Fixing Twitter

... and Finding your own Fail Whale

John Adams

Twitter Operations
<jna@twitter.com>

mailto:jna@twitter.com
mailto:jna@twitter.com

Operations

® Small team, growing rapidly.

® VWhat do we do!
® Software Performance (back-end)
® Availability
® Capacity Planning (metrics-driven)
® Configuration Management

® We don’t deal with the physical plant.

Managed Services

® Dedicated team (NTTA)
® 24/7 Hands on remote support
® No clouds. WVe tried that!

® Need raw processing power, latency too
high in existing cloud offerings

® Frees us to deal with real, intellectual,
computer science problems.

/52%

2008 Growth

5

3.75

2.5

|.25

. mn BB

Dec0/ Feb08 Apr08 Jun08 Aug08 Oct08 Dec08
B Unique Visitors (in Millions)

That was only the beginning...

Daily Pageviews (percent)
twitter. com

Jul Oct 2009 Jan

Daily Traffic Rank Trend
twitter. com

previous
graph!

]
" . A rh ™
y "‘u\‘.‘ll'v_y‘#l oy
m.‘

10,000

-

2008 Jan Apr Oct 2009 Jan Apr

Uniques

Not slowing down, despite what outsiders say.
Hard for outsiders to measure AP| usage!

Growth = Pain

+ an appreciation for Institutionalized Fear

MET I}

Metrics +
Logs + Science =
Analysis

MET I}

Metrics +
Logs + Science =
Analysis

Process

MET I}

-

Metrics +
Logs + Science =
Analysis

Process Repeatability

Find the Weakest Point

® Metrics + Graphs

® |ndividual metrics are irrelevant
® | ogs
e SCIENCE!

® Find out what the actionable items are.

o .
Instrument Evp!rythn’ g

Monitoring

® Graph and report critical metrics in as near
real time as possible

® You already have the tools.
e RRD

® Ganglia + custom gMetric scripts

® MRTG

Dashboards

® “Criticals” view
® Smokeping/MRTG
® Google Analytics

® Not just for
HTTP 200s/SEO

® XML Feeds from
managed services

® Data Porn!

Analyze

® Turn data into information
® Where is the code base going!?
® Are things worse than they were!

® Understand the impact of the last
software deploy

® Run check scripts during and after
deploys

® (Capacity Planning, not Fire Fighting!

Forecasting

Curve-fitting for capacity planning
(R, fityk, Mathematica, CurveFit)

1= Show[Plot [signeddeath, {x, 0, 30}, PlotStyle -» { AbsoluteThickness[2], Red }],
Plot [longdeath, {x, 0, 30}, PlotStyle -» { AbsoluteThickness[2], Red }],
tweets, dataplot, Frame - True]

T T

unsigned int (32 bit)
Twitpocolypse

r x !.‘:'

status_id |

1 “

sighed int (32 bit)
Twitpocolypse

Deploys

® Graph time-of-deploy along side server
CPU and Latency

® Display time-of-last-deploy on dashboard

‘ Twitter Grid Report for Mon, 22 Jun 2009 21:25:04 +0000
21 S Last Deploys: TWITTER COM at Fri Jun 19, 2009 22:20 UTC | SUMMIZE at Wed Jun 17,2009 21:43 UTC | SEARCH at Thu Jun 11,2009 17:30 UTC

last deploy times

Whale-Watcher

® Simple shell script,

e MASSIVE WIN.
® Whale = HTTP 503 (timeout)
® Robot =HTTP 500 (error)

® Examines last 100,000 lines of aggregated
daemon / www logs

® “Whales per Second” >Wqhreshold

Robots, Whales and Whales - last 1 hour

® Thar be whales! Call in ops. E

Vv, &V

Take Action !

Feature “Darkmode”

® Specific site controls to enable and
disable computationally or |O-Heavy site
function

® The “Emergency Stop” button
® Changes logged and reported to all teams
® Around 60 switches we can throw

® Static / Read-only mode

Configuration
Management

® Start automated configuration management
EARLY in your company.

® Don’t wait until it’s too late.

® TJwitter started within the first few months.

Configuration
Management

® Complex Environment
® Multiple Admins
® Unknown Interactions

® Solution: 2nd set of eyes.

Process through Reviews

Review Board

My Dashboard New Review Request - All review requests Groups Submitters

Summary: publish review: dns change to point search round robin to backlink interfaces

Updated 4 days, 2 hours ago
Submitter: Josh Fraser Reviewers

Branch: Groups: operations

People: javed, jeremy, jna, rudy, j

Bugs:

Change Number: Repository: twitter-ops

Description:

publish review: dns change to point search round robin to backlink interface

Testing Done:

Ship it!

John Adams

please make sure internal search doesn't explode.

Reviewboard

® SVN pre-commit hook causes a failure if
the log message doesn’t include
‘reviewed’

® SVN post-commit hook informs people
what changed via email

® \Watches the entire SVN tree

http://www.review-board.org
http://www.review-board.org

Improve
Communication

Campfire

Subsystems

Many limiting factors in the request pipeline

Apache Rails

MPM Model (mongrel)
MaxClients 2:1 oversubscribed

TCP Listen queue depth

Vo

Varnish (search)
threads

€O cores

Make an attack plan.

