= Using VoltDB

VOLTDB

Abstract

This book explains how to use VoltDB to design, build, and run high performance appli-
cations.

V4.3

Using VoltDB

V4.3
Copyright © 2008-2014 VoltDB, Inc.

The text and illustrations in this document are licensed under the terms of the GNU Affero General Public License Version 3 as published by the
Free Software Foundation. See the GNU Affero General Public License (http://www.gnu.org/licenses/) for more details.

Many of the core VoltDB database features described herein are part of the VoltDB Community Edition, which islicensed under the GNU Affero
Public License 3 as published by the Free Software Foundation. Other features are specific to the VoltDB Enterprise Edition, which is distributed
by VoltDB, Inc. under acommercial license. Y our rights to access and use Vol tDB features described herein are defined by the license you received
when you acquired the software.

This document was generated on May 11, 2014.

http://www.gnu.org/licenses/

Table of Contents

PrE AR ..t e Xi
Lo OVEIVIBIW ottt ettt ettt e n e enaa s 1
1.1 WHEE IS VOIIDB? ...ttt ettt e e e e 1

1.2. Who Should USE VOIEDBcouuiiiiiiiiieiee et e 1

1.3. HOW VOIIDB WOTKSeeiiieieii ettt 2
1.3.0. PartitiONiNg «..ceeereeeeiiie ettt 2

1.3.2. Serialized (Single-Threaded) ProCESSINGovvvvueiiiiiiieeeiie e 2

1.3.3. Partitioned vs. Replicated TableSuuiiiiiiiiiiii e 3

1.3.4. Ease of Scaling to Meet Application NEeaSuviiiiiiiiiiiiiiiieieii e 4

2. INSEAING VOITDBoiiiii ettt 5
2.1. Operating System and Software REQUIFEMENESueiiiiiieiiii e 5
2.2.INStAliNG VOIIDB ... oottt ettt e e e 6
2.2.1. Upgrading From Older VEISIONSuiieriiieiiiiae ettt 6

2.2.2. Ingtalling Standard System Packagesovvvviiiiiiiiiiicr e 6

2.2.3. Building a New VoItDB Distribution Kitccoiiiiiiiiiiiiiieiece e, 7

2.3. Setting Up YOUr ENVIFONMENTcoutiiiiii ettt ettt e et e e e eni e eees 8

2.4. What is Included in the VOItDB Distributionooooviiiiiiiiiiiieceecei e 8

2.5. VoltDB in Action: Running the Sample AppliCationSoocovvviiiiiiiiieei e 9

3. Designing Your VOITDB APPIICELIONiiiiitieiiiii et 10
3.1. DeSIgNIiNg the Datahasec.uuuieiiiiieeii et e 10
3.1.1. Partitioning Database Tallesccoouuiiiiiiiiie e 12

3.1.2. Replicating TaDIESoevuniiieii e 13

3.2. Designing the Data Access (Stored ProCedUIES)vcveevinieiiiiiiieeiiiie et ee e 13
3.2.1. Writing VOItDB Stored ProCedUIESooevvviiiiiiiiieeeeiii e 14

3.2.2. VoItDB Stored Procedures and DeterminiSmccceuuiveieeinieiinineeeeiineeeeeennn 14

3.2.3. The Anatomy of a VoItDB Stored Procedureuvveieieiiiieiineeiiiineeeennn, 15

3.2.4. Partitioning Stored ProCEAUIESiiiiiiiieiiii e 22

3.3. Designing the APPliCatioN LOGICcceuveueeiiiiieeeiii ettt eeeii e eens 24
3.3.1. Connecting to the VOItDB Dalahaseccovvuuieiiiiiiieeiiii e 24

3.3.2. InvoKing Stored ProCeOUIESccoeuuuiiiiiii et 25

3.3.3. Invoking Stored Procedures ASynchronouUSlYveeviiiieeiiiineeeiieeeeiinen 26

3.3.4. CloSINg the CONNECHIONceeitiieiiii e 27

34 HaNliNg EITOISoiiii e 27
3.4.1. Interpreting EXECULION EITOIScvivuiiiiiiii ettt 27

3.4.2. HaNAIiNG TIMEOULSeiiiiiieeeiiii ettt e e 29

3.4.3. Interpreting Other EITOrSooviiiiiiee e 30

4. Simplifying Application DEVEIOPIMENTc.uuiiiiiie e 33
4.1. Default Procedures for Partitioned TableSuiiviiiiiiiiii e 33

4.2. Shortcut for Defining Simple Stored ProCedUIESvvvieviiiiiiiiieceee e 34

4.3. Writing Stored Procedures INling USING GrOOVYooceieiiieiiiiinneeieiieeeeiineeeeeiine 35

4.4. Verifying Expected QUErY RESUILSccouuiiiiiiiieiii e 36

5. Building Your VOIIDB APPHICALIONc..uuiiiiiiieieii ettt e 38
5.1. Compiling the Client Application and Stored Procedurescoveevvviineeiiiiineeiininnnen. 38

5.2. Declaring the Stored ProCeAUIESovieueiiiiiiie e 38

5.3. Building the Application CatalOgcuuuieiiiiiieiiiiie e 39

6. Running Your VOItDB APPIICAIIONiiiiiiieeieii e 40
6.1. Defining the Cluster ConNfigUIationcoeuuuieiiiiiieiii e 40
6.1.1. Determining How Many PartitionSto USEccoeviiiiiiiiiiiieiiiieece e 41

6.1.2. Configuring Paths for RUNtIME FEALUIESoviiiiiiiieiiii e 41

6.1.3. Verifying your Hardware Configurationccceuoiieiiiiinieiiiiineeeiiineeeeiiinn 42

6.2. Starting a VoltDB Database for the First TiMeoviiiiiiiiiiii e 42

Using VoltDB

6.2.1. Simplifying Startup 0N @ CIUSEEScoovniiiiieeiiii e 43
6.2.2. How VoItDB Database Startup WOrKSoiiiiiiiiiieiii e 43
6.3. Starting VOoItDB Client APPliCaLIONScccuuiiiiieiiii e e 44
6.4. Shutting Down a VOItDB Databasec.uueviiieiiieiiiieiiee e e e e e e e e 44
6.5. Stopping and Restarting a VOItDB Databasevevvvieiiiieiiiiccie e 45
6.5.1. SAVE ANA RESLOIEceeviieiiiie e et e e e 45
6.5.2. Command Logging and RECOVENYccvuuiiiiiiiiiiieiiieeeiee e e e e e e e 45
6.6. MOUES OF OPEFGHION ...evuiiiiieeie e e e e e e e e e e e e et e e et e e e e eanaas 46
B.6.1. AAMIN MOTEciiiiiiieei e e e et et e e e e eeee 46
6.6.2. Starting the Database in AdMIN MOAEovviiiiiiii e, 46
7. Updating YOour VOITDB Daf@baseccuuuiiiiiiiiiiieiii e e e e e e s e e e e e et e e s e eaneens 48
7.1. Planning Your Application UPAaESccuuiiiiiiiiiii e e e 48
7.2. Updating the Database Schema on a Running Databasecccovevviiiiiieiiiiiecieeeies 48
7.2.1. Validating the Updated Catalogccovvnieiiieiiiieiiiece e 49
7.2.2. Managing the Update PrOCESSccuuiiiiiieiiiccie e 49
7.3. Updating the Database Using Save and RESIOreccovvviiiiiiiii e 50
7.4. Updating the Hardware Configurationccooeiuiieiiiieiiiiiceecs e ee e 50
7.4.1. Adding Nodes with Elastic SCalingooevviiiiiiiiiiiecii e 51
7.4.2. Configuring How VoltDB Rebalances New NOdEScoevvviviiiiieiiieciieeeen, 52
ST 1 [Y/ 53
8.1. How Security WOrkS in VOITDBuiiiiiiiiiic e 53
8.2. Enabling Authentication and AUthOFIZatioNcoeiviiiii i, 53
8.3. Defining Users and ROIEScvuiiiicii e 53
8.4. Assigning Access t0 StOred ProCEAUIEScocuuiiiiiieiii e 54
8.5. Allowing Access to System Procedures, Ad Hoc Queries, and Default Procedures........... 55
9. Saving & Restoring a VOItDB Dat@haSecccuuiiiiiiiiiiiieie e e e e e eaae e 56
9.1. Performing a Manual Save and Restore of aVOItDB CIUStErcccvviiiieiiiiieiiiieeiies 56
9.1.1. How to Save the Contents of a VoItDB Databasecooevvvvvvveiiiiiiieeiiiieeeens 57
9.1.2. How to Restore the Contents of a VOItDB Database.........cooevvvvieeviiiieeeiiinnens 57
9.1.3. Changing the Database Schema or Cluster Configuration Using Save and Re-
S (< PP 57
9.2. Scheduling Automated SNaPSNOLScvvuiiiiiiei e 58
9.3. Managing SNaPRSNOLSccuiiiii e e e e 59
9.4. Special Notes Concerning Save and RESIONEoevvieiiiiiiii e 60
10. Command Logging and RECOVETYcvuniiiiiciiie e e e e e e e e e e et e e e e e e aanaees 61
10.1. How Command Logging WOTKScouuieiiiiiiiiiic e e e e 61
10.2. Controlling Command LOGOING ...cvvueiinieiiieiiiie e eeeiieeeiee et e et e e e eise s eeanaeens 62
10.3. Configuring Command Logging for Optimal Performance..............cccoeevviveviiieennnnnn, 62
0 350 O oo T P 63
10.3.2. LOG FrEOUENCY ..viieiiiiiie et e e e e e e ans 63
10.3.3. Synchronous vs. ASynchronous LOGgiNgcuuuevevnieeiieeeiiieeiiieeeiieeeieeeieeeannns 63
10.3.4. Hardware CONSIEIaliONSoveveiieiiiiiie et e e e et e et e e 64
N Y= 1 = o 1) Y S PT 66
11.1. HOW K-Safety WOTKSuiiiiiiie et e e e e et e e e et e eaaa e 66
11.2. ENabling K-SafELY ...ovuiiiiiiii et e 67
11.2.1. What Happens When You Enable K-Safetycccccoveiiiiiiiiiniiiiieeceeeeenn, 68
11.2.2. Calculating the Appropriate Number of Nodes for K-Safetyccoovevivievinnnnns 68
11.3. Recovering from System Failluresccouiiiiiiiiiii e 69
11.3.1. What Happens When a Node Rejoins the CIustercooceveiiiieiinicinecennn, 69
11.3.2. Where and When Recovery May Failccocoiviiiiiiiiiiiiiicececeee 70
11.4. Avoiding NEtWOrk Partitionsccuieiiiiiiiiiiiii e e e 71
11.4.1. K-Safety and Network Partitionscooevuiiiiiiiiiiie e 71
11.4.2. Using Network Fault Protectioncc.oveiiiiiiiiiiciii e e 72
U DT = o= S I o= o] o= o) o 74

Using VoltDB

12.1. How Database Replication WOIKSociviiiiiiii e e e e 74
12.1.1. Starting REPICAION .. .ccvuiiiieii e e e e 75
12.1.2. Replication and EXisting Databasesc.vevviiiiiiiiiiiecii e, 75
12.1.3. Database Replication and Disaster RECOVEIYcc.vvviiiiiiieiiiieeiieeeieeeieeean 76
12.1.4. Database Replication and Completenesscccvvveiiiiiiiiiiiiiiieeeee e, 77
12.1.5. Database Replication and Read-only ClientS..........ccoceeiiiiiiiiiiiin i 77

12.2. Database Replication iN ACHONiiiii e e e e e aens 78
12.2.1. Starting REPIHCAION .. .c.vuiiiiiii e e e 78
12.2.2. Stopping REPIICALONccvviiiiiici e e 80
12.2.3. Promoting the Replica When the Master Becomes Unavailable........................ 80
12.2.4. Managing Database RepliCationcccvviiiiiiiiiiciie e 80

12.3. Using the Sample Applications to Demonstrate Replicationcccoeevviveviiieeinnnn, 82
12.3.1. Replicating the Voter Sample Using the Enterprise Managerccoocevvneenn.. 82
12.3.2. Replicating the Voter Sample Using the Command Line............ccoocvvevevinnenann. 83

T o o 1] oo I I YT I - - U 84

13.1. Understanding EXPOITciuuiiiiiii e e e e e e e e e e e e 84

13.2. Planning yOur EXPOrt SLrat@QYccvueiuueriiieiiiieeii e e eeee e et e e e st e e eae e st s e eaaeeannaees 85

13.3. Identifying Export Tablesin the Schemaccccoiiiiiiiiii e 87

13.4. Configuring Export in the Deployment Filecccooiiiiiiiiiiii e, 87

13.5. The EXPOrt-tO-File CHENtoiiiiii e e e e e 88

13.6. The EXport-to-JDBC ClIENtcvviiiiiecii e r e e e 90

13.7. The EXport-to-Kafka Clientoooiiiiii e e 91

13.8. HOW EXPOrt WOTKSeviciiiiciii et e e e e e e e e e e e e e e e et e eaneeeees 93
13.8.1. EXPOrt OVETIOW ...oeviiiiii e e 93
13.8.2. Persistence Across Datahase SESSIONSvvvvvenieviiiiiieeeiiieee e 94

14. Logging and Analyzing Activity in a VoItDB Databaseccovvviiiiiiiiiciieccc e, 95

14.1. Introduction 10 LOGOINGoiivneiiii i e e e e e e e e e aa s 95

14.2. Creating the Logging Configuration Filecccoiiiiiiiiii e 95

14.3. Enabling Logging fOr VOIIDBcccuuiiiiicii e e e e 97

14.4. Customizing Logging in the VoltDB Enterprise Managerccoovevvveeiiieeeiieeinnennnn. 97

14.5. Changing the Configuration onthe Flycooiiiiiii e 97

15. Using VolItDB with Other Programming LanQUAagEScceuuviiiieiiiiciiiieciiieeeee e e e e e 98

T I O O T o B 1= = o= PP 98
15.1.1. Writing VoltDB Client Applicationsin CH+coooviiiiiiiiiie e 98
15.1.2. Creating a Connection to the Database CIUStESccviveiiiiiiiiiiiiii e 99
15.1.3. Invoking Stored ProCEAUIESccvuiiiieiiie e e e e e e e e e s 99
15.1.4. Invoking Stored Procedures Asynchronouslycccccovveiiiveiiiieiiineeiieeeins 100
15.1.5. Interpreting the RESUITSciveiiii e e 101

15.2. JSON HTTP INEETACE .ceveeveiiiie e ettt e e e e e e e e e e 101
15.2.1. How the JSON Interface WOrKSviiiiiiiiieiiii e 101
15.2.2. Using the JSON Interface from Client Applications............ccccocvvvviviiiieinnenn. 103
15.2.3. How Parameters Are INterpretedcovvviiiiiiiiii e 105
15.2.4. Interpreting the JSON RESUILSc.uviviiiiii e e 106
15.2.5. Error Handling using the JSON Interfaceccooovvviviiiiiiiiiieeec e, 107

R TN B O 111 g - oY P SPPPR 108
15.3.1. Using JDBC to Connect to a VoItDB Databasecccoevvvvieiiiiieiiinecinee, 108
15.3.2. Using JDBC to Query a VoItDB Databaseccccvvveviiiiiiieeiiiiece e, 108

A. Supported SQL DDL StateMENLSuiiiiiiiieiie e ee e e e e e e e et e e e e e e e e annaas 110

CREATE INDEX .1uiiiiiieii ittt ettt s e e e e et et s et e e e e e e e et e e s e e e aeeeastann e naaeaeeeennes 111

CREATE PROCEDURE AS ...ttt e et a e e e e e e e et e s e e e e aaeaanne 113

CREATE PROCEDURE FROM CLASSottt eeeee e e e e e e aaaaanannns 114

CREATE ROLE ...iiiiii ittt e et e e e e e e e e ae ittt s e e e e eaeaenes 115

CREATE TABLE ...t e et e e e e e e e e et n s e e e aaeeenees 116

CREATE VIEW oottt e e e e e e e et e e e e e e e e e aa ittt s e e e eeeeeeaes 120

Using VoltDB

) @ = R 1A = S 121
L @ I O N S 122
PARTITION PROCEDUREcuuuiiiieiiiiiiiiiiie e ee et e e e e e e et s s e e e a e e anaaannn e e 123
PARTITION TABLEuii ittt e e e e e e e 125
B. SUPPOrted SOL StAEMENESvve i eeii e e e e e e e e e e e e e e et e e et e e et e e et e eanaees 126
DELETE ..ottt ittt oottt e e e e e e e e e et e e e e e et aaaaaeaaarna 127
LN S P SSPPPUPRTN 128
Sl 129
TRUNGCATE TABLE ..ot e e e e e e e e e e e e e e e 133
LU D N I 134
(ORI = ¥ g T 135
N = 1 P 137
ARRAY _ELEMENT() tevvtttiiiieeieiettiiiis e s e e e e ettt s e e e e e e aaatet s e e e e e aeae et s e s e e s aaaesnnnnn s 138
F Y A I N I T 139
N TSP 140
@7 2 (SRR 141
L0 I N T PP 142
CHAR _LENGTH() tuuitieeititiitii s st e e ettt st s e e e e e et s s e e e e e e e ettt s e e e e e e aaaaaaeaaeeeeeeeenes 143
L@ N[@ N (P 144
L0 11 |V P 145
CURRENT _TIMESTAMP ..ttt ettt e e e e e e e e et e e e e e e e 146
D] @ S 147
E X P() ettt ettt e — e e e e e e — e e e aaeaat e aeaaeararn 148
EXTRACT() trvvvtuunieieeetetieiis e et e e eeeeeatt s et e e e eeesaata e s s e e e eaeeaataa s e seeeaaeasstsanaaaeeeeeeansnnnnns 149
I PP 151
[1@ = 153
FROM _UNIXTIME() ©ruuiieeieeeiiiiis s e ettt e e e e et s e e e e e e e ettt s e e e e e e e eesasanneeaeeeeees 154
0 SRR 155
[T 156
Y TP 157
YN 158
N P 159
OCTET_LENGTHU() +vvvvvvteiieeeeeieteeiie e s s e et e ettt s s s e e e e e et s s e e e e e e aeataan s s e e e e e eaenennnn s 160
[0 15 i 110 N P 161
POWER() .. tttteitttie st e ettt s et st e e e et e ettt e e e e e e e e e e aataa e e s e e e eeeeastasnanaaaeeeeeanae 162
Ll N I S 163
1 1 I P 164
S N[0 = @ T 165
SN 1 (P US 166
S = (SRR 167
RS S I N T 168
SUM () ettt a e e et et a——ar e e e e et ittt e aeaaeaaarn 169
TO_TIMESTAMP() .ot ie ettt e e e e et e e s e e e e e e e e e s e e e e e e eeaaae s 170
I 20 1 2N I T 171
UPPER() etttttttti it e e ettt s s e e e e et st e e e e e e ettt s e e e e e e e e ettt n e e e e e e e e ettt naaeeaeeeaarnns 172
D. VOItDB CLI COMMENAS ...ttuieeiiiiieeiite et e et e e et e e et e e e et e e e et e e e eaan e e eesenaeeaennns 173
oSV e "o L= PPN 174
(01T = | P 178
LS o | 1.0 P 179
A1 7= [411 o T PRSP 181
17 o [S 183
E. Deployment File (deployment.Xml)ccouuiiiiiiiiii e e e e e e e e e e 188
E.1 Understanding XIML SYNEBXcvvvniiiiiieiiieeii e e e e e e e e et e e sae e st eeaneeaanaees 188
E.2. The Structure of the Deployment Fileooiiiiiiiiiii e 188

Vi

Using VoltDB

Y (= e (0000 (0= 192
@ATHOC ... e 193
L@ ST T o P 194
@EXPIAINPIOC ...ei it e e 195
@GELPArtItIONKEYSiieiieii e e e e 196
(@)= U= <N 198
(@] 0] 1010 (< 200
LY N 1= o= 201
(@R (== 01 202
L@ V100 [0 o TN 203
@SNAPSNOIDEIELEiive e e e e e e 204
@SNAPSNOIRESIONE . .euu et e e e e e e e et e et e e e e aaa e 206
@ SNAPSNOLSAVE ...vuiiiiieii et e e e e e e e e e e e a e 208
IS0 oo o 211
LIS g0 oIS 1 214
(VS = 1 1ok 216
(@20 o) N\ Lo (= TP 228
(IS Y (<1410 = o o [P 230
@SV (=001 1o 17 1 o o I 235
(@LU10/e = (=TAY o) o [Tor 0] (@ = oo [237
(@YU oo = (I 0T o] oo T 239

Vii

List of Figures

1.1, Partitioning TaDIESuiiiiii e 2
1.2, SEri@liZE0 PrOCESSING ..eevtueteiiti ettt ettt ettt ettt e et e e et e et et e e b 3
1.3. REPIICAING TADIESoeneieeiii ettt et ennans 4
3.1. Example RESEIVAtioN SCREMALccouutieiiiii et e r e e eneens 11
10.1. Command Logging iN ACHIONuiiiiiii ettt e e e ne s 61
10.2. RECOVENY IN ACHON .outiieiiit ettt e e e et e e e aa s 62
111 K-SEFELY TN ACHON ..ttt e et e e 67
11.2. NEEWOTK Partitionuuiiiiiieeeiii ettt e et e e e e e aan s 71
11.3. Network Fault ProteCtion in ACHIONveiiiiiieeiii e 73
12.1. The Components of Database REPIICAIONocviuiiiiiiiiie e 75
12.2. Replicating an EXisting Databaseuviiiiiiiiiiiie e 76
12.3. Promoting the REPIICAcoeueiiiiiii et 76
12.4. Read-Only AcCeSS t0 the REPIICAcevviiiiiii e e 78
13.1. OVErview Of EXPOIt PrOCESScouuiiiiiiii ettt ettt e e et e e eene e eees 85
13.2. FHight Schema with EXport Tablecoouiiiiii e 86
15.1. The Structure of the VOItDB JSON RESPONSEccuvuiiiiiiiiieeiiii e 106
E.1. Deployment XIML SHUCIUIEiiiii ettt ettt eeaeens 189

viii

List of Tables

2.1. Operating System and Software REQUIFEMENTSiieriiieiiiiie et 5
2.2. Components Installed Dy VOITDBiiiiiiiiiiiiiiie e 8
3.1. Example Application Workloadooiiiiiiiiiii e 11
3.2. Methods of the VOITEDIE ClaSSESoeiiiiieeiiii e 20
13.1. File EXport ClHent Propertiescceuueieeeii et ettt e et e e e eene 89
13.2. IDBC EXPOrt Client ProPertiesccveiii ettt 90
13.3. Kafka EXport Client Propertiesocveueeeiiiie et 93
14.1. VoItDB Components fOr LOGGING ... cceeruueeeerieeietiieetetieeeeetie e et e e et eeeri e eeenines 96
15.1. Datatypes in the JSON INLEITACEcoeuiiieiei e 105
A.L SUPPOrted SQL DEBLYPESceeereieeeiii ettt ettt ettt e ettt ettt e e ettt e e e e et e e ena e aee 116
C.1. Selectable Values for the EXTRACT FUNCHONccovuuiiiiiicicii e 149
E.1. Deployment File Elements and AtrDULESuiiiiiiiiiiiii e 189
F.1. @SNapSNOtSAVE OPLIONSceeveueeeitiee et e et e e ettt e e et e et e e e ena e eennens 208

List of Examples

3.1. Components of a VoltDB Stored Procedure ..

3.2. Displaying the Contents of VoltTable Arrays

Preface

Thisbook is a complete guide to VoltDB. It describes what VoltDB is, how it works, and — more impor-
tantly — how to use it to build high performance, data intensive applications. The book is divided into

four sections:

Section 1: Introduction

Explainswhat VolItDB is, how it works, what problemsit solves, and
who should useit. The chaptersin this section are:

e Chapter 1, Overview

e Chapter 2, Installing VoltDB

Section 2: Using VoltDB

Explains how to design and develop applications using VoltDB. The
chaptersin this section are:

» Chapter 3, Designing Your VoltDB Application

Chapter 4, Smplifying Application Devel opment

Chapter 5, Building Your VoltDB Application
¢ Chapter 6, Running Your VoltDB Application

e Chapter 7, Updating Your VoltDB Database

Section 3: Advanced Topics

Provides detailed information about advanced features of VoltDB.
Topics covered in this section are:

e Chapter 8, Security

e Chapter 9, Saving & Restoring a VoltDB Database

¢ Chapter 10, Command Logging and Recovery

 Chapter 11, Availability

e Chapter 12, Database Replication

e Chapter 13, Exporting Live Data

» Chapter 14, Logging and Analyzing Activity in a VoltDB Database

e Chapter 15, Using VoltDB with Other Programming Languages

Section 4: Reference Material

Provides reference information about the languages and interfaces
used by VoltDB, including:

e Appendix A, Supported SQL DDL Satements

« Appendix B, Supported SQL Satements

Appendix C, SQL Functions

e Appendix D, VoltDB CLI Commands

« Appendix E, Deployment File (deployment.xml)

Xi

Preface

» Appendix F, System Procedures

Thisbook providesthe most complete description of the VoltDB product. It includesfeaturesfrom both the
open source Community edition and the commercial Enterprise Edition. In general, the features described
in Section 2 — chapters 2 through 6 — are available in both versions of the product. Several featuresin
Section 3, advanced topics — such as snapshots, command logging, database replication, and export —
are unique to the Enterprise Edition.

If you are new to VoltDB, the VoItDB Tutorial provides an introduction to the product and its features.
The tutorial, and other books, are available on the web from http://www.voltdb.com/.

Xii

http://voltdb.com/docs/tutorial/
http://www.voltdb.com/

Chapter 1. Overview
1.1. What is VoltDB?

VoltDB is arevolutionary new database product. Designed from the ground up to be the best solution for
high performance business-critical applications, the VoltDB architectureisable to achieve 45 times higher
throughput than current database products. The architecture also allows VoltDB databases to scale easily
by adding processors to the cluster as the data volume and transaction requirements grow.

Current commercia database products are designed as general -purpose data management solutions. They
can be tweaked for specific application requirements. However, the one-size-fits-all architecture of tradi-
tional databases limits the extent to which they can be optimized.

Although the basic architecture of databases has not changed significantly in 30 years, computing has. As
have the demands and expectations of business applications and the corporations that depend on them.

VoltDB is designed to take full advantage of the modern computing environment:
» VoItDB uses in-memory storage to maximize throughput, avoiding costly disk access.

* Further performance gains are achieved by serializing all data access, avoiding many of the time-con-
suming functions of traditional databases such as locking, latching, and maintaining transaction logs.

 Scalability, reliability, and high availability are achieved through clustering and replication across mul-
tiple servers and server farms.

VoltDB isafully ACID-compliant transactional database, relieving the application developer from having
to develop code to perform transactions and manage rollbacks within their own application. By using a
subset of ANSI standard SQL for the schema definition and data access, VoltDB also reduces the learning
curve for experienced database designers.

1.2. Who Should Use VoltDB

VoltDB is not intended to solve all database problems. It is targeted at a specific segment of business
computing.

VoltDB focuses specifically on applications that require scalability, reliability, high availability, and out-
standing throughput. In other words, VoltDB's target audience is what have traditionally been known
as Online Transaction Processing (OLTP) applications. These applications have strict requirements for
throughput to avoid bottlenecks. They also have aclearly architected workflow that predefinesthe allowed
data access paths and critical interactions.

VoltDB is used today for traditional high performance applications such as capital markets data feeds, fi-
nancial trade, telco record streams and sensor-based distribution systems. It's also used in emerging appli-
cations like wireless, online gaming, fraud detection, digital ad exchanges and micro transaction systems.
Any application requiring high database throughput, linear scaling and uncompromising data accuracy
will benefit immediately from VoltDB.

VoltDB is not optimized for all types of queries, such as fetching and collating large data sets across
multiple tables. This sort of activity is commonly found in business intelligence and data warehousing
solutions, for which other database products are better suited.

Overview

To aid businesses that require both exceptional transaction performance and ad hoc reporting, VoltDB
includes integration functions so that historical data can be exported to an analytic database for larger
scale data mining.

1.3. How VoltDB Works

VoltDB is not like traditional database products. There is no such thing as a generic VoltDB "database”.
Each database is optimized for a specific application by compiling the schema, stored procedures, and
partitioning information in to what isknown asthe VoltDB application catalog. The catalog isthen loaded
on one or more host machines to create the distributed database.

1.3.1. Partitioning

In VoltDB, each stored procedure is defined as a transaction. The stored procedure (i.e. transaction) suc-
ceeds or rolls back as awhole, ensuring database consistency.

By analyzing and precompiling the data access logic in the stored procedures, VVoltDB can distribute both

the data and the processing associated with it to the individual nodes on the cluster. In thisway, each node
of the cluster contains a unique "dlice" of the data and the data processing.

Figure 1.1. Partitioning Tables

Tag'e Database
Table Table Scheme
A C
AI BI CI AII BII CII AIII BIII CIII Run—Time
Partitioning
Server Server Server
X Y Z

1.3.2. Serialized (Single-Threaded) Processing

At run-time, calls to the stored procedures are passed to the appropriate node of the cluster. When proce-
dures are "single-partitioned" (meaning they operate on data within asingle partition) the individual node
executes the procedure by itself, freeing the rest of the cluster to handle other requestsin parallel.

By using serialized processing, VoltDB ensurestransactional consistency without the overhead of locking,
latching, and transaction logs, while partitioning lets the database handle multiple requests at atime. Asa
general rule of thumb, the more processors (and therefore the more partitions) in the cluster, the more trans-
actions VoltDB completes per second, providing an easy, ailmost linear path for scaling an application's
capacity and performance.

Overview

1.3.3.

When a procedure does require data from multiple partitions, one node acts as a coordinator and hands out
the necessary work to the other nodes, collectsthe results and completes the task. This coordination makes
multi-partitioned transactions generally slower than single-partitioned transactions. However, transaction-
al integrity is maintained and the architecture of multiple parallel partitions ensures throughput is kept at
amaximum.

Figure 1.2. Serialized Processing

Stored Proc.
Stored Proc. Workload
Stored Proc. Queue
Stored Proc.
Stored Proc. Stored Proc. Stored Proc.
Stored Proc. Stored Proc. Stored Proc.
Stored Proc. Stored Proc. Stored Proc. Distributed,
Serialized
Server Server Processing

Y Z

It isimportant to note that the V oltDB architectureisoptimized for throughput over latency. The latency of
any one transaction (the time from when the transaction begins until processing ends) issimilar in VoltDB
to other databases. However, the number of transactionsthat can be completed in asecond (i.e. throughput)
is orders of magnitude higher because VoltDB reduces the amount of time that requests sit in the queue
waiting to be executed. VoltDB achieves thisimproved throughput by eliminating the overhead required
for locking, latching, and other administrative tasks.

Partitioned vs. Replicated Tables

Tables are partitioned in VVoltDB based on a primary key that you, the developer or designer, specify.
When you choose partitioning keys that match the way the data is accessed by the stored procedures, it
optimizes execution at runtime.

To further optimize performance, VoltDB allows certain database tables to be replicated to all partitions
of the cluster. For small tables that are largely read-only, this allows stored procedures to create joins
between this table and another larger table while remaining a single-partitioned transaction. For example,
aretail merchandising database that uses product codes as the primary key may have one table that simply
correlates the product code with the product's category and full name, Since thistableis relatively small
and does not change frequently (unlikeinventory and orders) it can bereplicated to all partitions. Thisway
stored procedures can retrieve and return user-friendly product information when searching by product
code without impacting the performance of order and inventory updates and searches.

Overview

Figure 1.3. Replicating Tables

Tagle Database Schema
Table Table
A C
Table
D

AlB | Al Run-Time
Partitioning &
D D Replication
X z

1.3.4. Ease of Scaling to Meet Application Needs

The VoltDB architecture is designed to simplify the process of scaling the database to meet the changing
needs of your application. Increasing the number of nodesin aVoltDB cluster both increases throughput
(by increasing the number of simultaneous queues in operation) and increases the data capacity (by in-
creasing the number of partitions used for each table).

Scaling up a VoltDB database is a simple process that doesn't require any changes to the database schema
or application code. Y ou can either:

+ Save the database (using a snapshot or command logging), update the deployment file to identify the
number of nodesfor the resized cluster, then restart the database using either restore or recover to reload

the data.

» Add nodes "on the fly" while the database is running.

Chapter 2. Installing VoltDB

VoltDB is available in both an open source and an enterprise edition. The open source, or community,
edition provides basic database functionality with all the transactional performance benefits of VoltDB.
The enterprise edition provides additional features needed to support production environments, such as
high availability, durability, and dynamic scaling and schema management.

Depending on which version you choose, the VoltDB software comes as either pre-built distributions or
as source code. This chapter explains the system requirements for running VoltDB, how to install and
upgrade the software, and what resources are provided in the kit.

2.1. Operating System and Software Require-

ments

The following are the requirements for developing and running VoltDB applications.

Table 2.1. Operating System and Softwar e Requirements

Operating System

VoltDB requires a 64-bit Linux-based operating system. Kits are built and
qualified on the following platforms:

* CentOSversion 6.3 or |ater
* Red Hat (RHEL) version 6.3 or later
e Ubuntu versions 10.4 and 12.4

Development builds are also available for Macintosh OS X 10.7 and |atert.

CPU « Dual core? x86_64 processor
e 64 bit
e 1.6 GHz
Memory 4 Gbyt%3
Java Java 7 — VoltDB supports JDKs from OpenJDK or Oracle/Sun

Required Software

NTP*

Python 2.5 or later release of 2.x

Recommended Software

Eclipse 3.x (or other Java IDE)

Footnotes:

optimal performance.

1. CentOS 6.3, RHEL 6.3, and Ubuntu 10.4 and 12.4 are the only officially supported operating systems
for VoltDB. However, VoItDB is tested on several other POSIX-compliant and Linux-based 64-hit
operating systems, including Macintosh OS X 10.7.

2. Dual core processors are a minimum requirement. Four or eight physical cores are recommended for

3. Memory requirements are very specific to the storage needs of the application and the number of nodes
in the cluster. However, 4 Gigabytes should be considered a minimum configuration.

4. NTP minimizes time differences between nodes in a database cluster, which is critical for VoltDB.
All nodes of the cluster should be configured to synchronize against the same NTP server. Using a
single local NTP server is recommended, but not required.

Installing VoltDB

2.2. Installing VoltDB

2.2.1.

2.2.2.

VoltDB is distributed as a compressed tar archive for each of the supported platforms. The file name
identifies the platform, the edition (community or enterprise) and the version number. The best way to
install VoltDB isto unpack the distribution kit as afolder in the home directory of your personal account,
like so:

$ tar -zxvf LINUX-voltdb-ent-4.0.2.tar.gz -C $HOWE/

Installing into your personal directory gives you full access to the software and is most useful for devel-
opment.

If you are installing VoltDB on a production server where the database will be run, you may want to
install the software into a standard system location so that the database cluster can be started with the
same commands on all nodes. The following shell commands install the VoltDB software in the folder
/opt/vol tdb:

$ sudo tar -zxvf LINUX-voltdb-ent-4.0.2.tar.gz -C /opt
$ cd /opt
$ sudo nv voltdb-ent-4.0.2 voltdb

Note that installing asroot using the sudo command makes the installation fol ders read-only for non-priv-
ileged accounts. Which iswhy installing in $HOME is recommended for running the sample applications
and other development activities. Alternately, you can use standard installation packages for Linux sys-
tems, as described in Section 2.2.2, “Installing Standard System Packages’.

Upgrading From Older Versions

When upgrading from a previous version of VoltDB — especially with an existing database — there are
afew key steps you should take to ensure a smooth migration. The recommended steps for upgrading an
existing database are:

1. Place the database in admin mode (voltadmin pause).

2. Perform amanual snapshot of the database (voltadmin save).
3. Shutdown the database (voltadmin shutdown).

4. Upgrade VoltDB.

5. Start a new database using the voltdb create option, your existing application catalog, and starting in
admin mode (specified in the deployment file).

6. Restore the snapshot created in Step #2 (voltadmin restore).
7. Return the database to normal operations (voltadmin resume).

Note that the voltdb cr eate command automatically recompiles your catalog if the catal og was created by
an older version. When using the Enterprise Manager, it isal so recommended that you del ete the Enterprise
Manager configuration files (stored by default in the . vol t db subfolder in the home directory of the
current account) when performing an upgrade.

Installing Standard System Packages

If you plan on making VoltDB availableto all users of the system, you can use acommon system package
toinstall the VoltDB filesin standard locations. Installation packages are available for both Debian-based

Installing VoltDB

(deb) and Red Hat-based (rpm) systems. These packages simplify the installation process by placing the
VoltDB filesin standard system directories, making VoltDB available to all users of the system without
their having to individually configure their PATH variable.

The advantages of using an install package are:
» Theinstallation is completed in a single command. No additional set up isrequired.
» VoItDB becomes available to all system users.

» Upgrades are written to the same location. Y ou do not need to modify your application scripts or move
files after each upgrade.

However, there are afew changes to behavior that you should be aware of if you instal VoltDB using a
system package manager:

e The VoItDB libraries are installed in /ust/lib/voltdb. When compiling stored procedures, you must in-
clude thislocation in your Java classpath.

» The sample applications are installed into the directory / usr/ shar e/ vol t db/ exanpl es/ . Be-
causethisisasystem directory, users cannot run the samples directly in that location. Instead, first copy
the folder containing the sample application you want to run and paste a copy into your home directory
structure. Then run the sample from your copy. For example:

$ cp -r /usr/share/vol tdb/exanpl es/voter ~/
$ cd ~/voter
$./run.sh

2.2.2.1. Installing the Debian Package

Toinstall the Debian package on Ubuntu or other Debian-based systems, download the package from the
VoltDB web site. Then, from an account with root access issue the following commands to install Open
JDK 7 and VoItDB:

$ sudo apt-get install openjdk-7-jdk
$ sudo dpkg -i voltdb_4.0.2-1_and64. deb

2.2.2.2. Installing the RPM Package

2.2.3.

Toinstall the rpm package on compatible systems such as Red Hat or CentOS, download the package from
the VoltDB web site. Then, from an account with root access issue the following command:

$ sudo yumlocalinstall voltdb-4.0.2-1.x86_64.rpm

Building a New VoltDB Distribution Kit

If you want to build the open source VoltDB software from source (for example, if you want to test recent
development changes), you must first fetch the VoltDB source files. The VoltDB sources are stored in a
GitHub repository.

The VoltDB sources are designed to build and run on 64-bit Linux-based or 64-bit Macintosh platforms.
However, the build process has not been tested on all possible configurations. Attemptsto build the sources
on other operating systems may require changes to the build files and possibly to the sources as well.

Once you obtain the sources, use Ant 1.7 or later to build a new distribution kit for the current platform:

http://community.voltdb.com/downloads
http://community.voltdb.com/downloads
https://github.com/VoltDB/voltdb

Installing VoltDB

$ ant di st

Theresulting distribution kitiscreated asobj / r el ease/ vol t - n. n. nn. t ar. gz wheren.n.nniden-
tifies the current version and build numbers. Use thisfile to install VoltDB according to the instructions
in Section 2.2, “Installing VoltDB”.

2.3. Setting Up Your Environment

VoltDB comes with shell command scripts that simplify the process of devel oping and deploying VoltDB
applications. These scripts are in the /bin folder under the installation root and define short-cut commands
for executing many VoltDB actions. To make the commands available to your session, you must include
the /bin directory as part your PATH environment variable.

You can add the/ bi n directory to your PATH variable by redefining PATH. For example, the following
shell command adds / bi n to the end of the environment PATH, assuming you installed VoltDB as /
vol t db- n. n inyour $HOME directory:

$ export PATH="$PATH: $HOVE/ vol t db- n. n/ bi n"

To avoid having to redefine PATH every time you create a new session, you can add the preceding com-

mand to your shell login script. For example, if you are using the bash shell, you would add the preceding
command to the $HOVE/ . bashr c file.

2.4. What is Included in the VoltDB Distribution

Table 2.2 lists the components that are provided as part of the VVoltDB distribution.

Table 2.2. Components I nstalled by VoltDB

Component Description

VoltDB Software & Runtime The VoltDB software comes as Javaarchives (.JAR
files) and a callable library that can be found in the
/ vol t db subfolder. Other software libraries that
VoltDB dependson areincludedinaseparate/ | i b
subfolder.

Example Applications VoltDB comes with several example applications
that demonstrate VoltDB capabilities and perfor-
mance. They can befound inthe/ exanpl es sub-
folder.

VoltDB Web Studio Web Studio is a browser-based tool for visual-
izing and querying a running VoltDB database
that is bundled with the VoltDB server software.
You can start Web Studio by connecting to the
HTTP port of a running VoltDB database server.
For example, http://vol t svr: 8080/ st u-
di 0. Note that the httpd server and JSON interface
must be enabled to access Web Studio from the serv-
er.

Shell Commands The/ bi n subfolder contains executable scripts to
perform common VoltDB tasks, such as compiling
application catalogs and starting the VoltDB serv-

Installing VoltDB

Component Description

er. Add the/ bi n subfolder to your PATH environ-
ment variable to use the following shell commands:

csvloader
sglemd
voltadmin
voltdb

Documentation Online documentation, including the full manuals
and javadoc describing the Java programming inter-
face, isavailableinthe/ doc subfolder.

2.5. VolItDB in Action: Running the Sample Ap-
plications

Once you install VoltDB, you can use the sample applications to see VoltDB in action and get a better
understanding of how it works. The easiest way to do thisisto set default to the / exanpl es directory
where VoltDB isinstalled. Each sample application hasits own subdirectory and arun.sh script to simplify
building and running the application. See the README fileinthe/ exanpl es subfolder for acomplete
list of the applications and further instructions.

Once you get ataste for what VVoltDB can do, we recommend following the VoltDB tutorial to understand
how to create your own applications using VoltDB.

http://voltdb.com/docs/tutorial/

Chapter 3. Designing Your VoltDB
Application

VoltDB produces ACID-compliant, relational databases using asubset of ANSI-standard SQL for defining
the schema and accessing the data. So designing a VoltDB application is very much like designing any
other database application.

The difference is that VoltDB requires you to be more organized and planful in your design:

 All data access should be done through stored procedures. Although ad hoc queries are possible, they
do not take advantage of the optimizations that make VoltDB's exceptional performance possible.

» The schema and workflow should be designed to promote single-partitioned procedures wherever pos-
sible.

These are not unreasonable requirements for high-performance applications. In fact, for 20 years or more
OL TP application designers have used these design principles to get the most out of commercial database
products. The difference is that VoltDB actually takes advantage of these principles to provide exponen-
tially better throughput without sacrificing any of the value of a fully-transactional database.

The following sections provide guidelines for designing VoltDB applications.

3.1. Designing the Database

VoltDB is a relational database product. Relational databases consist of tables and columns, with con-
straints, index keys, and aggregated views. VoltDB a so uses standard SQL database definition language
(DDL) statementsto specify the database schema. So designing the schemafor aVoltDB database usesthe
same skills and knowledge as designing a database for Oracle, MySQL, or any other relational database
product.

For example, let's assume you are designing a flight reservation system. At its simplest, the application
requires database tables for the flights, the customers, and the reservations. Y our database schema might
look like the following:

flight reservation customer

Flight ID Customer ID

Figure 3.1 shows how the schema looks as defined in standard SQL DDL.

10

Designing Your VoltDB Application

Figure 3.1. Example Reservation Schema

CREATE TABLE Flight (
Flight! D | NTEGER UNI QUE NOT NULL,
Depart Ti me TI MESTAMP NOT NULL,
Origin VARCHAR(3) NOT NULL,
Destinati on VARCHAR(3) NOT NULL,
Nurmber Of Seat s | NTEGER NOT NULL,
PRI MARY KEY(Fl i ght | D)

)

CREATE TABLE Reservation (
Reservel D | NTEGER UNI QUE NOT NULL,
Flight!| D | NTEGER NOT NULL,
Cust oner | D | NTEGER NOT NULL,
Seat VARCHAR(5) DEFAULT NULL,
Confirmed TI NYI NT DEFAULT 'O0',
PRI MARY KEY(Reservel D)

)

CREATE TABLE Custoner (
Custoner| D | NTEGER UNI QUE NOT NULL,
Fi rst Name VARCHAR(15),
Last Name VARCHAR (15),
PRI MARY KEY(Cust oner | D)

)

But a schema is not all you need to define the database (or the application) effectively. You also need
to know the expected volume and workload. For our example, let's assume that we expect the following
volume of data at any given time;

* Flights: 2,000
» Reservations; 200,000
¢ Customers: 1,000,000

We can also define aset of functions the application must perform and the expected frequency. Again, for
the sake of our example, let's assume the following is the estimated workload.

Table 3.1. Example Application Workload

Use Case Frequency
Look up aflight (by origin and destination) 10,000/sec
Seeif aflight isavailable 5,000/sec
Make areservation 1,000/sec
Cancel areservation 200/sec
Look up areservation (by reservation 1D) 200/sec
Look up areservation (by customer 1D) 100/sec
Update flight info 1/sec
Take off (close reservations and archive associated| 1/sec
records)

11

Designing Your VoltDB Application

3.1.1.

Thisadditional information about the volume and workload affects the design of both the database and the
application, because it impacts what SQL queries need to be written and what keys to use for accessing
the data.

In the case of VoltDB, you use this additional information to configure the database and optimize perfor-
mance. Specifically, you want to partition the individual tables to ensure that the most frequent transac-
tions are single-partitioned.

The following sections discuss how to partition a database to maximize throughput, using the flight reser-
vation case study as an example.

Partitioning Database Tables

The goal of partitioning the database tablesisto ensure that the most frequent transactions are single-par-
titioned. Thisis particularly important for queries that modify the data, such as INSERT, UPDATE, and
DELETE statements.

L ooking at the workload for the reservation system, the key transactionsto focus on arelooking up aflight,
seeing if aflight is available (in other words, has sufficient space), looking up a reservation, and making
areservation. Of these transactions, only the last modifies the database.

3.1.1.1. Choosing a Partition Column

Wewill discussthe Flight tablelater. But first let'slook at the Reservation table. Reservation hasaprimary
key, Reservel D, which isaunique identifier for the reservation. Looking at the schema aone, Reservel D
might look like a good column to use to partition the table.

However, looking at the workload, there are only two transactions that are keyed to the reservation ID
(looking up areservation by ID and canceling areservation), which occur only 200 times asecond. Where-
as, seeing if aflight has available seats, which requires looking up reservations by the Flight 1D, occurs
5,000 times a second, or 25 times as frequently. Therefore, the Reservation table needs to be partitioned
on the FlightID column.

Moving to the Customer table, it also has a unique identifier, CustomerID. Although customers might
need to look up their record by name, the first and last names are not guaranteed to be unique and so
CustomerID is used for most dataaccess. Therefore, CustomerD isthe best column to use for partitioning
the Customer table.

Once you choose the columnsto use for partitioning your database tables, you can define your partitioning
choicesin the database schema. Specifying the partitioning along with the schema DDL helps keep all of
the database structural information in one place.

Y ou define the partitioning scheme using the PARTI TI ON TABLE statement, specifying the partitioning
column for each table. For example, to specify FlightiD and CustomerID as the partitioning columns
for the Reservation and Customer tables, respectively, your database schema must include the following
Statements:

PARTI TI ON TABLE Reservation ON COLUWN Fl i ghtl D
PARTI TI ON TABLE Customer ON COLUWN Customer | D

3.1.1.2. Rules for Partitioning Tables

The following are the rules to keep in mind when choosing a column by which to partition atable:

e Any integer or string column can be a partition column. VoltDB can partition on any column that
isaninteger (TINYINT, SMALLINT, INTEGER, or BIGINT) or string (VARCHAR) datatype.

12

Designing Your VoltDB Application

3.1.2.

e Thereisonly one partition column per table. If you need to partition a table on two columns (for
example first and last name), add an additional column (fullname) that combines the values of the two
columns and use this new column to partition the table.

 Partition columnsdo not need to have unique values, but they cannot be null. Numeric fieldscan be
zero and string or character fields can be empty, but the column cannot contain a null value. Y ou must
specify NOT NULL in the schema, or VoltDB will report it as an error when you compile the schema.

Replicating Tables

The previous section describes how to choose a partitioning column for database tables, using the Reser-
vation and Customer tables as examples. But what about the Flight table? It is possible to partition the
Flight table (for example, on the FlightID column). However, not all tables benefit from partitioning.

Small, mostly read-only tables can be replicated across all of the partitions of a VoltDB database. Thisis
particularly useful when atableis not accessed by a single column primarily.

3.1.2.1. Choosing Replicated Tables

Looking at the workload of the flight reservation example, the Flight table has the most frequent accesses
(at 10,000 a second). However, these transactions are read-only and may involve any combination of
three columns: the point of origin, the destination, and the departure time. Because of the nature of this
transaction, it makes it hard to partition the table in away that would make it single-partitioned.

Fortunately, the number of flightsavailablefor booking at any giventimeislimited (estimated at 2,000) and
so the size of thetableisrelatively small (approximately 36 megabytes). In addition, all of the transactions
involving the Flight table are read-only except when new flights are added and at take of f (when the records
are deleted). Therefore, Flight is agood candidate for replication.

Note that the Customer table is also largely read-only. However, because of the volume of data in the
Customer table (amillion records), it is not agood candidate for replication, which iswhy it is partitioned.

3.1.2.2. Specifying Replicated Tables

InVoltDB, you do not explicitly state that atableisreplicated. If you do not specify a partitioning column
in the database schema, the table will by default be replicated.

So, in our flight reservation example, there is no explicit action required to replicate the Flight table.
However, it is very important to specify partitioning information for tables that you want to partition.
If not, they will be replicated by default, significantly changing the performance characteristics of your
application.

3.2. Designing the Data Access (Stored Proce-
dures)

Asyou can see from the previous discussion of designing the database, defining the database schema —
and particularly the partitioning plan — goes hand in hand with understanding how the data is accessed.
The two must be coordinated to ensure optimum performance.

It doesn't matter whether you design the partitioning first or the data accessfirst, aslong asin the end they

work together. However, for the sake of example, we will use the schema and partitioning outlined in the
preceding sections when discussing how to design the data access.

13

Designing Your VoltDB Application

3.2.1. Writing VoltDB Stored Procedures

The key to designing the data access for VoltDB applications is that complex or performance sensitive
access to the database should be done through stored procedures. It is possible to perform ad hoc queries
on aVoltDB database. However, ad hoc queries do not benefit asfully from the performance optimizations
VoltDB specializesin and therefore should not be used for frequent, repetitive, or complex transactions.

In VoltDB, a stored procedure and a transaction are one and the same. The stored procedure succeeds or
rolls back as awhole. Also, because the transaction is defined in advance as a stored procedure, there is
no need for specific BEGIN TRANSACTION or END TRANSACTION commands.®

Within the stored procedure, you access the database using standard SQL syntax, with statements such
as SELECT, UPDATE, INSERT, and DELETE. You can also include your own code within the stored
procedure to perform cal culations on the returned values, to evaluate and execute conditional statements,
or to perform any other functions your applications need.

3.2.2. VoltDB Stored Procedures and Determinism

To ensure data consistency and durability, VoltDB procedures must be deterministic. That is, given spe-
cific input values, the outcome of the procedure is predictable. Determinism is critical because it allows
the same stored procedure to run in multiple locations and give the same results. It is determinism that
makes it possible to run redundant copies of the database partitions without impacting performance. (See
Chapter 11, Availability for more information on redundancy and availability.)

One key to deterministic behavior is avoiding ambiguous SQL queries. Specifically, performing unsorted
gueries can result in a nondeterministic outcome. VoltDB does not guarantee a consistent order of results
unlessyou useatreeindex to scan therecordsin aspecific order or you specify an ORDER BY clauseinthe
query itself. Intheworst case, alimiting query, suchasSELECT TOP 10 Enp_| D FROM Enpl oyees
without an index or ORDER BY clause, can result in adifferent set of rows being returned. However, even
asimple query suchas SELECT * fr om Enpl oyees can return the same rowsin adifferent order.

The problem isthat even when these queries are read-only, VVoltDB may detect inconsistency in theresults
of the stored procedure. For clusters with a K-safety value greater than zero, this means unsorted query
results returned by two copies of the same partition may not match, a condition that VVoltDB detects and
reports as corruption. It is possible one or more nodes of the cluster may crash in this situation. Conse-
quently, when returning multiplerows, use of an ORDER BY clause or atreeindex inaWHERE constraint
is strongly recommended for all SELECT statements.

