foremote _*; a client which obtains a remote reference to ffiaRoot object
will be able to invoke those methods.

The pb.Root -ish object is given to @b.PBServerFactory() . This is aFactory object like any other:
the Protocol objects it creates for new connections know how to speak BiprBtocol. The object you give to
pb.PBServerFactory() becomes the “root object”, which simply makes it availale the client to retrieve.
The client may only request references to the objects you tegorovide it: this helps you implement your security
model. Because it is so common to export just a single obgu pecause emote _* method on that one can
return a reference to any other object you might want to giug, ¢he simplest example is one where BigServer
Factory is given the root object, and the client retrieves it.

The client side usepb.PBClientFactory to make a connection to a given port. This is a two-step pro-
cess involving opening a TCP connection to a given host amtdgmal requesting the root object usirgetRoot
Object()

BecausegetRootObject() has to wait until a network connection has been made and egelsome data,
it may take a while, so it returns a Deferred, to which the dpp¢Ct() callback is attached. (See the documentation
on Deferring Executiorfpage 100) for a complete explanation@éferred s). If and when the connection succeeds
and a reference to the remote root object is obtained, tHisack is run. The first argument passed to the callback is a
remote reference to the distant root object. (you can giverarguments to the callback too, see the other parameters
for .addCallback() and.addCallbacks()).

The callback does:

object.callRemote("echo”, "hello network™)

which causes the server'semote _echo() method to be invoked. (runningallRemote("boom™)
would causeremote _boom() to be run, etc). Again because of the delay involveal|Remote() returns a
Deferred . Assuming the remote method was run without causing an érecefincluding an attempt to invoke an
unknown method), the callback attached to thaferred will be invoked with any objects that were returned by
the remote method call.

In this example, the serverschoer object has a method invokeeactlyas if some code on the server side had
done:

echoer_object.remote_echo("hello network")

and from the definition ofemote _echo() we see that this just returns the same string it was giventid‘he
network”.

From the client’'s point of view, the remote call gets anotbeferred object instead of that stringcall
Remote() alwaysreturns aDeferred . This is why PB is described as a system for “translucent’atermethod
calls instead of “transparent” ones: you cannot pretentlttiearemote object is really local. Trying to do so (as
some other RPC mechanisms do, coughCORBAcough) breakswbamfaced with the asynchronous nature of the
network. Using Deferreds turns out to be a very clean way &b déh the whole thing.

The remote reference object (the one givegdatiRootObject() 's success callback) is an instance @mote
Reference class. This means you can use it to invoke methods on the essb@ct that it refers to. Only instances
of RemoteReference are eligible for.callRemote() . TheRemoteReference object is the one that lives
on the remote side (the client, in this case), not the lock &vhere the actual object is defined).

In our example, the local object is thathoer() instance, which inherits fromb.Root , which inherits from
pb.Referenceable . Itis thatReferenceable class that makes the object eligible to be available for temo

CHAPTER 7. PERSPECTIVE BROKER 183

method calld. If you have an object that is Referenceable, then any diettmanages to get a reference to it can
invoke anyremote _* methods they please.

Note:

Theonlything they can do is invoke those methods. In particulay t@not access attributes. From
a security point of view, you control what they can do by lingtwhat theremote _* methods can do.

Also note: the other classes likgeferenceable allow access to other methods, in particular
perspective _* andview _*+ may be accessed. Don't write local-only methods with themmes,
because then remote callers will be able to do more than yended.

Also also note: the other classes ligb.Copyable do allow access to attributes, but you control
which ones they can see.

You don't have to be ab.Root to be remotely callable, but you do have togieReferenceable . (Objects
that inherit frompb.Referenceable but not frompb.Root can be remotely called, but onjgb.Root -ish
objects can be given to ti®BServerFactory)

7.3.2 Complete Example

from twisted.spread import pb
class QuoteReader(pb.Root):

def __init_ (self, quoter):
self.quoter = quoter

def remote_nextQuote(self):
return self.quoter.getQuote()

QuoteReader Root object pbquote.py

For examples of these, we're returning to the TwistedQupteect discussed iWriting Plugins(page 142). To
use the examples in this HOWTO, we need to make a TML file to tefeur new set of examples:

register("Quote of the Day TAP Builder",
"TwistedQuotes.quotetap2",
description="""
Example of a TAP builder module.
type="tap",
tapname="gotd")

Twisted Quotes Plug-in registration ptugins2.tml

The root object for TwistedQuotes is pretty small. The ohing it needs to keep track of for itself is the quoter
object.

The QuoteReader publishes one method. By subclad®owl , we are declaring that all methods with the
remote _ prefix are remotely accessible.

In order to get this Root published, so that we can actualtyneat to it, we need to re-visit the TAP building
plugin, so we can actually get an Application that has a PBSEractory listening on a port. (The default port for PB
is 8787.)

from TwistedQuotes import quoteproto # Protocol and Factor y
from TwistedQuotes import quoters # "give me a quote" code
from TwistedQuotes import pbquote # perspective broker bin ding

from twisted.application import service, internet

3There are a few other classes that can bestow this abilitypptbReferenceable is the easiest to understand; see dlaelow for details on
the others.

CHAPTER 7. PERSPECTIVE BROKER 184

from twisted.python import usage # twisted command-line pr ocessing
from twisted.spread import pb # Perspective Broker

class Options(usage.Options):
optParameters = [['port", "p", 8007,

"Port number to listen on for QOTD protocol."],
['static", "s", "An apple a day keeps the doctor away.",
"A static quote to display."],
['file", "f*, None,
"A fortune-format text file to read quotes from."],
['pb", "b", None,
"Port to listen with PB server"]]

def makeService(config):
svc = service.MultiService()
if config[*file"]: # If | was given a "file" option...
Read quotes from a file, selecting a random one each time,
quoter = quoters.FortuneQuoter([config[’file’]])
else: # otherwise,
read a single quote from the command line (or use the default).
quoter = quoters.StaticQuoter(config['static’])
port = int(config["port"]) # TCP port to listen on
factory = quoteproto.QOTDFactory(quoter) # here we create a QOTDFactory
Finally, set up our factory, with its custom quoter, to crea te QOTD
protocol instances when events arrive on the specified por t.
pbport = config['pb’] # TCP PB port to listen on
if pbport:
pbfact = pb.PBServerFactory(pbquote.QuoteReader(quote r)
svc.addService(internet. TCPServer(int(pbport), pbfac 1))
svc.addService(internet. TCPServer(port, factory))
return svc

TAP Plugin with PB Quotes support tiotetap2.py

In the TAP builder, all we need to do is create our QuoteRemdéance (making sure to pass it our quoter object),
give it to a PBServerFactory, and create a TCPServer sottban listen on a TCP port.

Accessing this through a client is fairly easy, as we usephd&BClientFactory.getRootObject
method.

from sys import stdout

from twisted.python import log
log.discardLogs()

from twisted.internet import reactor
from twisted.spread import pb

def connected(root):
root.callRemote('nextQuote’).addCallbacks(success, f ailure)

def success(quote):
stdout.write(quote + "\n")
reactor.stop()

def failure(error):
stdout.write("Failed to obtain quote.\n")
reactor.stop()

factory = pb.PBClientFactory()
reactor.connectTCP(

CHAPTER 7. PERSPECTIVE BROKER 185

"localhost”, # host name
pb.portno, # port number
factory, # factory

)

factory.getRootObject().addCallbacks(connected, # whe n we get the root
failure) # when we can't

reactor.run() # start the main loop
PB Quotes Client Code -pbquoteclient.py

pb.PBClientFactory.getRootObject will handle all the details of waiting for the creation of anco
nection. It returns deferred , which will have its callback called when the reactor consea the remote server
andpb.PBClientFactory gets the root, and have igsrback called when the object-connection fails for any
reason, whether it was host lookup failure, connectionsaf{lor some server-side error.

In this example, theonnected callback should be made when the script is run. Looking attu, it should
be clear that in the event of a connection success, the ghi#qirint out a quote and exit. If you start up a server, you
can see:

% mktap qotd --pb 8787

% twistd -f qotd.tap

% python -c 'import TwistedQuotes.pbquoteclient’
An apple a day keeps the doctor away.

The argument to this callbackgot , is aRemoteReference . It represents a reference to teoteReader
object.

RemoteReference objects have one method which is their purpose for begadiRemote . This method
allows you to call a remote method on the object being refetoeby the ReferenceRemoteReference.call
Remote, like pb.PBClientFactory.getRootObject , returns @Deferred . When a response to the method-
call being sent arrives, thBeferred 's callback or errback will be made, depending on whether an error
occurred in processing the method call.

This introduction to PB does not showcase all of the featthrasit provides, but hopefully it gives you a good
idea of where to get started setting up your own applicatitere are some of the other building blocks you can use.

7.3.3 Passing more references

Here is an example of usingb.Referenceable in a second class. The secoRéferenceable object can
have remote methods invoked too, just like the first. In tkenaple, the initial root object has a method that returns a
reference to the second object.

#! [usr/bin/python
from twisted.spread import pb

class Two(pb.Referenceable):
def remote_three(self, arg):
print "Two.three was given", arg

class One(pb.Root):
def remote_getTwo(self):
two = Two()
print "returning a Two called", two
return two

from twisted.internet import reactor
reactor.listenTCP(8800, pb.PBServerFactory(One()))
reactor.run()

CHAPTER 7. PERSPECTIVE BROKER 186

Source listing —pbl1server.py

#! Jusr/bin/python

from twisted.spread import pb
from twisted.internet import reactor

def main():
factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
defl = factory.getRootObject()
defl.addCallbacks(got_objl, err_objl)
reactor.run()

def err_objl(reason):
print "error getting first object”, reason
reactor.stop()

def got_objl(objl):
print "got first object:", objl
print "asking it to getTwo"
def2 = objl.callRemote("getTwo")
def2.addCallbacks(got_obj2)

def got_obj2(obj2):
print "got second object:", obj2
print "telling it to do three(12)"
obj2.callRemote("three”, 12)

main()

Source listing —pblclient.py

The root object has a method callemote _getTwo , which returns th@wo() instance. On the client end, the
callback gets &emoteReference to thatinstance. The client can then invoke twoésnote _three() method.

You can use this technique to provide access to arbitrasyadetbjects. Just remember that any object that might
get passed “over the wire” must inherit frdReferenceable (or one of the other flavors). If you try to pass a non-
Referenceable object (say, by returning one fromaraote _* method), you'll get ansecureJelly exceptioﬁ.

7.3.4 References can come back to you

If your server gives a reference to a client, and then thantlgives the reference back to the server, the server will
wind up with the same object it gave out originally. The deréion layer watches for returning reference identifiers
and turns them into actual objects. You need to stay awardefevthe object lives: if it is on your side, you do actual
method calls. If it is on the other side, you a@llRemote() 5,

#! Jusr/bin/python

from twisted.spread import pb
from twisted.internet import reactor

4This can be overridden, by subclassing one of the Seridéizdvors and defining custom serialization code for yousslaSeePassing
Complex Typefpage 194) for details.

5The binary nature of this local vs. remote scheme works begauseannot give RemoteReferences to a third party. If youd;abken your
object A could go to B, B could give it to C, C might give it backytou, and you would be hard pressed to tell if the object live@% memory
space, in B’s, or if it was really your own object, tarnished aullied after being handed down like a really ugly pictilv@ your great aunt owned
and which nobody wants but which nobody can bear to throw@®@kt.not really like that, but you get the idea.

CHAPTER 7. PERSPECTIVE BROKER

class Two(pb.Referenceable):
def remote_print(self, arg):
print "two.print was given", arg

class One(pb.Root):
def __init_ (self, two):
#pb.Root.__init__ (self) # pb.Root doesn’'t implement _in
self.two = two
def remote_getTwo(self):
print "One.getTwo(), returning my two called"”, two
return two
def remote_checkTwo(self, newtwo):
print "One.checkTwo(): comparing my two", self.two
print "One.checkTwo(): against your two", newtwo
if two == newtwo:
print "One.checkTwo(): our twos are the same"

two = Two()

root_obj = One(two)

reactor.listenTCP(8800, pb.PBServerFactory(root_obj))
reactor.run()

Source listing —pb2server.py

#! Jusr/bin/python

from twisted.spread import pb
from twisted.internet import reactor

def main():
foo = Foo()
factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
factory.getRootObject().addCallback(foo.stepl)
reactor.run()

keeping globals around is starting to get ugly, so we use a si
instead. Instead of hooking one function to the next, we hoo
to the next.

class Foo:
def __init__ (self):
self.oneRef = None

def stepl(self, obj):
print "got one object:", obj
self.oneRef = obj
print "asking it to getTwo"
self.oneRef.callRemote("getTwo").addCallback(self.s

def step2(self, two):
print "got two object:", two
print "giving it back to one"
print "one is", self.oneRef
self.oneRef.callRemote("checkTwo", two)

mple class
k one method

tep2)

187

CHAPTER 7. PERSPECTIVE BROKER 188

main()

Source listing —pb2client.py

The server gives awo() instance to the client, who then returns the reference bathet server. The server
compares the “two” given with the “two” received and showattthey are the same, and that both are real objects
instead of remote references.

A few other techniques are demonstrateglir2client.py . One is that the callbacks are are added vatid
Callback instead of.addCallbacks . As you can tell from theDeferred (page 100) documentationadd
Callback is a simplified form which only adds a success callback. Therds that to keep track of state from one
callback to the next (the remote reference to the main Orgéct), we create a simple class, store the reference in
an instance thereof, and point the callbacks at a sequermmiafi methods. This is a convenient way to encapsulate
a state machine. Each response kicks off the next methodgrandata that needs to be carried from one state to the
next can simply be saved as an attribute of the object.

Remember that the client can give you back any remote refergou’ve given them. Don't base your zillion-
dollar stock-trading clearinghouse server on the ideaytbatrust the client to give you back the right reference. The
security model inherent in PB means that they @aly give you back a reference that you've given them for the aufirre
connection (not one you've given to someone else insteadom® you gave them last time before the TCP session
went down, nor one you haven't yet given to the client), bt jike with URLs and HTTP cookies, the particular
reference they give you is entirely under their control.

7.3.5 References to client-side objects

Anything that's Referenceable can get passed across teeinvaither direction The “client” can give a reference to
the “server”, and then the server can use .callRemote(yakenmethods on the client end. This fuzzes the distinction
between “client” and “server”: the only real difference ifavinitiates the original TCP connection; after that itk al
symmetric.

#! [usr/bin/python

from twisted.spread import pb
from twisted.internet import reactor

class One(pb.Root):
def remote_takeTwo(self, two):
print "received a Two called", two
print "telling it to print(12)"
two.callRemote("print”, 12)

reactor.listenTCP(8800, pb.PBServerFactory(One()))
reactor.run()

Source listing —pb3server.py

#! Jusr/bin/python

from twisted.spread import pb
from twisted.internet import reactor

class Two(pb.Referenceable):
def remote_print(self, arg):
print "Two.print() called with", arg

def main():
two = Two()

CHAPTER 7. PERSPECTIVE BROKER 189

factory = pb.PBClientFactory()

reactor.connectTCP("localhost", 8800, factory)

defl = factory.getRootObject()

defl.addCallback(got_obj, two) # hands our 'two’ to the cal Iback
reactor.run()

def got_obj(obj, two):
print "got One:", obj
print "giving it our two"
obj.callRemote("takeTwo", two)

main()

Source listing —pb3client.py

In this example, the client gives a reference to its own dljethe server. The server then invokes a remote
method on the client-side object.

7.3.6 Raising Remote Exceptions

Everything so far has covered what happens when things b Mghat about when they go wrong? The Python Way
is to raise an exception of some sort. The Twisted Way is threesa

The only special thing you do is to define yddrception subclass by deriving it fronpb.Error . When
any remotely-invokable method (likeemote _* or perspective _*) raises apb.Error -derived exception, a
serialized form of that Exception object will be sent backothe wiré. The other side (which didallRemote)
will have the ‘errback " callback run with aFailure object that contains a copy of the exception object. This
Failure object can be queried to retrieve the error message andlatsdaeback.

Failure is a special class, defined twisted/python/failure.py , created to make it easier to handle
asynchronous exceptions. Just as exception handlers camsteglerrback functions can be chained. If one errback
can’t handle the particular type of failure, it can be “pasang” to a errback handler further down the chain.

For simple purposes, think of tHeailure as just a container for remotely-throvtxception objects. To
extract the string that was put into the exception, usegigsErrorMessage() method. To get the type of the
exception (as a string), look at itype attribute. The stack traceback is available too. The irisstat let the errback
function get just as much information about the exceptiofPghon’s normakry: clauses do, even though the
exception occurred in somebody else’s memory space at sokmown time in the past.

#!' lusr/bin/python

from twisted.spread import pb
from twisted.internet import reactor

class MyError(pb.Error):
""This is an Expected Exception. Something bad happened."
pass

class MyError2(Exception):
""This is an Unexpected Exception. Something really bad ha ppened.
pass

class One(pb.Root):
def remote_broken(self):
msg = "fall down go boom"
print "raising a MyError exception with data '%s™ % msg
raise MyError(msg)
def remote_broken2(self):

5To be precise, the Failure will be sengifiy exception is raised, not just pb.Error-derived ones. Beisirver will print ugly error messages if
you raise ones that aren’t derived from pb.Error.

