
Using VoltDB

Abstract

This book explains how to use VoltDB to design, build, and run high performance applica-
tions.

V4.9

Using VoltDB
V4.9
Copyright © 2008-2014 VoltDB, Inc.

The text and illustrations in this document are licensed under the terms of the GNU Affero General Public License Version 3 as published by the
Free Software Foundation. See the GNU Affero General Public License (http://www.gnu.org/licenses/) for more details.

Many of the core VoltDB database features described herein are part of the VoltDB Community Edition, which is licensed under the GNU Affero
Public License 3 as published by the Free Software Foundation. Other features are specific to the VoltDB Enterprise Edition, which is distributed
by VoltDB, Inc. under a commercial license. Your rights to access and use VoltDB features described herein are defined by the license you received
when you acquired the software.

This document was generated on November 24, 2014.

http://www.gnu.org/licenses/

iii

Table of Contents
Preface .. xii
1. Overview ... 1

1.1. What is VoltDB? .. 1
1.2. Who Should Use VoltDB .. 1
1.3. How VoltDB Works ... 2

1.3.1. Partitioning ... 2
1.3.2. Serialized (Single-Threaded) Processing ... 2
1.3.3. Partitioned vs. Replicated Tables .. 3
1.3.4. Ease of Scaling to Meet Application Needs ... 4

2. Installing VoltDB ... 5
2.1. Operating System and Software Requirements ... 5
2.2. Installing VoltDB ... 6

2.2.1. Upgrading From Older Versions ... 6
2.2.2. Installing Standard System Packages ... 6
2.2.3. Building a New VoltDB Distribution Kit .. 7

2.3. Setting Up Your Environment .. 8
2.4. What is Included in the VoltDB Distribution ... 8
2.5. VoltDB in Action: Running the Sample Applications .. 9

3. Designing Your VoltDB Application .. 10
3.1. Designing the Database .. 10

3.1.1. Partitioning Database Tables .. 12
3.1.2. Replicating Tables .. 13

3.2. Designing the Data Access (Stored Procedures) .. 13
3.2.1. Writing VoltDB Stored Procedures .. 14
3.2.2. VoltDB Stored Procedures and Determinism ... 14
3.2.3. The Anatomy of a VoltDB Stored Procedure ... 15
3.2.4. Partitioning Stored Procedures .. 22

3.3. Designing the Application Logic ... 24
3.3.1. Connecting to the VoltDB Database ... 24
3.3.2. Invoking Stored Procedures .. 26
3.3.3. Invoking Stored Procedures Asynchronously ... 27
3.3.4. Closing the Connection ... 28

3.4. Handling Errors .. 28
3.4.1. Interpreting Execution Errors .. 28
3.4.2. Handling Timeouts ... 30
3.4.3. Interpreting Other Errors .. 31

4. Simplifying Application Development ... 34
4.1. Default Procedures .. 34
4.2. Shortcut for Defining Simple Stored Procedures ... 35
4.3. Writing Stored Procedures Inline Using Groovy ... 36
4.4. Verifying Expected Query Results ... 37

5. Building Your VoltDB Application .. 39
5.1. Compiling the Client Application and Stored Procedures .. 39
5.2. Declaring the Stored Procedures .. 39
5.3. Building the Application Catalog ... 40

6. Running Your VoltDB Application .. 41
6.1. Defining the Cluster Configuration .. 41

6.1.1. Determining How Many Partitions to Use ... 42
6.1.2. Configuring Paths for Runtime Features ... 42
6.1.3. Verifying your Hardware Configuration .. 43

6.2. Starting a VoltDB Database for the First Time ... 43

Using VoltDB

iv

6.2.1. Simplifying Startup on a Cluster ... 44
6.2.2. How VoltDB Database Startup Works .. 45

6.3. Starting VoltDB Client Applications .. 45
6.4. Shutting Down a VoltDB Database .. 46
6.5. Stopping and Restarting a VoltDB Database .. 46

6.5.1. Save and Restore ... 46
6.5.2. Command Logging and Recovery .. 46

6.6. Modes of Operation .. 47
6.6.1. Admin Mode ... 47
6.6.2. Starting the Database in Admin Mode .. 48

7. Updating Your VoltDB Database ... 49
7.1. Planning Your Application Updates ... 49
7.2. Updating the Database Schema on a Running Database .. 49

7.2.1. Validating the Updated Catalog .. 50
7.2.2. Managing the Update Process ... 50

7.3. Updating the Database Using Save and Restore .. 51
7.4. Updating the Hardware Configuration .. 51

7.4.1. Adding Nodes with Elastic Scaling .. 52
7.4.2. Configuring How VoltDB Rebalances New Nodes .. 52

8. Security ... 54
8.1. How Security Works in VoltDB .. 54
8.2. Enabling Authentication and Authorization .. 54
8.3. Defining Users and Roles ... 55
8.4. Assigning Access to Stored Procedures ... 56
8.5. Assigning Access by Function (System Procedures, SQL Queries, and Default Proce-
dures) ... 56
8.6. Using Default Roles .. 57
8.7. Integrating Kerberos Security with VoltDB ... 57

8.7.1. Installing and Configuring Kerberos .. 58
8.7.2. Installing and Configuring the JAVA Security Extensions 58
8.7.3. Configuring the VoltDB Servers and Clients ... 59

9. Saving & Restoring a VoltDB Database .. 61
9.1. Performing a Manual Save and Restore of a VoltDB Cluster 61

9.1.1. How to Save the Contents of a VoltDB Database ... 62
9.1.2. How to Restore the Contents of a VoltDB Database .. 62
9.1.3. Changing the Database Schema or Cluster Configuration Using Save and Re-
store ... 62

9.2. Scheduling Automated Snapshots .. 63
9.3. Managing Snapshots .. 64
9.4. Special Notes Concerning Save and Restore .. 65

10. Command Logging and Recovery ... 66
10.1. How Command Logging Works .. 66
10.2. Controlling Command Logging .. 67
10.3. Configuring Command Logging for Optimal Performance .. 67

10.3.1. Log Size ... 68
10.3.2. Log Frequency ... 68
10.3.3. Synchronous vs. Asynchronous Logging ... 68
10.3.4. Hardware Considerations ... 69

11. Availability ... 71
11.1. How K-Safety Works .. 71
11.2. Enabling K-Safety ... 72

11.2.1. What Happens When You Enable K-Safety ... 73
11.2.2. Calculating the Appropriate Number of Nodes for K-Safety 73

11.3. Recovering from System Failures ... 74

Using VoltDB

v

11.3.1. What Happens When a Node Rejoins the Cluster .. 74
11.3.2. Where and When Recovery May Fail ... 75

11.4. Avoiding Network Partitions ... 76
11.4.1. K-Safety and Network Partitions ... 76
11.4.2. Using Network Fault Protection .. 77

12. Database Replication .. 79
12.1. How Database Replication Works .. 79

12.1.1. Starting Replication ... 80
12.1.2. Replication and Existing Databases .. 80
12.1.3. Database Replication and Disaster Recovery .. 81
12.1.4. Database Replication and Completeness .. 82
12.1.5. Database Replication and Read-only Clients .. 82

12.2. Database Replication in Action .. 83
12.2.1. Starting Replication ... 83
12.2.2. Stopping Replication ... 85
12.2.3. Promoting the Replica When the Master Becomes Unavailable 85
12.2.4. Managing Database Replication ... 85

12.3. Using the Sample Applications to Demonstrate Replication 87
12.3.1. Replicating the Voter Sample Using the Enterprise Manager 87
12.3.2. Replicating the Voter Sample Using the Command Line 88

13. Exporting Live Data ... 89
13.1. Understanding Export .. 89
13.2. Planning your Export Strategy ... 90
13.3. Identifying Export Tables in the Schema ... 92
13.4. Configuring Export in the Deployment File .. 92
13.5. The File Connector .. 93
13.6. The HTTP Connector .. 95

13.6.1. Understanding HTTP Properties .. 95
13.6.2. Exporting to Hadoop via WebHDFS .. 97

13.7. The JDBC Connector ... 98
13.8. The Kafka Connector ... 99
13.9. The RabbitMQ Connector ... 102
13.10. How Export Works .. 104

13.10.1. Export Overflow ... 104
13.10.2. Persistence Across Database Sessions .. 104

14. Logging and Analyzing Activity in a VoltDB Database ... 106
14.1. Introduction to Logging .. 106
14.2. Creating the Logging Configuration File .. 106
14.3. Enabling Logging for VoltDB .. 108
14.4. Customizing Logging in the VoltDB Enterprise Manager .. 108
14.5. Changing the Timezone of Log Messages .. 109
14.6. Changing the Configuration on the Fly .. 109

15. Using VoltDB with Other Programming Languages ... 110
15.1. C++ Client Interface .. 110

15.1.1. Writing VoltDB Client Applications in C++ ... 111
15.1.2. Creating a Connection to the Database Cluster .. 111
15.1.3. Invoking Stored Procedures .. 111
15.1.4. Invoking Stored Procedures Asynchronously .. 112
15.1.5. Interpreting the Results .. 113

15.2. JSON HTTP Interface .. 113
15.2.1. How the JSON Interface Works ... 113
15.2.2. Using the JSON Interface from Client Applications 115
15.2.3. How Parameters Are Interpreted .. 117
15.2.4. Interpreting the JSON Results ... 118

Using VoltDB

vi

15.2.5. Error Handling using the JSON Interface ... 119
15.3. JDBC Interface ... 120

15.3.1. Using JDBC to Connect to a VoltDB Database ... 120
15.3.2. Using JDBC to Query a VoltDB Database ... 120

A. Supported SQL DDL Statements ... 122
CREATE INDEX .. 123
CREATE PROCEDURE AS ... 125
CREATE PROCEDURE FROM CLASS ... 126
CREATE ROLE ... 127
CREATE TABLE ... 128
CREATE VIEW ... 132
EXPORT TABLE ... 133
IMPORT CLASS .. 134
PARTITION PROCEDURE .. 135
PARTITION TABLE ... 137

B. Supported SQL Statements ... 138
DELETE ... 139
INSERT .. 140
SELECT .. 142
TRUNCATE TABLE ... 146
UPDATE ... 147
UPSERT .. 148

C. SQL Functions ... 149
ABS() ... 151
ARRAY_ELEMENT() ... 152
ARRAY_LENGTH() ... 153
AVG() ... 154
CAST() ... 155
CEILING() ... 156
CHAR() ... 157
CHAR_LENGTH() .. 158
COALESCE() ... 159
CONCAT() .. 160
COUNT() .. 161
CURRENT_TIMESTAMP .. 162
DAY(), DAYOFMONTH() ... 163
DAYOFWEEK() ... 164
DAYOFYEAR() ... 165
DECODE() .. 166
EXP() .. 167
EXTRACT() ... 168
FIELD() .. 170
FLOOR() ... 172
FORMAT_CURRENCY() .. 173
FROM_UNIXTIME() .. 174
HOUR() .. 175
LEFT() .. 176
LOWER() .. 177
MAX() .. 178
MIN() ... 179
MINUTE() ... 180
MONTH() .. 181
NOW .. 182
OCTET_LENGTH() .. 183

Using VoltDB

vii

OVERLAY() .. 184
POSITION() ... 185
POWER() .. 186
QUARTER() .. 187
REPEAT() ... 188
REPLACE() ... 189
RIGHT() .. 190
SECOND() ... 191
SET_FIELD() ... 192
SINCE_EPOCH() .. 194
SPACE() ... 195
SQRT() ... 196
SUBSTRING() ... 197
SUM() ... 198
TO_TIMESTAMP() ... 199
TRIM() .. 200
TRUNCATE() .. 201
UPPER() ... 202
WEEK(), WEEKOFYEAR() ... 203
WEEKDAY() ... 204
YEAR() ... 205

D. VoltDB CLI Commands .. 206
csvloader ... 207
dragent .. 211
jdbcloader .. 212
kafkaloader .. 215
sqlcmd .. 218
voltadmin ... 221
voltdb .. 223

E. Deployment File (deployment.xml) ... 228
E.1. Understanding XML Syntax ... 228
E.2. The Structure of the Deployment File ... 228

F. VoltDB Datatype Compatibility ... 232
F.1. Java and VoltDB Datatype Compatibility .. 232

G. System Procedures .. 234
@AdHoc ... 235
@Explain ... 236
@ExplainProc ... 237
@GetPartitionKeys .. 238
@Pause ... 240
@Promote .. 242
@Quiesce .. 243
@Resume .. 244
@Shutdown .. 245
@SnapshotDelete .. 246
@SnapshotRestore ... 248
@SnapshotSave .. 250
@SnapshotScan .. 253
@SnapshotStatus ... 256
@Statistics ... 258
@StopNode .. 271
@SystemCatalog ... 273
@SystemInformation ... 278
@UpdateApplicationCatalog ... 280

Using VoltDB

viii

@UpdateLogging .. 282

ix

List of Figures
1.1. Partitioning Tables .. 2
1.2. Serialized Processing .. 3
1.3. Replicating Tables .. 4
3.1. Example Reservation Schema ... 11
10.1. Command Logging in Action .. 66
10.2. Recovery in Action ... 67
11.1. K-Safety in Action .. 72
11.2. Network Partition .. 76
11.3. Network Fault Protection in Action .. 78
12.1. The Components of Database Replication .. 80
12.2. Replicating an Existing Database ... 81
12.3. Promoting the Replica .. 81
12.4. Read-Only Access to the Replica ... 83
13.1. Overview of the Export Process ... 90
13.2. Flight Schema with Export Table ... 91
15.1. The Structure of the VoltDB JSON Response ... 118
E.1. Deployment XML Structure ... 229

x

List of Tables
2.1. Operating System and Software Requirements ... 5
2.2. Components Installed by VoltDB .. 8
3.1. Example Application Workload ... 11
3.2. Methods of the VoltTable Classes .. 20
8.1. Named Security Permissions ... 56
13.1. File Export Properties .. 94
13.2. HTTP Export Properties ... 96
13.3. JDBC Export Properties ... 99
13.4. Kafka Export Properties .. 101
13.5. RabbitMQ Export Properties ... 103
14.1. VoltDB Components for Logging ... 108
15.1. Datatypes in the JSON Interface .. 117
A.1. Supported SQL Datatypes .. 128
C.1. Selectable Values for the EXTRACT Function ... 168
E.1. Deployment File Elements and Attributes .. 229
F.1. Java and VoltDB Datatype Compatibility .. 232
G.1. @SnapshotSave Options .. 250

xi

List of Examples
3.1. Components of a VoltDB Stored Procedure ... 16
3.2. Displaying the Contents of VoltTable Arrays ... 21

xii

Preface
This book is a complete guide to VoltDB. It describes what VoltDB is, how it works, and — more impor-
tantly — how to use it to build high performance, data intensive applications. The book is divided into
four sections:

Section 1: Introduction Explains what VoltDB is, how it works, what problems it solves, and
who should use it. The chapters in this section are:

• Chapter 1, Overview

• Chapter 2, Installing VoltDB

Section 2: Using VoltDB Explains how to design and develop applications using VoltDB. The
chapters in this section are:

• Chapter 3, Designing Your VoltDB Application

• Chapter 4, Simplifying Application Development

• Chapter 5, Building Your VoltDB Application

• Chapter 6, Running Your VoltDB Application

• Chapter 7, Updating Your VoltDB Database

Section 3: Advanced Topics Provides detailed information about advanced features of VoltDB.
Topics covered in this section are:

• Chapter 8, Security

• Chapter 9, Saving & Restoring a VoltDB Database

• Chapter 10, Command Logging and Recovery

• Chapter 11, Availability

• Chapter 12, Database Replication

• Chapter 13, Exporting Live Data

• Chapter 14, Logging and Analyzing Activity in a VoltDB Database

• Chapter 15, Using VoltDB with Other Programming Languages

Section 4: Reference Material Provides reference information about the languages and interfaces
used by VoltDB, including:

• Appendix A, Supported SQL DDL Statements

• Appendix B, Supported SQL Statements

• Appendix C, SQL Functions

• Appendix D, VoltDB CLI Commands

• Appendix E, Deployment File (deployment.xml)

Preface

xiii

• Appendix G, System Procedures

This book provides the most complete description of the VoltDB product. It includes features from both the
open source Community edition and the commercial Enterprise Edition. In general, the features described
in Section 2 — chapters 2 through 6 — are available in both versions of the product. Several features in
Section 3, advanced topics — such as snapshots, command logging, database replication, and export —
are unique to the Enterprise Edition.

If you are new to VoltDB, the VoltDB Tutorial provides an introduction to the product and its features.
The tutorial, and other books, are available on the web from http://www.voltdb.com/.

http://docs.voltdb.com/tutorial/
http://www.voltdb.com/

1

Chapter 1. Overview

1.1. What is VoltDB?
VoltDB is a revolutionary new database product. Designed from the ground up to be the best solution for
high performance business-critical applications, the VoltDB architecture is able to achieve 45 times higher
throughput than current database products. The architecture also allows VoltDB databases to scale easily
by adding processors to the cluster as the data volume and transaction requirements grow.

Current commercial database products are designed as general-purpose data management solutions. They
can be tweaked for specific application requirements. However, the one-size-fits-all architecture of tradi-
tional databases limits the extent to which they can be optimized.

Although the basic architecture of databases has not changed significantly in 30 years, computing has. As
have the demands and expectations of business applications and the corporations that depend on them.

VoltDB is designed to take full advantage of the modern computing environment:

• VoltDB uses in-memory storage to maximize throughput, avoiding costly disk access.

• Further performance gains are achieved by serializing all data access, avoiding many of the time-con-
suming functions of traditional databases such as locking, latching, and maintaining transaction logs.

• Scalability, reliability, and high availability are achieved through clustering and replication across mul-
tiple servers and server farms.

VoltDB is a fully ACID-compliant transactional database, relieving the application developer from having
to develop code to perform transactions and manage rollbacks within their own application. By using a
subset of ANSI standard SQL for the schema definition and data access, VoltDB also reduces the learning
curve for experienced database designers.

1.2. Who Should Use VoltDB
VoltDB is not intended to solve all database problems. It is targeted at a specific segment of business
computing.

VoltDB focuses specifically on applications that require scalability, reliability, high availability, and out-
standing throughput. In other words, VoltDB's target audience is what have traditionally been known
as Online Transaction Processing (OLTP) applications. These applications have strict requirements for
throughput to avoid bottlenecks. They also have a clearly architected workflow that predefines the allowed
data access paths and critical interactions.

VoltDB is used today for traditional high performance applications such as capital markets data feeds, fi-
nancial trade, telco record streams and sensor-based distribution systems. It's also used in emerging appli-
cations like wireless, online gaming, fraud detection, digital ad exchanges and micro transaction systems.
Any application requiring high database throughput, linear scaling and uncompromising data accuracy
will benefit immediately from VoltDB.

VoltDB is not optimized for all types of queries, such as fetching and collating large data sets across
multiple tables. This sort of activity is commonly found in business intelligence and data warehousing
solutions, for which other database products are better suited.

Overview

2

To aid businesses that require both exceptional transaction performance and ad hoc reporting, VoltDB
includes integration functions so that historical data can be exported to an analytic database for larger
scale data mining.

1.3. How VoltDB Works
VoltDB is not like traditional database products. There is no such thing as a generic VoltDB "database".
Each database is optimized for a specific application by compiling the schema, stored procedures, and
partitioning information in to what is known as the VoltDB application catalog. The catalog is then loaded
on one or more host machines to create the distributed database.

1.3.1. Partitioning

In VoltDB, each stored procedure is defined as a transaction. The stored procedure (i.e. transaction) suc-
ceeds or rolls back as a whole, ensuring database consistency.

By analyzing and precompiling the data access logic in the stored procedures, VoltDB can distribute both
the data and the processing associated with it to the individual nodes on the cluster. In this way, each node
of the cluster contains a unique "slice" of the data and the data processing.

Figure 1.1. Partitioning Tables

1.3.2. Serialized (Single-Threaded) Processing

At run-time, calls to the stored procedures are passed to the appropriate node of the cluster. When proce-
dures are "single-partitioned" (meaning they operate on data within a single partition) the individual node
executes the procedure by itself, freeing the rest of the cluster to handle other requests in parallel.

By using serialized processing, VoltDB ensures transactional consistency without the overhead of locking,
latching, and transaction logs, while partitioning lets the database handle multiple requests at a time. As a
general rule of thumb, the more processors (and therefore the more partitions) in the cluster, the more trans-
actions VoltDB completes per second, providing an easy, almost linear path for scaling an application's
capacity and performance.