Another key to deterministic behavior is avoiding external functions or procedures that can introduce
arbitrary data. External functionsinclude file and network /O (which should be avoided any way because
they can impact latency), as well as many common system-specific procedures such as Date and Time.

However, this limitation does not mean you cannot use arbitrary data in VoltDB stored procedures. It
just means you must either generate the arbitrary data outside the stored procedure and passit in as input
parameters or generate it in a deterministic way.

For example, if you need to load a set of records from a file, you can open the file in your application
and pass each row of datato a stored procedure that loads the data into the VoltDB database. Thisisthe
best method when retrieving arbitrary data from sources (such as files or network resources) that would
impact latency.

The other alternative is to use data that can be generated deterministically. For two of the most common
cases, timestamps and random values, VoltDB provides a method for doing this:

One side effect of transactions bei ng precompiled as stored procedures is that external transaction management frameworks, such as Spring or
JEE, are not supported by VoltDB.

14

Designing Your VoltDB Application

3.2.3.

 VoltProcedure.getTransactionTime() returns a timestamp that can be used in place of the Java Date or
Time classes.

* VoltProcedure.getSeededRandomNumberGenerator() returns a pseudo random number that can be used
in place of the Java Util.Random class.

These procedures use the current transaction 1D to generate a deterministic value for the timestamp and
the random number.

Finally, even seemingly harmless programming techniques, such as static variables can introduce unpre-
dictable behavior. VoltDB provides no guarantees concerning the state of the stored procedure class in-

stanceacrossinvocations. Any information that you want to persist acrossinvocations must either be stored
in the database itself or passed into the stored procedure as a procedure parameter.

The Anatomy of a VoltDB Stored Procedure
The stored procedures themsel ves are written as Java classes, each procedure being aseparate class. Exam-

ple 3.1, “Components of aVoltDB Stored Procedure” shows the stored procedure that looks up aflight to
seeif thereare any available seats. The calloutsidentify the key components of aVoltDB stored procedure.

Example 3.1. Components of a VoltDB Stored Procedure

package fadvi sor. procedures;

i mport org.voltdb.*; (1]
public class HowvanySeats extends Vol tProcedure { (2]
public final SQ.Stnt GetSeatCount = new SQLSt nt ((3]

"SELECT Number Of Seats, COUNT(ReservelD) " +
"FROM Flight AS F, Reservation AS R" +

"WHERE F. Flight | D=R Flight!D AND R FlightID=? " +
"GROUP BY Nunber Of Seats; ") ;

public long run(int flightid)
t hrows Vol t Abort Exception { o

| ong nunof seat s;
| ong seat si nuse;
Vol t Tabl e[] queryresults;

vol t QueueSQL(Get Seat Count, flightid); (5]
gueryresults = vol t Execut eSQL(); (6]
Vol t Tabl e result = queryresults[0]; (7]

if (result.getRowCount() < 1) { return -1; }
nunof seats = result.fetchRow 0).getLong(0);
seatsinuse = result.fetchRow(0).getLong(1l);

nunof seats = nunofseats - seat sinuse; (8
return nunofseats; // Return avail abl e seats

15

Designing Your VoltDB Application

© Stored procedures are written as Java classes. To access the VoltDB classes and methods, be sure
to import org.voltdb.*.

Each stored procedure extends the generic class VoltProcedure.

Within the stored procedure you access the database using a subset of ANSI-standard SQL state-
ments. To do this, you declare the statement as a special Java type called SQLStmt. In the SQL
statement, you insert a question mark (?) everywhere you want to replace a value by a variable at
runtime. (See Appendix B, Supported SQL Statements for details on the supported SQL statements.)
O Thebulk of the stored procedure is the run method. Note that the run method throws the exception
VoltAbortException if any exceptions are not caught. V oltAbortException causes the stored proce-
dure to rollback. (See Section 3.2.3.6, “Rolling Back a Transaction” for more information about
rollback.)

To perform database queries, you queue SQL statements (specifying both the SQL statement and the
variables to use) using the voltQueueSQL method.

Once you queue all of the SQL statements you want to perform, use voltExecuteSQL to execute the
statements in the queue.

Each statement returnsits results in a VoltTable structure. Because the queue can contain multiple
queries, voltExecuteSQL returns an array of VoltTable structures, one array element for each query.
In addition to queueing and executing queries, stored procedures can contain custom code. Note,
however, you should limit the amount of custom code in stored procedures to only that processing
that is necessary to compl ete the transaction, so asnot to delay thefollowing transactionsin the queue.

()

© & © o

The following sections describe these components in more detail.

3.2.3.1. The Structure of the Stored Procedure

VoltDB stored procedures are Java classes. The key points to remember are to:

 Import the VoltDB classesin org.voltdb.*

* Include the class definition, which extends the abstract class VoltProcedure

 Define the method run, that performs the SQL queries and processing that make up the transaction
The following diagram illustrates the basic structure if a VoltDB stored procedure.

i mport org.vol tdb. *;
public class Procedure-nane extends Vol tProcedure {
/1l Declare SQ. statenents ...

public datatype run (argunents) throws VoltAbortException {

/1 Body of the Stored Procedure ...

}
3.2.3.2. Passing Arguments to a Stored Procedure

Y ou specify the number and type of the arguments that the stored procedure accepts in the run() method.
For example, the following is the declaration of the run() method for the Initialize stored procedure from
the voter sample application. This procedure accepts two arguments. an integer and a string.

16

Designing Your VoltDB Application

public long run(int maxContestants, String contestants) {

VoltDB stored procedures can accept parameters of any of the following Java and VoltDB datatypes:
* Integer types: byte, short, int, long, Byte, Short, Integer, and Long

* Floating point types: float, double, Float, and Double

* Fixed decimal point: BigDecimal

» Timestamp types: VoltDB timestamp (org.voltdb.types. TimestampType), java.util.Date, java.sgl.Date,
and java.sgl. Timestamp

 String and binary types: String and byte[]
* VoItDB types: VoltTable

The arguments can be scalar objects or arrays of any of the preceding types. For example, the following
run() method defines three arguments: ascalar long and two arrays, one array of timestamps and one array
of Strings:

i mport org.vol tdb. *;
public class LogMessagesByEvent extends Vol t Procedure {

public long run (
| ong event Type,
org.vol tdb. types. Ti mest anpType[] event Ti neSt anps,
String[] event Messages
) throws Vol t Abort Exception {

The calling application can use any of the preceding datatypes when invoking the call Procedure() method
and, where necessary, VoltDB makes the appropriate type conversions (for example, from int to String
or from String to Double). (See Section 3.3.2, “Invoking Stored Procedures’ for information on the call-
Procedure() method.)

3.2.3.3. Creating and Executing SQL Queries in Stored Procedures

The main function of the stored procedure is to perform database queries. In VoltDB thisis done in two
steps:

1. Queue the queries using the voltQueueSQL function
2. Execute the queue and return the results using voltExecuteSQL

Thefirst argument to voltQueueSQL isthe SQL statement to be executed. The SQL statement is declared
using a special class, SQLStmt, with question marks as placeholders for values that will be inserted at
runtime. The remaining arguments to voltQueueSQL are the actual values that VVoltDB inserts into the
placeholders.

For example, if you want to perform a SELECT of atable using two columnsin the WHERE clause, your
SQL statement might look something like this:

SELECT Customer| D FROM Cust oner WHERE Fi r st Name=? AND Last Nanme=7?;

At runtime, you want the questions marks replaced by values passed in as arguments from the calling
application. So the actual voltQueueSQL invacation might look like this:

17

Designing Your VoltDB Application

public final SQ.Stnt getcustid = new SQLSt nt (
"SELECT Custonerl| D FROM Custoner " +
"WHERE First Name=? AND Last Nanme=?;");

vol t QueueSQL(getcustid, firstnm |astnm;

Once you have queued al of the SQL statements you want to execute together, you can then process the
gueue using the voltExecuteSQL function:

Vol t Tabl e[] queryresults = volt Execut eSQL();

Note that you can queue multiple SQL statements before calling voltExecuteSQL . This improves perfor-
mance when executing multiple SQL queries because it minimizes the amount of network traffic within
the cluster.

Y ou can also queue and execute SQL statements as many times as necessary to compl ete the transaction.
For example, if you want to make aflight reservation, you may need to verify that the flight exists before
creating the reservation. One way to do thisisto look up the flight, verify that a valid row was returned,
then insert the reservation, like so:

final String getflight = "SELECT Flightl D FROM Fl i ght WHERE Fl i ght| D=?;";
final String makeres = "INSERT | NTO Reservation (?,?,?,?,?2,?2);";

public final SQStnt getflightsqgl = new SQLStnt(getflight);
public final SQ.Stnt makeressgl = new SQ.Stnt (makeres);

public VoltTable[] run(int servenum int flightnum int custonernum)
t hrows Vol t Abort Exception {

/1 Verify flight exists
vol t QueueSQL(getflightsql, flightnum;
Vol t Tabl e[] queryresults = volt Execut eSQL();

/[l 1f there is no matching record, rollback
if (queryresults[0].getRowCount() == 0) throw new Vol t Abort Exception();

/1 Make reservation
vol t QueueSQL(nakeressql, reservnum flightnum custonernumO,0);
return vol t Execut eSQL() ;
}

3.2.3.4. Interpreting the Results of SQL Queries

When you call voltExecuteSQL, the results of all the queued SQL statements are returned in an array
of VoltTable structures. The array contains one VoltTable for each SQL statement in the queue. The
VoltTables are returned in the same order as the respective SQL statements in the queue.

The VoltTableitself consists of rows. Each row contains columns. Each column has alabel and a value of
afixed datatype. The number of rows and columns per row depends on the specific query.

For example, if you queue two SQL SELECT statements, one looking for the destination of a specific
flight and the second looking up the Reservel D and Customer name (first and last) of reservations for that
flight, the code for the stored procedure might look like the following:

18

Designing Your VoltDB Application

public final SQStnt getdestsql = new SQLSt nt (
"SELECT Destinati on FROM Fl i ght WHERE Fl i ght1D=?;");
public final SQ.Stnt getressql = new SQLSt nt (
"SELECT r.Reservel D, c.FirstNane, c.LastName " +
"FROM Reservation AS r, Customer AS c " +
"WHERE r. FlightlD=? AND r. Custoner| D=c. Custoner|D;");

vol t QueueSQL(get destsql, flightnuny;

vol t QueueSQL(getressql, flightnum;

Vol t Tabl e[] results = volt Execut eSQL();
The array returned by voltExecuteSQL will have two elements:;

e Thefirst array element is a VoltTable with one row (FlightID is defined as unique) with one column,
because the SELECT statement returns only one value.

e The second array element is a VoltTable with as many rows as there are reservations for the specific
flight, each row containing three columns. Reservel D, FirstName, and LastName.

VoltDB providesaset of convenience routinesfor accessing the contents of theVoltTablearray. Table 3.2,
“Methods of the VoltTable Classes” lists some of the most common methods.

19

Designing Your VoltDB Application

Table 3.2. Methods of the VoltTable Classes

Method

Description

int fetchRow(int index)

Returns an instance of the VoltTableRow class for
the row specified by index.

int getRowCount()

Returns the number of rows in the table.

int getColumnCount()

Returns the number of columns for each row in the
table.

Type getColumnType(int index)

Returns the datatype of the column at the specified
index. Typeis an enumerated type with the follow-
ing possible values:

BIGINT
DECIMAL
FLOAT
INTEGER
INVALID
NULL
NUMERIC
SMALLINT
STRING
TIMESTAMP
TINYINT
VARBINARY
VOLTTABLE

String getColumnName(int index)

Returns the name of the column at the specified in-
dex.

double getDouble(int index)

long getL ong(int index)

String getString(int index)

BigDecimal getDecimal AsBigDecimal(int index)
double getDecimal AsDoubl&(int index)

Date getTimestampAsTimestamp(int index)

long getTimestampAsLong(int index)

byte[] getVarbinary(int index)

Methods of VoltTable.Row

Return the value of the column at the specified index
in the appropriate datatype. Because the datatype of
the columnsvary depending onthe SQL query, there
is no generic method for returning the value. You
must specify what datatype to use when fetching the
value.

It is also possible to retrieve the column values by name. Y ou can invoke the get Dat at ype methods
passing a string argument specifying the name of the column, rather than the numeric index.

Accessing the columns by name can make code easier to read and | ess susceptible to errors due to changes
in the SQL schema (such as changing the order of the columns). On the other hand, accessing column
values by numeric index is potentially more efficient under heavy load conditions.

Example 3.2, “ Displaying the Contents of VVoltTable Arrays’ shows a generic routine for walking through
the return results of a stored procedure. In this example, the contents of the VoltTable array are written

to standard output.

20

Designing Your VoltDB Application

Example 3.2. Displaying the Contents of VoltTable Arrays

public void displayResults(VoltTable[] results) {
int table = 1;
for (VoltTable result : results) {
Systemout.printf("*** Table % ***\n", tabl e++);
di spl ayTabl e(resul t);

}

public void displayTabl e(VoltTable t) {

final int col Count = t.get Col umCount();
int rowCount = 1;
t.reset RowPosition();
while (t.advanceRow)) {
Systemout.printf("--- Row % ---\n", rowCount ++) ;

for (int col=0; col<col Count; col ++) {
Systemout.printf("%: ",t.getColumNane(col));
swi tch(t.get Col umType(col)) {
case TINYINT: case SMALLINT: case BIG NT: case | NTEGER
Systemout.printf("%\ n", t.getLong(col));
br eak;
case STRI NG
Systemout.printf("%\n", t.getString(col));
br eak;
case DECI MAL:
Systemout.printf("%\n", t.getDecimal AsBi gDeci mal (col));
br eak;
case FLOAT:
Systemout.printf("%\n", t.getDouble(col));
br eak;

}

For further details on interpreting the VoltTable structure, see the Java documentation that is provided
onlineinthedoc/ subfolder for your VVoltDB installation.

3.2.3.5. Returning Results from a Stored Procedure

Stored procedures can return asingle VoltTable, an array of VoltTables, or along integer. Y ou can return
all of the query results by returning the VoltTable array, or you can return ascalar value that isthe logical
result of the transaction. (For example, the stored procedure in Example 3.1, “Components of a VoltDB
Stored Procedure” returnsalonginteger representing the number of remaining seatsavailableintheflight.)

Whatever value the stored procedure returns, make sure the run method includes the appropriate datatype
in its definition. For example, the following two definitions specify different return datatypes; the first
returns along integer and the second returns the results of a SQL query asaVoltTable array.

public long run(int flightid)

public VoltTable[] run (String |lastname, String firstnane)

21

Designing Your VoltDB Application

It is important to note that you can interpret the results of SQL queries either in the stored procedure or
in the client application. However, for performance reasons, it is best to limit the amount of additional
processing done by the stored procedure to ensure it executes quickly and frees the queue for the next
stored procedure. So unless the processing is necessary for subsequent SQL queries, it is usually best to
return the query results (in other words, the VoltTablearray) directly to the calling application and interpret
them there.

3.2.3.6. Rolling Back a Transaction

3.2.4.

Finally, if a problem arises while a stored procedure is executing, whether the problem is anticipated or
unexpected, it is important that the transaction rolls back. Rollback means that any changes made during
the transaction are undone and the database is|eft in the same state it was in before the transaction started.

VoltDB isafully transactional database, which meansthat if atransaction (i.e. stored procedure) fails, the
transaction isautomatically rolled back and the appropriate exception is returned to the calling application.
Exceptions that can cause arollback include the following:

» Runtime errorsin the stored procedure code, such as division by zero or datatype overflow.

* Violating database constraintsin SQL queries, such asinserting a duplicate value into acolumn defined
as unique.

There may aso be situations where alogical exception occurs. In other words, there is no programmatic
issue that might be caught by Java or VoltDB, but a situation occurs where there is no practical way for
the transaction to complete. In these conditions, the stored procedure can force a rollback by explicitly
throwing the VoltAbortException exception.

For example, if aflight ID does not exist, you do not want to create a reservation so the stored procedure
can force arollback like so:

if (!flightid) { throw new Vol tAbortException(); }

See Section 4.4, “Verifying Expected Query Results’ for another way toroll back procedureswhen queries
do not meet necessary conditions.

Partitioning Stored Procedures

To make your stored procedures accessible in the database, you must declare them in the DDL schema
using the CREATE PROCEDURE statement. For example, the following statements declare five stored
procedures, identifying them by their class name:

CREATE PROCEDURE FROM CLASS procedures. LookupFl i ght;
CREATE PROCEDURE FROM CLASS procedur es. HowManySeat s;
CREATE PROCEDURE FROM CLASS procedur es. MakeReservati on;
CREATE PROCEDURE FROM CLASS procedures. Cancel Reservati on;
CREATE PROCEDURE FROM CLASS procedures. RenoveFl i ght;

Y ou can also declare your stored procedures as single-partitioned or not. If you do not declare a procedure
as single-partitioned, it is assumed to be multi-partitioned by default.

The advantage of multi-partitioned stored procedures is that they have full accessto all of the datain the
database. However, thereal focus of VVoltDB, and the way to achieve maximum throughput for your OLTP
application, is through the use of single-partitioned stored procedures.

Single-partitioned stored procedures are special because they operate independently of other partitions
(which iswhy they are so fast). At the same time, single-partitioned stored procedures operate on only a

22

Designing Your VoltDB Application

subset of the entire data (i.e. only the data within the specified partition). Most important of al it is the
responsibility of the application developer to ensure that the SQL queries within the stored procedure are
actually single-partitioned.

When you declare astored procedure as single-partitioned, you must specify both the partitioning table and
column using the PARTITION PROCEDURE statement in the schema DDL. For example, in our sample
applicationthetable RESERVATION ispartitioned on FLIGHTID. L et's say you create astored procedure
with two arguments, flight_id and reservation _id. Y ou declarethe stored procedure as single-partitioned in
the DDL schemausing the FLIGHTID column as the partitioning column. By default, the first parameter
to the procedure, flight_id, is used as the hash value. For example:

PARTI TI ON PROCEDURE MakeReservati on ON TABLE Reservati on COLUWN FlightlD;

At this point, your stored procedure can operate on only those records in the RESERVATION with
FLIGHTID=flight_id. What's more it can only operate on records in other partitioned tables that are par-
titioned on the same hash value.

In other words, the following rules apply:

* Any SELECT, UPDATE, or DELETE queries of the RESERVATION table must use the constraint
WHERE FLIGHTID=? (where the question mark is replaced by the value of flight_id).

e SELECT statements can join the RESERVATION table to replicated tables, as long as the preceding
constraint is also applied.

o SELECT statements can join the RESERVATION table to other partitioned tables as long as the fol-
lowingistrue:

¢ Thetwo tables are partitioned on the same column (in this case, FLIGHTID).
e Thetablesare joined on the shared partitioning column.
* The preceding constraint (WHERE RESERVATION.FLIGHTID=?) is used.

For example, the RESERVATION table can bejoined tothe FLIGHT table (whichisreplicated). However,
the RESERVATION table cannot be joined with the CUSTOMER table in a single-partitioned stored
procedure because the two tables use different partitioning columns. (CUSTOMER is partitioned on the
CUSTOMERID column.)

The following are examples of invalid SQL queries for a single-partitioned stored procedure partitioned
on FLIGHTID:

 INVALID: SELECT * FROM reservati on WHERE reservati oni d=?

* INVALID: SELECT c.| astnane FROM reservation AS r, custoner AS ¢ VWHERE
r.flightid=? AND c.custonerid = r.custonerid

In the first example, the RESERVATION table is being constrained by a column (RESERVATIONID)
which is not the partitioning column. In the second example, the correct partitioning column is being
used in the WHERE clause, but the tables are being joined on a different column. As a result, not all
CUSTOMER rows are available to the stored procedure since the CUSTOMER table is partitioned on a
different column than RESERVATION.

Warning

It is the application developer's responsibility to ensure that the queries in a single-partitioned
stored procedure are truly single-partitioned. VoltDB does not warn you about SELECT or

23

Designing Your VoltDB Application

DELETE statements that will return incomplete results. VoltDB does generate aruntime error if
you attempt to INSERT arow that does not belong in the current partition.

Finally, the PARTITION PROCEDURE statement assumes that the partitioning column value isthe first
parameter to the procedure. If you wish to partition on adifferent parameter value, say the third parameter,
you must specify the partitioning parameter using the PARAMETER clause and a zero-based index for the
parameter position. In other words, the index for the third parameter would be "2" and the PARTITION
PROCEDURE statement would read as follows:

PARTI TI ON PROCEDURE Get CustonerDetail s
ON TABLE Customer COLUMN Custonerl| D
PARAVETER 2;

3.3. Designing the Application Logic

3.3.1.

Once you design your database schema, partitioning, and stored procedures, you are ready to write the
application logic. Most of the logic and code of the calling programs are specific to the application you
are designing. The important aspect, with regards to using VoltDB, is understanding how to:

» Create a connection to the database
 Call stored procedures
» Close the client connection

The following sections explain how to perform these functions using the standard VoltDB Java client
interface. The VoltDB Java client is a thread-safe class library that provides runtime access to VoltDB
databases and functions.

It is possible to call VoltDB stored procedures from programming languages other than Java. However,
reading this chapter is still recommended to understand the processfor invoking and interpreting the results

of aVoltDB stored procedure. See Chapter 15, Using VoltDB with Other Programming Languages for
more information about using VoltDB from applications written in other languages.

Connecting to the VoltDB Database

Thefirst step for the calling program is to create a connection to the VoltDB database. Y ou do this by:
1. Defining the configuration for your connections

2. Creating an instance of the VoltDB Client class

3. Calling the createConnection method

org.voltdb.client.dient client = null;
ClientConfig config = null;

try {

config new Cient Config("advent", "xyzzy");

client = CientFactory.createCient(config);

client.createConnection("myserver.xyz.net");
} catch (java.io.lOexception e) {

e.printStackTrace();

Systemexit(-1);

24

Designing Your VoltDB Application

3.3.2.

Initssimplest form, the ClientConfig class specifies the username and password to use. It is not absolutely
necessary to create a client configuration object. For example, if security is not enabled (and therefore a
username and password are not needed) a configuration object is not required. But it is a good practice
to define the client configuration to ensure the same credentials are used for all connections against a
single client. It is also possible to define additional characteristics of the client connections as part of the
configuration, such as the timeout period for procedure invocations or a status listener. (See Section 3.4,
“Handling Errors’ for details.)

Once you instantiate your client object, the argument to createConnection specifies the database node to
connect to. Y ou can specify the server node asahostname (asin the preceding example) or asan | P address.
Y ou can aso add a second argument if you want to connect to a port other than the default. For example,
the following createConnection call attemptsto connect to the admin port, 21211:

client.createConnection("nyserver.xyz.net",21211);

If security is enabled and the username and password in the ClientConfig do not match a user defined in
the deployment file, the call to createConnection will throw an exception. See Chapter 8, Security for more
information about the use of security with VoltDB databases.

Y ou can create the connection to any of the nodes in the database cluster and your stored procedure will
be routed appropriately. In fact, you can create connections to multiple nodes on the server and your
subsequent requests will be distributed to the various connections.

Creating multiple connections has little effect when you are making synchronous requests. However, for
asynchronous requests, multiple connections can help balance the load across the cluster.

When you are done with the connection, you should make sure your application calls the close method to
clean up any memory alocated for the connection.

try {
client.close();

} catch (InterruptedException e) {
e.printStackTrace();

}
Invoking Stored Procedures

Once you create the connection, you are ready to call the stored procedures. Y ou invoke astored procedure
using the call Procedure method, passing the procedure name and variables as arguments to call Procedure.
For example, to invoke the LookupFlight stored procedure that requires three values (the originating air-
port, the destination, and the departure time), the call to callProcedure might look like this:

Vol t Tabl e[] results;
try { results = client.callProcedure("LookupFlight",
origin,
dest,
departtimnme).getResults();
} catch (Exception e) {
e.printStackTrace();
Systemexit(-1);
}

Note that since callProcedure can throw an exception (such as VoltAbortException) it is a good practice
to perform error handling and catch known exceptions.

25

Designing Your VoltDB Application

3.3.3.

Once asynchronouscall completes, you can evaluate the results of the stored procedure. The call Procedure
method returns a ClientResponse object, which includes information about the success or failure of the
stored procedure. To retrieve the actual return values you use the getResults() method, as in the preced-
ing example. See Section 3.2.3.4, “Interpreting the Results of SQL Queries’ for more information about
interpreting the results of VoltDB stored procedures.

Invoking Stored Procedures Asynchronously

Calling stored procedures synchronously can be useful because it simplifiesthe program logic; your client
application waits for the procedure to complete before continuing. However, for high performance appli-
cationslooking to maximizethroughput, it is better to queue stored procedure invocations asynchronously.

To invoke stored procedures asynchronously, you use the callProcedure method with an additional argu-
ment, a callback that will be notified when the procedure completes (or an error occurs). For example,
to invoke a procedure to add a new customer asynchronously, the call to callProcedure might look like
the following:

client.callProcedure(new MyCal | back(), °
"NewCust oner ",
firstname,
| ast namne,
cust | D};

The callback procedure (MyCallback in thisexample€) isinvoked once the stored procedure completes. Itis
passed the same structure, ClientResponse, that is returned by a synchronous invocation. ClientResponse
contains information about the results of execution. In particular, the methods getStatus and getResults let
your callback procedure determine whether the stored procedure was successful and evaluate the results
of the procedure.

The following is an example of a callback procedure:

static class MyCall back i npl ements ProcedureCall back {

@verride
public void clientCallback(d ientResponse clientResponse) {

if (clientResponse.getStatus() != CdientResponse. SUCCESS) (
Systemerr.println(clientResponse.getStatusString());
} else {
nyEval uat eResul t sProc(cl i ent Response. get Resul ts());
}

}
}

Several important points to note about making asynchronous invocations of stored procedures:

» Asynchronous calls to callProcedure return control to the calling application as soon as the procedure
call is queued.

* If the database server queueisfull, callProcedure will block until it is able to queue the procedure call.
Thisisacondition known as backpressure. This situation does not normally happen unless the database
cluster is not scaled sufficiently for the workload or there are abnormal spikes in the workload. Two
ways to handle this situation programmeatically are to:

 Let the client pause momentarily to let the queue subside. The asynchronous clent interface does this
automatically for you.

26

Designing Your VoltDB Application

3.3.4.

 Create multiple connections to the cluster to better distribute asynchronous calls across the database
nodes.

» Oncethe procedureis queued, any subsequent errors (such as an exception in the stored procedureitself
or loss of connection to the database) are returned as error conditions to the callback procedure.

Closing the Connection

When the client application is done interacting with the VoltDB database, it isagood practiceto closethe
connection. This ensures that any pending transactions are completed in an orderly way. There are two
steps to closing the connection:

1. Cadl drain() to make sure all asynchronous calls have completed.
2. Call close() to close dl of the connections and rel ease any resources associated with the client.

The drain() method pauses the current thread until all outstanding asynchronous calls (and their callback
procedures) complete. This call is not necessary if the application only makes synchronous procedure
calls. However, there is no penalty for calling drain() and so it can be included for completeness in all
applications.

The following example demonstrates how to close the client connection:

try {
client.drain();

client.close();
} catch (InterruptedException e) {
e.printStackTrace();

}

3.4. Handling Errors

3.4.1.

One specia situation to consider when calling VoltDB stored procedures is error handling. The VoltDB
client interface catches most exceptions, including connection errors, errors thrown by the stored proce-
dures themselves, and even exceptions that occur in asynchronous callbacks. These error conditions are
not returned to the client application as exceptions. However, the application can till receive natification
and interpret these conditions using the client interface.

The following sections explain how to identify and interpret errors that occur executing stored procedures
and in asynchronous callbacks.

Interpreting Execution Errors

If an error occursin astored procedure (such asan SQL contraint violation), VoltDB catchesthe error and
returns information about it to the calling application as part of the ClientResponse class.

The ClientResponse class provides several methods to help the calling application determine whether the
stored procedure completed successfully and, if not, what caused the failure. The two most important
methods are getStatus() and getStatusString().

The getStatus() method tells you whether the stored procedure completed successfully and, if not, what
type of error occurred. The possible values of getStatus() are:

27

Designing Your VoltDB Application

e CONNECTION_LOST — The network connection waslost before the stored procedure returned status
information to the calling application. The stored procedure may or may not have completed success-
fully.

 CONNECTION_TIMEOUT — The stored procedure took too long to return to the calling application.
The stored procedure may or may not have completed successfully. See Section 3.4.2, “Handling Time-
outs’ for more information about handling this condition.

* GRACEFUL_FAILURE — An error occurred and the stored procedure was gracefully rolled back.

* RESPONSE_UNKNOWN — Thisisarare error that occursif the coordinating node for the transaction
fails before returning a response. The node to which your application is connected cannot determine if
the transaction failed or succeeded before the coordinator was lost. The best course of action, if you
receivethiserror, isto use anew query to determineif the transaction failed or succeeded and then take
action based on that knowledge.

» SUCCESS — The stored procedure completed successfully.
 UNEXPECTED_FAILURE — An unexpected error occurred on the server and the procedure failed.

» USER ABORT — The code of the stored procedureintentionally threw a UserAbort exception and the
stored procedure was rolled back.

It is good practice to always check the status of the ClientResponse before evaluating the results of a
procedure call, because if the status is anything but SUCCESS, there will not be any results returned. In
addition to identifying the type of error, for any values other than SUCCESS, the getStatusString() method
returns a text message providing more information about the specific error that occurred.

If your stored procedure wants to provide additional information to the calling application, there are
two more methods to the ClientResponse that you can use. The methods getAppStatus() and getAppS-
tatusString() act like getStatus() getStatusString(), but rather than returning information set by VoltDB,
getAppStatus() and getAppStatusString() return information set by the stored procedure code itself.

In the stored procedure, you can use the methods setAppStatusCode() and setAppStatusString() to set the
values returned to the calling application. For example:

Stored Procedure

final byte AppCodeVarm = 1;
final byte AppCodeFuzzy = 2;

set AppSt at usCode(AppCodeFuzzy) ;
set AppStat usString("l'mnot sure about that...");

Client Application

static class MyCal |l back i npl ements ProcedureCall back {
@verride
public void clientCallback(C ientResponse clientResponse) ({
final byte AppCodeVarm = 1;
final byte AppCodeFuzzy = 2;

if (clientResponse.getStatus() != CientResponse. SUCCESS) ({
Systemerr.println(clientResponse.getStatusString());

28

Designing Your VoltDB Application

} else {

if (clientResponse. get AppStatus() == AppCodeFuzzy) {
Systemerr.println(clientResponse. get AppStatusString());

b
nyEval uat eResul t sProc(cl i ent Response. get Resul ts());

}

}
}

3.4.2. Handling Timeouts

One particular error that needs specia handling isif a connection or a stored procedure call times out. By
default, the client interface only waits a specified amount of time (two minutes) for a stored procedure to
complete. If no responseisreceived from the server before the timeout period expires, the client interface
returns control to your application, notifying it of the error. For synchronous procedure calls, the client
interface returns the error CONNECTION_TIMEOUT to the procedure call. For asynchronous calls, the
client interface invokes the callback including the error information in the clientResponse object.

Similarly, if no response of any kind is returned on a connection (even if no transactions are pend-
ing) within the specified timeout period, the client connection will timeout. When this happens, the
connection is closed, any open stored procedures on that connection are closed with a return status of
CONNECTION_LOST, then the client status listener callback method connectionLost isinvoked. Unlike
a procedure timeout, when the connection times out, the connection no longer exists, so your client appli-
cation will receive no further notifications concerning pending procedures, whether they succeed or fail.

It isimportant to note that CONNECTION_TIMEOUT does not necessarily mean the procedurefailed. In
fact, it is very possible that the procedure may complete and return information after the timeout error is
reported. The timeout is provided to avoid locking up the client application when procedures are delayed
or the connection to the cluster hangs for any reason.

Similarly, CONNECTION_LOST does not necessarily mean apending procedurefailed. It ispossible that
the procedure completed but was unable to return its status due to a connection failure. The goal of the
connection timeout isto notify the client application of alost connection in atimely manner, evenif there
is no outstanding procedures using the connection.

There are several things you can do to address potential timeouts in your application:

» Change the timeout period by calling either or both the methods setProcedureCall Timeout and setCon-
nectionResponseTimeout on the ClientConfig object. The default timeout period is 2 minutes for both
procedures and connections. Y ou specify the timeout period in milliseconds, where avalue of zero dis-
ables the timeout altogether. For example, the following client code resets the procedure timeout to 90
seconds and the connection timeout period to 3 minutes, or 180 seconds:

config = new dientConfig("advent", "xyzzy");
config. set ProcedureCal | Ti meout (90 * 1000);

confi g. set Connecti onResponseTi neout (180 * 1000);
client = dientFactory.createdient(config);

 Catch and respond to the timeout error as part of the response to a procedure call. For example, the
following code excerpt from a client callback procedure reports the error to the console and ends the
callback:

static class MyCal |l back inplements ProcedureCallback {

@verride
public void clientCallback(Cd ientResponse response) {

29

Designing Your VoltDB Application

if (response.getStatus() == Cient Response. CONNECTI ON_TI MEQUT) {
Systemout. println("A procedure invocation has tinmed out.");
return;

b

if (response.getStatus() == Cdient Response. CONNECTI ON_LOST) {
System out. printl n("Connection | ost before procedure response.");
return;

b

» Set a status listener to receive the results of any procedure invocations that complete after the client
interface times out. Seethefollowing section, Section 3.4.3, “Interpreting Other Errors’, for an example
of creating a status listener for delayed procedure responses.

3.4.3. Interpreting Other Errors

Certain typesof errors can occur that the ClientResponse class cannot notify you about immediately. These
errorsinclude:

Backpressure If backpressure causes the client interface to wait, the stored pro-
cedure is never queued and so your application does not receive
control until after the backpressure is removed. This can happen if
the client applications are queuing stored procedures faster than the
database cluster can process them. The result is that the execution
queue on the server gets filled up and the client interface will not
let your application queue any more procedure calls.

Lost Connection If a connection to the database cluster is lost or times out and
there are outstanding asynchronous requests on that connection, the
ClientResponse for those procedure callswill indicate that the con-
nection failed before a return status was received. This means that
the procedures may or may not have completed successfully. If no
requests were outstanding, your application might not be notified
of the failure under normal conditions, since there are no callbacks
to identify the failure. Since the loss of a connection can impact the
throughput or durability of your application, it isimportant to have
amechanism for general notification of lost connections outside of
the procedure callbacks.

Exceptionsin a Procedure Callback Anerror can occur in an asynchronous callback after the stored pro-
cedure compl etes. These exceptions are al so trapped by the VoltDB
client, but occur after the ClientResponse is returned to the appli-
cation.

Delayed Procedure Responses Procedure invocationsthat time out in the client may later complete
on the server and return results. Since the client application can no
longer react to thisresponseinline (for exampl e, with asynchronous
procedure calls, the associated callback has already received a con-
nection timeout error) the client may want away to process the re-
turned results.

In each of these cases, an error happens and is caught by the client interface outside of the normal stored
procedure execution cycle. If you want your application to address these situations, you need to create a
listener, which is a special type of asynchronous callback, that the client interface will notify whenever
such errors occur.

30

Designing Your VoltDB Application

Y ou must define the listener before you define the VoltDB client or open a connection. The ClientStatus-
ListenerExt interface has four methods that you can implement — one for each type of error situation —
connectionLost, backpressure, uncaughtException, and lateProcedureResponse. Once you declare your
ClientStatusListenerExt, you add it to a ClientConfig object that is then used to define the client. The
configuration class also defines the username and password to use for all connections.

By performing the operationsin this order, you ensure that all connectionsto the VoltDB database cluster
use the same credentialsfor authentication and will notify the statuslistener of any error conditions outside
of normal procedure execution.

The following example illustrates:

©® Declaring a ClientStatusListenerExt
@ Defining the client configuration, including authentication credentials and the status listener
©® Creating aclient with the specified configuration

For the sake of example, this status listener does little more than display a message on standard output.
However, inrea world applicationsthelistener would take appropriate actions based on the circumstances.

/*
* Declare the status |istener
*/
Client StatusLi stenerExt nylistener = new ClientStatusListenerExt() ©
{

@verride
public void connectionLost(String hostnane, int port,
i nt connectionsLeft,
Di sconnect Cause cause)
{
Systemout.printf("A connection to the database been |ost. "
+ "There are %l connections renmai ning.\n", connectionsLeft);

}

@verride

public void backpressure(bool ean st atus)
{

System out. printl n("Backpressure fromthe database "
+ "is causing a delay in processing requests.");
}

@verride
public void uncaught Excepti on(ProcedureCal | back cal | back,
Cl i ent Response r, Throwabl e e)

{
Systemout.println("An error has occured in a callback "
+ "procedure. Check the follow ng stack trace for details.");
e.printStackTrace();
}
@verride

public void | ateProcedur eResponse(Cl i ent Response response,
String hostname, int port)
{

Systemout.printf("A procedure that tined out on host %: %"

31

Designing Your VoltDB Application

+ " has now responded.\n", hostnane, port);

}
b
/*
* Declare the client configuration, specifying
* a usernane, a password, and the status |istener
*/
CientConfig myconfig = new CientConfig("usernanme",
"password”,
nmyl i stener);
/*

* Create the client using the specified configuration.

*/
Cient nyclient = CientFactory.createCient(myconfig);

32

©

Chapter 4. Simplifying Application
Development

The previous chapter (Chapter 3, Designing Your VoltDB Application) explains how to develop your Volt-
DB database application using the full power and flexibility of the Java client interface. However, some
database tasks — such as inserting records into a table or retrieving a specific column value — do not
need all of the capabilities that the Java API provides.

Now that you know how the VVoltDB programming interface works, VoltDB has featuresto simplify com-
mon tasks and make your application development easier. Those features include:

1. Default procedures for partitioned tables
2. Shortcuts for defining simple stored procedures
3. Verifying expected SQL query results

The following sections describe each of these features separately.

4.1. Default Procedures for Partitioned Tables

Although it is possible to define quite complex SQL queries, often the simplest are al so the most common.
Inserting, selecting, updating, and deleting records based on a specific key value are the most basic oper-
ations for a database.

To simplify these operations, VoltDB defines default stored procedures to perform these queries for any
partitioned table where the partitioning column is part of the primary key index. When you compile the
application catalog, these default procedures are added to the catalog automatically.

Thedefault stored procedures use astandard naming scheme, where the name of the procedureiscomposed
of the name of thetable (in all uppercase), aperiod, and the name of the query inlowercase. The parameters
to the procedures differ based on the procedure. For the insert procedure, the parameters are the columns
of the table, in the same order as defined in the schema. For the select and delete procedures, only the
primary key column values are required (listed in the order they appear in the primary key definition).
For the update procedure, the columns are the new column values, in the order defined by the schema,
followed by the primary key column values. (This means the primary key column values are specified
twice, once as their corresponding new column values and once as the primary key value.)

For example, the Hello World tutorial contains a single table, HELLOWORLD, with three columns and
the partitioning column, DIALECT, asthe primary key. As aresult, the application catalog includes four
default stored procedures, in addition to any user-defined procedures declared in the schema. Those default
procedures are;

* HELLOWORLD.insert
* HELLOWORLD.select
* HELLOWORLD.update
* HELLOWORLD.delete

The following code exampl e uses the default procedures for the HELLOWORLD table to insert, retrieve,
update, and delete a new record with the key value "American™:

33

Simplifying Application Development

Vol t Tabl e[] results;

client.callProcedure("HELLOADRLD. i nsert",
"Anmerican”, "Howdy", "Eart h");

results = client.call Procedure("HELLOAORLD. sel ect ™,
"Anmerican").get Resul ts();

client.callProcedure("HELLOAORLD. updat e",
"Anmerican", "Yo", "Bi osphere"”,
"Anmerican");

client.callProcedure("HELLOADRLD. del ete",
"Anmerican");

4.2. Shortcut for Defining Simple Stored Proce-
dures

Sometimes all you want is to execute a single SQL query and return the results to the calling application.
In these simple cases, writing the necessary Java code can be tedious. So VoltDB provides a shortcut.

For very simple stored procedures that execute a single SQL query and return the results, you can define
the entire stored procedure as part of the database schema. Normally, the schema contains entries that
identify each of the stored procedures, like so:

CREATE PROCEDURE FROM CLASS procedures. MakeReservati on;
CREATE PROCEDURE FROM CLASS procedures. Cancel Reservati on;

The CREATE PROCEDURE statement specifiesthe classname of the Javaprocedure you write. However,
to create procedures without writing any Java, you can simply insert the SQL query inthe AS clause:

CREATE PROCEDURE procedures. si npl e. Count Reservati ons AS
SELECT COUNT(*) FROM RESERVATI ON;

When you include the SQL query in the CREATE PROCEDURE AS statement, VoltDB generates the
necessary Java code for you and compilesit when you build your application (as described in Section 5.3,
“Building the Application Catalog”). Note that you must still provide a unique class name for the proce-
dure. It isagood idea to put these simplified procedures into a separate package (procedures.simple, in
the preceding example) from those written by hand.

Itisalso possible to pass arguments to the SQL query in simple stored procedures. If you use the question
mark placeholder in the SQL, any additional arguments you pass through the callProcedure method are
used to replace the placeholders, in their respective order. For example, the following simple stored pro-
cedure expects to receive three additional parameters:

CREATE PROCEDURE procedures. si npl e. MyReservationsByTrip AS
SELECT R RESERVEI D, F.FLIGHTID, F.DEPARTTI ME
FROM RESERVATI ON AS R, FLIGHT AS F
WHERE R. CUSTOVERID = ?
AND R FLIGHTID = F. FLI GHTI D
AND F. ORI G N=? AND F. DESTI NATI ON=7;

Finally, you can also specify whether the ssmple procedureis single-partitioned or not. By default, simple
stored procedures are assumed to be multi-partitioned. But if your procedure is single-partitioned, you can
specify the partitioning information in aPARTITION PROCEDURE statement. In the following example,
the stored procedure is partitioned on the FLIGHTID column of the RESERVATION table using the first
parameter as the partitioning key.

Simplifying Application Development

CREATE PROCEDURE procedures. si npl e. Fet chReservati ons AS
SELECT * FROM RESERVATI ON WHERE FL| GHTI D="?;

PARTI TI ON PROCEDURE pr ocedur es. si nmpl e. Fet chReservati ons
ON TABLE Reservation COLUWN flightid;

4.3. Writing Stored Procedures Inline Using
Groovy

Writing stored procedures as separate Java classes is good practice; Javais a structured language that en-
courages good programming habits and helps modularize your code base. However, sometimes — espe-
cialy when prototyping — you just want to do something quickly and keep everything in one place.

Y ou can write stored procedures directly in the schemadefinition file (DDL) by embedding the procedure
code using the Groovy programming language. Groovy is an object-oriented language that dynamically
compiles to Java Virtual Machine (VM) bytecode. Groovy is not as strict as Java and promotes simpler

coding through implicit typing and other shortcuts.

Y ou embed a Groovy stored procedure in the schemafile by including the code in the CREATE PROCE-
DURE AS statement, enclosed by aspecial marker — three pound signs (###) — before and after the code.
For example, the following CREATE PROCEDURE statement implements the Insert stored procedure

from the Hello World example using Groovy:

CREATE PROCEDURE | nsert AS ###
sgl = new SQLSt nt (
"I NSERT | NTO HELLOAORLD VALUES (?, ?, ?);")
transactOn = { String | anguage,
String hell o,
String world ->
vol t QueueSQ.(sqgl, hello, world, |anguage)
vol t Execut eSQL()

}
LANGUAGE GROOVY;

Some important things to note when using embedded Groovy stored procedures:

e Thedefinitionsfor VoltTypes, VoltProcedure, and V oltAbortException are automatically included and

can be used without explicit import statements.

» Aswith Java stored procedures, you must declare all SQL queries as SQL Stmt objects at the beginning

of the Groovy procedure.

* You must also define a closure called transactOn, which is invoked the same way the run method is
invoked in a Java stored procedure. This closure performs the actual work of the procedure and can
accept any arguments that the Java run method can accept and can return a VoltTable, an array of

VoltTables, or along value.

In addition, VoltDB provides specia wrappers, tuplerator and buildTable, that help you access VoltTable
results and construct VoltTables from scratch. For example, the following code fragment shows the Con-

testantWinningStates stored procedure from the V oter sample application written in Groovy:

transactOn = { int contestantNunber, int max ->
vol t QueueSQ.(resul t Stnt)

35

Simplifying Application Development

results =[]
state = ""

tupl erat or (vol t Execut eSQL()[0]). eachRow {
isWnning = state = it[1]
state = it[1]

if (isWnning & it[0] == contestant Nunmber) {
results << [state: state, votes: it[2]]
}

}

if (max > results.size) max = results. size
bui | dTabl e(state: STRING num votes: Bl G NT) {
results.sort { a,b -> b.votes - a.votes }[0..<max].each {
rowit.state, it.votes
}

}

Finally, it is important to note that Groovy is an interpreted language. It is very useful for quick coding
and prototyping. However, Groovy procedures do not perform as well as the equivalent compiled Java
classes. For optimal performance, Java stored procedures are recommended.

4.4. Verifying Expected Query Results

The automated default and simple stored procedures reduce the coding needed to perform simple queries.
However, another substantial chunk of stored procedure and application code is often required to verify
the correctness of the results returned by the queries. Did you get the right number of records? Does the
query return the correct value?

Rather than you having to write the code to validate the query results manually, VoltDB provides a way
to perform several common validations as part of the query itself. The Java client interface includes an
Expectation object that you can use to define the expected results of a query. Then, if the query does not
meet those expectations, the stored procedure throws a V oltAbortException and rolls back.

Y ou specify the expectation as the second parameter (after the SQL statement but before any arguments)
when queuing the query. For example, when making a reservation in the Flight application, the procedure
must make sure there are seats available. To do this, the procedure must determine how many seats the
flight has. This query can also be used to verify that the flight itself exists, because there should be one
and only one record for every flight ID.

Thefollowing code fragment usesthe EXPECT_ONE_ROW expectation to both fetch the number of seats
and verify that the flight itself exists and is unique.

i mport org.voltdb. Expectati on;

public final SQStnt GetSeats = new SQStnt (
"SELECT nunber of seats FROM Fl i ght WHERE flightid=?;");

vol t QueueSQL(Get Seat s, EXPECT_ONE ROW flightid);

Vol t Tabl e[] recordset = voltExecuteSQL();
Long nunofseats = recordset[0].asScal arLong();

36

Simplifying Application Development

By using the expectation, the stored procedure code does not need to do additional error checking to verify
that there is one and only one row in the result set. The following table describes all of the expectations

that are available to stored procedures.

Expectation

Description

EXPECT_EMPTY

The query must return no rows.

EXPECT_ONE_ROW

The query must return one and only one row.

EXPECT_ZERO_OR_ONE_ROW

The query must return no more than one row.

EXPECT_NON_EMPTY

The query must return at least one row.

EXPECT_SCALAR

The query must return a single value (that is, one
row with one column).

EXPECT_SCALAR_LONG

The query must return asingle value with adatatype
of Long.

EXPECT_SCALAR_MATCH(long)

The query must return a single value equal to the
specified Long value.

37

Chapter 5. Building Your VoltDB
Application

Once you have designed your application and created the source files, you are ready to build your appli-
cation. There are four stepsto building aVoltDB application:

1. Compiling the client application and stored procedures
2. Declaring the stored procedures in the schema
3. Compiling the VoltDB application catalog

This chapter explains these stepsin more detail.

5.1. Compiling the Client Application and
Stored Procedures

The VoltDB client application and stored procedures are written as Java classes!, so you compile them
using the Java compiler. To do this, you must include the VolItDB libraries in the classpath so Java can
resolve references to the VoltDB classes and methods. It is possible to do this manually by defining the
environment variable CLASSPATH or using the - cl asspat h argument on the command line. Y ou can
also specify where to create the resulting class files using the - o flag to specify an output directory, as
in the following example:

$ javac -classpath "./:/opt/voltdb/voltdb/*" \
-0 ./obj \
*.java

The preceding example assumes that the VoltDB software has been installed in the folder /opt/voltdb.
If you installed VoltDB in a different directory, you will need to include your installation path in the -

cl asspat h argument. Also, if your client application depends on other libraries, they will need to be
included in the classpath as well.

5.2. Declaring the Stored Procedures

In addition to compiling the stored procedures, you must tell VoltDB which procedures to include in the
runtime catalog. Y ou do this by adding CREATE PROCEDURE statements to the database schema. For
example:

CREATE PROCEDURE FROM CLASS procedures. LookupFl i ght;
CREATE PROCEDURE FROM CLASS procedur es. HowvanySeat s;
CREATE PROCEDURE FROM CLASS procedures. MakeReservati on;
CREATE PROCEDURE FROM CLASS procedures. Cancel Reservati on;
CREATE PROCEDURE FROM CLASS procedures. RenoveFl i ght;

Be sure to identify all of your stored procedures or they will not be included in the catalog and therefore
will not be available to the client applications at runtime.

1AIthough VolItDB stored procedures must be written in Java and the primary client interface is Java, it is possible to write client applications
using other programming languages. See Chapter 15, Using VoltDB with Other Programming Languages for more information on aternate client
interfaces.

38

Building Y our VoltDB Application

Y ou also specify the partitioning of the database tables and stored proceduresin the schema. Theimportant
point is that if you do not specify partitioning information for a table, that table will be replicated in all
partitions. See Section 3.1, “ Designing the Database” for moreinformation about partitioned and replicated
tables.

5.3. Building the Application Catalog

Y ou build the application catalog for your VoltDB database by compiling the database schema and stored
proceduresinto the catalog. To run the compiler, usethevol t db conpi | e command, specifying three
arguments:

1. The path to your compiled stored procedure classes

2. The name of the schemafile to use asinput

3. The name of the application catalog to create as output

For example, if your stored procedure classes are in a subfolder called obj, the command might be:

$ voltdb conpile --classpath="o0bj" -o flight.jar flightschena.sql

If you do not specify an output file, the catalog is created as cat al og. j ar in the current working
directory.

39

Chapter 6. Running Your VoltDB
Application

There are three steps to running a VoltDB application:
 Defining the cluster configuration

 Starting the VoltDB database

« Starting the client application or applications

The following sections describe the procedures for starting and stopping a VoltDB database in detail.

6.1. Defining the Cluster Configuration

The schemathat is used to compile the application catal og defines how the databaseislogically structured:
what tables to create, which tables are partitioned, and how they are accessed (i.e. what stored procedures
to support). The other important aspect of a running database isthe physical layout of the cluster that runs
the database. Thisincludesinformation such as:

* The number of nodesin the cluster
» The number of partitions (or "sites") per node
e The amount of K-safety to establish for durability

Y ou define the cluster configuration in the deployment file. The deployment file is an XML file, which
you specify when you start the database to establish the correct cluster topology. The basic syntax of the
deployment fileis asfollows:

<?xm version="1.0"?>
<depl oynent >
<cl ust er hostcount="n"
si tesperhost="n"
kfactor="n"
/>
</ depl oynent >

Theattributes of the<cl ust er > tag define the physical layout of the hardware that will run the database.
Those attributes are:

* hostcount — specifies the number of nodesin the cluster.

* sitesperhost — specifies the number of partitions (or "sites') per host. In general, thisvalue isrelated
to the number of processor cores per node. Section 6.1.1, “Determining How Many Partitions to Use”
explains how to choose avalue for this attribute,

» kfactor — specifies the K-safety value to use when creating the database. This attribute is optional.
If you do not specify a value, it defaults to zero. (See Chapter 11, Availability for more information
about K-safety.)

In the smplest case — when running on a single node with no special options enabled — you can skip
the deployment file altogether and specify only the catalog on the command line. If you do not specify

40

Running Your VoltDB Application

6.1.1.

6.1.2.

adeployment file or host, VoltDB defaults to one node, two sites per host, a K-safety value of zero, and
localhost as the host.

The deployment file is used to enable and configure many other runtime options related to the database,
which are described later in this book. For example, the deployment file specifies whether security is
enabled and defines the users and passwords that are used to authenticate clients at runtime. See Chapter 8,
Security for more information about security and VoltDB databases.