CHAPTER 7. PERSPECTIVE BROKER

msg = "hadda owie"
print "raising a MyError2 exception with data '%s™ % msg
raise MyError2(msg)

def main():
reactor.listenTCP(8800, pb.PBServerFactory(One()))
reactor.run()

if name_ == ' main__ "
main()

Source listing —excserver.py

#! Jusr/bin/python

from twisted.spread import pb
from twisted.internet import reactor

def main():
factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
d = factory.getRootObject()
d.addCallbacks(got_obj)
reactor.run()

def got_obj(obj):
change "broken" into "broken2" to demonstrate an unhandle
d2 = obj.callRemote("broken™)
d2.addCallback(working)
d2.addErrback(broken)

def working():
print "erm, it wasn't *supposed * to work.."

def broken(reason):
print "got remote Exception"
reason should be a Failure (or subclass) holding the MyErro
print " . class__ =", reason.__class__
print " .getErrorMessage() =", reason.getErrorMessage()

print " .type =", reason.type
reactor.stop()

main()

Source listing —excclient.py

% ./exc_client.py
got remote Exception

.__class__ = twisted.spread.pb.CopiedFailure
.getErrorMessage() = fall down go boom
type = _ main__.MyError

Main loop terminated.

190

d exception

r exception

Oh, and what happens if you raise some other kind of exceptiSomething thaisn't subclassed fronpb.
Error ? Well, those are called “unexpected exceptions”, whicheribkisted think that something hasally gone
wrong. These will raise an exception on therverside. This won't break the connection (the exception isgea

CHAPTER 7. PERSPECTIVE BROKER 191

just like most exceptions that occur in response to netwaffi¢), but it will print out an unsightly stack trace on
the server’s stderr with a message that says “Peer Will Re¢d Traceback”, just as if the exception had happened
outside a remotely-invokable method. (This message withg&urrent log target, 1bg.startLogging was used

to redirect it). The client will get the santailure object in either case, but subclassing your exception fobm
Error is the way to tell Twisted that you expect this sort of excaptiand that it is ok to just let the client handle it
instead of also asking the server to complain. Loodat _client.py and change it to invokeroken2() instead

of broken() to see the change in the server’s behavior.

If you don’t add anerrback function to theDeferred , then a remote exception will still sendrailure
object back over, but it will get lodged in th@eferred with nowhere to go. When th&teferred finally goes out
of scope, the side that dmhllRemote will emit a message about an “Unhandled error in Deferrel@h@with an
ugly stack trace. It can’t raise an exception at that poifte(all, thecallRemote that triggered the problem is long
gone), but it will emit a traceback. So be a good programmeaamays adcer r back handlers even if they are just
calls tolog.err

7.3.7 Try/lExcept blocks and Failure.trap

To implement the equivalent of the Python try/except blagisich can trap particular kinds of exceptions and pass
others “up” to higher-levetry/except blocks), you can use thérap() method in conjunction with multiple
errback handlers on thd®eferred . Re-raising an exception in arrback handler serves to pass that new
exception to the next handler in the chain. Trep method is given a list of exceptions to look for, and will eese
anything that isn’t on the list. Instead of passing unhash@beceptions “up” to an enclosirtgy block, this has the
effect of passing the exception “off” to laterrback handlers on the sanigeferred . Thetrap calls are used in
chained errbacks to test for each kind of exception in sezpien

#! Jusr/bin/python

from twisted.internet import reactor
from twisted.spread import pb

class MyException(pb.Error):
pass

class One(pb.Root):
def remote_fooMethod(self, arg):
if arg == "panic!™
raise MyException
return "response”
def remote_shutdown(self):
reactor.stop()

reactor.listenTCP(8800, pb.PBServerFactory(One()))
reactor.run()

Source listing —trap_server.py

#! Jusr/bin/python

from twisted.spread import pb, jelly
from twisted.python import log
from twisted.internet import reactor

class MyException(pb.Error): pass
class MyOtherException(pb.Error): pass

class ScaryObject:
not safe for serialization
pass

CHAPTER 7. PERSPECTIVE BROKER

def worksLike(obj):
the callback/errback sequence in class One works just like
asynchronous version of the following:
try:
response = obj.callMethod(name, arg)
except pb.DeadReferenceError:
print " stale reference: the client disconnected or crashed
except jelly.Insecurelelly:
print " InsecurelJelly: you tried to send something unsafe to
except (MyException, MyOtherException):
print " remote raised a MyException" # or MyOtherException
except:
print " something else happened"
else:
print " method successful, response:”, response

class One:
def worked(self, response):
print * method successful, response:", response
def check_InsecureJdelly(self, failure):
failure.trap(jelly.InsecureJelly)
print " InsecureJelly: you tried to send something unsafe to
return None
def check MyException(self, failure):
which = failure.trap(MyException, MyOtherException)
if which == MyException:
print " remote raised a MyException"
else:
print " remote raised a MyOtherException”
return None
def catch_everythingElse(self, failure):
print " something else happened"
log.err(failure)
return None

def doCall(self, explanation, arg):

print explanation

try:
deferred = self.remote.callRemote("fooMethod", arg)
deferred.addCallback(self.worked)
deferred.addErrback(self.check_InsecureJelly)
deferred.addErrback(self.check_MyException)
deferred.addErrback(self.catch_everythingElse)

except pb.DeadReferenceError:
print " stale reference: the client disconnected or crashed

def callOne(self):

self.doCall("callOne: call with safe object", "safe strin
def callTwo(self):

self.doCall("callTwo: call with dangerous object", Scary
def callThree(self):

self.doCall("callThree: call that raises remote exceptio
def callShutdown(self):

print "telling them to shut down"

self.remote.callRemote("shutdown")
def callFour(self):

192

an

them"

them"

g")
Object())

n", "panic!")

CHAPTER 7. PERSPECTIVE BROKER 193

self.doCall("callFour: call on stale reference", "dummy")

def got_obj(self, obj):
self.remote = obj
reactor.callLater(1, self.callOne)
reactor.callLater(2, self.callTwo)
reactor.callLater(3, self.callThree)
reactor.callLater(4, self.callShutdown)
reactor.callLater(5, self.callFour)
reactor.callLater(6, reactor.stop)

factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
deferred = factory.getRootObject()
deferred.addCallback(One().got_obj)
reactor.run()

Source listing —trap_client.py

% ./trap_client.py

callOne: call with safe object

method successful, response: response

callTwo: call with dangerous object

Insecuredelly: you tried to send something unsafe to them
callThree: call that raises remote exception

remote raised a MyException

telling them to shut down

callFour: call on stale reference

stale reference: the client disconnected or crashed
%

In this examplecallTwo tries to send an instance of a locally-defined class thraadRemote . The default
security model implemented tpb.Jelly on the remote end will not allow unknown classes to be unigesh(i.e.
taken off the wire as a stream of bytes and turned back intobggto a living, breathing instance of some class):
one reason is that it does not know which local class oughttaded to create an instance that corresponds to the
remote objegt The receiving end of the connection gets to decide what ¢ecand what to reject. It indicates
its disapproval by raising pb.InsecureJelly exception. Because it occurs at the remote end, the exoeptio
returned to the caller asynchronously, soesrback handler for the associatddeferred is run. That errback
receives dailure which wraps thénsecureJelly

Remember thatrap re-raises exceptions that it wasn't asked to look for. Yom caly check for one set of
exceptions per errback handler: all others must be checkadsubsequent handlaheck _MyException shows
how multiple kinds of exceptions can be checked in a singleaek: give a list of exception types tap , and it
will return the matching member. In this case, the kinds afegtions we are checking foMf/Exception andMy
OtherException) may be raised by the remote end: they inherit fralooError

The handler can retuidone to terminate processing of the errback chain (to be preitisejtches to the callback
that follows the errback; if there is no callback then pregesg terminates). It is a good idea to put an errback that
will catch everything (ndrap tests, no possible chance of raising more exceptions, alveyrndNone) at the end
of the chain. Just as with regulay: except: handlers, you need to think carefully about ways in whichryou
errback handlers could themselves raise exceptions. Tie iexportance in an asynchronous environment is that an
exception that falls off the end of thgeferred will not be signalled until thaDeferred goes out of scope, and at

"The naive approach of simply doingport SomeClass to match a remote caller who claims to have an object of type “Some-
Class” could have nasty consequences for some modules thaigeificant operations in theic_init __ methods (thinktelnetlib.
Telnet(host="localhost’, port="chargen’) , or even more powerful classes that you have available in gerver program). Al-
lowing a remote entity to create arbitrary classes in your rsp@ee is nearly equivalent to allowing them to run arbitznge.

Thepb.InsecureJelly exception arises because the class being sent over theagireohbeen registered with the serialization layer (known
asjelly). The easiest way to make it possible to copy entire clasariost over the wire is to have them inherit frpomCopyable , and then
to usesetUnjellyableForClass(remoteClass, localClass) on the receiving side. SeRassing Complex Typgpage 194) for an
example.

CHAPTER 7. PERSPECTIVE BROKER 194

that point may only cause a log message (which could evenrbethaway iflog.startLogging is not used to
point it at stdout or a log file). In contrast, a synchronousegtion that is not handled by any othetcept: block
will very visibly terminate the program immediately with aigy stack trace.

callFour shows another kind of exception that can occur while usaltRemote : pb.DeadReference
Error . This one occurs when the remote end has disconnected bedrdsaving the local side with a stale reference.
This kind of exception happens to be reported right away (XkXhis guaranteed? probably not), so must be caught
in a traditional synchronousy: except pb.DeadReferenceError block.

Yet another kind that can occur isphh.PBConnectionLost exception. This occurs (asynchronously) if the
connection was lost while you were waiting forcallRemote call to complete. When the line goes dead, all
pending requests are terminated with this exception. Nateytou have no way of knowing whether the request made
it to the other end or not, nor how far along in processingaythad managed before the connection was lost. XXX:
explain transaction semantics, find a decent reference.

7.4 PB Copyable: Passing Complex Types

7.4.1 Overview

This chapter focuses on how to use PB to pass complex typesiffsplly class instances) to and from a remote
process. The first section is on simply copying the contehémbject to a remote procegsb(Copyable). The
second covers how to copy those contents once, then upeatdater when they chang€#cheable).

7.4.2 Motivation

From theprevious chapte(page 181), you've seen how to pass basic types to a remoteg®oby using them in
the arguments or return values ofallRemote function. However, if you've experimented with it, you mase
discovered problems when trying to pass anything more deatpld than a primitive int/list/dict/string type, or ahet
pb.Referenceable object. At some point you want to pass entire objects betweeresses, instead of having to
reduce them down to dictionaries on one end and then renitestiag them on the other.

7.4.3 Passing Objects

The most obvious and straightforward way to send an objegtréanote process is with something like the following
code. It also happens that this code doesn’t work, as wilkipbaened below.

class LilyPond:
def __init_(self, frogs):
self.frogs = frogs

pond = LilyPond(12)
ref.callRemote("sendPond", pond)

If you try to run this, you might hope that a suitable remote &rhich implements theemote _sendPond
method would see that method get invoked with an instancee fheLilyPond class. But instead, you'll encounter
the dreadednsecureJelly exception. This is Twisted’s way of telling you that you'viehated a security restric-
tion, and that the receiving end refuses to accept your tibjec

Security Options

What's the big deal? What's wrong with just copying a class ariother process’ hamespace?

Reversing the question might make it easier to see the isgat:is the problem with accepting a stranger’s request
to create an arbitrary object in your local namespace? Tdlequeestion is how much power you are granting them:
what actions can they convince you to take on the basis ofittesithey are sending you over that remote connection.

Objects generally represent more power than basic typestikngs and dictionaries because they also contain (or
reference) code, which can modify other data structuresnelRecuted. Once previously-trusted data is subverted, the
rest of the program is compromised.

The built-in Python “batteries included” classes are reddy tame, but you still wouldn't want to let a foreign
program use them to create arbitrary objects in your nancespraon your computer. Imagine a protocol that involved
sending a file-like object with aead() method that was supposed to used later to retrieve a docunidren

CHAPTER 7. PERSPECTIVE BROKER 195

imagine what if that object were created witk.fdopen(""/.gnupg/secring.gpg") . Or an instance of
telnetlib. Telnet("localhost”, "chargen")

Classes you've written for your own program are Ilkely to éndsr more power. They may run code during
_init __, or even have special meaning simply because of their existeA program might haveser objects to
represent user accounts, and have a rule that saigsail objects in the system are referenced when authorizing a
login session. (In this systertlser. __init __would probably add the object to a global list of known usefd)e
simple act of creating an object would give access to somebibgou could be tricked into creating a bad object, an
unauthorized user would get access.

So object creation needs to be part of a system’s securifgrde3he dotted line between “trusted inside” and
“untrusted outside” needs to describe what may be done porse to outside events. One of those events is the
receipt of an object through a PB remote procedure call, kvisca request to create an object in your “inside”
namespace. The question is what to do in response to it. FRorehson, you must explicitly specific what remote
classes will be accepted, and how their local representative to be created.

What class to use?

Another basic question to answer before we can do anythiefylusith an incoming serialized object is: what class
should we create? The simplistic answer is to create theéddnd” that was serialized on the sender’s end of the
wire, but this is not as easy or as straightforward as you tritfghk. Remember that the request is coming from a
different program, using a potentially different set ofsddibraries. In fact, since PB has also been implemented in
Java, Emacs-Lisp, and other languages, there’s no guartiratethe sender is even running Python! All we know on
the receiving end is a list of two things which describe tredance they are trying to send us: the name of the class,
and a representation of the contents of the object.

PB lets you specify the mapping from remote class names #@ [dasses with theetUnjellyableFor
Class functiorf. This function takes a remote/sender class referencee(etile fully-qualified name as used by the
sending end, or a class object from which the name can bectedi)a and a local/recipient class (used to create the
local representation for incoming serialized objects). YWdver the remote end sends an object, the class name that
they transmit is looked up in the table controlled by thisdtion. If a matching class is found, it is used to create the
local object. If not, you get thinsecureJelly exception.

In general you expect both ends to share the same codeb#ser. y&@u control the program that is running on
both ends of the wire, or both programs share some kind of cmmianguage that is implemented in code which
exists on both ends. You wouldn’t expect them to send you @cobf the MyFooziWhatZit class unless you also
had a definition for that class. So it is reasonable for thig Imfer to reject all incoming classes except the ones that
you have explicitly marked witketUnjellyableForClass . But keep in mind that the sender’s idea dfiser
object might differ from the recipient’s, either throughhmaspace collisions between unrelated packages, versan sk
between nodes that haven't been updated at the same ratmadicaous intruder trying to cause your code to fail in
some interesting or potentially vulnerable way.

7.4.4 pb.Copyable
Ok, enough of this theory. How do you send a fully-fledged ctifj@m one side to the other?

#! lusr/bin/python

from twisted.spread import pb, jelly
from twisted.python import log
from twisted.internet import reactor

class LilyPond:
def setStuff(self, color, numFrogs):
self.color = color

8Note that, in this context, “unjelly” is a verb with the opjtesmeaning of “jelly”. The verb “to jelly” means to serializa @bject or data
structure into a sequence of bytes (or other primitive tratiable/storable representation), while “to unjelly” meamsinserialize the bytestream
into a live object in the receiver's memory space. “Unjellygl$ a noun, fotan adjective), referring to the the class that serves astadtsn or
recipient of the unjellying process. “A is unjellyable irBd means that a serialized representation A (of some remote®lman be unserialized
into a local object of type B. It is these objects “B” that ane tUnjellyable” second argument of tisetUnjellyableForClass function.

In particular, “unjellyable” doesiot mean “cannot be jellied”.Unpersistable means “not persistable”, but “unjelly”, “unserialize”, and
“unpickle” mean to reverse the operations of “jellying”, fgdizing”, and “pickling”.

CHAPTER 7. PERSPECTIVE BROKER

self.numFrogs = numFrogs
def countFrogs(self):
print "%d frogs" % self.numFrogs

class CopyPond(LilyPond, pb.Copyable):
pass

class Sender:
def __init_ (self, pond):
self.pond = pond

def got_obj(self, remote):
self.remote = remote
d = remote.callRemote("takePond", self.pond)
d.addCallback(self.ok).addErrback(self.notOk)

def ok(self, response):
print "pond arrived", response
reactor.stop()
def notOk(self, failure):
print "error during takePond:"
if failure.type == jelly.Insecurelelly:
print " InsecureJelly"
else:
print failure
reactor.stop()
return None

def main():

from copy_sender import CopyPond # so it's not _ _main__.Cop yPond

pond = CopyPond()
pond.setStuff("green”, 7)
pond.countFrogs()

class name:

print ".".join([pond.__class__._ _module__, pond.__ cla

sender = Sender(pond)

factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
deferred = factory.getRootObject()
deferred.addCallback(sender.got_obj)
reactor.run()

if name__ ==' main__"

main()

Source listing —eopy.sender.py

""PB copy receiver example.

This is a Twisted Application Configuration (tac) file. Run
twistd -ny copy_receiver.tac

See the twistd(1l) man page or

http:/twistedmatrix.com/documents/current/howto/ap

ss__.__name_])

with e.g.

plication for details.