Overview

3

When a procedure does require data from multiple partitions, one node acts as a coordinator and hands out
the necessary work to the other nodes, collects the results and completes the task. This coordination makes
multi-partitioned transactions generally slower than single-partitioned transactions. However, transaction-
al integrity is maintained and the architecture of multiple parallel partitions ensures throughput is kept at
a maximum.

Figure 1.2. Serialized Processing

It is important to note that the VoltDB architecture is optimized for throughput over latency. The latency of
any one transaction (the time from when the transaction begins until processing ends) is similar in VoltDB
to other databases. However, the number of transactions that can be completed in a second (i.e. throughput)
is orders of magnitude higher because VoltDB reduces the amount of time that requests sit in the queue
waiting to be executed. VoltDB achieves this improved throughput by eliminating the overhead required
for locking, latching, and other administrative tasks.

1.3.3. Partitioned vs. Replicated Tables

Tables are partitioned in VoltDB based on a primary key that you, the developer or designer, specify.
When you choose partitioning keys that match the way the data is accessed by the stored procedures, it
optimizes execution at runtime.

To further optimize performance, VoltDB allows certain database tables to be replicated to all partitions
of the cluster. For small tables that are largely read-only, this allows stored procedures to create joins
between this table and another larger table while remaining a single-partitioned transaction. For example,
a retail merchandising database that uses product codes as the primary key may have one table that simply
correlates the product code with the product's category and full name, Since this table is relatively small
and does not change frequently (unlike inventory and orders) it can be replicated to all partitions. This way
stored procedures can retrieve and return user-friendly product information when searching by product
code without impacting the performance of order and inventory updates and searches.

Overview

4

Figure 1.3. Replicating Tables

1.3.4. Ease of Scaling to Meet Application Needs
The VoltDB architecture is designed to simplify the process of scaling the database to meet the changing
needs of your application. Increasing the number of nodes in a VoltDB cluster both increases throughput
(by increasing the number of simultaneous queues in operation) and increases the data capacity (by in-
creasing the number of partitions used for each table).

Scaling up a VoltDB database is a simple process that doesn't require any changes to the database schema
or application code. You can either:

• Save the database (using a snapshot or command logging), update the deployment file to identify the
number of nodes for the resized cluster, then restart the database using either restore or recover to reload
the data.

• Add nodes "on the fly" while the database is running.

5

Chapter 2. Installing VoltDB
VoltDB is available in both an open source and an enterprise edition. The open source, or community,
edition provides basic database functionality with all the transactional performance benefits of VoltDB.
The enterprise edition provides additional features needed to support production environments, such as
high availability, durability, and dynamic scaling and schema management.

Depending on which version you choose, the VoltDB software comes as either pre-built distributions or
as source code. This chapter explains the system requirements for running VoltDB, how to install and
upgrade the software, and what resources are provided in the kit.

2.1. Operating System and Software Requirements
The following are the requirements for developing and running VoltDB applications.

Table 2.1. Operating System and Software Requirements

Operating System VoltDB requires a 64-bit Linux-based operating system. Kits are built and
qualified on the following platforms:

• CentOS version 6.3 or later, including 7.0
• Red Hat (RHEL) version 6.3 or later, including 7.0
• Ubuntu versions 10.042, 12.04, and 14.04

Development builds are also available for Macintosh OS X 10.7 and later1.

CPU • Dual core3 x86_64 processor
• 64 bit
• 1.6 GHz

Memory 4 Gbytes4

Java Java 7 or 8 — VoltDB supports JDKs from OpenJDK or Oracle/Sun

Required Software NTP5

Python 2.5 or later release of 2.x

Recommended Software Eclipse 3.x (or other Java IDE)

Footnotes:

1. CentOS 6.3, CentOS 7.0, RHEL 6.3, RHEL 7.0, and Ubuntu 10.04, 12.04, and 14.04 are the only of-
ficially supported operating systems for VoltDB. However, VoltDB is tested on several other POSIX-
compliant and Linux-based 64-bit operating systems, including Macintosh OS X 10.7.

2. Support for Ubuntu 10.04 is deprecated and will be removed in an upcoming release.

3. Dual core processors are a minimum requirement. Four or eight physical cores are recommended for
optimal performance.

4. Memory requirements are very specific to the storage needs of the application and the number of nodes
in the cluster. However, 4 Gigabytes should be considered a minimum configuration.

5. NTP minimizes time differences between nodes in a database cluster, which is critical for VoltDB.
All nodes of the cluster should be configured to synchronize against the same NTP server. Using a
single local NTP server is recommended, but not required.

Installing VoltDB

6

2.2. Installing VoltDB
VoltDB is distributed as a compressed tar archive for each of the supported platforms. The file name
identifies the platform, the edition (community or enterprise) and the version number. The best way to
install VoltDB is to unpack the distribution kit as a folder in the home directory of your personal account,
like so:

$ tar -zxvf LINUX-voltdb-ent-4.9.tar.gz -C $HOME/

Installing into your personal directory gives you full access to the software and is most useful for devel-
opment.

If you are installing VoltDB on a production server where the database will be run, you may want to
install the software into a standard system location so that the database cluster can be started with the
same commands on all nodes. The following shell commands install the VoltDB software in the folder
/opt/voltdb:

$ sudo tar -zxvf LINUX-voltdb-ent-4.9.tar.gz -C /opt
$ cd /opt
$ sudo mv voltdb-ent-4.9 voltdb

Note that installing as root using the sudo command makes the installation folders read-only for non-priv-
ileged accounts. Which is why installing in $HOME is recommended for running the sample applications
and other development activities. Alternately, you can use standard installation packages for Linux sys-
tems, as described in Section 2.2.2, “Installing Standard System Packages”.

2.2.1. Upgrading From Older Versions
When upgrading from a previous version of VoltDB — especially with an existing database — there are
a few key steps you should take to ensure a smooth migration. The recommended steps for upgrading an
existing database are:

1. Place the database in admin mode (voltadmin pause).

2. Perform a manual snapshot of the database (voltadmin save).

3. Shutdown the database (voltadmin shutdown).

4. Upgrade VoltDB.

5. Start a new database using the voltdb create option, your existing application catalog, and starting in
admin mode (specified in the deployment file).

6. Restore the snapshot created in Step #2 (voltadmin restore).

7. Return the database to normal operations (voltadmin resume).

Note that the voltdb create command automatically recompiles your catalog if the catalog was created by
an older version. When using the Enterprise Manager, it is also recommended that you delete the Enterprise
Manager configuration files (stored by default in the .voltdb subfolder in the home directory of the
current account) when performing an upgrade.

2.2.2. Installing Standard System Packages
If you plan on making VoltDB available to all users of the system, you can use a common system package
to install the VoltDB files in standard locations. Installation packages are available for both Debian-based

Installing VoltDB

7

(deb) and Red Hat-based (rpm) systems. These packages simplify the installation process by placing the
VoltDB files in standard system directories, making VoltDB available to all users of the system without
their having to individually configure their PATH variable.

The advantages of using an install package are:

• The installation is completed in a single command. No additional set up is required.

• VoltDB becomes available to all system users.

• Upgrades are written to the same location. You do not need to modify your application scripts or move
files after each upgrade.

However, there are a few changes to behavior that you should be aware of if you install VoltDB using a
system package manager:

• The VoltDB libraries are installed in /usr/lib/voltdb. When compiling stored procedures, you must in-
clude this location in your Java classpath.

• The sample applications are installed into the directory /usr/share/voltdb/examples/. Be-
cause this is a system directory, users cannot run the samples directly in that location. Instead, first copy
the folder containing the sample application you want to run and paste a copy into your home directory
structure. Then run the sample from your copy. For example:

$ cp -r /usr/share/voltdb/examples/voter ~/
$ cd ~/voter
$./run.sh

2.2.2.1. Installing the Debian Package

To install the Debian package on Ubuntu or other Debian-based systems, download the package from the
VoltDB web site. Then, from an account with root access issue the following commands to install Open
JDK 7 and VoltDB:

$ sudo apt-get install openjdk-7-jdk
$ sudo dpkg -i voltdb_4.9-1_amd64.deb

2.2.2.2. Installing the RPM Package

To install the rpm package on compatible systems such as Red Hat or CentOS, download the package from
the VoltDB web site. Then, from an account with root access issue the following command:

$ sudo yum localinstall voltdb-4.9-1.x86_64.rpm

2.2.3. Building a New VoltDB Distribution Kit
If you want to build the open source VoltDB software from source (for example, if you want to test recent
development changes), you must first fetch the VoltDB source files. The VoltDB sources are stored in a
GitHub repository.

The VoltDB sources are designed to build and run on 64-bit Linux-based or 64-bit Macintosh platforms.
However, the build process has not been tested on all possible configurations. Attempts to build the sources
on other operating systems may require changes to the build files and possibly to the sources as well.

Once you obtain the sources, use Ant 1.7 or later to build a new distribution kit for the current platform:

http://community.voltdb.com/downloads
http://community.voltdb.com/downloads
https://github.com/VoltDB/voltdb

Installing VoltDB

8

$ ant dist

The resulting distribution kit is created as obj/release/volt-n.n.nn.tar.gz where n.n.nn iden-
tifies the current version and build numbers. Use this file to install VoltDB according to the instructions
in Section 2.2, “Installing VoltDB”.

2.3. Setting Up Your Environment
VoltDB comes with shell command scripts that simplify the process of developing and deploying VoltDB
applications. These scripts are in the /bin folder under the installation root and define short-cut commands
for executing many VoltDB actions. To make the commands available to your session, you must include
the /bin directory as part your PATH environment variable.

You can add the /bin directory to your PATH variable by redefining PATH. For example, the following
shell command adds /bin to the end of the environment PATH, assuming you installed VoltDB as /
voltdb-n.n in your $HOME directory:

$ export PATH="$PATH:$HOME/voltdb-n.n/bin"

To avoid having to redefine PATH every time you create a new session, you can add the preceding com-
mand to your shell login script. For example, if you are using the bash shell, you would add the preceding
command to the $HOME/.bashrc file.

2.4. What is Included in the VoltDB Distribution
Table 2.2 lists the components that are provided as part of the VoltDB distribution.

Table 2.2. Components Installed by VoltDB

Component Description

VoltDB Software & Runtime The VoltDB software comes as Java archives (.JAR
files) and a callable library that can be found in the
/voltdb subfolder. Other software libraries that
VoltDB depends on are included in a separate /lib
subfolder.

Example Applications VoltDB comes with several example applications
that demonstrate VoltDB capabilities and perfor-
mance. They can be found in the /examples sub-
folder.

VoltDB Management Console VoltDb Management Console is a browser-based
management tool for monitoring, examining, and
querying a running VoltDB database. The manage-
ment Console is bundled with the VoltDB serv-
er software. You can start the Management Con-
sole by connecting to the HTTP port of a running
VoltDB database server. For example, http://
voltsvr:8080/. Note that the httpd server and
JSON interface must be enabled on the server to be
able to access the Management Console.

Shell Commands The /bin subfolder contains executable scripts to
perform common VoltDB tasks, such as compiling
application catalogs and starting the VoltDB serv-

Installing VoltDB

9

Component Description

er. Add the /bin subfolder to your PATH environ-
ment variable to use the following shell commands:

csvloader
jdbcloader
kafkaloader
sqlcmd
voltadmin
voltdb

Documentation Online documentation, including the full manuals
and javadoc describing the Java programming inter-
face, is available in the /doc subfolder.

2.5. VoltDB in Action: Running the Sample Applica-
tions

Once you install VoltDB, you can use the sample applications to see VoltDB in action and get a better
understanding of how it works. The easiest way to do this is to set default to the /examples directory
where VoltDB is installed. Each sample application has its own subdirectory and a run.sh script to simplify
building and running the application. See the README file in the /examples subfolder for a complete
list of the applications and further instructions.

Once you get a taste for what VoltDB can do, we recommend following the VoltDB tutorial to understand
how to create your own applications using VoltDB.

http://docs.voltdb.com/tutorial/

10

Chapter 3. Designing Your VoltDB
Application

VoltDB produces ACID-compliant, relational databases using a subset of ANSI-standard SQL for defining
the schema and accessing the data. So designing a VoltDB application is very much like designing any
other database application.

The difference is that VoltDB requires you to be more organized and planful in your design:

• All data access should be done through stored procedures. Although ad hoc queries are possible, they
do not take advantage of the optimizations that make VoltDB's exceptional performance possible.

• The schema and workflow should be designed to promote single-partitioned procedures wherever pos-
sible.

These are not unreasonable requirements for high-performance applications. In fact, for 20 years or more
OLTP application designers have used these design principles to get the most out of commercial database
products. The difference is that VoltDB actually takes advantage of these principles to provide exponen-
tially better throughput without sacrificing any of the value of a fully-transactional database.

The following sections provide guidelines for designing VoltDB applications.

3.1. Designing the Database
VoltDB is a relational database product. Relational databases consist of tables and columns, with con-
straints, index keys, and aggregated views. VoltDB also uses standard SQL database definition language
(DDL) statements to specify the database schema. So designing the schema for a VoltDB database uses the
same skills and knowledge as designing a database for Oracle, MySQL, or any other relational database
product.

For example, let's assume you are designing a flight reservation system. At its simplest, the application
requires database tables for the flights, the customers, and the reservations. Your database schema might
look like the following:

Figure 3.1 shows how the schema looks as defined in standard SQL DDL.

Designing Your VoltDB Application

11

Figure 3.1. Example Reservation Schema

CREATE TABLE Flight (
 FlightID INTEGER UNIQUE NOT NULL,
 DepartTime TIMESTAMP NOT NULL,
 Origin VARCHAR(3) NOT NULL,
 Destination VARCHAR(3) NOT NULL,
 NumberOfSeats INTEGER NOT NULL,
 PRIMARY KEY(FlightID)
);

CREATE TABLE Reservation (
 ReserveID INTEGER UNIQUE NOT NULL,
 FlightID INTEGER NOT NULL,
 CustomerID INTEGER NOT NULL,
 Seat VARCHAR(5) DEFAULT NULL,
 Confirmed TINYINT DEFAULT '0',
 PRIMARY KEY(ReserveID)
);

CREATE TABLE Customer (
 CustomerID INTEGER UNIQUE NOT NULL,
 FirstName VARCHAR(15),
 LastName VARCHAR (15),
 PRIMARY KEY(CustomerID)
);

But a schema is not all you need to define the database (or the application) effectively. You also need
to know the expected volume and workload. For our example, let's assume that we expect the following
volume of data at any given time:

• Flights: 2,000

• Reservations: 200,000

• Customers: 1,000,000

We can also define a set of functions the application must perform and the expected frequency. Again, for
the sake of our example, let's assume the following is the estimated workload.

Table 3.1. Example Application Workload

Use Case Frequency

Look up a flight (by origin and destination) 10,000/sec

See if a flight is available 5,000/sec

Make a reservation 1,000/sec

Cancel a reservation 200/sec

Look up a reservation (by reservation ID) 200/sec

Look up a reservation (by customer ID) 100/sec

Update flight info 1/sec

Take off (close reservations and archive associated
records)

1/sec

Designing Your VoltDB Application

12

This additional information about the volume and workload affects the design of both the database and the
application, because it impacts what SQL queries need to be written and what keys to use for accessing
the data.

In the case of VoltDB, you use this additional information to configure the database and optimize perfor-
mance. Specifically, you want to partition the individual tables to ensure that the most frequent transac-
tions are single-partitioned.

The following sections discuss how to partition a database to maximize throughput, using the flight reser-
vation case study as an example.

3.1.1. Partitioning Database Tables

The goal of partitioning the database tables is to ensure that the most frequent transactions are single-par-
titioned. This is particularly important for queries that modify the data, such as INSERT, UPDATE, and
DELETE statements.

Looking at the workload for the reservation system, the key transactions to focus on are looking up a flight,
seeing if a flight is available (in other words, has sufficient space), looking up a reservation, and making
a reservation. Of these transactions, only the last modifies the database.

3.1.1.1. Choosing a Partition Column

We will discuss the Flight table later. But first let's look at the Reservation table. Reservation has a primary
key, ReserveID, which is a unique identifier for the reservation. Looking at the schema alone, ReserveID
might look like a good column to use to partition the table.

However, looking at the workload, there are only two transactions that are keyed to the reservation ID
(looking up a reservation by ID and canceling a reservation), which occur only 200 times a second. Where-
as, seeing if a flight has available seats, which requires looking up reservations by the Flight ID, occurs
5,000 times a second, or 25 times as frequently. Therefore, the Reservation table needs to be partitioned
on the FlightID column.

Moving to the Customer table, it also has a unique identifier, CustomerID. Although customers might
need to look up their record by name, the first and last names are not guaranteed to be unique and so
CustomerID is used for most data access. Therefore, CustomerID is the best column to use for partitioning
the Customer table.

Once you choose the columns to use for partitioning your database tables, you can define your partitioning
choices in the database schema. Specifying the partitioning along with the schema DDL helps keep all of
the database structural information in one place.

You define the partitioning scheme using the PARTITION TABLE statement, specifying the partitioning
column for each table. For example, to specify FlightID and CustomerID as the partitioning columns
for the Reservation and Customer tables, respectively, your database schema must include the following
statements:

PARTITION TABLE Reservation ON COLUMN FlightID;
PARTITION TABLE Customer ON COLUMN CustomerID;

3.1.1.2. Rules for Partitioning Tables

The following are the rules to keep in mind when choosing a column by which to partition a table:

Designing Your VoltDB Application

13

• Any integer or string column can be a partition column. VoltDB can partition on any column that
is an integer (TINYINT, SMALLINT, INTEGER, or BIGINT) or string (VARCHAR) datatype.

• There is only one partition column per table. If you need to partition a table on two columns (for
example first and last name), add an additional column (fullname) that combines the values of the two
columns and use this new column to partition the table.

• Partition columns do not need to have unique values, but they cannot be null. Numeric fields can be
zero and string or character fields can be empty, but the column cannot contain a null value. You must
specify NOT NULL in the schema, or VoltDB will report it as an error when you compile the schema.

3.1.2. Replicating Tables

The previous section describes how to choose a partitioning column for database tables, using the Reser-
vation and Customer tables as examples. But what about the Flight table? It is possible to partition the
Flight table (for example, on the FlightID column). However, not all tables benefit from partitioning.

Small, mostly read-only tables can be replicated across all of the partitions of a VoltDB database. This is
particularly useful when a table is not accessed by a single column primarily.

3.1.2.1. Choosing Replicated Tables

Looking at the workload of the flight reservation example, the Flight table has the most frequent accesses
(at 10,000 a second). However, these transactions are read-only and may involve any combination of
three columns: the point of origin, the destination, and the departure time. Because of the nature of this
transaction, it makes it hard to partition the table in a way that would make it single-partitioned.

Fortunately, the number of flights available for booking at any given time is limited (estimated at 2,000) and
so the size of the table is relatively small (approximately 36 megabytes). In addition, all of the transactions
involving the Flight table are read-only except when new flights are added and at take off (when the records
are deleted). Therefore, Flight is a good candidate for replication.

Note that the Customer table is also largely read-only. However, because of the volume of data in the
Customer table (a million records), it is not a good candidate for replication, which is why it is partitioned.

3.1.2.2. Specifying Replicated Tables

In VoltDB, you do not explicitly state that a table is replicated. If you do not specify a partitioning column
in the database schema, the table will by default be replicated.

So, in our flight reservation example, there is no explicit action required to replicate the Flight table.
However, it is very important to specify partitioning information for tables that you want to partition.
If not, they will be replicated by default, significantly changing the performance characteristics of your
application.

3.2. Designing the Data Access (Stored Proce-
dures)

As you can see from the previous discussion of designing the database, defining the database schema —
and particularly the partitioning plan — goes hand in hand with understanding how the data is accessed.
The two must be coordinated to ensure optimum performance.

Designing Your VoltDB Application

14

It doesn't matter whether you design the partitioning first or the data access first, as long as in the end they
work together. However, for the sake of example, we will use the schema and partitioning outlined in the
preceding sections when discussing how to design the data access.

3.2.1. Writing VoltDB Stored Procedures
The key to designing the data access for VoltDB applications is that complex or performance sensitive
access to the database should be done through stored procedures. It is possible to perform ad hoc queries
on a VoltDB database. However, ad hoc queries do not benefit as fully from the performance optimizations
VoltDB specializes in and therefore should not be used for frequent, repetitive, or complex transactions.