Determining How Many Partitions to Use

In general, the number of partitions per nodeis related to the number of processor cores each system has,
the optimal number being approximately 3/4 of the number of CPUs reported by the operating system. For
example, if you are using a cluster of dual quad-core processors (in other words, 8 cores per node), the
optimal number of partitionsislikely to be 6 or 7 partitions per node.

For systems that support hyperthreading (where the number of physical cores support twice as many
threads), the operating system reports twice the number of physical cores. In other words, a dual quad-
core system would report 16 virtual CPUs. However, each partition is not quite as efficient as on non-
hyperthreading systems. So the optimal number of partitions is more likely to be between 10 and 12 per
node in this situation.

Because there are no hard and set rules, the optimal number of partitions per node is best calculated by
actually benchmarking the application to see what combination of cores and partitions produces the best
results. However, two important points to keep in mind are:

* Itisnever useful to specify more partitions than the number of CPUs reported by the operating system.

» All nodesin the cluster will use the same number of partitions, so the best performance is achieved by
using a cluster with all nodes having the same physical architecture (i.e. cores).

Configuring Paths for Runtime Features

In addition to configuring the database process on each node of the cluster, the deployment file lets you
enable and configure a number of features within VoltDB. Export, automatic snapshots, and network
partition detection are all enabled through the deployment file. The later chapters of this book describe
these featuresin detail.

Animportant aspect of these featuresisthat some of them make use of disk resourcesfor persistent storage
across sessions. For example, automatic snapshots need a directory for storing snapshots of the database
contents. Similarly, export uses disk storage for writing overflow dataif the export client cannot keep up
with the export queue.

Y ou can specify individual paths for each feature, or you can specify aroot directory where VoltDB will
create subfolders for each feature as needed. To specify a common root, usethe<vol t dbr oot > tag (as
achild of <pat hs>) to specify where VoltDB will store disk files. For example, the following <pat hs>
tag set specifies/ t np astheroot directory:

<pat hs>
<vol tdbroot path="/tnp" />
</ pat hs>

Of course, /tmp is appropriate for temporary files, such as export overflow. But /tmp isnot agood location
for filesthat must persist when the server reboots. So you can also identify specific locations for individual
features. For example, the following excerpt from a deployment file specifies/ t np asthe default root but
/ opt / vol t dbsaves asthe directory for automatic snapshots:

41

Running Your VoltDB Application

6.1.3.

<pat hs>

<vol tdbroot path="/tnp" />

<snapshots pat h="/opt/vol t dbsaves" />
</ pat hs>

If you specify aroot directory path, the directory must exist and the process running VoltDB must have
write access to it. VoltDB does not attempt to create an explicitly named root directory path if it does
not exist.

On the other hand, if you do not specify a root path or a specific feature path, the root path defaults to
./ vol tdbr oot in the current default directory and VoltDB creates the directory (and subfolders) as
needed. Similarly, if you name a specific feature path (such as the snapshots path) and it does not exist,
VoltDB will attempt to create it for you.

Verifying your Hardware Configuration

Thedeployment file definesthe expected configuration of your database cluster. However, thereare several
important aspects of the physical hardware and operating system configuration that you should be aware
of before running VoltDB:

» VoltDB can operate on heterogeneous clusters. However, best performance is achieved by running the
cluster on similar hardware with the same type of processors, number of processors, and amount of
memory on each node.

« All nodes must be able to resolve the | P addresses and host names of the other nodesin the cluster. That
means they must all have valid DNS entries or have the appropriate entries in their local hostsfile.

* You must run NTP on all of the cluster nodes, preferably synchronizing against the same loca time
server. If the time skew between nodes in the cluster is greater than 100 milliseconds, VoltDB cannot
start the database.

* Itisstrongly recommended that you run NTP with the -x argument. Using nt pd - x stops the server
from adjusting time backwards for all but very large increments. If the server time moves backward,
VoltDB must pause and wait for time to catch up.

6.2. Starting a VoltDB Database for the First
Time

Once you define the configuration of your cluster, you start a VVoltDB database by starting the VoltDB
server process on each node of the cluster. Y ou start the server process by invoking VoltDB and specifying:

A startup action (see Section 6.5, “ Stopping and Restarting a VoltDB Database” for details)
» Thelocation of the application catalog

* The hostname or |P address of the host node in the cluster

» Thelocation of the deployment file

The host can be any node in the cluster and plays a special role during startup; it hosts the application
catalog and manages the cluster initiation process. Once startup is complete, the host's role is complete
and it becomes a peer of all the other nodes. It is important that all nodes in the cluster can resolve the
hostname or 1P address of the host node you specify.

42

Running Your VoltDB Application

6.2.1.

6.2.2.

For example, thefollowing vol t db command starts the cluster with the cr eate startup action, specifying
the location of the catalog and the deployment files, and naming voltsvrl as the host node:

$ voltdb create nycatal og.jar \
- - depl oynent =depl oynment . xm \
--host=vol tsvr1l

If you are using the VoltDB Enterprise Edition, you must also specify the location of the licensefile. The
licensefileisonly required by the host node when starting the cluster; the --license argument isignored in
all other cases (including when using the community edition). Thisway, you can use the same command
on all nodes.

The command to start a cluster using the Enterprise Edition looks like the following. This example illus-
trates the use of the short form of the argument flags -d, -H,and -I:

$ voltdb create nycatal og.jar \
-d depl oynent. xm \
-H voltsvrl \
-1 /opt/voltdb/voltdb/license. xm

When you are developing an application (where your cluster consists of a single node using localhost),
this one command is sufficient to start the database. However, when starting a cluster, you must:

1. Copy the runtime catalog to the host node.
2. Copy the deployment file to all nodes of the cluster.
3. Loginand start the server process using the preceding command on each node.

The deployment file must be identical on al nodes for the cluster to start.

Simplifying Startup on a Cluster

Manually logging on to each node of the cluster every time you want to start the database can be tedious.
There are several ways you can simplify the startup process:

» Shared network drive — By creating a network drive and mounting it (using NFS) on al nodes of
the cluster, you can distribute the runtime catalog and deployment file (and the VoltDB software) by
copying it once to asingle location.

» Remote access— When starting the database, you can specify the location of either the runtime catalog
or the deployment file as a URL rather than a file path (for example, ht t p: / / nyser ver. coni
mycat al og. j ar). Thisway you can publish the catalog and deployment file once to a web server
and start all nodes of the server from those copies.

» Remote shell scripts— Rather than manually logging on to each cluster node, you can use secure shell
(ssh) to execute shell commands remotely. By creating an ssh script (with the appropriate permissions)
you can copy the files and/or start the database on each node in the cluster from a single script.

» VoltDB Enterprise Manager — The VoltDB Enterprise Edition includes a web-based management
console, called the VoltDB Enterprise Manager, that helps you manage the configuration, initializa-
tion, and performance monitoring of VoltDB databases. The Enterprise Manager automates the startup
process for you. See the VoltDB Management Guide for details.

How VoltDB Database Startup Works

When you are starting a VoltDB database, the VoltDB server process performs the following actions:

43

http://community.voltdb.com/docs/MgtGuide/index

Running Your VoltDB Application

1. If you are starting the database on the nodeidentified asthe host node, it waitsfor initialization messages
from the remaining nodes.

2. If you are starting the database on a non-host node, it sends an initialization message to the host indi-
cating that it is ready.

3. Once dl the nodes have sent initialization messages, the host sends out a message to the other nodes
that the cluster is complete. The host then distributes the application catalog to all nodes.

At this point, the cluster is complete and the database is ready to receive requests from client applications.
Severd pointsto note:

» Once the startup procedure is complete, the host's role is over and it becomes a peer like every other
node in the cluster. It performs no further special functions.

» The database is not operational until the correct number of nodes (as specified in the deployment file)
have connected.

6.3. Starting VoltDB Client Applications

Client applications written in Java compile and run like other Java applications. Once again, when you
start your client application, you must make sure that the VoltDB library JAR fileisin the classpath. For
example:

$ java -classpath "./:/opt/voltdb/voltdb/*" M ientApp

When developing your application (using one of the sample applications as atemplate), ther un. sh file
manages this dependency for you. However, if you are running the database on a cluster and the client
applications on separate machines, you do not need to include all of the VVoltDB software with your client
application.

The VolItDB distribution comes with two separate libraries: voltdb-n.n.nn.jar and voltdbclient-n.n.nn.jar
(wheren.n.nnisthe VoltDB version number). Thefirst fileis acomplete library that is required for build-
ing and running a VoltDB database server. The second file, voltdbclient-n.n.nn.jar , is a smaller library
containing only those components needed to run a client application.

If you are distributing your client applications, you only need to distribute the client classesand the VoltDB
client library. You do not need to install all of the VoltDB software distribution on the client nodes.

6.4. Shutting Down a VoltDB Database

OncetheVoltDB databaseisup and running, you can shut it down by stopping the VV oltDB server processes
on each cluster node. However, it iseasier to stop the database as awhol e with a single command. Y ou can
dothiseither programmatically with the @Shutdown system procedure or interactively with thevoltadmin
shutdown command.

Either calling the @Shutdown system procedure (from any node) or invoking voltadmin shutdown will
shutdown the database on the entire cluster. Y ou do not have to issue commands on each node. Entering
voltadmin shutdown without specify a host server assumes the current system is part of the database
cluster. To shutdown a database running on different servers, you use the - - host , - - user, and - -

passwor d arguments to access the remote database. For example, the following command shuts down
the VoltDB database that includes the server zeus:

$ voltadm n --host=zeus shut down

Running Your VoltDB Application

6.5. Stopping and Restarting a VoltDB Data-

base

6.5.1.

6.5.2.

Because VoItDB is an in-memory database, once the database server process stops, the data itself is re-
moved from memory. If you restart the database without taking any other action, the database starts fresh
without any data. However, in many cases you want to retain the data across sessions. There are two ways
to do this:

 Save and restore database snapshots

» Use command logging and recovery to reload the database automatically

Save and Restore

A database snapshot is exactly what it sounds like — a point-in-time copy the database contents written
to disk. You can later use the snapshot to restore the data.

To save and restore data across sessions, you can perform a snapshot before shutting down the database
and then restore the snapshot after the database restarts. You can perform a manual snapshot using the
voltadmin command or using the @SnapshotSave system procedure. For example, the following com-
mands pause the database, perform amanual snapshot, then do a shutdown on the current system:

$ voltadm n pause
$ vol tadmi n save 'vol tdbroot/snapshots' ' MySnapshot'
$ vol tdbadm n shut down

Y ou can also have the database automatically create periodic snapshots using the snapshot feature in the
deployment file. See Chapter 9, Saving & Restoring a VoltDB Database for more information about using
snapshots to save and restore the database.

Command Logging and Recovery

Another option for saving data across sessions isto use command logging and recovery. When command
logging is enabled (which it is by default in VoltDB Enterprise Edition), the database not only performs
periodic snapshots, it also keeps a log of all stored procedures that are initiated at each partition. If the
database stops for any reason — either intentionally or due to system failure — when the server process
restarts, the database restores the last snapshot and then "replays' the command log to recover al of the
data committed prior to the cluster shutting down.

To support command logging, an alternative startup action is available on the command line when starting
the server process. The valid startup actions are:

» create— explicitly createsanew, empty database and ignoresany command log information, if it exists.

» recover — starts a new database process and recovers the command log from the last database session.
Ther ecover action is explicit; if the command log content is not found or isincomplete, the server
initialization process stops and reports an error.

Even if you are not using command logging, you can still use the cr eat e and r ecover actions with
automated snapshots. During the r ecover action, VoltDB attempts to restore the last snapshot found
in the snapshot paths. Therefore, using automated snapshotsandt he recover action, it is possible to
automatically recover all of the data from the previous database session up until the last snapshot.

45

Running Your VoltDB Application

The following example illustrates how to recover a database from a previous session.

$ vol tdb recover --host=voltsvrl \
- - depl oynent =depl oyrment . xm \
--license=/opt/voltdb/vol tdb/license. xn

The advantages of command logging and recovery are that:
e The command log ensures that all datais recovered, including transactions between snapshots.
» Therecovery isautomated, ensuring no client activity occurs until the recovery is complete.

See Chapter 10, Command Logging and Recovery for more information about configuring command |og-
ging.

6.6. Modes of Operation

6.6.1.

6.6.2.

There are actually two modes of operation for a VoltDB database: normal operation and admin mode.
During normal operation clients can connect to the cluster and invoke stored procedures (as allowed by
the security permissions set in the application catalog and deployment files). In admin mode, only clients
connected through a special admin port are allowed to initiate stored procedures. Requests received from
any other clients are rejected.

Admin Mode

The goal of admin modeisto quell database activity prior to executing sensitive administrative functions.
By entering admin mode, it is possible to ensure that no changes are made to the database contents during
operations such as save, restore, or updating the runtime catal og.

Y ou initiate admin mode by calling the @Pause system procedure through the admin port. The admin port
worksjust liketheregular client port and can be called through any of the standard V oltDB client interfaces
(such as Java or JSON) by specifying the admin port number when you create the client connection.

Once the database enters admin mode, any requests received over the client port are rgjected, returning a
status of ClientResponse.SERVER_UNAVAILABLE. The client application can check for this response
and resubmit the transaction after a suitable pause.

By default the admin port is 21211, but you can specify an aternate admin port using the <admin-mode>
tag in the deployment file. For example:

<depl oynent >

<adm n- nbde port="9999" />
</ depl oynment >

Once adminmodeisturned on, VoltDB processes requestsreceived over the admin port only. Onceyou are
ready to resume normal operation, you must call the system procedure @Resume through the admin port.

Starting the Database in Admin Mode

By default, a VoltDB database starts in normal operating mode. However, you can tell the database to
start in admin mode by adding the adminstartup attribute to the <admin-mode> tag in the deployment file.
For example:

<depl oynent >

46

Running Your VoltDB Application

<admi n- node port="9999" adm nstartup="true" />
</ depl oyment >

When adminstartup isset to true, the database startsin admin mode. No activity isallowed over the standard
client port until you explicitly stop admin mode with the voltadmin resume command or a cal to the
@Resume system procedure.

Starting in admin mode can be very useful, especialy if you want to perform some initialization on the
database prior to allowing client access. For example, it is recommended that you start in admin mode
if you plan to manually restore a snapshot or prepopulate the database with data through a set of custom
stored procedures. For example, the following commands restore a snapshot, then exit admin mode once
theinitialization is complete:

$ voltadm n restore 'vol tdbroot/snapshots' ' M/Snapshot'
$ vol tdbadnmi n resune

47

Chapter 7. Updating Your VoltDB
Database

Unlike traditional databases that allow interactive SQL statements for defining and modifying database
tables, VoltDB requiresyou to pre-compile the schemaand stored procedures into the application catal og.
Pre-compiling lets VoltDB verify the structure of the database (including the partitioning) and optimize
the stored procedures for maximum performance.

The down side of pre-compiling the database and stored proceduresisthat you cannot modify the database
as easily as you can with more traditional relational database products. Of course, this constraint is both
ablessing and a curse. It helps you avoid making rash or undocumented changes to the database without
considering the consequences.

It is never a good idea to change the database structure or stored procedure logic arbitrarily. But Volt-
DB recognizes the need to make adjustments even on running systems. Therefore, the product provides
mechanisms for updating your database and hardware configuration as needed, while still providing the
structure and verification necessary to maintain optimal performance.

7.1. Planning Your Application Updates

Many small changesto the database application, such asbug fixesto theinternal code of astored procedure
or adding atable to the database schema, do not have repercussions on other components of the system. It
is nice to be able to make these changes with a minimal amount of disruption. Other changes can impact
multiple aspects of your applications. For example if you add or remove an index from atable or modify
the parameters to a stored procedure. Therefore, it isimportant to think through the consequences of any
changes you make.

VoltDB triesto balance the trade offs of changing the database environment, making simple changes easy
and automating as much as possible even complex changes. Using the VoltDB Enterprise Edition you can
add, remove, or update stored procedures "on the fly", while the database is running. Y ou can also add or
drop tables and columns from the schema, as well as modify many indexes.

To make other changes to the database schema (such as adding unique indexes) you must first save and
shutdown the database. However, even in this situation, VoltDB automates the process by transforming
the data when you restart and reload the database in a new configuration.

This chapter explains different methods for making changesto your VoltDB database application, includ-
ing:

 Updating the Database Schema on a Running Database
 Updating the Database Using Save and Restore

 Updating the Hardware Configuration

7.2. Updating the Database Schema on a Run-
ning Database

Note

This section describes the use of the voltadmin update command and @U pdateA ppli cationCat-
alog stored procedure, features that are available in the VoltDB Enterprise Edition. If you are

48

Updating Y our VoltDB Database

7.2.1.

71.2.2.

using the community edition, use the save and restore process described in Section 7.3, “Updating
the Database Using Save and Restore” to update your database.

Many normal changes to the database schema and stored procedures can be made "on the fly", in other
words while the database is running. These changes include:

» Adding, removing, or updating tables, columns, and indexes
» Adding or removing materialized views and export-only tables
» Adding, removing, or updating stored procedures and the security permissions for accessing them

Live schema updates are done by creating an updated application catalog and deployment file and telling
the database process to use the new catalog. Y ou do this with the @UpdateA pplicationCatalog system
procedure, or from the shell prompt using the voltadmin update command. The processis as follows:

1. Make the necessary changes to the source code for the stored procedures and the schema.

2. Recompile the class files and the application catalog as described in Chapter 5, Building Your VoltDB
Application.

3. Use the @UpdateApplicationCatalog system procedure or voltadmin update command to pass the
new catalog and deployment file to the cluster.

For example:

$ voltdb compile -o nycatal og.jar myschena. sql
$ vol tadm n update mycatal og. j ar nydepl oynent . xm

Validating the Updated Catalog

When you submit acatal og update, the database nodes do acomparison of the new catal og and deployment
configuration with the currently running catalog to ensure that only supported changes are included. If
unsupported changes are included, the command returns an error.

Most schema changes are supported. The only changes that are not currently allowed are changes that add
constraints to an existing index or column or that make changes to the contents of an existing view. To
make these more complex changes, you need to save and restore the database to change the catalog, as
described in Section 7.3, “Updating the Database Using Save and Restore”.

Managing the Update Process

Updating the application catalog lets you modify the database schema and its stored procedures without
disrupting the normal operations. However, even when a change is allowed, you should be careful of the
impact to client applications that use those procedures. For example, if you remove atable or change the
parameters to a stored procedure while client applications are till active, you are likely to create an error
condition for the calling applications.

In general, the catal og update operates like a transaction. Before the update, the original attributes, includ-
ing permissions, arein effect. After the update completes, the new attributes and permissions are in effect.
In either case, any individual call to the stored procedure will run to completion under a consistent set
of rules.

For example, if a call to stored procedure A is submitted at approximately the same time as a catalog
update that removes the stored procedure, the call to stored procedure A will either complete successfully

49

Updating Y our VoltDB Database

or return an error indicating that the stored procedure no longer exists. If the stored procedure starts, it will
not be interrupted by the catalog update.

In those cases where you need to make changes to a stored procedure that might negatively impact client
applications, the following process is recommended:

1. Perform a catalog update that introduces a new stored procedure (with a new name) that implements
the new function. Assuming the original stored procedureis A, let's call its replacement procedure B.

2. Update all client applications, replacing calls to procedure A with calls to procedure B, making the
necessary code changes to accommodate any changed behavior or permissions.

3. Put the updated client applications into production.

4. Perform a second catalog update removing stored procedure A, now that all client application calls to
the original procedure have been removed.

7.3. Updating the Database Using Save and Re-
store

If you need to make changes that are not supported by the voltadmin update command, it is still possible
to modify the database schema using save and restore. Y ou can modify the schema, including adding new
constraints or modifying views, using the following steps:

1. Savethe current data, using voltadmin save.

2. Shut down the database, using voltadmin shutdown.

3. Replace the application catal og.

4. Restart the database with the new catalog, using voltdb create.
5. Reload the data saved in Step #1 using voltadmin restore.

Using these steps, you can add or remove tables, columns and indexes. Y ou can also change the datatype
of existing columns, as long as you make sure the new type is compatible with the previous type (such
as exchanging integer types or string types) and the new datatype has sufficient capacity for any values
that currently exist within the database.

However, you cannot change the name of a column, add constraints to a column or change to a smaller
datatype (such aschanging from INTEGER to TINY INT) without the danger of losing data. To makethese
changes safely, it is better to add a new column with the desired settings and write a client application
to move data from the original column to the new column, making sure to account for exceptionsin data
Size or constraints.

See Section 9.1.3, “ Changing the Database Schema or Cluster Configuration Using Save and Restore” for
complete instructions for using save and restore to modify the database schema.

7.4. Updating the Hardware Configuration

Another changeyou arelikely going to want to make at some point is changing the hardware configuration
of your database cluster. Reasons for making these changes are:

* Increasing the number of nodes (and, as a consequence, capacity and throughput performance) of your
database.

50

Updating Y our VoltDB Database

7.4.1.

» Benchmarking the performance of your database application on different size clusters and with different
numbers of partitions per node.

Y ou can always change the number of nodes by saving the data (using a snapshot or command 1ogging),
editing the deployment file to specify the new number of nodesin the hostcount attribute of the <cluster>
tag, then stopping and restarting the database and using the voltadmin restore command to reload the
data. When doing benchmarking, where you need to change the number of partitions or other runtime
options, thisis the correct approach.

However, if you are simply adding nodes to the cluster to add capacity or increase performance, you can
add the nodes while the database is running. Adding nodes "on the fly" is also known as elastic scaling.

Adding Nodes with Elastic Scaling

When you are ready to extend the cluster by adding one or more nodes, you simply start the VoltDB
database process on the new nodes using the voltdb add command specifying the name of one of the
existing cluster nodes as the host. For example, if you are adding node ServerX to acluster where ServerA
is aready amember, you can execute the following command on ServerX:

nme@erver X: ~$ voltdb add -1 ~/license.xm --host=ServerA
Oncethe add action isinitiated, the cluster performs the following tasks:

1. The cluster acknowledges the presence of a new server.

2. The active application catalog and deployment settings are sent to the new node.

3. Once sufficient nodes are added, copies of al replicated tables and their share of the partitioned tables
are sent to the new nodes.

4. Asthe data is redistributed (or rebalanced), the added nodes begin participating as full members of
the cluster.

There are some important notes to consider when expanding the cluster using elastic scaling:

» You must add a sufficient number of nodes to create an integral K-safe unit. That is, K+1 nodes. For
example, if the K-safety value for the cluster is two, you must add three nodes at a time to expand the
cluster. If the cluster is not K-safe (in other words it has a K-safety value of zero), you can add one
node at atime.

» When you add nodes to a K-safe cluster, the nodes added first will complete steps #1 and #2 above,
but will not complete steps #3 and #4 until the correct number of nodes are added, at which point all
nodes rebalance together.

» Whilethecluster isrebalancing (Step #3), the database continuesto handleincoming requests. However,
depending on the workload and amount of data in the database, rebalancing may take a significant
amount of time.

» When using database replication (DR), the master and replica databases must have the same configu-
ration. If you use elagticity to add nodes to the master cluster, the DR agent stops replication. Once
rebalancing is complete on the master database, you can:

1. Restart the replica with additional nodes matching the new master cluster configuration.

2. Restart the DR agent.

51

Updating Y our VoltDB Database

7.4.2. Configuring How VoltDB Rebalances New Nodes

Onceyou add the necessary number of nodes (based on the K-safety value), V oltDB rebalancesthe cluster,
moving data from existing partitions to the new nodes. During the rebal ance operation, the database re-
mains available and actively processing client requests. How long the rebalance operation takes is depen-
dent on two factors: how often rebalance tasks are processed and how much data each transaction moves.

Rebalancetasksare fully transactional, meaning they operate within the database's ACID-compliant trans-
actional model. Because they involve moving data between two or more partitions, they are also mul-
ti-partition transactions. This means that each rebalance work unit can incrementally add to the latency
of pending client transactions.

Y ou can control how quickly the rebalance operation completes versus how much rebalance work impacts
ongoing client transactions using two attributes of the <el ast i ¢> element in the deployment file:

» The duration attribute sets a target value for the length of time each rebalance transaction will take,
specified in milliseconds. The default is 50 milliseconds.

» The throughput attribute sets a target value for the number of megabytes per second that will be
processed by the rebalance transactions. The default is 2 megabytes.

When you change the target duration, VoltDB adjusts the amount of datathat is moved in each transaction
to reach the target execution time. If you increase the duration, the volume of data moved per transaction
increases. Similarly, if you reduce the duration, the volume per transaction decreases.

When you change the target throughput, VoltDB adjuststhe frequency of rebalance transactionsto achieve
the desired volume of data moved per second. If you increase the target throughout, the number of rebal-
ance transactions per second increases. Similarly, if you decrease the target throughout, the number of
transactions decreases.

The <éelastic> element isachild of the <systemsettings> element. For example, the following deployment
file sets the target duration to 15 milliseconds and the target throughput to 1 megabyte per second before
starting the database:

<depl oynent >

<systensettings>
<el astic duration="15" throughput="1"/>
</ systensettings>
</ depl oynent >

52

Chapter 8. Security

Security is an important feature of any application. By default, VoltDB does not perform any security
checks when a client application opens a connection to the database or invokes a stored procedure. This
is convenient when devel oping and distributing an application on a private network.

However, on public or semi-private networks, it isimportant to make sure only known client applications
are interacting with the database. VoltDB lets you control access to the database through settings in the
schema and deployment files. The following sections explain how to enable and configure security for
your VoltDB application.

8.1. How Security Works in VoltDB

When an application creates aconnection to aV oltDB database (using ClientFactory.clientCreate), it pass-
es ausername and password as part of the client configuration. These parameters identify the client to the
database and are used for authenticating access.

At runtime, if security is enabled, the username and password passed in by the client application are vali-
dated by the server against the users defined in the deployment file. If the client application passesinavalid
username and password pair, the connection is established. When the application calls a stored procedure,
permissions are checked again. If the schema identifies the user as being assigned arole having access to
that stored procedure, the procedure is executed. If not, an error is returned to the calling application.

Note

VoltDB uses SHA-1 hashing rather than encryption when passing the username and password
between the client and the server. The passwords are also hashed within the runtime catalog.

There are three steps to enabling security for aVoltDB application:

1. Addthe<security enabl ed="t rue"/ > tagto the deployment file to turn on authentication and
authorization.

2. Define the users and roles you need to authenticate.
3. Define which roles have access to each stored procedure.

The following sections describe each step of this process, plus how to enable access to system procedures
and ad hoc queries.

8.2. Enabling Authentication and Authorization

By default VoltDB does not perform authentication and client applications have full accessto the database.
To enable authentication, add the <security> tag to the deployment file:

<depl oynent >
<security enabl ed="true"/>

</ depl oynent >

8.3. Defining Users and Roles

The key to security for VoltDB applicationsis the users and roles defined in the schema and deployment
files. You define usersin the deployment file and roles in the schema.

53

Security

Thissplit isdeliberate becauseit allows you to define the overall security structure globally inthe schema,
assigning permissions to generic roles (such as admin, dbuser, apps, and so on). Y ou then define specific
users and assign them to the generic roles as part of the deployment. This way you can create one config-
uration (including cluster information and users) for development and testing, then move the application
catalog to a different configuration and set of users for production by changing only one file: the deploy-
ment file.

Y ou define users within the <users> ... </users> tag set in the deployment file. The syntax for defining
usersisasfollows.

<depl oynent >
<user s>
<user name="user - nane"
passwor d="passwor d-stri ng"
rol es="rol e-nanme[,...]" />

[...]

</ users>
</ depl oyment >
Include a <user> tag for every username/password pair you want to define.

Then within the schema you define the roles the users can belong to. Y ou define roles with the CREATE
ROLE statement.

CREATE ROLE rol e- nane;

Y ou specify which roles a user belongs to as part of the user definition in the deployment file using the
roles attribute to the <user> tag. For example, the following code defines three users, assigning operator
and developer to the admin role and developer and clientapp to the dbuser role. When a user is assigned
to more than one role, you specify the role names as a comma-delimited list.

<depl oynent >
<user s>
<user nane="operator" password="mech" rol es="adm n" />
<user nane="devel oper" password="tech" rol es="adm n, dbuser" />
<user nane="clientapp" password="xyzzy" rol es="dbuser" />
</ users>

</ depl oynent >
Two important notes concerning the assignment of usersto roles:

» Users must be assigned at least one role, or else they have no permissions. (Permissions are assigned
by role.)

» There must be a corresponding role defined in the schemafor any roles listed in the deployment file.

8.4. Assigning Access to Stored Procedures

Onceyou definethe usersand roles you need, you assign them accessto individual stored proceduresusing
the ALLOW clause of the CREATE PROCEDURE statement in the schema. In the following example,
users assigned to the roles admin and dbuser are permitted access to both the MyProcl and MyProc2
procedures. Only users assigned the admin role have access to the MyProc3 procedure.

54

Security

CREATE PROCEDURE ALLOW dbuser, adm n FROM CLASS MyProci;
CREATE PROCEDURE ALLOW dbuser, adm n FROM CLASS MyProc2;
CREATE PROCEDURE ALLOW admi n FROM CLASS MyProc3;

When security is enabled, you must specify access rights for each stored procedure. If a procedure decla-
ration does not include an ALLOW clause, no accessis allowed. In other words, calling applications will
not be able to invoke that procedure.

8.5. Allowing Access to System Procedures,
Ad Hoc Queries, and Default Procedures

There are two special procedures and functions available within VoltDB that are not called out in the
schema. These features include system procedures, which all begin with an at sign (@) and perform spe-
cial functions such as saving and restoring snapshots. (See Appendix F, System Procedures for more in-
formation about system procedures.) The other feature that is not called out in the schema are the default
INSERT, SELECT, UPDATE, and DELETE procedures created for each table.

By default, when security is not enabled, any calling application has access to these features. However,
when you enable security, you must explicitly assign access to these functions as well.

Since there is no procedure definition in the schema, you assign access to these functions using the WITH
clause when declaring the role. The three permissions enabled by the WITH clause are:

* SYSPROC — allows access to all system procedures
e ADHOC — allows access to the @AdHoc procedure only
» DEFAULTPROC — allows access to the default procedures for all tables

In the CREATE ROLE statement you enabl e access to these features by including the adhoc, defaultproc,
and sysproc keywords in the WITH clause. (The default, if security is enabled and the keyword is not
specified, isthat the role is not allowed access to the corresponding feature.)

Note that the permissions are additive. So if auser is assigned one role that allows access to adhoc but not
sysproc, but that user also is assigned another role that allows sysproc, the user has both permissions.

The following example assigns accessto all system proceduresto members of the admin role, accessto the
adhoc procedure and default proceduresto members of the dbuser role, and no accessto system procedures
but access to default procedures for all other users.

CREATE RCOLE admin W TH sysproc;
CREATE RCLE dbuser W TH adhoc, defaultproc;
CREATE RCOLE apps W TH def aul t proc;

55

Chapter 9. Saving & Restoring a
VoltDB Database

There are times when it is necessary to save the contents of aVVoltDB database to disk and then restore it.
For example, if the cluster needs to be shut down for maintenance, you may want to save the current state
of the database before shutting down the cluster and then restore the database once the cluster comes back
online. Performing periodic backups of the data can also provide afallback in case of unexpected failures
— either physical failures, such as power outages, or logic errors where a client application mistakenly
corrupts the database contents.

VoltDB provides shell commands, system procedures, and an automated snapshot feature that help you
perform these operations. Thefollowing sections explain how to save and restorearunning VoltDB cluster,
either manually or automatically.

9.1. Performing a Manual Save and Restore of a
VoltDB Cluster

Manually saving and restoring a VoltDB database is useful when you need to do maintenance on the
database itself or the cluster it runs on. The normal use of save and restore, when performing such a
maintenance operation, is as follows:

1. Stop database activities (using pause).

2. Use save to write a snapshot of the current datato disk.

3. Shutdown the cluster.

4. Make changes to the VVoltDB catalog and/or deployment file (if desired).
5. Restart the cluster in admin mode.

6. Restore the previous snapshot.

7. Restart client activity (using resume).

The key isto make sure that all database activity is stopped before the save and shutdown are performed.
This ensuresthat no further changes to the database are made (and therefore | ost) after the save and before
the shutdown. Similarly, it isimportant that no client activity starts until the database has started and the
restore operation completes.

Save and restore operations are performed either by calling VoltDB system procedures or using the cor-
responding voltadmin shell commands. In most cases, the shell commands are simpler since they do not
require program code to use. Therefore, this chapter uses voltadmin commands in the examples. If you
are interested in programming the save and restore procedures, see Appendix F, System Procedures for
more information about the corresponding system procedures.

When you issue a save command, you specify a path where the data will be saved and a unique identifier
for tagging the files. VoltDB then saves the current data on each node of the cluster to a set of files at the
specified location (using the unique identifier as a prefix to the file names). This set of files is referred
to as a snapshot, since it contains a complete record of the database for a given point in time (when the
save operation was performed).

56

Saving & Restoring
aVoltDB Database

9.1.1.

9.1.2.

9.1.3.

The - - bl ocki ng option lets you specify whether the save operation should block other transactions
until it completes. In the case of manual saves, it is a good idea to use this option since you do not want
additional changes made to the database during the save operation.

Note that every node in the cluster uses the same absolute path, so the path specified must be valid, must
exist on every node, and must not aready contain data from any previous saves using the same unique
identifier, or the save will fail.

When you issue a restore command, you specify the same absolute path and unique identifier used when
creating the snapshot. VoltDB checks to make sure the appropriate save set exists on each node, then
restores the data into memory.

How to Save the Contents of a VoltDB Database

To save the contents of a VoltDB database, use the voltadmin save command. The following example
creates a snapshot at the path /tmp/voltdb/backup using the unique identifier TestShapshot.

$ voltadm n save --blocking /tnp/voltdb/backup "Test Snapshot"

In this exampl e, the command tellsthe save operation to block all other transactionsuntil it completes. Itis
possible to save the contents without blocking other transactions (which is what automated snapshots do).
However, when performing a manua save prior to shutting down, it is normal to block other transactions
to ensure you save a known state of the database.

Notethat it is possible for the save operation to succeed on some nodes of the cluster and not others. When
you issue the voltadmin save command, VoltDB displays messages from each partition indicating the
status of the save operation. If there are any issues that would stop the process from starting, such as a
bad file path, they are displayed on the console. It is a good practice to examine these messages to make
sure al partitions are saved as expected.

How to Restore the Contents of a VoltDB Database

Torestore aVoltDB database from a snapshot previously created by a save operation, you use the voltad-
min restore command. Y ou must specify the same pathname and unique identifier used during the save.

The following example restores the snapshot created by the examplein Section 9.1.1.
$ voltadnmin restore /tnp/voltdb/backup "Test Snapshot"

Aswith save operations, it isalwaysagood ideato check the statusinformation displayed by the command
to ensure the operation completed as expected.

Changing the Database Schema or Cluster Config-

uration Using Save and Restore

Between asave and arestore, it is possible to make selected changes to the database. Y ou can:
+ Add nodesto the cluster

* Modify the database schema

» Add, remove, or modify stored procedures

To make these changes, you must, as appropriate, edit the database schema, the procedure source files,
or the deployment file. Y ou can then recompile the application catalog and distribute the updated catal og
and deployment file to the cluster nodes before restarting the cluster and performing the restore.

57

Saving & Restoring
aVoltDB Database

9.1.3.1. Adding Nodes to the Database

To add nodes to the cluster, use the following procedure:
» Savethe database.

« Edit the deployment file, specifying the new number of nodesin the hostcount attribute of the <cluster>
tag.

» Restart the cluster (including the new nodes).
* |ssue arestore command.

When the snapshot is restored, the database (and partitions) are redistributed over the new cluster config-
uration.

It is also possible to remove nodes from the cluster using this procedure. However, to make sure that no
dataislost in the process, you must copy the snapshot files from the nodes that are being removed to one
of the nodes that is remaining in the cluster. This way, the restore operation can find and restore the data
from partitions on the missing nodes.

9.1.3.2. Modifying the Database Schema and Stored Procedures

To modify the database schema or stored procedures, make the appropriate changesto the sourcefiles (that
is, the database DDL and the stored procedure Java source files), then recompile the application catal og.
However, you can only make certain modifications to the database schema. Specifically, you can:

* Add or remove tables.
* Add or remove columns from tables.

» Change the datatypes of columns, assuming the two datatypes are compatible. (That is, the data can be
converted from the old to the new type. For example, extending the length of VARCHAR columns or
converting between two numeric datatypes.)

Note that you cannot rename tables or columns and retain the data. If you rename atable or column, it is
equivalent to deleting the original table/column (and its data) and adding a new one. Two other important
points to note when modifying the database structure are:

» When existing rows are restored to tables where new columns have been added, the new columns are
filled with either the default value (if defined by the schema) or nulls.

» When changing the datatypes of columns, it is possibleto decrease the datatype size (for example, going
froman INT toan TINYINT). However, if any existing values exceed the capacity of the new datatype
(such asan integer value of 5,000 where the datatype has been changed to TINY INT), the entire restore
will fail.

If you remove or modify stored procedures (particularly if you change the number and/or datatype of the
parameters), you must make sure the corresponding changes are made to all client applications as well.

9.2. Scheduling Automated Snapshots

Save and restore are useful when planning for scheduled down times. However, these functions are also
important for reducing the risk from unexpected outages. VoltDB assists in contingency planning and
recovery from such worst case scenarios as power failures, fatal system errors, or data corruption due to
application logic errors.

58

Saving & Restoring
aVoltDB Database

In these cases, the database stops unexpectedly or becomes unreliable. By automatically generating snap-
shots at set intervals, VoltDB gives you the ahility to restore the database to a previous valid state.

Y ou schedule automated snapshots of the database as part of the deployment file. The <snapshot> tag lets
you specify:

» Thefreguency of the snapshots. Y ou can specify any whole number of seconds, minutes, or hours (using
the suffix "s", "m", or "h", respectively, to denote the unit of measure). For example "3600s", "60m",
and "1h" are all equivalent.

e Theuniqueidentifier to use as a prefix for the snapshot files.

» Thenumber of snapshotsto retain. Snapshots are marked with atimestamp (as part of the file names), so
multiple snapshots can be saved. Ther et ai n attribute lets you specify how many snapshots to keep.
Older snapshots are purged once this limit is reached.

Thefollowing example enables automated snapshots every thirty minutes using the prefix "flightsave" and
keeping only the three most recent snapshots.

<snapshot prefix="flightsave"
frequency="30nt
retain="3"

/>

By default, automated snapshots are stored in a subfolder of the VoltDB default path (as described in
Section 6.1.2, “ Configuring Pathsfor Runtime Features”). Y ou can save the snapshotsto aspecific path by
adding the <snapshots> tag within to the <paths>...</paths> tag set. For example, the following example
defines the path for automated snapshotsas/ et ¢/ vol t db/ aut obackup/ .

<pat hs>
<snapshots pat h="/etc/vol t db/ aut obackup/" />
</ pat hs>

9.3. Managing Snapshots

VoltDB does not delete snapshots after they are restored; the snapshot files remain on each node of the
cluster. For automated snapshots, the oldest snapshot files are purged according to the settings in the
deployment file. But if you create snapshots manually or if you change the directory path or the prefix for
automated snapshots, the old snapshots will also be left on the cluster.

To simplify maintenance, it is agood idea to observe certain guidelines when using save and restore:
 Create dedicated directories for use as the paths for VVoltDB snapshots.

» Use separate directories for manual and automated snapshots (to avoid conflictsin file names).

» Do not store any other filesin the directories used for VoltDB snapshots.

* Periodically cleanup the directories by deleting obsolete, unused snapshots.

Y ou can delete snapshots manually. To delete a snapshot, use the unique identifier, which is applied as
afilename prefix, to find al of the files in the snapshot. For example, the following commands remove
the snapshot with the ID TestSave from the directory /etc/voltdb/backup/. Note that VoltDB separates the
prefix from the remainder of the file name with a dash for manual snapshots:

$ rm/etc/vol tdb/ backup/ Test Save-*

59

Saving & Restoring
aVoltDB Database

However, it is easier if you use the system procedures VoltDB provides for managing snapshots. If you
delete snapshots manually, you must make sure you execute the commands on all nodes of the cluster.
When you use the system procedures, VoltDB distributes the operations across the cluster automatically.

VoltDB provides severa system procedures to assist with the management of snapshots:

* @SnapshotStatus provides information about the most recently performed snapshots for the current
database. The response from SnapshotStatus includes information about up to ten recent snapshots, in-
cluding their location, when they were created, how long the save took, whether they completed suc-
cessfully, and the size of the individua files that make up the snapshot. See the reference section on
@SnapshotStatus for details.

» @SnapshotScan listsal of the snapshots availablein aspecified directory path. Y ou can usethis system
procedure to determine what snapshots exist and, as a consequence, which ought to be deleted. See the
reference section on @SnapshotScan for details.

* @SnapshotDelete deletes one or more snapshots based on the paths and prefixes you provide. The
parameters to the system procedure are two string arrays. Thefirst array specifies one or more directory
paths. The second array specifiesoneor moreprefixes. Thearray elementsaretakenin pairsto determine
which snapshots to delete. For example, if the first array contains paths A, B, and C and the second
array contains the unique identifiers X, Y, and Z, the following three snapshots will be deleted: A/X,
B/Y, and C/Z. See the reference section on @SnapshotDelete for details.

9.4. Special Notes Concerning Save and Re-
store

The following are special considerations concerning save and restore that are important to keep in mind:

 Save and restore do not check the cluster health (whether al nodes exist and are running) before exe-
cuting. The user can find out what nodes were saved by looking at the messages displayed by the save
operation.

» Both the save and restore calls do a pre-check to see if the action is likely to succeed before the actual
savelrestore is attempted. For save, VoltDB checks to see if the path exists, if there is any data that
might be overwritten, and if it has write access to the directory. For restore, VoltDB verifies that the
saved data can be restored completely.

* You should use separate directories for manual and automated snapshots to avoid naming conflicts.

It is possible to provide additional protection against failure by copying the automated snapshots to
remote locations. Automated snapshots are saved locally on the cluster. However, you can set up a
network process to periodically copy the snapshot files to a remote system. (Be sure to copy the files
from all of the cluster nodes.) Another approach would be to save the snapshots to a SAN disk that is
aready set up to replicate to another location. (For example, using iSCSI.)

60

Chapter 10. Command Logging and
Recovery

10.1.

By executing transactions in memory, VoltDB, freesitself from much of the management overhead and 1/
O costs of traditional database products. However, accidents do happen and it isimportant that the contents
of the database be safeguarded against loss or corruption.

Snapshots provide one mechanism for safeguarding your data, by creating a point-in-time copy of the
database contents. But what happens to the transactions that occur between snapshots?

Command logging provides a more complete solution to the durability and availability of your VoltDB
database. Command logging keeps arecord of every transaction (that is, stored procedure) asit is execut-
ed. Then, if the servers fail for any reason, the database can restore the last snapshot and "replay” the
subsequent logs to re-establish the database contents in their entirety.

The key to command logging is that it logs the invocations, not the consegquences, of the transactions. A
single stored procedure can include many individual SQL statements and each SQL statement can modify
hundreds or thousands of table rows. By recording only the invocation, the command logs are kept to a
bare minimum, limiting the impact the disk 1/O will have on performance.

However, any additional processing canimpact overall performance, especially whenitinvolvesdisk 1/0.
So it is important to understand the tradeoffs concerning different aspects of command logging and how
it interacts with the hardware and any other options you are utilizing. The following sections explain how
command logging works and how to configure it to meet your specific needs.

How Command Logging Works

When command logging is enabled, VoltDB keeps a log of every transaction (that is, stored procedure)
invocation. At first, the log of the invocations are held in memory. Then, at a set interval the logs are
physically written to disk. Of course, at a high transaction rate, even limiting the logs to just invocations,
the logs begin to fill up. So at a broader interval, the server initiates a snapshot. Once the snapshot is
complete, the command logging processis ableto free up — or "truncate” — thelog keeping only arecord
of procedure invocations since the last snapshot.

This process can continue indefinitely, using snapshots as a baseline and loading and truncating the com-
mand logs for all transactions since the last snapshot.

Figure 10.1. Command Logging in Action

; AN
aatae MMM sesceces MMM

S 7
]

Frequency

Snapshots @ @

The frequency with which the transactions are written to the command log is configurable (as described in
Section 10.3, “ Configuring Command Logging for Optimal Performance”). By adjusting thefrequency and

61

Command Logging and Recovery

10.2.

10.3.

type of logging (synchronous or asynchronous) you can balance the performance needs of your application
against the level of durability desired.

Inreverse, whenitistimeto "replay" thelogs, if you start the database with ther ecover action (asdescribed
in Section 6.5.2, “Command Logging and Recovery”) once the server nodes establish aquorum, they start
by restoring the most recent snapshot. Once the snapshot isrestored, they then replay all of the transactions
in the log since that snapshot.

Figure 10.2. Recovery in Action

h
M,

VolDB | N\ ostart | A\
database / Recover /
) |/ b /
) Repiay
Command [IO
Logs ‘ .
Restore

Snapshots @

Controlling Command Logging

Command logging is enabled by default in the VoltDB Enterprise Edition. Using command logging is
recommended to ensure durability of your data. However, you can choose whether to have command
logging enabled or not using the <commandl og> element in the deployment file. For example:

<depl oynent >
<cl uster hostcount="4" sitesperhost="2" kfactor="1" />
<comuand| og enabl ed="true"/>

</ depl oynent >

Initssimplest form, the <conmand| og/ > tag enables or disables command logging by setting the en-
abl ed attributeto "true" or "false". Y ou can a so use other attributes and child el ementsto control specific
characteristics of command logging. The following section describes those options in detail .

Configuring Command Logging for Opti-

mal Performance

Command logging can provide complete durability, preserving arecord of every transaction that is com-
pleted before the database stops. However, the amount of durability must be balanced against the perfor-
mance impact and hardware requirements to achieve effective /0.

VoltDB provides three settings you can use to optimize command logging:
» The amount of disk space allocated to the command logs

» The frequency between writes to the command logs

» Whether logging is synchronous or asynchronous

The following sections describe these options. A fourth section discusses the impact of storage hardware
on the different logging options.

62

Command Logging and Recovery

10.3.1. Log Size

The command log size specifies how much disk space is preallocated for storing the logs on disk. The
logs are divided into three "segments’ Once a segment is full, it is written to a snapshot (as shown in
Figure 10.1, “Command Logging in Action”).

For most workloads, the default log size of one gigabyte is sufficient. However, if your workload writes
large volumes of data or uses large strings for queries (so the procedure invocationsinclude large parame-
ter values), the log segments fill up very quickly. When this happens, VoltDB can end up snapshotting
continuously, because by the time one snapshot finishes, the next log segment is full.

Toavoid thissituation, you can increase thetotal 1og size, to reduce the frequency of snapshots. Y ou define
the log size in the deployment file using the |l ogsi ze attribute of the <command| og> tag. Specify the
desired log size as an integer number of megabytes. For example:

<conmandl og enabl ed="true" | ogsize="3072" />

Whenincreasing thelog size, be awarethat the larger thelog, thelonger it may take to recover the database
since any transactions in the log since the last snapshot must be replayed before the recovery is complete.
So, while reducing the frequency of snapshots, you also may be increasing the time needed to restart.

The minimum log size is three megabytes. Note that the log size specifies the initial size. If the existing
segments are filled before a snapshot can truncate the logs, the server will allocate additional segments.

10.3.2. Log Frequency

The log frequency specifies how often transactions are written to the command log. In other words, the
interval between writes, as shown in Figure 10.1, “Command Logging in Action”. You can specify the
frequency in either or both time and number of transactions.

For example, you might specify that the command log is written every 200 milliseconds or every 500
transactions, whichever comes first. You do this by adding the <f r equency> element as a child of
<comand| og> and specifying the individual frequencies as attributes. For example:

<comuand| og enabl ed="true">
<frequency tine="200" transactions="500"/>
</ command| og>

Time frequency is specified in milliseconds and transaction frequency is specified as the number of trans-
actions. Y ou can specify either or both types of frequency. If you specify both, whichever limit is reached
first initiates awrite.

10.3.3. Synchronous vs. Asynchronous Logging

If the command logs are being written asynchronously (which is the default), results are returned to the
client applications as soon as the transactions are completed. This allows the transactions to execute un-
interrupted.

However, with asynchronous logging there is always the possibility that a catastrophic event (such as a
power failure) could cause the cluster to fail. In that case, any transactions completed since the last write
and before the failurewould be lost. The smaller the frequency, the less datathat could belost. Thisishow
you "dial up" the amount of durability you want using the configuration options for command logging.

In some cases, no loss of datais acceptable. For those situations, it isbest to use synchronouslogging. When
you select synchronous logging, no results are returned to the client applications until those transactions

63

Command Logging and Recovery

are written to the log. In other words, the results for all of the transactions since the last write are held on
the server until the next write occurs.

The advantage of synchronouslogging isthat no transaction is"complete”" and reported back to the calling
application until it is guaranteed to be logged — no transactions are lost. The obvious disadvantage of
synchronous logging isthat theinterval between writes (i.e. the frequency) while theresults are held, adds
to the latency of the transactions. To reduce the penalty of synchronous logging, you need to reduce the
frequency.

When using synchronouslogging, it isrecommended that the frequency be limited to between 1 and 4 mil-
liseconds to avoid adding undue latency to the transaction rate. A frequency of 1 or 2 milliseconds should
have little or no measurable affect on overall latency. However, low frequencies can only be achieved
effectively when using appropriate hardware (as discussed in the next section, Section 10.3.4, “Hardware
Considerations”).

To select synchronous logging, usethe synchr onous attribute of the <command| og> tag. For exam-
ple:

<commandl og enabl ed="true" synchronous="true" >
<frequency tinme="2"/>
</ command| og>

10.3.4. Hardware Considerations

Clearly, synchronous logging is preferable since it provides complete durability. However, to avoid neg-
atively impacting database performance you must not only use very low frequencies, but you must have
storage hardware that is capable of handling frequent, small writes. Attempting to use aggressively low
log frequencies with storage devices that cannot keep up will also hurt transaction throughput and latency.

Standard, uncached storage devices can quickly become overwhel med with frequent writes. So you should
not use low frequencies (and therefore synchronous logging) with slower storage devices. Similarly, if the
command logs are competing for the device with other disk 1/0, performance will suffer. So do not write
the command logsto the same devicethat isbeing used for other 1/0, such as snapshots or export overflow.

On the other hand, fast, cached devices such as disks with a battery-backed cache, are capable of handling
frequent writes. So it isstrongly recommended that you use such devices when using synchronous logging.

To specify where the command logs and their associated snapshots are written, you use tags within the
<pat hs>...</ pat hs> tag set. For example, the following example specifies that the logs are written to
/ fast di sk/ vol t dbl og and the snapshots are writtento/ opt / vol t db/ cndsnaps:

<pat hs>
<commandl og pat h="/faskdi sk/voltdblog/" />
<command| ogsnapshot pat h="/opt/vol tdb/cndsnaps/" />
</ pat hs>

Note that the default paths for the command logs and the command log snapshots are both subfolders of
the voltdbroot directory. To avoid overloading a single device on production servers, it is recommended
that you specify an explicit path for the command logs, at a minimum, and preferably for both logs and
snapshots.

To summarize, the rules for balancing command logging with performance and throughput on production
databases are;

 Use asynchronous logging with slower storage devices.

64

Command Logging and Recovery

» Write command logs to a dedicated device. Do not write logs and snapshots to the same device.
» Uselow (1-2 milisecond) frequencies when performing synchronous logging.

» Use moderate (100 millisecond or greater) frequencies when performing asynchronous logging.

65

Chapter 11. Availability

11.1.

Durability is one of the four key ACID attributes required to ensure the accurate and reliable operation of
atransactional database. Durability refers to the ability to maintain database consistency and availability
in the face of external problems, such as hardware or operating system failure. Durability is provided by
four features of VVoltDB: snapshots, command logging, K-safety, and disaster recovery through database
replication.

» Snapshots are a "snapshot” of the data within the database at a given point in time written to disk. You
can use these snapshot filesto restore the database to a previous, known state after afailure which brings
down the database. The snapshots are guaranteed to be transactionally consistent at the point at which
the snapshot was taken. Chapter 9, Saving & Restoring a VoltDB Database describes how to create and
restore database snapshots.