196

CHAPTER 7. PERSPECTIVE BROKER 197

import sys

if _name__ == "' main__"
print __doc___
sys.exit(1)

from twisted.application import service, internet
from twisted.internet import reactor

from twisted.spread import pb

from copy_sender import LilyPond, CopyPond

from twisted.python import log
#log.startLogging(sys.stdout)

class ReceiverPond(pb.RemoteCopy, LilyPond):
pass
pb.setUnjellyableForClass(CopyPond, ReceiverPond)

class Receiver(pb.Root):
def remote_takePond(self, pond):
print * got pond:", pond
pond.countFrogs()
return "safe and sound" # positive acknowledgement
def remote_shutdown(self):
reactor.stop()

application = service.Application("copy_receiver")
internet. TCPServer(8800, pb.PBServerFactory(Receiver ())).setServiceParent(
service.lServiceCollection(application))

Source listing —copy.receiver.tac

The sending side has a class calléigPond . To make this eligble for transport throughllRemote (either
as an argument, a return value, or something referencedHmsr @if those [like a dictionary value]), it must inherit
from one of the foulSerializable classes. In this section, we focus Gopyable . The copyable subclass of
LilyPond is calledCopyPond. We create an instance of it and send it throaghRemote as an argument to
the receiversemote _takePond method. The Jelly layer will serialize (“jelly”) that objeas an instance with a
class name of “copgender.CopyPond” and some chunk of data that represenibjinet’s statepond. __class __
__module __ andpond. _class __.. _name__ are used to derive the class name string. The objgetfState
ToCopy method is used to get the state: this is providegbyCopyable , and the default just retrieveslf.

_dict __. This works just like the optionalgetstate __ method used bpickle . The pair of name and state are
sent over the wire to the receiver.

The receiving end defines a local class nafRedeiverPond to represent incomingilyPond instances. This
class derives from the sendertyPond class (with a fully-qualified name @bpy _sender.LilyPond), which
specifies how we expect it to behave. We trust that this isaheetilyPond class as the sender used. (At the very
least, we hope ours will be able to accept a state createceingthlt also inherits fronpb.RemoteCopy , which is
a requirement for all classes that act in this local-repredie role (those which are given to the second argument of
setUnjellyableForClass). RemoteCopy provides the methods that tell the Jelly layer how to cresddcal
object from the incoming serialized state.

ThensetUnjellyableForClass is used to register the two classes. This has two effecttarinss of the
remote class (the first argument) will be allowed in throuigé $ecurity layer, and instances of the local class (the
second argument) will be used to contain the state thatrisitndated when the sender serializes the remote object.

When the receiver unserializes (“unjellies”) the objectyill create an instance of the locBeceiverPond
class, and hand the transmitted state (usually in the form dittionary) to that object'setCopyableState
method. This acts just like thesetstate __ method thapickle uses when unserializing an objegetState
ToCopy/setCopyableState are distinct from__getstate __/__setstate __to allow objects to be persisted
(across time) differently than they are transmitted (ezfogemory]space).

When this is run, it produces the following output:

CHAPTER 7. PERSPECTIVE BROKER 198

[] twisted.spread.pb.PBServerFactory starting on 8800

[[] Starting factory <twisted.spread.pb.PBServerFactor y instance at
0x406159cc>

[Broker,0,127.0.0.1] got pond: <__ builtin__.ReceiverPo nd instance at
0x406ec5ec>

[Broker,0,127.0.0.1] 7 frogs

% ./copy_sender.py

7 frogs
copy_sender.CopyPond

pond arrived safe and sound
Main loop terminated.

%

Controlling the Copied State

By overridinggetStateToCopy andsetCopyableState , you can control how the object is transmitted over
the wire. For example, you might want perform some dataggolu: pre-compute some results instead of sending alll
the raw data over the wire. Or you could replace referencaddoal object on the sender’s side with markers before
sending, then upon receipt replace those markers witherefes to a receiver-side proxy that could perform the same
operations against a local cache of data.

Another good use fogetStateToCopy s to implement “local-only” attributes: data that is onlgcassible by
the local process, not to any remote users. For examppgssword attribute could be removed from the object
state before sending to a remote system. Combined with ttetfatCopyable objects return unchanged from a
round trip, this could be used to build a challenge-respsgstem (in fact PB does this witih.Referenceable
objects to implement authorization as describece(page 205)).

WhatevergetStateToCopy returns from the sending object will be serialized and seetr the wire;set
CopyableState gets whatever comes over the wire and is responsible fongetp the state of the object it lives
in.

#! Jusr/bin/python
from twisted.spread import pb

class FrogPond:
def __init_ (self, numFrogs, numToads):
self.numFrogs = numFrogs
self.numToads = numToads
def count(self):
return self.numFrogs + self.numToads

class SenderPond(FrogPond, pb.Copyable):
def getStateToCopy(self):
d = self.__dict__.copy()
d['frogsAndToads’] = d[’numFrogs’] + d['numToads’]
del d['numFrogs’]
del d['numToads’]
return d

class ReceiverPond(pb.RemoteCopy):
def setCopyableState(self, state):
self. _dict = state
def count(self):
return self.frogsAndToads

pb.setUnjellyableForClass(SenderPond, ReceiverPond)

CHAPTER 7. PERSPECTIVE BROKER

Source listing —copyZ2classes.py

#! Jusr/bin/python

from
from
from
from

twisted.spread import pb, jelly
twisted.python import log
twisted.internet import reactor
copy2_classes import SenderPond

class Sender:

def __init_ (self, pond):
self.pond = pond

def got_obj(self, obj):
d = obj.callRemote("takePond", self.pond)
d.addCallback(self.ok).addErrback(self.notOk)

def ok(self, response):
print "pond arrived”, response
reactor.stop()
def notOk(self, failure):
print "error during takePond:"
if failure.type == jelly.Insecurelelly:
print " InsecureJelly"
else:
print failure
reactor.stop()
return None

def main():

if

pond = SenderPond(3, 4)
print "count %d" % pond.count()

sender = Sender(pond)

factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
deferred = factory.getRootObject()
deferred.addCallback(sender.got_obj)
reactor.run()

name__ == '_main__"
main()

Source listing —copy2sender.py

#! lusr/bin/python

from
from
from

twisted.application import service, internet
twisted.internet import reactor
twisted.spread import pb

import copy2_classes # needed to get ReceiverPond register

class Receiver(pb.Root):

def remote_takePond(self, pond):
print * got pond:", pond

ed with Jelly

199

CHAPTER 7. PERSPECTIVE BROKER 200

print " count %d" % pond.count()

return "safe and sound" # positive acknowledgement
def remote_shutdown(self):

reactor.stop()

application = service.Application("copy_receiver")
internet. TCPServer(8800, pb.PBServerFactory(Receiver ())).setServiceParent(
service.lServiceCollection(application))

Source listing —copyZ2receiver.py

In this example, the classes are defined in a separate solarcetiich also sets up the binding between them.
The SenderPond andReceiverPond are unrelated save for this binding: they happen to implértensame
methods, but use different internal instance variablestomplish them.

The recipient of the object doesn’t even have to import tssdefinition into their namespace. It is sufficient
that they import the class definition (and thus executesétenjellyableForClass statement). The Jelly layer
remembers the class definition until a matching object isived. The sender of the object needs the definition, of
course, to create the object in the first place.

When run, theopy2 example emits the following:

% twistd -n -y copy2_receiver.py
[[] twisted.spread.pb.PBServerFactory starting on 8800

[[] Starting factory <twisted.spread.pb.PBServerFactor y instance at
0x40604b4c>

[Broker,0,127.0.0.1] got pond: <copy2_classes.Receiver Pond instance at
0x406eb2ac>

[Broker,0,127.0.0.1] count 7

% ./copy2_sender.py

count 7

pond arrived safe and sound
Main loop terminated.

%

Things To Watch Out For

e The first argument teetUnjellyableForClass must refer to the clasas known by the sendeiThe
sender has no way of knowing about how your loicaport statements are set up, and Python’s flexible
namespace semantics allow you to access the same clasgttlareariety of different names. You must match
whatever the sender does. Having both ends import the alassd separate file, using a canonical module
name (no “sibiling imports”), is a good way to get this righspecially when both the sending and the receiving
classes are defined together, with se¢UnjellyableForClass immediately following them. (XXX: this
works, but does this really get the right names into the falide does it only work because both are defined in
the same (wrong) place?)

e The class that is sent must inherit frggh.Copyable . The class that is registered to receive it must inherit
from pb.RemoteCopy 9.

e The same class can be used to send and receive. Just hawgittfirdm bothpb.Copyable andpb.Remote
Copy. This will also make it possible to send the same class synoally back and forth over the wire. But
don’t get confused about when it is coming (and usietCopyableState) versus when it is going (using
getStateToCopy).

e Insecurelelly exceptions are raised by the receiving end. They will bevdedid asynchronously to an
errback handler. If you do not add one to tizeferred returned bycallRemote , then you will never
receive notification of the problem.

9pb.RemoteCopy is actually defined aBavors.RemoteCopy , butpb.RemoteCopy is the preferred way to access it

CHAPTER 7. PERSPECTIVE BROKER 201

e The class that is derived fropb.RemoteCopy will be created using a constructoiinit __ method that
takes no arguments. All setup must be performed irs#t€opyableState method. As the docstring on
RemoteCopy says, don't implement a constructor that requires argusniené subclass oRemoteCopy .
XXX: check this, the code around jellynjellier.unjelly:489 tries to avoid calling.init __ just in case the
constructor requires args.

More Information

e pb.Copyable is mostly implemented itwisted.spread.flavors , and the docstrings there are the
best source of additional information.

e Copyable is also used itwisted.web.distrib to deliver HTTP requests to other programs for render-
ing, allowing subtrees of URL space to be delegated to malfpograms (on multiple machines).

¢ twisted.manhole.explorer also use€opyable to distribute debugging information from the program
under test to the debugging tool.

7.4.5 pb.Cacheable

Sometimes the object you want to send to the remote prockggaad slow. “big” means it takes a lot of data (storage,
network bandwidth, processing) to represent its statew'sineans that state doesn’t change very frequently. It may
be more efficient to send the full state only once, the firsetitis needed, then afterwards only send the differences
or changes in state whenever it is modified. PpheCacheable class provides a framework to implement this.

pb.Cacheable is derived frompb.Copyable , so itis based upon the idea of an object’s state being cagbtur
on the sending side, and then turned into a new object on ttedvieg side. This is extended to have an object
“publishing” on the sending side (derived fropi.Cacheable), matched with one “observing” on the receiving
side (derived fronpb.RemoteCache).

To effectively usepb.Cacheable , you need to isolate changes to your object into accessotifuns (specifi-
cally “setter” functions). Your object needs to get conweérysingle time some attribute is chané@,d

You derive your sender-side class frqun.Cacheable , and you add two methodgetStateToCacheAnd
ObserveFor andstoppedObserving . The first is called when a remote caching reference is fiesited, and
retrieves the data with which the cache is first filled. It gisovides an object called the “observérthat points at
that receiver-side cache. Every time the state of the olexttanged, you give a message to the observer, informing
them of the change. The other methethppedObserving , is called when the remote cache goes away, so that
you can stop sending updates.

On the receiver end, you make your cache class inherit fopbnRemoteCache , and implement theset
CopyableState as you would for b.RemoteCopy object. In addition, you must implement methods to receive
the updates sent to the observer bypgheCacheable : these methods should have names that startatitierve _,
and match theallRemote invocations from the sender side just as the useiadote _* andperspective _*
methods match normahkliRemote calls.

The first time a reference to tipb.Cacheable object is sent to any particular recipient, a sender-sidecOier
will be created for it, and thgetStateToCacheAndObserveFor method will be called to get the current state
and register the Observer. The state which that returnsitd@¢he remote end and turned into a local representation
usingsetCopyableState just like pb.RemoteCopy , described above (in fact it inherits from that class).

After that, your “setter” functions on the sender side sHaall callRemote on the Observer, which causes
observe _* methods to run on the receiver, which are then supposed tteifitk receiver-local (cached) state.

When the receiver stops following the cached object and tterédierence goes away, tpb.RemoteCache
object can be freed. Just before it dies, it tells the seriderisno longer cares about the original object. Wit
reference count goes to zero, the Observer goes away ampbi@acheable object can stop announcing every
change that takes place. Th®ppedObserving method is used to tell theb.Cacheable that the Observer
has gone away.

With the pb.Cacheable and pb.RemoteCache classes in place, bound together by a callptnset
UnjellyableForClass , all that remains is to pass a reference to yphrCacheable over the wire to the

100f course you could be clever and add a hook s®tattr __, along with magical change-announcing subclasses of tha bsiltin types,
to detect changes that result from normal “=" set operatidie semi-magical “property attributes” that were introduse8ython-2.2 could be
useful too. The result might be hard to maintain or extend,ghou

1 this is actually eRemoteCacheObserver , but it isn't very useful to subclass or modify, so simply triéats a little demon that sits in your
pb.Cacheable class and helps you distribute change notifications. Theus#ful thing to do with itis to run itsallRemote method, which
acts just like a normagdb.Referenceable ’'s method of the same name.

CHAPTER 7. PERSPECTIVE BROKER

202

remote end. The correspondipg.RemoteCache object will automatically be created, and the matching mésh
will be used to keep the receiver-side slave object in syitle thie sender-side master object.

Example

Here is a complete example, in which tasterDuckPond

Pond is a cache that tracks changes to the master:

#! Jusr/bin/python

from

twisted.spread import pb

class MasterDuckPond(pb.Cacheable):

def __init_ (self, ducks):
self.observers = |[]
self.ducks = ducks
def count(self):
print "I have [%d] ducks" % len(self.ducks)
def addDuck(self, duck):
self.ducks.append(duck)
for o in self.observers: o.callRemote('addDuck’, duck)
def removeDuck(self, duck):
self.ducks.remove(duck)
for o in self.observers: o.callRemote('removeDuck’, duck
def getStateToCacheAndObserveFor(self, perspective, ob
self.observers.append(observer)
you should ignore pb.Cacheable-specific state, like self
return self.ducks # in this case, just a list of ducks
def stoppedObserving(self, perspective, observer):
self.observers.remove(observer)

class SlaveDuckPond(pb.RemoteCache):

pb.setUnijellyableForClass(MasterDuckPond, SlaveDuckP

This is a cache of a remote MasterDuckPond

def count(self):
return len(self.cacheducks)

def getDucks(self):
return self.cacheducks

def setCopyableState(self, state):
print " cache - sitting, er, setting ducks"
self.cacheducks = state

def observe_addDuck(self, newDuck):
print " cache - addDuck"
self.cacheducks.append(newDuck)

def observe removeDuck(self, deadDuck):
print " cache - removeDuck"
self.cacheducks.remove(deadDuck)

Source listing —eacheclasses.py

#! Jusr/bin/python

from
from
from
from

twisted.spread import pb, jelly
twisted.python import log
twisted.internet import reactor
cache_classes import MasterDuckPond

ond)

is controlled by the sending side, and tlaveDuck

)

server):

.observers

CHAPTER 7. PERSPECTIVE BROKER

class Sender:
def __init_ (self, pond):
self.pond = pond

def phasel(self, remote):
self.remote = remote
d = remote.callRemote("takePond", self.pond)
d.addCallback(self.phase2).addErrback(log.err)
def phase2(self, response):
self.pond.addDuck("ugly duckling")
self.pond.count()
reactor.callLater(1, self.phase3)
def phase3(self):
d = self.remote.callRemote("checkDucks")
d.addCallback(self.phase4).addErrback(log.err)
def phase4(self, dummy):
self.pond.removeDuck("one duck")
self.pond.count()
self.remote.callRemote("checkDucks")
d = self.remote.callRemote("ignorePond")
d.addCallback(self.phaseb)
def phase5(self, dummy):
d = self.remote.callRemote("shutdown")
d.addCallback(self.phase6)
def phase6(self, dummy):
reactor.stop()

def main():
master = MasterDuckPond(["one duck", "two duck'])
master.count()

sender = Sender(master)

factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
deferred = factory.getRootObject()
deferred.addCallback(sender.phasel)
reactor.run()

if _name__ == "' main__"
main()

Source listing —eachesender.py

#! Jusr/bin/python

from twisted.application import service, internet
from twisted.internet import reactor

from twisted.spread import pb

import cache_classes

class Receiver(pb.Root):
def remote_takePond(self, pond):
self.pond = pond
print "got pond:", pond # a DuckPondCache
self.remote_checkDucks()

203

CHAPTER 7. PERSPECTIVE BROKER 204

def remote_checkDucks(self):
print "[%d] ducks: " % self.pond.count(), self.pond.getDu cks()
def remote_ignorePond(self):
stop watching the pond
print "dropping pond"
gc causes _ del causes ’'decache’ msg causes stoppedObse rving
self.pond = None
def remote_shutdown(self):
reactor.stop()

application = service.Application("copy_receiver")
internet. TCPServer(8800, pb.PBServerFactory(Receiver ())).setServiceParent(
service.lServiceCollection(application))

Source listing —eachereceiver.py

When run, this example emits the following:

% twistd -n -y cache_receiver.py
[-] twisted.spread.pb.PBServerFactory starting on 8800

[[] Starting factory <twisted.spread.pb.PBServerFactor y instance at
0x40615acc>

[Broker,0,127.0.0.1] cache - sitting, er, setting ducks

[Broker,0,127.0.0.1] got pond: <cache_classes.SlaveDuc kPond instance at
0x406eb5ec>

[Broker,0,127.0.0.1] [2] ducks: [one duck’, 'two duck’]
[Broker,0,127.0.0.1] cache - addDuck

[Broker,0,127.0.0.1] [3] ducks: [one duck’, 'two duck’, ’ ugly duckling’]
[Broker,0,127.0.0.1] cache - removeDuck
[Broker,0,127.0.0.1] [2] ducks: [two duck’, 'ugly duckli ng’]l

[Broker,0,127.0.0.1] dropping pond
%

% ./cache_sender.py
I have [2] ducks

| have [3] ducks

| have [2] ducks
Main loop terminated.
%

Points to notice:

e There is oneéDbserver for each remote program that holds an active reference. iplilteferences inside
the sam& program don’t matter: the serialization layercestithe duplicates and does the appropriate reference
counting<.

e Multiple Observers need to be kept in a list, and all of theradh® be updated when something changes. By
sending the initial state at the same time as you add thewdrgerthe list, in a single atomic action that cannot
be interrupted by a state change, you insure that you cantsersdime status update to all the observers.

e The observer.callRemote calls can still fail. If the remote side has disconnectedyvecently and
stoppedObserving has not yet been called, you may gebaadReferenceError . It is a good idea
to add an errback to thosallRemote s to throw away such an error. This is a useful idiom:
observer.callRemote('foo’, arg).addErrback(lambda f: N one)

(XXX: verify that this is actually a concern)

2this applies to multiple references through the s&@raker . If you've managed to make multiple TCP connections to the samgram, you
deserve whatever you get.