Symptom Bottleneck Vector Solution
Bandwidth Network HTTP Servers++
Latency
Timeline Database |Update Delay BetFer
algorithm
DBs++
Search Database BIEIEWA Code
Updates Algorithm Latency Algorithms

CPU: More with Less

® Reduction in 40% of CPU by replacing dual
and quad core machines with 8 core

® Switching from AMD to Intel Xeon = 30%
gain

® Saved data center space, power, cost per
month.

® Not the best option if you own machines.
Capital expenditure = hard to realize new
technology gains.

Rails

® Stop blaming Rails.
® Analysis found:
® Caching + Cache invalidation problems

® Bad queries generated by ActiveRecord,
resulting in slow queries against the db

® Queue Latency
® Memcache / Page Cache Corruption

® Replication Lag

Disk is the new lape.

® Social Networking application profile has
many O(n’) operations.

® Page requests have to happen in < 500mS
or users start to notice. Goal: 250-300mS

® VWeb 2.0 isn’t possible without lots of RAM

® VWhat to do!?

Caching

® We're the real-time web, but lots of caching
opportunity

® Most caching strategies rely on long TTLs
(>60 s)

® Separate memcache pools for different data
types to prevent eviction

® Optimize Ruby Gem to libmemcached +
FNV Hash instead of Ruby + MD5

® [witter now largest contributor to
libmemcached

CaCh | ng 50% decrease in load with Native C

gem + libmemcached

Cache Money!

® Active Record Plugin
® Cache when from the DB
® Cache when to the DB
® Transparently provides caching
® Removes need for set/get cache code

® Open Source!

Caching

® “Cache Everything!” not the best policy

® |nvalidating caches at the right time is
difficult.

® Cold Cache problem

® Network Memory Bus != Infinite

Memcached

® memcached isn’t perfect.
® Memcached SEGVs hurt us early on.

® Evictions make the cache unreliable for
important configuration data
(loss of darkmode flags, for example)

® Data and Hash Corruption (even in 1.2.6)

® Exposed corruption issue with specific
inputs causing SEGV and unexpected
behavior

APl + Caching (search)

® Cache and control abusive clients

® Varnish between two Apache Virtual Hosts

(failover to another backend if Varnish
dies)

® Remove Cache busting query strings before
applying hash algorithm

® Using ES| to cache jQuery requests when
specifying a callback= parameter - big win.

Relational Databases
not a Panacea

® Good for:

® Users, Relational Data, Transactions
® Bad:

® Queues. Polling operations. Caching.
® You don’t need ACID for everything.

® Enter the message queue...

Queues

® Many message queue solutions on the
market

® At high loads, most perform poorly when
used in ‘durable’ mode.

® Erlang based queues work well
(RabbitMQ), but you need in house Erlang
experience.

® Ve wrote our own.

® Kestrel to the rescue!

Kestrel

Falco tinnunculus

® Works like memcache (same protocol)
® SET = enqueue | GET = dequeue

® No strict ordering of jobs

® No shared state between servers

® \Written in Scala.

Asynchronous
Requests

® |nbound traffic consumes a mongrel
® Outbound traffic consumes a mongrel

® The request pipeline should not be used to
handle 3rd party communications or
back-end work.

® Daemons, Daemons, Daemons.

Don’t make services
dependent

® Move operations out of the synchronous
request cycle

® Email
® Complex object generation (timelines)

® 3rd party services (bit.ly, sms, etc.)

Daemons

® Many different types at Twitter.
® # of daemons have to match the workload
® Early Kestrel would crash if queues filled
® “Seppaku” patch
® Kill daemons after n requests

® | ong-running daemons = low memory

MySQL Challenges

® Replication Delay
® Single threaded. Slow.

® Social Networking not good for RDBMS

® N x N relationships and social graph /
tree traversal

® Sharding importance

® Disk issues (FS Choice, noatime,
scheduling algorithm)

MySQL

® Replication delay and cache eviction
produce inconsistent results to the end
user.

® | ocks create resource contention for
popular data

Database Replication

® Major issues around users and statuses
tables

® Multiple functional masters (FRP, FVWP)

® Make sure your code reads and writes to
the write DBs. Reading from master = slow
death

® Monitor the DB. Find slow / poorly
designed queries

® Kill long running queries before they kill
you (mbkill)

status.twitter.com

® Keep users in the loop, or suffer.
® Hosted on different service (Tumblr)

® No matter how little information you have
available.

Key Points

® Databases not always the best store.

® |nstrument everything.

® Use metrics to make decisions, not guesses.
® Don’t make services dependent

® Process asynchronously when possible

Thanks!

Twitter Open Source (Apache License):

- CacheMoney Gem (Write through Caching)
http://github.com/nkallen/cache-money/tree/master

- Libmemcached
http://tangent.org/552/libmemcached.html

- Kestrel (Memcache-like message queue)
http://github.com/robey/kestrel

- mod_memcache_block (Apache 2.x Limiter/blocker)
http://github.com/netik/mod_memcache_block

http://tangent.org/552/libmemcached.html
http://tangent.org/552/libmemcached.html
http://github.com/robey/kestrel
http://github.com/robey/kestrel
http://github.com/netik/mod_memcache_block
http://github.com/netik/mod_memcache_block