« Command Logging isafeature where, in addition to periodic snapshots, the system keeps alog of every
stored procedure (or "command") asit is invoked. If, for any reason, the serversfail, they can "replay"
the log on startup to reinstate the database contents completely rather than just to an arbitrary point-
in-time. Chapter 10, Command Logging and Recovery describes how to enable, configure, and replay
command logs.

» K-safety refers to the practice of duplicating database partitions so that the database can withstand the
loss of cluster nodes without interrupting the service. For example, aK value of zero means that there
isno duplication and losing any serverswill result in aloss of data and database operations. If there are
two copies of every partition (a K value of one), then the cluster can withstand the loss of at least one
node (and possibly more) without any interruption in service.

» Database Replication issimilar to K-safety, sinceit involvesreplicating data. However, rather than cre-
ating redundant partitions within a single database, database replication involves creating and maintain-
ing a complete copy of the entire database. Database replication has a number of uses, but specifically
in terms of durability, replication lets you maintain two copies of the database in separate geographic
locations. In case of catastrophic events, such as fires, earthquakes, or large scale power outages, the
replica can be used as a replacement for adisabled cluster.

Previous chapters described snapshots and command logging. The next chapter describes how you can use
database replication for disaster recovery. This chapter explains how K-safety works, how to configure
your VoltDB database for different values of K, and how to recover in the case of a system failure.

How K-Safety Works

K-safety involves duplicating database partitions so that if a partition is lost (either due to hardware or
software problems) the database can continue to function with the remaining duplicates. In the case of
VoltDB, the duplicate partitions are fully functioning members of the cluster, including all read and write
operations that apply to those partitions. (In other words, the duplicates function as peers rather than in
amaster-slave relationship.)

Itisalsoimportant to notethat K-safety isdifferent than WAN replication. In replication the entire database
cluster isreplicated (usually at aremote location to provide for disaster recovery in case the entire cluster
or site goes down due to catastrophic failure of some type).

In replication, the replicated cluster operates independently and cannot assist when only part of the active
cluster fails. The replicate is intended to take over only when the primary database cluster fails entirely.
So, in caseswhere the database is mission critical, it is not uncommon to use both K-safety and replication
to achieve the highest levels of service.

66

Availability

To achieve K=1, it is necessary to duplicate all partitions. (If you don't, failure of a node that contains a
non-duplicated partition would cause the database to fail.) Similarly, K=2 requires two duplicates of every
partition, and so on.

What happens during normal operations is that any work assigned to a duplicated partition is sent to all
copies (asshownin Figure 11.1, “K-Safety in Action”). If anode fails, the database continues to function
sending the work to the unaffected copies of the partition.

Figure11.1. K-Safety in Action

W

11.2. Enabling K-Safety

You specify the desired K-safety value as part of the cluster configuration in the VoltDB deployment
file for your application. By default, VoltDB uses a K-safety value of zero (no duplicate partitions). You
can specify alarger K-safety value using the kfactor attribute of the <cluster> tag. For example, in the
following deployment file, the K-safety value for a 6-node cluster with 4 partitions per node is set to 2:

<?xm version="1.0"?>
<depl oynent >
<cl ust er hostcount="6"
si t esper host ="4"
kfact or="2"
/>
</ depl oyment >

When you start the database specifying a K-safety value greater than zero, the appropriate number of
partitions out of the cluster will be assigned as duplicates. For example, in the preceding case where there
are 6 nodes and 4 partitions per node, there are atotal of 24 partitions. With K=1, half of those partitions
(12) will be assigned as duplicates of the other half. If K isincreased to 2, the cluster would be divided
into 3 copies consisting of 8 partitions each.

67

Availability

The important point to note when setting the K value is that, if you do not change the hardware configu-
ration, you are dividing the avail able partitions among the duplicate copies. Therefore performance (and
capacity) will be proportionally decreased as K-safety is increased. So running K=1 on a 6-node cluster
will be approximately equivalent to running a 3-node cluster with K=0.

If you wish to increase reliability without impacting performance, you must increase the cluster size to
provide the appropriate capacity to accommodate for K-safety.

11.2.1. What Happens When You Enable K-Safety

Of course, to ensure a system failure does not impact the database, not only do the partitions need to be
duplicated, but VVoltDB must ensure that the duplicates are kept on separate nodes of the cluster. To achieve
this, VoltDB calculates the maximum number of unique partitions that can be created, given the number
of nodes, partitions per node, and the desired K-safety value.

When the number of nodes is an integral multiple of the duplicates needed, thisis easy to calculate. For
example, if you have asix node cluster and choose K=1, VoltDB will create two instances of three nodes
each. If you choose K=2, VoltDB will create three instances of two nodes each. And so on.

If the number of nodesis not amultiple of the number of duplicates, VoltDB doesits best to distribute the
partitions evenly. For example, if you have a three node cluster with two partitions per node, when you
ask for K=1 (in other words, two of every partition), VoltDB will duplicate three partitions, distributing
the six total partitions across the three nodes.

11.2.2. Calculating the Appropriate Number of Nodes for
K-Safety

By now it should be clear that there is a correlation between the K value and the number of nodes and
partitionsin the cluster. Ideally, the number of nodesisamultiple of the number of copiesneeded (in other
words, the K value plus one). Thisis both the easiest configuration to understand and manage.

However, if the number of nodes is not an exact multiple, VoltDB distributes the duplicated partitions
across the cluster using the largest number of unique partitions possible. Thisisthe highest whole integer
where the number of unique partitions is equal to the total number of partitions divided by the needed
number of copies:

Uni que partitions = (nodes * partitions/node) / (K + 1)

Therefore, when you specify a cluster size that is not a multiple of K+1, but where the total number of
partitionsis, VoltDB will use all of the partitions to achieve the required K-safety value.

Note that the total number of partitions must be awhole multiple of the number of copies (that is, K+1).
If neither the number of nodes nor the total number of partitions is divisible by K+1, then VoltDB will
not let the cluster start and will display an appropriate error message. For example, if the deployment file
specifiesathree node cluster with 3 sites per host and aK-safety value of 1, the cluster cannot start because
the total number of partitions (3X3=9) is not a multiple of the number of copies (K+1=2). To start the
cluster, you must either increase the K-safety value to 2 (so the number of copiesis 3) or change the sites
per host to 2 or 4 so the total number of partitionsisdivisible by 2.

Finally, if you specify aK value higher than the available number of nodes, it is not possible to achieve the
requested K-safety. Even if there are enough partitions to create the requested duplicates, VoltDB cannot
distribute the duplicates to distinct nodes. For example, if you have a 3 node cluster with 4 partitions per
node (12 total partitions), there are enough partitions to achieve a K value of 3, but not without some

68

Availability

duplicates residing on the same node. In this situation, VoltDB issues an error message. Y ou must either
reduce the K-safety or increase the number of nodes.

11.3

Recovering from System Failures

When running without K-safety (in other words, a K-safety value of zero) any node failure is fatal and
will bring down the database (since there are no longer enough partitions to maintain operation). When
running with K-safety on, if a node goes down, the remaining nodes of the database cluster log an error
indicating that a node has failed.

By default, these error messages are logged to the console terminal. Since the loss of one or more nodes
reduces the reliability of the cluster, you may want to increase the urgency of these messages. For exam-
ple, you can configure a separate Log4J appender (such as the SMTP appender) to report node failure
messages. To do this, you should configure the appender to handle messages of class HOST and severity
level ERROR or greater. See Chapter 14, Logging and Analyzing Activity in a VoltDB Database for more
information about configuring logging.

When a node fails with K-safety enabled, the database continues to operate. But at the earliest possible
convenience, you should repair (or replace) the failed node.

To replace afailed nodeto arunning VoltDB cluster, you restart the VoltDB server process specifying the
deployment file, rejoin asthe start action, and the address of one of the remaining nodes of the cluster as
the host. For example, to rgjoin a node to the VoltDB cluster where myclusternode5 is one of the current
member nodes, you use the following command:

$ voltdb rejoin --host=myclusternode5 \
- - depl oynent =nydepl oynent . xm

Note that the node you specify may be any active cluster node; it does not have to be the node identified as
the host when the cluster was originally started. Also, the deployment file you specify must bethe currently
active deployment settings for the running database cluster.

11.3.1. What Happens When a Node Rejoins the Cluster

When you issue the rejoin command, the node first rejoinsthe cluster, then retrieves a copy of the applica
tion catal og and the appropriate data for its partitions from other nodesin the cluster. Rejoining the cluster
only takes seconds and once this is done and the catalog is received, the node can accept and distribute
stored procedure requests like any other member.

However, the new node will not actively participate in the work until afull working copy of its partition
dataisreceived. The regjoin process can happen in two different ways: blocking and "live".

During a blocking rejoin, the update process for each partition operates as a single transaction and will
block further transactions on the partition which is providing the data. While the node is rejoining and
being updated, the cluster continues to accept work. If the work queue gets filled (because the update is
blocking further work), the client applications will experience back pressure. Under normal conditions,
this means the calls to submit stored procedures with the callProcedure method (either synchronously or
asynchronously) will wait until the back pressure clears before returning control to the calling application.
Thetimethis update process takes varies in length depending on the volume of datainvolved and network
bandwidth. However, the process should not take more than afew minutes.

During a live rgjoin, the update separates the rejoin process from the standard transactional workflow,
allowing the database to continue operating with aminimal impact to throughput or latency. The advantage
of alivergjoin isthat the database remains available and responsive to client applications throughout the

69

Availability

rejoin procedure. The deficit of aliveregjoin isthat, for large datasets, the rgjoin process can take longer
to complete than with a blocking rejoin.

By default, VoltDB performsliverejoins, allowing the work of the database to continue. If, for any reason,
you choose to perform ablocking rejoin, you can do thisby using the - - bl ocki ng flag on the command
line. For example, the following command performs a blocking rejoin to the database cluster including
the node myclusternodeb:

$ voltdb rejoin --blocking --host=mycl usternode5 \
- -depl oynment mydepl oynment . xm

In rare cases, if the database is near capacity in terms of throughput, alive rejoin cannot keep up with the
ongoing changes made to the data. If this happens, V oltDB reportsthat the live rejoin cannot complete and
you must wait until database activity subsides or you can safely perform a blocking rejoin to reconnect
the server.

Itisimportant to remember that the cluster isnot fully K-safe until the restorationiscomplete. For example,
if the cluster was established with a K-safety value of two and one node failed, until that node rejoins and
is updated, the cluster is operating with a K-safety value of one. Once the node is up to date, the cluster
becomes fully operational and the original K-safety is restored.

11.3.2. Where and When Recovery May Fail

It is possible to rejoin any appropriately configured node to the cluster. It does not have to be the same
physical machine that failed. This way, if a node fails for hardware reasons, it is possible to replace it
in the cluster immediately with a new node, giving you time to diagnose and repair the faulty hardware
without endangering the database itself.

It isalso possible, when doing blocking rejoins, to rejoin multiple nodes simultaneously, if multiple nodes
fail. That is, assuming the cluster is till viable after the failures. Aslong as there is at least one active
copy of every partition, the cluster will continue to operate and be available for nodes to rejoin. Note that
with live rgjoin, only one node can rejoin at atime.

There are afew conditions in which the rejoin operation may fail. Those situationsinclude the following:
* Insufficient K-safety

If the database is running without K-safety, or more nodesfail simultaneously than the cluster is capable
of sustaining, the entire cluster will fail and must be restarted from scratch. (At aminimum, a VoltDB
database running with K-safety can withstand at least as many simultaneous failures as the K-safety
value. It may be able to withstand more node failures, depending upon the specific situation. But the K-
safety value tells you the minimum number of node failures that the cluster can withstand.)

» Mismatched deployment file

If the deployment file that you specify when issuing the rejoin command does not match the current
deployment configuration of the database, the cluster will refuse to let the node regjoin.

» More nodes attempt to rejoin than have failed

If one or more nodes fail, the cluster will accept rejoin reguests from as many nodes as failed. For
example, if onenodefails, thefirst node requesting to rejoin with the appropriate catal og and depl oyment
file will be accepted. Once the cluster is back to the correct number of nodes, any further requests to
rejoin will be rejected. (This is the same behavior as if you tried to add more nodes than specified in
the deployment file when initially starting the database.)

» Theregjoining node does not specify a valid username and/or password

70

Availability

When rejoining a cluster with security enabled, you must specify avalid username and password when
issuing the rejoin command. The username and password you specify must have sufficient privilegesto
execute system procedures. If not, the rejoin request will be rejected and an appropriate error message
displayed.

11.4. Avoiding Network Partitions

VoltDB achieves scalability by creating a tightly bound network of servers that distribute both data and
processing. When you configure and manage your own server hardware, you can ensure that the cluster
resides on asingle network switch, guaranteeing the best network connection between nodes and reducing
the possibility of network faults interfering with communication.

However, there are situations where this is not the case. For example, if you run VoltDB "in the cloud",
you may not control or even know what is the physical configuration of your cluster.

The danger is that a network fault — between switches, for example — can interrupt communication
between nodes in the cluster. The server nodes continue to run, and may even be able to communicate
with others nodes on their side of the fault, but cannot "see" the rest of the cluster. In fact, both halves of
the cluster think that the other half has failed. This condition is known as a network partition.

11.4.1. K-Safety and Network Partitions

When you run aVoltDB cluster without availability (in other words, no K-safety) the danger of a network
partition is simple: loss of the database. Any node failure makes the cluster incomplete and the database
will stop, Y ou will need to reestablish network communications, restart VoltDB, and restore the database
from the last snapshot.

However, if you are running acluster with K-safety, it is possible that when anetwork partition occurs, the
two separate segments of the cluster might have enough partitions each to continue running, each thinking
the other group of nodes has failed.

For example, if you have a 3 node cluster with 2 sites per node, and a K-safety value of 2, each nodeisa
separate, self-sustaining copy of the database, as shown in Figure 11.2, “Network Partition”. If a network
partition separates nodes A and B from node C, each segment has sufficient partitions remaining to sustain
the database. Nodes A and B think node C has failed; node C thinks that nodes A and B have failed.

Figure 11.2. Network Partition

Network Partition

Server
B

71

Availability

Theproblem isthat you never want two separate copies of the database continuing to operate and accepting
requests thinking they are the only viable copy. If the cluster is physically on a single network switch,
the threat of a network partition is reduced. But if the cluster is on multiple switches, the risk increases
significantly and must be accounted for.

11.4.2. Using Network Fault Protection

VoltDB provides a mechanism for guaranteeing that a network partition does not accidentally create two
separate copies of the database. The feature is called network fault protection.

Because the consequences of a partition are so severe, use of network partition detection is strongly rec-
ommended and VoltDB enables partition detection by default. In addition it is recommended that, wher-
ever possible, K-safe cluster by configured with an odd number of nodes.

However, it is possible to disable network fault protection in the deployment file, if you choose. You
enable and disabl e partition detection using the <partition-detection> tag. The <partition-detection> tag is
achild of <deployment> and peer of <cluster>. For example:

<depl oynent >
<cl uster hostcount="4"
si t esper host =" 2"
kfactor="1" />
<partition-detection enabl ed="true">
<snapshot prefix="netfault"/>
</partition-detection>
</ depl oynent >

If a partition is detected, the affected nodes automatically do a snapshot of the current database before
shutting down. Y ou can use the <snapshot> tag to specify the file prefix for the snapshot files. If you do
not explcitly enable partition detection, the default prefix is "partition_detection”.

Network partition snapshots are saved to the same directory as automated snapshots. By default, thisis
a subfolder of the VoltDB root directory as described in Section 6.1.2, “Configuring Paths for Runtime
Features’. However, you can select a specific path using the <paths> tag set. For example, the following
exampl e sets the path for snapshotsto/ opt / vol t db/ snapshot s/ .

<partition-detection enabl ed="true">

<snapshot prefix="netfaul tsave"/>
</partition-detection>
<pat hs>

<snapshots pat h="/opt/vol tdb/ snapshots/" />
</ pat hs>

When network fault protection is enabled, and a fault is detected (either due to a network fault or one or
more servers failing), any viable segment of the cluster will perform the following steps:

1. Determine what nodes are missing
2. Determineif the missing nodes are also a viable self-sustained cluster. If so...
3. Determine which segment is the larger segment (that is, contains more nodes).

« If the current segment is larger, continue to operate assuming the nodes in the smaller segment have
failed.

* If the other segment is larger, perform a snapshot of the current database content and shutdown to
avoid creating two separate copies of the database.

72

Availability

For example, in the case shown in Figure 11.2, “ Network Partition”, if anetwork partition separates nodes
A and B from C, the larger segment (nodes A and B) will continue to run and node C will write a snapshot
and shutdown (as shown in Figure 11.3, “Network Fault Protection in Action”).

Figure 11.3. Network Fault Protection in Action

Network Partition

If a network partition creates two viable segments of the same size (for example, if a four node cluster
is split into two two-node segments), a specia case is invoked where one segment is uniquely chosen
to continue, based on the internal numbering of the host nodes. Thereby ensuring that only one viable
segment of the partitioned database continues.

Network fault protection is avery valuable tool when running VoltDB clustersin adistributed or uncon-
trolled environment where network partitions may occur. The one downside isthat there is no way to dif-
ferentiate between network partitions and actual node failures. In the case where network fault protection
isturned on and no network partition occurs but alarge number of nodes actually fail, the remaining nodes
may believe they are the smaller segment. In this case, the remaining nodes will shut themselves down
to avoid partitioning.

For example, in the previous case shown in Figure 11.3, “Network Fault Protection in Action”, if rather
than a network partition, nodes A and B fail, node C is the only node still running. Although node C
is viable and could continue because the cluster was started with K-safety set to 2, if fault protection is
enabled node C will shut itself down to avoid a partition.

Intheworst case, if half the nodes of acluster fail, the remaining nodes may actually shut themselves down
under the special provisions for a network partition that splits a cluster into two equal parts. For example,
consider the situation where atwo node cluster with ak-safety value of one has network partition detection
enabled. If one of the nodes fails (half the cluster), thereis only a 50/50 chance the remaining node is the
"blessed" node chosen to continue under these conditions. If the remaining node is not the chosen node, it
will shut itself down to avoid a conflict, taking the database out of servicein the process.

Because this situation — a 50/50 split — could result in either a network partition or a viable cluster
shutting down, VoltDB recommends always using network partition detection and using clusters with an
odd number of nodes. By using network partitioning, you avoid the dangers of a partition. By using an
odd number of servers, you avoid even the possibility of a 50/50 split, whether caused by partitioning or
node failures.

73

Chapter 12. Database Replication

12.1.

There are times when it is useful to create a copy of a database. Not just a snapshot of a moment in time,
but alive, constantly updated copy.

K-safety maintains redundant copies of partitions within a single VoltDB database, which helps protect
the database cluster against individua node failure. Database replication also creates a copy. However,
database replication creates and maintains a separate and distinct copy of the entire database.

Database replication can be used for:

+ Offloading read-only workloads, such as reporting

* Maintaining a"hot standby" in case of failure

* Protecting against catastrophic events, often called disaster recovery

The next section, Section 12.1, “How Database Replication Works’, explains the principles behind data-
base replication in VoltDB. Section 12.2, “ Database Replication in Action” provides step-by-step instruc-
tions for establishing and managing database replication using the functions and features of VoltDB, in-
cluding:

» Starting Replication

* Stopping Replication

* What to Do in Case of a Disaster

» Monitoring and Managing Replication

How Database Replication Works

Database replication invol ves duplicating the contents of one database cluster (known asthe master) to an-
other database cluster (known asthe replica). The contents of the replica cluster are completely controlled
by the master, which iswhy this arrangement is sometimes referred to as a master/slave relationship.

Thereplicadatabase can bein therack next to the master, inthe next room, the next building, or another city
entirely. Thelocation depends upon your goalsfor replication. For example, if you are using replication for
disaster recovery, geographic separation of the master and replicais required. If you are using replication
for hot standby or offloading read-only queries, the physical location may not be important.

74

Database Replication

Figure 12.1. The Components of Database Replication

ass Master
R Agent
Replica

o am
IIIIIIIIIII’.I>==

The process of retrieving completed transactions from the master and applying them to the replica is
managed by a separate process called the Data Replication (DR) agent. The DR agent is critical to the
replication process. It performs the following tasks:

* Initiates the replication, telling the master database to start queuing completed transactions and estab-
lishing a special client connection to the replica

» POLLs and ACKs the completed transactions from the master database and recreates the transactions
onthereplica

» Monitors the replication process, detects possible errors in the replica or delays in synchronizing the
two clusters, and — when necessary — reports error conditions and cancels replication.

12.1.1. Starting Replication

Database Replication is easy to establish:

1. Any normal VoltDB database can be the master; you simply start the database as usua and the DR
agent tells the master when it should start queuing completed transactions.

2. Next, you create the replica database. Y ou do this by starting the database with the cr eat e action and
the --replica flag. This creates a read-only database that waits for the DR agent to contact it.

3. Findly, you start the DR agent, specifying the location of the master and replica databases.

Note that the DR agent can be located anywhere. However, the replication processis optimized for the DR
agent to be co-located with the replica database (as shown in Figure 12.1, “ The Components of Database
Replication™). Communication between the DR agent and the master database is kept to a minimum to
avoid bottlenecks; only write transactions are replicated and the messages between the master and the agent
are compressed. Whereas the DR agent sends transactions to the replica using standard client invocations.
Therefore, when distributing the database across awide-area network (WAN), locating the DR agent near
the replicais recommended.

12.1.2. Replication and Existing Databases

If data already existsin the master database when the DR agent starts replication, the master first createsa
snapshot of the current contents and passes the snapshot to the DR agent so the master and the replica can

75

Database Replication

start from the same point. The master then queues and transmits all subsequent transactions to the agent,
as shown in Figure 12.2, “Replicating an Existing Database”.

Figure 12.2. Replicating an Existing Database

og, b
- £ o K
g g 5§ 3
2} ﬂ? ;',Q <)) =
< & & < g
1) s nn: o
$.QQQQ0 I« « ap an it
Existing "
Database

12.1.3. Database Replication and Disaster Recovery

If unforeseen events occur that make the master database unreachabl e, database replication | etsyou replace
the master with the replicaand restore normal business operationswith aslittle downtime as possible. You
switch the replica from read-only to a fully functional database by promoting it to a master itself. To do
this, perform the following steps:

1. Make sure the master is actually unreachable, because you do not want two live copies of the same
database. If it is reachable but not functioning properly, be sure to shut it down.

2. Stop the DR agent, if it has not stopped already.
3. Promote the replicato a master using the voltadmin promote command.
4. Redirect the client applications to the new master database.

Figure 12.3, “Promoting the Replica’ illustrates how database replication reduces the risk of major disas-
ters by alowing the replicato replace the master if the master becomes unavailable.

Figure 12.3. Promoting the Replica

= R ul
Q

Clients

) 'Y —

@Promote

76

Database Replication

Once the master is offline and the replicais promoted to a master itself, the datais no longer being repli-
cated. As soon as normal busi ness operations have been re-established, it isagood ideato also re-establish
replication. This can be done using any of the following options:

« If the original master database hardware can be restarted, take a snapshot of the current database (that
is, the original replica), restore the snapshot on the original master and redirect client traffic back to the
original. Replication can then be restarted using the original configuration.

« An alternative, if the original database hardware can be restarted but you do not want to (or need to)
redirect the clients away from the current database, use the original master hardware to create a new
replica— essentially switching the roles of the master and replica databases.

« If the origina master hardware cannot be recovered effectively, create anew database cluster in athird
location to use as areplica of the current database.

12.1.4. Database Replication and Completeness

It is important to note that, unlike K-safety where multiple copies of each partition are updated simulta-
neously, database replication involves shipping completed transactions from the master database to the
replica. Because replication happens after the fact, thereis no guarantee that the contents of the master and
replica cluster are identical at any given point in time. Instead, the replica database 'catches up" with the
master after the transactions are received and processed by the DR agent.

If themaster cluster crashes, thereisno guaranteethat the DR agent hasmanaged to retrieveall transactions
that were queued on the master. Therefore, it is possible that some transactions that completed on the
master are not reproduced on the replica.

The decision whether to promote the replica or wait for the master to return (and hopefully recover all
transactions from the command log) is not an easy one. Promoting the replica and using it to replace the
original master may involve losing one or more transactions. However, if the master cannot be recovered
or cannot not be recovered quickly, waiting for the master to return can result in significant business loss
or interruption.

Y our own business requirements and the specific situation that caused the outage will determine which
choice to make. However, database replication makes the choice possible and significantly eases the dan-
gers of unforeseen events.

12.1.5. Database Replication and Read-only Clients

While database replication is occurring, the replica responds to write transactions (INSERT, UPDATE,
and DELETE) from the DR agent only. Other clients can connect to the replica and use it for read-only
transactions, including read-only ad hoc queries and system procedures. Any attempt to perform a write
transaction from a client other than the DR agent returns an error.

Therewill aways be some delay between atransaction compl eting on the master and being replayed onthe

replica. However, for read operations that do not require real-time accuracy (such asreporting), thereplica
can provide a useful source for offloading certain less-frequent, read-only transactions from the master.

77

Database Replication

Figure 12.4. Read-Only Accessto the Replica

Qo Q.
Q.
Clients (read-only) \

IIIIIIIIIII’.. EE

12.2. Database Replication in Action

The previous section explains the principles behind database replication. The following sections provide
step-by-step instructions for setting up and managing replication using VoltDB.

All of the following examples use the same fictional serversto describe the replication process. The server
used for the master cluster is called serverA; the server for thereplicais serverB.

12.2.1. Starting Replication

It is easy to establish database replication with VoltDB. Y ou can replicate any VoltDB database — there
are no special requirements or configuration needed for the master database. It is also possible to begin
replication of anew (empty) database or an existing database that already has content in it.

The steps to start replication are:
1. Start the master database.

You can either create a new database or use an existing database as the master. When starting the
database, you can use either of the standard startup arguments: create or recover. For example:

$ voltdb create catal og.jar \
-d depl oynent. xm \
-H serverA\
-1 license.xm

If any of the servers in the master database cluster have two or more network interface cards (and
therefore multiple network addresses), you must explicitly identify which interface the server uses for
both internal and external communication when you start VVoltDB. For example:

$ voltdb create catal og.jar \
-d depl oynent. xm \
-H serverA\
-1 license.xm \
--externalinterface=10.11.169. 10 \
--internalinterface=10.12.171. 14

78

Database Replication

If you do not specify which interface to use for multi-homed servers, replication will fail when the DR
agent attempts to connect to those servers of the master database.

. Createareplica database.

Y ou create areplicadatabase just asyou would any other VoltDB database, except instead of specifying
create as the startup action, you specify replica. For example:

$ voltdb create --replica catalog.jar \
-d depl oynent. xm \
-H serverB \
-1 license.xn

Note that the replica database must:
* Usethe same version of the VoltDB server software.
« Start with the same catal og as the master database.

» Havethe same configuration (that is, the same number of servers, sites per host, and K-safety value)
as the master database.

If these settings do not match, the DR agent will report an error and fail to start in the next step.

. Start the DR agent.

The DR agent is a separate process that can be run on any server that meets the hardware and software
requirementsfor VoltDB. It is possible to run the agent on the same node as one of the master or replica
cluster nodes. However, for best performance, it is recommended that the DR agent run on a separate,
dedicated server located near the replica database.

Tostart the DR agent, usethedr agent command specifying the | P address or hostname of anodefrom
the master database and a node from the replica database as arguments to the command. For example:

$ dragent naster serverA replica serverB

If the master or replica use ports other than the default, you can specify which port the DR agent should
use as part of the server name. For example, the following command tells the agent to connect to the
master starting at port 6666 and the replica on port 23232

$ dragent master serverA 6666 replica serverB: 23232

If you are using the Enterprise Manager to manage your databases, you can start the master database (Step
1) asyou would normally, using the create, restore, or recover action. Thereisalso ar eplica option on the
Start Database dialog for creating a replica database (Step 2). The DR agent must be started by hand.

When the DR agent starts, it performs the following actions:

Contacts both the master and replica databases.

Verifies that the application catalogs match for the two databases.

Verifies that the two clusters have the same number of unique partitions.

Requestsasnapshot from the master database. If data exists, the agent replaysthe snapshot on thereplica.

Beginsto POLL and ACK the master database for completed transactions to be replayed on the replica.

79

Database Replication

12.2.2. Stopping Replication

If, for any reason, you wish to stop replication of adatabase, al you need to dois stop the DR agent process
or the replica database. If either the agent or the replica database is not capable of processing the stream
of transactions, the master will continue to queue completed transactions until the queue isfull. At which
point the master will abandon replication, delete the queue, and resume normal operation.

In other words, except for logging error messages explaining that replication has stopped, thereis no out-
ward change to the master cluster and no interruption of client activity. If you wish to shutdown replication
in amore orderly fashion, you can:

1. Pausethe master cluster, using the voltadmin pause command, to put the database in admin mode and
stop client activity.

2. Onceall transactions have passed through the DR agent to the replica (see Section 12.2.4.1, “Monitoring
the Replication Process’), stop the DR agent process.

3. Stop the replica database, using voltadmin shutdown to perform an orderly shutdown.

4. Resume normal client operations on the master database, using voltadmin resume.

12.2.3. Promoting the Replica When the Master Becomes
Unavailable

If the master database becomes unreachable for whatever reason (such as catastrophic system or network
failure) and you choose to “turn on” the replica as a live database in its place, you use the voltadmin
promote command to promote the replicato afully active (writable) database. Specificaly:

1. Stop the DR agent process. If not, the agent will report an error and stop after the following step.
2. Issue the voltadmin promote command on the replica database.

When you invoke voltadmin promote, the replica exits read-only mode and becomes a fully operational
VoltDB database. For example, the following Linux shell command usesvoltadmin to promotethereplica
node serverB:

$ voltadm n pronote --host=serverB

12.2.4. Managing Database Replication

Database replication runs silently in the background, providing security against unexpected disruptions.
Ideally, the replicawill never be needed. But it isthere just in case and the replication processis designed
to withstand normal operational glitches. However, there are some conditions that can interrupt replication
and it is important to be able to recognize and be able to respond to those situations, in order to ensure
ongoing protection.

Both the master database and the DR agent maintain queues to handle fluctuations in the transmission of
transactions. Network hiccups or asudden increase of load on the master database can cause delays. Nodes
on the master cluster may fail and regjoin (assuming K-safety). The queues help the replication process
survive such interruptions.

In the case of the master database, replication initially queues datain memory. If the pending data exceeds
the allocated queue size, data then overflows to disk in the directory vol t dbr oot / dr _over f | ow.

80

Database Replication

If the problem persists for too long, it is possible for the queuesto fill up, resulting in either the master or
the DR agent (or both) canceling replication. When this happens, it is necessary to restart the replication
process. The following sections explain how to monitor the replication process and how to respond to
error conditions.

12.2.4.1. Monitoring the Replication Process

There are two ways to monitor the replication process:

» The DR agent provides a stream of informational messages concerning its status as part of its logs
(displayed on the console by default).

* You can query the master database about its current replication queue using the @Statistics system
procedure and the "DR" component type.

The DR agent logs information about the ongoing transmissions with the master and the replica. It also
reports any issues communicating with the master and continuesto retry until communication is re-estab-
lished. If the agent encounters a problem it cannot recover from, it logs the error and the process stops. In
this situation, you must restart replication from the beginning. (See Section 12.2.4.2, “Restarting Replica-
tion if an Error Occurs’ for details.)

If you do not want the log messages displayed on the console, you can redirect them by providing an
alternate Log4J configuration file. Y ou specify the alternate configuration file with the environment vari-
able LOG4J_CONFIG_PATH. For example, the following commands start the DR agent and specify an
alternate log configuration file mylogconfig.xml in the current working directory:

$ export LOAJ_CONFI G_PATH="nyl ogconfig. xm "
$ dragent naster serverA replica serverB

In addition to the DR agent logs, you can query the master database to determine the current state of its
replication queues using the @Statistics system procedure. The "DR" keyword returns information about
the amount of replication data currently in memory (waiting to be sent to the agent). One VoltTable reports
the amount of memory used for queuing transactions and another reports on the current status of any
snapshots (if any) waiting to be sent.

12.2.4.2. Restarting Replication if an Error Occurs

If an error does occur that causes replication to fail, you must restart replication from the beginning. In
other words:

1. Stop the DR agent process, if it is not already stopped.
2. Shutdown and restart the replica database.

3. If the master database is not running, restart it.

4. Restart the DR agent.

Notethat, if the master is still running, it does not need to be stopped and restarted. However, both the DR
agent and the replica database must be restarted if any condition causes replication to fail. Situations that
will require restarting replication include the following:

* If the replica database stops.
* If the master database stops.

* |If the DR agent stops.

81

Database Replication

« If a snapshot is restored to the master database. (Consequently, if restoring or recovering data when
restarting the master database, be sure the restore compl etes on the master before beginning replication.)

« If communication between the master and the DR agent is delayed to the point where the master cluster's
replication queues overflow.

« If any transaction replayed on the replica fails. Note that only successfully completed transactions are
sent to the replica. So if atransaction fails, the replicais no longer in sync with the master.

« If any transaction replayed on the replica returns a different result than received on the master. The
results are hashed and compared. Just as all replicated transactions must succeed, they must produce the
same results or the two databases are out of sync.

12.3. Using the Sample Applications to Demon-
strate Replication

One way to familiarize yourself with replication is to try it with an existing application. VoltDB comes
with several sample applications. Y ou can use any of the samples to test or demonstrate replication.

Thefollowing sections show how to create areplicated database, using the voter application asan example.
The first section explains how to use the Enterprise Manager for the demonstration and the second uses
the VoltDB shell commands. Both examples assume you have three servers:

* ServerA asthe master
» ServerB asthereplica
» ServerC asthe agent

It is also possible to perform this demonstration on two nodes by using ServerB for both the replica and
the DR agent.

12.3.1. Replicating the Voter Sample Using the Enter-
prise Manager

First, using the command line, run the voter sample once to create the application catalog. Then, using
the Enterprise Manager:

1. Create two new databases, VVoter Master and Voter Replica, using the voter application catalog for both
of them.

2. Add ServerA to the Voter Master database.

3. Add ServerB to the Voter Replica database.

4. Start both databases, using the cr eate action for Voter Master and create and r eplica for VVoter Replica.
From the command line on ServerC, start the DR agent using the following command:

$ dragent master serverA replica serverB

Finally, from the command line on ServerA, run the sample client application:

$ cd exanpl es/ vot er

82

Database Replication

$./run.sh client

Y ou should see the client inserts on the master database replicated on the replica. Note that you can also
start the client application before the DR agent, to show that replication can be started on an existing,
active database.

12.3.2. Replicating the Voter Sample Using the Com-
mand Line

In the current release, the scripts for running the sample applications do not add the necessary command
line arguments for starting a master or replica database by default. However, you can use the voltdb
convenience command to solve this problem:

1. On both ServerA and ServerB, run the voter sample once to build the application catal og:

$ cd exanpl es/ vot er
$./run.sh catal og

2. On ServerA, use the voltdb command to start the master database:

$ voltdb create voter.jar \
-d depl oynment.xm -H | ocal host \
-1 ../../voltdb/license.xm

3. On ServerB, use the voltdb command to start the replica database:

$ voltdb create --replica voter.jar \
-d depl oynent.xm -H | ocal host \
-1 ../../voltdb/license.xm

4. On ServerC, use the dragent command to start the DR agent:
$ dragent master serverA replica serverB
5. On ServerB, start the voter client application:
$./run.sh client

Note that you can also start the client application (step #5) before the DR agent (step #4), to show that
replication can be started on an existing, active database.

83

Chapter 13. Exporting Live Data

13.1

VolItDB is an in-memory, transaction processing database. It excels at managing large volumes of trans-
actionsin real-time.

However, transaction processing is often only one aspect of the larger business context and data needs to
transition from system to system as part of the overall solution. The process of moving from one database
to another as data moves through the system is often referred to as Extract, Transform, and Load (ETL).
VoltDB supports ETL through the ability to selectively export data as it is committed to the database.

Exporting differsfrom save and restore (asdescribed in Chapter 9, Saving & Restoring a VoltDB Database)
in severa ways:

» You only export selected data (as required by the business process)
» Export is an ongoing process rather than a one-time event

» The outcome of exporting datais that information is used by other business processes, not as a backup
copy for restoring the database

Thetarget for exporting datafrom VoltDB may be another database, arepository (such as a sequential log
file), or a process (such as a system monitor or accounting system). No matter what the target, VoltDB
helps automate the process for you. This chapter explains how to plan for and implement the exporting
of live datausing VoltDB.

Understanding Export

VoltDB lets you automate the export process by specifying certain tables in the schema as sources for
export. At runtime, any data written to the specified tables is sent to the export connector, which queues
the data for export. Then an export client fetches the queued export data and sends it to the selected out-
put target. Which export client runs depends on the target you choose when configuring export in the
deployment file. Currently, VoltDB provides clients for exporting to files, for exporting to other business
processes via a distributed message queue, and for exporting to other databases via JDBC. The connector
and client processes are managed by the database servers themselves, helping to distribute the work and
ensure maximum throughput.

Figure 13.1, “Overview of Export Process’ illustrates the basic export procedure, where Tables B and D
are specified as export tables.

Exporting Live Data

Figure 13.1. Overview of Export Process
|

Table
A | | Table

| | connector <:| export
Ta{k:)Ie :;=‘-= |—:> client

Table| i .
[D
Table
E

Note that you do not need to modify the schema or the client application to turn exporting of live data on
and off. The application's stored proceduresinsert datainto the export-only tables; but it isthe deployment
file that determines whether export actually occurs at runtime.

When astored procedure usesan SQL INSERT statement to write datainto an export-only table, rather than
storing that data in the database, it is handed off to the connector when the stored procedure successfully
commits the transaction. Export-only tables have several important characteristics:

» Export-only tableslet you limit the export to only the datathat is required. For example, in the preceding
example, Table B may contain a subset of columns from Table A. Whenever anew record is written to
Table A, the corresponding columns can be written to Table B for export to the remote database.

» Export-only tables|et you combine fields from several existing tablesinto a single exported table. This
technique is particularly useful if your VoltDB database and the target of the export have different
schemas. The export-only table can act as a transformation of VoltDB data to a representation of the
target schema.

» Export-only tableslet you control when datais exported. Again, in the previous example, Table D might
be an export-only table that is an exact replicaof Table C. However, therecordsin Table C are updated
frequently. The client application can choose to copy records from Table C to Table D only when all
of the updates are completed and the data is finalized, significantly reducing the amount of data that
must pass through the connector.

Of course, there are restrictions to export-only tables. Since they have no storage associated with them,
they arefor INSERT only. Any attempt to SELECT, UPDATE, or DELETE export-only tableswill result
in an error when the project is compiled.

13.2. Planning your Export Strategy

The important point when planning to export data, is deciding:
» What datato export

» When to export the data

MThereis no guarantee on the latency of export between the connector and the export client. The export function is transactionally correct; no
export occurs if the stored procedure rolls back and the export data is in the appropriate transaction order. But the flow of export data from the
connector to the client is not synchronous with the completion of the transaction. There may be several seconds delay before the export data is
available to the client.

85

Exporting Live Data

It is possible to export al of the datain a VoltDB database. Y ou would do this by creating export-only
replicas of all tablesin the schemaand writing to the export-only table whenever you insert into the normal
table. However, this means the same number of transactions and volume of data that is being processed
by VoltDB will be exported through the connector. There is a strong likelihood, given a high transaction
volume, that the target database will not be able to keep up with theload VoltDB is handling. As a conse-
guence you will usually want to be more sel ective about what data is exported when.

If you have an existing target database, the question of what datato export islikely decided for you (that is,
you need to export the data matching the target's schema). If you are defining both your VoltDB database
and your target at the same time, you will need to think about what information is needed "downstream”
and create the appropriate export-only tables within VVoltDB.

The second consideration is when to export the data. For tables that are not updated frequently, inserting
the datato acomplementary export-only table whenever dataisinserted into thereal tableisthe easiest and
most practical approach. For tables that are updated frequently (hundreds or thousands of times a second)
you should consider writing a copy of the data to an export-only table at an appropriate milestone.

Using the flight reservation system as an example, one aspect of the workflow not addressed by the ap-
plication described in Chapter 3, Designing Your VoltDB Application is the need to archive information
about the flights after takeoff. Changes to reservations (additions and cancellations) are important in real
time. However, once the flight takes off, all that needs to be recorded (for billing purposes, say) is what
reservations were active at the time.

In other words, the archiving database needs information about the customers, the flights, and the final
reservations. According to theworkload in Table 3.1, “ Example Application Workload”, the customer and
flight tables change infrequently. So data can be inserted into the export-only tables at the sametime asthe
"live" flight and reservation tables. (It isagood ideato give the export-only copy of the table ameaningful
name so its purpose is clear. In this example we identify the export-only tables with the export_ prefix or,
in the case of the reservation table which is not an exact copy, the _final suffix.)

The reservation table, on the other hand, is updated frequently. So rather than export all changes to a
reservation to the export-only reservation table in real-time, a separate stored procedure isinvoked when
aflight takes off. This procedure copies the final reservation data to the export-only table and deletes the
associated flight and reservation records from the VVoltDB database. Figure 13.2, “ Flight Schemawith Ex-
port Table” shows the modified database schema with the added export-only tables, EXPORT_FLIGHT,
EXPORT_CUSTOMER, and RESERVATION_FINAL.

Figure 13.2. Flight Schema with Export Table

flight reservation customer
Flight ID Customer ID
Flight ID
export reservation export
_flight _final _customer

This design adds a transaction to the VoltDB application, which is executed approximately once a second
(when aflight takes off). However, it reduces the number of reservation transactions being exported from

86

Exporting Live Data

13.3

13.4

1200 a second to less than 200 a second. These are the sorts of trade offs you need to consider when adding
export functionality to your application.

Identifying Export Tables in the Schema

Once you decide what data to export and define the appropriate tables in the schema, you are ready to
identify them as export-only tables. As mentioned before, export-only tables are defined in the database
schemajust like any other table. So in the case of the flight application, we need to add the export tablesto
our schema. Thefollowing exampleillustrates (in bold) the addition of an export-only tablefor reservations
with a subset of columns from the normal reservation table.

CREATE TABLE Reservation (
Reservel D | NTEGER UNI QUE NOT NULL,
Fl i ght I D I NTEGER NOT NULL,
Custoner | D | NTEGER NOT NULL,
Seat VARCHAR(5) DEFAULT NULL,
Confirmed TINYINT DEFAULT '0',
PRI MARY KEY(Reservel D)

)

CREATE TABLE Reservation_final (
Reservel D | NTEGER UNI QUE NOT NULL,
Fl i ght | D I NTEGER NOT NULL,
Custoner | D | NTEGER NOT NULL,
Seat VARCHAR(5) DEFAULT NULL

)

Again, itisagood ideato distinguish export-only tables by their table name, so anyone reading the schema
understands their purpose. Once you add the necessary tables to the schema, you then need to define them
as export-only tables. Y ou do this by adding an EXPORT TABLE statement for each table to the schema
tags. For example:

EXPORT TABLE export _cust omer;
EXPORT TABLE export _flight;
EXPORT TABLE reservation_final;

If atableis not listed in an EXPORT TABLE statement, it is not exported. In the preceding example,
the export_customer, export_flight, and reservation_final tables are identified as the tables that will be
included in the export. In addition, since they are export-only tables, inserting data into these tables will
have no effect if export is disabled in the deployment file.

Y ou can also specify whether the export-only tables are partitioned or not using the PARTITION TABLE
statement in the schema. For example, if an export table is a copy of a normal data table, it can be parti-
tioned on the same column. However, partitioning is not necessary for export-only tables. Whether they
are partitioned or "replicated”, since no storage is associated with the export table, you can INSERT in-
to the table in either a single-partitioned or multi-partitioned stored procedure. In either case, the export
connector ensures that at least one copy of the tuple iswritten to the export stream.

Configuring Export in the Deployment File

To enable export at runtime, you include the <expor t > tag in the deployment file, specifying which
export client to usein with thet ar get attribute. For example:

87

Exporting Live Data

13.5

<export enabled="true" target="file">
<confi guration>

</ configuration>
</ export >

Y ou must also configurethe export client by specifying propertiesasone or more<pr oper t y> tagswith-
inthe <conf i gur at i on> tag. For example, the following XML code enables export to comma-sepa-
rated (CSV) text files using the file prefix "MyExport".

<export enabled="true" target="file">
<confi guration>
<property nane="type">csv</property>
<property nane="nonce">MyExport </ property>
</ configuration>
</ export >

The properties that are allowed and/or required depend on the export client you select. VoltDB comes
with three export clients:

» Export tofile
» Export to JDBC
» Export to Kafka

Asthe name implies, the export-to-file client writes the exported data to local files, either as comma-sep-
arated or tab-delimited files. Similarly, the export-to-JDBC client writes data to a variety of possible des-
tination databases through the JDBC protocol. The export-to-K afka client writes export data to an Apache
Kafka distributed message queue, where one or more other processes can read the data. In all three cases
you configure the specific features of the client using the <pr oper t y> tag as described in the following
sections.

The Export-to-File Client

The export-to-file client fetches the serialized data from the export connector and writesit out astext files
(either comma or tab separated) to disk. The export-to-file client writes the data out one file per database
table, "rolling" over to new files periodically. The filenames of the exported data are constructed from:

A unique prefix (specified with the nonce property)

A unique value identifying the current version of the database catalog
* Thetable name

A timestamp identifying when the file was started

While the file is being written, the file name also contains the prefix "active-". Once the file is complete
and a new file started, the "active-" prefix is removed. Therefore, any export files without the prefix are
complete and can be copied, moved, deleted, or post-processed as desired.

There are two properties that must be set when using the export-to-file client:
e Thet ype property lets you choose between comma-separated files (csv) or tab-delimited files (tsv).

e The nonce property specifies a unique prefix to identify all files that the client writes out for this
database instance.

88

Exporting Live Data

Table 13.1, “File Export Client Properties’ describes the supported properties for the export-to-file client.

Table 13.1. File Export Client Properties

Property Allowable Values |Description

type csv, tsv Specifieswhether to create commarseparated (CSV) or tab-de-
limited (TSV) files,

nonce string A unique prefix for the output files.

outdir directory path The directory where the files are created. If you do not specify

an output path, the client writes the output files to the current
default directory.

period Integer The frequency, in minutes, for "rolling” the output file. The
default frequency is 60 minutes.

binaryencoding hex, base64 Specifies whether VARBINARY datais encoded in hexadec-
imal or BASE64 format. The default is hexadecimal.

dateformat format string The format of the date used when constructing the output file

names. Y ou specify the date format as a Java SimpleDateFor-
mat string. The default format is"yyyyMMddHHmMmss".

timezone string The time zone to use when formatting the timestamp. Speci-
fy the time zone as a Java timezone identifier. The default is
GMT.

delimiters string Specifies the delimiter characters for CSV output. The text

string specifies four characters: the field delimiter, the enclos-
ing character, the escape character, and the record delimiter.
To use specia or non-printing characters (including the space
character) encode the character asan HTML entity. For exam-
ple"&It;" for the "less than" symbol.

batched true, false Specifies whether to store the output files in subfolders that
are"rolled" according to the frequency specified by the period
property. The subfolders are named according to the nonce and
thetimestamp, with "active-" prefixed to the subfol der current-
ly being written.

skipinternals true, false Specifies whether to include six columns of VoltDB metadata
(such as transaction ID and timestamp) in the output. If you
specify skipinternals as "true", the output files contain only the
exported table data.

with-schema true, false Specifies whether to write a JSON representation of each
table's schema as part of the export. The JISON schema files
can be used to ensure the appropriate datatype and precision is
maintained if and when the output files are imported into an-
other system.

"Required

Whatever properties you choose, the order and representation of the content within the output filesis the
same. The export client writesaseparate line of datafor every INSERT it receives, including thefollowing
information:

 Six columns of metadata generated by the export connector. Thisinformation includes atransaction ID,
a timestamp, a sequence number, the site and partition IDs, as well as an integer indicating the query

type.

89

Exporting Live Data

13.6.

e The remaining columns are the columns of the database table, in the same order as they are listed in
the database definition (DDL) file.

The Export-to-JDBC Client

The export-to-JDBC client fetches the serialized data from the export connector and writes it, in batches,
to another database through the standard JDBC (Java Database Connectivity) protocol.

When the Export-to-JDBC client opens the connection to the remote database, it first attempts to create
tables in the remote database to match the VoltDB export-only tables by executing CREATE TABLE
statements through JDBC. Thisisimportant to note because, it ensures there are suitable tablesto receive
the exported data. The tables are created using either the table names from the VoltDB schema or (if you
do not enable the ignoregenerations property) the table name prefixed by the database generation ID.

If the target database has existing tables that match the VoltDB export-only tables in both name and struc-
ture (that is, the number, order, and datatype of the columns), be sure the enable to ignoregenerations
property in the export configuration to ensure that VoltDB uses those tables as the export target.

It is also important to note that the export-to-JDBC client exports data through JDBC in batches. That is,
multiple INSERT instructions are passed to the target database at atime, in approximately two megabyte
batches. There are two consequences of the batching of export data:

» For many databases, such as Netezza, where thereisa cost for individual invocations, batching reduces
the performance impact on the receiving database and avoids unnecessary latency in the export pro-
cessing.

» Ontheother hand, no matter what the target database, if aquery failsfor any reason the entire batch fails.

To avoid errors causing batch inserts to fail, it is strongly recommended that the target database not use
unique indexes on the receiving tables that might cause constraint violations.

If any errors do occur when the Export-to-JDBC attemptsto submit data to the remote database, the export
client disconnects and then retries the connection. This process is repeated until the connection succeeds.
If the connection does not succeed, the export client eventually reduces the retry rate to approximately
every eight seconds.

Table 13.2, “JDBC Export Client Properties’ describes the supported properties for the export-to-jdbc
client.

Table 13.2. JDBC Export Client Properties

Property Allowable Values |Description

jdbcurl* connection string | The JDBC connection string, also known as the URL.
jobcuser” string The username for accessing the target database.
jdbcpassword string The password for accessing the target database.

jdbcdriver string The class name of the JDBC driver. The JDBC driver class

must be accessible to the VoltDB process for the JDBC export
process to work. Place the driver JAR filesin thelib/extension
directory where VoltDB is installed to ensure they are acces-
sible at runtime.

You do not need to specify the driver as a property value for
severa popular databases, including MySQL, Netezza, Oracle,
PostgreSQL , and Vertica. However, you still must provide the

driver JAR file.

90

Exporting Live Data

13.7.

Property Allowable Values |Description

schema string The schema name for the target database. The use of the
schema name is database specific. In some cases you must
specify the database name as the schema. In other cases, the
schema name is not needed and the connection string contains
all the information necessary. See the documentation for the
JDBC driver you are using for more information.

minpoolsize integer The minimum number of connections in the pool of connec-
tionsto the target database. The default value is 10.

maxpoolsize integer The maximum number of connectionsin the pool. The default
valueis 100.

maxidletime integer The number of milliseconds a connection can be idle before
it is removed from the pool. The default value is 60000 (one
minute).

maxstatement- integer The maximum number of statements cached by the connection

cached pool. The default value is 50.

ignoregenerations |true, false Specifies whether a unique ID for the generation of the data-

base is included as part of the output table name(s). The gen-
eration |D changes each time a database restarts or the catalog
isupdated. The default isfalse.

skipinternals true, false Specifies whether to include six columns of VoltDB metadata
(such as transaction ID and timestamp) in the output. If you
specify skipinternals as true, the output contains only the ex-
ported table data. The default isfalse.

"Required

The Export-to-Kafka Client

The export-to-Kafka client fetches serialized data from the export connector and writes it to a message
gueue using the Apache Kafka protocols. Apache Kafka is a distributed messaging service that lets you
set up message queues which are written to and read from "producers' and "consumers", respectively. In
the Apache Kafka model, VoltDB export acts as a"producer".

Before using the export-to-Kafka client, we strongly recommend reading the Kafka documentation and
becoming familiar with the software, since you will need to set up a Kafka service and appropriate "con-
sumer” clientsto make use of VoltDB's Kafka export functionality. Theinstructionsin this section assume
aworking knowledge of Kafka and the Kafka operational model.

When the Export-to-K afka client receives datafrom the connector, it establishes a connection to the Kafka
messaging service as a Kafka producer. It then writes records to the service using the VVoltDB table name
and a predetermined prefix as the Kafka "topic". How and when the data is transmitted to Kafka and the
name of the topic prefix are controlled by the export client properties.