In VoltDB, a stored procedure and a transaction are one and the same. The stored procedure succeeds or
rolls back as a whole. Also, because the transaction is defined in advance as a stored procedure, there is
no need for specific BEGIN TRANSACTION or END TRANSACTION commands.1

Within the stored procedure, you access the database using standard SQL syntax, with statements such
as SELECT, UPDATE, INSERT, and DELETE. You can also include your own code within the stored
procedure to perform calculations on the returned values, to evaluate and execute conditional statements,
or to perform any other functions your applications need.

3.2.2. VoltDB Stored Procedures and Determinism
To ensure data consistency and durability, VoltDB procedures must be deterministic. That is, given spe-
cific input values, the outcome of the procedure is predictable. Determinism is critical because it allows
the same stored procedure to run in multiple locations and give the same results. It is determinism that
makes it possible to run redundant copies of the database partitions without impacting performance. (See
Chapter 11, Availability for more information on redundancy and availability.)

One key to deterministic behavior is avoiding ambiguous SQL queries. Specifically, performing unsorted
queries can result in a nondeterministic outcome. VoltDB does not guarantee a consistent order of results
unless you use a tree index to scan the records in a specific order or you specify an ORDER BY clause in the
query itself. In the worst case, a limiting query, such as SELECT TOP 10 Emp_ID FROM Employees
without an index or ORDER BY clause, can result in a different set of rows being returned. However, even
a simple query such as SELECT * from Employees can return the same rows in a different order.

The problem is that even if a non-deterministic query is read-only, its results might be used as input to an
INSERT, UPDATE, or DELETE statement elsewhere in the stored procedure. For clusters with a K-safety
value greater than zero, this means unsorted query results returned by two copies of the same partition,
which may not match, could be used for separate update queries. If this happens. VoltDB detects the
mismatch, reports it as potential data corruption, and shuts down the cluster to protect the database contents.

This is why VoltDB issues a warning for any non-deterministic queries in read-write stored procedures.
This is also why use of an ORDER BY clause or a tree index in the WHERE constraint is strongly recom-
mended for all SELECT statements that return multiple rows.

Another key to deterministic behavior is avoiding external functions or procedures that can introduce
arbitrary data. External functions include file and network I/O (which should be avoided any way because
they can impact latency), as well as many common system-specific procedures such as Date and Time.

However, this limitation does not mean you cannot use arbitrary data in VoltDB stored procedures. It
just means you must either generate the arbitrary data outside the stored procedure and pass it in as input
parameters or generate it in a deterministic way.

1One side effect of transactions being precompiled as stored procedures is that external transaction management frameworks, such as Spring or
JEE, are not supported by VoltDB.

Designing Your VoltDB Application

15

For example, if you need to load a set of records from a file, you can open the file in your application
and pass each row of data to a stored procedure that loads the data into the VoltDB database. This is the
best method when retrieving arbitrary data from sources (such as files or network resources) that would
impact latency.

The other alternative is to use data that can be generated deterministically. For two of the most common
cases, timestamps and random values, VoltDB provides a method for doing this:

• VoltProcedure.getTransactionTime() returns a timestamp that can be used in place of the Java Date or
Time classes.

• VoltProcedure.getSeededRandomNumberGenerator() returns a pseudo random number that can be used
in place of the Java Util.Random class.

These procedures use the current transaction ID to generate a deterministic value for the timestamp and
the random number.

Finally, even seemingly harmless programming techniques, such as static variables can introduce unpre-
dictable behavior. VoltDB provides no guarantees concerning the state of the stored procedure class in-
stance across invocations. Any information that you want to persist across invocations must either be stored
in the database itself or passed into the stored procedure as a procedure parameter.

3.2.3. The Anatomy of a VoltDB Stored Procedure

The stored procedures themselves are written as Java classes, each procedure being a separate class. Exam-
ple 3.1, “Components of a VoltDB Stored Procedure” shows the stored procedure that looks up a flight to
see if there are any available seats. The callouts identify the key components of a VoltDB stored procedure.

Designing Your VoltDB Application

16

Example 3.1. Components of a VoltDB Stored Procedure

package fadvisor.procedures;

import org.voltdb.*;

public class HowManySeats extends VoltProcedure {

 public final SQLStmt GetSeatCount = new SQLStmt(
 "SELECT NumberOfSeats, COUNT(ReserveID) " +
 "FROM Flight AS F, Reservation AS R " +
 "WHERE F.FlightID=R.FlightID AND R.FlightID=? " +
 "GROUP BY NumberOfSeats;");

 public long run(int flightid)
 throws VoltAbortException {

 long numofseats;
 long seatsinuse;
 VoltTable[] queryresults;

 voltQueueSQL(GetSeatCount, flightid);
 queryresults = voltExecuteSQL();

 VoltTable result = queryresults[0];
 if (result.getRowCount() < 1) { return -1; }
 numofseats = result.fetchRow(0).getLong(0);
 seatsinuse = result.fetchRow(0).getLong(1);

 numofseats = numofseats - seatsinuse;
 return numofseats; // Return available seats
 }
}

Stored procedures are written as Java classes. To access the VoltDB classes and methods, be sure
to import org.voltdb.*.
Each stored procedure extends the generic class VoltProcedure.
Within the stored procedure you access the database using a subset of ANSI-standard SQL state-
ments. To do this, you declare the statement as a special Java type called SQLStmt. In the SQL
statement, you insert a question mark (?) everywhere you want to replace a value by a variable at
runtime. (See Appendix B, Supported SQL Statements for details on the supported SQL statements.)
The bulk of the stored procedure is the run method. Note that the run method throws the exception
VoltAbortException if any exceptions are not caught. VoltAbortException causes the stored proce-
dure to rollback. (See Section 3.2.3.6, “Rolling Back a Transaction” for more information about
rollback.)
To perform database queries, you queue SQL statements (specifying both the SQL statement and the
variables to use) using the voltQueueSQL method.
Once you queue all of the SQL statements you want to perform, use voltExecuteSQL to execute the
statements in the queue.
Each statement returns its results in a VoltTable structure. Because the queue can contain multiple
queries, voltExecuteSQL returns an array of VoltTable structures, one array element for each query.

Designing Your VoltDB Application

17

In addition to queueing and executing queries, stored procedures can contain custom code. Note,
however, you should limit the amount of custom code in stored procedures to only that processing
that is necessary to complete the transaction, so as not to delay the following transactions in the queue.

The following sections describe these components in more detail.

3.2.3.1. The Structure of the Stored Procedure

VoltDB stored procedures are Java classes. The key points to remember are to:

• Import the VoltDB classes in org.voltdb.*

• Include the class definition, which extends the abstract class VoltProcedure

• Define the method run, that performs the SQL queries and processing that make up the transaction

The following diagram illustrates the basic structure if a VoltDB stored procedure.

import org.voltdb.*;

public class Procedure-name extends VoltProcedure {

 // Declare SQL statements ...

 public datatype run (arguments) throws VoltAbortException {

 // Body of the Stored Procedure ...

 }
}

3.2.3.2. Passing Arguments to a Stored Procedure

You specify the number and type of the arguments that the stored procedure accepts in the run() method.
For example, the following is the declaration of the run() method for the Initialize stored procedure from
the voter sample application. This procedure accepts two arguments: an integer and a string.

public long run(int maxContestants, String contestants) {

VoltDB stored procedures can accept parameters of any of the following Java and VoltDB datatypes:

• Integer types: byte, short, int, long, Byte, Short, Integer, and Long

• Floating point types: float, double, Float, and Double

• Fixed decimal point: BigDecimal

• Timestamp types: VoltDB timestamp (org.voltdb.types.TimestampType), java.util.Date, java.sql.Date,
and java.sql.Timestamp

• String and binary types: String and byte[]

• VoltDB types: VoltTable

Designing Your VoltDB Application

18

The arguments can be scalar objects or arrays of any of the preceding types. For example, the following
run() method defines three arguments: a scalar long and two arrays, one array of timestamps and one array
of Strings:

import org.voltdb.*;
public class LogMessagesByEvent extends VoltProcedure {

 public long run (
 long eventType,
 org.voltdb.types.TimestampType[] eventTimeStamps,
 String[] eventMessages
) throws VoltAbortException {

The calling application can use any of the preceding datatypes when invoking the callProcedure() method
and, where necessary, VoltDB makes the appropriate type conversions (for example, from int to String
or from String to Double). (See Section 3.3.2, “Invoking Stored Procedures” for information on the call-
Procedure() method.)

3.2.3.3. Creating and Executing SQL Queries in Stored Procedures

The main function of the stored procedure is to perform database queries. In VoltDB this is done in two
steps:

1. Queue the queries using the voltQueueSQL function

2. Execute the queue and return the results using voltExecuteSQL

The first argument to voltQueueSQL is the SQL statement to be executed. The SQL statement is declared
using a special class, SQLStmt, with question marks as placeholders for values that will be inserted at
runtime. The remaining arguments to voltQueueSQL are the actual values that VoltDB inserts into the
placeholders.

For example, if you want to perform a SELECT of a table using two columns in the WHERE clause, your
SQL statement might look something like this:

SELECT CustomerID FROM Customer WHERE FirstName=? AND LastName=?;

At runtime, you want the questions marks replaced by values passed in as arguments from the calling
application. So the actual voltQueueSQL invocation might look like this:

public final SQLStmt getcustid = new SQLStmt(
 "SELECT CustomerID FROM Customer " +
 "WHERE FirstName=? AND LastName=?;");

 ...

voltQueueSQL(getcustid, firstnm, lastnm);

Once you have queued all of the SQL statements you want to execute together, you can then process the
queue using the voltExecuteSQL function:

VoltTable[] queryresults = voltExecuteSQL();

Note that you can queue multiple SQL statements before calling voltExecuteSQL. This improves perfor-
mance when executing multiple SQL queries because it minimizes the amount of network traffic within
the cluster.

Designing Your VoltDB Application

19

You can also queue and execute SQL statements as many times as necessary to complete the transaction.
For example, if you want to make a flight reservation, you may need to verify that the flight exists before
creating the reservation. One way to do this is to look up the flight, verify that a valid row was returned,
then insert the reservation, like so:

final String getflight = "SELECT FlightID FROM Flight WHERE FlightID=?;";
final String makeres = "INSERT INTO Reservation (?,?,?,?,?,?);";

public final SQLStmt getflightsql = new SQLStmt(getflight);
public final SQLStmt makeressql = new SQLStmt(makeres);

public VoltTable[] run(int servenum, int flightnum, int customernum)
 throws VoltAbortException {

 // Verify flight exists
 voltQueueSQL(getflightsql, flightnum);
 VoltTable[] queryresults = voltExecuteSQL();

 // If there is no matching record, rollback
 if (queryresults[0].getRowCount() == 0) throw new VoltAbortException();

 // Make reservation
 voltQueueSQL(makeressql, reservnum, flightnum, customernum,0,0);
 return voltExecuteSQL();
}

3.2.3.4. Interpreting the Results of SQL Queries

When you call voltExecuteSQL, the results of all the queued SQL statements are returned in an array
of VoltTable structures. The array contains one VoltTable for each SQL statement in the queue. The
VoltTables are returned in the same order as the respective SQL statements in the queue.

The VoltTable itself consists of rows. Each row contains columns. Each column has a label and a value of
a fixed datatype. The number of rows and columns per row depends on the specific query.

For example, if you queue two SQL SELECT statements, one looking for the destination of a specific
flight and the second looking up the ReserveID and Customer name (first and last) of reservations for that
flight, the code for the stored procedure might look like the following:

public final SQLStmt getdestsql = new SQLStmt(
 "SELECT Destination FROM Flight WHERE FlightID=?;");
public final SQLStmt getressql = new SQLStmt(
 "SELECT r.ReserveID, c.FirstName, c.LastName " +
 "FROM Reservation AS r, Customer AS c " +
 "WHERE r.FlightID=? AND r.CustomerID=c.CustomerID;");

 ...

 voltQueueSQL(getdestsql,flightnum);
 voltQueueSQL(getressql,flightnum);
 VoltTable[] results = voltExecuteSQL();

The array returned by voltExecuteSQL will have two elements:

• The first array element is a VoltTable with one row (FlightID is defined as unique) with one column,
because the SELECT statement returns only one value.

Designing Your VoltDB Application

20

• The second array element is a VoltTable with as many rows as there are reservations for the specific
flight, each row containing three columns: ReserveID, FirstName, and LastName.

VoltDB provides a set of convenience routines for accessing the contents of the VoltTable array. Table 3.2,
“Methods of the VoltTable Classes” lists some of the most common methods.

Table 3.2. Methods of the VoltTable Classes

Method Description

int fetchRow(int index) Returns an instance of the VoltTableRow class for
the row specified by index.

int getRowCount() Returns the number of rows in the table.

int getColumnCount() Returns the number of columns for each row in the
table.

Type getColumnType(int index) Returns the datatype of the column at the specified
index. Type is an enumerated type with the follow-
ing possible values:

BIGINT
DECIMAL
FLOAT
INTEGER
INVALID
NULL
NUMERIC
SMALLINT
STRING
TIMESTAMP
TINYINT
VARBINARY
VOLTTABLE

String getColumnName(int index) Returns the name of the column at the specified in-
dex.

double getDouble(int index)
long getLong(int index)
String getString(int index)
BigDecimal getDecimalAsBigDecimal(int index)
double getDecimalAsDouble(int index)
Date getTimestampAsTimestamp(int index)
long getTimestampAsLong(int index)
byte[] getVarbinary(int index)

Methods of VoltTable.Row

Return the value of the column at the specified index
in the appropriate datatype. Because the datatype of
the columns vary depending on the SQL query, there
is no generic method for returning the value. You
must specify what datatype to use when fetching the
value.

It is also possible to retrieve the column values by name. You can invoke the getDatatype methods
passing a string argument specifying the name of the column, rather than the numeric index.

Accessing the columns by name can make code easier to read and less susceptible to errors due to changes
in the SQL schema (such as changing the order of the columns). On the other hand, accessing column
values by numeric index is potentially more efficient under heavy load conditions.

Example 3.2, “Displaying the Contents of VoltTable Arrays” shows a generic routine for walking through
the return results of a stored procedure. In this example, the contents of the VoltTable array are written
to standard output.

Designing Your VoltDB Application

21

Example 3.2. Displaying the Contents of VoltTable Arrays

public void displayResults(VoltTable[] results) {
 int table = 1;
 for (VoltTable result : results) {
 System.out.printf("*** Table %d ***\n",table++);
 displayTable(result);
 }
}

public void displayTable(VoltTable t) {

 final int colCount = t.getColumnCount();
 int rowCount = 1;
 t.resetRowPosition();
 while (t.advanceRow()) {
 System.out.printf("--- Row %d ---\n",rowCount++);

 for (int col=0; col<colCount; col++) {
 System.out.printf("%s: ",t.getColumnName(col));
 switch(t.getColumnType(col)) {
 case TINYINT: case SMALLINT: case BIGINT: case INTEGER:
 System.out.printf("%d\n", t.getLong(col));
 break;
 case STRING:
 System.out.printf("%s\n", t.getString(col));
 break;
 case DECIMAL:
 System.out.printf("%f\n", t.getDecimalAsBigDecimal(col));
 break;
 case FLOAT:
 System.out.printf("%f\n", t.getDouble(col));
 break;
 }
 }
 }
}

For further details on interpreting the VoltTable structure, see the Java documentation that is provided
online in the doc/ subfolder for your VoltDB installation.

3.2.3.5. Returning Results from a Stored Procedure

Stored procedures can return a single VoltTable, an array of VoltTables, or a long integer. You can return
all of the query results by returning the VoltTable array, or you can return a scalar value that is the logical
result of the transaction. (For example, the stored procedure in Example 3.1, “Components of a VoltDB
Stored Procedure” returns a long integer representing the number of remaining seats available in the flight.)

Whatever value the stored procedure returns, make sure the run method includes the appropriate datatype
in its definition. For example, the following two definitions specify different return datatypes; the first
returns a long integer and the second returns the results of a SQL query as a VoltTable array.

public long run(int flightid)

public VoltTable[] run (String lastname, String firstname)

Designing Your VoltDB Application

22

It is important to note that you can interpret the results of SQL queries either in the stored procedure or
in the client application. However, for performance reasons, it is best to limit the amount of additional
processing done by the stored procedure to ensure it executes quickly and frees the queue for the next
stored procedure. So unless the processing is necessary for subsequent SQL queries, it is usually best to
return the query results (in other words, the VoltTable array) directly to the calling application and interpret
them there.

3.2.3.6. Rolling Back a Transaction

Finally, if a problem arises while a stored procedure is executing, whether the problem is anticipated or
unexpected, it is important that the transaction rolls back. Rollback means that any changes made during
the transaction are undone and the database is left in the same state it was in before the transaction started.

VoltDB is a fully transactional database, which means that if a transaction (i.e. stored procedure) fails, the
transaction is automatically rolled back and the appropriate exception is returned to the calling application.
Exceptions that can cause a rollback include the following:

• Runtime errors in the stored procedure code, such as division by zero or datatype overflow.

• Violating database constraints in SQL queries, such as inserting a duplicate value into a column defined
as unique.

There may also be situations where a logical exception occurs. In other words, there is no programmatic
issue that might be caught by Java or VoltDB, but a situation occurs where there is no practical way for
the transaction to complete. In these conditions, the stored procedure can force a rollback by explicitly
throwing the VoltAbortException exception.

For example, if a flight ID does not exist, you do not want to create a reservation so the stored procedure
can force a rollback like so:

if (!flightid) { throw new VoltAbortException(); }

See Section 4.4, “Verifying Expected Query Results” for another way to roll back procedures when queries
do not meet necessary conditions.

3.2.4. Partitioning Stored Procedures
To make your stored procedures accessible in the database, you must declare them in the DDL schema
using the CREATE PROCEDURE statement. For example, the following statements declare five stored
procedures, identifying them by their class name:

CREATE PROCEDURE FROM CLASS procedures.LookupFlight;
CREATE PROCEDURE FROM CLASS procedures.HowManySeats;
CREATE PROCEDURE FROM CLASS procedures.MakeReservation;
CREATE PROCEDURE FROM CLASS procedures.CancelReservation;
CREATE PROCEDURE FROM CLASS procedures.RemoveFlight;

You can also declare your stored procedures as single-partitioned or not. If you do not declare a procedure
as single-partitioned, it is assumed to be multi-partitioned by default.

The advantage of multi-partitioned stored procedures is that they have full access to all of the data in the
database. However, the real focus of VoltDB, and the way to achieve maximum throughput for your OLTP
application, is through the use of single-partitioned stored procedures.

Single-partitioned stored procedures are special because they operate independently of other partitions
(which is why they are so fast). At the same time, single-partitioned stored procedures operate on only a

Designing Your VoltDB Application

23

subset of the entire data (i.e. only the data within the specified partition). Most important of all it is the
responsibility of the application developer to ensure that the SQL queries within the stored procedure are
actually single-partitioned.

When you declare a stored procedure as single-partitioned, you must specify both the partitioning table and
column using the PARTITION PROCEDURE statement in the schema DDL. For example, in our sample
application the table RESERVATION is partitioned on FLIGHTID. Let's say you create a stored procedure
with two arguments, flight_id and reservation_id. You declare the stored procedure as single-partitioned in
the DDL schema using the FLIGHTID column as the partitioning column. By default, the first parameter
to the procedure, flight_id, is used as the hash value. For example:

PARTITION PROCEDURE MakeReservation ON TABLE Reservation COLUMN FlightID;

At this point, your stored procedure can operate on only those records in the RESERVATION with
FLIGHTID=flight_id. What's more it can only operate on records in other partitioned tables that are par-
titioned on the same hash value.

In other words, the following rules apply:

• Any SELECT, UPDATE, or DELETE queries of the RESERVATION table must use the constraint
WHERE FLIGHTID=? (where the question mark is replaced by the value of flight_id).

• SELECT statements can join the RESERVATION table to replicated tables, as long as the preceding
constraint is also applied.

• SELECT statements can join the RESERVATION table to other partitioned tables as long as the fol-
lowing is true:

• The two tables are partitioned on the same column (in this case, FLIGHTID).

• The tables are joined on the shared partitioning column.

• The preceding constraint (WHERE RESERVATION.FLIGHTID=?) is used.

For example, the RESERVATION table can be joined to the FLIGHT table (which is replicated). However,
the RESERVATION table cannot be joined with the CUSTOMER table in a single-partitioned stored
procedure because the two tables use different partitioning columns. (CUSTOMER is partitioned on the
CUSTOMERID column.)

The following are examples of invalid SQL queries for a single-partitioned stored procedure partitioned
on FLIGHTID:

• INVALID: SELECT * FROM reservation WHERE reservationid=?

