Virtualizing NUMA

Andre Przywara, AMD OSRC, Dresden

Virtualization developer (KVM and Xen)

Work areas:

NUMA

CPUID

Cross vendor migration

NUMA architecture

Driven by integrated memory controllers

Performance optimization

ACPI based

Smaller guests scale well

Guests may exceed one node's resources

They should know!

Scheduling should be restricted

(or be very clever)

State of integration

QEMU: can emulate in guest

KVM host binding patches pending

Xen: patches posted, but need more work

Proper topology emulation required

No. of Cores must match NUMA topology

Both HVM and PV targetted

Numbers

Four-way AMD Opteron 6164

Contains 8 nodes, 6 cores each

Each node has 8 or 16GB of RAM

Kernbench:

different no. of VCPUs and RAM

Numactl'ed or not

Lmbench

Starting many instances in parallel Helping scheduler or not

Lmbench (rd) KVM unpinned Highest Average Lowest 40 1 guest 16 guests 4 guests

Lmbench (lat) KVM unpinned Highest Average Lowest 40 1 guest 16 guests 4 guests

Lmbench (lat) KVM numactl Highest Average Lowest 40 4 guests 1 guest 16 guests

Discussion items

Realization of KVM host NUMA binding

libnuma in QEMU

Externally by numactl or hugetlbfs

Marry topology and NUMA?

QEMU cmdline syntax for NUMA

Currently flexible, but hard to comprehend

Does it matter? (libvirt)

Unfortunate limits with comma

Scheduler items

Avoid pinning (denies load balancing)

But avoid node migration

Schedule guests apart

Like Xen, but without pinning

Rebalancing with page migration?

Hot pages first, maybe temporary?