CHAPTER 7. PERSPECTIVE BROKER 205

e getStateToCacheAndObserverFor must return some object that represents the current stabe ab-
ject. This may simply be the object'sdict __ attribute. It is a good idea to remove tpb.Cacheable -
specific members of it before sending it to the remote end. lifhef Observers, in particular, should be left
out, to avoid dizzying recursive Cacheable references. rilimel boggles as to the potential consequences of
leaving in such an item.

e A perspective argument is available tgetStateToCacheAndObserveFor , as well asstopped
Observing . I think the purpose of this is to allow viewer-specific chaago the way the cache is updated. If
all remote viewers are supposed to see the same data, it ¢gndved.

XXX: understand, then explain use of varying cached stapedding upon perspective.

More Information

e The best source for information comes from the docstringsvieted.spread.flavors , Wherepb.
Cacheable is implemented.

¢ twisted.manhole.explorer usesCacheable , and does some fairly interesting things with it. (XXX:
I've heard explorer is currently broken, it might not be a g@xample to recommend)

e Thespread.publish module also use€acheable , and might be a source of further information.

7.5 Authentication with Perspective Broker

7.5.1 Overview

The examples shown idsing Perspective Brokdpage 181) demonstrate how to do basic remote method catls, b
provided no facilities for authentication. In this conteatithentication is about who gets which remote references,
and how to restrict access to the “right” set of people or pots.

As soon as you have a program which offers services to meltipérs, where those users should not be allowed
to interfere with each other, you need to think about autbatibn. Many services use the idea of an “account”, and
rely upon fact that each user has access to only one accowisted uses a system calleted (page 153) to handle
authentication issues, and Perspective Broker has codake ineasy to implement the most common use cases.

7.5.2 Compartmentalizing Services

Imagine how you would write a chat server using PB. The firsp shight be e&ChatServer object which had a
bunch ofpb.RemoteReference s that point at user clients. Pretend that those clientsegffaremote _print
method which lets the server print a message on the usersolmonn that case, the server might look something like
this:

class ChatServer(pb.Referenceable):

def __init__ (self):
self.groups = {} # indexed by name
self.users = {} # indexed by name
def remote_joinGroup(self, username, groupname):
if not self.groups.has_key(groupname):
self.groups[groupname] = []
self.groups[groupname].append(self.users[username])
def remote_sendMessage(self, from_username, groupname, message):
group = self.groups[groupname]
if group:
send the message to all members of the group
for user in group:
user.callRemote("print",
"<%s> says: %s" % (from_username,
message))

CHAPTER 7. PERSPECTIVE BROKER 206

For now, assume that all clients have somehow acquipddRemoteReference tothisChatServer object,
perhaps usingb.Root andgetRootObject as described in thprevious chaptefpage 181). In this scheme,
when a user sends a message to the group, their client rurettgnmlike the following:

remotegroup.callRemote("sendMessage", "alice", "Hi, my name is alice.")

Incorrect Arguments

You've probably seen the first problem: users can trivigligaf each other. We depend upon the user to pass a correct
value in their “username” argument, and have no way to téliéf/'re lying or not. There is nothing to prevent Alice
from modifying her client to do:

remotegroup.callRemote("sendMessage", "bob", "i like po rk™)

much to the horror of Bob’s vegetarian frientds.

(In general, learn to get suspicious if you see any argunfemt@motely-invokable method described as “must be
XH)

The best way to fix this is to keep track of the user’s name Igaather than asking them to send it to the server
with each message. The best place to keep state is in an,aneahis suggests we need a per-user object. Rather than
choosing an obvious narte let's call this theUser class.

class User(pb.Referenceable):

def __init_ (self, username, server, clientref):
self.name = username
self.server = server
self.remote = clientref

def remote_joinGroup(self, groupname):
self.server.joinGroup(groupname, self)

def remote_sendMessage(self, groupname, message):
self.server.sendMessage(self.name, groupname, message)

def send(self, message):
self.remote.callRemote("print", message)

class ChatServer:
def __init__(self):
self.groups = {} # indexed by name
def joinGroup(self, groupname, user):
if not self.groups.has_key(groupname):
self.groups[groupname] = []
self.groups[groupname].append(user)
def sendMessage(self, from_username, groupname, message):
group = self.groups[groupname]
if group:
send the message to all members of the group
for user in group:
user.send("<%s> says: %s" % (from_username, message))

Again, assume that each remote client gets access to a sisgle object, which is created with the proper
username.

Note how theChatServer object has no remote access: it isn't eygnReferenceable anymore. This
means that all access to it must be mediated through othectsbjvith code that is under your control.

As long as Alice only has access to her owser object, she can no longer spoof Bob. The only way for her
to invoke ChatServer.sendMessage is to call herUser object'sremote _sendMessage method, and that
method uses its own state to provide fien _username argument. It doesn’t give her any way to change that state.

Bapparently Alice is one of those weirdos who has nothingasett do than to try and impersonate Bob. She will lie to her cliant, send
incorrect objects to remote methods, even rewrite her lo@itotode entirely to accomplish this juvenile prank. Giveis aidversarial relationship,
one must wonder why she and Bob seem to spend so much time togh#tieadventures are clearly documented by the cryptogedipérature.

14the obvious name is clearigerverSidePerUserObjectWhichNobodyElseHasAccessTo , but because python makes everything
else so easy to read, it only seems fair to make your audiendefarosomething

CHAPTER 7. PERSPECTIVE BROKER 207

This restriction is important. Thdser object is able to maintain its own integrity because theeeviall between
the object and the client: the client cannot inspect or nyoidifernal state, like thename attribute. The only way
through this wall is via remote method invocations, and thlg oontrol Alice has over those invocations is when they
get invoked and what arguments they are given.

Note:

No object can maintain its integrity against local thre&tgdesign, Python offers no mechanism for
class instances to hide their attributes, and once an itthuas a copy ofelf. __dict __, they can do
everything the original object was able to do.

Unforgeable References

Now suppose you wanted to implement group parameters, &ompbe a mode in which nobody was allowed to talk
about mattresses because some users were sensitive amthdalem down after someone said “mattress” is a hassle
that were best avoided altogether. Again, per-group stapdiés a per-group object. We’'ll go out on a limb and call
this theGroup object:

class User(pb.Referenceable):

def __init_ (self, username, server, clientref):
self.name = username
self.server = server
self.remote = clientref

def remote_joinGroup(self, groupname, allowMattress=Tr ue):
return self.server.joinGroup(groupname, self)

def send(self, message):
self.remote.callRemote("print", message)

class Group(pb.Referenceable):
def __init_ (self, groupname, allowMattress):
self.name = groupname
self.allowMattress = allowMattress
self.users = []
def remote_send(self, from_user, message):
if not self.allowMattress and message.find("mattress") !
raise ValueError, "Don’'t say that word"
for user in self.users:
user.send("<%s> says: %s" % (from_user.name, message))
def addUser(self, user):
self.users.append(user)

I
1
=

class ChatServer:

def __init__ (self):
self.groups = {} # indexed by name

def joinGroup(self, groupname, user, allowMattress):
if not self.groups.has_key(groupname):

self.groups[groupname] = Group(groupname, allowMattres S)

self.groups[groupname].addUser(user)
return self.groups[groupname]

This example takes advantage of the fact fitaReferenceable objects sent over a wire can be returned to
you, and they will be turned into references to the same oHjat you originally sent. The client cannot modify the
object in any way: all they can do is point at it and invokergaote _* methods. Thus, you can be sure that the
.name attribute remains the same as you left it. In this case, fleatotode would look something like this:

class ClientThing(pb.Referenceable):
def remote_print(self, message):
print message
def join(self):
d = self.remoteUser.callRemote("joinGroup”, "#twisted" ,

CHAPTER 7. PERSPECTIVE BROKER 208

allowMattress=False)
d.addCallback(self.gotGroup)
def gotGroup(self, group):
group.callRemote("send”, self.remoteUser, "hi everybod y")

TheUser object is sent from the server side, and is turned imib.&emoteReference when it arrives at the
client. The client sends it back ®Broup.remote _send, and PB turns it back into a reference to the origldaér
when it gets thereGroup.remote _send can then use ithiame attribute as the sender of the message.

Note:

Third party references (there aren't any)

This technique also relies upon the fact thatgheReferenceable reference caonly come from
someone who holds a correspondptyRemoteReference . The design of the serialization mecha-
nism (implemented inwisted.spread.jelly . pb, jelly, spread.. getit? Also look for “banana”’
and “marmalade”. What other networking framework can claiRl Aames based on sandwich ingredi-
ents?) makes it impossible for a client to obtain a referg¢hatthey weren't explicitly given. References
passed over the wire are given id numbers and recorded in@peection dictionary. If you didn’t give
them the reference, the id number won't be in the dict, andmouat of guessing by a malicious client
will give them anything else. The dict goes away when the ectian is dropped, further limiting the
scope of those references.

Futhermore, it is not possible for Bob to selmidUser reference to Alice (perhaps over some other
PB channel just between the two of them). Outside the comteBbb’s connection to the server, that
reference is just a meaningless number. To prevent comfuBi® will tell you if you try to give it away:
when you try to hand pb.RemoteReference to a third party, you'll get an exception (implemented
with an assert in pb.py:364 RemoteReference.jellyFor).

This helps the security model somewhat: only the client yavegthe reference to can cause any
damage with it. Of course, the client might be a brainlesstieprsimply doing anything some third
party wants. When it's not proxyingallRemote invocations, it's probably terrorizing the living and
searching out human brains for sustenance. In short, if pott ttust them, don’t give them that reference.

And remember that everything you've ever given them over thanection can come back to you.
If expect the client to invoke your method with some objecthAttyou sent to them earlier, and instead
they send you object B (that you also sent to them earlied) yan don’t check it somehow, then you've
just opened up a security hole (we'll see an example of thistsf). It may be better to keep such
objects in a dictionary on the server side, and have thetciend you an index string instead. Doing
it that way makes it obvious that they can send you anythieg thant, and improves the chances that
you'll remember to implement the right checks. (This is délyawhat PB is doing underneath, with a
per-connection dictionary dReferenceable objects, indexed by a number).

And, of course, you have to make sure you don’t accidentalhdrout a reference to the wrong object.

But again, note the vulnerability. If Alice holdsRemoteReference to anyobject on the server side that has a
.name attribute, she can use that name as a spoofed “from” paramiet@ simple example, what if her client code
looked like:

class ClientThing(pb.Referenceable):
def join(self):
d = self.remoteUser.callRemote("joinGroup”, "#twisted")
d.addCallback(self.gotGroup)
def gotGroup(self, group):
group.callRemote("send”, from_user=group, "hi everybod y")

This would let her send a message that appeared to come fitaristéd” rather than “Alice”. If she joined a group
that happened to be named “bob” (perhaps it is the “How To B& Bbannel, populated by Alice and countless others,
a place where they can share stories about their best immisg-Bob moments), then she would be able to emit a
message that looked like<bob> says: hi there”, and she has accomplished her lifelong goal.

Argument Typechecking

There are two techniques to close this hole. The first is te yaur remotely-invokable methods do type-checking on
their arguments: iGroup.remote _send assertedsinstance(from _user, User) then Alice couldn’t use
non-User objects to do her spoofing, and hopefully the regteo$ystem is designed well enough to prevent her from
obtaining access to somebody else’s User object.

CHAPTER 7. PERSPECTIVE BROKER 209

Objects as Capabilities

The second technique is to avoid having the client send yewltiects altogether. If they don't send you anything,
there is nothing to verify. In this case, you would have toeh@per-user-per-group object, in which teenote _send
method would only take a singlaessage argument. Th&JserGroup object is created with references to the only
User andGroup obijects that it will ever use, so no lookups are needed:

class UserGroup(pb.Referenceable):
def __init_ (self, user, group):
self.user = user
self.group = group
def remote_send(self, message):
self.group.send(self.user.name, message)

class Group:
def __init_ (self, groupname, allowMattress):
self.name = groupname
self.allowMattress = allowMattress
self.users = []
def send(self, from_user, message):
if not self.allowMattress and message.find("mattress") !
raise ValueError, "Don’'t say that word"
for user in self.users:
user.send("<%s> says: %s" % (from_user.name, message))
def addUser(self, user):
self.users.append(user)

]
1
=

The only message-sending method Alice has ldftderGroup.remote _send, and it only accepts a message:
there are no remaining ways to influence the “from” name.

In this model, each remotely-accessible object represemsy small set of capabilities. Security is achieved by
only granting a minimal set of abilities to each remote user.

PB provides a shortcut which makes this technique easiesdo TheViewable class will be discussedelow
(page 218).

7.5.3 Avatars and Perspectives

In Twisted’'scred (page _158) system, an “Avatar” is an object that lives on geVer” side (defined here as the side
farthest from the human who is trying to get something donlickvlets the remote user get something done. The
avatar isn't really a particular class, it's more like a dgsteon of a role that some object plays, as in “the Foo object
here is acting as the user’s avatar for this particular setviGenerally, the remote user has some way of getting their
avatar to run some code. The avatar object may enforce saudtgechecks, and provide additional data, then call
other methods which get things done.

The two pieces in the cred puzzle (for any protocol, not jit&te: “what serves as the Avatar?”, and “how does
the user get access to it?".

For PB, the first question is easy. The Avatar is a remotetgssible object which can run code: this is a perfect
description ofpb.Referenceable and its subclasses. We shall defer the second questiorthatilext section.

In the example above, you can think of tBeatServer andGroup objects as a service. Théser object is
the user’s server-side representative: everything theisismpable of doing is done by running one of its methods.
Anything that the server wants to do to the user (change greirp membership, change their name, delete their pet
cat, whatever) is done by manipulating tiser object.

There are multiple User objects living in peace and harmaoyrad the ChatServer. Each has a different point
of view on the services provided by the ChatServer and theu@oeach may belong to different groups, some
might have more permissions than others (like the abilitgremate groups). These different points of view are called
“Perspectives”. This is the origin of the term “Perspective“Perspective Broker”: PB provides and controls (i.e.
“brokers”) access to Perspectives.

Once upon a time, these local-representative objects watmlly calledpb.Perspective . But this has
changed with the advent of the rewritten cred system, andthewnore generic term for a local representative object

CHAPTER 7. PERSPECTIVE BROKER 210

is an Avatar. But you will still see reference to “Perspegtiin the code, the docs, and the module nathesdust
remember that perspectives and avatars are basically e tbing.

Despite all we've beetelling you(page 153) about how Avatars are more of a concept than aalatass, the
base class from which you can create your server-side agataibjects is, in fact, namegb.Avatar 16, These
objects behave very much likid.Referenceable . The only difference is that instead of offering “remdi®©0O”
methods, they offer “perspectileO0” methods.

The other way in whiclpb.Avatar differs frompb.Referenceable is that the avatar objects are designed
to be the first thing retrieved by a cred-using remote clidost aPBClientFactory.getRootObject gives
the client access to pb.Root object (which can then provide access to all kinds of othgeaib), PBClient
Factory.login gives client access togb.Avatar object (which can return other references).

So, the first half of using cred in your PB application is toatee an Avatar object which implements
perspective _ methods and is careful to do useful things for the remote wdle remaining vigilant against
being tricked with unexpected argument values. It must béscareful to never give access to objects that the user
should not have access to, whether by returning them djreetlurning objects which contain them, or returning
objects which can be asked (remotely) to provide them.

The second half is how the user getplaRemoteReference to your Avatar. As explainedlsewherdpage
[153), Avatars are obtained from a Realm. The Realm doesal with authentication at all (usernames, pass-
words, public keys, challenge-response systems, retaaalrers, real-time DNA sequencers, etc). It simply takes
an “avatarlD” (which is effectively a username) and retuansAvatar object. The Portal and its Checkers deal with
authenticating the user: by the time they are done, the ren=#r has proved their right to access the avatarlD that is
given to the Realm, so the Realm can return a remotely-citatbte object that has whatever powers you wish to grant
to this particular user.

For PB, the realm is expected to returmpla.Avatar (or anything which implementpb.IPerspective ,
really, but there’s no reason to not returpl@Avatar subclass). This object will be given to the client just like a
pb.Root would be without cred, and the user can get access to othectslihrough it (if you let them).

The basic idea is that there is a separate IPerspectivesingpiting object (i.e. the Avatar subclass) (i.e. the
“perspective”) for each user, andly the authorized user gets a remote reference to that objectcahn store whatever
permissions or capabilities the user possesses in thattpaje then use them when the user invokes a remote method.
You give the user access to the perspective object instethe abjects that do the real work.

7.5.4 Perspective Examples

Here is a brief example of using a pb.Avatar. Most of the suppade is magic for now: we’ll explain it later.