• INVALID: SELECT c.lastname FROM reservation AS r, customer AS c WHERE
r.flightid=? AND c.customerid = r.customerid

In the first example, the RESERVATION table is being constrained by a column (RESERVATIONID)
which is not the partitioning column. In the second example, the correct partitioning column is being
used in the WHERE clause, but the tables are being joined on a different column. As a result, not all
CUSTOMER rows are available to the stored procedure since the CUSTOMER table is partitioned on a
different column than RESERVATION.

Warning

It is the application developer's responsibility to ensure that the queries in a single-partitioned
stored procedure are truly single-partitioned. VoltDB does not warn you about SELECT or

Designing Your VoltDB Application

24

DELETE statements that will return incomplete results. VoltDB does generate a runtime error if
you attempt to INSERT a row that does not belong in the current partition.

Finally, the PARTITION PROCEDURE statement assumes that the partitioning column value is the first
parameter to the procedure. If you wish to partition on a different parameter value, say the third parameter,
you must specify the partitioning parameter using the PARAMETER clause and a zero-based index for the
parameter position. In other words, the index for the third parameter would be "2" and the PARTITION
PROCEDURE statement would read as follows:

PARTITION PROCEDURE GetCustomerDetails
 ON TABLE Customer COLUMN CustomerID
 PARAMETER 2;

3.3. Designing the Application Logic
Once you design your database schema, partitioning, and stored procedures, you are ready to write the
application logic. Most of the logic and code of the calling programs are specific to the application you
are designing. The important aspect, with regards to using VoltDB, is understanding how to:

• Create a connection to the database

• Call stored procedures

• Close the client connection

The following sections explain how to perform these functions using the standard VoltDB Java client
interface. The VoltDB Java client is a thread-safe class library that provides runtime access to VoltDB
databases and functions.

It is possible to call VoltDB stored procedures from programming languages other than Java. However,
reading this chapter is still recommended to understand the process for invoking and interpreting the results
of a VoltDB stored procedure. See Chapter 15, Using VoltDB with Other Programming Languages for
more information about using VoltDB from applications written in other languages.

3.3.1. Connecting to the VoltDB Database

The first step for the calling program is to create a connection to the VoltDB database. You do this by:

1. Defining the configuration for your connections

2. Creating an instance of the VoltDB Client class

3. Calling the createConnection method

org.voltdb.client.Client client = null;
ClientConfig config = null;
try {
 config = new ClientConfig("advent","xyzzy");
 client = ClientFactory.createClient(config);
 client.createConnection("myserver.xyz.net");
} catch (java.io.IOException e) {
 e.printStackTrace();
 System.exit(-1);

Designing Your VoltDB Application

25

}

In its simplest form, the ClientConfig class specifies the username and password to use. It is not absolutely
necessary to create a client configuration object. For example, if security is not enabled (and therefore a
username and password are not needed) a configuration object is not required. But it is a good practice
to define the client configuration to ensure the same credentials are used for all connections against a
single client. It is also possible to define additional characteristics of the client connections as part of the
configuration, such as the timeout period for procedure invocations or a status listener. (See Section 3.4,
“Handling Errors” for details.)

Once you instantiate your client object, the argument to createConnection specifies the database node to
connect to. You can specify the server node as a hostname (as in the preceding example) or as an IP address.
You can also add a second argument if you want to connect to a port other than the default. For example,
the following createConnection call attempts to connect to the admin port, 21211:

client.createConnection("myserver.xyz.net",21211);

If security is enabled and the username and password in the ClientConfig do not match a user defined in
the deployment file, the call to createConnection will throw an exception. See Chapter 8, Security for more
information about the use of security with VoltDB databases.

When you are done with the connection, you should make sure your application calls the close method to
clean up any memory allocated for the connection.

try {
 client.close();
} catch (InterruptedException e) {
 e.printStackTrace();
}

3.3.1.1. Connecting to Multiple Servers

You can create the connection to any of the nodes in the database cluster and your stored procedure will
be routed appropriately. In fact, you can create connections to multiple nodes on the server and your
subsequent requests will be distributed to the various connections. For example, the following Java code
creates the client object and then connects to all three nodes of the cluster. In this case, security is not
enabled so no client configuration is needed:

try {
 client = ClientFactory.createClient();
 client.createConnection("server1.xyz.net");
 client.createConnection("server2.xyz.net");
 client.createConnection("server3.xyz.net");
} catch (java.io.IOException e) {
 e.printStackTrace();
 System.exit(-1);
}

Creating multiple connections has three major benefits:

• Multiple connections distributes the stored procedure requests around the cluster, avoiding a bottleneck
where all requests are queued through a single host. This is particularly important when using asynchro-
nous procedure calls or multiple clients.

• For Java applications, the Java client library uses client affinity. That is, the client knows which server
to send each request to based on the partitioning, thereby eliminating unnecessary network hops.

Designing Your VoltDB Application

26

• Finally, if a server fails for any reason, when using K-safety the client can continue to submit requests
through connections to the remaining nodes. This avoids a single point of failure between client and
database cluster.

3.3.1.2. Using an Auto-Reconnecting Client

If the client application loses contact with a server (either because the server goes down or a temporary
network glitch), the connection to that server is closed. Assuming the application has connections to mul-
tiple servers in the cluster, it can continue to submit stored procedures through the remaining connections.
However, the lost connection is not, by default, restored.

The application can use error handling to detect and recover from broken connections, as described in
Section 3.4.3, “Interpreting Other Errors”. Or you can enable auto-reconnecting when you initialize the
client object. You set auto-reconnecting in the client configuration before creating the client object, as in
the following example:

org.voltdb.client.Client client = null;
ClientConfig config = new ClientConfig("","");
config.setReconnecOnConnectionLoss(true);
 try {
 client = ClientFactory.createClient(config);
 client.createConnection("server1.xyz.net");
 client.createConnection("server2.xyz.net");
 client.createConnection("server3.xyz.net");
 . . .

When setReconnectOnConnectionLoss is set to true, the client library will attempt to reestablish lost con-
nections, attempts starting every second and backing off to every eight seconds. As soon as the connection
is reestablished, the reconnected server will begin to receive its share of the procedure calls.

3.3.2. Invoking Stored Procedures
Once you create the connection, you are ready to call the stored procedures. You invoke a stored procedure
using the callProcedure method, passing the procedure name and variables as arguments to callProcedure.
For example, to invoke the LookupFlight stored procedure that requires three values (the originating air-
port, the destination, and the departure time), the call to callProcedure might look like this:

VoltTable[] results;
try { results = client.callProcedure("LookupFlight",
 origin,
 dest,
 departtime).getResults();
} catch (Exception e) {
 e.printStackTrace();
 System.exit(-1);
}

Note that since callProcedure can throw an exception (such as VoltAbortException) it is a good practice
to perform error handling and catch known exceptions.

Once a synchronous call completes, you can evaluate the results of the stored procedure. The callProcedure
method returns a ClientResponse object, which includes information about the success or failure of the
stored procedure. To retrieve the actual return values you use the getResults() method, as in the preced-
ing example. See Section 3.2.3.4, “Interpreting the Results of SQL Queries” for more information about
interpreting the results of VoltDB stored procedures.

Designing Your VoltDB Application

27

3.3.3. Invoking Stored Procedures Asynchronously
Calling stored procedures synchronously can be useful because it simplifies the program logic; your client
application waits for the procedure to complete before continuing. However, for high performance appli-
cations looking to maximize throughput, it is better to queue stored procedure invocations asynchronously.

To invoke stored procedures asynchronously, you use the callProcedure method with an additional argu-
ment, a callback that will be notified when the procedure completes (or an error occurs). For example,
to invoke a procedure to add a new customer asynchronously, the call to callProcedure might look like
the following:

client.callProcedure(new MyCallback(),
 "NewCustomer",
 firstname,
 lastname,
 custID};

The callback procedure (MyCallback in this example) is invoked once the stored procedure completes. It is
passed the same structure, ClientResponse, that is returned by a synchronous invocation. ClientResponse
contains information about the results of execution. In particular, the methods getStatus and getResults let
your callback procedure determine whether the stored procedure was successful and evaluate the results
of the procedure.

The following is an example of a callback procedure:

static class MyCallback implements ProcedureCallback {
 @Override
 public void clientCallback(ClientResponse clientResponse) {

 if (clientResponse.getStatus() != ClientResponse.SUCCESS) {
 System.err.println(clientResponse.getStatusString());
 } else {
 myEvaluateResultsProc(clientResponse.getResults());
 }
 }
}

The VoltDB Java client is single threaded, so callback procedures are processed one at a time. Consequent-
ly, it is a good practice to keep processing in the callback to a minimum, returning control to the main thread
as soon as possible. If more complex processing is required by the callback, creating a separate thread pool
and spawning worker methods on a separate thread from within the async callback is recommended.

The following are other important points to note when making asynchronous invocations of stored pro-
cedures:

• Asynchronous calls to callProcedure return control to the calling application as soon as the procedure
call is queued.

• If the database server queue is full, callProcedure will block until it is able to queue the procedure call.
This is a condition known as backpressure. This situation does not normally happen unless the database
cluster is not scaled sufficiently for the workload or there are abnormal spikes in the workload. Two
ways to handle this situation programmatically are to:

• Let the client pause momentarily to let the queue subside. The asynchronous clent interface does this
automatically for you.

Designing Your VoltDB Application

28

• Create multiple connections to the cluster to better distribute asynchronous calls across the database
nodes.

• Once the procedure is queued, any subsequent errors (such as an exception in the stored procedure itself
or loss of connection to the database) are returned as error conditions to the callback procedure.

3.3.4. Closing the Connection

When the client application is done interacting with the VoltDB database, it is a good practice to close the
connection. This ensures that any pending transactions are completed in an orderly way. There are two
steps to closing the connection:

1. Call drain() to make sure all asynchronous calls have completed.

2. Call close() to close all of the connections and release any resources associated with the client.

The drain() method pauses the current thread until all outstanding asynchronous calls (and their callback
procedures) complete. This call is not necessary if the application only makes synchronous procedure
calls. However, there is no penalty for calling drain() and so it can be included for completeness in all
applications.

The following example demonstrates how to close the client connection:

try {
 client.drain();
 client.close();
} catch (InterruptedException e) {
 e.printStackTrace();
}

3.4. Handling Errors
One special situation to consider when calling VoltDB stored procedures is error handling. The VoltDB
client interface catches most exceptions, including connection errors, errors thrown by the stored proce-
dures themselves, and even exceptions that occur in asynchronous callbacks. These error conditions are
not returned to the client application as exceptions. However, the application can still receive notification
and interpret these conditions using the client interface.

The following sections explain how to identify and interpret errors that occur executing stored procedures
and in asynchronous callbacks.

3.4.1. Interpreting Execution Errors

If an error occurs in a stored procedure (such as an SQL contraint violation), VoltDB catches the error and
returns information about it to the calling application as part of the ClientResponse class.

The ClientResponse class provides several methods to help the calling application determine whether the
stored procedure completed successfully and, if not, what caused the failure. The two most important
methods are getStatus() and getStatusString().

The getStatus() method tells you whether the stored procedure completed successfully and, if not, what
type of error occurred. The possible values of getStatus() are:

Designing Your VoltDB Application

29

• CONNECTION_LOST — The network connection was lost before the stored procedure returned status
information to the calling application. The stored procedure may or may not have completed success-
fully.

• CONNECTION_TIMEOUT — The stored procedure took too long to return to the calling application.
The stored procedure may or may not have completed successfully. See Section 3.4.2, “Handling Time-
outs” for more information about handling this condition.

• GRACEFUL_FAILURE — An error occurred and the stored procedure was gracefully rolled back.

• RESPONSE_UNKNOWN — This is a rare error that occurs if the coordinating node for the transaction
fails before returning a response. The node to which your application is connected cannot determine if
the transaction failed or succeeded before the coordinator was lost. The best course of action, if you
receive this error, is to use a new query to determine if the transaction failed or succeeded and then take
action based on that knowledge.

• SUCCESS — The stored procedure completed successfully.

• UNEXPECTED_FAILURE — An unexpected error occurred on the server and the procedure failed.

• USER_ABORT — The code of the stored procedure intentionally threw a UserAbort exception and the
stored procedure was rolled back.

It is good practice to always check the status of the ClientResponse before evaluating the results of a
procedure call, because if the status is anything but SUCCESS, there will not be any results returned. In
addition to identifying the type of error, for any values other than SUCCESS, the getStatusString() method
returns a text message providing more information about the specific error that occurred.

If your stored procedure wants to provide additional information to the calling application, there are
two more methods to the ClientResponse that you can use. The methods getAppStatus() and getAppS-
tatusString() act like getStatus() getStatusString(), but rather than returning information set by VoltDB,
getAppStatus() and getAppStatusString() return information set by the stored procedure code itself.

In the stored procedure, you can use the methods setAppStatusCode() and setAppStatusString() to set the
values returned to the calling application. For example:

Stored Procedure

final byte AppCodeWarm = 1;
final byte AppCodeFuzzy = 2;
 . . .
setAppStatusCode(AppCodeFuzzy);
setAppStatusString("I'm not sure about that...");
 . . .

Client Application

static class MyCallback implements ProcedureCallback {
 @Override
 public void clientCallback(ClientResponse clientResponse) {
 final byte AppCodeWarm = 1;
 final byte AppCodeFuzzy = 2;

 if (clientResponse.getStatus() != ClientResponse.SUCCESS) {
 System.err.println(clientResponse.getStatusString());

Designing Your VoltDB Application

30

 } else {
 if (clientResponse.getAppStatus() == AppCodeFuzzy) {
 System.err.println(clientResponse.getAppStatusString());
 };
 myEvaluateResultsProc(clientResponse.getResults());
 }
 }
}

3.4.2. Handling Timeouts
One particular error that needs special handling is if a connection or a stored procedure call times out. By
default, the client interface only waits a specified amount of time (two minutes) for a stored procedure to
complete. If no response is received from the server before the timeout period expires, the client interface
returns control to your application, notifying it of the error. For synchronous procedure calls, the client
interface returns the error CONNECTION_TIMEOUT to the procedure call. For asynchronous calls, the
client interface invokes the callback including the error information in the clientResponse object.

Similarly, if no response of any kind is returned on a connection (even if no transactions are pend-
ing) within the specified timeout period, the client connection will timeout. When this happens, the
connection is closed, any open stored procedures on that connection are closed with a return status of
CONNECTION_LOST, then the client status listener callback method connectionLost is invoked. Unlike
a procedure timeout, when the connection times out, the connection no longer exists, so your client appli-
cation will receive no further notifications concerning pending procedures, whether they succeed or fail.

It is important to note that CONNECTION_TIMEOUT does not necessarily mean the procedure failed. In
fact, it is very possible that the procedure may complete and return information after the timeout error is
reported. The timeout is provided to avoid locking up the client application when procedures are delayed
or the connection to the cluster hangs for any reason.

Similarly, CONNECTION_LOST does not necessarily mean a pending procedure failed. It is possible that
the procedure completed but was unable to return its status due to a connection failure. The goal of the
connection timeout is to notify the client application of a lost connection in a timely manner, even if there
is no outstanding procedures using the connection.

There are several things you can do to address potential timeouts in your application:

• Change the timeout period by calling either or both the methods setProcedureCallTimeout and setCon-
nectionResponseTimeout on the ClientConfig object. The default timeout period is 2 minutes for both
procedures and connections. You specify the timeout period in milliseconds, where a value of zero dis-
ables the timeout altogether. For example, the following client code resets the procedure timeout to 90
seconds and the connection timeout period to 3 minutes, or 180 seconds:

config = new ClientConfig("advent","xyzzy");
config.setProcedureCallTimeout(90 * 1000);
config.setConnectionResponseTimeout(180 * 1000);
client = ClientFactory.createClient(config);

• Catch and respond to the timeout error as part of the response to a procedure call. For example, the
following code excerpt from a client callback procedure reports the error to the console and ends the
callback:

static class MyCallback implements ProcedureCallback {
 @Override
 public void clientCallback(ClientResponse response) {

Designing Your VoltDB Application

31

 if (response.getStatus() == ClientResponse.CONNECTION_TIMEOUT) {
 System.out.println("A procedure invocation has timed out.");
 return;
 };
 if (response.getStatus() == ClientResponse.CONNECTION_LOST) {
 System.out.println("Connection lost before procedure response.");
 return;
 };

• Set a status listener to receive the results of any procedure invocations that complete after the client
interface times out. See the following section, Section 3.4.3, “Interpreting Other Errors”, for an example
of creating a status listener for delayed procedure responses.

3.4.3. Interpreting Other Errors
Certain types of errors can occur that the ClientResponse class cannot notify you about immediately. These
errors include:

Backpressure If backpressure causes the client interface to wait, the stored pro-
cedure is never queued and so your application does not receive
control until after the backpressure is removed. This can happen if
the client applications are queuing stored procedures faster than the
database cluster can process them. The result is that the execution
queue on the server gets filled up and the client interface will not
let your application queue any more procedure calls.

Lost Connection If a connection to the database cluster is lost or times out and
there are outstanding asynchronous requests on that connection, the
ClientResponse for those procedure calls will indicate that the con-
nection failed before a return status was received. This means that
the procedures may or may not have completed successfully. If no
requests were outstanding, your application might not be notified
of the failure under normal conditions, since there are no callbacks
to identify the failure. Since the loss of a connection can impact the
throughput or durability of your application, it is important to have
a mechanism for general notification of lost connections outside of
the procedure callbacks.

Exceptions in a Procedure Callback An error can occur in an asynchronous callback after the stored pro-
cedure completes. These exceptions are also trapped by the VoltDB
client, but occur after the ClientResponse is returned to the appli-
cation.

Delayed Procedure Responses Procedure invocations that time out in the client may later complete
on the server and return results. Since the client application can no
longer react to this response inline (for example, with asynchronous
procedure calls, the associated callback has already received a con-
nection timeout error) the client may want a way to process the re-
turned results.

In each of these cases, an error happens and is caught by the client interface outside of the normal stored
procedure execution cycle. If you want your application to address these situations, you need to create a
listener, which is a special type of asynchronous callback, that the client interface will notify whenever
such errors occur.

Designing Your VoltDB Application

32

You must define the listener before you define the VoltDB client or open a connection. The ClientStatus-
ListenerExt interface has four methods that you can implement — one for each type of error situation —
connectionLost, backpressure, uncaughtException, and lateProcedureResponse. Once you declare your
ClientStatusListenerExt, you add it to a ClientConfig object that is then used to define the client. The
configuration class also defines the username and password to use for all connections.

By performing the operations in this order, you ensure that all connections to the VoltDB database cluster
use the same credentials for authentication and will notify the status listener of any error conditions outside
of normal procedure execution.

The following example illustrates:

Declaring a ClientStatusListenerExt
Defining the client configuration, including authentication credentials and the status listener
Creating a client with the specified configuration

For the sake of example, this status listener does little more than display a message on standard output.
However, in real world applications the listener would take appropriate actions based on the circumstances.

 /*
 * Declare the status listener
 */
ClientStatusListenerExt mylistener = new ClientStatusListenerExt()
 {

 @Override
 public void connectionLost(String hostname, int port,
 int connectionsLeft,
 DisconnectCause cause)
 {
 System.out.printf("A connection to the database been lost. "
 + "There are %d connections remaining.\n", connectionsLeft);
 }

 @Override
 public void backpressure(boolean status)
 {
 System.out.println("Backpressure from the database "
 + "is causing a delay in processing requests.");
 }

 @Override
 public void uncaughtException(ProcedureCallback callback,
 ClientResponse r, Throwable e)
 {
 System.out.println("An error has occured in a callback "
 + "procedure. Check the following stack trace for details.");
 e.printStackTrace();
 }

 @Override
 public void lateProcedureResponse(ClientResponse response,
 String hostname, int port)
 {
 System.out.printf("A procedure that timed out on host %s:%d"

Designing Your VoltDB Application

33

 + " has now responded.\n", hostname, port);
 }

 };

 /*
 * Declare the client configuration, specifying
 * a username, a password, and the status listener
 */
ClientConfig myconfig = new ClientConfig("username",
 "password",
 mylistener);

 /*
 * Create the client using the specified configuration.
 */
Client myclient = ClientFactory.createClient(myconfig);

34

Chapter 4. Simplifying Application
Development

The previous chapter (Chapter 3, Designing Your VoltDB Application) explains how to develop your Volt-
DB database application using the full power and flexibility of the Java client interface. However, some
database tasks — such as inserting records into a table or retrieving a specific column value — do not
need all of the capabilities that the Java API provides.