The majority of the export-to-Kafka properties are identical in both in name and content to the Kafka
producer properties listed in the Kafka documentation. In fact, all but one of these properties are optional
for the export-to-Kafka client and will use the standard Kafka default value. For example, if you do not
specify the queue. buf f eri ng. max. ns property it defaults to 5000 milliseconds.

Theonly required property ismet adat a. br oker . | i st , whichliststhe Kafkaserversthat theVoltDB
export client should connect to. Y ou must specify this property so VoltDB knows where to send the export
data.

91

http://kafka.apache.org/
http://kafka.apache.org/documentation.html

Exporting Live Data

In addition to the standard K afka producer properties, there are two custom properties specific to VoltDB.
Thefirst of the custom propertiesist opi c. pr ef i x which specifiesthetext that precedesthetable name
when constructing the Kafka topic. If you do not specify a prefix, it defaults to "voltdbexport”. Note that
unlessyou configure the Kafkabrokerswiththeaut o. cr eat e. t opi ¢s. enabl e property set to true,
you must create the topics for every export table manually before starting the export process. Enabling
auto-creation of topics when setting up the kakfka brokers is recommended.

The second custom property isbat ch. node, which specifies whether messages are sent in batches, like
the export-to-JDBC client, or one message at a time. When configuring the export client, it is important
to understand the rel ationship between batch mode and synchronous versus asynchronous processing and
their effect on database latency.

Using batch mode reducesthe number of packetsthat must be sent to the Kafkaservers, optimizing network
bandwidth. If theexport datais sent asynchronously, by setting the property pr oducer . t ype to"async",
the impact of export on the database is further reduced, since the export client does not wait for the Kafka
server to respond. However, with asynchronous processing, VoltDB is not able to resend the data if the
message fails after it is sent.

If export to Kafka is done synchronously, the export client waits for acknowledgement of each message
sent to the Kafka server before processing the next packet. This allows the export client to resend any
packetsthat fail. The drawback to synchronous processing isthat on aheavily loaded database, the latency
it introduces means export may not be able to keep up with the influx of export data and and have to write
to overflow.

VoltDB guaranteesthat at least one copy of all export datais sent by the export client. But when operating
in asynchronous mode, the export-to-Kafka client cannot guarantee that the packet is actually received
and accepted by the Kafka broker. By operating in synchronous mode, VoltDB can catch errors returned
by the Kafka broker and resend any failed packets. However, you pay the penalty of additional latency
and possible export overflow.

To balance performance with durability of the exported data, the following are the two recommended
configurations for producer type and batch mode:

» Synchronous with batch mode — Using synchronous mode ensures all packets are received by the
Kafkasystem while batch mode reducesthe possiblelatency impact by decreasing the number of packets
that get sent.

<property name="producer.type">sync</property>
<property nanr ="batch. node" >t rue</ property>

« Asynchronous without batch mode — Using asynchronous mode eliminates latency due to waiting
for responses from the Kafka infrastructure while not using batch mode ensures that if a request fails,
only onerow of export datais affected, reducing the durability impact.

<property name="producer.type">async</property>
<property nanr="bat ch. node" >f al se</ property>

Finally, the actual export datais sent to Kafka as a comma-separated values (CSV) formatted string. The
message includes six columns of metadata (such as the transaction ID and timestamp) followed by the
column values of the export table.

Table 13.3, “Kafka Export Client Properties’ lists the supported properties for the export-to-K afka client,
including the standard Kafka producer properties and the VoltDB unique properties.

92

Exporting Live Data

13.8.

Table 13.3. Kafka Export Client Properties

Property Allowable Values |Description

metadata.broker.list] string A comma-separated list of Kafka brokers.

batch.mode true, false Whether to submit multiple rows as a single request or send
each export row separately. The default istrue.

topic.prefix string The prefix to use when constructing the topic name. Each row

is sent to atopic identified by { prefix}{ table-name}. The de-
fault prefix is "voltdbexport".

metadata.broker.list
request.required.ack
request.timeout.ms
producer.type
serializer.class
key.serializer.class
partitioner.class
compression.codec
compressed.topics
message.send.max.r
retry.backoff.ms
topic.metadata.refres
gueue.buffering.max
gueue.buffering.max
gueue.engqueue.timey
batch.num.messages
send.buffer.bytes

various
S

etries

sh.interval.ms
.ms
.messages
but.ms

client.id

Standard Kafka producer properties can be specified as prop-
ertiesto the VoltDB export-to-Kafka client.

"Required

How Export Works

Two important aspects of export to keep in mind are:

» Export is automatic. When you enable export in the deployment file, the database servers take care of
starting and stopping the connector and client processes on each server when it startsand stops, including
if nodesfail and rejoin the cluster.

» Export is asynchronous. The actual delivery of the data to the export target is asynchronous to the
transactions that initiate data transfer.

The advantage of an asynchronous approach isthat any delaysin delivering the exported data to the target
system do not interfere with the VoltDB database performance. The disadvantage is that VoltDB must
handle queueing export data pending its actual transmission to the target, including ensuring durability in
case of system failures. Again, this task is handled automatically by the VoltDB server process. But it is
useful to understand how the export queuing works and its consequences.

13.8.1. Export Overflow

For the export process to work, it is important that the connector and client keep up with the queue of
exported information. If too much data gets queued to the connector by the export function without being
delivered by the client, the VoltDB server process consumes increasingly large amounts of memory.

93

Exporting Live Data

If the export client does not keep up with the connector and the data queue fills up, VoltDB starts writing
overflow datain the export buffer to disk. This protects your database in several ways:

« If the destination is intermittently unreachable or cannot keep up with the data flow, writing to disk
helps VoltDB avoid consuming too much memory while waiting for the destination to catch up.

« If the database is stopped, the export datais retained across sessions. When the database restarts and the
client reconnects, the connector will retrieve the overflow data and reinsert it in the export queue.

Y ou can specify where VoltDB writes the overflow export data using the <exportoverflow> element in
the deployment file. For example:

<pat hs>
<vol tdbroot path="/opt/voltdb/" />
<exportoverflow path="/tnmp/ export/"/>
</ pat hs>

If you do not specify a path for export overflow, VoltDB creates a subfolder in the root directory (in the
preceding example, / opt / vol t db). See Section 6.1.2, “Configuring Paths for Runtime Features’ for
more information about configuring paths in the deployment file.

13.8.2. Persistence Across Database Sessions

It isimportant to note that VoltDB only uses the disk storage for overflow data. However, you can force
VolItDB to write all queued export data to disk by either calling the @Quiesce system procedure or by
requesting a blocking snapshot. (That is, calling @SnapshotSave with the blocking flag set.) This means
it is possible to perform an orderly shutdown of a VoltDB database and ensure al data (including export
data) is saved with the following procedure:

1. Put the database into admin mode with the voltadmin pause command.

2. Perform ablocking snapshot with voltadmin save, saving both the database and any existing queued
export data.

3. Shutdown the database with voltadmin shutdown.

You can then restore the database — and any pending export queue data — by starting the database in
admin mode, restoring the snapshot, and then exiting admin mode.

94

Chapter 14. Logging and Analyzing
Activity in a VoltDB Database

14.1.

14.2.

VoltDB uses Log4J, an open source logging service available from the Apache Software Foundation, to
provide access to information about database events. By default, when using the VVoltDB shell commands,
the console display islimited to warnings, errors, and messages concerning the status of the current process.
A more complete listing of messages (of severity INFO and above) iswritten to log filesin the subfolder
/'l og, relative to the user's current default location.

The advantages of using Log4J are:
* Logging is compiled into the code and can be enabled and configured at run-time.
» LogdJ provides flexibility in configuring what events are logged, where, and the format of the output.

» By using Log4Jin your client applications, you can integrate the logging and analysis of both the data-
base and the application into a single consistent output stream.

» By using an open source logging service with standardized output, there are a number of different ap-
plications, such as Chainsaw, available for filtering and presenting the results.

Logging isimportant because it can help you understand the performance characteristics of your applica
tion, check for abnormal events, and ensure that the application is working as expected.

Of course, any additional processing and 1/0 will have an incremental impact on the overall database
performance. To counteract any negative impact, Log4J gives you the ability to customize the logging to
support only those events and serversyou are interested in. In addition, when logging is not enabled, there
is no impact to VoltDB performance. With VoltDB, you can even change the logging profile on the fly
without having to shutdown or restart the database.

The following sections describe how to enable and customize logging of VoltDB using Log4J. This chap-
ter isnot intended as a tutorial or complete documentation of the Log4J logging service. For genera in-
formation about Log4J, see the Log4J web site at http://wiki.apache.org/logging-log4j/.

Introduction to Logging

Logging is the process of writing information about application events to a log file, console, or other
destination. Log4J uses XML files to define the configuration of logging, including three key attributes:

» Where events are logged. The destinations are referred to as appenders in Log4J (because events are
appended to the destinations in sequential order).

» What events are logged. VoltDB defines named classes of events (referred to as loggers) that can be
enabled as well as the severity of the events to report.

» How the logging messages are formatted (known as the layout),

Creating the Logging Configuration File

Thefollowing is an example of a Log4J configuration file:

<?xm version="1.0" encodi ng="UTF-8" 7>
<I DOCTYPE | og4j : confi gurati on SYSTEM "Il og4j.dtd">

95

http://wiki.apache.org/logging-log4j/

Logging and Analyzing Ac-
tivity inaVoltDB Database

<l og4j: configuration xmns:|og4j="http://]jakarta.apache.org/l og4j/">

<appender nane="Async" cl ass="org.apache. | og4j. AsyncAppender">
<par am nane="Bl ocki ng" val ue="true" />
<appender-ref ref="Console" />
<appender-ref ref="File" />

</ appender >

<appender nane="Consol e" cl ass="org. apache. | og4j. Consol eAppender ">
<par am nane="Target" val ue="System out" />
<l ayout cl ass="org. apache. | og4j.TTCCLayout" />

</ appender >

<appender nane="File" class="org. apache. | og4j. Fi | eAppender" >
<param nane="Fi | e" val ue="/tnp/voltdb.log" />
<par am nane=" Append" val ue="true" />
<l ayout cl ass="org. apache. | og4j.TTCCLayout" />

</ appender >

<l ogger nanme="AUTH'>

<l-- Print all VoltDB authentication nessages -->
<l evel value="trace" />

</ | ogger >

<r oot >

<priority val ue="debug" />
<appender-ref ref="Async" />
</root >
</l og4j :configuration>

The preceding configuration file defines three destinations, or appenders, called Async, Console, and File.
The appenders define the type of output (whether to the console, to afile, or somewhere else), the location
(such asthefile name), aswell as the layout of the messages sent to the appender. See the log4J docmen-
tation for more information about layout.

Note that the appender Async is a superset of Console and File. So any messages sent to Async are routed
to both Console and File. This is important because for logging of VoltDB, you should always use an
asynchronous appender asthe primary target to avoid the processing of thelogging messagesfrom blocking
other execution threads.

Theconfigurationfilealso definesaroot class. Theroot classisthedefault logger and all loggersinherit the
root definition. So, in this case, any messages of severity "debug" or higher are sent to the Async appender.

Finally, the configuration file definesalogger specifically for VoltDB authentication messages. Thelogger
identifies the class of messages to log (in this case "AUTH"), as well as the severity (“trace"). VoltDB
defines several different classes of messagesyou canlog. Table 14.1, “VoltDB Components for Logging”
lists the loggers you can invoke.

Table 14.1. VoltDB Componentsfor Logging

L ogger Description
ADHOCPLANNERTHREAD Execution of ad hoc queries
AUTH Authentication and authorization of clients

96

Logging and Analyzing Ac-
tivity inaVoltDB Database

14.3.

14.4.

L ogger Description
COMPILER Interpretation of SQL in ad hoc queries
CONSOLE Informational messages intended for display on the
console
EXPORT Exporting data
GC Java garbage collection
HOST Host specific events
NETWORK Network eventsrelated to the database cluster
REJOIN Node recovery and rejoin
SNAPSHOT Snapshot activity
SQL Execution of SQL statements
™ Transaction management

Enabling Logging for VoltDB

Once you create your Log4J configuration file, you specify which configuration file to use by defining the
variable LOG4J CONFIG_PATH before starting the VoltDB database. For example:

$ LOAJI_CONFI G_PATH="$HOVE/ MyLog4j Confi g. xm "
$ voltdb create nycatal og.jar \
-H l ocal host -d mydepl oynent . xni

Customizing Logging in the VoltDB Enter-

prise Manager

14.5.

When using the VoltDB Enterprise Manager to manage your databases, the startup process is automated
for you. There is no command line for specifying a Log4J configuration file.

Instead, the Enterprise Manager provides a Log4J properties file that is used to start each
node in the cluster. You can change the logging configuration by modifying the properties file
server _| og4j . properti es includedinthe/ managenent subfolder of the VoltDB installation.
The Enterprise Manager copiesand usesthisfileto enablelogging on all serverswhenit startsthe database.

Note that the propertiesfile used by the VoltDB Enterprise Manager isin adifferent format than the XML
file used when configuring Log4J on the command line. However, both files let you configure the same
logging attributes. In the case of the propertiesfile, be sure to add your modifications to the end of thefile
so as not to interfere with the logging required by the Enterprise Manager itself.

Changing the Configuration on the Fly

Once the database has started, you can still start or reconfigure the logging without having to stop and
restart the database. By calling the system procedure @Updatel ogging you can pass the configuration
XML to the servers as a text string. For any appenders defined in the new updated configuration, the
existing appender is removed and the new configuration applied. Other existing appenders (those not
mentioned in the updated configuration XML) remain unchanged.

97

Chapter 15. Using VoltDB with Other
Programming Languages

15.1.

VoltDB stored procedures are written in Java and the primary client interface also uses Java. However,
that is not the only programming language you can use with VoltDB.

It is possible to have client interfaces written in almost any language. These client interfaces allow pro-
grams written in different programming languages to interact with a VVoltDB database using native func-
tions of the language. The client interface then takes responsibility for trandating those requests into a
standard communication protocol with the database server as described in the VoltDB wire protocol.

Some client interfaces are developed and packaged as part of the standard VoltDB distribution kit while
othersare compiled and distributed as separate client kits. Asof thiswriting, thefollowing client interfaces
are available for VoltDB:

. Ct

o Ct++

» Erlang

+ Go

» Java (packaged with VoltDB)
» JDBC (packaged with VoltDB)
» JSON (packaged with VoltDB)
* Nodejs

« PHP

* Python

* Ruby

The JSON client interface may be of particular interest if your favorite programming languageisnot listed
above. JSON is a data format, rather than a programming interface, and the JSON interface provides a
way for applications written in any programming language to interact with VoltDB via JSON messages
sent across a standard HTTP protocaol.

The following sections explain how to use the C++, JSON, and JDBC client interfaces.

C++ Client Interface

VoltDB provides aclient interface for programswritten in C++. The C++ client interfaceis available pre-
compiled asaseparatekit from the VoltDB web site, or in source format from the V oltDB github repository
(http://github.com/V oltDB/voltdb-client-cpp). Thefollowing sections describe how to write VVoltDB client
applicationsin C++.

15.1.1. Writing VoltDB Client Applications in C++

When using the VoltDB client library, aswith any C++ library, it isimportant to include all of the neces-
sary definitions at the beginning of your source code. For VoltDB client applications, this includes defin-

98

http://voltdb.com/community/downloads.php
http://github.com/VoltDB/voltdb-client-cpp

Using VoltDB with Oth-
er Programming Languages

itions for the VoltDB methods, structures, and datatypes as well as the libraries that VoltDB depends on
(specifically, boost shared pointers). For example:

#i ncl ude <boost/shared _ptr. hpp>
#include "dient.h"

#i ncl ude "Tabl e. h"

#i nclude "Tabl elterator.h"

#i ncl ude " Row. hpp"

#i ncl ude "WreType. h"

#i ncl ude "Paraneter. hpp"

#i ncl ude " Par anet er Set . hpp"

#i ncl ude <vector>

Once you have included al of the necessary declarations, there are three steps to using the interface to
interact with VoltDB:

1. Create and open aclient connection
2. Invoke stored procedures
3. Interpret the results

The following sections explain how to perform each of these functions.

15.1.2. Creating a Connection to the Database Cluster

Beforeyou can call VoltDB stored procedures, you must create aclient instance and connect to the database
cluster. For example:

voltdb:: dientConfig config("nyusernane", "mypassword");
voltdb::Cient client = voltdb::Client::create(config);
client.createConnection("nyserver");

As with the Java client interface, you can create connections to multiple nodes in the cluster by making
multiple callsto the createConnection method specifying a different |P address for each connection.

15.1.3. Invoking Stored Procedures

The C++ client library provides both a synchronous and asynchronous interface. To make a synchronous
stored procedure call, you must declare objects for the parameter types, the procedure call itself, the para
meters, and the response. Note that the datatypes, the procedure, and the parameters need to be declared
in a specific order. For example:

/* Declare the nunber and type of parameters */

vect or <vol t db: : Par anet er > par anet er Types(3);

par amet er Types[0] = vol tdb:: Paramet er (vol tdb: : WRE_TYPE_BI G NT) ;
par amet er Types|[1] vol t db: : Paranet er (vol tdb: : WRE_TYPE_STRI NG ;
par amet er Types| 2] vol t db: : Paranet er (vol tdb: : WRE_TYPE_STRI NG ;

/* Declare the procedure and paraneter structures */
vol tdb: : Procedure procedure("AddCustoner", paraneterTypes);
vol t db: : Paranet er Set* parans = procedure. parans();

/* Declare a client response to receive the status and return val ues */

99

Using VoltDB with Oth-
er Programming Languages

boost :: shared_ptr<vol tdb:: 1 nvocati onResponse> response;

Once you instantiate these objects, you can reuse them for multiple callsto the stored procedure, inserting
different values into params each time. For example:

par ans- >addl nt 64(13505) . addString("WIlliam).addString("Snith");
response = client->i nvoke(procedure);

par ans- >addl nt 64(13506) . addStri ng("Mary").addString("WIIians");
response = client->i nvoke(procedure);

par ans- >addl nt 64(13507) . addString("Bill").addStri ng("Snyt he");
response = client->i nvoke(procedure);

15.1.4. Invoking Stored Procedures Asynchronously

To make asynchronous procedure calls, you must also declare a callback structure and method that will
be used when the procedure call completes.

cl ass AsyncCal | back : public voltdb:: ProcedureCall back
{
publi c:
bool call back
(boost::shared_ptr<vol tdb:: Il nvocati onResponse> response)
t hrow (vol tdb: : Excepti on)

{
/*
* The work of your call back goes here...
*/

}

]

Then, when you go to make the actual stored procedure invocation, you declare an callback instance and
invoke the procedure, using both the procedure structure and the callback instance:

boost : : shared_ptr<AsyncCal | back> cal | back(new AsyncCal | back());
client->i nvoke(procedure, callback);

Note that the C++ interface is single-threaded. The interface is not thread-safe and you should not use
instances of the client, client response, or other client interface structures from within multiple concurrent
threads. Also, the application must release control occasionaly to give the client interface an opportunity
to issue network requests and retrieve responses. Y ou can do this by calling either the run() or runOnce()
methods.

The run() method waits for and processes network requests, responses, and callbacks until told not to.
(That is, until acallback returns avalue of false)

The runOnce() method processes any outstanding work and then returns control to the client application.
In most applications, you will want to create a loop that makes asynchronous requests and then calls
runOnce(). This allows the application to queue stored procedure requests as quickly as possible while
also processing any incoming responses in atimely manner.

Another important difference when making stored procedure calls asynchronously is that you must make

sureall of the procedure calls compl ete before the client connection is closed. The client objects destructor
automatically closes the connection when your application |eaves the context or scope within which the

100

Using VoltDB with Oth-
er Programming Languages

client is defined. Therefore, to make sure all asynchronous calls have completed, be sure to call thedrain
method until it returns true before leaving your client context:

while (!client->drain()) {}

15.1.5. Interpreting the Results

15.2

Both the synchronous and asynchronous invocations return a client response object that contains both the
status of the call and the return values. Y ou can use the status information to report problems encountered
while running the stored procedure. For example:

if (response->failure())

{
cout << "Stored procedure failed. " << response->toString();
exit(-1);

}

If the stored procedure is successful, you can use the client response to retrieve the results. The results
are returned as an array of VoltTable structures. Within each VoltTable object you can use an iterator to
walk through the rows. There are also methods for retrieving each datatype from the row. For example,
the following example displays the results of asingle VoltTable containing two strings in each row:

/* Retrieve the results and an iterator for the first volttable */
vect or<boost::shared _ptr<voltdb:: Table> > results = response->results();
voltdb:: Tablelterator iterator = results[0]->iterator();

/* lterate through the rows */
while (iterator.hasNext())
{
voltdb:: Row row = iterator.next();
cout << row.getString(0) << ", " << row.getString(1l) << endl;

}

JSON HTTP Interface

JSON (JavaScript Object Notation) is not a programming language; it is a data format. The JSON "inter-
face" to VoltDB isactually aweb interfacethat the VVoltDB database server makes availablefor processing
requests and returning datain JSON format.

The JSON interface lets you invoke VoltDB stored procedures and receive their results through HTTP
requests. To invoke a stored procedure, you pass V oltDB the procedure name and parameters as aquerys-
tring to the HTTP request, using either the GET or POST method.

Although many programming languages provide methods to simplify the encoding and decoding of JSON
strings, you still need to understand the data structures that are created. So if you are not familiar with
JSON encoding, you may want to read more about it at ht t p: / / www. j son. or g.

15.2.1. How the JSON Interface Works

To use the VoltDB JSON interface, you must first enable JSON in the deployment file. Y ou do this by
adding the following tags to the deployment file:

<ht t pd>
<j sonapi enabl ed="true"/>
</ httpd>

101

http://www.json.org/

Using VoltDB with Oth-
er Programming Languages

With JSON enabled, when aVVoltDB database starts it opens port 8080 on the local machine as asimple
web server. Any HTTP requests sent to the location /api/1.0/ on that port areinterpreted as requeststo run
a stored procedure. The structure of the request is:

URL http://<server>:8080/api/1.0/

Arguments Procedure=<procedure-name>
Parameters=<procedure-parameters>

User=<username for authentication>
Password=<password for authentication>
Hashedpassword=<Hashed password for authentication>
admin=<truelfal se>

jsonp=<function-name>

The arguments can be passed either using the GET or the POST method. For example, the following URL
uses the GET method (where the arguments are appended to the URL) to execute the system procedure
@Systemlnformation on the VoltDB database running on node voltsvr.mycompany.com:

http://vol tsvr. nyconpany. com 8080/ api /1. 0/ ?Pr ocedur e=@yst em nf or mati on

Note that only the Pr ocedur e argument is required. Y ou can authenticate using the User and Pass-
wor d (or Hashedpasswor d) argumentsif security isenabled for the database. Use Passwor d to send
the password as plain text or Hashedpasswor d to send the password as a SHA-1 encoded string. (The
hashed password must be a 40-byte hex-encoding of the 20-byte SHA-1 hash.)2

Y ou can aso include the parameters on the request. However, it isimportant to note that the parameters
— and the response returned by the stored procedure — are JISON encoded. The parameters are an array
(even if there is only one element to that array) and therefore must be enclosed in square brackets.

The adm n argument specifies whether the request is submitted on the standard client port (the default)
or the admin port (when you specify admni n=t r ue). If the database is in admin mode, you must submit
requests over the admin port or else the request is rejected by the server.

Theadmin port should be used for administrativetasksonly. Although all stored procedures can beinvoked
through the admin port, using the admin port through JSON isfar less efficient than using the client port.
All admin mode requests to JSON are separate synchronous requests; whereas calls to the normal client
port are asynchronous through a shared session.

The j sonp argument is provided as a convenience for browser-based applications (such as Javascript)
where cross-domain browsing is disabled. When you include thej sonp argument, the entire response is
wrapped as a function call using the function name you specify. Using this technique, the response is a
complete and valid Javascript statement and can be executed to create the appropriate language-specific
object. For example, caling the @Statistics system procedure in Javascript using the jQuery library looks
likethis:

$.9get ISON(' http://nyserver: 8080/ api/ 1.0/ ?Procedure=@statistics' +
' &Par anet er s=[" MANAGEMENT", 0] & sonp="?",
{}, MyCal | Back) ;

Perhaps the best way to understand the JSON interfaceisto seeit in action. If you build and start the Hello
World example application that is provided in the VoltDB distribution kit (including the client that loads

LY ou can specify an alternate port for the JSON interface when you start the VoltDB server by including the port number as an attribute of the
<httpd> tag in the deployment file. For example: <ht t pd port ="{port - nunber}">.

’Hashi ng the password stops the text of your password from being detectable from network traffic. However, it does not make the database access
any more secure. To secure the transmission of credentials and data between client applications and VoltDB, use an SSL proxy server in front of
the database servers.

102

Using VoltDB with Oth-
er Programming Languages

data into the database), you can then open a web browser and connect to the local system through port
8080, to retrieve the French trandlation of "Hello World". For example:

http://1 ocal host: 8080/ api/ 1. 0/ ?Pr ocedur e=Sel ect &Par anet er s=["French"]
Theresulting display is the following:

{"status":1, "appstatus":-128,"statusstring":null,"appstatusstring":null,
"exception":null,"results":[{"status":-128,"schema": [{"name": "HELLO",
"type": 9}, {"nane": "WORLD', "type":9}], "data":[["Bonjour", "Mnde"]]1}]}

Asyou can see, the results (which are a JSON-encoded string) are not particularly easy to read. But then,
the JSON interface is not really intended for human consumption. It's real purposeisto provide ageneric
interface accessible from almost any programming language, many of which already provide methods for
encoding and decoding JSON strings and interpreting their results.

15.2.2. Using the JSON Interface from Client Applica-
tions

The general process for using the JSON interface from within a program is:
1. Encode the parameters for the stored procedure as a JSON-encoded string

2. Instantiate and execute an HTTP request, passing the name of the procedure and the parameters as
arguments using either GET or POST.

3. Decode the resulting JSON string into alanguage-specific data structure and interpret the results.

The following are examples of invoking the Hello World Insert stored procedure from severa different
languages. In each case, the three arguments (the name of the language and the words for "Hello" and
"World") are encoded as a JSON string.

PHP

/1 Construct the procedure nane, paraneter list, and URL.

$vol tdbserver = "http:// myserver:8080/api/1.0/";
$proc = "Insert";

$a = array("Croatian", "Pozdrav", "Svijet");

$parans = json_encode($a);

$paranms = url encode($par ans);

$querystring = "Procedure=$proc&Par anet er s=$par ans";

/1 create a new cURL resource and set options
$ch = curl _init();
curl _setopt ($ch, CURLOPT_URL, $voltdbserver);
curl _setopt ($ch, CURLOPT_HEADER, 0);
curl _setopt ($ch, CURLOPT_FAI LONERROR, 1);
curl _setopt ($ch, CURLOPT_POCST, 1);
curl _setopt ($ch, CURLOPT_POSTFI ELDS, $querystring);
curl _setopt ($ch, CURLOPT_RETURNTRANSFER, true);

/1 Execute the request
$resultstring = curl _exec($ch);

103

Using VoltDB with Oth-
er Programming Languages

Python

Perl

C#

import urllib
i mport urllib2
i mport json

Construct the procedure nanme, paraneter |ist, and URL.
url = "http://myserver: 8080/ api/1.0/"
vol t parans = json. dunmps(["Croatian", "Pozdrav", "Svijet"])
httpparans = urllib.url encode({
"Procedure': 'Insert',
"Paraneters' : voltparans
})
print httpparans
Execute the request
data = urllib2.urlopen(url, httpparans).read()

Decode the results
result = json.loads(data)

use LWP:: Sinpl e;
ny $server = 'http:// myserver:8080/api/1l.0/";

Insert "Hello Wrld" in Croatian

ny $proc = 'lInsert’;
ny $parans = '["Croatian", "Pozdrav","Svijet"]";
ny $url = $server . "?Procedure=$proc&Par anet er s=$par ans";

ny $content = get $url;
die "Couldn't get $url" unless defined $content;

usi ng System

usi ng System Text;
usi ng System Net ;
using System1Q

nanespace hel |l ovol t

{
cl ass Program
{
static void Main(string[] args)
{
string Vol tDBServer = "http://nyserver:8080/api/1.0/";
string VoltDBProc = "Insert";
string VoltDBParanms = "[\"Croatian\",\"Pozdrav\",\"Svijet\"]";
string Ul = Vol tDBServer + "?Procedure=" + Vol tDBProc

+ " &Par anet ers=" + Vol t DBPar arrs;

string result = null;

104

Using VoltDB with Oth-
er Programming Languages

WebResponse response = nul | ;
StreanReader reader = null;

try
{
Ht t pebRequest request = (Htt pWbRequest)WbRequest. Create(Url);

request. Method = "GET";

response = request. CGet Response();

reader = new StreanReader (response. Get ResponseSt rean(), Encodi ng. UTF8) ;
result = reader. ReadToEnd();

}
catch (Exception ex)
{ /1 handle error
Consol e. WitelLi ne(ex. Message);
}
finally
{
if (reader != null)reader.C ose();
if (response != null) response.C ose();
}

}
}
}

15.2.3. How Parameters Are Interpreted

When you pass arguments to the stored procedure through the JSON interface, VoltDB does its best to
map the data to the datatype required by the stored procedure. Thisisimportant to make sure partitioning
values are interpreted correctly.

For integer values, the JSON interface maps the parameter to the smallest possible integer type capable of
holding the value. (For example, BY TE for values less than 128). Any values containing a decimal point
areinterpreted as DOUBLE.

String values (those that are quoted) are handled in several different ways. If the stored procedure is ex-
pecting a BIGDECIMAL, the JSON interface will try to interpret the quoted string as a decimal value.
If the stored procedure is expecting a TIMESTAMP, the JSON interface will try to interpret the quoted
string as a JDBC-encoded timestamp value. (You can alternately pass the argument as an integer value
representing the number of microseconds from the epoch.) Otherwise, quoted strings are interpreted as
astring datatype.

Table 15.1, “Datatypes in the JSON Interface” summarizes how to pass different datatypes in the JSON
interface.

Table 15.1. Datatypesin the JSON I nterface

Datatype How to Pass Example
Integers (Byte, Short, Integer,|An integer value 12345
Long)
DOUBLE A value with a decimal point 123.45

105

Using VoltDB with Oth-

er Programming Languages

Datatype How to Pass Example
BIGDECIMAL A quoted string containing avalue|"123.45"
with a decimal point
TIMESTAMP Either aninteger value or aquoted| 12345

string containing a JDBC-encod-

ed date and time "2010-07-01 12:30:21"

String

A quoted string "I am astring"

15.2.4. Interpreting the JSON Results

Making the request and decoding the result string are only the first steps. Once the request is completed,
your application needs to interpret the results.

When you decode a JSON string, it is converted into alanguage-specific structure within your application,
composed of objects and arrays. If your request is successful, VoltDB returns a JSON-encoded string that
represents the same ClientResponse object returned by callsto the call Procedure method in the Javaclient
interface. Figure 15.1, “The Structure of the VoltDB JSON Response” shows the structure of the object

returned by the JSON interface.

Figure 15.1. The Structure of the VoltDB JSON Response

{ appstatus
appst atusstring

exception
results
[
{ data
[
]
schema
[nane
type
]
st at us
}
]
st at us

statusstring

}

(i nteger,
(string)
(i nteger)
(array)
(obj ect,
(array)
(any type)

bool ean)

Vol t Tabl e)

(array)
(string)
(i nteger, enunerated)

(i nteger, bool ean)

(i nteger)
(string)

The key components of the JSON response are the following:

appstatus

Indicates the success or failure of the stored procedure. If appstatus is false, appsta-

tusstring contains the text of the status message.

results

An array of objects representing the data returned by the stored procedure. Thisisan array

of VoltTable objects. If the stored procedure does not return avalue (i.e. is void or null),
then results will be null.

data

schema

Within each VoltTable object, data is the array of values.

Within each VoltTable, object schema isan array of objects with two elements: the name

of the field and the datatype of that field (encoded as an enumerated integer value).

106

Using VoltDB with Oth-
er Programming Languages

status Indicates the success or failure of the VoltDB server in its attempt to execute the stored
procedure. The difference between appstatus and statusisthat if the server cannot execute
the stored procedure, the statusisreturned in status, whereasif the stored procedure can be
invoked, but a failure occurs within the stored procedure itself (such as a SQL constraint
violation), the status is returned in appstatus.

It is possible to create a generic procedure for testing and evaluating the result values from any VoltDB
stored procedure. However, in most cases it is far more expedient to evaluate the values that you know
the individual procedures return.

For example, again using the Hello World examplethat is provided with the Vol tDB software, it ispossible
to usethe JSON interfaceto call the Select stored procedure and return the valuesfor "Hello" and "World"
in a specific language. Rather than evaluate the entire results array (including the name and type fields),
we know we are only receiving one VoltTable object with two string elements. So we can simplify the
code, asin the following python example:

inmport urllib
i mport urllib2
i mport json

i mport pprint
Construct the procedure nane, paraneter |ist, and URL.
url = "http://1ocal host: 8080/ api/1.0/'
vol t parans = json. dunmps(["French"])
httpparanms = urllib.url encode({
"Procedure': 'Select',
' Parameters' : voltparans
})

Execute the request
data = urllib2.urlopen(url, httpparans).read()

Decode the results
result = json.|oads(data)

CGet the data as a sinple array and di splay them
foreignwords = result[u' results'][0][u" data'][0]

print foreignwords[0], foreignwords[1]

15.2.5. Error Handling using the JSON Interface

There are anumber of different reasonswhy a stored procedure request using the JSON interface may fail:
the VoltDB server may be unreachable, the database may not be started yet, the stored procedure name
may be misspelled, the stored procedure itself may fail... When using the standard Java client interface,
these different situations are handled at different times. (For example, server and database access issues
are addressed when instantiating the client, whereas stored procedure errors can be handled when the
procedures themselves are called.) The JSON interface simplifies the programming by rolling all of these
activitiesinto asingle call. But you must be more organized in how you handle errors as a consequence.

When using the JSON interface, you should check for errorsin the following order:

1. First check to seethat the HT TP request was submitted without errors. How thisisdone depends on what
language-specific methodsyou use for submitting the request. In most cases, you can usethe appropriate
programming language error handlers (such as try-catch) to catch and interpret HTTP request errors.

107

Using VoltDB with Oth-
er Programming Languages

2. Next check to seeif VoltDB successfully invoked the stored procedure. Y ou can do this by verifying
that the HTTP request returned a valid JSON-encoded string and that its status is set to true.

3. If theVoltDB server successfully invoked the stored procedure, then check to seeif the stored procedure
itself succeeded, by checking to see if appstatusistrue.

4. Finally, check to seethat the results are what you expect. (For example, that the data array is non-empty
and contains the values you need.)

15.3. JDBC Interface

JDBC (Java Database Connectivity) is aprogramming interface for Java programmers that abstracts data-
base specifics from the methods used to access the data. JDBC provides standard methods and classes
for accessing a relational database and vendors then provide JDBC drivers to implement the abstracted
methods on their specific software.

VoltDB providesa JDBC driver for those who would prefer to use JDBC asthe data access interface. The
VoltDB JDBC driver supportsad hoc queries, prepared statements, calling stored procedures, and methods
for examining the metadata that describes the database schema.

15.3.1. Using JDBC to Connect to a VoltDB Database

The VoltDB driver is a standard class within the VoltDB software jar. To load the driver you use the
Class.forName method to load the class org.voltdb.jdbc.Driver.

Once the driver isloaded, you create a connection to a running VoltDB database server by constructing
a JDBC url using the "jdbc:" protocol, followed by "voltdb://", the server name, a colon, and the port
number. In other words, the complete JDBC connection url is"jdbc:voltdb://{ server} :{ port}".

For example, the following code loads the VVoltDB JDBC driver and connects to the server svrl using the
default client port:

Cl ass. forName("org.vol tdb.jdbc. Driver");
Connection ¢ = DriverManager. get Connecti on("jdbc:vol tdb://svrl1:21212");

15.3.2. Using JDBC to Query a VoltDB Database

Oncethe connection is made, you use the standard JDBC classes and methods to access the database. (See
the JDBC documentation at ht t p: / / downl oad. or acl e. com j avase/ 6/ docs/ t echnot es/
gui des/ j dbc for details.) Note, however, when running the JDBC application, you must make sure
both the VoltDB software jar and the Guavalibrary are in the Java classpath. Guavaisathird party library
that is shipped as part of the VoltDB kit in the /lib directory. Unless you include both components in the
classpath, your application will not be able to find and load the necessary driver class.

The following is a complete example that uses JDBC to access the Hello World tutorial that comes with
the VoltDB software in the subdirectory / doc/ t ut ori al s/ hel | owor | d. The JIDBC demo program
executes both an ad hoc query and a call to the VoltDB stored procedure, Select.

i mport java.sql.*;
i mport java.io.*;

public class JdbcDenmo {

public static void main(String[] args) {

108

http://download.oracle.com/javase/6/docs/technotes/guides/jdbc
http://download.oracle.com/javase/6/docs/technotes/guides/jdbc

Using VoltDB with Oth-
er Programming Languages

String driver = "org.voltdb.jdbc.Driver";
String url = "jdbc:voltdb://Ilocal host:21212";
String sgl = "SELECT di al ect FROM hel | owor| d";
try {

/1 Load driver. Create connection.
Cl ass. forName(driver);
Connection conn = DriverManager. get Connection(url);

/] create a statenent
Statement query = conn.createStatenent();
Resul t Set results = query. executeQuery(sql);
while (results.next()) {

System out. printl n("Language is

+ results.getString(1));
}

/1 call a stored procedure
Cal | abl eSt atement proc = conn. prepareCall ("{call Select(?)}");
proc.setString(1l, "French");
results = proc. executeQery();
while (results.next()) {
Systemout.printf("%, %!\n", results.getString(1l),
results.getString(2));

/1 Cl ose statenents, connections, etc.
query. cl ose();
proc. cl ose();
results.close();
conn. cl ose();

} catch (Exception e) {
e.printStackTrace();

}

109

Appendix A. Supported SQL DDL
Statements

This appendix describes the subset of the SQL Data Definition Language (DDL) that VoltDB supports
when defining the schemafor aVoltDB database. VoltDB a so supports extensions to the standard syntax
to allow for the declaration of stored procedures and partitioning information related to tables and proce-
dures.

Thefollowing sections are not intended as a compl ete description of the standard SQL DDL. Instead, they
summarize the subset of standard SQL DDL statements that are allowed in a VoltDB schema definition
and any exceptions, extensions, or limitations that application devel opers should be aware of .

The supported standard SQL DDL statements are:

» CREATEINDEX
» CREATETABLE
*» CREATEVIEW

The supported VoltDB-specific extensions for declaring stored procedures and partitioning are:

* CREATE PROCEDURE AS

* CREATE PROCEDURE FROM CLASS
* CREATEROLE

* EXPORT TABLE

* IMPORT CLASS

* PARTITION PROCEDURE

* PARTITION TABLE

110

Supported SQL DDL Statements

CREATE INDEX

CREATE INDEX — Creates an index for faster access to atable.

Syntax

CREATE [UNIQUE|ASSUMEUNIQUE] INDEX index-name ON table-name (index-column [,...])

Description

Creating an index on atable makes read access to the table faster when using the columns of the index as
akey. Note that VVoltDB creates an index automatically when you specify a constraint, such as a primary
key, inthe CREATE TABLE statement.

When you specify that theindex is UNIQUE, VoltDB constrains the table to at most one row for each set
of index column values. If an INSERT or UPDATE statement attempts to create arow where all the index
column values match an existing indexed row, the statement fails.

Because the uniqueness constraint is enforced separately within each partition, only indexes on replicated
tables or containing the partitioning column of partitioned tables can ensure global uniqueness for parti-
tioned tables and therefore support the UNIQUE keyword.

If you wish to create an index on a partitioned table that acts like a unique index but does not include the
partitioning column, use the keyword ASSUMEUNIQUE instead of UNIQUE. Assumed unique indexes
are treated like unique indexes (VoltDB verifies they are unique within the current partition). However,
it is your responsibility to ensure these indexes are actually globally unique. Otherwise, it is possible an
index will generate aconstraint violation during an operation that modifies the partitioning of the database
(such as adding nodes on the fly or restoring a snapshot to a different cluster configuration).

Theindexed items (index-column) are either columns of the specified table or expressions, including func-
tions, based on the table. For example, the following statements index a table based on the calculated area
and its distance from a set location:

CREATE | NDEX areaofplot ON plot (width * height);
CREATE | NDEX di stancefromd9 ON plot (ABS(latitude - 49));

By default, VoltDB creates a tree index. Tree indexes provide the best general performance for a wide
range of operations, including exact value matches and queries involving a range of values, such as
SELECT ... WHERE Score > 1 AND Score < 10.

If an index is used exclusively for exact matches (such as SELECT ... WHERE MyHashCol um
= 123), it is possible to create a hash index instead. To create a hash index, include the string "hash"
as part of the index name.

Examples

The following example creates two indexes on a single table. The first is, by default, a non-unique index
based on the departure time The second is a unique index based on the columns for the airline and flight
number.

CREATE | NDEX flightTi meldx ON FLI GHT (departtime);
CREATE UNI QUE | NDEX Fl i ght Keyldx ON FLIGHT (airline, flightID);

111

Supported SQL DDL Statements

You can aso use functions in the index definition. For example, the following is an index based on the
element movie within a JSON-encoded VARCHAR column named favorites and the member's ID.

CREATE | NDEX FavoriteMvie ON MEMBER (
FI ELD(favorites, 'novie'), nmenberlD

)

112

Supported SQL DDL Statements

CREATE PROCEDURE AS

CREATE PROCEDURE AS — Defines a stored procedure composed of a SQL query.

Syntax

CREATE PROCEDURE procedure-name [ALLOW role-name [,...]] AS sql-statement

CREATE PROCEDURE procedure-name [ALLOW role-name [,...]] AS ### source-code ###
LANGUAGE GROOVY

Description

Y ou must declare stored procedures as part of the schemato make them accessible at runtime. The declared
procedures are evaluated and included in the application catalog when you compile the database schema.

Use CREATE PROCEDURE A S when declaring stored procedures directly within the schema definition.
There are two forms of the CREATE PROCEDURE AS statement:

» The SQL query form supports a single SQL query statement in the AS clause. The SQL statement
can contain question marks (?) as placeholders that are filled in at runtime with the arguments to the
procedure call.

» Theembedded program code form supportstheinclusion of program codeinthe AS clause. The embed-
ded program code is opened and closed by three pound signs (###) and followed by the LANGUAGE
clause specifying the programming language in use. VoltDB currently supports Groovy as an embedded
language.

In both cases, the procedure name must follow the naming conventions for Javaclass names. For example,
the name is case-sensitive and cannot contain any white space.

If security isenabled at runtime, only those roles named in the ALLOW clause have permission to invoke
the procedure. If security isnot enabled at runtime, the ALLOW clauseisignored and all users have access
to the stored procedure.

Examples

The following example defines a stored procedure, CountUsersByCountry, as a single SQL query with a
placeholder for matching the country column:

CREATE PROCEDURE Count User sByCountry AS
SELECT COUNT(*) FROM Users WHERE country=?;

The next example restricts access to the stored procedure to only users with the admin role:

CREATE PROCEDURE ChangeAdm nPassword ALLOW adm n AS
UPDATE Accounts SET (HashedPassword=?) WHERE user| D='root"';

113

Supported SQL DDL Statements

CREATE PROCEDURE FROM CLASS

CREATE PROCEDURE FROM CLASS — Defines a stored procedure associated with a Java class.

Syntax

CREATE PROCEDURE [ALLOW role-name [,...]] FROM CLASS class-name

Description

You must declare stored procedures to make them accessible at runtime. The declared procedures are
evaluated and included in the application catalog when you compile the database schema.

If security is enabled at runtime, only those roles named in the ALLOW clause have permission to invoke
the procedure. If security isnot enabled at runtime, the ALLOW clauseisignored and all users have access
to the stored procedure.

Use CREATE PROCEDURE FROM CL A SSwhen adding user-defined stored procedureswritten in Java.
The class-name is the name of the Java class. This class must be accessible from the classpath argument
used when compiling the application catal og.

Example

The following example declares a stored procedure matching the Java class MakeReservation. Note that
the class name includes its location within the current class path (in this case, as a child of flight and
procedures). However, the name itself, MakeReservation, must be unique within the catalog because at
runtime stored procedures are invoked by name only.

CREATE PROCEDURE FROM CLASS flight. procedures. MakeReservati on;

114

Supported SQL DDL Statements

CREATE ROLE

CREATE ROLE — Defines arole and the permissions associated with that role.

Syntax

CREATE ROLE role-name [WITH permission [,...]]

Description

The CREATE ROLE statement defines a named role that can be used to assign access rights to specific
procedures and functions. When security is enabled in the deployment file, the permissions assigned in the
CREATE ROL E and CREATE PROCEDURE statements specify which users can access which functions.

Use the CREATE PROCEDURE statement to assign permissions to named roles for accessing specific
stored procedures. The CREATE ROLE statement lets you assign certain generic permissions. The per-
missions that can be assigned by the WITH clause are;

ADHOC Allows access to ad hoc queries (through the @A dHoc system procedure and sglcmd
command)

DEFAULT- Allows access to the default procedures for all tables

PROC

SYSPROC Allows accessto al system procedures

The generic permissions are denied by default. So you must explicitly enable them for those roles that
need them. For example, if users assigned to the "interactive" role need to run ad hoc queries, you must
explicitly assign that permission in the CREATE ROLE statement:

CREATE ROLE interactive WTH adhoc;

Also note that the permissions are additive. So if a user is assigned to one role that allows access to
adhoc but not sysproc, but that user also is assigned to another role that allows sysproc, the user has both
permissions.

Example

The following example defines three roles — admin, developer, and batch — each with a different set
of permissions:

CREATE ROLE admin W TH sysproc, defaultproc;
CREATE ROLE devel oper W TH adhoc, defaul t proc;
CREATE ROLE batch W TH def aul t pr oc;

115

Supported SQL DDL Statements

CREATE TABLE

CREATE TABLE — Creates atable in the database.

Syntax

CREATE TABLE table-name (
column-definition [,...]
[, constraint-definition [,...]]

);

column-definition: column-name datatype [index-type] [DEFAULT value] [NOT NULL]
constraint-definition: [CONSTRAINT constraint-name] { index-definition | limit-definition }
index-definition: {index-type} (column-name [,...])

limit-definition: LIMIT PARTITION ROWS row-count

index-type: PRIMARY KEY | UNIQUE | ASSUMEUNIQUE

Description

The CREATE TABLE statement creates atable and its associated columnsin the database. The supported
datatypes are described in Table A.1, “ Supported SQL Datatypes’.

Table A.1. Supported SQL Datatypes

SQL Datatype Equivalent Ja- Description
va Datatype

TINYINT byte 1-byte signed integer, -127 to 1272

SMALLINT short 2-byte signed integer, -32,767 to 32,767

INTEGER int 4-byte signed integer, -2,147,483,647 to
2,147,483,647

BIGINT long 8-byte signed integer, -9,223,372,036,854,775,807
t0 9,223,372,036,854,775,807

FLOAT double 8-byte numeric, -(2-2"°2).219% to (2-2'5%).21023

(Note that values less than or equal to -1.7E+308
are interpreted as null.)

DECIMAL BigDecimal 16-byte fixed scale of 12 and precision of 38,
-99999999999999999999999999.999999999999
t0 99999999999999999999999999.999999999999

VARCHAR() String Variable length text string, with a maximum length
specified in either characters (the default) or bytes.
To specify the length in bytes, usethe BY TES
keyword after the length value. For example:
VARCHAR(28 BYTES).

116

Supported SQL DDL Statements

SQL Datatype Equivalent Ja- Description
va Datatype
VARBINARY () byte array Variable length binary string (sometimes referred
to asa"blob") with a maximum length specified in
bytes
TIMESTAMP long, VoltDB Time- Time in microseconds
stampType

8 or integer and floating-point datatypes, VoltDB reserves the largest possible negative value to denote a null value. For example
-128 isinterpreted as null for TINYINT, -32768 for SMALLINT, and so on.

The following limitations are important to note when using the CREATE TABLE statement in VoltDB:

* CHECK and FOREIGN KEY constraints are not supported.

VoltDB does not support AUTO_INCREMENT, the automatic incrementing of column values.

 Each column has a maximum size of one megabyte and the total declared size of all of the columnsin a
table cannot exceed two megabytes. For VARCHAR columnswherethelengthisspecified in characters,
the declared sizeis calculated asfour bytes per character to allow for the longest potential UTF-8 string.

If you intend to use a column to partition a table, that column cannot contain null values. Y ou must
specify NOT NULL in the definition of the column or VoltDB issues an error when compiling the
schema.

» When you specify an index constraint, by default VVoltDB creates atreeindex. Y ou can explicitly create
a hash index by including the string "hash" as part of the index name. For example, the following
declaration creates a hash index, Ver si on_Hash_1 dx, of three numeric columns.

CREATE TABLE Version (
Maj or SMALLI NT NOT NULL,
M nor SMALLI NT NOT NULL,
basel evel | NTEGER NOT NULL,
Rel easeDat e TI MESTAMP,
CONSTRAI NT Ver si on_Hash_I| dx PRI MARY KEY
(Maj or, Mnor, Basel evel)

)

See the description of CREATE INDEX for more information on the difference between hash and tree
indexes.

» To specify anindex — either for an individual column or asatable constraint — that is globally unique
across the database, use the standard SQL keywords UNIQUE and PRIMARY KEY. However, for
partitioned tables, VoltDB can only ensure uniqueness if the index includes the partitioning column.
Otherwise, these keywords are not allowed.

It can be aperformance advantage to defineindexes or constraints on non-partitioning columnsthat you,
asthe devel oper, know are going to contain unique values. Although VoltDB cannot ensure uniqueness
across the entire database, it does allow you to define indexes that are assumed to be unique by using
the ASSUMEUNIQUE keyword.

When you define an index on a partitioned table as ASSUMEUNIQUE, VoltDB verifies uniqueness
within the current partition when creating an index entry. However, it isyour responsibility asdevel oper
or administrator to ensurethat the values are actually globally unique. If the databaseis repartitioned due
to adding new nodes or restoring a snapshot to a different cluster configuration, non-unique ASSUME-

117

Supported SQL DDL Statements

UNIQUE index entries may collide. When this occurs it results in a constraint violation error and the
database will not be able to complete its current action.

Therefore, ASSUMEUNIQUE should be used with caution. Also, it is not necessary and should not
be used with replicated tables or indexes that contain the partitioning column, which can be defined
as UNIQUE.

VoltDB includesaspecia constraint, LIMIT PARTITION ROWS, that limitsthe number of rows of data
that can be inserted into any one partition for the table. This constraint is useful for managing memory
usage and avoiding accidentally running out of memory due to unbalanced partitions or unexpected
data growth.

Note that the limit, specified as an integer, limits the number of rows per partition, not for the table as
awhole. In the case of replicated tables, where each partition contains all rows of the table, the limit
applies equally to the table as a whole and each partition. Also, the constraint is applied to INSERT
operations. The constraint is not enforced when restoring a snapshot, updating the application catalog,
or rebalancing the cluster as part of elastically adding nodes. In these cases, ignoring the limit allows
the operation to succeed even if, as a result, a partition ends up containing more rows that specified
by the LIMIT PARTITION ROWS constraint. But once the limit has been exceeded, any attempt to
INSERT more table rows into that partition will result in an error, until sufficient rows are deleted to
reduce the row count below the limit.

Thelength of VARCHAR columns can be specified in either characters (the default) or bytes. To specify
the length in bytes, include the BY TES keyword after the length value; for example VARCHAR(16
BYTES).

Specifying the VARCHAR length in charactersis recommended because UTF-8 characters can require
avariable number of bytesto store. By specifying the length in characters you can be sure the column
has sufficient space to store any string of the specified length. Specifying the length in bytesis only
recommended when all values contain only single byte (ASCII) characters or when conserving spaceis
required and the strings are less than 64 bytesin length.