One Client

#!' Jusr/bin/python
from zope.interface import implements

from twisted.spread import pb
from twisted.cred import checkers, portal
from twisted.internet import reactor

class MyPerspective(pb.Avatar):
def __init_ (self, name):
self.name = name
def perspective_foo(self, arg):
print "I am", self.name, "perspective_foo(",arg,”) calle d on

, self

class MyRealm:

15We could just go ahead and rename Perspective Broker to barMBavker, but 1) that would cause massive compatibility pgotsl, and
2) “AB” doesn't fit into the whole sandwich-themed naming schemarly as well as “PB” does. If we changed it to AB, we'd prolyaiave
to change Banana to be CD (CoderDecoder), and Jelly to be B€afSulatorFragmentor). twisted.spread would then haveeteenamed
twisted.alphabetsoup, and then the whole food-pun thingdvstart all over again.

16The avatar-ish class is namet.Avatar becausepb.Perspective was already taken, by the (now obsolete) oldcred persgectiv
ish class. It is a pity, but it simply wasn't possible both e pb.Perspective in-placeand maintain a reasonable level of backwards-
compatibility.

CHAPTER 7. PERSPECTIVE BROKER 211

implements(portal.IRealm)
def requestAvatar(self, avatarld, mind, * interfaces):
if pb.IPerspective not in interfaces:
raise NotimplementedError
return pb.IPerspective, MyPerspective(avatarld), lambd a:None

p = portal.Portal(MyRealm())
p.registerChecker(
checkers.InMemoryUsernamePasswordDatabaseDontUse(us erl="passl"))
reactor.listenTCP(8800, pb.PBServerFactory(p))
reactor.run()

Source listing —pb5server.py

#! [usr/bin/python

from twisted.spread import pb
from twisted.internet import reactor
from twisted.cred import credentials

def main():
factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
defl = factory.login(credentials.UsernamePassword("us erl", "passl"))
defl.addCallback(connected)
reactor.run()

def connected(perspective):
print "got perspective ref:", perspective
print "asking it to foo(12)"
perspective.callRemote("foo", 12)

main()
Source listing —pb5client.py

Ok, so that wasn't really very exciting. It doesn’t accoraplmuch more than the first PB example, and used a lot
more code to do it. Let’s try it again with two users this time.

Note:

When the client runfogin to request the Perspective, they can provide it with an optidient
argument (which must bepb.Referenceable object). If they do, then a reference to that object will
be handed to the realmfequestAvatar in themind argument.

The server-side Perspective can use it to invoke remoteaadstbn something in the client, so that
the client doesn't always have to drive the interaction. éiat server, the client object would be the one
to which “display text” messages were sent. In a board gamesehis would provide a way to tell the
clients that someone has made a move, so they can updatgdherboards.

Two Clients

#! Jusr/bin/python

from zope.interface import implements
from twisted.spread import pb

from twisted.cred import checkers, portal
from twisted.internet import reactor

CHAPTER 7. PERSPECTIVE BROKER 212

class MyPerspective(pb.Avatar):
def __init_ (self, name):
self.name = name
def perspective_foo(self, arg):
print "I am", self.name, "perspective foo(",arg,") calle d on

, self

class MyRealm:
implements(portal.IRealm)
def requestAvatar(self, avatarld, mind, * interfaces):
if pb.IPerspective not in interfaces:
raise NotimplementedError
return pb.IPerspective, MyPerspective(avatarld), lambd a:None

portal.Portal(MyRealm())
checkers.InMemoryUsernamePasswordDatabaseDontUse(userl="passl",
user2="pass2")

p
c

p.registerChecker(c)
reactor.listenTCP(8800, pb.PBServerFactory(p))
reactor.run()

Source listing —pb6server.py

#! lusr/bin/python

from twisted.spread import pb
from twisted.internet import reactor
from twisted.cred import credentials

def main():
factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
defl = factory.login(credentials.UsernamePassword("us erl", "passl"))
defl.addCallback(connected)
reactor.run()

def connected(perspective):
print "got perspectivel ref:", perspective
print "asking it to foo(13)"
perspective.callRemote("foo"”, 13)

main()

Source listing —pb6clientl.py

#1 [usr/bin/python

from twisted.spread import pb
from twisted.internet import reactor

from twisted.spread import pb
from twisted.internet import reactor
from twisted.cred import credentials

def main():

CHAPTER 7. PERSPECTIVE BROKER 213

factory = pb.PBClientFactory()

reactor.connectTCP("localhost", 8800, factory)

defl = factory.login(credentials.UsernamePassword("us er2", "pass2"))
defl.addCallback(connected)

reactor.run()

def connected(perspective):
print "got perspective2 ref:", perspective
print "asking it to foo(14)"
perspective.callRemote("foo"”, 14)

main()

Source listing —pb6client2.py

While pb6server.py is running, try starting pb6clientl,rthgb6client2. Compare the argument passed by the
.callRemote() in each client. You can see how each client gets connectediffeeent Perspective.

How that example worked

Let’'s walk through the previous example and see what wasgggmin

First, we created a subclass calldtiyPerspective which is our server-side Avatar. It implements a
perspective _foo method that is exposed to the remote client.

Second, we created a realm (an object which implenm&aalm , and therefore implementsquestAvatar).

This realm manufacturelglyPerspective objects. It makes as many as we want, and names each one with th
avatarlD (a username) that comes out of the checkers. Thigddllyn object returns two other objects as well, which
we will describe later.

Third, we created a portal to hold this realm. The portalls i®to dispatch incoming clients to the credential
checkers, and then to request Avatars for any which surlizatithentication process.

Fourth, we made a simple checker (an object which implem&tiecker) to hold valid user/password pairs.
The checker gets registered with the portal, so it knows wlask when new clients connect. We use a checker named
InMemoryUsernamePasswordDatabaseDontUse , Which suggests that 1: all the username/password pairs are
kept in memory instead of being saved to a database or samgetmnd 2: you shouldn’t use it. The admonition against
using it is because there are better schemes: keeping lewvgyyt memory will not work when you have thousands
or millions of users to keep track of, the passwords will liresd in the .tap file when the application shuts down
(possibly a security risk), and finally it is a nuisance to addemove users after the checker is constructed.

Fifth, we create gb.PBServerFactory to listen on a TCP port. This factory knows how to connect the
remote client to the Portal, so incoming connections willha@ded to the authentication process. Other protocols
(non-PB) would do something similar: the factory that cesa®Protocol objects will give those objects access to the
Portal so authentication can take place.

On the client side, pb.PBClientFactory is created (abefore(page 181)) and attached to a TCP connection.
When the connection completes, the factory will be asked tmlyre a Protocol, and it will create a PB object.
Unlike the previous chapter, where we usgétRootObject , here we uséactory.login to initiate the cred
authentication process. We provideci@dentials object, which is the client-side agent for doing our half of
the authentication process. This process may involve aem@ssages: challenges, responses, encrypted passwords,
secure hashes, etc. We give our credentials object evegyithivill need to respond correctly (in this case, a username
and password, but you could write a credential that used@ibly encryption or even fancier techniques).

login returns a Deferred which, when it fires, will returppb.RemoteReference to the remote avatar. We
can then deallRemote to invoke aperspective _foo method on that Avatar.

Anonymous Clients

#!/usr/bin/python
Copyright (c) 2007 Twisted Matrix Laboratories.
See LICENSE for details.

CHAPTER 7. PERSPECTIVE BROKER

214

Implement the realm for and run on port 8800 a PB service which allows both
anonymous and username/password based access.
Successful username/password-based login requests given an instance of
MyPerspective with a name which matches the username with wh ich they
authenticated. Success anonymous login requests are given an instance of
MyPerspective with the name "Anonymous".
from sys import stdout
from zope.interface import implements
from twisted.python.log import startLogging
from twisted.cred.checkers import ANONYMOUS, AllowAnony mousAccess
from twisted.cred.checkers import InMemoryUsernamePass wordDatabaseDontUse
from twisted.cred.portal import IRealm, Portal
from twisted.internet import reactor
from twisted.spread.pb import Avatar, IPerspective, PBSe rverFactory
class MyPerspective(Avatar):
Trivial avatar exposing a single remote method for demonstr ative
purposes. All successful login attempts in this example wil | result in
an avatar which is an instance of this class.
@type name: C{str}
@ivar name: The username which was used during login or C{"An onymous'}
if the login was anonymous (a real service might want to avoid the
collision this introduces between anonoymous users and aut henticated
users named "Anonymous").
def __init_ (self, name):
self.name = name
def perspective_foo(self, arg):
Print a simple message which gives the argument this method w as
called with and this avatar's name.
print "I am %s. perspective_foo(%s) called on %s." % (
self.name, arg, self)
class MyRealm(object):
Trivial realm which supports anonymous and named users by cr eating
avatars which are instances of MyPerspective for either.
implements(IRealm)
def requestAvatar(self, avatarld, mind, * interfaces):
if IPerspective not in interfaces:
raise NotimplementedError("MyRealm only handles IPerspe ctive")

CHAPTER 7. PERSPECTIVE BROKER 215

if avatarld is ANONYMOUS:
avatarld = "Anonymous"
return IPerspective, MyPerspective(avatarld), lambda: N one

def main():

__name__ ==

Create a PB server using MyRealm and run it on port 8800.

startLogging(stdout)
p = Portal(MyRealm())

Here the username/password checker is registered.
cl = InMemoryUsernamePasswordDatabaseDontUse(userl="p assl”, user2="pass2")
p.registerChecker(cl)

Here the anonymous checker is registered.
c2 = AllowAnonymousAccess()
p.registerChecker(c2)

reactor.listenTCP (8800, PBServerFactory(p))
reactor.run()

__main__":
main()

Source listing —pbAnonServer.py

#!/usr/bin/python
Copyright (c) 2007 Twisted Matrix Laboratories.
See LICENSE for details.

Client which will talk to the server run by pbAnonServer.py, logging in
either anonymously or with username/password credentials

from

from
from
from
from
from

sys import stdout

twisted.python.log import err, startLogging

twisted.cred.credentials import Anonymous, Usernam ePassword
twisted.internet import reactor

twisted.internet.defer import gatherResults

twisted.spread.pb import PBClientFactory

def error(why, msg):

Catch-all errback which simply logs the failure. This isn't expected to
be invoked in the normal case for this example.

err(why, msg)

CHAPTER 7. PERSPECTIVE BROKER 216

def connected(perspective):
Login callback which invokes the remote "foo" method on the p erspective
which the server returned.
print "got perspectivel ref:", perspective
print "asking it to foo(13)"
return perspective.callRemote("foo", 13)

def finished(ignored):
Callback invoked when both logins and method calls have fini shed to shut
down the reactor so the example exits.

reactor.stop()

def main():
Connect to a PB server running on port 8800 on localhost and lo g in to
it, both anonymously and using a username/password it will r ecognize.

startLogging(stdout)
factory = PBClientFactory()
reactor.connectTCP("localhost”, 8800, factory)

anonymousLogin = factory.login(Anonymous())
anonymousLogin.addCallback(connected)

anonymousLogin.addErrback(error, "Anonymous login fail ed")
usernamelLogin = factory.login(UsernamePassword("userl ", "passl")
usernamelogin.addCallback(connected)

usernamelogin.addErrback(error, "Username/password lo gin failed")
bothDeferreds = gatherResults(JanonymousLogin, usernam elLogin)])

bothDeferreds.addCallback(finished)

reactor.run()

if _name__ == ' main__"
main()

Source listing —pbAnonClient.py

pbAnonServer.py implements a server based on pb6servexmnding it to permit anonymous logins in ad-
dition to authenticated logins. AllowAnonymousAccess checker and a InMemoryUsernamePassword
DatabaseDontUse checker are registered and the client’s choice of credemigect determines which is used to
authenticate the login. In either case, the realm will béedadn to create an avatar for the logkllowAnonymous
Access always produces aavatarld of ANONYMOUS

On the client side, the only change is the use of an instandaafymous when callingPBClientFactory.
login

CHAPTER 7. PERSPECTIVE BROKER 217

7.5.5 Using Avatars
Avatar Interfaces

The first element of the 3-tuple returned teguestAvatar indicates which Interface this Avatar implements. For
PB avatars, it will always bpb.IPerspective , because that's the only interface these avatars implement

This element is present becausguestAvatar is actually presented with a list of possible Interfacese Th
guestion being posed to the Realm is: “do you have an avatgayatarID) that can implement one of the following
set of Interfaces?”. Some portals and checkers might giis aflInterfaces and the Realm could pick; the PB code
only knows how to do one, so we cannot take advantage of taiarie

Logging Out

The third element of the 3-tuple is a zero-argument callathéch will be invoked by the protocol when the connection
has been lost. We can use this to notify the Avatar when tleatclias lost its connection. This will be described in
more detail below.

Making Avatars

In the example above, we create Avatars upon request, digingestAvatar . Depending upon the service, these
Avatars might already exist before the connection is rexkiand might outlive the connection. The Avatars might
also accept multiple connections.

Another possibility is that the Avatars might exist aheadrok, but in a different form (frozen in a pickle and/or
saved in a database). In this casgjuestAvatar may need to perform a database lookup and then do something
with the result before it can provide an avatar. In this casequld probably return a Deferred so it could provide the
real Avatar later, once the lookup had completed.

Here are some possible implementation§gRealm.requestAvatar

pre-existing, static avatars

def requestAvatar(self, avatarlD, mind, * interfaces):
assert pb.IPerspective in interfaces
avatar = self.avatars[avatarlD]
return pb.IPerspective, avatar, lambda:None

database lookup and unpickling

def requestAvatar(self, avatarlD, mind, * interfaces):
assert pb.IPerspective in interfaces
d = self.database.fetchAvatar(avatarlD)
d.addCallback(self.doUnpickle)
return pb.IPerspective, d, lambda:None

def doUnpickle(self, pickled):
avatar = pickle.loads(pickled)
return avatar

everybody shares the same Avatar

def requestAvatar(self, avatarlD, mind, * interfaces):
assert pb.IPerspective in interfaces
return pb.IPerspective, self.theOneAvatar, lambda:None

anonymous users share one Avatar, named users each get thei r own
def requestAvatar(self, avatarlD, mind, * interfaces):
assert pb.IPerspective in interfaces
if avatarID == checkers. ANONYMOUS:
return pb.IPerspective, self.anonAvatar, lambda:None
else:
return pb.IPerspective, self.avatars[avatarID], lambda :None

anonymous users get independent (but temporary) Avatars
named users get their own persistent one

CHAPTER 7. PERSPECTIVE BROKER 218

def requestAvatar(self, avatarlD, mind, * interfaces):
assert pb.IPerspective in interfaces
if avatarID == checkers. ANONYMOUS:
return pb.IPerspective, MyAvatar(), lambda:None
else:
return pb.IPerspective, self.avatars[avatarID], lambda :None

The last example, note that the nslyAvatar instance is not saved anywhere: it will vanish when the cotioe
is dropped. By contrast, the avatars that live in ¢$b#.avatars dictionary will probably get persisted into the
.tap file along with the Realm, the Portal, and anything diaeit referenced by the top-level Application object. This
is an easy way to manage saved user profiles.

Connecting and Disconnecting

It may be useful for your Avatars to be told when remote cBegain (and lose) access to them. For example, and
Avatar might be updated by something in the server, and iethee clients attached, it should update them (through
the “mind” argument which lets the Avatar do callRemote anc¢hent).

One common idiom which accomplishes this is to have the Reelnthe avatar that a remote client has just
attached. The Realm can also ask the protocol to let it knoarvthe connection goes away, so it can then inform the
Avatar that the client has detached. The third member ofébaestAvatar return tuple is a callable which will
be invoked when the connection is lost.

class MyPerspective(pb.Avatar):

def __init__ (self):
self.clients = []

def attached(self, mind):
self.clients.append(mind)
print "attached to", mind

def detached(self, mind):
self.clients.remove(mind)
print "detached from", mind

def update(self, message):
for ¢ in self.clients:

c.callRemote("update"”, message)

class MyRealm:
def requestAvatar(self, avatarlD, mind, * interfaces):
assert pb.IPerspective in interfaces
avatar = self.avatars[avatar|D]
avatar.attached(mind)
return pb.IPerspective, avatar, lambda a=avatar:a.detac hed(mind)

Viewable

Once you havePerspective objects (i.e. the Avatar) to represent users, \iewable class can come into
play. This class behaves a lot liReferenceable : it turns into aRemoteReference when sent over the wire,
and certain methods can be invoked by the holder of thateefer However, the methods that can be called have
names that start withiew _ instead ofemote _, and those methods are always called with an epgrapective
argument that points to the Avatar through which the refegemas sent:

class Foo(pb.Viewable):
def view_doFoo(self, perspective, argl, arg2):
pass

This is useful if you want to let multiple clients share a refece to the same object. Thiew _ methods can
use the “perspective” argument to figure out which clientaBirg them. This gives them a way to do additional
permission checks, do per-user accounting, etc.

This is the shortcut which makes per-user-per-group céipabbjects much easier to use. Instead of creating
such per-(user,group) objects, you just have per-grougctdjvhich inherit fronpb.Viewable , and give the user

CHAPTER 7. PERSPECTIVE BROKER 219

references to them. The locab.Avatar object will automatically show up as the “perspective” argunt in the
view _» method calls, give you a chance to involve the Avatar in tlee@ss.

Chat Server with Avatars

Combining all the above techniques, here is an example eegrswhich uses a fixed set of identities (say, for the
three members of your bridge club, who hang out in “#NeedAffdinoping that someone will discover your server,
guess somebody’s password, break in, join the group, andalavailable for a game next saturday afternoon).