Now that you know how the VoltDB programming interface works, VoltDB has features to simplify com-
mon tasks and make your application development easier. Those features include:

1. Default procedures

2. Shortcuts for defining simple stored procedures

3. Verifying expected SQL query results

The following sections describe each of these features separately.

4.1. Default Procedures
Although it is possible to define quite complex SQL queries, often the simplest are also the most common.
Inserting, selecting, updating, and deleting records based on a specific key value are the most basic opera-
tions for a database. Another common practice is upsert, where if a row matching the primary key already
exists, the record is updated — if not, a new record is inserted.

To simplify these operations, VoltDB defines default stored procedures to perform these queries for any
table with a primary key index. It also defines a default insert stored procedure for tables without a pri-
mary key. When you compile the application catalog, these default procedures are added to the catalog
automatically.

The default stored procedures use a standard naming scheme, where the name of the procedure is composed
of the name of the table (in all uppercase), a period, and the name of the query in lowercase. The parameters
to the procedures differ based on the procedure. For the insert procedure, the parameters are the columns
of the table, in the same order as defined in the schema. For the select and delete procedures, only the
primary key column values are required (listed in the order they appear in the primary key definition).
For the update and upsert procedures, the columns are the new column values, in the order defined by
the schema, followed by the primary key column values. (This means the primary key column values are
specified twice: once as their corresponding new column values and once as the primary key value.)

For example, the Hello World tutorial contains a single table, HELLOWORLD, with three columns and
the partitioning column, DIALECT, as the primary key. As a result, the application catalog includes six
default stored procedures, in addition to any user-defined procedures declared in the schema. Those default
procedures are:

• HELLOWORLD.insert

• HELLOWORLD.select

• HELLOWORLD.update

• HELLOWORLD.upsert

• HELLOWORLD.delete

Simplifying Application Development

35

The following code example uses the default procedures for the HELLOWORLD table to insert, retrieve,
update, and delete a new record with the key value "American":

VoltTable[] results;
client.callProcedure("HELLOWORLD.insert",
 "American","Howdy","Earth");
results = client.callProcedure("HELLOWORLD.select",
 "American").getResults();
client.callProcedure("HELLOWORLD.update",
 "American","Yo","Biosphere",
 "American");
client.callProcedure("HELLOWORLD.delete",
 "American");

4.2. Shortcut for Defining Simple Stored Proce-
dures

Sometimes all you want is to execute a single SQL query and return the results to the calling application.
In these simple cases, writing the necessary Java code can be tedious. So VoltDB provides a shortcut.

For very simple stored procedures that execute a single SQL query and return the results, you can define
the entire stored procedure as part of the database schema. Normally, the schema contains entries that
identify each of the stored procedures, like so:

CREATE PROCEDURE FROM CLASS procedures.MakeReservation;
CREATE PROCEDURE FROM CLASS procedures.CancelReservation;

The CREATE PROCEDURE statement specifies the class name of the Java procedure you write. However,
to create procedures without writing any Java, you can simply insert the SQL query in the AS clause:

CREATE PROCEDURE CountReservations AS
 SELECT COUNT(*) FROM RESERVATION;

When you include the SQL query in the CREATE PROCEDURE AS statement, VoltDB creates the pro-
cedure when you build your application (as described in Section 5.3, “Building the Application Catalog”).
Note that you must specify a unique class name for the procedure, which is unique among all stored pro-
cedures, including both those declared in the schema and those created as Java classes.

It is also possible to pass arguments to the SQL query in simple stored procedures. If you use the question
mark placeholder in the SQL, any additional arguments you pass through the callProcedure method are
used to replace the placeholders, in their respective order. For example, the following simple stored pro-
cedure expects to receive three additional parameters:

CREATE PROCEDURE MyReservationsByTrip AS
 SELECT R.RESERVEID, F.FLIGHTID, F.DEPARTTIME
 FROM RESERVATION AS R, FLIGHT AS F
 WHERE R.CUSTOMERID = ?
 AND R.FLIGHTID = F.FLIGHTID
 AND F.ORIGIN=? AND F.DESTINATION=?;

Finally, you can also specify whether the simple procedure is single-partitioned or not. By default, simple
stored procedures are assumed to be multi-partitioned. But if your procedure is single-partitioned, you can
specify the partitioning information in a PARTITION PROCEDURE statement. In the following example,
the stored procedure is partitioned on the FLIGHTID column of the RESERVATION table using the first
parameter as the partitioning key.

Simplifying Application Development

36

CREATE PROCEDURE FetchReservations AS
 SELECT * FROM RESERVATION WHERE FLIGHTID=?;
PARTITION PROCEDURE FetchReservations
 ON TABLE Reservation COLUMN flightid;

4.3. Writing Stored Procedures Inline Using
Groovy

Writing stored procedures as separate Java classes is good practice; Java is a structured language that en-
courages good programming habits and helps modularize your code base. However, sometimes — espe-
cially when prototyping — you just want to do something quickly and keep everything in one place.

You can write stored procedures directly in the schema definition file (DDL) by embedding the procedure
code using the Groovy programming language. Groovy is an object-oriented language that dynamically
compiles to Java Virtual Machine (JVM) bytecode. Groovy is not as strict as Java and promotes simpler
coding through implicit typing and other shortcuts.

You embed a Groovy stored procedure in the schema file by including the code in the CREATE PROCE-
DURE AS statement, enclosed by a special marker — three pound signs (###) — before and after the code.
For example, the following CREATE PROCEDURE statement implements the Insert stored procedure
from the Hello World example using Groovy:

CREATE PROCEDURE Insert AS ###
 sql = new SQLStmt(
 "INSERT INTO HELLOWORLD VALUES (?, ?, ?);")
 transactOn = { String language,
 String hello,
 String world ->
 voltQueueSQL(sql, hello, world, language)
 voltExecuteSQL()
 }
LANGUAGE GROOVY;

Some important things to note when using embedded Groovy stored procedures:

• The definitions for VoltTypes, VoltProcedure, and VoltAbortException are automatically included and
can be used without explicit import statements.

• As with Java stored procedures, you must declare all SQL queries as SQLStmt objects at the beginning
of the Groovy procedure.

• You must also define a closure called transactOn, which is invoked the same way the run method is
invoked in a Java stored procedure. This closure performs the actual work of the procedure and can
accept any arguments that the Java run method can accept and can return a VoltTable, an array of
VoltTables, or a long value.

In addition, VoltDB provides special wrappers, tuplerator and buildTable, that help you access VoltTable
results and construct VoltTables from scratch. For example, the following code fragment shows the Con-
testantWinningStates stored procedure from the Voter sample application written in Groovy:

transactOn = { int contestantNumber, int max ->
 voltQueueSQL(resultStmt)

Simplifying Application Development

37

 results = []
 state = ""

 tuplerator(voltExecuteSQL()[0]).eachRow {
 isWinning = state != it[1]
 state = it[1]

 if (isWinning && it[0] == contestantNumber) {
 results << [state: state, votes: it[2]]
 }
 }
 if (max > results.size) max = results.size
 buildTable(state:STRING, num_votes:BIGINT) {
 results.sort { a,b -> b.votes - a.votes }[0..<max].each {
 row it.state, it.votes
 }
 }
}

Finally, it is important to note that Groovy is an interpreted language. It is very useful for quick coding
and prototyping. However, Groovy procedures do not perform as well as the equivalent compiled Java
classes. For optimal performance, Java stored procedures are recommended.

4.4. Verifying Expected Query Results
The automated default and simple stored procedures reduce the coding needed to perform simple queries.
However, another substantial chunk of stored procedure and application code is often required to verify
the correctness of the results returned by the queries. Did you get the right number of records? Does the
query return the correct value?

Rather than you having to write the code to validate the query results manually, VoltDB provides a way
to perform several common validations as part of the query itself. The Java client interface includes an
Expectation object that you can use to define the expected results of a query. Then, if the query does not
meet those expectations, the stored procedure throws a VoltAbortException and rolls back.

You specify the expectation as the second parameter (after the SQL statement but before any arguments)
when queuing the query. For example, when making a reservation in the Flight application, the procedure
must make sure there are seats available. To do this, the procedure must determine how many seats the
flight has. This query can also be used to verify that the flight itself exists, because there should be one
and only one record for every flight ID.

The following code fragment uses the EXPECT_ONE_ROW expectation to both fetch the number of seats
and verify that the flight itself exists and is unique.

import org.voltdb.Expectation;
 .
 .
 .
public final SQLStmt GetSeats = new SQLStmt(
 "SELECT numberofseats FROM Flight WHERE flightid=?;");

voltQueueSQL(GetSeats, EXPECT_ONE_ROW, flightid);
VoltTable[] recordset = voltExecuteSQL();
Long numofseats = recordset[0].asScalarLong();

Simplifying Application Development

38

By using the expectation, the stored procedure code does not need to do additional error checking to verify
that there is one and only one row in the result set. The following table describes all of the expectations
that are available to stored procedures.

Expectation Description

EXPECT_EMPTY The query must return no rows.

EXPECT_ONE_ROW The query must return one and only one row.

EXPECT_ZERO_OR_ONE_ROW The query must return no more than one row.

EXPECT_NON_EMPTY The query must return at least one row.

EXPECT_SCALAR The query must return a single value (that is, one
row with one column).

EXPECT_SCALAR_LONG The query must return a single value with a datatype
of Long.

EXPECT_SCALAR_MATCH(long) The query must return a single value equal to the
specified Long value.

39

Chapter 5. Building Your VoltDB
Application

Once you have designed your application and created the source files, you are ready to build your appli-
cation. There are four steps to building a VoltDB application:

1. Compiling the client application and stored procedures

2. Declaring the stored procedures in the schema

3. Compiling the VoltDB application catalog

This chapter explains these steps in more detail.

5.1. Compiling the Client Application and Stored
Procedures

The VoltDB client application and stored procedures are written as Java classes1, so you compile them
using the Java compiler. To do this, you must include the VoltDB libraries in the classpath so Java can
resolve references to the VoltDB classes and methods. It is possible to do this manually by defining the
environment variable CLASSPATH or using the -classpath argument on the command line. You can
also specify where to create the resulting class files using the -o flag to specify an output directory, as
in the following example:

$ javac -classpath "./:/opt/voltdb/voltdb/*" \
 -o ./obj \
 *.java

The preceding example assumes that the VoltDB software has been installed in the folder /opt/voltdb.
If you installed VoltDB in a different directory, you will need to include your installation path in the -
classpath argument. Also, if your client application depends on other libraries, they will need to be
included in the classpath as well.

5.2. Declaring the Stored Procedures
In addition to compiling the stored procedures, you must tell VoltDB which procedures to include in the
runtime catalog. You do this by adding CREATE PROCEDURE statements to the database schema. For
example:

CREATE PROCEDURE FROM CLASS procedures.LookupFlight;
CREATE PROCEDURE FROM CLASS procedures.HowManySeats;
CREATE PROCEDURE FROM CLASS procedures.MakeReservation;
CREATE PROCEDURE FROM CLASS procedures.CancelReservation;
CREATE PROCEDURE FROM CLASS procedures.RemoveFlight;

Be sure to identify all of your stored procedures or they will not be included in the catalog and therefore
will not be available to the client applications at runtime.

1Although VoltDB stored procedures must be written in Java and the primary client interface is Java, it is possible to write client applications
using other programming languages. See Chapter 15, Using VoltDB with Other Programming Languages for more information on alternate client
interfaces.

Building Your VoltDB Application

40

You also specify the partitioning of the database tables and stored procedures in the schema. The important
point is that if you do not specify partitioning information for a table, that table will be replicated in all
partitions. See Section 3.1, “Designing the Database” for more information about partitioned and replicated
tables.

5.3. Building the Application Catalog
You build the application catalog for your VoltDB database by compiling the database schema and stored
procedures into the catalog. To run the compiler, use the voltdb compile command, specifying three
arguments:

1. The path to your compiled stored procedure classes

2. The name of the schema file to use as input

3. The name of the application catalog to create as output

For example, if your stored procedure classes are in a subfolder called obj, the command might be:

$ voltdb compile --classpath="obj" -o flight.jar flightschema.sql

If you do not specify an output file, the catalog is created as catalog.jar in the current working
directory.

41

Chapter 6. Running Your VoltDB
Application

There are three steps to running a VoltDB application:

• Defining the cluster configuration

• Starting the VoltDB database

• Starting the client application or applications

The following sections describe the procedures for starting and stopping a VoltDB database in detail.

6.1. Defining the Cluster Configuration
The schema that is used to compile the application catalog defines how the database is logically structured:
what tables to create, which tables are partitioned, and how they are accessed (i.e. what stored procedures
to support). The other important aspect of a running database is the physical layout of the cluster that runs
the database. This includes information such as:

• The number of nodes in the cluster

• The number of partitions (or "sites") per node

• The amount of K-safety to establish for durability

You define the cluster configuration in the deployment file. The deployment file is an XML file, which
you specify when you start the database to establish the correct cluster topology. The basic syntax of the
deployment file is as follows:

<?xml version="1.0"?>
<deployment>
 <cluster hostcount="n"
 sitesperhost="n"
 kfactor="n"
 />
</deployment>

The attributes of the <cluster> tag define the physical layout of the hardware that will run the database.
Those attributes are:

• hostcount — specifies the number of nodes in the cluster.

• sitesperhost — specifies the number of partitions (or "sites") per host. This setting defaults to eight sites
per host, which is appropriate for most situations. If you choose to tune the number of sites per host,
Section 6.1.1, “Determining How Many Partitions to Use” explains how to determine the optimal value.

• kfactor — specifies the K-safety value to use when creating the database. This attribute is optional.
If you do not specify a value, it defaults to zero. (See Chapter 11, Availability for more information
about K-safety.)

In the simplest case — when running on a single node with no special options enabled — you can skip
the deployment file altogether and specify only the catalog on the command line. If you do not specify a

Running Your VoltDB Application

42

deployment file or host, VoltDB defaults to one node, eight sites per host, a K-safety value of zero, and
localhost as the host.

The deployment file is used to enable and configure many other runtime options related to the database,
which are described later in this book. For example, the deployment file specifies whether security is
enabled and defines the users and passwords that are used to authenticate clients at runtime. See Chapter 8,
Security for more information about security and VoltDB databases.

6.1.1. Determining How Many Partitions to Use
There is very little penalty for allocating more partitions than needed (except for incremental memory
usage). Consequently, VoltDB defaults to eight partitions per node to provide reasonable performance
on most modern system configurations. This default does not normally need to be changed. However,
for systems with a large number of available processes (16 or more) or older machines with less than 8
processors and limited memory, you may wish to tune the sitesperhost attribute.

The number of partitions needed per node is related to the number of processor cores each system has, the
optimal number being approximately 3/4 of the number of CPUs reported by the operating system. For
example, if you are using a cluster of dual quad-core processors (in other words, 8 cores per node), the
optimal number of partitions is likely to be 6 or 7 partitions per node.

For systems that support hyperthreading (where the number of physical cores support twice as many
threads), the operating system reports twice the number of physical cores. In other words, a dual quad-
core system would report 16 virtual CPUs. However, each partition is not quite as efficient as on non-
hyperthreading systems. So the optimal number of partitions is more likely to be between 10 and 12 per
node in this situation.

Because there are no hard and set rules, the optimal number of partitions per node is best calculated by
actually benchmarking the application to see what combination of cores and partitions produces the best
results. However, it is important to remember that all nodes in the cluster will use the same number of
partitions. So the best performance is achieved by using a cluster with all nodes having the same physical
architecture (i.e. cores).

6.1.2. Configuring Paths for Runtime Features
In addition to configuring the database process on each node of the cluster, the deployment file lets you
enable and configure a number of features within VoltDB. Export, automatic snapshots, and network
partition detection are all enabled through the deployment file. The later chapters of this book describe
these features in detail.

An important aspect of these features is that some of them make use of disk resources for persistent storage
across sessions. For example, automatic snapshots need a directory for storing snapshots of the database
contents. Similarly, export uses disk storage for writing overflow data if the export connector cannot keep
up with the export queue.

You can specify individual paths for each feature, or you can specify a root directory where VoltDB will
create subfolders for each feature as needed. To specify a common root, use the <voltdbroot> tag (as
a child of <paths>) to specify where VoltDB will store disk files. For example, the following <paths>
tag set specifies /tmp as the root directory:

<paths>
 <voltdbroot path="/tmp" />
</paths>

Of course, /tmp is appropriate for temporary files, such as export overflow. But /tmp is not a good location
for files that must persist when the server reboots. So you can also identify specific locations for individual

Running Your VoltDB Application

43

features. For example, the following excerpt from a deployment file specifies /tmp as the default root but
/opt/voltdbsaves as the directory for automatic snapshots:

<paths>
 <voltdbroot path="/tmp" />
 <snapshots path="/opt/voltdbsaves" />
</paths>

If you specify a root directory path, the directory must exist and the process running VoltDB must have
write access to it. VoltDB does not attempt to create an explicitly named root directory path if it does
not exist.

On the other hand, if you do not specify a root path or a specific feature path, the root path defaults to
./voltdbroot in the current default directory and VoltDB creates the directory (and subfolders) as
needed. Similarly, if you name a specific feature path (such as the snapshots path) and it does not exist,
VoltDB will attempt to create it for you.

6.1.3. Verifying your Hardware Configuration
The deployment file defines the expected configuration of your database cluster. However, there are several
important aspects of the physical hardware and operating system configuration that you should be aware
of before running VoltDB:

• VoltDB can operate on heterogeneous clusters. However, best performance is achieved by running the
cluster on similar hardware with the same type of processors, number of processors, and amount of
memory on each node.

• All nodes must be able to resolve the IP addresses and host names of the other nodes in the cluster. That
means they must all have valid DNS entries or have the appropriate entries in their local hosts file.

• You must run NTP on all of the cluster nodes, preferably synchronizing against the same local time
server. If the time skew between nodes in the cluster is greater than 100 milliseconds, VoltDB cannot
start the database.

• It is strongly recommended that you run NTP with the -x argument. Using ntpd -x stops the server
from adjusting time backwards for all but very large increments. If the server time moves backward,
VoltDB must pause and wait for time to catch up.

6.2. Starting a VoltDB Database for the First Time
Once you define the configuration of your cluster, you start a VoltDB database by starting the VoltDB
server process on each node of the cluster. You start the server process by invoking VoltDB and specifying:

• A startup action (see Section 6.5, “Stopping and Restarting a VoltDB Database” for details)

• The location of the application catalog

• The hostname or IP address of the host node in the cluster

• The location of the deployment file

The host can be any node in the cluster and plays a special role during startup; it hosts the application
catalog and manages the cluster initiation process. Once startup is complete, the host's role is complete
and it becomes a peer of all the other nodes. It is important that all nodes in the cluster can resolve the
hostname or IP address of the host node you specify.

Running Your VoltDB Application

44

For example, the following voltdb command starts the cluster with the create startup action, specifying
the location of the catalog and the deployment files, and naming voltsvr1 as the host node:

$ voltdb create mycatalog.jar \
 --deployment=deployment.xml \
 --host=voltsvr1

Or you can also use shortened forms for the argument flags:

$ voltdb create mycatalog.jar \
 -d deployment.xml \
 -H voltsvr1

If you are using the VoltDB Enterprise Edition, you must also provide a license file. The license is only
required by the host node when starting the cluster. To simplify startup, VoltDB looks for the license as a
file named license.xml in three locations, in the following order:

• The current working directory

• The directory where the VoltDB image files are installed (usually in the /voltdb subfolder of the
installation directory)

• The current user's home directory

So if you store the license file in any of these locations, you do not have to explicitly identify it on the
command line. Otherwise, you can use the --license or -l flag to specify the license file location,
For example:

$ voltdb create mycatalog.jar \
 -d deployment.xml \
 -H voltsvr1 \
 -l /usr/share/voltdb-license.xml

When you are developing an application (where your cluster consists of a single node using localhost),
this one command is sufficient to start the database. However, when starting a cluster, you must:

1. Copy the runtime catalog to the host node.

2. Copy the deployment file to all nodes of the cluster.

3. Log in and start the server process using the preceding command on each node.

The deployment file must be identical on all nodes for the cluster to start.

6.2.1. Simplifying Startup on a Cluster

Manually logging on to each node of the cluster every time you want to start the database can be tedious.
There are several ways you can simplify the startup process:

• Shared network drive — By creating a network drive and mounting it (using NFS) on all nodes of
the cluster, you can distribute the runtime catalog and deployment file (and the VoltDB software) by
copying it once to a single location.