The VARBINARY datatype provides variable storage for arbitrary strings of binary data and operates
similarly to VARCHAR(n BYTES) strings. You assign byte arrays to a VARBINARY column when
passinginvariables, or you can useahexidecimal string for assigning literal valuesinthe SQL statement.
However, VARBINARY columns cannot be used in indexes or in conditional comparisons (such asin
SELECT ... WHERE statements).

The VoltDB TIMESTAMP datatype is a long integer representing the number of microseconds since
the epoch. Two important points to note about this timestamp:

e TheVoltDB TIMESTAMP s not the same as the Java Timestamp datatype or traditional Linux time
measurements, which are measured in millisecondsrather than microseconds. Appropriate conversion
is needed when casting values between aVVoltDB TIMESTAMP and other timestamp datatypes.

e The VoltDB TIMESTAMP is interpreted as a Greenwich Meantime (GMT) value. Depending on
how time values are created, their value may or may not account for the local machine's default time
zone. Mixing timestamps from different time zones (for example, in WHERE clause comparisons)
can result in unexpected behavior.

For TIMESTAMP columns, you can define a default value using the NOW or
CURRENT_TIMESTAMP keywords in place of a specific value. For example;

CREATE TABLE Event (
Event _I d I NTEGER UNI QUE NOT NULL,
Event _Ti mestanp Tl MESTAMP DEFAULT NOW

118

Supported SQL DDL Statements

Event _Descri pti on VARCHAR(128)
);

The default value is evaluated at runtime as an approximation, in milliseconds, of when the transaction
begins execution.

Example

The following example defines a table with five columns. The first column, Company, is not allowed
to be null, which is important since it is used as the partitioning column in the following PARTITION
TABLE statement. That columnisalso contained inthe PRIMARY KEY constraint. Again, it isimportant
to include the partitioning column in any fully unique indexes for partitioned tables.

CREATE TABLE I nventory (
Conpany VARCHAR(32) NOT NULL,
Product | D Bl G NT NOT NULL,
Price DECI VAL,
Cat egory VARCHAR(32),
Descri pti on VARCHAR(256),
PRI MARY KEY (Conpany, Productl D)
);
PARTI TI ON TABLE | nventory ON COLUMN Conpany;

119

Supported SQL DDL Statements

CREATE VIEW

CREATE VIEW — Createsaview into atable, used to optimize access to specific columnswithin atable.

Syntax

CREATE VIEW view-name (view-column-name [,...])
AS SELECT { column-name | selection-expression } [AS alias] [,...]
FROM table-name
[WHERE [NOT] boolean-expression [{AND | OR} [NOT] boolean-expression]...]
GROUP BY { column-name | selection-expression } [,...]

Description

The CREATE VIEW statement creates a view of atable with selected columns and aggregates. VoltDB
implements views as materialized views. In other words, the view is stored as a special table in the data-
base and is updated each time the corresponding database table is updated. This means there is a small,
incremental performanceimpact for any inserts or updatesto thetable, but selects on the view will execute
efficiently.

The following limitations are important to note when using the CREATE VIEW statement with VoltDB:
* Viewsare allowed on individua tables only. Joins are not supported.
» The SELECT statement must obey the following constraints:

* Theremust be a GROUP BY clausein the SELECT statement.

* All of the columns and selection expressions listed in the GROUP BY must be listed in the same
order at the start of the SELECT statement.

e SELECT must include afield specified as COUNT(*). Other aggregate functions (COUNT, MAX,
MIN, and SUM) are allowed following the COUNT (*).

Example

Thefollowing exampledefinesaview that countsthe number of recordsfor aspecific product item grouped
by itslocation (that is, the warehouse the item isin).

CREATE VI EWi nventory_ count by war ehouse (
product | D,
war ehouse,
total _inventory
) AS SELECT
product | D,
war ehouse,
CQOUNT(*)
FROM i nvent ory GROUP BY product| D, warehouse;

120

Supported SQL DDL Statements

EXPORT TABLE

EXPORT TABLE — Specifiesthat atable isfor export only.

Syntax

EXPORT TABLE table-name

Description

At runtime, any records written to an export-only table are queued to the export connector, as described
in Chapter 13, Exporting Live Data. If export is enabled, this datais then passed through the connector to
the export client that manages the export process.

The EXPORT TABLE statement lets you specify which tablesin the schema are export-only tables. These
tables become write-only. That is, they can be used in INSERT statements, but not SELECT, UPDATE,
or DELETE statements.

If export is not enabled at runtime, writing to export-only tables has no effect.

Example

Thefollowing exampl e defines two tables— User and User_Export — with similar columns. The second
tableisthen defined asan export table. By inserting into the User_Export table every timearow isinserted
into the User table, an automated list of users can be maintained external to the active VoltDB database.

CREATE TABLE User (
User | D VARCHAR(15) NOT NULL,
Emai | Address VARCHAR(128) NOT NULL,
Created TI MESTAMP,
Passwor d VARCHAR(14),
Last Logi n Tl MESTAMP) ;

CREATE TABLE User Export (
User | D BI G NT NOT NULL,
Emai | Address VARCHAR(128) NOT NULL,
Created TI MESTAWP);

EXPORT TABLE User Export;

121

Supported SQL DDL Statements

IMPORT CLASS

IMPORT CLASS — Specifies additional Java classes to include in the application catal og.

Syntax

IMPORT CLASS class-name

Description

The IMPORT CLASS statement lets you specify class files to be added to the application catalog when
the schemais compiled. Y ou can includeindividual classfiles only; the IMPORT CLASS statement does
not extract classes from JAR files. However, you can use Ant-style wildcardsin the class specification to
include multiple classes. For example:

| MPORT CLASS org. myconpany. utils.*;

Use the IMPORT CLASS statement to include reusable code that is accessed by multiple stored proce-
dures. Any classes and methods called by stored procedures must follow the same rules for deterministic
behavior that stored procedures follow, as described in Section 3.2.2, “VoltDB Stored Procedures and
Determinism”.

Codeimported using IMPORT CLASSisincludedinthe application catalog and, therefore, can be updated
on arunning database through the @UpdateA pplicationCatal og system procedure. For static libraries that
stored procedures use but that do not need to be modified often, the recommended approach isto include
the code by placing JAR filesin the/lib directory where VoltDB isinstalled on the database servers.

Example

The following example imports a class containing common financial algorithms so they can be used by
any stored procedures in the catal og:

| MPORT CLASS or g. myconpany. conmon. fi nance;

122

Supported SQL DDL Statements

PARTITION PROCEDURE

PARTITION PROCEDURE — Specifies that a stored procedure is partitioned.

Syntax

PARTITION PROCEDURE procedure-name ON TABLE table-name COLUMN column-name
[PARAMETER position]

Description

Partitioning astored procedure meansthat the procedure executes within aunique partition of the database.
The partition in which the procedure executesis chosen at runtime based on the table and column specified
by table-name and column-name and the value of the first parameter to the procedure. For example:

PARTI TI ON TABLE Enpl oyees ON COLUWN BadgeNumber ;
PARTI TI ON PROCEDURE Fi ndEmpl oyee ON TABLE Enpl oyees COLUMN BadgeNunber ;

The procedure FindEmployee is partitioned on the table Employees, and table Employeesisin turn parti-
tioned on the column BadgeNumber. This means that when the stored procedure FindEmployeeisinvoked
VoltDB determines which partition to run the stored procedure in based on the value of thefirst parameter
to the procedure and the corresponding partitioning value for the column BadgeNumber. So to find the
employee with badge number 145303 you would invoke the stored procedure as follows:

cl i ent Response response = client.callProcedure("Fi ndEnpl oyee", 145303);

By default, VoltDB uses the first parameter to the stored procedure as the partitioning value. However, if
you want to use the value of adifferent parameter, you can use the PARAMETER clause. The PARAME-
TER clause specifies which procedure parameter to use as the partitioning value, with position specifying
the parameter position, counting from zero. (In other words, position O is the first parameter, position 1
is the second, and so on.)

The specified table must be a partitioned table and cannot be an export-only or replicated table.

Y ou specify the procedure by its simplified class name. Do not include any other parts of the class path.
Note that the simple procedure name you specify in the PARTITION PROCEDURE may be different than
the class name you specify in the CREATE PARTITION statement, which can include arelative path. For
example, if the class for the stored procedure is mydb.procedures.FindEmployee, the procedure name in
the PARTITION PROCEDURE statement should be FindEmployee:

CREATE PARTI TI ON FROM CLASS nydb. pr ocedur es. Fi ndEnpl oyee;
PARTI TI ON PROCEDURE Fi ndEmpl oyee ON TABLE Enpl oyees COLUMN BadgeNunber ;

Examples

The following example declares a stored procedure, using an inline SQL query, and then partitions the
procedure on the Customer table, Note that the PARTITION PROCEDURE statement includes the PA-
RAMETER clause, since the partitioning column is not the first of the placeholders in the SQL query.
Also notethat the PARTITION argument is zero-based, so the value"1" identifies the second placeholder.

CREATE PROCEDURE GCet Cust oner ByName AS
SELECT * from Custoner WHERE First Nane=? AND LastNane = *
ORDER BY Last Nane, FirstNane, Custonerl D

123

Supported SQL DDL Statements

PARTI TI ON PROCEDURE Cet Cust oner ByNamne
ON TABLE Custonmer COLUMN Last Nane
PARAVETER 1;

The next example declares a stored procedure as a Java class. Since the first argument to the procedure's
run method is the value for the LastName column, The PARTITION PROCEDURE statement does not
require a POSITION clause and can use the defaullt.

CREATE PROCEDURE ChangeCust oner Addr ess
FROM CLASS or g. nyconmpany. ChangeCust oner Addr ess;

PARTI TI ON PROCEDURE ChangeCust oner Addr ess
ON TABLE Custonmer COLUWN Last Nane;

124

Supported SQL DDL Statements

PARTITION TABLE

PARTITION TABLE — Specifiesthat atableis partitioned and which is the partitioning column.

Syntax

PARTITION TABLE table-name ON COLUMN column-name

Description

Partitioning a table specifies that different records are stored in different unique partitions, based on the
value of the specified column. The table table-name and column column-name must be valid, declared
elementsin the current DDL file or VoltDB generates an error when compiling the schema.

For atableto be partitioned, the partitioning column must be declared asNOT NULL. If you do not declare
a partitioning column of atablein the DDL, the table is assumed to be areplicated table.

Example

The following example partitions the table Employee on the column Employeel D.

PARTI TI ON TABLE Enpl oyee on COLUWN Enpl oyeel D

125

Appendix B. Supported SQL
Statements

This appendix describes the SQL syntax that VVoltDB supportsin stored procedures.

Thisisnot intended as a complete description of the SQL language and how it operates. Instead, it summa-
rizes the subset of standard SQL statements that are allowed in VoltDB and any exceptions or limitations
that application developers should be aware of.

The supported SQL statements are;

» DELETE
* INSERT
» SELECT
TRUNCATE TABLE
UPDATE

126

Supported SQL Statements

DELETE

DELETE — Deletes one or more records from the database.

Syntax

DELETE FROM table-name
[WHERE [NOT] boolean-expression [{AND | OR} [NOT] boolean-expression]...]

Description

The DELETE statement deletes rows from the specified table that meet the constraints of the WHERE
clause. The following limitations are important to note when using the DELETE statement in VVoltDB:

e The DELETE statement can operate on only one table at atime (no joins or subqueries).

» The WHERE expression supports the boolean operators: equals (=), not equals (!= or <>), greater than
(>), lessthan (<), greater than or equal to (>=), lessthan or equal to (<=), ISNULL, AND, OR, andNOT.
Note, however, although OR is supported syntactically, VoltDB does not optimize these operations and
use of OR may impact the performance of your queries.

Examples

The following example removes rows from the EMPLOY EE table where the EMPLOYEE_ID column
isequal to 145303.

DELETE FROM enpl oyee WHERE enpl oyee id = 145303;

The following example removes rows from the BID table where the BIDDERID is 12345 and the BID-
PRICE isless than 100.00.

DELETE FROM bi d WHERE bi dderi d=12345 AND bi dpri ce<100. O;

127

Supported SQL Statements

INSERT

INSERT — creates a new row in the database, using the specified values for the columns.

Syntax

INSERT INTO table-name [(column-name [,...])] VALUES (value-expression [,...])

Description

The INSERT statement creates a new row in the database. If you specify the column names, the values
will be assigned to the columnsin the order specified. If you do not specify the column names, values will
be assigned to columns based on the order specified in the schema definition.

You can specify a subset of the columns in the table by specifying the column names and their desired
values. However, you must specify values for any columns that are explicitly defined in the schema as
NOT NULL and do not have a default value assigned.

VoltDB supports the following arithmetic operators in expressions: addition (+), subtraction (-), multipli-
cation (*), and division (*).

Examples

The following example inserts values into the columns (firstname, mi, lastname, and emp_id) of an EM-
PLOYEE table:

| NSERT | NTO enpl oyee VALUES ('Jane', 'Q, 'Public', 145303);

The next example performs the same operation with the same results, except this INSERT statement ex-
plicitly identifies the column names and changes the order:

| NSERT | NTO enpl oyee (enp_id, |astnane, firstname, mi)
VALUES (145303, 'Public', 'Jane', 'Q);

Thelast example assigns valuesfor the employee I D and thefirst and last names, but not the middleinitial.
This query will only succeed if the M1 column is nullable or has a default value defined in the database
schema.

I NSERT | NTO enpl oyee (enp_id, |astnanme, firstnane)
VALUES (145304, "Doe", "John");

128

Supported SQL Statements

SELECT

SELECT — fetches the specified rows and columns from the database.

Syntax

Select-statement [{set-operator} Select-statement] ...

Select-statement:
SELECT [TOP integer-value]
{* | [ALL | DISTINCT] { column-name | selection-expression } [AS alias] [,...] }
FROM { table-reference } [join-clause]...
[WHERE [NOT] boolean-expression [{AND | OR} [NOT] boolean-expression]...]
[clause...]

table-reference:
{ table-name [AS alias] | view-name [AS alias] | sub-query AS alias }

sub-query:
(Select-statement)

join-clause:
,table-reference
[INNER | {LEFT | RIGHT} [OUTER]] JOIN [{table-reference}] [join-condition]

join-condition:
ON conditional-expression
USING (column-reference [,...])

clause:
ORDER BY { column-name | alias } [ASC | DESC] [,...]
GROUP BY { column-name | alias } [,...]
LIMIT integer-value [OFFSET row-count]

set-operator:
UNION JALL]
INTERSECT [ALL]
EXCEPT

Description

The SELECT statement retrieves the specified rows and columns from the database, filtered and sorted
by any clauses that are included in the statement. In its simplest form, the SELECT statement retrieves
the values associated with individual columns. However, the selection expression can be a function such
as COUNT and SUM.

The following features and limitations are important to note when using the SELECT statement with
VoltDB:

e SeeAppendix C, SQL Functions for afull list of the SQL functions the VoltDB supports.

» VoltDB supportsthe following operatorsin expressions: addition (+), subtraction (-), multiplication (*),
division (*) and string concatenation (]]).

e TOP nisasynonymforLIM T n.

129

Supported SQL Statements

» The WHERE expression supports the boolean operators. equals (=), not equals (= or <>), greater than
(>), less than (<), greater than or equal to (>=), less than or equal to (<=), LIKE, IS NULL, AND,
OR, and NOT. Note, however, although OR is supported syntactically, VoltDB does not optimize these
operations and use of OR may impact the performance of your queries.

» The boolean expression LIKE provides text pattern matching in a VARCHAR column. The syntax of
the LIKE expression is{stri ng- expression} LIKE '{pattern}' wherethe pattern can
contain text and wildcards, including the underscore (_) for matching asingle character and the percent
sign (%) for matching zero or more characters. The string comparison is case sensitive.

Where an index exists on the column being scanned and the pattern starts with atext prefix (rather than
starting with awildcard), VoltDB will attempt to use theindex to maximize performance, For example, a
query limiting the resultsto rows from the EMPL OY EE table where the primary index, the JOB_ CODE
column, begins with the characters "Temp" looks like this:

SELECT * from EMPLOYEE where JOB_CCDE |i ke ' Temp% ;

» The boolean expression IN determinesif a given value is found within alist of aternatives. For exam-
ple, in the following code fragment the IN expression looks to see if arecord is part of Hispaniola by
eval uating whether the column COUNTRY is equal to either "Dominican Republic"' or "Haiti":

WHERE Country IN (' Dom nican Republic', "Haiti')

Note that the list of alternatives must be enclosed in parentheses. The result of an IN expression is
equivalent to a sequence of equality conditions separated by OR. So the preceding code fragment pro-
duces the same boolean result as:

WHERE Country="'Domi ni can Republic' OR Country='Haiti'

The advantages are that the IN syntax provides more compact and readable code and can provide im-
proved performance by using an index on theinitial expression where available.

» When using placeholdersin SQL statementsinvolving the IN list expression, you can either do replace-
ment of individual values within the list or replace the list as a whole. For example, consider the fol-
lowing statements:

SELECT * from EMPLOYEE where STATUS IN (?, ?,7?);
SELECT * from EMPLOYEE where STATUS IN ?;

In the first statement, there are three parameters that replace individual valuesin the IN list, alowing
you to specify exactly three selection values. In the second statement the placeholder replacesthe entire
list, including the parentheses. In this case the parameter to the procedure call must be an array and
allows you to change not only the values of the alternatives but the number of criteria considered.

Thefollowing Javacode fragment demonstrates how thesetwo queries can be used in astored procedure,
resulting in equivalent SQL statements being executed:

String argl = "Sal ery";
String arg2 = "Hourly";
String arg3 = "Parttime";

vol t QueueSQL(queryl, argl, arg2, arg3);

String listargs[] = new String[3];

listargs[0] = argl;
listargs[1l] = arg2;
listargs[2] = arg3;

130

Supported SQL Statements

vol t QueueSQL(query2, (Object) listargs);

Note that when passing arrays as parameters in Java, it is a good practice to explicitly cast them as an
object to avoid the array being implicitly expanded into individual call parameters.

» VoltDB supports both inner and outer joins. However, you cannot join atable to itself.

e The SELECT statement supports subqueries as atable reference in the FROM clause. Subqueries must
be enclosed in parentheses and must be assigned atable alias. Subqueries havethefollowing limitations:

« SELECT statements containing subqueries that execute as an ad hoc statement or as part of a mul-
ti-partition stored procedure can access replicated tables only. They cannot contain referencesto par-
titioned tables. Note this restriction applies to the entire query, not just the subquery.

* In partitioned stored procedures, SELECT statements containing subqueries can access both parti-
tioned tables and replicated tables.

Subqueries are only supported in the SELECT statement; they cannot be used in data manipulation
statements such UPDATE or DELETE.

* You can only join two or more partitioned tables if those tables are partitioned on the same value and
joined on equality of the partitioning column. Joining two partitioned tables on non-partitioned columns
or on arange of valuesisnot supported. However, there are no limitations on joining to replicated tables.

» Extremely large result sets (greater than 50 megabytes in size) are not supported. If you execute a
SELECT statement that generates a result set of more than 50 megabytes, VoltDB will return an error.

Set Operations

VolItDB also supports the set operations UNION, INTERSECT, and EXCEPT. These keywords let you
perform set operations on two or more SELECT statements. UNION includes the combined results sets
from the two SELECT statements, INTERSECT includes only those rows that appear in both SELECT
statement result sets, and EXCEPT includes only those rows that appear in one result set but not the other.

Normally, UNION and INTERSECT provide a set including unique rows. That is, if a row appears in
both SELECT results, it only appears once in the combined result set. However, if you include the ALL
modifier, all matching rows are included. For example, UNION ALL will result in single entries for the
rows that appear in only one of the SELECT results, but two copies of any rows that appear in both.

The UNION, INTERSECT, and EXCEPT operations obey the same rules that apply to joins:
* You cannot perform set operations on SELECT statements that reference the sametable.

» All tablesin the SELECT statements must either be replicated tables or partitioned tables partitioned
on the same column value, using equality of the partitioning column in the WHERE clause.

Examples

The following example retrieves all of the columns from the EMPLOY EE table where the last name is
"Smith":

SELECT * FROM enpl oyee WHERE | astnane = 'Smith';
Thefollowing example retrieves selected columnsfor two tables at once, joined by the employee id using

an implicit inner join and sorted by last name:

131

Supported SQL Statements

SELECT | astname, firstnanme, salary
FROM enpl oyee AS e, conpensation AS c
WHERE e. empl oyee_id = c.enployee_id
ORDER BY | ast nane DESC;

The following example includes both a simple SQL query defined in the schema and a client application
to call the procedure repeatedly. This combination usesthe LIMIT and OFFSET clausesto "page" through
alargetable, 500 rows at atime.

When retrieving very large volumes of data, it isagood ideato use LIMIT and OFFSET to constrain the
amount of datain each transaction. However, to perform LIMIT OFFSET queries effectively, the database
must include atree index that encompasses all of the columns of the ORDER BY clause (in this example,
the lastname and firsthame columns).

Schema:

CREATE PROCEDURE EnpByLinmit AS
SELECT | ast nanme, firstnanme FROM enpl oyee
VWHERE conmpany = ?
ORDER BY | astnane ASC, firstnane ASC
LIMT 500 OFFSET ?;

PARTI TI ON PROCEDURE EnpByLinmit ON TABLE Enpl oyee COLUWN Conpany;
Java Client Application:

| ong offset = 0;
String conpany = "ACME Expl osives";
bool ean al | done = fal se;
while (! alldone) {
Vol t Table results[] = client.callProcedure("EnpByLimt",
conpany, of fset) . get Resul ts();
if (results[0].getRowCount() < 1) {
/1 No nmore records.
al | done = true;
} else {
/1 do sonething with the results.

}
of fset += 500;

132

Supported SQL Statements

TRUNCATE TABLE

TRUNCATE TABLE — Deletes all records from the specified table.

Syntax

TRUNCATE TABLE table-name

Description

The TRUNCATE TABLE statement deletes all of the records from the specified table. TRUNCATE TA-
BLE is the same as the statement DELETE FROM {t abl e- nane} with no selection clause. These
statements contain optimizations to increase performance and reduce memory usage over an equivalent
DELETE statement containing a WHERE selection clause.

Thefollowing behavior isimportant to remember when using the TRUNCATE TABLE statement in Volt-
DB:

» Executing a TRUNCATE TABLE query on a partitioned table within a single-partitioned stored pro-
cedure will only delete the records within the current partition. Records in other partitions will be un-
affected.

* You cannot execute a TRUNCATE TABLE query on areplicated table from within a single-partition
stored procedure. To truncate a replicated table you must execute the query within a multi-partition
stored procedure or as an ad hoc query.

Examples

The following example removes all data from the CURRENT_STANDINGS table;

TRUNCATE TABLE Current _standi ngs;

133

Supported SQL Statements

UPDATE

UPDATE — updates the values within the specified columns and rows of the database.

Syntax

UPDATE table-name SET column-name = value-expression [, ...]
[WHERE [NOT] boolean-expression [{AND | OR} [NOT] boolean-expression]...]

Description

The UPDATE statement changes the values of columns within the specified records. The following limi-
tations are important to note when using the UPDATE statement with VVoltDB:

 VoltDB supports the following arithmetic operators in expressions. addition (+), subtraction (-), multi-
plication (*), and division (*).

» The WHERE expression supports the boolean operators: equals (=), not equals (!= or <>), greater than
(>), lessthan (<), greater than or equal to (>=), lessthan or equal to (<=), ISNULL, AND, OR, andNOT.
Note, however, although OR is supported syntactically, VoltDB does not optimize these operations and
use of OR may impact the performance of your queries.

Examples

The following example changes the ADDRESS column of the EMPLOY EE record with an employee ID
of 145303:

UPDATE enpl oyee
SET address = '49 Lavender Sweep'
WHERE enpl oyee_id = 145303;

The following example increases the starting price by 25% for all ITEM records with a category ID of 7:

UPDATE item SET startprice = startprice * 1.25 WHERE categoryid = 7;

134

Appendix C. SQL Functions

Functions let you aggregate column values and perform other calculations and transformations on data
within your SQL queries. This appendix liststhe functions al phabetically, describing for each their syntax
and purpose. The functions can also be grouped by the type of datathey produce or operate on, as listed
below.

Column Aggregation Functions

« AVG()
COUNT()
. MAX()
MIN()
SUM()

Date and Time Functions

« CURRENT_TIMESTAMP
« EXTRACT()

« FROM_UNIXTIME()

- NOW

« SINCE_EPOCH()

« TO_TIMESTAMP()

« TRUNCATE()

JSON Functions

« ARRAY_ELEMENT()
« ARRAY_LENGTH()
« FIELD()

Logic and Conversion Functions

. CAST()
- DECODE()

M ath Function

- ABY()

« CEILING()
* EXP()

- FLOOR()
« POWER()

* SQRT()

String Functions

CHAR_LENGTH()
CONCAT()

LEFT()

LOWER()
OCTET_LENGTH()

135

SQL Functions

POSITION()
REPEAT()
RIGHT()
SPACE()
SUBSTRING()
UPPER()

136

SQL Functions

ABS()

ABS() — Returns the absolute value of a numeric expression.

Syntax

ABS(numeric-expression)

Description
The ABS() function returns the absolute value of the specified numeric expression.
Example

The following example sorts the results of a SELECT expression by its proximity to atarget value (spec-

ified by a placeholder), using the ABS() function to normalize values both above and below the intended
target.

SELECT price, product nanme FROM product |i st
ORDER BY ABS(price - ?) ASC

137

SQL Functions

ARRAY_ELEMENT()

ARRAY_ELEMENT() — Returns the element at the specified location in a JSON array.

Syntax

ARRAY_ELEMENT(JSON-array, element-position)

Description

The ARRAY_ELEMENTY() function extracts a single element from a JSON array. The array position is
zero-based. In other words, thefirst element inthearray isin position "0". The function returnsthe element
as astring. For example, the following function invocation returns the string "two":

ARRAY_ELEMENT('["zero", "one","two", "three"]", 2)

Note that the array element isalwaysreturned asa string. So in the following example, the function returns
"2" asastring rather than an integer:

ARRAY_ELEMENT('[0,1,2,3]",2)

Finally, the element may itself be a valid JSON-encoded object. For example, the following function
returns the string "[0,1,2,3]":

ARRAY ELEMENT('[[O0,1,2,3],["zero","one","tw","three"]]"', 0)

The ARRAY_ELEMENT() function can be combined with other functions, such as FIELD(), to traverse
more complex JSON structures. The function returns a NULL value if any of the following conditions
aretrue:

» The position argument is less than zero
» The position argument is greater than or equal to the length of the array
» The JSON string does not represent an array (that is, the string isavalid JSON scalar value or object)

The function returns an error if the first argument is not avalid JSON string.

Example

The following example uses the ARRAY_ELEMENT() function along with FIELD() to extract specific
array elements from onefield in a JSON-encoded VARCHAR column:

SELECT | anguage,
ARRAY_ELEMENT(FI ELD(wor ds, ' colors'), 1) AS col or,
ARRAY_ELEMENT(FI ELD(wor ds, ' nunbers'), 2) AS nunber
FROM wor | d_I| anguages WHERE | anguage = ' French';

Assuming the column words has the following structure, the query returns the strings "French’, "vert",

and "trois".

{"colors":["rouge","vert","bleu"],
“nunbers":["un","deux","trois"]}

138

SQL Functions

ARRAY_LENGTH()

ARRAY _L ENGTH() — returns the number of elementsin a JSON array.

Syntax

ARRAY_LENGTH(JSON-array)

Description

The ARRAY_LENGTH() returns the length of a JSON array; that is, the number of elements the array
contains. The length is returned as an integer.

The ARRAY _LENGTH)() function can be combined with other functions, such as FIELD(), to traverse
more complex JSON structures.

The function returns NULL if the argument is a valid JSON string but does not represent an array. The
function returns an error if the argument is not avalid JSON string.

Example

Thefollowing example usesthe ARRAY _LENGTH(), ARRAY_ELEMENTY(), and FIELD() functionsto
return the last element of an array in alarger JSON string. The functions perform the following actions:

* Innermost, the FIEL D() function extractsthe JSON field "alerts’, which isassumed to be an array, from
the column messages.

* ARRAY_LENGTH() determines the number of elementsin the array.

* ARRAY_ELEMENT() returns the last element based on the value of ARRAY _LENGTH() minus one
(because the array positions are zero-based).

SELECT ARRAY_ELEMENT(FI ELD(messages, 'al erts'),
ARRAY_ LENGTH(FI ELD(nessages, 'alerts'))-1) AS last_alert,
station FROM report! og
WHERE st ati on=7?;

139

SQL Functions

AVG()

AVG() — Returns the average of arange of numeric column values.

Syntax

AVG(column-expression)

Description

The AV G() function returns the average of arange of numeric column values. The values being averaged
depend on the constraints defined by the WHERE and GROUP BY clauses.

Example

The following example returns the average price for each product category.

SELECT AVQE price), category FROM product |i st
GROUP BY cat egory ORDER BY category;

140

SQL Functions

CAST()

CAST() — explicitly converts an expression to the specified datatype.

Syntax

CAST(expression AS datatype)

Description

The CAST() function converts an expression to a specified datatype. Cases where casting is beneficial
include when converting between numeric types (such as integer and float) or when converting a numeric
value to astring.

All numeric datatypes can be used as the source and numeric or string datatypes can be the target. When
converting from decimal values to integers, values are truncated. Where the runtime value cannot be con-
verted (for example, the value exceeds the maximum allowable value of the target datatype) an error is
thrown.

You cannot use VARBINARY or TIMESTAMP as either the target or the source datatype. Use the
TO_TIMESTAMP(), FROM_UNIXTIME(), and EXTRACT () functionsto convert to and from timestamp
values.

Theresult of the CAST() function of anull value is the corresponding null in the target datatype.

Example

The following example uses the CAST() function to ensure the result of an expression is also afloating
point number and does not truncate the decimal portion.

SELECT contestant, CAST((votes * 100) as FLOAT) / ? as percentage
FROM cont est ORDER BY votes, contestant

141

SQL Functions

CEILING()

CEILING() — Returnsthe smallest integer value greater than or equal to a numeric expression.

Syntax

CEILING(numeric-expression)

Description

The CEILING() function returnsthe next integer greater than or equal to the specified numeric expression.
In other words, the CEILING() function "rounds up" numeric values. For example:

CEl LI N&(3. 1415) = 4
CEILING(2.0) = 2
CEI LING(-5.32) = -5

Example

The following example uses the CEILING function to cal culate the shipping costs for a product based on
its weight in the next whole number of pounds.

SELECT shi ppi ng. cost _per _I b * CEI LI N product. wei ght),

product. prod_i d FROM product, shipping
ORDER BY product . prod_i d;

142

SQL Functions

CHAR_LENGTH()

CHAR_LENGTH() — Returns the number of charactersin astring.

Syntax

CHAR_LENGTH(string-expression)

Description

The CHAR_LENGTH() function returns the number of text charactersin a string.

Note that the number of characters and the amount of physical space required to store those characters can
differ. To measure the length of the string, in bytes, use the OCTET_LENGTH() function.

Example

The following example returns the string in the column LastName as well as the number of characters and
length in bytes of that string.

SELECT Last Name, CHAR LENGTH(Last Nane), OCTET_LENGTH(Last Nane)
FROM Cust omer s ORDER BY Last Nane, First Nane;

143

SQL Functions

CONCAT()

CONCAT() — Concatenates two strings and returns the result.

Syntax

CONCAT(string-expression, string-expression)

Description

The CONCAT() function concatenatestwo stringsand returnstheresulting string. The string concatenation
operator || performs the same function as CONCAT)().

Example

The following example concatenates the contents of two columns as part of a SELECT expression.

SELECT price, CONCAT(category, part_nane) AS full _part_nane
FROM product |ist ORDER BY pri ce;

The next exampl e does something similar but usesthe || operator asashorthand to concatenate three strings,
two columns and a string constant, as part of a SELECT expression.

SELECT lastnanme || ', ' || firstname AS full _nane
FROM cust oners ORDER BY | ast nane, firstname;

144

SQL Functions

COUNT()

COUNT() — Returns the number of rows selected containing the specified column.

Syntax

COUNT(column-expression)

Description

The COUNT() function returns the number of rows selected for the specified column. Since the actual
value of the column is not used to calculate the count, you can use the asterisk (*) as awildcard for any
column. For example the query SELECT COUNT(*) FROM wi dget s returns the number of rowsin
thetablewi dget s, without needing to know what columns the table contains.

The one case where the column name is significant is if you use the DISTINCT clause to constrain the

selection expression. For example, SELECT COUNT(DI STI NCT | ast _nane) FROM cust oner
returns the count of unique last namesin the customer table.

Example

The following example returns the number of rowswhere the product name starts with the captial letter A.

SELECT COUNT(*) FROM product _|i st
VWHERE pr oduct _nane LIKE 'A% ;

The next example returns the total number of unique product categories in the product list.

SELECT CQOUNT(DI STI NCT cat egory) FROM product list;

145

SQL Functions

CURRENT_TIMESTAMP

CURRENT_TIMESTAMP — Returns the current time as a timestamp value.

Syntax

CURRENT_TIMESTAMP

Description

The CURRENT_TIMESTAMP function returnsthe current time as aV oltDB timestamp. The value of the
timestamp is determined when the query or stored procedure isinvoked. Several important aspects of how
the CURRENT_TIMESTAMP function operates are:

The value returned is guaranteed to be identical for all partitions that execute the query.
Thevaluereturned ismeasured in milliseconds then padded to create atimestamp val uein microseconds.

During command logging, the returned value is stored as part of the log, so when the command log is
replayed, the same value is used during the replay of the query.

Similarly, for database replication (DR) the value returned is passed and reused by the replica database
when replaying the query.

Y ou can specify CURRENT_TIMESTAMP asadefault valuein the CREATE TABLE statement when
defining the schema of aVoltDB database.

The CURRENT_TIMESTAMP function cannot be used in the CREATE INDEX or CREATE VIEW
statements.

The NOW and CURRENT_TIMESTAMP functions are synonyms and perform an identical function.

Examp

le

The following example uses CURRENT_TIMESTAMP in the WHERE clause to delete alert events that
occurred in the past:

DELETE FROM Al ert _event WHERE event _tinmestanp < CURRENT_TI MESTAMP;

146

SQL Functions

DECODE()

DECODE() — Evaluates an expression against one or more alternatives and returnsthe matching response.

Syntax

DECODE(expression, { comparison-value, result } [,...] [,default-result])

Description

The DECODE() function compares an expression against one or more possible comparison values. If the
expression matches the comparison-value, the associated result is returned. If the expression does not
match any of the comparison values, the default-result is returned. If the expression does not match any
comparison value and no default result is specified, the function returns NULL.

The DECODE() function operates the same way an IF-THEN-EL SE, or CASE statement does in other
languages.

Example

The following example uses the DECODE() function to interpret a coded data column and replace it with
the appropriate meaning for each code.

SELECT title, industry, DECODE(sal ary_range,

"A, 'under $25,000',

"B, '$25,000 - $34,999',

"C, '$35,000 - $49,999',

"D, '$50,000 - $74,999',

"E', '$75,000 - $99, 000",

"F', '$100, 000 and over',
"unspecified') fromsurvey_results

order by industry, title;

The next exampl e tests a value against three columns and returns the name of the column when a match
isfound, or a message indicating no match if noneis found.

SELECT product _nane, DECODE(?, product nane, ' PRODUCT NAME' ,
part _nanme, ' PART NAME' ,
category, ' CATEGORY',

" NO MATCH FOUND)
FROM product _|ist ORDER BY product nane;

147

SQL Functions

EXP()

EXP() — Returns the exponential of the specified numeric expression.

Syntax

EXP(numeric-expression)

Description

The EXP() function returns the exponential of the specified numeric expression. In other words, EXP(x)
isthe equivalent of the mathematical expression €.

Example

The following example uses the EXP function to calculate the potential population of certain species of
animal projecting out ten years.

SELECT species, population AS current,
(popul ation/2) * EXP(10*(gestation/365)*litter) AS future
FROM ani mal s
WHERE species = "rabbit"
ORDER BY popul ati on;

148

SQL Functions

EXTRACT()

EXTRACT() — Returns the value of a selected portion of atimestamp.

Syntax

EXTRACT(selection-keyword FROM timestamp-expression)

EXTRACT(selection-keyword, timestamp-expression)

Description

The EXTRACT() function returns the value of the selected portion of atimestamp. Table C.1, “ Selectable
Vaues for the EXTRACT Function” lists the supported keywords, the datatype of the value returned by
the function, and a description of its contents.

Table C.1. Selectable Values for the EXTRACT Function

Keyword Datatype Description

YEAR INTEGER The year as anumeric value.

QUARTER TINYINT The quarter of the year asasingle
numeric value between 1 and 4.

MONTH TINYINT The month of the year asanumer-
ic value between 1 and 12.

DAY TINYINT The day of the month asanumeric
value between 1 and 31.

DAY_OF WEEK TINYINT The day of the week as a numer-
ic value between 1 and 7, starting
with Sunday.

DAY _OF YEAR SMALLINT The day of the year as a numeric
value between 1 and 366.

HOUR TINYINT The hour of the day as a numeric
value between 0 and 23.

MINUTE TINYINT The minute of the hour as a nu-
meric value between 0 and 59.

SECOND DECIMAL The whole and fractional part of
the number of seconds within the
minute as a floating point value
between 0 and 60.

The timestamp expression isinterpreted as aVoltDB timestamp; That is, time measured in microseconds.

Example

The following example lists all the contacts by name and birthday, listing the birthday as three separate

fields for month, day, and year.

SELECT Last _nane,

149

first_name, EXTRACT(MONTH FROM dat eof birth),

SQL Functions

EXTRACT(DAY FROM dat eof bi rt h), EXTRACT(YEAR FROM dat eof bi rt h)
FROM contact _|i st
ORDER BY | ast _nane, first_nane;

150

SQL Functions

FIELD()

FIELD() — Extracts afield value from a JSON-encoded string column.

Syntax

FIELD(column, field-name)

Description

The FIELD() function extracts afield value from a JSON-encoded string. For example, assume the VAR-
CHAR column Profile contains the following JSON string:

{"first":"Charles","last":"Dickens","birth": 1812,
"description":{"genre":"fiction",
"period":"Victorian",
"output":"prolific"}

}

It is possible to extract individual field values using the FIELD() function, asin the following SELECT
Statement:

SELECT FIELD(profile,"first') AS firstnane,
FI ELD(profile,'last') AS |astnane FROM Aut hors;

It is also possible to find records based on individual JSON fields by using the FIELD() function in the
WHERE clause. For example, the following query retrieves all records from the Authors table where the
JSON field birthis 1812. Note that the FIEL D() function always returns a string, even if the JSON typeis
numeric. The comparison must match the string datatype, so the constant' 1812" isin quotation marks:

SELECT * FROM Aut hors WHERE FlI ELD(profile, ' birth') = '1812";

The FIELD() function only retrievesfirst-level fieldsin the JSON object. However, it is possible to delve
deeper into the JSON structure by nesting instances of the FIELD function, like so:

SELECT * FROM Aut hors WHERE
FI ELD{ FIELD(profile,' description'), ' period') = "Victorian';

Two important points to note concerning input to the FIELD() function:
« If the requested field name does not exist, the function returns anull value.

e Thefirst argument to the FIELD() function must be avalid JSON-encoded string. However, the content
isnot evaluated until thefunctionisinvoked at runtime. Therefore, it isthe responsibility of the database
application to ensure the validity of the content. If the FIELD() function encounters invalid content,
the query will fail.

Example

Thefollowing example usesthe FIEL D() function to both return specific JSON fieldswithinaVARCHAR
column and filter the results based on the value of athird JSON field:

SELECT product_nane, sku,

151

SQL Functions

FI ELD(speci fication, ' color') AS color,

FI ELD(speci fi cation, ' weight') AS weight FROM I nventory
WHERE FI ELD(speci fi cation, 'category') = 'housewares’
ORDER BY product _nane, sku;

152

SQL Functions

FLOOR()

FLOOR() — Returnsthe largest integer value less than or equal to a numeric expression.

Syntax

FLOOR(numeric-expression)

Description

The FLOOR() function returns the largest integer less then or equal to the specified numeric expression.
In other words, the FLOOR() function truncates fractional numeric values. For example:

FLOOR(3. 1415) = 3
FLOOR(2.0) = 2
FLOOR(-5.32) = -6

Example

The following example uses the FLOOR function to calculate the whole number of stocks owned by a
specific shareholder.

SELECT custoner, conpany,
FLOOR(num of _st ocks) AS stocks_avail able_for_sale
FROM shar ehol ders WHERE custoner _id = ?
ORDER BY conpany;,

153

SQL Functions

FROM_UNIXTIME()

FROM_UNIXTIME() — Convertsa UNIX time value to a VoltDB timestamp.

Syntax

FROM_UNIXTIME(integer-expression)

Description

The FROM_UNIXTIME() function converts an integer expression to a VVoltDB timestamp, interpreting
the integer value as a POSIX time value; that is the number of seconds since the epoch (00:00.00 on
January 1, 1970 Consolidated Universal Time). Thisfunctionisasynonymfor TO_TIMESTAM P(second,
integer-expression).

Example

Thefollowing exampleinserts arecord using FROM_UNIXTIME to convert the first argument, a POSI X
time value, into a VoltDB timestamp:

| NSERT event (when, what, where) VALUES (FROML UNI X_TIME(?),?,?);

154

SQL Functions

LEFT()

LEFT() — Returns a substring from the beginning of a string.

Syntax

LEFT(string-expression, numeric-expression)

Description

The LEFT() function returnsthefirst n charactersfrom astring expression, where nisthe second argument
to the function.

Example

The following example uses the LEFT function to return an abbreviation (the first three characters) of the
product category as part of the SELECT expression.

SELECT LEFT(category, 3), product_nane, price FROM product i st
ORDER BY cat egory, product_naneg;

155

SQL Functions

LOWER()

LOWER() — Returns a string converted to all lowercase characters.

Syntax

LOWER(string-expression)

Description

The LOWER() function returns a copy of the input string converted to all lowercase characters.

Example

The following example uses the LOWER function to perform a case-insensitive search of aVARCHAR
field.

SELECT product _nane, product_id FROM product |i st
VWHERE LOWER(product _namne) LIKE "~acme%
ORDER BY product _nane, product _id

156

SQL Functions

MAX()

MAX() — Returns the maximum value from arange of column values.

Syntax

MAX(column-expression)

Description

The MAX() function returnsthe highest value from arange of column values. The range of values depends
on the constraints defined by the WHERE and GROUP BY clauses.

Example

The following example returns the highest price in the product list.
SELECT MAX(price) FROM product |ist;
The next example returns the highest price for each product category.

SELECT category, MAX(price) FROM product |i st
GROUP BY cat egory
ORDER BY cat egory;

157

SQL Functions

MIN()

MIN() — Returns the minimum value from arange of column values.

Syntax

MIN(column-expression)

Description

The MIN() function returns the lowest value from arange of column values. The range of values depends
on the constraints defined by the WHERE and GROUP BY clauses.

Example

The following example returns the lowest price in the product list.
SELECT M N(price) FROM product |ist;
The next example returns the lowest price for each product category.

SELECT category, M N(price) FROM product |i st
GROUP BY cat egory
ORDER BY cat egory;

158

SQL Functions

NOW

NOW — Returns the current time as a timestamp value.

Syntax

NOW

Description

The NOW function returns the current time as a VoltDB timestamp. The value of the timestamp is deter-
mined when the query or stored procedure isinvoked. Several important aspects of how the NOW function
operates are:

The value returned is guaranteed to be identical for all partitions that execute the query.
Thevaluereturned ismeasured in milliseconds then padded to create atimestamp val uein microseconds.

During command logging, the returned value is stored as part of the log, so when the command log is
replayed, the same value is used during the replay of the query.

Similarly, for database replication (DR) the value returned is passed and reused by the replica database
when replaying the query.

Y ou can specify NOW as a default value in the CREATE TABLE statement when defining the schema
of aVoltDB database.

The NOW function cannot be used in the CREATE INDEX or CREATE VIEW statements.

The NOW and CURRENT_TIMESTAMP functions are synonyms and perform an identical function.

Example

The following example uses NOW in the WHERE clause to delete aert events that occurred in the past:

DELETE FROM Al ert _event WHERE event _timestanp < NOW

159

SQL Functions

OCTET_LENGTH)()

OCTET_LENGTH() — Returns the number of bytesin a string.

Syntax

OCTET_LENGTH(string-expression)

Description

The OCTET_LENGTH() function returns the number of bytes of datain a string.

Note that the number of bytes required to store a string and the actual characters that make up the string
can differ. To count the number of charactersin the string use the CHAR_LENGTH() function.

Example

The following example returns the string in the column LastName as well as the number of characters and
length in bytes of that string.

SELECT Last Name, CHAR LENGTH(Last Nane), OCTET_LENGTH(Last Nane)
FROM Cust omer s ORDER BY Last Nane, First Nane;

160

SQL Functions

POSITION()

POSITION() — Returns the starting position of a substring in another string.

Syntax

POSITION(substring-expression IN string-expression)

Description

The POSITION() function returns the starting position of a substring in another string. The position, if a
match isfound, is an integer number between one and the length of the string being searched. If no match
isfound, the function returns zero.

Example

Thefollowing example selects all books where the title contains the word "poodl€" and returns the book's
title and the position of the substring "poodl€e” in the title.

SELECT Title, POSITION(' poodle' IN Title) FROM Books
WHERE Title LIKE ' %oodl e% ORDER BY Title;

161

SQL Functions

POWER()

POWER() — Returns the value of the first argument raised to the power of the second argument.

Syntax

POWER(numeric-expression, humeric-expression)

Description

The POWER() function takes two numeric expressions and returns the val ue of thefirst raised to the power
of the second. In other words, POWER(x,y) is the equivalent of the mathematical expression x”.

Example

The following example uses the POWER function to return the surface area and volume of a cube.

SELECT length, 6 * PONER(| ength, 2) AS surface,
POAER(| engt h, 3) AS vol une FROM Cube
ORDER BY | engt h;

162

SQL Functions

REPEAT()

REPEAT() — Returns a string composed of a substring repeated the specified number of times.

Syntax

REPEAT(string-expression, numeric-expression)

Description

The REPEAT() function returns a string composed of the substring string-expression repeated n times
where n is defined by the second argument to the function.

Example

Thefollowing example usesthe REPEAT and the CHAR_LENGTH functionsto replace acolumn's actual
contents with a mask composed of the letter "X" the same length as the origina column value.

SELECT usernanme, REPEAT(' X', CHAR LENGTH(password)) as Password
FROM account s ORDER BY user nane;

163

SQL Functions

RIGHT()

RIGHT() — Returns a substring from the end of a string.

Syntax

RIGHT(string-expression, humeric-expression)

Description

TheRIGHT() function returnsthelast n charactersfrom astring expression, where nisthe second argument
to the function.

Example

The following example uses the LEFT() and RIGHT() functions to return an abbreviated summary of the
Description column, ensuring the result fits within 20 characters.

SELECT product _nane,
LEFT(description,10) || '..." || R GHT(description,7)
FROM product |ist ORDER BY product nane;

164

SQL Functions

SINCE_EPOCH()

SINCE_EPOCH() — Converts a VoltDB timestamp to an integer number of time units since the POSIX
epoch.

Syntax

SINCE_EPOCH(time-unit, timestamp-expression)

Description

The SINCE_EPOCH() function converts aVoltDB timestamp into an 64-bit integer value (BIGINT) rep-
resenting the equivalent number since the POSIX epoch in a specified time unit. POSIX time is usually
represented as the number of seconds since the epoch; that is, since 00:00.00 on January 1, 1970 Consoli-
dated Universal Time (UTC). So thefunction SINCE_EPOCH(SECONDS, timestamp) returnsthe POSI X
time equivalent for the value of timestamp. However, you can also request the number of milliseconds or
microseconds since the epoch. The valid keywords for specifying the time units are:

» SECOND — Seconds since the epoch
* MILLISECOND, MILLIS— Milliseconds since the epoch
* MICROSECOND, MICROS — Microseconds since the epoch

You cannot perform arithmetic on timestamps directly. So SINCE_EPOCH() is useful for performing
calculations on timestamp valuesin SQL expressions. For exampl e, thefollowing SQL statement looksfor
eventsthat arelessthan aminutein length, based on thetimestamp columns STARTTIME and ENDTIME:

SELECT * FROM Event
WHERE (SI NCE_EPOCH(Second, endti nme)
- SI NCE_EPOCH(Second, starttinme)) < 60;

The TO_TIMESTAMP() function performs the inverse of SINCE_EPOCH(), by converting an integer
value to a VoltDB timestamp based on the specified time units.

Example

The following example returns atimestamp column as the equivalent POSIX time value.

SELECT event _id, event_nane,
SI NCE_EPCCH(Second, starttinme) as posix_tinme FROM Event
ORDER BY event _i d;

The next example uses SINCE_EPOCH() to return the length of an event, in microseconds, by calculating
the difference between two timestamp columns.

SELECT event _type,
SI NCE_EPCCH(M cr osecond, endtine)
- SI NCE_EPOCH(M crosecond, starttine) AS delta
FROM Event GROUP BY event _type;

165

SQL Functions

SPACE()

SPACE() — Returns a string of spaces of the specified length.

Syntax

SPACE(humeric-expression)

Description

The SPACE() function returns a string composed of n spaces where the string length n is specified by the
function's argument. SPACE(n) isa synonym for REPEAT(* ', n).

Example

The following example uses the SPACE and CHAR_LENGTH functions to ensure the result is a fixed
length, padded with blank spaces.

SELECT product_nane || SPACE(80 - CHAR LENGTH(product nane))
FROM product |ist ORDER BY product nane;

166

SQL Functions

SQRT()

SQRT() — Returns the square root of a numeric expression.

Syntax

SQRT(numeric-expression)

Description

The SQRT() function returns the square root of the specified numeric expression.

Example

Thefollowing example uses the SQRT and POWER functions to return the distance of agraph point from
the origin.

SELECT | ocation, X, v,
SQRT(POVER(x, 2) + PONER(Y, 2)) AS distance
FROM poi nts ORDER BY | ocati on;

167

SQL Functions

SUBSTRING()

SUBSTRING() — Returns the specified portion of a string expression.

Syntax

SUBSTRING(string-expression FROM position [TO length])

SUBSTRING(string-expression, position [, length])

Description

The SUBSTRING() function returns a specified portion of the string expression, where position specifies
the starting position of the substring (starting at position 1) and length specifies the maximum length of
the substring. The length of the returned substring is the lower of the remaining characters in the string
expression or the value specified by length.

For example, if the string expression is"ABCDEF" and position is specified as 3, the substring startswith
the character "C". If length is also specified as 3, the return value is "CDE". If, however, the length is
specified as 5, only the remaining four characters "CDEF" are returned.

If length is not specified, the remainder of the string, starting from the specified by position, is returned.
For example, SUBSTRING("ABCDEF",3) and SUBSTRING("ABCDEF"3,4) return the same value.

Example

The following example uses the SUBSTRING function to return the month of the year, whichisaVAR-
CHAR column, as athree |etter abbreviation.

SELECT event, SUBSTRI NG nonth, 1, 3), day, year FROM cal endar
ORDER BY event ASC;

168

SQL Functions

SUM()

SUM() — Returns the sum of arange of numeric column values.

Syntax

SUM(column-expression)

Description

The SUM() function returnsthe sum of arange of numeric column values. The values being added together
depend on the constraints defined by the WHERE and GROUP BY clauses.

Example

Thefollowing example uses the SUM () function to determine how much inventory existsfor each product
type in the catalog.

SELECT category, SUMquantity) AS inventory FROM product |i st
GROUP BY cat egory ORDER BY category;

169

SQL Functions

TO_TIMESTAMP()

TO_TIMESTAMP() — Convertsan integer valueto aVoltDB timestamp based on the time unit specified.