#! Jusr/bin/python
from zope.interface import implements

from twisted.cred import portal, checkers
from twisted.spread import pb
from twisted.internet import reactor

class ChatServer:
def __init_ (self):
self.groups = {} # indexed by name

def joinGroup(self, groupname, user, allowMattress):
if not self.groups.has_key(groupname):
self.groups[groupname] = Group(groupname, allowMattres S)
self.groups[groupname].addUser(user)
return self.groups[groupname]

class ChatRealm:

implements(portal.IRealm)

def requestAvatar(self, avatarlD, mind, * interfaces):
assert pb.IPerspective in interfaces
avatar = User(avatarlD)
avatar.server = self.server
avatar.attached(mind)
return pb.IPerspective, avatar, lambda a=avatar:a.detac hed(mind)

class User(pb.Avatar):
def __init__ (self, name):
self.name = name
def attached(self, mind):
self.remote = mind
def detached(self, mind):
self.remote = None
def perspective_joinGroup(self, groupname, allowMattre ss=True):
return self.server.joinGroup(groupname, self, allowMat tress)
def send(self, message):
self.remote.callRemote("print", message)

class Group(pb.Viewable):

def __init_ (self, groupname, allowMattress):
self.name = groupname
self.allowMattress = allowMattress
self.users = []

def addUser(self, user):
self.users.append(user)

def view_send(self, from_user, message):
if not self.allowMattress and message.find("mattress") !

raise ValueError, "Don’'t say that word"

]
1
=

CHAPTER 7. PERSPECTIVE BROKER

for user in self.users:
user.send("<%s> says: %s" % (from_user.name, message))

realm = ChatRealm()

realm.server = ChatServer()

checker = checkers.InMemoryUsernamePasswordDatabaseDo ntUse()
checker.addUser("alice", "1234")

checker.addUser("bob", "secret")

checker.addUser("carol", "fido")

p = portal.Portal(realm, [checker])

reactor.listenTCP(8800, pb.PBServerFactory(p))
reactor.run()

Source listing —chatserver.py

220

Notice that the client usgeerspective _joinGroup to both join a group and retrieveRemoteReference
to theGroup object. However, the reference they get is actually to aiapetermediate object calledfzb.View
Point . When they dagroup.callRemote("send”, "message") , their avatar is inserted into the argument
list that Group.view _send actually sees. This lets the group get their username otieofvatar without giving

the client an opportunity to spoof someone else.
The client side code that joins a group and sends a messadé lvok like this:

#! lusr/bin/python

from twisted.spread import pb
from twisted.internet import reactor
from twisted.cred import credentials

class Client(pb.Referenceable):

def remote_print(self, message):
print message

def connect(self):
factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
defl = factory.login(credentials.UsernamePassword("al
client=self)
defl.addCallback(self.connected)
reactor.run()

def connected(self, perspective):
print "connected, joining group #lookingForFourth”
this perspective is a reference to our User object
d = perspective.callRemote("joinGroup"”, "#lookingForFo
d.addCallback(self.gotGroup)

def gotGroup(self, group):
print "joined group, now sending a message to all members"
'group’ is a reference to the Group object (through a ViewPo
d = group.callRemote("send", "You can call me AlL")
d.addCallback(self.shutdown)

def shutdown(self, result):
reactor.stop()

CHAPTER 7. PERSPECTIVE BROKER 221

Client().connect()

Source listing —ehatclient.py

Chapter 8

Manual Pages

8.1 MANHOLE.1
8.1.1 NAME

manhole - Connect to a Twisted Manhole service

8.1.2 SYNOPSIS

manhole

8.1.3 DESCRIPTION

manhole is a GTK interface to Twisted Manhole services. Ya &xecute python code as if at an interactive Python
console inside a running Twisted process with this.

8.1.4 AUTHOR
Written by Chris Armstrong, copied from Moshe Zadka’s “faticeanpage.

8.1.5 REPORTING BUGS

To report a bug, visibttp://twistedmatrix.com/bugs/

8.1.6 COPYRIGHT

Copyright(©2000 Matthew W. Lefkowitz This is free software; see the seuor copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTCULAR PURPOSE.

222

CHAPTER 8. MANUAL PAGES 223

8.2 MKTAP.1
8.2.1 NAME

mktap - create twisted.servers

8.2.2 SYNOPSIS
mktap[optiong apptypeapplicationoptiory...
mktapapptype-help
8.2.3 DESCRIPTION
The-helpprints out a usage message to standard output.
—debug -d Show debug information for plugin loading.
—progress-p Show progress information for plugin loading.
—encrypted-e Encrypt file before writing (will make the extension of theuétant file begin with 'e’).
—uid, -u<uid> Application belongs to this uid, and should run with its pessions.
—gid, -d<gid> Application belongs to this gid, and should run with its pessions.
—append-a<file> Append given servers to given file, instead of creating a nesv &ile should be be a tap file.

—appname-n<name> Use the specified name as the process name when the applicatim withtwistd(1) This
option also causes some initialization code to be duplitateentwistd(1)is run.

—type -t<type> Specify the output file type. Available types are: pickle ef@lilt) Output as a python pickle file.
xml - Output as a .tax XML file. source - Output as a .tas (AOThBytsource) file.apptypeCan be 'web’,
'portforward’, 'toc’, 'coil’, 'words’, 'manhole’, 'im’, ' news’, 'socks’, 'telnet’, 'parent’, 'sibling’, 'ftp’, and
'mail’. Each of those support different options.

8.2.4 portforward options

-h, —hoskhost> Proxy connections techost>

-d, —destport<port> Proxy connections tecport> on remote host.

-p, —port<port> Listen locally on<port>

8.2.5 web options
-u, —user Makes a server with “/publibtml and “/.twistd-web-pb support for users.
—personal Instead of generating a webserver, generate a Resour¢giuhwhich listens on “/.twistd-web-pb

—path<path> <path> is either a specific file or a directory to be set as the root efwiieb server. Use this if you
have a directory full of HTML, cgi, php3, epy, or rpy files onaother files that you want to be served up raw.

-p, —port<port> <port> is a number representing which port you want to start theesem.

-m, —mimetype<mimetype- <mimetype> is the default MIME type to use for files in a —path web serveewh
none can be determined for a particular extension. The Heéddtext/html’.

—allow.ignore_ext Specify whether or not a request for 'foo’ should return *fad’. Default is off.
—ignore-ext<extension> Specify that a request for 'foo’ should return 'fecextension-’.
-t, —telnecport> Run a telnet server ofport>, for additional configuration later.

-i, —index<xname> Use an index name other than “index.html”

CHAPTER 8. MANUAL PAGES 224

—https<port> Port to listen on for Secure HTTP.

-c, —certificate<filename> SSL certificate to use for HTTPS. [default: server.pem]

-k, —privkey<filename> SSL certificate to use for HTTPS. [default: server.pem]
—processox.ext>=<class name- Adds a processor to those file names. (Only usable if aftath)

—resource-script.script name> Sets the root as a resource script. This script will be réuat@d on every request.

This creates a web.tap file that can be used by twistd. If yegi§pno arguments, it will be a demo webserver
that has the Test class from twisted.web.test in it.
8.2.6 toc options

-p<port> <port> is a number representing which port you want to start theesem.

8.2.7 mail options

-r, —relay<ip>,<port>=<queue directory> Relay mail to all unknown domains through given IP and posthg
queue directory as temporary place to place files.

-d, —.domain<domain>=<path> generate an SMTP/POP3 virtual maildir domain named “dofnafich saves to
“path”

-u, —usernamename>=<password- add a user/password to the last specified domains
-b, —bounceto_postmasterundelivered mails are sent to the postmaster, instead oflvejected.
-p, —pop<port> <port> is a number representing which port you want to start the [gepder on.

-S, —smtp<port> <port> is a number representing which port you want to start the setyger on.

This creates a mail.tap file that can be used by twistd(1)

8.2.8 telnet options
-p, —port<port> Run the telnet server oaport>
-u, —usernamecname> set the username toname>

-w, —passworepassword- set the password tapassword

8.2.9 socks options
-i, —interface<interface> Listen on interface<interface-
-p, —port<port> Run the SOCKSv4 server cnport>

-, —log<filename> log connection data tefilename-

8.2.10 ftp options

-a, —anonymousAllow anonymous logins

-3, —thirdparty Allow third party connections

—otp Use one time passwords (OTP)

-p, —port<port> Run the FTP server oaport>

-r, —root<path> Define the local root of the FTP server

—anonymoususetrusername> Define the the name of the anonymous user

CHAPTER 8. MANUAL PAGES 225

8.2.11 manhole options
-p, —port<port> Run the manhole server coport>
-u, —usename> set the username toname>

-w, —passworekpassword- set the password tapassword-

8.2.12 words options
-p, —port<port> Run the Words server ogport>
-i, —irc<port> Run IRC server on por:port>

-w, —web<port> Run web server on portport>

8.2.13 AUTHOR

Written by Moshe Zadka, based on mktap’s help messages

8.2.14 REPORTING BUGS

To report a bug, visihttp://twistedmatrix.com/bugs/

8.2.15 COPYRIGHT

Copyright(©2000 Matthew W. Lefkowitz This is free software; see the seupr copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTULAR PURPOSE.

8.2.16 SEE ALSO
twistd(1)

CHAPTER 8. MANUAL PAGES 226

8.3 TAP2DEB.1
8.3.1 NAME

tap2deb - create Debian packages which wrap .tap files

8.3.2 SYNOPSIS
tap2deljoptions]

8.3.3 DESCRIPTION

Create a ready to upload Debian package in “.build”

-u, —unsigned do not sign the Debian package

-t, —tapfile<tapfile> Build the application around the given .tap (default twitstd)

-y, —type<type> The configuration has the given type . Allowable typestape source xml andpython The first
three types armktap(1)output formats, while the last one is a manual building oflieption (segwistd(1) the
-y option).

-p, —protocok protocot> The name of the protocol this will be used to serve. This ierided as a part of the
description. Default is the name of the tapfile, minus angmrsions.

-d, —debfilecdebfile> The name of the debian package. Default is 'twisted-'+proto
-V, —set-versior:versiorn> The version of the Debian package. The defaultis 1.0
-e, —descriptioncdescription> The one-line description. Default is uninteresting.

-I, —long_description<long_description> A multi-line description. Default is explanation aboutdhieing an auto-
matic package created from tap2deb.

-m, —maintainer<maintainer> The maintainer, as “Name Lastham@mail address”. This will go in the meta-
files, as well as be used as the id to sign the package.

-v, —version Output version information and exit.

8.3.4 AUTHOR

Written by Moshe Zadka, based on twistd’s help messages

8.3.5 REPORTING BUGS

To report a bug, visihttp://twistedmatrix.com/bugs/

8.3.6 COPYRIGHT

Copyright(©2000 Matthew W. Lefkowitz This is free software; see the seupr copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTULAR PURPOSE.

8.3.7 SEE ALSO
mktap(1)

CHAPTER 8. MANUAL PAGES 227

8.4 TAP2RPM.1
8.4.1 NAME

tap2rpm - create RPM packages which wrap .tap files

8.4.2 SYNOPSIS
tap2rpm[options]

8.4.3 DESCRIPTION

Create a set of RPM/SRPM packages in the current directory

-u, —unsigned do not sign the RPM package

-t, —tapfile<tapfile> Build the application around the given .tap (default twitstd)

-y, —type<type> The configuration has the given type . Allowable typestape source xml andpython The first
three types armktap(1)output formats, while the last one is a manual building oflieption (segwistd(1) the
-y option).

-p, —protocok protocot> The name of the protocol this will be used to serve. This ierided as a part of the
description. Default is the name of the tapfile, minus angmrsions.

-d, —rpmfile<rpmfile> The name of the RPM package. Default is twisted-'+protocol
-V, —set-versior:versiorn> The version of the RPM package. The defaultis 1.0
-e, —descriptioncdescription> The one-line description. Default is uninteresting.

-I, —long_description<long_description> A multi-line description. Default is explanation aboutdhieing an auto-
matic package created from tap2rpm.

-m, —maintainer<maintainer> The maintainer, as “Name Lastham@mail address”. This will go in the meta-
files, as well as be used as the id to sign the package.

-v, —version Output version information and exit.

8.4.4 AUTHOR

tap2rpm was written by Sean Reifschneider based on tap3d&tobhe Zadka. This man page is heavily based on
the tap2deb man page by Moshe Zadka.

8.45 REPORTING BUGS

To report a bug, visihttp://twistedmatrix.com/bugs/

8.4.6 COPYRIGHT

Copyright(©2000 Matthew W. Lefkowitz This is free software; see the seupr copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTULAR PURPOSE.

8.4.7 SEE ALSO
mktap(1)

CHAPTER 8. MANUAL PAGES 228

8.5 TAPCONVERT.1
8.5.1 NAME

tapconvert - convert Twisted configurations from one fortoatnother

8.5.2 SYNOPSIS
tapconverti input-o output[-f input-typd [-t output-typé[-d] [-€]
tapconvert-help

8.5.3 DESCRIPTION

The-helpprints out a usage message to standard output.
—in, -i<input file> The name of the input configuration.
—out, -o<output file> The name of the output configuration.

—typein -f<input type> The type of the input file. Can be either 'guess’, 'python’icide’, 'xml’, or 'source’.
Default is 'guess’.

—typeout -t<output type> The type of the output file. Can be either 'pickle’, 'xml’, adurce’. Default is 'source’.
—decrypt-d Decrypt input.

—encrypt -e Encrypt output.

8.5.4 AUTHOR

Written by Moshe Zadka, based on tapconvert's help messages

8.5.5 REPORTING BUGS

To report a bug, visihttp://twistedmatrix.com/bugs/

8.5.6 COPYRIGHT

Copyright(©2000 Matthew W. Lefkowitz This is free software; see the seudor copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTULAR PURPOSE.

8.5.7 SEEALSO
mktap(1)

CHAPTER 8. MANUAL PAGES 229

8.6 TRIAL.1
8.6.1 NAME

trial - run unit tests

8.6.2 SYNOPSIS
trial [options] [[file—package—module—TestCase—testmethod]...]
trial —help

8.6.3 DESCRIPTION

trial loads and executes a suite of unit tests, obtained frmdules, packages and files listed on the command line.
trial will take either filenames or fully qualified Python namas arguments. Thus 'trial myproject/foo.py’, 'trial
myproject.foo’ and 'trial myproject.foo.SomeTestCasstinethod’ are all valid ways to invoke trial.

-b, —debug Run the tests in the Python debugger. Also does post-morddnggdjing on exceptions.
-B, —debug-stacktracefkeport Deferred creation and callback stack traces

—coverageGenerate coverage information_imial_temp/coverage/. Requires Python 2.3 or higher.
—disablegcDisable the garbage collector. | don’t know why this is imlri

-e, —rterrors Print tracebacks to standard output as soon as they occur

—force-gc Run gc.collect() before and after each test case. This caséxtto isolate errors that occur when objects
get collected. This option would be the default, except ikesaests run about ten times slower.

-h, —help Print a usage message to standard output, then exit.

—help-reportersPrint a list of valid reporters to standard output, then.exit

—help-reactorsList the names of possibly available reactors.

-, —logfile<logfile> Direct the log to a different file. The default file is 'tesglo <logfile> is relative to_trial_temp.
-n, —dry-run Go through all the tests and make them pass without running.

-N, —no-recurse By default, trial recurses through packages to find everyuteihside every subpackage. Unless,
that is, you specify this option.

—nopm Don't automatically jump into debugger for post-mortemlgsis of exceptions. Only usable in conjunction
with —debug.

—profile I don’t know what this option does.

-r, —reactocreactor> Choose which reactor to use. See —help-reactors for a list.

—recursionlimit Set Python's recursion limit. | don’t know why this is in tria

—reporter Select the reporter to use for Trial's output. Use the —mefrters option to see a list of valid reporters.

—spew Print an insanely verbose log of everything that happensfulsrshen debugging freezes or locks in complex
code.

—tbformat<format > Format to display tracebacks with. Acceptable values afaidt’, 'brief’ and 'verbose’. ’brief’
produces tracebacks that play nicely with Emacs’ GUD.

—temp-directory<directory> WARNING: Do not use this options unless you know what you anegl. By default,
trial creates a directory calledrial_temp under the current working directory. When trial rundirét deletes
this directory, then creates it, then changes into the dirg¢o run the tests. The log file and any coverage files
are stored here. Use this option if you wish to have trial rua directory other thartrial_ temp. Be warned,
trial will deletethe directory before re-creating it.

CHAPTER 8. MANUAL PAGES 230
—testmodule<filename> Ask trial to look into<filename> and run any tests specified using the Emacs-style buffer
variable 'test-case-name’.

—unclean-warnings As of Twisted 8.0, trial will report an error if the reactoriét unclean at the end of the test. This
option is provided to assist in migrating from Twisted 2.9tasted 8.0 and later. Enabling this option will turn
the errors into warnings.

-u, —until-failure Keep looping the tests until one of them raises an error oilarda This is particularly useful for
reproducing intermittent failures.

—without-module<modulenames- Simulate the lack of the specified comma-separated list afutes. This makes
it look like the modules are not present in the system, causists to check the behavior for that configuration.

-z, —random [<seed>] Run the tests in random order using the specified seed.

8.6.4 AUTHOR
Written by Jonathan M. Lange

8.6.5 REPORTING BUGS

To report a bug, visihttp://twistedmatrix.com/bugs/

8.6.6 COPYRIGHT

Copyright ©2003-2007 Twisted Matrix Laboratories This is free softjasee the source for copying conditions.
There is NO warranty; not even for MERCHANTABILITY or FITNESFOR A PARTICULAR PURPOSE.