• Remote access — When starting the database, you can specify the location of either the runtime catalog
or the deployment file as a URL rather than a file path (for example, http://myserver.com/

Running Your VoltDB Application

45

mycatalog.jar). This way you can publish the catalog and deployment file once to a web server
and start all nodes of the server from those copies.

• Remote shell scripts — Rather than manually logging on to each cluster node, you can use secure shell
(ssh) to execute shell commands remotely. By creating an ssh script (with the appropriate permissions)
you can copy the files and/or start the database on each node in the cluster from a single script.

• VoltDB Enterprise Manager — The VoltDB Enterprise Edition includes a web-based management
console, called the VoltDB Enterprise Manager, that helps you manage the configuration, initializa-
tion, and performance monitoring of VoltDB databases. The Enterprise Manager automates the startup
process for you. See the VoltDB Management Guide for details.

6.2.2. How VoltDB Database Startup Works
When you are starting a VoltDB database, the VoltDB server process performs the following actions:

1. If you are starting the database on the node identified as the host node, it waits for initialization messages
from the remaining nodes.

2. If you are starting the database on a non-host node, it sends an initialization message to the host indi-
cating that it is ready.

3. Once all the nodes have sent initialization messages, the host sends out a message to the other nodes
that the cluster is complete. The host then distributes the application catalog to all nodes.

At this point, the cluster is complete and the database is ready to receive requests from client applications.
Several points to note:

• Once the startup procedure is complete, the host's role is over and it becomes a peer like every other
node in the cluster. It performs no further special functions.

• The database is not operational until the correct number of nodes (as specified in the deployment file)
have connected.

6.3. Starting VoltDB Client Applications
Client applications written in Java compile and run like other Java applications. Once again, when you
start your client application, you must make sure that the VoltDB library JAR file is in the classpath. For
example:

$ java -classpath "./:/opt/voltdb/voltdb/*" MyClientApp

When developing your application (using one of the sample applications as a template), the run.sh file
manages this dependency for you. However, if you are running the database on a cluster and the client
applications on separate machines, you do not need to include all of the VoltDB software with your client
application.

The VoltDB distribution comes with two separate libraries: voltdb-n.n.nn.jar and voltdbclient-n.n.nn.jar
(wheren.n.nn is the VoltDB version number). The first file is a complete library that is required for build-
ing and running a VoltDB database server. The second file, voltdbclient-n.n.nn.jar , is a smaller library
containing only those components needed to run a client application.

If you are distributing your client applications, you only need to distribute the client classes and the VoltDB
client library. You do not need to install all of the VoltDB software distribution on the client nodes.

http://community.voltdb.com/docs/MgtGuide/index

Running Your VoltDB Application

46

6.4. Shutting Down a VoltDB Database
Once the VoltDB database is up and running, you can shut it down by stopping the VoltDB server processes
on each cluster node. However, it is easier to stop the database as a whole with a single command. You can
do this either programmatically with the @Shutdown system procedure or interactively with the voltadmin
shutdown command.

Either calling the @Shutdown system procedure (from any node) or invoking voltadmin shutdown will
shutdown the database on the entire cluster. You do not have to issue commands on each node. Entering
voltadmin shutdown without specify a host server assumes the current system is part of the database
cluster. To shutdown a database running on different servers, you use the --host, --user, and --
password arguments to access the remote database. For example, the following command shuts down
the VoltDB database that includes the server zeus:

$ voltadmin --host=zeus shutdown

6.5. Stopping and Restarting a VoltDB Database
Because VoltDB is an in-memory database, once the database server process stops, the data itself is re-
moved from memory. If you restart the database without taking any other action, the database starts fresh
without any data. However, in many cases you want to retain the data across sessions. There are two ways
to do this:

• Save and restore database snapshots

• Use command logging and recovery to reload the database automatically

6.5.1. Save and Restore
A database snapshot is exactly what it sounds like — a point-in-time copy the database contents written
to disk. You can later use the snapshot to restore the data.

To save and restore data across sessions, you can perform a snapshot before shutting down the database
and then restore the snapshot after the database restarts. You can perform a manual snapshot using the
voltadmin command or using the @SnapshotSave system procedure. For example, the following com-
mands pause the database, perform a manual snapshot, then do a shutdown on the current system:

$ voltadmin pause
$ voltadmin save 'voltdbroot/snapshots' 'MySnapshot'
$ voltdbadmin shutdown

You can also have the database automatically create periodic snapshots using the snapshot feature in the
deployment file. See Chapter 9, Saving & Restoring a VoltDB Database for more information about using
snapshots to save and restore the database.

6.5.2. Command Logging and Recovery
Another option for saving data across sessions is to use command logging and recovery. When command
logging is enabled (which it is by default in VoltDB Enterprise Edition), the database not only performs
periodic snapshots, it also keeps a log of all stored procedures that are initiated at each partition. If the
database stops for any reason — either intentionally or due to system failure — when the server process
restarts, the database restores the last snapshot and then "replays" the command log to recover all of the
data committed prior to the cluster shutting down.

Running Your VoltDB Application

47

To support command logging, an alternative startup action is available on the command line when starting
the server process. The valid startup actions are:

• create — explicitly creates a new, empty database and ignores any command log information, if it exists.

• recover — starts a new database process and recovers the command log from the last database session.
The recover action is explicit; if the command log content is not found or is incomplete, the server
initialization process stops and reports an error.

Even if you are not using command logging, you can still use the create and recover actions with
automated snapshots. During the recover action, VoltDB attempts to restore the last snapshot found
in the snapshot paths. Therefore, using automated snapshots and the recover action, it is possible to
automatically recover all of the data from the previous database session up until the last snapshot.

The following example illustrates how to recover a database from a previous session.

$ voltdb recover --host=voltsvr1 \
 --deployment=deployment.xml \
 --license=/opt/voltdb/voltdb/license.xml

The advantages of command logging and recovery are that:

• The command log ensures that all data is recovered, including transactions between snapshots.

• The recovery is automated, ensuring no client activity occurs until the recovery is complete.

See Chapter 10, Command Logging and Recovery for more information about configuring command log-
ging.

6.6. Modes of Operation
There are actually two modes of operation for a VoltDB database: normal operation and admin mode.
During normal operation clients can connect to the cluster and invoke stored procedures (as allowed by
the security permissions set in the application catalog and deployment files). In admin mode, only clients
connected through a special admin port are allowed to initiate stored procedures. Requests received from
any other clients are rejected.

6.6.1. Admin Mode
The goal of admin mode is to quell database activity prior to executing sensitive administrative functions.
By entering admin mode, it is possible to ensure that no changes are made to the database contents during
operations such as save, restore, or updating the runtime catalog.

You initiate admin mode by calling the @Pause system procedure through the admin port. The admin port
works just like the regular client port and can be called through any of the standard VoltDB client interfaces
(such as Java or JSON) by specifying the admin port number when you create the client connection.

Once the database enters admin mode, any requests received over the client port are rejected, returning a
status of ClientResponse.SERVER_UNAVAILABLE. The client application can check for this response
and resubmit the transaction after a suitable pause.

By default the admin port is 21211, but you can specify an alternate admin port using the <admin-mode>
tag in the deployment file. For example:

<deployment>

Running Your VoltDB Application

48

 ...
 <admin-mode port="9999" />
</deployment>

Once admin mode is turned on, VoltDB processes requests received over the admin port only. Once you are
ready to resume normal operation, you must call the system procedure @Resume through the admin port.

6.6.2. Starting the Database in Admin Mode
By default, a VoltDB database starts in normal operating mode. However, you can tell the database to
start in admin mode by adding the adminstartup attribute to the <admin-mode> tag in the deployment file.
For example:

<deployment>
 ...
 <admin-mode port="9999" adminstartup="true" />
</deployment>

When adminstartup is set to true, the database starts in admin mode. No activity is allowed over the standard
client port until you explicitly stop admin mode with the voltadmin resume command or a call to the
@Resume system procedure.

Starting in admin mode can be very useful, especially if you want to perform some initialization on the
database prior to allowing client access. For example, it is recommended that you start in admin mode
if you plan to manually restore a snapshot or prepopulate the database with data through a set of custom
stored procedures. For example, the following commands restore a snapshot, then exit admin mode once
the initialization is complete:

$ voltadmin restore 'voltdbroot/snapshots' 'MySnapshot'
$ voltdbadmin resume

49

Chapter 7. Updating Your VoltDB
Database

Unlike traditional databases that allow interactive SQL statements for defining and modifying database
tables, VoltDB requires you to pre-compile the schema and stored procedures into the application catalog.
Pre-compiling lets VoltDB verify the structure of the database (including the partitioning) and optimize
the stored procedures for maximum performance.

The down side of pre-compiling the database and stored procedures is that you cannot modify the database
as easily as you can with more traditional relational database products. Of course, this constraint is both
a blessing and a curse. It helps you avoid making rash or undocumented changes to the database without
considering the consequences.

It is never a good idea to change the database structure or stored procedure logic arbitrarily. But Volt-
DB recognizes the need to make adjustments even on running systems. Therefore, the product provides
mechanisms for updating your database and hardware configuration as needed, while still providing the
structure and verification necessary to maintain optimal performance.

7.1. Planning Your Application Updates
Many small changes to the database application, such as bug fixes to the internal code of a stored procedure
or adding a table to the database schema, do not have repercussions on other components of the system. It
is nice to be able to make these changes with a minimal amount of disruption. Other changes can impact
multiple aspects of your applications. For example if you add or remove an index from a table or modify
the parameters to a stored procedure. Therefore, it is important to think through the consequences of any
changes you make.

VoltDB tries to balance the trade offs of changing the database environment, making simple changes easy
and automating as much as possible even complex changes. Using the VoltDB Enterprise Edition you can
add, remove, or update stored procedures "on the fly", while the database is running. You can also add or
drop tables and columns from the schema, as well as modify many indexes.

To make other changes to the database schema (such as adding unique indexes) you must first save and
shutdown the database. However, even in this situation, VoltDB automates the process by transforming
the data when you restart and reload the database in a new configuration.

This chapter explains different methods for making changes to your VoltDB database application, includ-
ing:

• Updating the Database Schema on a Running Database

• Updating the Database Using Save and Restore

• Updating the Hardware Configuration

7.2. Updating the Database Schema on a Running
Database

Many normal changes to the database schema and stored procedures can be made "on the fly", in other
words while the database is running. These changes include:

Updating Your VoltDB Database

50

• Adding, removing, or updating tables, columns, and indexes

• Adding or removing materialized views and export-only tables

• Adding, removing, or updating stored procedures and the security permissions for accessing them

Live schema updates are done by creating an updated application catalog and deployment file and telling
the database process to use the new catalog. You do this with the @UpdateApplicationCatalog system
procedure, or from the shell prompt using the voltadmin update command. The process is as follows:

1. Make the necessary changes to the source code for the stored procedures and the schema.

2. Recompile the class files and the application catalog as described in Chapter 5, Building Your VoltDB
Application.

3. Use the @UpdateApplicationCatalog system procedure or voltadmin update command to pass the
new catalog and deployment file to the cluster.

For example:

$ voltdb compile -o mycatalog.jar myschema.sql
$ voltadmin update mycatalog.jar mydeployment.xml

7.2.1. Validating the Updated Catalog

When you submit a catalog update, the database nodes do a comparison of the new catalog and deployment
configuration with the currently running catalog to ensure that only supported changes are included. If
unsupported changes are included, the command returns an error.

Most schema changes are supported. The only changes that are not currently allowed are changes that add
constraints to an existing index or column or that make changes to the contents of an existing view. To
make these more complex changes, you need to save and restore the database to change the catalog, as
described in Section 7.3, “Updating the Database Using Save and Restore”.

7.2.2. Managing the Update Process

Updating the application catalog lets you modify the database schema and its stored procedures without
disrupting the normal operations. However, even when a change is allowed, you should be careful of the
impact to client applications that use those procedures. For example, if you remove a table or change the
parameters to a stored procedure while client applications are still active, you are likely to create an error
condition for the calling applications.

In general, the catalog update operates like a transaction. Before the update, the original attributes, includ-
ing permissions, are in effect. After the update completes, the new attributes and permissions are in effect.
In either case, any individual call to the stored procedure will run to completion under a consistent set
of rules.

For example, if a call to stored procedure A is submitted at approximately the same time as a catalog
update that removes the stored procedure, the call to stored procedure A will either complete successfully
or return an error indicating that the stored procedure no longer exists. If the stored procedure starts, it will
not be interrupted by the catalog update.

In those cases where you need to make changes to a stored procedure that might negatively impact client
applications, the following process is recommended:

Updating Your VoltDB Database

51

1. Perform a catalog update that introduces a new stored procedure (with a new name) that implements
the new function. Assuming the original stored procedure is A, let's call its replacement procedure B.

2. Update all client applications, replacing calls to procedure A with calls to procedure B, making the
necessary code changes to accommodate any changed behavior or permissions.

3. Put the updated client applications into production.

4. Perform a second catalog update removing stored procedure A, now that all client application calls to
the original procedure have been removed.

7.3. Updating the Database Using Save and Re-
store

If you need to make changes that are not supported by the voltadmin update command, it is still possible
to modify the database schema using save and restore. You can modify the schema, including adding new
constraints or modifying views, using the following steps:

1. Save the current data, using voltadmin save.

2. Shut down the database, using voltadmin shutdown.

3. Replace the application catalog.

4. Restart the database with the new catalog, using voltdb create.

5. Reload the data saved in Step #1 using voltadmin restore.

Using these steps, you can add or remove tables, columns and indexes. You can also change the datatype
of existing columns, as long as you make sure the new type is compatible with the previous type (such
as exchanging integer types or string types) and the new datatype has sufficient capacity for any values
that currently exist within the database.

However, you cannot change the name of a column, add constraints to a column or change to a smaller
datatype (such as changing from INTEGER to TINYINT) without the danger of losing data. To make these
changes safely, it is better to add a new column with the desired settings and write a client application
to move data from the original column to the new column, making sure to account for exceptions in data
size or constraints.

See Section 9.1.3, “Changing the Database Schema or Cluster Configuration Using Save and Restore” for
complete instructions for using save and restore to modify the database schema.

7.4. Updating the Hardware Configuration
Another change you are likely going to want to make at some point is changing the hardware configuration
of your database cluster. Reasons for making these changes are:

• Increasing the number of nodes (and, as a consequence, capacity and throughput performance) of your
database.

• Benchmarking the performance of your database application on different size clusters and with different
numbers of partitions per node.

You can always change the number of nodes by saving the data (using a snapshot or command logging),
editing the deployment file to specify the new number of nodes in the hostcount attribute of the <cluster>

Updating Your VoltDB Database

52

tag, then stopping and restarting the database and using the voltadmin restore command to reload the
data. When doing benchmarking, where you need to change the number of partitions or other runtime
options, this is the correct approach.

However, if you are simply adding nodes to the cluster to add capacity or increase performance, you can
add the nodes while the database is running. Adding nodes "on the fly" is also known as elastic scaling.

7.4.1. Adding Nodes with Elastic Scaling
When you are ready to extend the cluster by adding one or more nodes, you simply start the VoltDB
database process on the new nodes using the voltdb add command specifying the name of one of the
existing cluster nodes as the host. For example, if you are adding node ServerX to a cluster where ServerA
is already a member, you can execute the following command on ServerX:

me@ServerX:~$ voltdb add -l ~/license.xml --host=ServerA

Once the add action is initiated, the cluster performs the following tasks:

1. The cluster acknowledges the presence of a new server.

2. The active application catalog and deployment settings are sent to the new node.

3. Once sufficient nodes are added, copies of all replicated tables and their share of the partitioned tables
are sent to the new nodes.

4. As the data is redistributed (or rebalanced), the added nodes begin participating as full members of
the cluster.

There are some important notes to consider when expanding the cluster using elastic scaling:

• You must add a sufficient number of nodes to create an integral K-safe unit. That is, K+1 nodes. For
example, if the K-safety value for the cluster is two, you must add three nodes at a time to expand the
cluster. If the cluster is not K-safe (in other words it has a K-safety value of zero), you can add one
node at a time.

• When you add nodes to a K-safe cluster, the nodes added first will complete steps #1 and #2 above,
but will not complete steps #3 and #4 until the correct number of nodes are added, at which point all
nodes rebalance together.

• While the cluster is rebalancing (Step #3), the database continues to handle incoming requests. However,
depending on the workload and amount of data in the database, rebalancing may take a significant
amount of time.

• When using database replication (DR), the master and replica databases must have the same configu-
ration. If you use elasticity to add nodes to the master cluster, the DR agent stops replication. Once
rebalancing is complete on the master database, you can:

1. Restart the replica with additional nodes matching the new master cluster configuration.

2. Restart the DR agent.

7.4.2. Configuring How VoltDB Rebalances New Nodes
Once you add the necessary number of nodes (based on the K-safety value), VoltDB rebalances the cluster,
moving data from existing partitions to the new nodes. During the rebalance operation, the database re-

Updating Your VoltDB Database

53

mains available and actively processing client requests. How long the rebalance operation takes is depen-
dent on two factors: how often rebalance tasks are processed and how much data each transaction moves.

Rebalance tasks are fully transactional, meaning they operate within the database's ACID-compliant trans-
actional model. Because they involve moving data between two or more partitions, they are also mul-
ti-partition transactions. This means that each rebalance work unit can incrementally add to the latency
of pending client transactions.

You can control how quickly the rebalance operation completes versus how much rebalance work impacts
ongoing client transactions using two attributes of the <elastic> element in the deployment file:

• The duration attribute sets a target value for the length of time each rebalance transaction will take,
specified in milliseconds. The default is 50 milliseconds.

• The throughput attribute sets a target value for the number of megabytes per second that will be
processed by the rebalance transactions. The default is 2 megabytes.

When you change the target duration, VoltDB adjusts the amount of data that is moved in each transaction
to reach the target execution time. If you increase the duration, the volume of data moved per transaction
increases. Similarly, if you reduce the duration, the volume per transaction decreases.

When you change the target throughput, VoltDB adjusts the frequency of rebalance transactions to achieve
the desired volume of data moved per second. If you increase the target throughout, the number of rebal-
ance transactions per second increases. Similarly, if you decrease the target throughout, the number of
transactions decreases.

The <elastic> element is a child of the <systemsettings> element. For example, the following deployment
file sets the target duration to 15 milliseconds and the target throughput to 1 megabyte per second before
starting the database:

<deployment>
 . . .
 <systemsettings>
 <elastic duration="15" throughput="1"/>
 </systemsettings>
</deployment>

54

Chapter 8. Security
Security is an important feature of any application. By default, VoltDB does not perform any security
checks when a client application opens a connection to the database or invokes a stored procedure. This
is convenient when developing and distributing an application on a private network.

However, on public or semi-private networks, it is important to make sure only known client applications
are interacting with the database. VoltDB lets you control access to the database through settings in the
schema and deployment files. The following sections explain how to enable and configure security for
your VoltDB application.

8.1. How Security Works in VoltDB
When an application creates a connection to a VoltDB database (using ClientFactory.clientCreate), it pass-
es a username and password as part of the client configuration. These parameters identify the client to the
database and are used for authenticating access.

At runtime, if security is enabled, the username and password passed in by the client application are vali-
dated by the server against the users defined in the deployment file. If the client application passes in a valid
username and password pair, the connection is established. When the application calls a stored procedure,
permissions are checked again. If the schema identifies the user as being assigned a role having access to
that stored procedure, the procedure is executed. If not, an error is returned to the calling application.

Note

VoltDB uses SHA-1 hashing rather than encryption when passing the username and password
between the client and the server. The passwords are also hashed within the database. For an
encrypted solution, you can consider implementing Kerberos security, described in Section 8.7,
“Integrating Kerberos Security with VoltDB”.

There are three steps to enabling security for a VoltDB application:

1. Add the <security enabled="true"/> tag to the deployment file to turn on authentication and
authorization.

2. Define the users and roles you need to authenticate.

3. Define which roles have access to each stored procedure.

The following sections describe each step of this process, plus how to enable access to system procedures
and ad hoc queries.

8.2. Enabling Authentication and Authorization
By default VoltDB does not perform authentication and client applications have full access to the database.
To enable authentication, add the <security> tag to the deployment file:

<deployment>
 <security enabled="true"/>
 . . .
</deployment>

Security

55

8.3. Defining Users and Roles
The key to security for VoltDB applications is the users and roles defined in the schema and deployment
files. You define users in the deployment file and roles in the schema.