Syntax

TO_TIMESTAMP(time-unit, integer-expression)

Description

The TO_TIMESTAMP() function converts an integer expression to aVoltDB timestamp, interpreting the
integer value as the number of specified time units since the POSIX epoch. POSIX timeis usualy repre-
sented as the number of seconds since the epoch; that is, since 00:00.00 on January 1, 1970 Consolidat-
ed Universal Time (UTC). So the function TO_TIMESTAMP(Second, timeinsecs) returns the VoltDB
TIMESTAMP equivalent of timeinsecs asa POSIX time value. However, you can a so request the integer
value be interpreted as milliseconds or microseconds since the epoch. The valid keywords for specifying
the time units are;

» SECOND — Seconds since the epoch
* MILLISECOND. MILLIS— Milliseconds since the epoch
* MICROSECOND, MICROS — Microseconds since the epoch

Y ou cannot perform arithmetic on timestampsdirectly. SoTO_TIMESTAMP() isuseful for converting the
results of arithmetic expressionsto VoltDB TIMESTAMP values. For example, the following SQL state-
ment uses TO_TIMESTAMP to convert a POSIX time value before inserting it into a VoltDB TIMES-
TAMP column:

| NSERT Event (event _id, event nane, event type, starttine)
VALUES(?, ?, ?, TO_TI MESTAMP(Second, ?));

The SINCE_EPOCH() function performs the inverse of TO_TIMESTAMP(), by converting a VoltDB
TIMESTAMP to an integer value based on the specified time units.

Example

Thefollowing example updatesa TIMESTAMP column, adding one hour (in seconds) to the current value
using SINCE_EPOCH() and TO_TIMESTAMP() to perform the conversion and arithmetic:

UPDATE Cont est
SET deadl i ne=TO_TI MESTAMP(Second, SI NCE_EPOCH(Second, deadl i ne) + 3600)
WHERE expi red=1;

170

SQL Functions

TRUNCATE()

TRUNCATE() — truncates a VVoltDB timestamp to the specified time unit.

Syntax

TRUNCATE(time-unit, timestamp)

Description

The TRUNCATE() function truncates a timestamp value to the specified time unit. For example,
if the timestamp column Apollo has the value July 20, 1969 4:17:40 P.M, then using the function
TRUNCATE(hour,apollo) would return the value July 20, 1969 4:00:00 P.M. Allowable time units for
truncation include the following:

- YEAR

« QUARTER

« MONTH

. DAY

« HOUR

« MINUTE

« SECOND

« MILLISECOND, MILLIS

Example

The following example uses the TRUNCATE function to find records where the timestamp column, inci-
dent, fallswithin a specific day, entered asa POSIX time value.

SELECT incident, description FROM securityl og
VWHERE TRUNCATE(DAY, incident) = TRUNCATE(DAY, FROM UNI XTI ME(?))
ORDER BY incident, description;

171

SQL Functions

UPPER()

UPPER() — Returns a string converted to all uppercase characters.

Syntax

UPPER(string-expression)

Description

The UPPER() function returns a copy of the input string converted to all uppercase characters.

Example

The following example uses the UPPER function to return results al phabetically regardless of case.

SELECT UPPER(product nane), product_id FROM product i st
ORDER BY UPPER(pr oduct nane)

172

Appendix D. VoltDB CLI Commands

VolItDB provides shell or CLI (command line interpreter) commands to perform common functions for
developing, starting, and managing VoltDB applications and databases. This appendix describes those
shell commands in detail.

The commands are listed in al phabetical order.

» csvloader
* dragent

* sglemd
 voltadmin
» voltdb

173

VoltDB CLI Commands

csvloader

csvloader — Imports the contents of a CSV fileand insertsit into a VoltDB table.

Syntax

csvloader table-name [arguments]

csvloader -p procedure-name [arguments]

Description

The csvloader command reads comma-separated valuesand insertseach valid line of datainto the specified
tablein aVoltDB database. The most common way to use csvloader isto specify the database table to be
loaded and a CSV file containing the data, like so:

$ csvl oader enpl oyees -f acne_enpl oyees. csv
Alternately, you can use standard input as the source of the data:
$ csvl oader enpl oyees < acne_enpl oyees. csv

In addition to inserting all valid content into the specified database table, csvlioader creates three output
files:

e Error log— Theerror log provides details concerning any errors that occur while processing the input
file. Thisincludes errorsin the format of theinput aswell as errorsthat occur attempting the insert into
VoltDB. For example, if two rows contain the same value for a column that is declared as unique, the
error log indicates that the second insert fails due to a constraint violation.

» Failed input — A separate file contains the contents of each line that failed to load. Thisfileis useful
becauseit allowsyou to correct any formatting issues and retry just the failed content, rather than having
to restart and reload the entire table.

* Summary report — Once al input lines are processed, csvloader generates a summary report listing
how many lines were read, how many were successfully loaded and how long the operation took.

All three files are created, by default, in the current working directory using "csvlioader" and the table
name as prefixes. For example, using csvloader to insert contestants into the sample voter database creates
the following files:

csvloader_contestants_insert_log.log
csvloader_contestants_invalidrows.csv
csvloader_contestants_insert_report.log

It is possible to use csvlioader to load text files other than CSV files, using the - - separ at or, - -
guot echar , and - - escape flags. Note that csvloader uses Python to process the command line argu-
ments. So to enter certain non-al phanumeric characters, you must use the appropriate escaping mechanism
for Python command lines. For example, to use atab-delimited file asinput, you need to usethe - - sep-
ar at or flag, escaping the tab character like so:

$ csvl oader --separator=$'\t' \
-f enpl oyees.tab enpl oyees

174

VoltDB CLI Commands

Arguments

--batch {integer}
Specifies the number of rows to submit in a batch. If you do not specify an insert procedure, rows of
input are sent in batches to maximize overall throughput. Y ou can specify how many rows are sent
in each batch using the - - bat ch flag. The default batch sizeis 200. If you usethe - - pr ocedur e
flag, no batching occurs and each row is sent separately.

--blank {error | null | empty }
Specifies what to do with missing valuesin the input. By default, if aline contains a missing value,
an error is reported and the input line ignored. If you do not want missing values to be interpreted as
an error, you can use the --blank argument to specify other behaviors. Specifying - - bl ank nul |
entersanull, in the appropriate datatype, as the column value. Specifying - - bl ank enpty returns
the corresponding "empty" value in the appropriate datatype. An empty value is interpreted as the
following:

» Zerofor al numeric columns
» Zero, or the Unix epoch value, for timestamp columns
» Anempty or zero-length string for VARCHAR and VARBINARY columns

--columnsizelimit {integer}
Specifies the maximum size of quoted column input, in bytes. Mismatched quotation marks in the
input can cause csvloader to read all subsequent input — including line breaks— as part of the column.
To avoid excessive memory usein thissituation, the flag setsalimit on the maximum number of bytes
that will be accepted as input for a column that is enclosed in quotation marks and spans multiple
lines. The default is 16777216 (that is, 16MB).

--escape {character}
Specifies the escape character that must precede a separator or quotation character that is supposed to
beinterpreted asaliteral character in the CSV input. The default escape character isthe backslash (\).

-f, --file {file-specification}
Specifies the location of a CSV file to read as input. If you do not specify an input file, csvlioader
reads input from standard input.

--limitrows {integer}
Specifies the maximum number of rows to be read from the input stream. This argument (along with
--skip) lets you load a subset of alarger CSV file.

-m, --maxerrors {integer}
Specifiesthetarget number of errors before csvloader stops processing input. Once csvloader encoun-
ters the specified number of errors while trying to insert rows, it will stop reading input and end the
process. Note that, since csvloader performs inserts asynchronoudly, it often attempts more inserts
before the target number of exceptions are returned from the database. So it is possible more errors
could be returned after the target is met. This argument lets you conditionally stop a large loading
process if more than an acceptable number of errors occur.

--nowhitespace
Specifiesthat the CSV input must not contain any whitespace between data values and separators. By
default, csvloader ignores extra space between values, quotation marks, and the value separators. If
you use thisargument, any input lines containing whitespace will generate an error and not beinserted
into the database.

175

VoltDB CLI Commands

--password {text]
Specifies the password to use when connecting to the database. Y ou must specify a username and
password if security is enabled for the database.

--port {port-number}
Specifies the network port to use when connecting to the database. If you do not specify a port,
csvloader uses the default client port 21212.

-p, --procedure {procedure-name}
Specifies a stored procedure to use for loading each record from the data file. The named procedure
must exist in the database catalog and must accept the fields of the data record as input parameters.
By default, csvloader uses a custom procedure to batch multiple rows into a single insert operation.
If you explicitly name a procedure, batching does not occur.

--gquotechar {character}
Specifies the quotation character that is used to enclose values. By default, the quotation character is
the double quotation mark ().

-r, --reportdir {directory}
Specifies the directory where csvlioader writes the three output files. By default, csvlioader writes
output files to the current working directory. This argument lets you redirect output to an alternative
location.

--S, --servers=server-id[,...]
Specifies the network address of one or more nodes of a database cluster. By default, csvloader at-
temptstoinsert the CSV datainto adatabase on thelocal system (localhost). To load datainto aremote
database, use the --servers argument to specify the database nodes the loader should connect to.

--separator {charactor}
Specifies the character used to separate individual valuesin the input. By default, the separator char-
acter isthe commar(,).

--skip {integer}
Specifies the number of lines from the input stream to skip before inserting rows into the database.
This argument (along with --limitrows) lets you load a subset of alarger CSV file.

--gtrictquotes
Specifies that all valuesin the CSV input must be enclosed in quotation marks. If you use this argu-
ment, any input lines containing unquoted values will generate an error and not be inserted into the
database.

--user {text}

Specifies the username to use when connecting to the database. Y ou must specify a username and
password if security is enabled for the database.

Examples

Thefollowing example loadsthe datafrom aCSV file, | anguages. csv, into the helloworld table from
the Hello World example database and redirects the output files to the ./logs subfolder.

$ csvloader helloworld -f | anguages.csv -r ./l ogs
The following example performs the same function, providing the input interactively.

$ csvloader helloworld -r ./l ogs
“"Hell 0", "World", "English"

176

VoltDB CLI Commands

"Bonj our", "Monde", "French"
"Hol a", "Mundo", "Spanish"
"Hej ", "Verden", "Danish"
"G ao", "Mndo", "ltalian"
CTRL-D

177

VoltDB CLI Commands

dragent

dragent — Starts the database replication agent.

Syntax

dragent master server-id[:port-num] replica server-id[:port-num] [statsinterval seconds] [user-
name username-string password password-string]

Description

The dragent command starts the database replication agent and begins replicating the master database to
the replica. See Chapter 12, Database Replication for more information about the database replication
process.

Arguments

master server-id[:port-num]
Specifiesthe network address of one node from the master database cluster. The server-id canbean |P
address or hostname. The port number to connect to is optional. By default, the replication agent uses
three ports to connect to the master database server, starting with the default replication port (5555).
If adifferent replication port was specified when the database server was started, you must specify
that port number when starting the DR agent.

replica server-id[: port-num)
Specifies the network address of one node from the replica database cluster. The server-id can be an
IP address or hostname. The port number to connect to is optional. By default, the replication agent
uses the standard client port.

If security is enabled for the replica database, you must also specify a username and password as
additional arguments. For example, the following command connectsto the replica database antarctic
using the username penguin and password wheretheylive:

$ dragent naster arctic replica antarctic \
user nanme pengui n password wher et heylive

statsinterval seconds
Specifies the frequency with which the agent reports statistics concerning the replication throughput.
These statistics are useful in determining if replication is keeping up with the throughput from the
master database.

Example

The following example starts database replication between the master database cluster that includes the
node zeus and the replica database cluster that includes the node apollo. The replication agent uses the
admin port to connect to apollo.

$ dragent naster zeus replica apollo:21211

178

VoltDB CLI Commands

sqlcmd

sglemd — Starts an interactive command prompt for issuing SQL queriesto arunning VoltDB database

Syntax

sglcmd [args...]

Description

The sglemd command starts an interactive session and provides its own command line prompt until you
exit the session. When you start the session, you can optionally specify one or more database servers to
access. By default, sglecmd assumes the database is accessible vialocalhost.

At the sglemd prompt, you have three key options:

* SQL queries— You can enter ad hoc SQL queries that are run against the database and the results
displayed. Y ou must terminate the query with a semi-colon and carriage return.

» Procedure calls— You can have sglcmd execute a stored procedure. Y ou identify a procedure call
with the exec command, followed by the procedure class name, the procedure parameters, and aclosing
semi-colon. For example, the following sglcmd command executes the @SystemCatal og system pro-
cedure requesting information about the stored procedures.

$ sqgl cnd
1> exec @ystentCatal og procedures;

Note that string values are entered as plain text and are not enclosed in quotation marks. Also, the exec
command must be terminated by a semi-colon.

» Exit — When you are done with your interactive session, enter the exit command to end the session
and return to the shell prompt.

For information about additional sqlcmd commands and keyboard control while using the interactive com-
mand prompt, see the sglcmd help text by using the - - hel p argument when invoking sglcmd. For ex-
ample:

$ sqlcmd --help

Arguments

--help
Displays the sglcmd help text then returns to the shell prompt.

--servers=server-id[,...]
Specifiesthe network address of one or more nodesin the database cluster. By default, sglcmd attempts
to connect to a database on local host.

--port=port-num
Specifies the port number to use when connecting to the database servers. All servers must be using
the same port number. By default, sglcmd connects to the standard client port (21212).

--user=user-id

Specifies the username to use for authenticating to the database. The username is required if the
database has security enabled.

179

VoltDB CLI Commands

--password=password-string
Specifies the password to use for authenticating to the database. The password is required if the data-
base has security enabled.

--output-format={ csv | fixed | tab}
Specifiestheformat of the output of query results. Output can be formatted as comma-separated values
(csv), fixed monospaced text (fixed), or tab-separated text fields (tab). By default, the output is in
fixed monospaced text.

--output-skip-metadata
Specifiesthat the column headings and other metadata associated with query results are not displayed.
By default, the output includes such metadata. However, you can use this argument, along with the
- - out put - f or mat argument, to write just the dataitself to an output file.

Example

The following example demonstrates an sglcmd session, accessing the voter sample database running on
node zeus.

$ sglcnd --servers=zeus

SQ. Command :: zeus: 21212

1> select * fromcontestants;
Edwi na Bur nam

Tabat ha Gehl i ng

Kelly d auss

Jessi e Al oway

Al ana Br egman

Jessi e Ei chman

OO WNBE

(6 row(s) affected)

2> sel ect sun{numyvotes) as total, contestant_number from
v_votes by contestant nunber_ State group by contestant_ nunber
order by total desc;

TOTAL CONTESTANT_NUMBER

757240 1

630429 6

442962 5

390353 4

384743 2

375260 3

(6 row(s) affected)
3> exit
$

180

VoltDB CLI Commands

voltadmin

voltadmin — Performs administrative functions on aVVoltDB database.

Syntax

voltadmin [args...] {command}

Description

The voltadmin command allows you to perform administrative tasks on a VoltDB database. Y ou specify
the database server to access and, optionally, authentication credentials using arguments to the voltadmin
command. Individual administrative commands may have they own unique arguments as well.

Arguments

The following global arguments are available for al voltadmin commands.

-h, --help
Displays information about how to use a command. The --help flag and the help command perform
the same function.

-H, --host=server-id[: port]
Specifies which database server to connect to. You can specify the server as a network address or
hostname. By default, voltadmin attempts to connect to a database on localhost. Y ou can optionally
specify the port number. If you do not specify a port, voltadmin uses the default admin port.

-p, --password=password
Specifies the password to use for authenticating to the database. The password is required if the data-
base has security enabled..

-U, --user=user-id
Specifies the username to use for authenticating to the database. The username is required if the
database has security enabled.

-v, -verbose
Displays additional information about the specific commands being executed.

Commands

The following are the administrative functions that you can invoke using voltadmin.

help [command)]
Displays information about the usage of individual commands or, if you do not specify a command,
summarizes usage information for all commands. The help command and --help qualifier are syn-
onymous.

pause
Pauses the database, stopping any additional activity on the client port.

promote
Promotes a replica database, stopping replication and enabling read/write queries on the client port.

181

VoltDB CLI Commands

resume
Resumes normal database operation after a pause.

save {directory} {unique-1D}
Creates a snapshot containing the current database contents. The contents are saved to disk on the
server(s) using the unique I D asafile prefix and the directory specification asthefile path. Additional
arguments for the save command are:

--format={ csv | native }
Specifies the format of the snapshot files. The alowable formats are CSV (comma-separated
value) and native formats. Native format snapshots can be used for restoring the database. CSV
files can be used by other utilities (such as spreadsheets or the VoltDB CSV loader) but cannot
be restored using the voltadmin restor e command.

--blocking
Specifies that the snapshot will block all other transactions until the snapshot is complete. The
advantage of blocking snapshots is that once the command completes you know the snapshot is
finished. The disadvantage is that the snapshot blocks ongoing use of the database.

By default, voltadmin performs non-blocking snapshots so as not to interfere with ongoing data-
base operation. However, note that the non-blocking save command only startsthe snapshot. Y ou
must use show snapshotsto determine when the snapshot processisfinished if you want to know
when it is safe, for example, to shutdown the database.

restore { directory} {unique-ID}
Restores the data from a snapshot to the database. The data is read from a snapshot using the same
unique ID and directory path that were used when the snapshot was created.

show snapshots
Displaysinformation about up to ten previous snapshots. This command is useful for determining the
success or failure of snapshots started with the save command.

update { catalog} { deployment}
Updates the catalog and deployment configuration on arunning database. There are some limitations
on what changes can be made on a live update. For example, you cannot rename a table or change
its partitioning column. See the description of the @UpdateA pplicationCatal og stored procedure for
details.

shutdown
Stops the database.

Example

The following exampleillustrates one way to perform an orderly shutdown of aVoltDB cluster, including
pausing and saving the database contents.

$ vol tadni n pause
$ vol tadmi n save --blocking ./ mnydb
$ vol tadni n shutdown

182

VoltDB CLI Commands

voltdb

voltdb — Performs management tasks on the current server, such as compiling the application catalog and
starting the database.

Syntax

voltdb collect [args] voltdbroot-directory
voltdb compile [args] [DDL-file ...]
voltdb create [args] application-catalog
voltdb recover [args]

voltdb add [args]

voltdb rejoin [args]

Description

The voltdb command performs local management functions on the current system, including:

Compiling schema files and stored procedures into an application catalog
Starting the database process

Collecting log files into a single compressed file

The action that is performed depends on which start action you specify to the voltdb command:

collect — the collect option collects system and process logs related to the VoltDB database process
on the current system and compresses them into asingle file. This command is helpful when reporting
problems to VoltDB support. The only required argument to the collect command is the path to the
voltdbroot directory where the database was run. By default, the root directory is asubfolder, vol t d-
br oot , in the current working directory where the database was started.

compile — the compile option compiles the database schema and stored procedures into an application
catalog. You can specify one or more data definition language (DDL) files that describe the schema
of the database, the stored procedures, and the partitioning columns. See Appendix A, Supported SQL
DDL Satements for the SQL statements supported in the DDL files. The output of the compile action
is an application catalog that can be used to start the VoltDB database. The default output filenameis
cat al og. j ar. However, you can use the - - out put argument to specify a different file name or
location. See the next section for other arguments to the compile action.

create — the create option starts a new, empty database. This option is useful when starting a database
for thefirst time or if you are updating the catal og by performing a save, shutdown, startup, and restore.
(See Chapter 7, Updating Your VoltDB Database for information on updating your application catal og.)

recover — the recover option starts the database and restores a previous state from the last known
snapshot or from command logs. VoltDB uses the snapshot and command log paths specified in the
deployment file when looking for content to restore. If you specify recover as the startup action and no
snapshots or command logs can be found, startup will fail.

183

VoltDB CLI Commands

» add — the add option adds the current node to an existing cluster. See Section 7.4, “Updating the
Hardware Configuration” for details on elastic scaling.

» regjoin — If anode on a K-safe cluster fails, you can use the rejoin start action to have the node (or a
replacement node) rejoin the cluster. The host-id you specify with the host argument can be any node
still present in the database cluster; it does not have to be the host node specified when the cluster was
started. Y ou can also request a blocking rejoin by including the --blocking flag.

Finally, when starting a new database you can include the --r eplica flag to create a recipient for database
replication.

When starting the database, the voltdb command uses Java to instantiate the process. It is possible to
customize the Java environment, if necessary, by passing command line arguments to Java through the
following environment variables:

* LOG4J_CONFIG_PATH — Specifies an alternate Log4J configuration file.

« VOLTDB_HEAPMAX — Specifies the maximum heap size for the Java process. Specify the value
as an integer number of megabytes. By default, the maximum heap sizeis set to 2048.

« VOLTDB_OPTS — Specifies al other Java command line arguments. You must include both the
command line flag and argument. For example, this environment variable can be used to specify system
properties using the -D flag:

export VOLTDB_OPTS="- DnyApp. DebugFl ag=t r ue"

Log Collection Arguments

The following arguments apply specifically to the collect action.

--dry-run
Lists the actions that will be taken, including the files that will be collected, but does not actually
perform the collection or upload.

--no-prompt
Specifies that the process will not prompt for input, such as whether to delete the output file after
uploading is complete. This argument is useful when starting the collect action from within a script.

--prefix={file-prefix}
Specifies the prefix for the resulting output file. The default prefix is"voltdb logs'.

--skip-heap-dump
Specifiesthat the heap dump not be included in the collection. The heap dump isusually significantly
larger than the other log files and can be excluded to save space.

--upload={host}
Specifies a host server to which the output file will uploaded using SFTP.

--username={ account-name}
Specifies the SFTP account to use when using the --upload option. If you specify --upload but not --
username, you will be prompted for the account name.

--password={ passwor d}

Specifies the password to use when using the --upload option. If you specify --upload but not --pass-
word, you will be prompted for the password.

184

VoltDB CLI Commands

Schema Compilation Arguments

The following arguments apply specifically to the compile action.

-, --classpath={ Java-classpath}
Specifies additional classpath locations for the compilation process to search when looking for stored
procedure classfiles. The classpath you specify with this argument is appended to any existing class-
path definition.

-0, --output={application-catal og}
Specifies the file and path name to use for the application catalog that is created as a result of the
compilation.

Database Startup Arguments

The following arguments apply to the add, create, recover, and r g oin start actions.

{application-catal og}
Specifies the application catalog containing the schema and stored procedures to load when starting
the database. Two special notes concerning the catalog:

» The catalog must be identical on all nodes when starting a cluster.
* The catalog specified on the command lineis only used when creating a new database.

If you recover previous data using the recover start action, the catalog saved with the snapshot or
command log is loaded and any catalog you specify on the command lineisignored.

-H, --host={host-id}
Specifies the network address of the node that coordinates the starting of the database or the adding
or rejoining of a node. When starting a database, all nodes must specify the same host address. Note
that once the database starts and the cluster is complete, the role of the host node is complete and al
nodes become peers.

When rejoining or adding anode, you can specify any node still in the cluster asthe host. The host for
an add or rejoin operation does not have to be the same node as the host specified when the database
started.

The default if you do not specify a host when creating or recovering the database is| ocal host .
In other words, a single node cluster running on the current system. Y ou must specify a host on the
command line when adding or rejoining a node.

If the host node is using an internal port other than the default (3021), you must specify the port as
part of the host string, in the format host:port.

-d, --deployment={depl oyment-file}
Specifies the location of the database configuration file. The configuration file is an XML file that
defines the database configuration, including the initial size of the cluster and which options are en-
abled when the databaseis started. See Appendix E, Deployment File (deployment.xml) for acompl ete
description of the syntax of the configuration file.

The default, if you do not specify a deployment file, is a single node cluster without K-safety and
with two sites per host.

-l, --license={license-file}
Specifiesthe location of thelicensefile, which is required when using the V oltDB Enterprise Edition.
The argument is ignored when using the community edition.

185

VoltDB CLI Commands

-B, --background
Starts the server process in the background (as a daemon process).

--blocking
For the rejoin operation only, specifies that the database should block client transactions for the af -
fected partitions until the rejoin is compl ete.

Network Configuration Arguments

In addition to the arguments listed above, there are additional arguments that specify the network config-
uration for server ports and interfaces when starting a VoltDB database. In most cases, the default values
can and should be accepted for these settings. The exceptions are the external and internal interfaces that
should be specified whenever there are multiple network interfaces on a single machine.

You can also, optionally, specify a unique network interface for individual ports by preceding the port
number with theinterface's | P address (or hostname) followed by acolon. Specifying the network interface
as part of an individual port setting overrides the default interface for that port set by --externalinterface
or --internalinterface.

The network configuration argumentsto the voltdb command are listed below. See the appendix on server
configuration options in the VoltDB Administrator's Guide for more information about network configu-
ration options.

--externalinterface={ip-address}
Specifies the default network interface to use for external ports, such as the admin and client ports.

--internalinterface ={ip-address}
Specifies the default network interface to use for internal communication, such as the internal port.

--internal=[ip-address:]{port-number}
Specifies the internal port used to communicate between cluster nodes.

--client=[ip-address:]{port-number}
Specifiesthe client port.

--admin=[ip-address:]{port-number}
Specifies the admin port. The --admin flag overrides the admin port setting in the deployment file.

--http=[ip-address:]{port-number}
Specifies the http port. The --http flag both sets the port number (and optionally the interface) and
enables the http port, overriding the http setting, if any, in the deployment file.

--replication=[ip-address:]{ port-number}
Specifiesthefirst of three replication ports used for database replication. The --replication flag over-
rides the replication port setting in the deployment file.

--zookeeper=[ip-address:]{port-number}
Specifies the zookeeper port. By default, the zookeeper port is bound to the server'sinternal interface
(127.0.0.2).

Examples

The first example uses the compile action to create an application catalog from two DDL files. The - -
cl asspat h argument specifies the location of the stored procedure class files.

$ voltdb conpile --classpath=./0bj enployees.sql conmpany. sql

186

http://voltdb.com/docs/AdminGuide/

VoltDB CLI Commands

The next example shows the command for creating a database running the voter sample application, using
acustom configuration file, 2nodedepl oy. xm , and the node zeus as the host.

$ voltdb create voter.jar --deploynent=2nodedepl oy. xm \
--host =zeus

The following example takes advantage of the defaults for the host and deployment arguments to start a
single-node database on the current system using the voter catalog.

$ voltdb create voter.jar

187

Appendix E. Deployment File
(deployment.xml)

The deployment file describes the physical configuration of aVoltDB database cluster at runtime, includ-
ing the number of hostsin the cluster and the number of sites per hosts, among other things. This appendix
describes the syntax for each component within the deployment file.

The deployment file is a fully-conformant XML file. If you are unfamiliar with XML, see Section E.1,
“Understanding XML Syntax” for a brief explanation of XML syntax.

E.1. Understanding XML Syntax

The deployment fileisafully-conformant XML file. XML files consist of aseries of nested elementsiden-
tified by beginning and ending "tags". The beginning tag is the element name enclosed in angle brackets
and the ending tag is the same except that the element name is preceded by a slash. For example:

<depl oynent >
<cl uster>
</cluster>
</ depl oynent >

Elements can be nested. In the preceding example cl ust er isachild of the element depl oynent .

Elements can also have attributes that are specified within the starting tag by the attribute name, an equals
sign, and its value enclosed in single or double quotes. In the following example the hostcount and sites-
perhost attributes of the cluster element are assigned values of "2" and "4", respectively.

<depl oynent >
<cl uster hostcount="2" sitesperhost="4">
</cluster>

</ depl oynent >

Finally, as a shorthand, elements that do not contain any children can be entered without an ending tag by
adding the slash to the end of the initial tag. In the following example, the cl ust er and heart beat
tags use this form of shorthand:

<depl oynent >
<cl uster hostcount="2" sitesperhost="4"/>
<heart beat timeout="10"/>

</ depl oynent >

For complete information about the XML standard and XML syntax, see the official XML site at http://
www.w3.0rg/XML/.

E.2. The Structure of the Deployment File

The deployment file starts with the XML declaration. After the XML declaration, the root element of the
deployment file is the deployment element. The remainder of the XML document consists of elements
that are children of the deployment element.

Figure E.1, “Deployment XML Structure” shows the structure of the deployment file. The indentation
indicates the hierarchical parent-child relationships of the elements and an dllipsis (...) shows where an
element may appear multiple times.

188

http://www.w3.org/XML/
http://www.w3.org/XML/

Deployment File (deployment.xml)

Figure E.1. Deployment XML Structure

<deployment>
<cluster/>
<paths>
<commandlog/>
<commandlogsnapshot/>
<exportoverflow/>
<snapshots/>
<voltdbroot/>
</paths>
<admin-mode/>
<commandlog>
<frequency/>
<commandlog/>
<export>
<configuration>
<property/>...
</configuration>
</export>
<heartbeat/>
<httpd>
<jsonapi/>
</httpd>
<partition-detection>
<snapshot/>
</partition-detection>
<replication/>
<security/>
<snapshot/>
<systemsettings>
<elastic/>
<snapshot/>
<temptables/>
</systemsettings>
<users>
<user/>...
</users>
</deployment>

Table E.1, “Deployment File Elements and Attributes’ provides further detail on the elements, including
their relationships (as child or parent) and the allowabl e attributes for each.

Table E.1. Deployment File Elementsand Attributes

Element Child of Parent of Attributes

deployment* (root element) admin-mode, commandlog,
cluster, export, heartbest,
httpd, partition-detection,
paths, security, snapshot,
systemsettings, users

cluster’ deployment hostcount={int} "
sitesperhost={int}
€l astic={ enabl ed|di sabl ed}

189

Deployment File (deployment.xml)

-name}

Element Child of Parent of Attributes
kfactor={int}
admin-mode deployment port={int}
adminstartup={truejfal se}
heartbeat deployment timeout={int} ’
partition-detection deployment snapshot enabled={ truelfal se}
snapshot’ partition-detection prefix={ text}"
commandlog deployment frequency enabled={ truelfal se}
synchronous={ truelfal se}
logsize={int}
frequency commandlog time={int}
transactions={int}
export deployment configuration enabled={truejfalse}
target={ file]jdbc|custom}
exportconnectorclass={ class
configurati on’ export property
property configuration name={ text} "
httpd deployment jsonapi port={int}
enabled={ truelfal se}
jsonapi httpd enabled={ truelfal se}
paths deployment exportoverflow, snapshots,
voltdbroot
commandlog paths path={ directory-path}
commandl ogsnapshot paths path={ directory-path} ’
exportoverflow paths path={ directory-path}
snapshots paths path={ directory-path} ’
voltdbroot paths path={ directory-path} :
replication deployment port={int}
security deployment enabled={ truelfal se}
snapshot deployment frequency={i gt} {slm|h} ’
prefix={ text;r
retain={int}
enabled={ truelfal se}
systemsettings deployment elastic, snapshot, temptables
elastic systemsettings duration={int}
throughput={int}
snapshot systemsettings priority={int} "
temptables systemsettings maxsize={int} ’
users deployment user
user users name={ text} ’
password={ text}
roles={ role-name],,..|} !
"Required

190

Deployment File (deployment.xml)

“The attribute "groups’ can be used in place of "roles" for backwards compatibility.

191

Appendix F. System Procedures

VoltDB provides system procedures that perform system-wide administrative functions. Y ou can invoke
system procedures interactively using the sglcmd utility, or you can invoke them programmatically like
other stored procedures, using the VoltDB client method call Procedure.

This appendix describes the following system procedures.

» @AdHoc

* @Explain

* @ExplainProc

* @GetPartitionKeys
* @Pause

* @Promote

* @Quiesce

* @Resume

* @Shutdown

* @SnapshotDelete

* @SnapshotRestore
* @SnapshotSave

* @SnapshotScan

* @SnapshotStatus

o @Statistics

* @StopNode

* @SystemCatalog

* @Systeminformation
* @UpdateApplicationCatalog
* @Updatelogging

192

System Procedures

@AdHoc

@AdHoc — Executes an SQL statement specified at runtime.

Syntax

@AdHoc String SQL-statement

Description

The @AdHoc system procedure lets you perform arbitrary SQL queries on arunning VoltDB database.

Y ou can execute multiple SQL queriesin asingle call to @AdHoc by separating the individual queries
with semicolons. When you do this, the queries are performed as a single transaction. That is, the queries
all succeed asagroup or they al roll back if any of them fail.

Performance of ad hoc queriesis optimized, where possible. However, it isimportant to note that ad hoc
gueries are not pre-compiled, like queries in stored procedures. Therefore, use of stored procedures is
recommended over @AdHoc for frequent, repetitive, or performance-sensitive queries.

Return Values

Returns one VVoltTable for each query, with as many rows as there are records returned by the query. The
column names and datatypes match the names and datatypes of the fields returned by the query.

Examples

The following program example uses @AdHoc to execute an SQL SELECT statement and display the
number of reservations for a specific customer in the flight reservation database.

try {
Vol t Tabl e[] results = client.callProcedure("@udHoc",
"SELECT COUNT(*) FROM RESERVATION " +
"WHERE CUSTOVERI D=" + custid).getResults();
Systemout.printf("% reservations found.\n",
results[0].fetchRow(0).getLong(0));
}
catch (Exception e) {
e.printStackTrace();
}

Note that you do not need to explicitly invoke @AdHoc when using sglemd. You can type your query
directly into the sglcmd prompt, like so:

$ sqglcmd
1> SELECT COUNT(*) FROM RESERVATI ON WHERE CUSTOVERI D=12345;

193

System Procedures

@Explain

@Explain — Returns the execution plan for the specified SQL query.

Syntax

@EXxplain String SQL-statement

Description

The @Explain system procedure evaluates the specified SQL query and returns the resulting execution
plan. Execution, or explain, plans describe how VoltDB expectsto execute the query at runtime, including
what indexes are used, the order the tables are joined, and so on. Execution plans are useful for identifying
performance issuesin query design. See the chapter on execution plansin the VoltDB Performance Guide
for information on how to interpret the plans.

Return Values

Returns one VoltTable with one row and one column.

Name Datatype Description
EXECUTION_PLAN VARCHAR | The execution plan as text.
Examples

The following program example uses @Explain to evaluate an ad hoc SQL SELECT statement against
the voter sample application.

try {
String query = "SELECT COUNT(*) FROM CONTESTANTS; ";

Vol t Tabl e[] results = client.callProcedure("@xplain",
query).getResults();
Systemout.printf("Qery: %\ nPlan:\n%",
query, results[0].fetchRow(0).getString(0));
}
catch (Exception e) {
e.printStackTrace();

}

In the sglemd utility, the "explain” command is a shortcut for "exec @Explain”. So the following two
commands are equivalent:

$ sqglcnmd
1> exec @xplain 'SELECT COUNT(*) FROM CONTESTANTS' ;
2> explain SELECT COUNT(*) FROM CONTESTANTS;

194

http://community.voltdb.com/docs/PerfGuide/ChapExecPlans
http://community.voltdb.com/docs/PerfGuide/index

System Procedures

@ExplainProc

@ExplainProc — Returns the execution plans for all SQL queriesin the specified stored procedure.

Syntax

@ExplainProc String procedure-name

Description

The @ExplainProc system procedure returnsthe execution plansfor all of the SQL querieswithin the spec-
ified stored procedure. Execution, or explain, plans describe how VoltDB expects to execute the queries
at runtime, including what indexes are used, the order the tables are joined, and so on. Execution plans
are useful for identifying performance issues in query and stored procedure design. See the chapter on
execution plans in the VoltDB Performance Guide for information on how to interpret the plans.

Return Values

Returns one VoltTable with one row for each query in the stored procedure.

Name Datatype Description

SQL_STATEMENT VARCHAR |The SQL query.

EXECUTION_PLAN VARCHAR | The execution plan as text.
Examples

The following example uses @ExplainProc to evaluate the execution plans associated with the Contes-
tantWinningStates stored procedure in the voter sample application.

try {
Vol t Tabl e[] results = client.call Procedure(" @xpl ai nProc",
"Cont est ant W nni ngSt at es”). get Resul ts();

resul ts[0] . reset RowPosition();

while (results[0].advanceRow)) {
Systemout. printf("Query: %\ nPl an:\n%",
results[0].getString(0),results[0].getString(l));

}

}
catch (Exception e) {

e.printStackTrace();
}

In the sglemd utility, the "explainproc” command is a shortcut for "exec @ExplainProc". So the following
two commands are equivalent:

$ sqglcmd
1> exec @kxpl ai nProc ' Cont est ant W nni ngSt at es' ;
2> expl ai nproc Cont est ant W nni ngSt at es;

195

http://community.voltdb.com/docs/PerfGuide/ChapExecPlans
http://community.voltdb.com/docs/PerfGuide/index

System Procedures

@GetPartitionKeys

@GetPartitionKeys — Returns alist of partition values, one for every partition in the database.

Syntax

@GetPartitionKeys String datatype

Description

The @GetPartitionK eys system procedure returns a set of partition values that you can use to reach every
partition inthe database. Thisprocedureisuseful when youwant to run astored procedurein every partition
but you do not want to use a multi-partition procedure. By running multiple single-partition procedures,
you avoid the impact on latency and throughput that can result from a multi-partition procedure. This
is particularly true for longer running procedures. Using multiple, smaller procedures can aso help for
gueries that modify large volumes of data, such aslarge deletes.

When you call @GetPartitionK eys you specify the datatype of the keysto return as the second parameter.
You specify the datatype as a case-insensitive string. Valid options are "INTEGER", "STRING", and
"VARCHAR" (where"STRING" and "VARCHAR" are synonyms).

Note that the results of the system procedure are valid at the time they are generated. If the cluster is static
(that is, no nodes are being added and any rebalancing is complete), the results remain valid until the next
elastic event. However, during rebalancing, the distribution of partitionsislikely to change. Soit isagood
ideato call @GetPartitionKeys once to get the keys, act on them, then call the system procedure again to
verify that the partitions have not changed.

Return Values

Returns one VoltTable with arow for every unique partition in the cluster.

Name Datatype Description

PARTITION_ID INTEGER | Thenumeric ID of the partition.

PARTITION_KEY INTEGER or|A valid partition key for the partition. The datatype of the
STRING key matches the type requested in the procedure call.

Examples

The following example shows the use of sglecmd to get integer key values from @GetPartitionK eys:

$sqgl cnd
1> exec @etPartitionKeys integer;

The next example shows a Java program using @GetPartitionK eys to execute a stored procedure to clear
out old records, one partition at atime.

Vol t Tabl e[] results = client.callProcedure(" @etPartitionKeys",
"I NTEGER') . get Resul t s();

Vol t Tabl e keys = results[0];

for (int k=0;k<keys. get RowCount (); k++) {
| ong key = keys.fetchRow(k).getLong(1);

196

System Procedures

client.call Procedure("Purged dbata", key);

197

System Procedures

@Pause

@Pause — Initiates admin mode on the cluster.

Syntax

@Pause

Description

The @Pause system procedure initiates admin mode on the cluster. In admin mode, no further transaction
requests are accepted from clients on the client port. All interactions with a database in admin mode must
occur through the admin port specified in the deployment file.

There may be existing transactions still in the queue after admin modeisinitiated. Until these transactions
are completed, the databaseis not entirely paused. Y ou can use the @Statistics system procedure with the
"LIVECLIENTS" keyword to determine how many transactions are outstanding for each client connection.

The goal of admin mode is to pause the system and ensure no further changes to the database can occur
when performing sensitive administrative operations, such as taking a snapshot before shutting down.

Several important points to consider concerning @Pause are:
» @Pause must be called through the admin port, not the standard client port.

 Although new stored procedure invocations received on the client port are rejected in admin mode,
existing connections from client applications are not removed.

» Toreturnto normal database operation, you must call the system procedure @Resume on the admin port.

Return Values

Returns one VoltTable with one row.

Name Datatype Description
STATUS BIGINT Always returns the value zero (0) indicating success.
Examples

Itispossibleto call @Pause using the sglemd utility. However, you must explicitly connect to the admin
port when starting sgqlcmd to do this. Also, it is often easier to use the voltadmin utility, which connects
to the admin port by default. For example, the following commands demonstrate pausing and resuming
the database using both sqlcmd and voltadmin:

$ sqglcmd --port=21211
1> exec @Pause;
2> exec @Resune;

$ vol tadni n pause
$ voltadni n resune

The following program example, if called through the admin port, initiates admin mode on the database
cluster.

198

System Procedures

client.call Procedure("@ause");

199

System Procedures

@Promote

@Promote — Promotes a replica database to normal operation.

Syntax

@Promote

Description

The @Promote system procedure promotes areplica database to normal operation. During database repli-
cation, the replica database only accepts input from the database replication (DR) agent. If, for any reason,
the master database fails and replication stops, you can use @Promote to change the replica database from
areplicato anormal database. When you invoke the @Promote system procedure, the replica exits read-
only mode and becomes a fully operational VoltDB database that can receive and execute both read-only

and read/write queries.

Note that once a database is promoted, it cannot return to its original role as the receiving end of database
replication without first stopping and reinitializing the database asareplica. If the databaseisnot areplica,

invoking @Promote returns an error.

Return Values

Returns one VoltTable with one row.

Name Datatype Description
STATUS BIGINT Always returns the value zero (0) indicating success.
Examples

The following programming example promotes a database cluster.

client.callProcedure("@uronote");

It is aso possible to promote a replica database using sglcmd or the voltadmin promote command. The

following commands are equivalent:

$ sqlcmd
1> exec @°ronpte;

$ voltadnmin pronote

200

System Procedures

@Quiesce

@Quiesce — Waits for al queued export data to be written to the connector.

Syntax

@Quiesce

Description

The @Quiesce system procedure waits for any queued export data to be written to the export connector
before returning to the calling application. @Quiesce also does an fsync to ensure any pending export
overflow iswritten to disk. This system procedure should be called after stopping client applications and
before calling @Shutdown to ensurethat all export activity isconcluded before shutting down the database.

If export is not enabled, the procedure returns immediately.

Return Values

Returns one VoltTable with one row.

Name Datatype Description
STATUS BIGINT Always returns the value zero (0) indicating success.
Examples

The following example calls @Quiesce using sglcmd:

$ sqlcnd
1> exec @i esce;

The following program example uses drain and @Quiesce to complete any asynchronous transactions and
clear the export queues before shutting down the database.

/1 Conplete all outstanding activities
try {
client.drain();
client.callProcedure("@uiesce");
}
catch (Exception e) {
e.printStackTrace();

}
/1 Shut down t he dat abase.
try {
client.call Procedure(" @hutdown");
}

/1 W expect an exception when the connection drops.
/1 Report any other exception.

catch (org.voltdb.client.ProcCall Exception e) { }

catch (Exception e) { e.printStackTrace(); }

201

System Procedures

@Resume

@Resume — Returns a paused database to normal operating mode.

Syntax

@Resume

Description

The @Resume system procedure switches all nodes in a database cluster from admin mode to normal
operating mode. In other words, @Resume is the opposite of @Pause.

After calling this procedure, the cluster returns to accepting new connections and stored procedure invo-
cations from clients connected to the standard client port. If any export clients connected to the client
port were disconnected by @Pause, they will automatically reconnect and restart export processing once
@Resume restores normal operation.

@Resume must be invoked from a connection to the admin port.

Return Values

Returns one VoltTable with one row.

Name Datatype Description
STATUS BIGINT Always returns the value zero (0) indicating success.
Examples

Y ou can call @Resume using the sgqlemd utility. However, you must explicitly connect to the admin port
when starting sglecmd to do this. It is often easier to use the voltadmin resume command, which connects
to the admin port by default. For example, the following commands are equivalent:

$ sqglcnd --port=21211
1> exec @Resune;

$ voltadmin resune
The following program example uses @Resume to return the cluster to normal operation.

client.callProcedure("@esune");

202

System Procedures

@Shutdown

@Shutdown — Shuts down the database.

Syntax

@Shutdown

Description

The @Shutdown system procedure performs an orderly shut down of aVVoltDB database on all nodes of
the cluster.

VoltDB is an in-memory database. By default, data is not saved when you shut down the database. If
you want to save the data between sessions, you can enable command logging or save a snapshot (either
manually or using automated snapshots) before the shutdown. See Chapter 10, Command Logging and
Recovery and Chapter 9, Saving & Restoring a VVoltDB Database for more information.

Note that once the database shuts down, the client connection islost and the calling program cannot make
any further requests to the server.

Examples

Thefollowing examples show calling @Shutdown from sglecmd and using the voltadmin shutdown com-
mand. These two commands are equivalent:

$ sqglcmd
1> exec @shut down;

$ vol tadni n shut down

The following program example uses @Shutdown to stop the database cluster. Note the use of catch to
separate out aVVoltDB call procedure exception (which is expected) from any other exception.

try {
client.call Procedure(" @hutdown");
}

/1 we expect an exception when the connection drops.
catch (org.voltdb.client.ProcCall Exception e) {
System out. printl n("Database shutdown initiated.");
}

/1 report any other exception.

catch (Exception e) {
e.printStackTrace();
}

203

System Procedures

@SnapshotDelete

@SnapshotDelete — Deletes one or more native snapshots.

Syntax

@SnapshotDelete String[] directory-paths, String[] Unique-IDs

Description

The @SnapshotDel ete system procedure del etes native snapshots from the database cluster. Thisisaclus-
ter-wide operation and a single invocation will remove the snapshot files from all of the nodes.

The procedure takes two parameters: a String array of directory paths and a String array of unique 1Ds
(prefixes).

The two arrays are read as a series of value pairs, so that the first element of the directory path array and
the first element of the unique ID array will be used to identify the first snapshot to delete. The second
element of each array will identify the second snapshot to delete. And so on.

@SnapshotDel ete can del ete native format snapshots only. The procedure cannot delete CSV format snap-
shots.

Return Values

Returns one VoltTable with arow for every snapshot file affected by the operation.

Name Datatype Description

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

PATH STRING The directory path where the snapshot file resides.

NONCE STRING The unique identifier for the snapshot.

NAME STRING Thefile name.

SIZE BIGINT The total size, in bytes, of thefile.

DELETED STRING String value indicating whether the file was successfully
deleted ("TRUE") or not ("FALSE").

RESULT STRING String value indicating the success ("SUCCESS") or failure
("FAILURE") of the request.

ERR_MSG STRING If the result is FAILURE, this column contains a message
explaining the cause of the failure.

Example

Thefollowing exampl e uses @SnapshotScan toidentify all of the snapshotsinthedirectory/ t np/ vol t -
db/ backup/ . Thisinformation is then used by @SnapshotDelete to delete those snapshots.

try {
results = client.call Procedure(" @napshot Scan",

204

System Procedures

"/tnp/vol tdb/ backup/").get Resul ts();

}
catch (Exception e) { e.printStackTrace(); }

Vol t Tabl e table = results[O0];
i nt nunof snapshots = tabl e. get RowCount () ;
int i =0;

i f (numofsnapshots > 0) {
String[] paths = new String[nunof snapshots];
String[] nonces = new String[nunof snapshot s];

for (i=0;i<nunofsnapshots;i++) { paths[i] = "/etc/voltdb/backup/"; }
tabl e. reset RowPosi tion();
i = 0;

whil e (tabl e.advanceRow)) {
nonces[i] = table.getString("NONCE");

| ++;
}
try {
client.callProcedure("” @napshot Del et e", pat hs, nonces) ;
}
catch (Exception e) { e.printStackTrace(); }

}

205

System Procedures

@SnapshotRestore

@SnapshotRestore — Restores a database from disk using a native format snapshot.

Syntax

@SnapshotRestore String directory-path, String unique-1D

Description

The @SnapshotRestore system procedure restores a previously saved database from disk to memory. The
snapshot must be in native format. (Y ou cannot restore aCSV format snapshot using @SnapshotRestore.)
The restore request is propagated to all nodes of the cluster, so a single call to @SnashotRestore will
restore the entire database cluster.

The first parameter, directory-path, specifies where VoltDB looks for the snapshot files.

The second parameter, unique-ID, is a unique identifier that is used as a filename prefix to distinguish
between multiple snapshots.

Y ou can perform only one restore operation on arunning VoltDB database. Subseguent attempts to call
@SnapshotRestore result in an error. Note that this limitation applies to both manual and automated re-
stores. Since command logging often includes snapshots, you should never perform a manual @Snap-
shotRestore after recovering a database using command logs.

See Chapter 9, Saving & Restoring a VoltDB Database for more information about saving and restoring
VoltDB databases.

Return Values

Returns one VoltTable with arow for every table restored at each execution site.

Name Datatype Description

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

SITE ID INTEGER |Numeric ID of the execution site on the host node.
TABLE STRING The name of the table being restored.

PARTITION_ID INTEGER |The numeric ID for the logical partition that this site rep-

resents. When using a K value greater than zero, there are
multiple copies of each logical partition.

RESULT STRING String value indicating the success ("SUCCESS") or failure
("FAILURE") of the request.
ERR_MSG STRING If the result is FAILURE, this column contains a message

explaining the cause of the failure.

Examples

Thefollowing example uses @SnapshotRestore to restore previously saved database content from the path
/tmp/ vol t db/ backup/ using the uniqueidentifier flight.

206

System Procedures

$ sqgl cnd
1> exec @napshot Restore '/tnp/voltdb/backup/', "flight";

Alternately, you can use the voltadmin restore command to perform the same function:
$ voltadm n restore /tnp/voltdb/backup/ flight

Sincethere are anumber of situationsthat impact what dataisrestored, it isagood ideato review thereturn
values to see what tables and partitions were affected. In the following program example, the contents of
the VoltTable array is written to standard output so the operator can confirm that the restore completed
as expected.

Vol t Tabl e[] results = null;

try {
results = client.callProcedure(" @napshot Restore",

“/tnp/vol tdb/ backup/ ",
"flight").getResults();
}
catch (Exception e) {
e.printStackTrace();
}

for (int t=0; t<results.length; t++) {
Vol t Tabl e table = results[t];
for (int r=0;r<table.getRowCount();r++) {
Vol t Tabl eRow row = table.fetchRow(r);
Systemout.printf("Node % Site % restoring " +
"table % partition %l.\n",
row. get Long("HOST_ID"), row. getLong("SITE ID"),
row. get String(" TABLE"), row. get Long(" PARTI TI ON"));

207

System Procedures

@SnapshotSave

@SnapshotSave — Saves the current database contents to disk.

Syntax

@SnapshotSave String directory-path, String unique-ID, Integer blocking-flag

@SnapshotSave String json-encoded-options

Description

The @SnapshotSave system procedure saves the contents of the current in-memory database to disk. Each
node of the database cluster savesits portion of the database locally.

There are two forms of the @SnapshotSave stored procedure: a procedure call with individual argument
parameters and aprocedure call with al argumentsin asingle JSON-encoded string. When you specify the
arguments as individual parameters, VoltDB creates a native mode snapshot that can be used to recover
or restore the database. When you specify the arguments as a JSON-encoded string, you can regquest a
different format for the snapshot, including CSV (comma-separated val ue) filesthat can be used for import
into other databases or utilities.

Individual Arguments

When you specify the arguments as individual parameters, you must specify three arguments:
1. Thedirectory path where the snapshot files are stored

2. An identifier that is included in the file names to uniquely identify the files that make up a single
snapshot

3. A flag value indicating whether the snapshot should block other transactions until it is complete or not

The resulting snapshot consists of multiple files saved to the directory specified by directory-path using
unique-1D asafilename prefix. Thethird argument, blocking-flag, specifieswhether the saveis performed
synchronously (thereby blocking any following transactions until the save completes) or asynchronously.
If this parameter is set to any non-zero value, the save operation will block any following transactions. If
it is zero, others transactions will be executed in parallel.

Thefiles created using thisinvocation are in native VVoltDB snapshot format and can be used to restore or
recover the database at some later time. Thisis the same format used for automatic snapshots. See Chap-
ter 9, Saving & Restoring a VoltDB Database for more information about saving and restoring VoltDB
databases.

JSON-Encoded Arguments

When you specify the arguments as a JSON-encoded string, you can specify what snapshot format you
want to create. Table F.1, “ @SnapshotSave Options” describes all possible options when creating a snap-
shot using JSON-encoded arguments.

Table F.1. @SnapshotSave Options

Option ‘ Description

208

System Procedures

uripath Specifiesthe path where the snapshot filesare created. Note that, asa JSON-encoded
argument, the path must be specified as a URI, not just a system directory path.
Therefore, alocal directory must be specified usingthefi | e: // identifier, such
as"file:///tnp", and the path must exist on all nodes of the cluster.

nonce Specifies the unique identifier for the snapshot.

block Specifies whether the snapshot should be synchronous (true) and block other trans-
actions or asynchronous (false).

format Specifies the format of the snapshot. Valid formats are "csv" and "native".

When you save a snapshot in CSV format, the resulting files are in standard com-
ma-separated value format, with only one file for each table. In other words, dupli-
cates (from replicated tables or duplicate partitions due to K-safety) are eliminated.
CSV formatted snapshots are useful for import or reuse by other databases or utili-
ties. However, they cannot be used to restore or recover aVoltDB database.