CHAPTER 8. MANUAL PAGES 231

8.7 TWISTD.1

8.7.1 NAME
twistd - run Twisted applications (TACs, TAPS)

8.7.2 SYNOPSIS

twistd[options]

8.7.3 DESCRIPTION

Read an twisted.application.service.Application out 6feaand runs it.

-n, —nodaemonDon’t daemonize (stay in foreground)

-q, —quiet No-op for backwards compatibility.

-p, —profile<profile output> Run the application under the profiler, dumping results éogpecified file.
—profiler<profiler name> Specify the profiler to use, default to the "hotshot’ profiler
—savestatsSave the Stats object rather than the text output of the erofil

-b, —debug Run the application in the Python Debugger (implies nodaeogion). Sending a SIGUSR?2 signal to
the process will drop it into the debugger.

-0, —ho_save Do not save shutdown state

—originalname Behave as though the specified Application has no process setyand run with the standard process
name (the python binary in most cases).

-, —logdfile<logfile> Log to a specified file, - for stdout (default twistd.log). Tbg file will be rotated on SIGUSRL1.
—pidfile<pidfile> Save pid in specified file (default twistd.pid)

—chroot<directory> Chroot to a supplied directory before running (default —'tdoroot). Chrooting is done before
changing the current directory.

-d, —rundir<directory> Change to a supplied directory before running (default .)
-r, —reactocreactor- Choose which reactor to use. See —help-reactors for a list.
—help-reactorsList the names of possibly available reactors.

—spew Write an extremely verbose log of everything that happengfll$or debugging freezes or locks in complex
code.

-f, —file<tap file> Read the given .tap file (default twistd.tap)
-X, =xXml<tax file> Load an Application from the given .tax (XML) file.
-s, —sourcectas file> Load an Application from the given .tas (AOT Python sourde) fi

-y, —python<python file> Use the variable “application” from the given Python file.i§ ketting, if given, overrides
-f. This option implies-no_save

-g, —plugin<plugin name> Read config.tac from a plugin package, as wjth
—syslogLog to syslog, not to file.
—prefix<prefix> Use the specified prefix when logging to logfile. Default isigted”.

Note that iftwistdis run as root, the working directory i®t searched for Python modules.

CHAPTER 8. MANUAL PAGES 232

8.7.4 AUTHOR

Written by Moshe Zadka, based on twistd’s help messages

8.7.5 REPORTING BUGS

To report a bug, visihttp://twistedmatrix.com/bugs/

8.7.6 COPYRIGHT

Copyright(©2001-2008 Twisted Matrix Laboratories. This is free sofsyasee the source for copying conditions.
There is NO warranty; not even for MERCHANTABILITY or FITNESFOR A PARTICULAR PURPOSE.

8.7.7 SEE ALSO
mktap(1)

Chapter 9

Appendix

9.1 The Twisted FAQ

9.1.1 General
What is “Twisted"?
Please see Twis@d

Why should | use Twisted?
See The Twisted Advantage

| have a problem “getting” Twisted.

Did you check the HOWTO collection? There are so many docusribere that they might overwhelm you... try
starting from the index, reading through the overviews arg) if there seems to be a chapter which explains what
you need to. You can try reading the PostScript or PDF fordaiboks, inside the distribution. And, remember, the
source will be with you... always.

Why are there so many parts and subprojects? Isn’t Twisted jus Twisted?

As of version 2.0, Twisted was split up into many subprojgmgause it was getting too much to handle in a monolithic
release, and we believe breaking the project into smallenichwill help people understand the things they need to
understfa%d (There used to be a FAQ entry here asking “Why ist&d/so big?”). More information is available in the
Split FAQ".

9.1.2 Stability
Does the 1.0 release mean that all of Twisted’s APIs are st

No, only specific parts of Twisted are stable, i.e. we onlynise backwards compatibility for some parts of Twisted.
While these APIs may be extended, they will not change in wagshireak existing code that uses them.

While other parts of Twisted are not stable, we will howeverodo best to make sure that there is backwards
compatibility for these parts as well. In general, the mbermodule or package are used, and the closer they are to
being feature complete, the more we will concentrate onighog backwards compatibility when APl changes take
place.

http:/itwistedmatrix.com/products/twisted
2http://twistedmatrix.com/services/twisted-advantage
Shttp://twistedmatrix.com/products/splitfaq

233

CHAPTER 9. APPENDIX 234

Which parts of Twisted are stable?

Only modules explictily marked as such can be considerddest&emi-stable modules may change, but not in a large
way and some sort of backwards-compatibily will probablypbavided. If no comment about API stability is present,
assume the module is unstable.

In Twisted 1.1,most of twisted.internet, .cred and .application are catglly stable(excepting of course code
marked as deprecated).

But as always, the only accurate way of knowing a modulemilitiais reading the module’s docstrings.

9.1.3 Installation
| run mktap (from site-packages/twisted/scripts/mktap.py) and nothing happens!

Don'’t run scripts out okite-packages . The Windows installer should install executable scriptsameplace like
C:\Python22 \scripts \, *nix installers put them i$SPREFIX/bin , which should be in your $PATH.

Why do the Debian packages for Alphas and Release CandidatesVe weird versions containing old version
numbers?

An example: 1.0.6+1.0.7rc1-1

In Debian versioning, 1.0.7rclggeater thanl.0.7. This means that if you install a package with Versiof:7rcl,
and then that package gets a new version 1.0.7, apt will igptagie it for you, because 1.0.7 looks like an older version.
So, we prefix the previous version to the actual version6300.7rcl idess thanl.0.7.

9.1.4 Core Twisted
How can | access self.factory from my Protocol’s _init __?

You can'’t. A Protocol doesn’t have a Factory when it is crdat@stead, you should probably be doing that in your
Protocol'sconnectionMade method.

Similarly you shouldn’t be doing “real” work, like connectj to databases, in a Factory’mit __either. Instead,
do that instartFactory

SeeWriting Servergpage 13) andiVriting Clients(page 17) for more details.

Where can | find out how to write Twisted servers?

Try Writing Server{page 13).

When | try to install my reactor, | get errors about a reactor al ready being installed. What gives?

Here’s the rule - installing a reactor should always befifs¢thing you do, and | do mean first. Importing other stuff
before you install the reactor can break your code.
Tkinter and wxPython support, as they do not install a newtmacan be done at any point, IIRC.

twistd won't load my .tap file! What's this Ephemeral nonsensé@

When the pickled application state cannot be loaded for s@ason, it is common to get a rather opaque error like
so:

% twistd -f test2.tap

Failed to load application: global name 'initRun’ is not def ined

The rest of the error will try to explain how to solve this plan, but a short comment first: this error is indeed
terse — but there is probably more data available elsewheagnely, thawistd.log file. Open it up to see the full
exception.

The error might also look like this:

Failed to load application: <twisted.persisted.styles.E phemeral instance at
0x82450a4> is not safe for unpickling

CHAPTER 9. APPENDIX 235

To load a.tap file, as with any unpickling operation, all the classes usgdlbthe objects inside it must be
accessible at the time of the reload. This may require theHRYNIPATH variable to have the same directories as were
available when the application was first pickled.

A common problem occurs in single-file programs which defifeneclasses, then create instances of those classes
for use in a server of some sort. If the class is used direti®yname of the class will be recorded in thep file
as something like_main __.MyProtocol . When the application is reloaded, it will look for the claggidition in
__main __, which probably won't have it. The unpickling routines ngednow the module name, and therefore the
source file, from which the class definition can be loaded.

The way to fix this is to import the class from the same soureetffiat defines it: if your source file is called
myprogram.py and defines a class callétl/Protocol , you will need to do &rom myprogram import My
Protocol before (and in the same namespace as) the code that refertiechlyProtocol class. This makes it
important to write the module cleanly: doing anport myprogram should only define classes, and should not
cause any other subroutines to get run. All the code thadbttile Application and saves it out totap file must be
inside anf __name__ == ' _main __' clause to make sure it is not run twice (or more).

When you import the class from the module using an “externaite, that name will be recorded in the pickled
tap file. When thetap is reloaded bywistd , it will look for myprogram.py to provide the definition oMy
Protocol

Here is a short example of this technique:

file dummy.py

from twisted.internet import protocol

class Dummy(protocol.Protocol): pass

if _name__ == ' main__ "
from twisted.application import service, internet
a = service.Application("dummy")
import dummy
f = protocol.Factory()
f.protocol = dummy.Dummy # Note! Not "Dummy"
internet. TCPServer(2000, f).setServiceParent(a)
a.save()

| get “Interrupted system call” errors when | use os.popen2. How do | read results from a sub-process in
Twisted?

You should be usingeactor.spawnProcess (seeinterfaces.IReactorProcess.spawnProcess).
There’s also a convenience functiggtProcessOutput , in twisted.internet.utils

Why don’t my spawnProcess programs see my environment varidbs?

spawnProcess defaults to clearing the environment of child processessezarity feature. You can either provide
a dictionary with exactly the name-value pairs you want thiéddo use, or you can simply passas.environ to
inherit the complete environment.

My Deferred or DeferredList never fires, so my program just myderiously hangs! What's wrong?

It really depends on what your program is doing, but the mostraon cause is this: is firing — but it's an error, not
a success, and you have forgotten to adéraback(page 238), so nothing happens. Always add errbacks!

The reason Deferred can’t automatically show your errorseisause a Deferred can still have callbacks and
errbacks added to it even after a result is available — so we tareasonable place to put a logging call that wouldn’t
result in spurious tracebacks treat handled later on. There is a facility for printing tracebaekhen the Deferreds
are garbage collected — call defer.setDebugging(Truenable it.

My exceptions and tracebacks aren’t getting printed!

See previous question.

CHAPTER 9. APPENDIX 236

How do | use Deferreds to make my blocking code non-blocking?

You don't. Deferreds don’t magically turn a blocking furwsti call into a non-blocking one. A Deferred is just a
simple object that representsdaferred result with methods to allow convenient adding of callbacks. §Tisi a
common misunderstanding; suggestions on how to make #wsenl in theDeferred Executioifpage 100) howto are
welcome!)

If you have blocking code that you want to use non-blockinigl¥wisted, either rewrite it to be non-blocking, or
run it in a thread. There is a convenience functideferToThread , to help you with the threaded approach — but
be sure to reatdsing Threads in Twistetbage 135).

| get “exceptions.ValueError: signal only works in main thr ead” when | try to run my Twisted program! What'’s
wrong?

The default reactor, by default, will install signal harrdléo catch events like Ctrl-C, SIGTERM, and so on. However,
you can't install signal handlers from non-main threadsyithBn, which means thaeactor.run() will cause an
error. Pass thimstallSignalHandlers=0 keyword argument toeactor.run to work around this.

I’'m trying to stop my program with sys.exit(), but Twisted seems to catch it! How do | exit my program?

Usereactor.stop() instead. This will cleanly shutdown the reactor.

How do I find out the IP address of the other end of my connectiofd

The.transport object (which implements th@ransport interface) offers a pair of methods nangetPeer
and getHost . getPeer will give you a tuple that describes the address of the systethe other end of the
connection. For example:

class MyProtocol(protocol.Protocol):
def connectionMade(self):
print "connection from", self.transport.getPeer()

Why don’t Twisted’s network methods support Unicode objectsas well as strings?

In general, such methods (&gleDescriptor 's write) are designed to send bytes over the network. These
methods use non-Unicode string objects as a containerddmytes that they send and receive.

Unicode objects are not byte-based and are an abstractdfaisrepresenting strings of human readable text. In
order to send Unicode strings using these methods, youdleaplicitly specify a byte-based encoding for them, for
example:s.encode("utf-8") and explicitly decode them at the receiving end.

Twisted cannot choose an encoding for you at this level: yoaoding choice will be protocol specific and may
need to be specified in the message you send (for example, H&ddrers include a encoding specification).

For a more complete discussion of the distinction betweeitddle strings and specific encodings of Unicode
strings, see the following articles:

e Dan Sugalski's What the heck is: A str@gand

e Joel Spolsky’s The Absolute Minimum Every Software Developbsolutely, Positively Must Know About
Unicode and Character Sets (No Excuses!)

9.1.5 Requests and Contributing
Twisted is cool, but | need to add more functionality.

Great! Read our the docs, and if you're feeling generoudyitte patches.

| have a patch. How do | maximize the chances the Twisted devabers will include it?

Use unified diff. Either usevn diff or, better yet, make a clean checkout and diffe -urN between them.
Make sure your patch applies cleanly. In your post to theingalist, make sure it is inlined and without any word
wrapping.

“http://www.sidhe.org/"dan/blog/archives/000255.html
Shttp://www.joelonsoftware.com/articles/Unicode.html

CHAPTER 9. APPENDIX 237

And to whom do | send it?
Add it to the bug tracké; and if it's an urgent or important issue you may want to tedl inailing list. about the issue
you added
My company would love to use Twisted, but it's missing featureX, can you implement it?
You have 3 options:
e Pay one of the Twisted developers to implement the feature.
e Implement the feature yourself.

e Add a feature request to our bug tracker. We will try to impéernthe feature, but there are no guarantees when
and if this will happen.

9.1.6 Documentation
Twisted really needs documentation for X, Y or Z - how come it5 not documented?.

Twisted’s documentation is a work in progress, and one tleatvauld appreciate assistance with. If you notice a gap
or flaw in the documentation, please file a bug in the Twisteg:itmckdf and mark it as having topic 'documentation’.
Patches appreciated.

Wow the Twisted documentation is nice! | want my docs to lookike that too!

Now you can, with Lor&.

9.1.7 Communicating with us
There’s a bug in Twisted. Where do | report it?

Unless it is a show-stopper bug, we usually won't fix it if iigready fixed in Subversidf, so check if it is fixed
there. If it is not fixed in Subversion, you should add it to blug tracket!, including pertinent information about the
bug (hopefully as much information needed to reproduce 8; Subversion versions of any important files, Python
version, code you wrote or things you did to trigger the bug, ¥ the bug appears to be severe, you should also raise
it on the mailing list2, with a pointer to the issue already filed in the bug tracker.

Where do | go for help?
Ask for help where the Twisted team hang{éut

How do | e-mail a Twisted developer?

First, note that in many cases this is the wrong thing to dgoif have a question about a part of Twisted, it's usually
better to e-mail the mailing list. However, the preferrethall addresses for all Twisted developers are listed in the
file “CREDITS” in the Subversion repository.

Shttp://twistedmatrix.com/bugs/
http://twistedmatrix.com/cgi-bin/mailman/listinfo/twési-python
8http://twistedmatrix.com/bugs/
http://twistedmatrix.com/projects/lore
LOhttp://twistedmatrix.com/developers/cvs
Uhttp://twistedmatrix.com/bugs/
Pnttp:/iwistedmatrix.com/cgi-bin/mailman/listinfo/twésd-python
L3http:/ftwistedmatrix.com/services/online-help

CHAPTER 9. APPENDIX 238

9.2 Twisted Glossary

adaptee An object that has been adapted, also called “original”. Asapter(page 238).

Adapt er An object whose sole purpose is to implement an Interfacariother object. Sdaterfaces and Adapters

(page 147).

Appl i cati on A twisted.application.service.Application . There are HOWTOs ooreating and
manipulating(page 141) them as a system-administrator, as welsag(page 159) them in your code.

Avatar (from Twisted Cred(this page)) business logic for specific user. For exampl®B (page 239) these are
perspectives, in pop3 these are mailboxes, and so on.

Banana The low-level data marshalling layer ®fvisted Spreadpage 239). Setwvisted.spread.banana
Br oker A twisted.spread.pb.Broker , the object request broker fawisted Spreadpage 239).

cache A way to store data in readily accessible place for lateree@aching data is often done because the data is
expensive to produce or access. Caching data risks beieg @taut of sync with the original data.

component A special kind of (persistentpdapter that works with atwisted.python.components.
Componentized . See alsdnterfaces and Adaptelpage 147).

Conponent i zed A Componentized object is a collection of information, seped into domain-specific or role-
specific instances, that all stick together and refer to edlolr. Each object is aAdapter , which, in the
context of Componentized, we call “components”. See hiterfaces and Adaptel@age 147).

conch Twisted's SSH implementation.

Connector Object used to interface between client connections antbqots, usually used with &wisted.

internet.protocol.ClientFactory to give you control over how a client connection reconneBese
twisted.internet.interfaces.IConnector andWriting Clients(page 17).

Consumer An object that consumes data fronPeoducer(page 239). Sesvisted.internet.interfaces.
IConsumer .

Cred Twisted’s authentication APtyisted.cred . Sedntroduction to Twisted Cre¢page 153) andwisted Cred
usage(page 205).

credentials A username/password, public key, or some other informatsau for authentication.
credential checker Where authentication actually happens. EaedentialChecker
CVSToys A nifty set of tools for CVS, available at http://twistedmatcom/users/acapnotic/wares/code/CVSToys/.

Def erred A instance oftwisted.internet.defer.Deferred , an abstraction for handling chains of call-
backs and error handlers (“errbacks”). Seeliegerring Executior{page 100) HOWTO.

Enterprise Twisted’'s RDBMS support. It contairtwisted.enterprise.adbapi for asynchronous access to
any standard DB-API 2.0 module, ahslisted.enterprise.row , & “Relational Object Wrappefpage
[239)". Seelntroduction to Twisted Enterprisgpage 173) andwisted Enterprise Row Objectsage 175) for
more details.

errback A callback attached to Beferred(this page) withaddErrback to handle errors.