This split is deliberate because it allows you to define the overall security structure globally in the schema,
assigning permissions to generic roles (such as operator, dbuser, apps, and so on). You then define spe-
cific users and assign them to the generic roles as part of the deployment. This way you can create one
configuration (including cluster information and users) for development and testing, then move the data-
base to a different configuration and a different set of users for production by changing only one file: the
deployment file.

You define users within the <users> ... </users> tag set in the deployment file. The syntax for defining
users is as follows.

<deployment>
 <users>
 <user name="user-name"
 password="password-string"
 roles="role-name[,...]" />
 [...]
 </users>
 ...
</deployment>

Include a <user> tag for every username/password pair you want to define.

Then within the schema you define the roles the users can belong to. You define roles with the CREATE
ROLE statement.

CREATE ROLE role-name;

You specify which roles a user belongs to as part of the user definition in the deployment file using the
roles attribute to the <user> tag. For example, the following code defines three users, assigning operator
and developer the ops role and developer and clientapp the dbuser role. When a user is assigned more than
one role, you specify the role names as a comma-delimited list.

<deployment>
 <users>
 <user name="operator" password="mech" roles="ops" />
 <user name="developer" password="tech" roles="ops,dbuser" />
 <user name="clientapp" password="xyzzy" roles="dbuser" />
 </users>

</deployment>

Two important notes concerning the assignment of users and roles:

• Users must be assigned at least one role, or else they have no permissions. (Permissions are assigned
by role.)

• There must be a corresponding role defined in the schema for any roles listed in the deployment file.

Security

56

8.4. Assigning Access to Stored Procedures
Once you define the users and roles you need, you assign them access to individual stored procedures using
the ALLOW clause of the CREATE PROCEDURE statement in the schema. In the following example,
users assigned the roles dbuser and ops are permitted access to both the MyProc1 and MyProc2 procedures.
Only users assigned the ops role have access to the MyProc3 procedure.

CREATE PROCEDURE ALLOW dbuser,ops FROM CLASS MyProc1;
CREATE PROCEDURE ALLOW dbuser,ops FROM CLASS MyProc2;
CREATE PROCEDURE ALLOW ops FROM CLASS MyProc3;

Usually, when security is enabled, you must specify access rights for each stored procedure. If a procedure
declaration does not include an ALLOW clause, no access is allowed. In other words, calling applications
will not be able to invoke that procedure.

8.5. Assigning Access by Function (System Proce-
dures, SQL Queries, and Default Procedures)

It is not always convenient to assign permissions one at a time. You might want a special role for access to
all user-defined stored procedures. Also, there are special capabilities available within VoltDB that are not
called out individually in the schema so cannot be assigned using the CREATE PROCEDURE statement.

For these special cases VoltDB provides named permissions that you can use to assign functions as a
group. For example, the ALLPROC permission grants a role access to all user-defined stored procedures
so the role does not need to be granted access to each procedure individually.

Several of the special function permissions have two versions: a full access permission and a read-only
permission. So, for example, DEFAULTPROC assigns access to all default procedures while DEFAULT-
PROCREAD allows access to only the read-only default procedures; that is, the TABLE.select procedures.
Similarly, the SQL permission allows the user to execute both read and write SQL queries interactively
while SQLREAD only allows read-only (SELECT) queries to be executed.

One additional functional permission is access to the read-only system procedures, such as @Statistics and
@SystemInformation. This permission is special in that it does not have a name and does not need to be
assigned; all authenticated users are automatically assigned read-only access to these system procedures.

Table 8.1, “Named Security Permissions” describes the named functional permissions.

Table 8.1. Named Security Permissions

Permission Description Inherits

DEFAULTPROCREAD Access to read-only default proce-
dures (TABLE.select)

DEFAULTPROC Access to all default procedures
(TABLE.select, TABLE.insert,
TABLE.delete, TABLE.update,
and TABLE.upsert)

DEFAULTPROCREAD

SQLREAD Access to read-only ad hoc SQL
queries (SELECT)

DEFAULTPROCREAD

SQLa Access to all ad hoc SQL queries,
including data definition language

SQLREAD, DEFAULTPROC

Security

57

Permission Description Inherits

(DDL) statements and default pro-
cedures

ALLPROC Access to all user-defined stored
procedures

ADMINa Full access to all system pro-
cedures, all user-defined proce-
dures, as well as default proce-
dures and ad hoc SQL

ALLPROC, DEFAULTPROC,
SQL

aFor backwards compatibility, the special permissions ADHOC and SYSPROC are still recognized. They are interpreted as synonyms
for SQL and ADMIN, respectively.

In the CREATE ROLE statement you enable access to these functions by including the permission name
in the WITH clause. (The default, if security is enabled and the keyword is not specified, is that the role
is not allowed access to the corresponding function.)

Note that the permissions are additive. So if a user is assigned one role that allows access to SQLREAD
but not DEFAULTPROC, but that user is also assigned another role that allows DEFAULTPROC, the
user has both permissions.

The following example assigns full access to members of the ops role, access to interactive SQL (and
default procedures by inheritance) and all user-defined procedures to members of the developer role, and
no special access beyond read-only system procedures to members of the apps role.

CREATE ROLE ops WITH admin;
CREATE ROLE developer WITH sql, allproc;
CREATE ROLE apps;

8.6. Using Default Roles
To simplify the development process, VoltDB predefines two roles for you when you enable security: ad-
ministrator and user. Administrator has ADMIN permissions: access to all functions including interactive
SQL, DDL, system procedures, and user-defined procedures. User has SQL and ALLPROC pemissions:
access to ad hoc SQL, DDL, and all default and user-defined stored procedures.

These predefined roles are important when using the new dynamic DDL because if you start the database
without a catalog, there is no schema and therefore no user-defined roles available to assign to users. So
you should always include at least one user who is assigned the Administrator role when starting a database
with security enabled. You can use this account to then load the schema — including additional security
roles and permissions — and then update the deployment file to add more users as necessary.

8.7. Integrating Kerberos Security with VoltDB
For environments where more secure communication is required than hashed usernames and passwords, it
is possible for a VoltDB database to use Kerberos to authenticate clients and servers. Kerberos is a popular
network security protocol that you can use to authenticate the Java client processes when they connect to
VoltDB database servers. Use of Kerberos is supported for the Java client library only.

To use Kerberos authentication for VoltDB security, you must perform the following steps:

1. Set up and configure Kerberos on your network, servers, and clients.

2. Install and configure the Java security extensions on your VoltDB servers and clients.

Security

58

3. Configure the VoltDB cluster and client applications to use Kerberos.

The following sections describe these steps in detail.

8.7.1. Installing and Configuring Kerberos
Kerberos is a complete software solution for establishing a secure network environment. It includes net-
work protocols and software for handling authentication and authorization in a secure, encrypted fashion.
Kerberos requires one or more servers known as key distribution centers (KDC) to authenticate and au-
thorize services and the users who access them.

To use Kerberos for VoltDB authentication you must first set up Kerberos within your network environ-
ment. If you do not already have a Kerberos KDC, you will need to create one. You will also need to install
the Kerberos client libraries on all of the VoltDB servers and clients and set up the appropriate principals
and services. Because Kerberos is a complete network environment rather than a single platform applica-
tion, it is beyond the scope of this document to explain how to install and configure Kerberos itself. This
section only provides notes specific to configuring Kerberos for use by VoltDB. For complete information
about setting up and using Kerberos, please see the Kerberos documentation.

Part of the Kerberos setup is the creation of a configuration file on both the VoltDB server and client
machines. By default, the configuration file is located in /etc/krb5.conf (or /private/etc/krb5.conf on Mac-
intosh). Be sure this file exists and points to the correct realm and KDC.

Once a KDC exists and the nodes are configured correctly, you must create the necessary Kerberos ac-
counts — known as "user principals" for the accounts that run the VoltDB client applications and a "service
principal" for the VoltDB cluster. For example, to create the service keytab file for the VoltDB database,
you can issue the following commands on the Kerberos KDC:

$ sudo kadmin.local
kadmin.local: addprinc -randkey service/voltdb
kadmin.local: ktadd -k voltdb.keytab service/voltdb

Then copy the keytab file to the database servers, making sure it is only accessible by the user account
that starts the database process:

$ scp voltdb.keytab voltadmin@voltsvr:voltdb.keytab
$ ssh voltadmin@voltsvr chmod 0600 voltdb.keytab

8.7.2. Installing and Configuring the JAVA Security Exten-
sions

The next step is to install and configure the Java security extension known as Java Cryptography Extension
(JCE). JCE enables the more robust encryption required by Kerberos within the Java Authentication and
Authorization Service (JAAS). This is necessary because VoltDB uses JAAS to interact with Kerberos.

The JCE that needs to be installed is specific to the version of Java you are running. See the the Java web
site for details. Again, you must install JCE on both the VoltDB servers and client nodes

Once JCE is installed, you create a JAAS login configuration file so Java knows how to authenticate the
current process. By default, the JAAS login configuration file is $HOME/.java.login.config. On
the database servers, the configuration file must define the VoltDBService module and associate it with
the keytab created in the previous section.

Server JAAS Login Configuration File

VoltDBService {

http://web.mit.edu/kerberos/
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

Security

59

 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true keyTab="/home/voltadmin/voltdb.keytab"
 doNotPrompt=true
 principal="service/voltdb@MYCOMPANY.LAN" storeKey=true;
};

On the client nodes, the JAAS login configuration defines the VoltDBClient module.

Client JAAS Login Configuration File

VoltDBClient {
 com.sun.security.auth.module.Krb5LoginModule required
 useTicketCache=true renewTGT=true doNotPrompt=true;
};

8.7.3. Configuring the VoltDB Servers and Clients
Finally, once Kerberos and the Java security extensions are installed and configured, you must configure
the VoltDB database cluster and client applications to use Kerberos.

On the database servers, you enable Kerberos security using the <security> element in the deployment
file, specifying "kerberos" as the provider. For example:

<?xml version="1.0"?>
<deployment>
 <security enabled="true" provider="kerberos"/>
 . . .
</deployment>

You then assign roles to individual users as described in Section 8.3, “Defining Users and Roles”, except
in place of generic usernames, you specify the Kerberos user — or "principal" — names, including their
realm. Since Kerberos uses encrypted certificates, the password attribute is ignored and can be filled in
with arbitrary text. For example:

<?xml version="1.0"?>
<deployment>
 <security enabled="true" provider="kerberos"/>
 . . .
 <users>
 <user name="mtwain@MYCOMPANY.LAN" password="n/a" role="admin"
 <user name="cdickens@MYCOMPANY.LAN" password="n/a" role="dev"
 <user name="hbalzac@MYCOMPANY.LAN" password="n/a" role="adhoc"
 </users>
</deployment>

Having configured Kerberos in the deployment file, you are ready to start the VoltDB cluster. When
starting the VoltDB process, Java must know how to access the Kerberos and JAAS login configu-
ration files created in the preceding sections. If the files are not in their default locations, you can
override the default location using the VOLTDB_OPTS environment variable and setting the flags
java.security.krb5.conf and java.security.auth.login.config, respectively.1

In the client application, you specify Kerberos as the security protocol when you create the client connec-
tion, using the enableKerberosAuthentication method as part of the configuration. For example:

1On Macintosh systems, you must always specify the java.security.krb5.conf property.

Security

60

import org.voltdb.client.ClientConfig;
import org.voltdb.client.ClientFactory;

ClientConfig config = new ClientConfig();
 // specify the JAAS login module
config.enableKerberosAuthentication("VoltDBClient");

VoltClient client = ClientFactory.createClient(config);
client.createConnection("voltsvr");

Note that the VoltDB client automatically picks up the Kerberos cached credentials of the current process,
the user's Kerberos "principal". So you do not need to — and should not — specify a username or password
as part of the VoltDB client configuration.

It is also important to note that once the cluster starts using Kerberos authentication, only Java clients can
connect to the cluster and they must also use Kerberos authentication, including the CLI command sqlcmd.
To authenticate to a VoltDB server with Kerberos security enabled using sqlcmd, you must include the
--kerberos flag identifying the name of the Kerberos client service module. For example:

$ sqlcmd --kerberos=VoltDBClient

Again, if the configuration files are not in the default location, you must specify their location on the
command line:

$ sqlcmd --kerberos=VoltDBClient -J-Djava.security.krb5.conf=/etc/krb5.conf

You cannot use clients in other programming languages or CLI commands other than sqlcmd to access
a cluster with Kerberos security enabled.

61

Chapter 9. Saving & Restoring a VoltDB
Database

There are times when it is necessary to save the contents of a VoltDB database to disk and then restore it.
For example, if the cluster needs to be shut down for maintenance, you may want to save the current state
of the database before shutting down the cluster and then restore the database once the cluster comes back
online. Performing periodic backups of the data can also provide a fallback in case of unexpected failures
— either physical failures, such as power outages, or logic errors where a client application mistakenly
corrupts the database contents.

VoltDB provides shell commands, system procedures, and an automated snapshot feature that help you
perform these operations. The following sections explain how to save and restore a running VoltDB cluster,
either manually or automatically.

9.1. Performing a Manual Save and Restore of a
VoltDB Cluster

Manually saving and restoring a VoltDB database is useful when you need to do maintenance on the
database itself or the cluster it runs on. The normal use of save and restore, when performing such a
maintenance operation, is as follows:

1. Stop database activities (using pause).

2. Use save to write a snapshot of the current data to disk.

3. Shutdown the cluster.

4. Make changes to the VoltDB catalog and/or deployment file (if desired).

5. Restart the cluster in admin mode.

6. Restore the previous snapshot.

7. Restart client activity (using resume).

The key is to make sure that all database activity is stopped before the save and shutdown are performed.
This ensures that no further changes to the database are made (and therefore lost) after the save and before
the shutdown. Similarly, it is important that no client activity starts until the database has started and the
restore operation completes.

Save and restore operations are performed either by calling VoltDB system procedures or using the cor-
responding voltadmin shell commands. In most cases, the shell commands are simpler since they do not
require program code to use. Therefore, this chapter uses voltadmin commands in the examples. If you
are interested in programming the save and restore procedures, see Appendix G, System Procedures for
more information about the corresponding system procedures.

When you issue a save command, you specify a path where the data will be saved and a unique identifier
for tagging the files. VoltDB then saves the current data on each node of the cluster to a set of files at the
specified location (using the unique identifier as a prefix to the file names). This set of files is referred
to as a snapshot, since it contains a complete record of the database for a given point in time (when the
save operation was performed).

Saving & Restoring
a VoltDB Database

62

The --blocking option lets you specify whether the save operation should block other transactions
until it completes. In the case of manual saves, it is a good idea to use this option since you do not want
additional changes made to the database during the save operation.

Note that every node in the cluster uses the same absolute path, so the path specified must be valid, must
exist on every node, and must not already contain data from any previous saves using the same unique
identifier, or the save will fail.

When you issue a restore command, you specify the same absolute path and unique identifier used when
creating the snapshot. VoltDB checks to make sure the appropriate save set exists on each node, then
restores the data into memory.

9.1.1. How to Save the Contents of a VoltDB Database
To save the contents of a VoltDB database, use the voltadmin save command. The following example
creates a snapshot at the path /tmp/voltdb/backup using the unique identifier TestSnapshot.

$ voltadmin save --blocking /tmp/voltdb/backup "TestSnapshot"

In this example, the command tells the save operation to block all other transactions until it completes. It is
possible to save the contents without blocking other transactions (which is what automated snapshots do).
However, when performing a manual save prior to shutting down, it is normal to block other transactions
to ensure you save a known state of the database.

Note that it is possible for the save operation to succeed on some nodes of the cluster and not others. When
you issue the voltadmin save command, VoltDB displays messages from each partition indicating the
status of the save operation. If there are any issues that would stop the process from starting, such as a
bad file path, they are displayed on the console. It is a good practice to examine these messages to make
sure all partitions are saved as expected.

9.1.2. How to Restore the Contents of a VoltDB Database
To restore a VoltDB database from a snapshot previously created by a save operation, you use the voltad-
min restore command. You must specify the same pathname and unique identifier used during the save.

The following example restores the snapshot created by the example in Section 9.1.1.

$ voltadmin restore /tmp/voltdb/backup "TestSnapshot"

As with save operations, it is always a good idea to check the status information displayed by the command
to ensure the operation completed as expected.

9.1.3. Changing the Database Schema or Cluster Configura-
tion Using Save and Restore

Between a save and a restore, it is possible to make selected changes to the database. You can:

• Add nodes to the cluster

• Modify the database schema

• Add, remove, or modify stored procedures

To make these changes, you must, as appropriate, edit the database schema, the procedure source files,
or the deployment file. You can then recompile the application catalog and distribute the updated catalog
and deployment file to the cluster nodes before restarting the cluster and performing the restore.

Saving & Restoring
a VoltDB Database

63

9.1.3.1. Adding Nodes to the Database

To add nodes to the cluster, use the following procedure:

• Save the database.

• Edit the deployment file, specifying the new number of nodes in the hostcount attribute of the <cluster>
tag.

• Restart the cluster (including the new nodes).

• Issue a restore command.

When the snapshot is restored, the database (and partitions) are redistributed over the new cluster config-
uration.

It is also possible to remove nodes from the cluster using this procedure. However, to make sure that no
data is lost in the process, you must copy the snapshot files from the nodes that are being removed to one
of the nodes that is remaining in the cluster. This way, the restore operation can find and restore the data
from partitions on the missing nodes.

9.1.3.2. Modifying the Database Schema and Stored Procedures

To modify the database schema or stored procedures, make the appropriate changes to the source files (that
is, the database DDL and the stored procedure Java source files), then recompile the application catalog.
However, you can only make certain modifications to the database schema. Specifically, you can:

• Add or remove tables.

• Add or remove columns from tables.

• Change the datatypes of columns, assuming the two datatypes are compatible. (That is, the data can be
converted from the old to the new type. For example, extending the length of VARCHAR columns or
converting between two numeric datatypes.)

Note that you cannot rename tables or columns and retain the data. If you rename a table or column, it is
equivalent to deleting the original table/column (and its data) and adding a new one. Two other important
points to note when modifying the database structure are:

• When existing rows are restored to tables where new columns have been added, the new columns are
filled with either the default value (if defined by the schema) or nulls.

• When changing the datatypes of columns, it is possible to decrease the datatype size (for example, going
from an INT to an TINYINT). However, if any existing values exceed the capacity of the new datatype
(such as an integer value of 5,000 where the datatype has been changed to TINYINT), the entire restore
will fail.

If you remove or modify stored procedures (particularly if you change the number and/or datatype of the
parameters), you must make sure the corresponding changes are made to all client applications as well.

9.2. Scheduling Automated Snapshots
Save and restore are useful when planning for scheduled down times. However, these functions are also
important for reducing the risk from unexpected outages. VoltDB assists in contingency planning and
recovery from such worst case scenarios as power failures, fatal system errors, or data corruption due to
application logic errors.

Saving & Restoring
a VoltDB Database

64

In these cases, the database stops unexpectedly or becomes unreliable. By automatically generating snap-
shots at set intervals, VoltDB gives you the ability to restore the database to a previous valid state.

You schedule automated snapshots of the database as part of the deployment file. The <snapshot> tag lets
you specify:

• The frequency of the snapshots. You can specify any whole number of seconds, minutes, or hours (using
the suffix "s", "m", or "h", respectively, to denote the unit of measure). For example "3600s", "60m",
and "1h" are all equivalent.

• The unique identifier to use as a prefix for the snapshot files.

• The number of snapshots to retain. Snapshots are marked with a timestamp (as part of the file names), so
multiple snapshots can be saved. The retain attribute lets you specify how many snapshots to keep.
Older snapshots are purged once this limit is reached.

The following example enables automated snapshots every thirty minutes using the prefix "flightsave" and
keeping only the three most recent snapshots.

<snapshot prefix="flightsave"
 frequency="30m"
 retain="3"
/>

By default, automated snapshots are stored in a subfolder of the VoltDB default path (as described in
Section 6.1.2, “Configuring Paths for Runtime Features”). You can save the snapshots to a specific path by
adding the <snapshots> tag within to the <paths>...</paths> tag set. For example, the following example
defines the path for automated snapshots as /etc/voltdb/autobackup/.

<paths>
 <snapshots path="/etc/voltdb/autobackup/" />
</paths>

9.3. Managing Snapshots
VoltDB does not delete snapshots after they are restored; the snapshot files remain on each node of the
cluster. For automated snapshots, the oldest snapshot files are purged according to the settings in the
deployment file. But if you create snapshots manually or if you change the directory path or the prefix for
automated snapshots, the old snapshots will also be left on the cluster.