When you save asnapshot in native format, each node and partition savesits contents
to separate files. These files can then be used to restore or recover the database. It
isalso possible to later convert native format snapshots to CSV using the snapshot
utilities described in the VoltDB Administrator's Guide.

For example, the JSON-encoded argumentsto synchronously saveaCSV formatted snapshot to /tmp using
the unique identifier "mydb" is the following:

{uripath:"file:///tnp", nonce: "nydb", bl ock:true, format: "csv"}

The block and format arguments are optional. If you do not specify them they default to bl ock: f al se
andf ormat: "nati ve". Theargumentsur i pat h and nonce arerequired.

Because the unique identifier is used in the resulting filenames, the identifier can contain only characters

that are valid for Linux file names. In addition, hyphens ("-") and commas (",") are not permitted.

Note that it is normal to perform manual saves synchronously, to ensure the snapshot represents a known
state of the database. However, automatic snapshots are performed asynchronously to reduce the impact
on ongoing database activity.

Return Values

The @SnapshotSave system procedure returns two different VoltTables, depending on the outcome of
the request.

Option #1. one VoltTable with arow for every execution site. (That is, the number of hosts multiplied
by the number of sites per host.).

Name Datatype Description

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

SITE ID INTEGER |Numeric ID of the execution site on the host node.

RESULT STRING String value indicating the success ("SUCCESS") or failure
("FAILURE") of the request.

ERR_MSG STRING If the result is FAILURE, this column contains a message
explaining the cause of the failure.

209

http://community.voltdb.com/docs/AdminGuide/

System Procedures

Option #2: one VoltTable with a variable number of rows.

Name Datatype Description

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

TABLE STRING The name of the database table. The contents of each table

is saved to a separate file. Therefore it is possible for the
snapshot of each table to succeed or fail independently.

RESULT STRING String value indicating the success ("SUCCESS") or failure
("FAILURE") of the request.
ERR_MSG STRING If the result is FAILURE, this column contains a message

explaining the cause of the failure.

Examples

Thefollowing exampl e uses @SnapshotSave to save the current database content in native snapshot format
tothepath/ t np/ vol t db/ backup/ using the unique identifier flight on each node of the cluster.

$ sqglcmd
1> exec @napshot Save '/tnp/vol tdb/ backup/', 'flight', 1;

Alternately, you can use the voltadmin save command to perform the same function. When using the
voltadmin save command, you usethe - - bl ocki ng flag instead of athird parameter to request a block-
ing save:

$ vol tadm n save --bl ocking /tnp/voltdb/backup/ flight

Note that the procedure call will return successfully even if the save was not entirely successful. The
information returned in the VoltTable array tells you what parts of the operation were successful or not.
For example, save may succeed on one node but not on another.

The following code sample performs the same function, but also checks the return values and notifies the
operator when portions of the save operation are not successful.

Vol t Tabl e[] results = null;

try { results = client.callProcedure(" @napshot Save",
"/tnp/vol tdb/ backup/ ",
"flight", 1).getResults(); }
catch (Exception e) { e.printStackTrace(); }

for (int table=0; table<results.length; table++) {
for (int r=0;r<results[table].get RowCount();r++) {
Vol t Tabl eRow row = results[table].fetchRow(r);
if (row getString("RESULT"). conmpareTo("SUCCESS") != 0) {
Systemout.printf("Site % failed to wite " +

"tabl e % because %s.\n",
row. get String("HOSTNAMVE"), row. getString("TABLE"),
row. getString("ERR MSG'));

210

System Procedures

@SnapshotScan

@SnapshotScan — Listsinformation about existing native snapshots in a given directory path.

Syntax

@SnapshotScan String directory-path

Description

The @SnapshotScan system procedure provides information about any native snapshots that exist within
the specified directory path for al nodes on the cluster. The procedure reports the name (prefix) of the
snapshot, when it was created, how long it took to create, and the size of the individua files that make
up the snapshot(s).

@SnapshotScan does not include CSV format snapshots in its output. Only native format snapshots are
listed.

Return Values

On successful completion, this system procedure returns three VoltTables providing the following infor-
mation:

» A summary of the snapshots found
» Available space in the directories scanned
* Details concerning the Individual files that make up the snapshots

Thefirst table contains one row for every snapshot found.

Name Datatype Description

PATH STRING The directory path where the snapshot resides.

NONCE STRING The unique identifier for the snapshot.

TXNID BIGINT The transaction ID of the snapshot.

CREATED BIGINT The timestamp when the snapshot was created (in millisec-
onds).

SIZE BIGINT Thetotal size, in bytes, of al the snapshot data.

TABLES REQUIRED STRING A comma-separated list of all the table names listed in the
snapshot digest file. In other words, all of the tables that
make up the snapshot.

TABLES_MISSING STRING A comma-separated list of database tablesfor which no data
can be found. (That is, the corresponding files are missing
or unreadable.)

TABLES INCOMPLETE |STRING A commarseparated list of database tables with only partial
data saved in the snapshot. (That is, data from some parti-
tionsismissing.)

COMPLETE STRING A string value indicating whether the snapshot asawholeis
complete ("TRUE") or incomplete ("FALSE"). If this col-

211

System

Procedures

Name Datatype

Description

umnis"FALSE", the preceding two columns provide addi-
tional information concerning what is missing.

The second table contains one row for every host.

Name Datatype Description

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

PATH STRING The directory path specified in the call to the procedure.
TOTAL BIGINT Thetotal space (in bytes) on the device.

FREE BIGINT The available free space (in bytes) on the device.

USED BIGINT Thetotal space currently in use (in bytes) on the device.
RESULT STRING String value indicating the success ("SUCCESS") or failure

("FAILURE") of the request.
ERR_MSG STRING If the result is FAILURE, this column contains a message

explaining the cause of the failure.

The third table contains one row for every fil

e in the snapshot collection.

Name Datatype Description

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

PATH STRING The directory path where the snapshot file resides.

NAME STRING Thefile name.

TXNID BIGINT The transaction ID of the snapshot.

CREATED BIGINT The timestamp when the snapshot was created (in millisec-
onds).

TABLE STRING The name of the database table the data comes from.

COMPLETED STRING A string indicating whether all of the data was successfully
written to thefile ("TRUE") or not ("FALSE").

SIZE BIGINT Thetotal size, in bytes, of thefile.

IS REPLICATED STRING A string indicating whether the table in question is replicat-
ed ("TRUE") or partitioned ("FALSE").

PARTITIONS STRING A comma-separated string of partition (or site) 1Ds from

which data was taken during the snapshot. For partitioned
tables where there are multiple sites per host, there can be
datafrom multiple partitionsin each snapshot file. For repli-
cated tables, data from only one copy (and therefore one
partition) is required.

TOTAL_PARTITIONS BIGINT

The total number of partitions from which data was taken.

READABLE STRING A string indicating whether the file is accessible ("TRUE")
or not ("FALSE").
RESULT STRING String valueindicating the success ("SUCCESS") or failure

("FAILURE") of the request.

212

System Procedures

Name Datatype Description

ERR_MSG STRING If the result is FAILURE, this column contains a message
explaining the cause of the failure.

If the system procedure fails because it cannot access the specified path, it returnsasingle VoltTable with
one row and one column.

Name Datatype Description
ERR_MSG STRING A message explaining the cause of the failure.
Examples

The following example uses @SnapshotScan to list information about the snapshots in the directory /
t mp/ vol t db/ backup/ .

$ sqglcmd
1> exec @napshot Scan /tnp/vol tdb/ backup/;

The following program example performs the same function, using the VoltTablet oSt r i ng() method
to display the results of the procedure call:

Vol t Tabl e[] results = null;

try { results = client.call Procedure("@napshot Scan",
"/tnp/vol tdb/ backup/").get Resul ts();

}
catch (Exception e) { e.printStackTrace(); }

for (VoltTable t: results) {
Systemout.println(t.toString());

}

In the return value, the first VoltTable in the array lists the snapshots and certain status information. The
second element of thearray providesinformation about the directory itself (such asused, free, and total disk
space). Thethird element of the array lists specific information about theindividual filesin the snapshot(s).

213

System Procedures

@SnapshotStatus

@SnapshotStatus — Lists information about the most recent snapshots created from the current database.

Syntax

@SnapshotStatus

Description

Warning

The @SnapshotStatus system procedure is being deprecated and may be removed in future ver-
sions. Please usethe @Statistics"SNAPSHOTSTATUS' selector, which returnsthe sameresults,
to retrieve information about recent snapshots.

The @SnapshotStatus system procedure providesinformation about up to ten of the most recent snapshots
performed on the current database. The information provided includes the directory path and prefix for
the snapshot, when it occurred and how long it took, as well as whether the snapshot was completed
successfully or not.

@SnapshotStatus provides status of any snapshots, including both native and CSV snapshots, as well as
manual, automated, and command log snapshots.

Note that @SnapshotStatus does not tell you whether the snapshot files till exist, only that the snapshot
was performed. Y ou can use the procedure @SnapshotScan to determine what snapshots are available.

Also, the status information is reset each time the database is restarted. In other words, @SnapshotStatus
only providesinformation about the most recent snapshots since the current database instance was started.

Return Values

Returns one VoltTable with arow for every snapshot file in the recent snapshots performed on the cluster.

Name Datatype Description

TIMESTAMP BIGINT Thetimestamp when the snapshot wasinitiated (in millisec-
onds).

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

TABLE STRING The name of the database table whose data thefile contains.

PATH STRING The directory path where the snapshot file resides.

FILENAME STRING Thefile name.

NONCE STRING The unique identifier for the snapshot.

TXNID BIGINT The transaction ID of the snapshot.

START_TIME BIGINT The timestamp when the snapshot began (in milliseconds).

END_TIME BIGINT The timestamp when the snapshot was completed (in mil-
liseconds).

214

System Procedures

Name Datatype Description

SIZE BIGINT Thetotal size, in bytes, of thefile.

DURATION BIGINT Thelength of time (in milliseconds) it took to complete the
snapshot.

THROUGHPUT FLOAT The average number of bytes per second written to the file
during the snapshot process.

RESULT STRING String value indicating whether the writing of the snapshot
file was successful ("SUCCESS") or not ("FAILURE").

Examples

The following example uses @SnapshotStatus to display information about the most recent snapshots
performed on the current database:

$ sqlcnd
1> exec @napshot St at us;

The following code example demonstrates how to perform the same function programmatically:

Vol t Tabl e[] results = null;

try {
results = client.callProcedure(" @napshot Status").get Results();
}

catch (Exception e) { e.printStackTrace(); }

for (VoltTable t: results) {
Systemout.printlin(t.toString());

}

215

System Procedures

@Statistics

@Statistics — Returns statistics about the usage of the VoltDB database.

Syntax

@ Statistics String component, Integer delta-flag

Description

The @Statistics system procedure returns information about the VVoltDB database. The second argument,
component, specifies what aspect of VoltDB to return statistics about. The third argument, delta-flag,
specifies whether statistics are reported from when the database started or since the last call to @Statistics

where the flag was set.

If the delta-flag is set to zero, the system procedure returns statistics since the database started. If the delta-
flag is non-zero, the system procedure returns statistics for the interval since the last time @Statistics was
called with a non-zero flag. (If @Statistics has not been called with a non-zero flag before, the first call
with the flag set returns statistics since startup.)

Note that in a cluster with K-safety, if a node fails, the statistics reported by this procedure are reset to
zero for the node when it rejoins the cluster.

The following are the allowable values of component:

IIDRII

"INDEX"

"INITIATOR"

"|IOSTATS'

"LIVECLIENTS"

"MANAGEMENT"

"MEMORY"

Returns information about the status of database replication, including how
much dataiswaiting to be sent to the DR agent. Thisinformation isavailable
only if the database is licensed for database replication.

Returnsinformation about the indexesin the database, including the number
of keys for each index and the estimated amount of memory used to store
those keys. Separate information is returned for each partition in the data-
base.

Returns information on the number of procedure invocations for each stored
procedure (including system procedures). The count of invocationsisreport-
ed for each connection to the database.

Returns information on the number of messages and amount of data (in
bytes) sent to and from each connection to the database.

Returns information about the number of outstanding requests per client.
Y ou can use thisinformation to determine how much work iswaiting in the
execution queues.

Returnsthe sameinformation as INDEX, INITIATOR, IOSTATS, MEMO-
RY, PROCEDURE, and TABLE, except al in asingle procedure call.

Returns statistics on the use of memory for each nodein the cluster. MEMO-
RY satisticsinclude the current resident set size (RSS) of the VoltDB server
process; the amount of memory used for Java temporary storage, database
tables, indexes, and string (including varbinary) storage; as well as other in-
formation.

216

System Procedures

"PARTITIONCOUNT"

"PLANNER"

"PROCEDURE"

"PROCEDUREINPUT"

"PROCEDUREOUTPUT"

"PROCEDURE-
PROFILE"

"REBALANCE"

"SNAPSHOTSTATUS"

Returns information on the number of unique partitions in the cluster. The
VoltDB cluster creates multiple partitions based on the number of servers
and the number of sites per host requested. So, for example, a 2 node cluster
with 4 sites per host will have 8 partitions. However, when you define a
cluster with K-safety, there are duplicate partitions. PARTITIONCOUNT
only reports the number of unique partitions available in the cluster.

Returnsinformation on the use of cached planswithin each partition. Queries
in stored procedures are planned when the application catalog is compiled.
However, ad hoc queries must be planned at runtime. To improve perfor-
mance, VoltDB caches plans for ad hoc queries so they can be reused when
asimilar query is encountered later. There are two caches: the level 1 cache
performs exact matches on queries and the level 2 cache parameterizes con-
stants so it can match queries with the same plan but different input. The
planner statistics provide information about the size of each cache, how fre-
quently it is used, and the minimum, maximum, and average execution time
of ad hoc queries as aresullt.

Returns information on the usage of stored procedures for each site within
the database cluster sorted by partition. The information includes the name
of the procedure, the number of invocations (for each site), and sel ected per-
formance information on minimum, maximum, and average execution time.

Returns summary information on the size of the input data submitted with
stored procedure invocations. PROCEDUREINPUT uses information from
PROCEDURE, except it focuses on theinput parameters and aggregates data
for the entire cluster.

Returns summary information on the size of the result sets returned by
stored procedure invocations. PROCEDUREOUTPUT uses information
from PROCEDURE, except it focuses on the result sets and aggregates data
for the entire cluster.

Returns summary information on the usage of stored procedures averaged
across all partitions in the cluster. The information from PROCEDURE-
PROFILE issimilar to the information from PROCEDURE, except it focus-
eson the performance of theindividual procedures rather than on procedures
by partition. The weighted average across partitionsis helpful for determin-
ing which stored procedures the application is spending most of itstimein.

Returns information on the current progress of rebalancing on the cluster.
Rebalancing occurs when one or more nodes are added "on the fly" to an
elastic cluster. If no rebalancing is occurring, no data is returned. During a
rebalance, this selector returns information about the speed of migration of
the data, the latency of rebalance tasks, and the estimated time until comple-
tion.

For rebalance, the deltaflag to the system procedureisignored. All rebalance
statistics are cumulative for the current rebalance activity.

Returnsinformation about up to ten of the most recent snapshots performed
by the database. The results include the directory path and prefix for the
snapshot, when it occurred, how long it took, and whether the snapshot was
completed successfully or not. The results report on both native and CSV
snapshots, aswell as manual, automated, and command log snapshots. Note

217

System Procedures

that this selector does not tell you whether the snapshot files still exist, only
that the snapshot was performed. Use the @SnapshotScan procedure to de-
termine what snapshots are available.

"TABLE" Returnsinformation about the database tabl es, including the number of rows
per site for each table. This information can be useful for seeing how well
the rows are distributed across the cluster for partitioned tables.

Notethat INITIATOR and PROCEDURE report information on both user-declared stored procedures and
system procedures. These include certain system procedures that are used internally by VoltDB and are
not intended to be called by client applications. Only the system procedures documented in this appendix
areintended for client invocation.

Return Values

Returns different VoltTables depending on which component is requested. The following tables identify
the structure of the return values for each component. (Note that the MANAGEMENT component returns
seven VoltTables.)

DR — Returns two VoltTables. The first table contains information about the replication streams, which
consist of arow per partition for each server. The data showsthe current state of replication and how much
datais currently queued for the DR agent.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

PARTITION_ID INTEGER | Thenumeric ID for the logical partition.

STREAMTYPE STRING The type of stream, which can either be "TRANSAC-
TIONS' or "SNAPSHOT".

TOTALBYTES BIGINT Thetotal number of bytes currently queued for transmission
to the DR agent.

TOTALBYTESIN BIGINT The total number of bytes of queued data currently held

MEMORY in memory. If the amount of total bytes is larger than the
amount in memory, the remainder is kept in overflow stor-
age on disk.

TOTALBUFFERS BIGINT Thetotal number of buffersin this partition currently wait-

ing for acknowledgement from the DR agent. Partitionscre-
ate a buffer every five milliseconds.

LASTACKTIMESTAMP |BIGINT The timestamp of the last acknowledgement received from
the DR agent.

ISSYNCED STRING A text string indicating whether the databaseis currently be-
ing replicated. If replication has not started, or the overflow
capacity has been exceeded (that is, replication has failed),
thevalue of ISSYNCED is"false". If replication is current-
ly in progress, the valueis "true".

MODE STRING A text string indicating whether this particular partition
is replicating data for the DR agent ("NORMAL") or not
("PAUSED"). Only one copy of eachlogical partition actu-

218

System Procedures

Name Datatype Description

aly sends data to the DR agent during replication. So for
clusterswith aK-saf ety value greater than zero, not all phys-
ical partitions will report "NORMAL" even when replica-
tionisin progress.

The second table returns arow for every host in the cluster, showing whether a replication snapshot isin
progress and if it is, the status of transmission to the DR agent.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

ENABLED STRING A text string indicating whether the database is currently

being replicated. Possible values are "true" and "false".

SYNCSNAPSHOTSTATE |STRING A text string indicating the current state of the synchroniza-
tion snapshot that begins replication. During normal opera-
tion, thisvalueis "NOT_SYNCING" indicating either that
replication is not active or that transactions are actively be-
ing replicated. If a synchronization snapshot isin progress,
thisvalue provides additional infomation about the specific

activity underway.
ROWSINSYNC BIGINT Reserved for future use.
SNAPSHOT
ROWSACKEDFORSYNC |BIGINT Reserved for future use.
SNAPSHOT

INDEX — Returns arow for every index in every execution site.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST _ID BIGINT Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

SITE ID BIGINT Numeric ID of the execution site on the host node.

PARTITION_ID BIGINT The numeric ID for the logical partition that this site rep-

resents. When using a K value greater than zero, there are
multiple copies of each logical partition.

INDEX_NAME STRING The name of the index.
TABLE_NAME STRING The name of the database table to which the index applies.
INDEX_TYPE STRING A text string identifying the type of the index as either a

hash or tree index and whether it is unique or not. Possible
values include the followiing:

CompactingHashMulti M apl ndex
CompactingHashUniquel ndex
CompactingTreeM ultiM aplndex

219

System Procedures

Name Datatype Description
CompactingTreeUniquel ndex

IS UNIQUE TINYINT A byte value specifying whether the index is unique (1) or
not (0).

IS COUNTABLE TINYINT A byte value specifying whether the index maintains a
counter to optimize COUNT (*) queries.

ENTRY_COUNT BIGINT The number of index entries currently in the partition.

MEMORY_ESTIMATE INTEGER | The estimated amount of memory (in kilobytes) consumed

by the current index entries.

INITIATOR — Returns a separate row for each connection and the stored procedures initiated by that

connection.
Name Datatype Description
TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).
HOST _ID INTEGER |Numeric ID for the host node.
HOSTNAME STRING Server name of the host node.
SITE_ID INTEGER |Numeric ID of the execution site on the host node.
CONNECTION_ID BIGINT Numeric ID of the client connection invoking the proce-
dure.
CONNECTION_HOST STRING The server name of the node from which the client connec-
NAME tion originates.
PROCEDURE_NAME STRING The name of the stored procedure.
INVOCATIONS BIGINT The number of timesthe stored procedure has been invoked
by this connection on this host node.
AVG_EXECUTION_TIME |INTEGER | The average length of time (in milliseconds) it took to exe-
cute the stored procedure.
MIN_EXECUTION_TIME [INTEGER | Theminimum length of time (in milliseconds) it took to ex-
ecute the stored procedure.
MAX_EXECUTION_TIME|INTEGER |The maximum length of time (in milliseconds) it took to
execute the stored procedure.
ABORTS BIGINT The number of times the procedure was aborted.
FAILURES BIGINT Thenumber of timesthe procedurefailed unexpectedly. (As

opposed to user aborts or expected errors, such as constraint
violations.)

IOSTATS — Returns one row for every client connection on the cluster.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

CONNECTION_ID BIGINT Numeric ID of the client connection invoking the proce-

dure.

220

System Procedures

Name Datatype Description

CONNECTION_HOST STRING The server name of the node from which the client connec-
NAME tion originates.

BYTES READ BIGINT The number of bytes of data sent from the client to the host.
MESSAGES READ BIGINT The number of individual messages sent from the client to

the host.

BYTES WRITTEN BIGINT The number of bytes of data sent from the host to the client.
MESSAGES WRITTEN BIGINT The number of individual messages sent from the host to

the client.

LIVECLIENTS— Returnsarow for every client connection currently active on the cluster.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST _ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

CONNECTION_ID BIGINT Numeric ID of the client connection invoking the proce-
dure.

CLIENT_HOSTNAME STRING The server name of the node from which the client connec-
tion originates.

ADMIN TINYINT A byte value specifying whether the connection is to the
client port (0) or the admin port (1).

OUTSTANDING BIGINT The number of bytes of data sent from the client currently

REQUEST_BYTES pending on the host.

OUTSTANDING BIGINT The number of messages on the host queue waiting to be

RESPONSE_MESSAGES retrieved by the client.

OUTSTANDING_ BIGINT The number of transactions (that is, stored procedures) ini-

TRANSACTIONS

tiated on behalf of the client that have yet to be completed.

MEMORY — Returns arow

for every server in the cluster.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

RSS INTEGER |The current resident set size. That is, the total amount of
memory allocated to the VoltDB processes on the server.

JAVAUSED INTEGER | Theamount of memory (in kilobytes) allocated by Javaand
currently in use by VoltDB.

JAVAUNUSED INTEGER | Theamount of memory (in kilobytes) allocated by Java but
unused. (In other words, free space in the Java heap.)

TUPLEDATA INTEGER | The amount of memory (in kilobytes) currently in use for

storing database records.

221

System Procedures

Name Datatype Description

TUPLEALLOCATED INTEGER | Theamount of memory (in kilobytes) allocated for the stor-
age of database records (including free space).

INDEXMEMORY INTEGER | The amount of memory (in kilobytes) currently in use for
storing database indexes.

STRINGMEMORY INTEGER | The amount of memory (in kilobytes) currently in use for
storing string and binary data that is not stored "in-line" in
the database record.

TUPLECOUNT BIGINT The total number of database records currently in memory.

POOLEDMEMORY BIGINT Thetotal size of memory (in megabytes) allocated for tasks

other than database records, indexes, and strings. (For ex-
ample, pooled memory is used for temporary tables while
processing stored procedures.)

PARTITIONCOUNT — Returns one row identifying the total number of partitions and the host that

provided that information.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

PARTITION_COUNT INTEGER | The number of unique or logical partitions on the cluster.

When using aK value greater than zero, there are multiple
copies of each logical partition.

PLANNER — Returns a row for every planner cache. That is, one cache per execution site, plus one
global cache per server. (The global cacheisidentified by a site and partition 1D of minus one.)

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

SITE ID INTEGER |Numeric ID of the execution site on the host node.

PARTITION_ID INTEGER | The numeric ID for the logical partition that this site rep-
resents. When using a K value greater than zero, there are
multiple copies of each logical partition.

CACHE1 LEVEL INTEGER | The number of query plansin thelevel 1 cache.

CACHE2_LEVEL INTEGER | The number of query plansin thelevel 2 cache.

CACHE1 _HITS INTEGER | The number of queries that matched and reused a plan in
thelevel 1 cache.

CACHE2 HITS INTEGER | The number of queries that matched and reused a plan in
thelevel 2 cache.

CACHE_MISSES INTEGER | The number of queries that had no match in the cache and

had to be planned from scratch

222

System Procedures

Name Datatype Description

PLAN_TIME_MIN BIGINT The minimum length of time (in nanoseconds) it took to
complete the planning of ad hoc queries.

PLAN_TIME_MAX BIGINT The maximum length of time (in nanoseconds) it took to
complete the planning of ad hoc queries.

PLAN_TIME_AVG BIGINT The average length of time (in nanoseconds) it took to com-
plete the planning of ad hoc queries.

FAILURES BIGINT The number of times planning for an ad hoc query failed.

PROCEDURE — Returnsarow for every stored procedure that has been executed on the cluster, grouped

by execution site.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

SITE ID INTEGER |Numeric ID of the execution site on the host node.

PARTITION_ID INTEGER | The numeric ID for the logical partition that this site rep-
resents. When using aK value greater than zero, there are
multiple copies of each logical partition.

PROCEDURE STRING The class name of the stored procedure.

INVOCATIONS BIGINT The total humber of invocations of this procedure at this
site.

TIMED_INVOCATIONS |BIGINT The number of invocations used to measure the minimum,
maximum, and average execution time.

MIN_EXECUTION_TIME [BIGINT The minimum length of time (in nanoseconds) it took to
execute the stored procedure.

MAX_EXECUTION_TIME [BIGINT The maximum length of time (in nanoseconds) it took to
execute the stored procedure.

AVG_EXECUTION_TIME |BIGINT The average length of time (in nanoseconds) it took to exe-
cute the stored procedure.

MIN_RESULT_SIZE INTEGER | The minimum size (in bytes) of the results returned by the
procedure.

MAX_RESULT SIZE INTEGER | The maximum size (in bytes) of the results returned by the
procedure.

AVG RESULT SIZE INTEGER |The average size (in bytes) of the results returned by the
procedure.

MIN_PARAMETER INTEGER | The minimum size (in bytes) of the parameters passed as

_SET_SIZE input to the procedure.

MAX_PARAMETER INTEGER | The maximum size (in bytes) of the parameters passed as

_SET_SIZE input to the procedure.

AVG_PARAMETER INTEGER | Theaveragesize(inbytes) of the parameters passed asinput

_SET _SIZE to the procedure.

ABORTS BIGINT The number of times the procedure was aborted.

223

System Procedures

Name

Datatype

Description

FAILURES

BIGINT

Thenumber of timesthe procedurefailed unexpectedly. (As
opposed to user aborts or expected errors, such as constraint
violations.)

PROCEDUREINPUT — Returnsarow for every stored procedure that has been executed on the cluster,

summarized across the cluster.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

PROCEDURE STRING The class name of the stored procedure.

WEIGHTED_PERC BIGINT A weighted average expressed as a percentage of the para-
meter set size for invocations of this stored procedure com-
pared to all stored procedure invocations.

INVOCATIONS BIGINT The total number of invocations of this procedure.

MIN_PARAMETER BIGINT The minimum parameter set sizein bytes.

_SET_SIZE

MAX_PARAMETER BIGINT The maximum parameter set sizein bytes.

_SET_SIZE

AVG _PARAMETER BIGINT The average parameter set size in bytes.

_SET SIZE

TOTAL_PARAMETER BIGINT The total input for all invocations of this stored procedure

_SET_SIZE_ MB measured in megabytes.

PROCEDUREOUTPUT — Returns a row for every stored procedure that has been executed on the
cluster, summarized across the cluster.

_SIZE MB

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

PROCEDURE STRING The class name of the stored procedure.

WEIGHTED_PERC BIGINT A weighted average expressed as a percentage of the re-
sult set sizereturned by invocations of thisstored procedure
compared to all stored procedure invocations.

INVOCATIONS BIGINT The total number of invocations of this procedure.

MIN_RESULT_SIZE BIGINT The minimum result set sizein bytes.

MAX_RESULT_SIZE BIGINT The maximum result set sizein bytes.

AVG RESULT SIZE BIGINT The average result set sizein bytes.

TOTAL_RESULT BIGINT The total output returned by all invocations of this stored

procedure measured in megabytes.

PROCEDUREPROFILE — Returns a row for every stored procedure that has been executed on the
cluster, summarized across the cluster.

Name

Datatype

Description

TIMESTAMP

BIGINT

The timestamp when the information was collected (in mil-
liseconds).

224

System Procedures

Name Datatype Description
PROCEDURE STRING The class name of the stored procedure.
WEIGHTED_PERC BIGINT A weighted average expressed as a percentage of the exe-

cution time for this stored procedure compared to al stored
procedure invocations.

INVOCATIONS BIGINT The total number of invocations of this procedure.

AVG BIGINT The average length of time (in nanoseconds) it took to exe-
cute the stored procedure.

MIN BIGINT The minimum length of time (in nanoseconds) it took to
execute the stored procedure.

MAX BIGINT The maximum length of time (in nanoseconds) it took to
execute the stored procedure.

ABORTS BIGINT The number of times the procedure was aborted.

FAILURES BIGINT The number of timesthe procedurefailed unexpectedly. (As
opposed to user aborts or expected errors, such as constraint
violations.)

REBALANCE — Returns one row if the cluster is rebalancing. No data is returned if the cluster is not
rebalancing.

Warning

The rebalance selector is still under development. The return values are likely to change in up-
coming releases.

Name Datatype Description

TOTAL_RANGES BIGINT The total number of partition segments to be migrated.

PERCENTAGE MOVED |FLOAT The percentage of the total segmentsthat have already been
moved.

MOVED_ROWS BIGINT The number of rows of data that have been moved.

ROWS PER_SECOND FLOAT The average number of rows moved per second.

ESTIMATED_REMAININGBIGINT The estimated time remaining until the rebalance is com-
plete, in milliseconds.

MEGABYTES PER_SECONELOAT The average volume of data moved per second, measured
in megabytes.

CALLS PER_SECOND FLOAT The average number of rebalance work units, or transac-
tions, executed per second.

CALLS LATENCY FLOAT The average execution time for rebalance transactions, in
milliseconds.

SNAPSHOTSTATUS — Returns arow for every snapshot filein the recent snapshots performed on the
cluster.

Name Datatype Description

TIMESTAMP BIGINT Thetimestamp when the snapshot wasinitiated (in millisec-
onds).

HOST _ID INTEGER |Numeric ID for the host node.

225

System Procedures

Name Datatype Description

HOSTNAME STRING Server name of the host node.

TABLE STRING The name of the database table whose datathe file contains.

PATH STRING The directory path where the snapshot file resides.

FILENAME STRING Thefile name.

NONCE STRING The unique identifier for the snapshot.

TXNID BIGINT The transaction ID of the snapshot.

START_TIME BIGINT The timestamp when the snapshot began (in milliseconds).

END_TIME BIGINT The timestamp when the snapshot was completed (in mil-
liseconds).

SIZE BIGINT Thetotal size, in bytes, of thefile.

DURATION BIGINT Thelength of time (in milliseconds) it took to complete the
snapshot.

THROUGHPUT FLOAT The average number of bytes per second written to the file
during the snapshot process.

RESULT STRING String value indicating whether the writing of the snapshot
file was successful ("SUCCESS") or not ("FAILURE").

TABLE — Returns arow for every table, per partition. In other words, the number of tables, multiplied
by the number of sites per host and the number of hosts.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST _ID BIGINT Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

SITE_ID BIGINT Numeric ID of the execution site on the host node.

PARTITION_ID BIGINT The numeric ID for the logical partition that this site rep-

resents. When using a K value greater than zero, there are
multiple copies of each logical partition.

TABLE_NAME STRING The name of the database table.

TABLE _TYPE STRING The type of the table. Values returned include "Persistent-
Table" for normal data tables and views and " Streamed-
Table" for export-only tables.

TUPLE_COUNT BIGINT The number of rows currently stored for this table in the
current partition. For export-only tables, the cumulative to-
tal number of rows inserted into the table.

TUPLE_ALLOCATED INTEGER |Thetotal size of memory, in kilobytes, allocated for storing
_MEMORY inline data associated with this table in this partition. The
allocated memory can exceed the currently used memory
(TUPLE_DATA_MEMORY). For export-only tables, this
field identifies the amount of memory currently in use to
gueue export data (both in memory and as export overflow)
prior to its being passed to the export client.

TUPLE DATA_MEMORY |INTEGER |Thetotal memory, in kilobytes, used for storing inline data
associated with this table in this partition. The total memo-

226

System Procedures

Name

Datatype

Description

ry used for storing data for this table is the combination of
memory used for inline (tuple) and non-inline (string) data.

STRING_DATA
_MEMORY

INTEGER

The total memory, in kilobytes, used for storing non-inline
variable length data (VARCHAR and VARBINARY) as-
sociated with this table in this partition. The total memo-
ry used for storing data for this table is the combination of
memory used for inline (tuple) and non-inline (string) data.

TUPLE_LIMIT

INTEGER

Therow limit for thistable. Row limits are optional and are
defined in the schema as a maximum number of rows that
any partition can contain. If no row limit is set, this value
isnull.

PERCENT_FULL

INTEGER

The percentage of the row limit currently in use by table
rowsinthispartition. If norow limitisset, thisvalueiszero.

Examples

The following example uses @Statistics to gather information about the distribution of table rows within

the cluster:

$ sqglcmd

1> exec @tatistics TABLE, O;

The next program example shows a procedure that collects and displays the number of transactions (i.e.
stored procedures) during a given interval, by setting the delta-flag to a non-zero value. By calling this
procedureiteratively (for example, every fiveminutes), it ispossibletoidentify fluctuationsin the database
workload over time (as measured by the number of transactions processed).

voi d nmeasur eWor kl oad() {

Vol t Tabl e[]

results = null;

String procName;
i nt procCount = O;
i nt sysprocCount = 0;

try { results = client.call Procedure("@tatistics",

"INl TI ATOR",

1).getResults(); }

catch (Exception e) { e.printStackTrace(); }

for (VoltTable t: results) {

r=0; r<t.get RowCount (); r++) {

Vol t Tabl eRow row = t.fetchRow(r);

procName = row. getStr

/* Count system procedures separately */

i f (procNane.substring(0,1).conpareTo("@) == 0)
{ sysprocCount += row. getLong("l NVOCATI ONS"); }

for (int

el se

{ procCount += row.

}
}

i ng(" PROCEDURE_NAME") ;

get Long(" | NVOCATI ONS") ; }

Systemout. printf("System procedures: %d\n" +

"User - defi

ned procedures: %\ n", +

sysprocCount, procCount);

227

System Procedures

@StopNode

@StopNode — Stops a VoltDB server process, removing the node from the cluster.

Syntax

@StopNode Integer host-ID

Description

The @StopNode system procedure lets you stop a specific server in a K-safe cluster. Y ou specify which
node to stop using the host 1D, which is the unique identifier for the node assigned by VoltDB when the
server joinsthe cluster.

Note that by calling the @StopNode procedure on a node other than the node being stopped, you will
receive areturn statusindicating the success or failure of the call. If you call the procedure on the node that
you are requesting to stop, the return status can only indicate that the call was interrupted (by the VoltDB
process on the node stopping), not whether it was successfully completed or not.

If you call @StopNode on a hode or cluster that is not K-safe — either because it was started with aK-
safety value of zero or one or more nodes have failed so any further failure could crash the database — the
@StopNode procedure will not be executed. Y ou can only stop nodes on a cluster that will remain viable
after the node stops. To stop the entire cluster, please use the @Shutdown system procedure.

Return Values

Returns one VoltTable with one row.

Name Datatype Description
STATUS BIGINT Always returns the value zero (0) indicating success.
Examples

The following program example uses grep, sqlcmd, and the @Systeminformation stored procedure to
identify the host ID for a specific node (doodah) of the cluster. The example then uses that host ID (2) to
call @StopNode and stop the desired node.

$ echo "exec @ysten nformati on overview," | sqlcnd | grep "doodah"
2 HOSTNAME doodah

$ sql cnd

1> exec @bt opNode 2;

The following Java code fragment performs the same function.

try {
results = client.callProcedure("”@ystenl nfornati on",
"overview').get Results();
}
catch (Exception e) { e.printStackTrace(); }

Vol t Tabl e table = results[O0];

228

System Procedures

tabl e. reset RowPosi tion();
int targetHostID = -1;

whil e (tabl e.advanceRow() && targetHostld < 0) {
if ((table.getString("KEY") == "HOSTNAMVE') &&
(table.getString("VALUE") == target Host Nane)) {
targetHostld = (int) table.getLong("HOST_ID");

}

try {
client.call Procedure(" @St opNode",

target Host1d). get Resul ts();

}
catch (Exception e) { e.printStackTrace(); }

229

System Procedures

@SystemCatalog

@SystemCatal og — Returns metadata about the database schema.

Syntax

@SystemCatalog String component

Description

The @SystemCatal og system procedure returnsinformation about the schemaof the VVoltDB database, de-
pending upon the component keyword you specify. The following are the allowabl e values of component:

"TABLES"
"COLUMNS'

"INDEXINFO"

"PRIMARYKEY S"

"PROCEDURES"

"PROCEDURECOLUM-
NS'

Return Values

Returns information about the tables in the database.
Returns alist of columnsfor al of the tables in the database.

Returns information about the indexes in the database schema. Note that the
procedure returns information for each column in the index. In other words,
if an index is composed of three columns, the result set will include three
separate entries for the index, one for each column.

Returns information about the primary keys in the database schema. Note
that the procedure returns information for each column in the primary key.
If an primary key is composed of three columns, the result set will include
three separate entries.

Returns information about the stored procedures defined in the application
catalog, including system procedures.

Returns information about the arguments to the stored procedures.

Returns adifferent VoltTable for each component. The layout of the VoltTables is designed to match the
corresponding JDBC data structures. Columns are provided for all JDBC properties, but where VoltDB
has no corresponding element the column is unused and a null value is returned.

For the TABLES component, the VoltTable has the following columns:

Name Datatype Description

TABLE_CAT STRING Unused.

TABLE_SCHEM STRING Unused.

TABLE_NAME STRING The name of the database table.

TABLE_TYPE STRING Specifies whether the table is a data table ("TABLE"), a
materialized view ("VIEW"), or an export-only table ('EX-
PORT").

REMARKS STRING Unused.

TYPE_CAT STRING Unused.

230

System Procedures

Name Datatype Description
TYPE_SCHEM STRING Unused.
TYPE_NAME STRING Unused.
SELF_REFERENCING STRING Unused.
_COL_NAME

REF_GENERATION STRING Unused.

For the COLUMNS component, the VoltTable has the following columns:

Name Datatype Description

TABLE_CAT STRING Unused.

TABLE_SCHEM STRING Unused.

TABLE_NAME STRING The name of the database table the column belongs to.

COLUMN_NAME STRING The name of the column.

DATA_TYPE INTEGER |An enumerated value specifying the corresponding Java
SQL datatype of the column.

TYPE_NAME STRING A string value specifying the datatype of the column.

COLUMN_SIZE INTEGER | The length of the column in bits, characters, or digits, de-
pending on the datatype.

BUFFER_LENGTH INTEGER |Unused.

DECIMAL_DIGITS INTEGER | The number of fractional digits in a DECIMAL datatype
column. (Null for all other datatypes.)

NUM_PREC RADIX INTEGER | Specifiestheradix, or numeric base, for calculating the col-
umn size. A radix of 2 indicatesthe column sizeismeasured
in bitswhile aradix of 10 indicates ameasurement in bytes
or digits.

NULLABLE INTEGER |Indicates whether the column value can be null (1) or not
(0).

REMARKS STRING Contains the string "PARTITION_COLUMN?" if the col-
umn is the partitioning key for a partitioned table. Other-
wise null.

COLUMN_DEF STRING The default value for the column.

SQL_DATA_TYPE INTEGER |Unused.

SQL_DATETIME_SUB INTEGER |Unused.

CHAR_OCTET_LENGTH |[INTEGER |For variable length columns (VARCHAR and VARBI-
NARY), the maximum length of the column. Null for all
other datatypes.

ORDINAL_POSITION INTEGER |Anindex specifying the position of the columnin thelist of
columnsfor the table, starting at 1.

IS NULLABLE STRING Specifies whether the column can contain a null value
("YES") or not ("NO").

SCOPE_CATALOG STRING Unused.

SCOPE_SCHEMA STRING Unused.

SCOPE_TABLE STRING Unused.

231

System Procedures

Name Datatype Description
SOURCE _DATE_TYPE |SMALLINT |Unused.
IS AUTOINCREMENT STRING Specifies whether the column is auto-incrementing or not.

(Always returns "NQO").

For the INDEXINFO component, the VoltTable has the following columns:

Name Datatype Description

TABLE_CAT STRING Unused.

TABLE_SCHEM STRING Unused.

TABLE_NAME STRING The name of the database table the index applies to.

NON_UNIQUE TINYINT V alue specifying whether the index is unique (0) or not (1).

INDEX_QUALIFIER STRING Unused.

INDEX_NAME STRING The name of the index that includes the current column.

TYPE SMALLINT |An enumerated value indicating the type of index as either
ahash (2) or other type (3) of index.

ORDINAL_POSITION SMALLINT |Anindex specifying the position of the columnintheindex,
starting at 1.

COLUMN_NAME STRING The name of the column.

ASC OR DESC STRING A string value specifying the sort order of the index. Pos-
sible values are "A" for ascending or null for unsorted in-
dexes.

CARDINALITY INTEGER |Unused.

PAGES INTEGER |Unused.

FILTER_CONDITION STRING Unused.

For the PRIMARY KEY S component, the VoltTable has the following columns:

Name Datatype Description

TABLE_CAT STRING Unused.

TABLE_SCHEM STRING Unused.

TABLE _NAME STRING The name of the database table.

COLUMN_NAME STRING The name of the column in the primary key.

KEY_SEQ SMALLINT |An index specifying the position of the column in the pri-
mary key, starting at 1.

PK_NAME STRING The name of the primary key.

For the PROCEDURES component, the VoltTable has the following columns:

Name Datatype Description

PROCEDURE_CAT STRING Unused.

PROCEDURE_SCHEM STRING Unused.

PROCEDURE_NAME STRING The name of the stored procedure.
RESERVED1 STRING Unused.

232

System Procedures

Name Datatype Description

RESERVED?2 STRING Unused.

RESERVED3 STRING Unused.

REMARKS STRING Unused.

PROCEDURE_TYPE SMALLINT |An enumerated value that specifies the type of procedure.
Always returns zero (0), indicating "unknown".

SPECIFIC_NAME STRING Same as PROCEDURE_NAME.

For the PROCEDURECOL UMNS component, the VoltTable has the following columns:

Name Datatype Description

PROCEDURE_CAT STRING Unused.

PROCEDURE_SCHEM STRING Unused.

PROCEDURE_NAME STRING The name of the stored procedure.

COLUMN_NAME STRING The name of the procedure parameter.

COLUMN_TYPE SMALLINT |An enumerated value specifying the parameter type. Al-
ways returns 1, corresponding to procedureColumnin.

DATA_TYPE INTEGER |An enumerated value specifying the corresponding Java
SQL datatype of the column.

TYPE_NAME STRING A string value specifying the datatype of the parameter.

PRECISION INTEGER | The length of the parameter in bits, characters, or digits,
depending on the datatype.

LENGTH INTEGER |The length of the parameter in bytes. For variable length
datatypes (VARCHAR and VARBINARY), this value
specifies the maximum possible length.

SCALE SMALLINT |The number of fractiona digits in a DECIMAL datatype
parameter. (Null for all other datatypes.)

RADIX SMALLINT | Specifiestheradix, or numeric base, for calculating the pre-
cision. A radix of 2 indicates the precision is measured in
bits while a radix of 10 indicates a measurement in bytes
or digits.

NULLABLE SMALLINT |Unused.

REMARKS STRING If this column contains the string
"PARTITION_PARAMETER", the parameter is the parti-
tioning key for asingle-partitioned procedure. If the column
contains the string "ARRAY_PARAMETER" the parame-
ter isanative Java array. Otherwise this column is null.

COLUMN_DEF STRING Unused.

SQL_DATA_TYPE INTEGER |Unused.

SQL_DATETIME_SUB INTEGER |Unused.

CHAR_OCTET_LENGTH |[INTEGER |For variable length columns (VARCHAR and VARBI-
NARY), the maximum length of the column. Null for all
other datatypes.

ORDINAL_POSITION INTEGER | Anindex specifying the position in the parameter list for the

procedure, starting at 1.

233

System Procedures

Name Datatype Description

IS NULLABLE STRING Unused.

SPECIFIC_NAME STRING Same as COLUMN_NAME
Examples

Thefollowing example calls @SystemCatal og to list the stored procedures in the active database catal og:

$ sqlcnd
1> exec @ystentCatal og procedures;

The next program example uses @SystemCatalog to display information about the tables in the database
schema.

Vol t Tabl e[] results = null;
try {

results = client.call Procedure(" @ystentCatal og",

"TABLES") . get Resul ts();

Systemout.println("Information about the database schema:");

for (VoltTable node : results) Systemout.println(node.toString());
}
catch (Exception e) {

e.printStackTrace();

}

234

System Procedures

@SystemInformation

@Systemlnformation — Returns configuration information about VoltDB and the individual nodes of the

database cluster.

Syntax

@Systeminformation

@SystemInformation String component

Description

The @SystemlInformation system procedure returns information about the configuration of the VoltDB
database or the individual nodes of the database cluster, depending upon the component keyword you
specify. The following are the allowable values of component:

"DEPLOY -
MENT"

"OVERVIEW"

Returns information about the configuration of the database. In particular, this key-
word returns information about the various features and settings enabled through the
deployment file, such as export, snapshots, K-safety, and so on. These properties are
returned in asingle VVoltTable of name/value pairs.

Returnsinformation about the individual serversin the database cluster, including the
host name, the | P address, the version of VoltDB running on the server, aswell asthe
path to the catalog and deployment files in use. The overview also includes entries
for the start time of the server and length of time the server has been running.

If you do not specify acomponent, @Systemlnformation returnsthe results of the OVERVIEW component
(to provide compatibility with previous versions of the procedure).

Return Values

Returns one of two VoltTables depending upon which component is requested.

For the DEPLOYMENT component, the VoltTable has the columns specified in the following table.

Name Datatype Description

PROPERTY STRING The name of the deployment property being reported.

VALUE STRING The corresponding value of that property in the deployment
file (either explicitly or by default).

For the OVERVIEW component, information is reported for each server in the cluster, so an additional
column is provided identifying the host node.

Name Datatype Description

HOST _ID INTEGER |A numeric identifier for the host node.

KEY STRING The name of the system attribute being reported.

VALUE STRING The corresponding value of that attribute for the specified
host.

235

System Procedures

Examples

The first example displays information about the individual serversin the database cluster:

$ sqglcmd
1> exec @ystem nformation overview,

The following program example uses @Systeminformation to display information about the nodes in the
cluster and then about the database itself.

Vol t Tabl e[] results = null;
try {
results = client.call Procedure("@ystem nformation",
"OVERVI EW) . get Resul t s() ;
Systemout.println("Information about the database cluster:");
for (VoltTable node : results) Systemout.println(node.toString());

results = client.call Procedure("@ystem nformation",

" DEPLOYMENT") . get Resul t s();
Systemout. println("Information about the database depl oynent:");
for (VoltTable node : results) Systemout.println(node.toString());

}
catch (Exception e) {

e.printStackTrace();
}

236

System Procedures

@UpdateApplicationCatalog

@UpdateApplicationCatal og — Reconfigures the database by replacing the application catalog currently
inuse.

Syntax

@UpdateApplicationCatalog byte[] catalog, String deployment

Description

The @UpdateApplicationCatalog system procedure lets you make modifications to a running database
without having to shutdown and restart. @UpdateA pplicationCatal og supports the following changes:

» Add, remove, or modify stored procedures
» Add, remove, or modify database tables and columns
» Add, remove, or modify indexes (except where new constraints are introduced)

» Add or remove views and export-only tables

Modify the security permissions for the database

Modify the settings for automated snapshots (whether they are enabled or not, their frequency, location,
prefix, and number retained)

When modifying indexes, you can add, remove, or rename non-unique indexes, you can add or remove
columns from a non-unique index, and you can rename, add columnsto, or remove in its entirety a unique
index. The only limitations are that you cannot add a unique index or remove a column from an existing
unique index.

The arguments to the system procedure are abyte array containing the contents of the new catalog jar and
astring containing the contents of the deployment file. That is, you pass the actual contents of the catalog
and deployment files, using a byte array for the binary catalog and a string for the text deployment file.

Thenew catal og and the depl oyment file must not contain any changes other than the all owed modifications
listed above. Currently, if there are any other changes from the original catalog and deployment file (such
as changesto the export configuration or to the configuration of the cluster), the procedure returns an error
indicating that an incompatible change has been found.

If you call @updateA pplicationCatal og on a master database while database replication (DR) isactive, the
DR process automatically communicates any changes to the application catalog to the replica database to
keep the two databases in sync. However, any changes to the deployment file apply to the master database
only. To change the deployment settings on a replica database, you must stop and restart the replica (and
database replication) using an updated deployment file.

To simplify the process of encoding the catalog contents, the Java client interface includes two helper
methods (one synchronous and one asynchronous) to encode the files and issue the stored procedure re-
quest:

ClientResponse client.updateApplicationCatalog(File catalog-file, File deployment-file)

ClientResponse client.updateApplicationCatalog(clientCallback callback, File catalog-file, File
deployment-file)

237

System Procedures

Similarly, the sglemd utility interprets both arguments as filenames.

Examples

The following example uses sglcmd to update the application catalog using the filesmycat al og. j ar
and mydepl oy. xmi :

$ sqlcmd
1> exec @Jpdat eApplicationCatal og nycatal og.jar, nydepl oy.xm;

An dternativeisto usethe voltadmin update command. In which case, the following command performs
the same function as the preceding sglcmd example:

$ vol tadm n update mycatal og.j ar nydepl oy. xm

The following program example uses the @UpdateApplicationCatalog procedure to update the cur-
rent database catalog, using the catalog at pr oj ect/ newcat al og. j ar and configuration file at
proj ect/ production. xm .

String newcat = "project/newcatal og.jar";
String newdepl oy = "project/production.xm";

try {
File file = new Fil e(newcat);

FilelnputStreamfin = new Fil el nput Stream(file);
byte[] catalog = new byte[(int)file.length()];
fin.read(catal og);

fin.close();

file = new File(newdepl oy);

fin = new FilelnputStrean(file);

byte[] deploybytes = new byte[(int)file.length()];
fin.read(depl oybytes);

fin.close();

String depl oyment = new String(depl oybytes, "UTF-8");
client.callProcedure(" @pdat eAppl i cationCatal og", cat al og, depl oynent);

}
catch (Exception e) { e.printStackTrace(); }

The following example uses the synchronous hel per method to perform the same operation.

String newcat = "project/newatal og.jar";
String newdepl oy = "project/production.xm";
try {

client.updateApplicationCatal og(new Fil e(newcat), new Fil e(newdepl oy));

}
catch (Exception e) { e.printStackTrace(); }

238

System Procedures

@UpdatelLogging

@Updatel ogging — Changes the logging configuration for a running database.

Syntax

@UpdatelLogging CString configuration

Description

The @Updatel ogging system procedureletsyou changethelogging configurationfor VoltDB. The second
argument, configuration, is atext string containing the Log4dJ XML configuration definition.

Return Values

Returns one VoltTable with one row.

Name Datatype Description
STATUS BIGINT Always returns the value zero (0) indicating success.
Examples

It is possible to use sgqlcmd to update the logging configuration. However, the argument is interpreted as
raw XML content rather than as a file specification. Consequently, it can be difficult to use interactively.
But you can write the file contents to an input file and then pipe that to sqlcmd, like so:

$ echo "exec @JpdatelLogging '" > sqgl cnd. i nput
$ cat nylog4j.xm >> sql cnd. i nput

$ echo "';" >> sqglcnd. input

$ cat sqglcnmd.input | sqlcnmd

Thefollowing program example demonstrates another way to update the logging, using the contents of an
XML file (identified by the string xmlfilename).

try {
Scanner scan = new Scanner (new File(xm fil enane));

scan. useDelimter("\\Z");

String content = scan. next();

client.call Procedure(" @lpdat eLoggi ng", content);
}
catch (Exception e) {

e.printStackTrace();

}

239