Fact ory In general, an object that constructs other objects. Inf@djsa Factory usually refers totaisted.
internet.protocol.Factory , Which construct®rotocol (page 239) instances for incoming or outgoing
connections. Sew'riting Server{page 13) andlVriting Clients(page 17).

Fai | ur e Basically, an asynchronous exception that contains temteinformation; these are used for passing errors
through asynchronous callbacks.

im, t-im Abbreviation of “(Twisted)instance Messengé¢page 239)".

CHAPTER 9. APPENDIX 239

Instance Messengerinstance Messenger is a multi-protocol chat program thaesowith Twisted. It can communi-
cate via TOC with the AOL servers, via IRC, as well as PR (page 239) withTwisted Wordgpage 240). See
twisted.im

I nt er face A class that defines and documents methods that a class oonfpto that interface needs to have. A
collection of core twisted.internet interfaces can be tbimtwisted.internet.interfaces . See also
Interfaces and Adaptepage 147).

Jelly The serialization layer fofwisted Spreagthis page), although it can be used seperately from TwiSprdad as
well. It is similar in purpose to Python’s standgiitkle module, but is more network-friendly, and depends
on a separate marshall@dnana(page 238), in most cases). Seasted.spread.jelly

Lore Lorel4is Twisted’s documentation system. The source format i®aetiof XHTML, and output formats include
HTML and LaTeX.

Manhole A debugging/administration interface to a Twisted appiaa

Microdom A partial DOM implementation usin@UX (this page). It is simple and pythonic, rather than strictly
standards-compliant. Sewisted.web.microdom

Names Twisted’s DNS server, found itwisted.names
Nevow The successor td/oven(page 240), a web framework available at nevowtom
PB Abbreviation of ‘Perspective Brokefthis page)”.

Perspective Broker The high-level object layer of Twiste8pread(this page), implementing semantics for method
calling and object copying, caching, and referencing. t8g&sted.spread.pb

Portal Gluescredential checker§age 238) andealm (this page)s together.

Producer An object that generates data a chunk at a time, usually todmegsed by £&onsumer(page 238). See
twisted.internet.interfaces.IProducer

Pr ot ocol In general each network connection has its own Protocchimt® to manage connection-specific state.
There is a collection of standard protocol implementation$wisted.protocols . See alsowriting
Servergpage 13) andiVriting Clients(page 17).

PSU There is no PSU.

Reactor The core event-loop of a Twisted application. Sactor Basic¢page 90).

Reality See Twisted Realitfpage 240)”

realm (in Twisted Credpage 238)) storeavatars(page 238) and perhaps general business logiclFSzsim .

Resour ce A twisted.web.resource.Resource , which are served by Twisted Web. Resources can be as
simple as a static file on disk, or they can have dynamicalhegged content.

ROW RelationalObjectWrapper, an object-oriented interface to a relational detab Sedwisted Enterprise Row

Objects(pagé 175).
Service A twisted.application.service.Service . SeeApplication howta(page 159) for a description

of how they relate té\pplications(page 238).

Spread Twisted Spreﬁ is Twisted’s remote-object suite. It consists of three tayBerspective Brokefthis page),
Jelly (this page) an®anana.(page 238) Sew'riting Applications with Perspective Brokgrage 178).

SUX Small Uncomplicated XML, Twisted’s simple XML parser written in pure Python. Sawisted.
protocols.sux

TAP Twisted Application Pickle, or simply just aTwisted APplication. A serialised application that created with
mktap and runnable bywistd . SeeUsing the Utilities(page 141).

Trial twisted.trial , Twisted’s unit-testing framework, modelled after p%&Tﬁit See alsdWriting tests for

Lhttp://twistedmatrix.com/projects/lore/
Bhttp://nevow.com/
nttp://twistedmatrix.com/products/spread
http://pyunit.sourceforge.net/

CHAPTER 9. APPENDIX 240

Twisted codépage 171).
Twisted Matrix Laboratories The team behind Twisted. http://twistedmatrix.com/.

Twisted Reality In days of old, the Twisted Real@ multiplayer text-based interactive-fiction system wasrttan
focus of Twisted Matrix Labs; Twisted, the general netwogkiramework, grew out of Reality’s need for better
network functionality. Twisted Reality has since been lerokff into a separate project.

usage The twisted.python.usage module, a replacement for the standayetopt module for parsing
command-lines which is much easier to work with. $aesing command-linepage 163).

Words Twisted Words is a multi-protocol chat server that usesgrspective Brokefpage 239) protocol as its native
communication style. Sdawvisted.words

Woven Web ObjectVisualizationEnvironment. A deprecated web templating system based on XhdlLtlae Model-

View-Controller design pattern. This has been deprecatéalior of Nevow®.

9.3 Banana Protocol Specifications

9.3.1 Introduction

Banana is an efficient, extendable protocol for sending aoeiving s-expressions. A s-expression in this context is a
list composed of byte strings, integers, large integeratdland/or s-expressions.

9.3.2 Banana Encodings

The banana protocol is a stream of data composed of eleméath element has the following general structure -
first, the length of element encoded in base-128, least sagtfbit first. For example length 4674 will be sent as
0x42 0x24 . For certain element types the length will be omitted (e.gatjl or have a different meaning (it is the
actual value of integer elements).

Following the length is a delimiter byte, which tells us whatd of element this is. Depending on the element
type, there will then follow the number of bytes specifiedha tength. The byte’s high-bit will always be set, so that
we can differentiate between it and the length (since thgttehytes use 128-base, their high bit will never be set).

9.3.3 Element Types
Given a series of bytes that gave us length N, these are tleeadif delimiter bytes:

List — 0x80 The following bytes are a list of N elements. Lists may be essand a child list counts as only one
element to its parent (regardless of how many elements flelish contains).

Integer — 0x81 The value of this element is the positive integer N. Follayvlytes are not part of this element.
Integers can have values ok(x N <=2147483647.

String — 0x82 The following N bytes are a string element.

Negative Integer — 0x83The value of this element is the integer N * -1, i.e. -N. Follogvbytes are not part of this
element. Negative integers can have values 5£0-N >=-2147483648.

Float - 0x84 The next 8 bytes are the float encoded in IEEE 754 floatingtpdouble format” bit layout. No length
bytes should have been defined.

Large Integer — 0x85 The value of this element is the positive large integer NIldwdhg bytes are not part of this
element. Large integers have no size limitation.

Large Negative Integer — 0x86 The value of this element is the negative large integer -Nlowing bytes are not
part of this element. Large integers have no size limitation

Large integers are intended for arbitary length integeegyuRar integers types (positive and negative) are limited
to 32-bit values.

Bnttp://twistedmatrix.com/products/reality
Lhttp://nevow.com/

CHAPTER 9. APPENDIX 241

Examples

Here are some examples of elements and their encodingsyphdytes are marked in bold:

1 Ox01 0x81

-1 0x01 0x83

1.5 0x84 0x3f 0xf8 0x00 0x00 0x00 0x00 0x00 0x00

"“hel | 0" 0x05 Ox82 0x68 0x65 Ox6c 0x6c Ox6f

[] 0x00 0x80

[1, 23] 0x02 0x80 0x01 0x81 0x17 0x81

123456789123456789 0x15 Ox3e 0x41 Ox66 Ox3a 0x69 0x26 0Ox5b 0x01 0x85

[1, ["hello"]] 0x02 Ox80 0Ox01 0x81 Ox01 Ox80 0x05 0x82 0x68 0x65 0x6c Ox6¢C
Ox6f

9.3.4 Profiles

The Banana protocol is extendable. Therefore, it suppletsdncept of profiles. Profiles allow developers to extend

the banana protocol, adding new element types, while si#bikng backwards compatability with implementations

that don’t support the extensions. The profile used in eas$iae is determined at the handshake stage (see below.)
A profile is specified by a unique string. This specificatioffirdes two profiles -'none" and"pb" . The

"none" profile is the standard profile that should be supported bRatlana implementations. Additional profiles

may be added in the future.

The "none” Profile

The"none" profile is identical to the delimiter types listed above.slhighly recommended that all Banana clients

and servers support tlirone" profile.

The "pb” Profile

The"pb" profile is intended for use with the Perspective Broker prokothat runs on top of Banana. Basically, it
converts commonly used PB strings into shorter versions, thinimizing bandwidth usage. It does this by adding an
additional delimiter byte, 0x87. This byte should not befigezl by a length. It should be followed by a single byte,
which tells us to which string element to convert it;

0x01 'None’
0x02 'class’
0x03 'dereference’
0x04 'reference’
0x05 'dictionary’
0x06 'function’
0x07 'instance’
0x08 ’list’

0x09 'module’
0x0a 'persistent’
0x0b 'tuple’

0x0c 'unpersistable’

CHAPTER 9. APPENDIX 242

0x0d 'copy’

0x0e 'cache’

0xOf 'cached’
0x10 'remote’

0x11 ’local’

0x12 ’lcache’

0x13 ‘version’
0x14 ’login’

0x15 ’'password’
0x16 ’challenge’
0x17 ’logged.in’
0x18 'not_loggedin’
0x19 'cachemessage’
Oxla 'message’
Ox1b 'answer’
Ox1c 'error’

0Ox1d 'decref’

Ox1e 'decache’

Ox1f 'uncache’

9.3.5 Protocol Handshake and Behaviour

The initiating side of the connection will be referred to alent”, and the other side as “server”.

Upon connection, the server will send the client a list afhstrelements, signifying the profiles it supports. It is
recommended thdhone" be included in this list. The client then sends the serveriagstrom this list, telling the
server which profile it wants to use. At this point the wholsessen will use this profile.

Once a profile has been established, the two sides may stéideying elements. There is no limitation on order
or dependencies of messages. Any such limitation (e.gvésean only send an element to client in response to a
request from client”) is application specific.

Upon receiving illegal messages, failed handshakes,szeBanana client or server should close its connection.

	Introduction
	The Vision For Twisted
	High-Level Overview of Twisted
	Asynchronous Programming with Twisted
	Introduction to concurrent programming
	Deferreds
	The Problem that Deferreds Solve
	Deferreds - a signal that data is yet to come
	Conclusion

	Overview of Twisted Internet

	Tutorial
	Writing Servers
	Overview
	Protocols
	Factories

	Writing Clients
	Overview
	Protocol
	Simple, single-use clients
	ClientFactory
	A Higher-Level Example: ircLogBot
	Further Reading

	Setting up the TwistedQuotes application
	Goal
	Setting up the TwistedQuotes project directory

	Designing Twisted Applications
	Goals
	Example of a modular design: TwistedQuotes

	Twisted from Scratch, or The Evolution of Finger
	Introduction
	Contents

	The Evolution of Finger: building a simple finger service
	Introduction
	Refuse Connections
	Do Nothing
	Drop Connections
	Read Username, Drop Connections
	Read Username, Output Error, Drop Connections
	Output From Empty Factory
	Output from Non-empty Factory
	Use Deferreds
	Run 'finger' Locally
	Read Status from the Web
	Use Application
	twistd

	The Evolution of Finger: adding features to the finger service
	Introduction
	Setting Message By Local Users
	Use Services to Make Dependencies Sane
	Read Status File
	Announce on Web, Too
	Announce on IRC, Too
	Add XML-RPC Support

	The Evolution of Finger: cleaning up the finger code
	Introduction
	Write Readable Code

	The Evolution of Finger: moving to a component based architecture
	Introduction
	Write Maintainable Code
	Advantages of Latest Version
	Aspect-Oriented Programming

	The Evolution of Finger: pluggable backends
	Introduction
	Another Back-end
	Yet Another Back-end: Doing the Standard Thing

	The Evolution of Finger: a web frontend
	Introduction

	The Evolution of Finger: Twisted client support using Perspective Broker
	Introduction
	Use Perspective Broker

	The Evolution of Finger: using a single factory for multiple protocols
	Introduction
	Support HTTPS

	The Evolution of Finger: a Twisted finger client
	Introduction
	Finger Proxy

	The Evolution of Finger: making a finger library
	Introduction
	Organization
	Easy Configuration

	The Evolution of Finger: configuration and packaging of the finger service
	Introduction
	Plugins
	OS Integration

	Low-Level Twisted
	Reactor Overview
	Reactor Basics
	Using the reactor object

	UDP Networking
	Overview
	DatagramProtocol
	Connected UDP
	Multicast UDP
	Acknowledgements

	Using Processes
	Overview
	Running Another Process
	Writing a ProcessProtocol
	Things that can happen to your ProcessProtocol
	Things you can do from your ProcessProtocol
	Verbose Example
	Doing it the Easy Way
	Mapping File Descriptors

	Deferred Reference
	Callbacks
	Errbacks
	Handling either synchronous or asynchronous results
	DeferredList
	Class Overview
	See also

	Generating Deferreds
	Class overview
	What Deferreds don't do: make your code asynchronous
	Advanced Processing Chain Control
	Returning Deferreds from synchronous functions
	Integrating blocking code with Twisted
	Possible sources of error

	Deferreds are beautiful! (A Tutorial)
	Introduction
	A simple example
	Errbacks
	addBoth: the deferred version of finally
	addCallbacks: decision making based on previous success or failure
	Hints, tips, common mistakes, and miscellaney
	Conclusion

	Scheduling tasks for the future
	Using Threads in Twisted
	Running code in a thread-safe manner
	Running code in threads
	Utility Methods
	Managing the Thread Pool

	Choosing a Reactor and GUI Toolkit Integration
	Overview
	Reactor Functionality
	General Purpose Reactors
	Platform-Specific Reactors
	GUI Integration Reactors
	Non-Reactor GUI Integration

	High-Level Twisted
	The Basics
	Application
	twistd
	tap2deb
	tap2rpm

	The Twisted Plugin System
	Writing Extensible Programs
	Extending an Existing Program
	Alternate Plugin Packages
	Plugin Caching
	Further Reading

	Writing a twistd Plugin
	Goals
	A note on .tap files
	Alternatives to twistd plugins
	Creating the plugin
	Using cred with your TAP
	Conclusion

	Components: Interfaces and Adapters
	Interfaces and Components in Twisted code

	Cred: Pluggable Authentication
	Goals
	Cred objects
	Responsibilities
	Cred plugins
	Conclusion

	Using the Twisted Application Framework
	Introduction
	Overview
	Using application

	Utilities
	Using usage.Options
	Introduction
	Boolean Options
	Parameters
	Option Subcommands
	Generic Code For Options
	Parsing Arguments
	Post Processing
	Type enforcement

	Logging with twisted.python.log
	Basic usage
	Writing log observers

	DirDBM: Directory-based Storage
	dirdbm.DirDBM
	dirdbm.Shelf

	Using telnet to manipulate a twisted server
	Writing tests for Twisted code
	Trial basics
	Twisted-specific quirks: reactor, Deferreds, callLater

	Twisted RDBMS support
	twisted.enterprise.adbapi: Twisted RDBMS support
	Abstract
	What you should already know
	Quick Overview
	How do I use adbapi?
	Examples of various database adapters
	And that's it!

	Twisted Enterprise Row Objects
	Class Definitions
	Initialization
	Creating Row Objects
	Relationships Between Tables
	Duplicate Row Objects
	Updating Row Objects
	Deleting Row Objects

	Perspective Broker
	Overview of Twisted Spread
	Rationale

	Introduction to Perspective Broker
	Introduction
	Object Roadmap
	Things you can Call Remotely
	Things you can Copy Remotely

	Using Perspective Broker
	Basic Example
	Complete Example
	Passing more references
	References can come back to you
	References to client-side objects
	Raising Remote Exceptions
	Try/Except blocks and Failure.trap

	PB Copyable: Passing Complex Types
	Overview
	Motivation
	Passing Objects
	pb.Copyable
	pb.Cacheable

	Authentication with Perspective Broker
	Overview
	Compartmentalizing Services
	Avatars and Perspectives
	Perspective Examples
	Using Avatars

	Manual Pages
	MANHOLE.1
	NAME
	SYNOPSIS
	DESCRIPTION
	AUTHOR
	REPORTING BUGS
	COPYRIGHT

	MKTAP.1
	NAME
	SYNOPSIS
	DESCRIPTION
	portforward options
	web options
	toc options
	mail options
	telnet options
	socks options
	ftp options
	manhole options
	words options
	AUTHOR
	REPORTING BUGS
	COPYRIGHT
	SEE ALSO

	TAP2DEB.1
	NAME
	SYNOPSIS
	DESCRIPTION
	AUTHOR
	REPORTING BUGS
	COPYRIGHT
	SEE ALSO

	TAP2RPM.1
	NAME
	SYNOPSIS
	DESCRIPTION
	AUTHOR
	REPORTING BUGS
	COPYRIGHT
	SEE ALSO

	TAPCONVERT.1
	NAME
	SYNOPSIS
	DESCRIPTION
	AUTHOR
	REPORTING BUGS
	COPYRIGHT
	SEE ALSO

	TRIAL.1
	NAME
	SYNOPSIS
	DESCRIPTION
	AUTHOR
	REPORTING BUGS
	COPYRIGHT

	TWISTD.1
	NAME
	SYNOPSIS
	DESCRIPTION
	AUTHOR
	REPORTING BUGS
	COPYRIGHT
	SEE ALSO

	Appendix
	The Twisted FAQ
	General
	Stability
	Installation
	Core Twisted
	Requests and Contributing
	Documentation
	Communicating with us

	Twisted Glossary
	Banana Protocol Specifications
	Introduction
	Banana Encodings
	Element Types
	Profiles
	Protocol Handshake and Behaviour