To simplify maintenance, it is a good idea to observe certain guidelines when using save and restore:

• Create dedicated directories for use as the paths for VoltDB snapshots.

• Use separate directories for manual and automated snapshots (to avoid conflicts in file names).

• Do not store any other files in the directories used for VoltDB snapshots.

• Periodically cleanup the directories by deleting obsolete, unused snapshots.

You can delete snapshots manually. To delete a snapshot, use the unique identifier, which is applied as
a filename prefix, to find all of the files in the snapshot. For example, the following commands remove
the snapshot with the ID TestSave from the directory /etc/voltdb/backup/. Note that VoltDB separates the
prefix from the remainder of the file name with a dash for manual snapshots:

$ rm /etc/voltdb/backup/TestSave-*

Saving & Restoring
a VoltDB Database

65

However, it is easier if you use the system procedures VoltDB provides for managing snapshots. If you
delete snapshots manually, you must make sure you execute the commands on all nodes of the cluster.
When you use the system procedures, VoltDB distributes the operations across the cluster automatically.

VoltDB provides several system procedures to assist with the management of snapshots:

• @SnapshotStatus provides information about the most recently performed snapshots for the current
database. The response from SnapshotStatus includes information about up to ten recent snapshots, in-
cluding their location, when they were created, how long the save took, whether they completed suc-
cessfully, and the size of the individual files that make up the snapshot. See the reference section on
@SnapshotStatus for details.

• @SnapshotScan lists all of the snapshots available in a specified directory path. You can use this system
procedure to determine what snapshots exist and, as a consequence, which ought to be deleted. See the
reference section on @SnapshotScan for details.

• @SnapshotDelete deletes one or more snapshots based on the paths and prefixes you provide. The
parameters to the system procedure are two string arrays. The first array specifies one or more directory
paths. The second array specifies one or more prefixes. The array elements are taken in pairs to determine
which snapshots to delete. For example, if the first array contains paths A, B, and C and the second
array contains the unique identifiers X, Y, and Z, the following three snapshots will be deleted: A/X,
B/Y, and C/Z. See the reference section on @SnapshotDelete for details.

9.4. Special Notes Concerning Save and Restore
The following are special considerations concerning save and restore that are important to keep in mind:

• Save and restore do not check the cluster health (whether all nodes exist and are running) before exe-
cuting. The user can find out what nodes were saved by looking at the messages displayed by the save
operation.

• Both the save and restore calls do a pre-check to see if the action is likely to succeed before the actual
save/restore is attempted. For save, VoltDB checks to see if the path exists, if there is any data that
might be overwritten, and if it has write access to the directory. For restore, VoltDB verifies that the
saved data can be restored completely.

• You should use separate directories for manual and automated snapshots to avoid naming conflicts.

• It is possible to provide additional protection against failure by copying the automated snapshots to
remote locations. Automated snapshots are saved locally on the cluster. However, you can set up a
network process to periodically copy the snapshot files to a remote system. (Be sure to copy the files
from all of the cluster nodes.) Another approach would be to save the snapshots to a SAN disk that is
already set up to replicate to another location. (For example, using iSCSI.)

66

Chapter 10. Command Logging and
Recovery

By executing transactions in memory, VoltDB, frees itself from much of the management overhead and I/
O costs of traditional database products. However, accidents do happen and it is important that the contents
of the database be safeguarded against loss or corruption.

Snapshots provide one mechanism for safeguarding your data, by creating a point-in-time copy of the
database contents. But what happens to the transactions that occur between snapshots?

Command logging provides a more complete solution to the durability and availability of your VoltDB
database. Command logging keeps a record of every transaction (that is, stored procedure) as it is execut-
ed. Then, if the servers fail for any reason, the database can restore the last snapshot and "replay" the
subsequent logs to re-establish the database contents in their entirety.

The key to command logging is that it logs the invocations, not the consequences, of the transactions. A
single stored procedure can include many individual SQL statements and each SQL statement can modify
hundreds or thousands of table rows. By recording only the invocation, the command logs are kept to a
bare minimum, limiting the impact the disk I/O will have on performance.

However, any additional processing can impact overall performance, especially when it involves disk I/O.
So it is important to understand the tradeoffs concerning different aspects of command logging and how
it interacts with the hardware and any other options you are utilizing. The following sections explain how
command logging works and how to configure it to meet your specific needs.

10.1. How Command Logging Works
When command logging is enabled, VoltDB keeps a log of every transaction (that is, stored procedure)
invocation. At first, the log of the invocations are held in memory. Then, at a set interval the logs are
physically written to disk. Of course, at a high transaction rate, even limiting the logs to just invocations,
the logs begin to fill up. So at a broader interval, the server initiates a snapshot. Once the snapshot is
complete, the command logging process is able to free up — or "truncate" — the log keeping only a record
of procedure invocations since the last snapshot.

This process can continue indefinitely, using snapshots as a baseline and loading and truncating the com-
mand logs for all transactions since the last snapshot.

Figure 10.1. Command Logging in Action

The frequency with which the transactions are written to the command log is configurable (as described in
Section 10.3, “Configuring Command Logging for Optimal Performance”). By adjusting the frequency and

Command Logging and Recovery

67

type of logging (synchronous or asynchronous) you can balance the performance needs of your application
against the level of durability desired.

In reverse, when it is time to "replay" the logs, if you start the database with the recover action (as described
in Section 6.5.2, “Command Logging and Recovery”) once the server nodes establish a quorum, they start
by restoring the most recent snapshot. Once the snapshot is restored, they then replay all of the transactions
in the log since that snapshot.

Figure 10.2. Recovery in Action

10.2. Controlling Command Logging
Command logging is enabled by default in the VoltDB Enterprise Edition. Using command logging is
recommended to ensure durability of your data. However, you can choose whether to have command
logging enabled or not using the <commandlog> element in the deployment file. For example:

<deployment>
 <cluster hostcount="4" sitesperhost="2" kfactor="1" />
 <commandlog enabled="true"/>
</deployment>

In its simplest form, the <commandlog/> tag enables or disables command logging by setting the en-
abled attribute to "true" or "false". You can also use other attributes and child elements to control specific
characteristics of command logging. The following section describes those options in detail.

10.3. Configuring Command Logging for Optimal
Performance

Command logging can provide complete durability, preserving a record of every transaction that is com-
pleted before the database stops. However, the amount of durability must be balanced against the perfor-
mance impact and hardware requirements to achieve effective I/O.

VoltDB provides three settings you can use to optimize command logging:

• The amount of disk space allocated to the command logs

• The frequency between writes to the command logs

• Whether logging is synchronous or asynchronous

The following sections describe these options. A fourth section discusses the impact of storage hardware
on the different logging options.

Command Logging and Recovery

68

10.3.1. Log Size
The command log size specifies how much disk space is preallocated for storing the logs on disk. The
logs are divided into three "segments" Once a segment is full, it is written to a snapshot (as shown in
Figure 10.1, “Command Logging in Action”).

For most workloads, the default log size of one gigabyte is sufficient. However, if your workload writes
large volumes of data or uses large strings for queries (so the procedure invocations include large parame-
ter values), the log segments fill up very quickly. When this happens, VoltDB can end up snapshotting
continuously, because by the time one snapshot finishes, the next log segment is full.

To avoid this situation, you can increase the total log size, to reduce the frequency of snapshots. You define
the log size in the deployment file using the logsize attribute of the <commandlog> tag. Specify the
desired log size as an integer number of megabytes. For example:

<commandlog enabled="true" logsize="3072" />

When increasing the log size, be aware that the larger the log, the longer it may take to recover the database
since any transactions in the log since the last snapshot must be replayed before the recovery is complete.
So, while reducing the frequency of snapshots, you also may be increasing the time needed to restart.

The minimum log size is three megabytes. Note that the log size specifies the initial size. If the existing
segments are filled before a snapshot can truncate the logs, the server will allocate additional segments.

10.3.2. Log Frequency
The log frequency specifies how often transactions are written to the command log. In other words, the
interval between writes, as shown in Figure 10.1, “Command Logging in Action”. You can specify the
frequency in either or both time and number of transactions.

For example, you might specify that the command log is written every 200 milliseconds or every 500
transactions, whichever comes first. You do this by adding the <frequency> element as a child of
<commandlog> and specifying the individual frequencies as attributes. For example:

<commandlog enabled="true">
 <frequency time="200" transactions="500"/>
</commandlog>

Time frequency is specified in milliseconds and transaction frequency is specified as the number of trans-
actions. You can specify either or both types of frequency. If you specify both, whichever limit is reached
first initiates a write.

10.3.3. Synchronous vs. Asynchronous Logging
If the command logs are being written asynchronously (which is the default), results are returned to the
client applications as soon as the transactions are completed. This allows the transactions to execute un-
interrupted.

However, with asynchronous logging there is always the possibility that a catastrophic event (such as a
power failure) could cause the cluster to fail. In that case, any transactions completed since the last write
and before the failure would be lost. The smaller the frequency, the less data that could be lost. This is how
you "dial up" the amount of durability you want using the configuration options for command logging.

In some cases, no loss of data is acceptable. For those situations, it is best to use synchronous logging. When
you select synchronous logging, no results are returned to the client applications until those transactions

Command Logging and Recovery

69

are written to the log. In other words, the results for all of the transactions since the last write are held on
the server until the next write occurs.

The advantage of synchronous logging is that no transaction is "complete" and reported back to the calling
application until it is guaranteed to be logged — no transactions are lost. The obvious disadvantage of
synchronous logging is that the interval between writes (i.e. the frequency) while the results are held, adds
to the latency of the transactions. To reduce the penalty of synchronous logging, you need to reduce the
frequency.

When using synchronous logging, it is recommended that the frequency be limited to between 1 and 4 mil-
liseconds to avoid adding undue latency to the transaction rate. A frequency of 1 or 2 milliseconds should
have little or no measurable affect on overall latency. However, low frequencies can only be achieved
effectively when using appropriate hardware (as discussed in the next section, Section 10.3.4, “Hardware
Considerations”).

To select synchronous logging, use the synchronous attribute of the <commandlog> tag. For exam-
ple:

<commandlog enabled="true" synchronous="true" >
 <frequency time="2"/>
</commandlog>

10.3.4. Hardware Considerations
Clearly, synchronous logging is preferable since it provides complete durability. However, to avoid neg-
atively impacting database performance you must not only use very low frequencies, but you must have
storage hardware that is capable of handling frequent, small writes. Attempting to use aggressively low
log frequencies with storage devices that cannot keep up will also hurt transaction throughput and latency.

Standard, uncached storage devices can quickly become overwhelmed with frequent writes. So you should
not use low frequencies (and therefore synchronous logging) with slower storage devices. Similarly, if the
command logs are competing for the device with other disk I/O, performance will suffer. So do not write
the command logs to the same device that is being used for other I/O, such as snapshots or export overflow.

On the other hand, fast, cached devices such as disks with a battery-backed cache, are capable of handling
frequent writes. So it is strongly recommended that you use such devices when using synchronous logging.

To specify where the command logs and their associated snapshots are written, you use tags within the
<paths>...</paths> tag set. For example, the following example specifies that the logs are written to
/fastdisk/voltdblog and the snapshots are written to /opt/voltdb/cmdsnaps:

<paths>
 <commandlog path="/faskdisk/voltdblog/" />
 <commandlogsnapshot path="/opt/voltdb/cmdsnaps/" />
</paths>

Note that the default paths for the command logs and the command log snapshots are both subfolders of
the voltdbroot directory. To avoid overloading a single device on production servers, it is recommended
that you specify an explicit path for the command logs, at a minimum, and preferably for both logs and
snapshots.

To summarize, the rules for balancing command logging with performance and throughput on production
databases are:

• Use asynchronous logging with slower storage devices.

Command Logging and Recovery

70

• Write command logs to a dedicated device. Do not write logs and snapshots to the same device.

• Use low (1-2 milisecond) frequencies when performing synchronous logging.

• Use moderate (100 millisecond or greater) frequencies when performing asynchronous logging.

71

Chapter 11. Availability
Durability is one of the four key ACID attributes required to ensure the accurate and reliable operation of
a transactional database. Durability refers to the ability to maintain database consistency and availability
in the face of external problems, such as hardware or operating system failure. Durability is provided by
four features of VoltDB: snapshots, command logging, K-safety, and disaster recovery through database
replication.

• Snapshots are a "snapshot" of the data within the database at a given point in time written to disk. You
can use these snapshot files to restore the database to a previous, known state after a failure which brings
down the database. The snapshots are guaranteed to be transactionally consistent at the point at which
the snapshot was taken. Chapter 9, Saving & Restoring a VoltDB Database describes how to create and
restore database snapshots.

• Command Logging is a feature where, in addition to periodic snapshots, the system keeps a log of every
stored procedure (or "command") as it is invoked. If, for any reason, the servers fail, they can "replay"
the log on startup to reinstate the database contents completely rather than just to an arbitrary point-
in-time. Chapter 10, Command Logging and Recovery describes how to enable, configure, and replay
command logs.

• K-safety refers to the practice of duplicating database partitions so that the database can withstand the
loss of cluster nodes without interrupting the service. For example, a K value of zero means that there
is no duplication and losing any servers will result in a loss of data and database operations. If there are
two copies of every partition (a K value of one), then the cluster can withstand the loss of at least one
node (and possibly more) without any interruption in service.

• Database Replication is similar to K-safety, since it involves replicating data. However, rather than cre-
ating redundant partitions within a single database, database replication involves creating and maintain-
ing a complete copy of the entire database. Database replication has a number of uses, but specifically
in terms of durability, replication lets you maintain two copies of the database in separate geographic
locations. In case of catastrophic events, such as fires, earthquakes, or large scale power outages, the
replica can be used as a replacement for a disabled cluster.

Previous chapters described snapshots and command logging. The next chapter describes how you can use
database replication for disaster recovery. This chapter explains how K-safety works, how to configure
your VoltDB database for different values of K, and how to recover in the case of a system failure.

11.1. How K-Safety Works
K-safety involves duplicating database partitions so that if a partition is lost (either due to hardware or
software problems) the database can continue to function with the remaining duplicates. In the case of
VoltDB, the duplicate partitions are fully functioning members of the cluster, including all read and write
operations that apply to those partitions. (In other words, the duplicates function as peers rather than in
a master-slave relationship.)

It is also important to note that K-safety is different than WAN replication. In replication the entire database
cluster is replicated (usually at a remote location to provide for disaster recovery in case the entire cluster
or site goes down due to catastrophic failure of some type).

In replication, the replicated cluster operates independently and cannot assist when only part of the active
cluster fails. The replicate is intended to take over only when the primary database cluster fails entirely.
So, in cases where the database is mission critical, it is not uncommon to use both K-safety and replication
to achieve the highest levels of service.

Availability

72

To achieve K=1, it is necessary to duplicate all partitions. (If you don't, failure of a node that contains a
non-duplicated partition would cause the database to fail.) Similarly, K=2 requires two duplicates of every
partition, and so on.

What happens during normal operations is that any work assigned to a duplicated partition is sent to all
copies (as shown in Figure 11.1, “K-Safety in Action”). If a node fails, the database continues to function
sending the work to the unaffected copies of the partition.

Figure 11.1. K-Safety in Action

11.2. Enabling K-Safety
You specify the desired K-safety value as part of the cluster configuration in the VoltDB deployment
file for your application. By default, VoltDB uses a K-safety value of zero (no duplicate partitions). You
can specify a larger K-safety value using the kfactor attribute of the <cluster> tag. For example, in the
following deployment file, the K-safety value for a 6-node cluster with 4 partitions per node is set to 2:

<?xml version="1.0"?>
<deployment>
 <cluster hostcount="6"
 sitesperhost="4"
 kfactor="2"
 />
</deployment>

When you start the database specifying a K-safety value greater than zero, the appropriate number of
partitions out of the cluster will be assigned as duplicates. For example, in the preceding case where there
are 6 nodes and 4 partitions per node, there are a total of 24 partitions. With K=1, half of those partitions
(12) will be assigned as duplicates of the other half. If K is increased to 2, the cluster would be divided
into 3 copies consisting of 8 partitions each.

Availability

73

The important point to note when setting the K value is that, if you do not change the hardware configu-
ration, you are dividing the available partitions among the duplicate copies. Therefore performance (and
capacity) will be proportionally decreased as K-safety is increased. So running K=1 on a 6-node cluster
will be approximately equivalent to running a 3-node cluster with K=0.

If you wish to increase reliability without impacting performance, you must increase the cluster size to
provide the appropriate capacity to accommodate for K-safety.

11.2.1. What Happens When You Enable K-Safety

Of course, to ensure a system failure does not impact the database, not only do the partitions need to be
duplicated, but VoltDB must ensure that the duplicates are kept on separate nodes of the cluster. To achieve
this, VoltDB calculates the maximum number of unique partitions that can be created, given the number
of nodes, partitions per node, and the desired K-safety value.

When the number of nodes is an integral multiple of the duplicates needed, this is easy to calculate. For
example, if you have a six node cluster and choose K=1, VoltDB will create two instances of three nodes
each. If you choose K=2, VoltDB will create three instances of two nodes each. And so on.

If the number of nodes is not a multiple of the number of duplicates, VoltDB does its best to distribute the
partitions evenly. For example, if you have a three node cluster with two partitions per node, when you
ask for K=1 (in other words, two of every partition), VoltDB will duplicate three partitions, distributing
the six total partitions across the three nodes.

11.2.2. Calculating the Appropriate Number of Nodes for K-
Safety

By now it should be clear that there is a correlation between the K value and the number of nodes and
partitions in the cluster. Ideally, the number of nodes is a multiple of the number of copies needed (in other
words, the K value plus one). This is both the easiest configuration to understand and manage.

However, if the number of nodes is not an exact multiple, VoltDB distributes the duplicated partitions
across the cluster using the largest number of unique partitions possible. This is the highest whole integer
where the number of unique partitions is equal to the total number of partitions divided by the needed
number of copies:

Unique partitions = (nodes * partitions/node) / (K + 1)

Therefore, when you specify a cluster size that is not a multiple of K+1, but where the total number of
partitions is, VoltDB will use all of the partitions to achieve the required K-safety value.

Note that the total number of partitions must be a whole multiple of the number of copies (that is, K+1).
If neither the number of nodes nor the total number of partitions is divisible by K+1, then VoltDB will
not let the cluster start and will display an appropriate error message. For example, if the deployment file
specifies a three node cluster with 3 sites per host and a K-safety value of 1, the cluster cannot start because
the total number of partitions (3X3=9) is not a multiple of the number of copies (K+1=2). To start the
cluster, you must either increase the K-safety value to 2 (so the number of copies is 3) or change the sites
per host to 2 or 4 so the total number of partitions is divisible by 2.

Finally, if you specify a K value higher than the available number of nodes, it is not possible to achieve the
requested K-safety. Even if there are enough partitions to create the requested duplicates, VoltDB cannot
distribute the duplicates to distinct nodes. For example, if you have a 3 node cluster with 4 partitions per
node (12 total partitions), there are enough partitions to achieve a K value of 3, but not without some

Availability

74

duplicates residing on the same node. In this situation, VoltDB issues an error message. You must either
reduce the K-safety or increase the number of nodes.

11.3. Recovering from System Failures
When running without K-safety (in other words, a K-safety value of zero) any node failure is fatal and
will bring down the database (since there are no longer enough partitions to maintain operation). When
running with K-safety on, if a node goes down, the remaining nodes of the database cluster log an error
indicating that a node has failed.

By default, these error messages are logged to the console terminal. Since the loss of one or more nodes
reduces the reliability of the cluster, you may want to increase the urgency of these messages. For exam-
ple, you can configure a separate Log4J appender (such as the SMTP appender) to report node failure
messages. To do this, you should configure the appender to handle messages of class HOST and severity
level ERROR or greater. See Chapter 14, Logging and Analyzing Activity in a VoltDB Database for more
information about configuring logging.

When a node fails with K-safety enabled, the database continues to operate. But at the earliest possible
convenience, you should repair (or replace) the failed node.

To replace a failed node to a running VoltDB cluster, you restart the VoltDB server process specifying the
deployment file, rejoin as the start action, and the address of one of the remaining nodes of the cluster as
the host. For example, to rejoin a node to the VoltDB cluster where myclusternode5 is one of the current
member nodes, you use the following command:

$ voltdb rejoin --host=myclusternode5 \
 --deployment=mydeployment.xml

Note that the node you specify may be any active cluster node; it does not have to be the node identified as
the host when the cluster was originally started. Also, the deployment file you specify must be the currently
active deployment settings for the running database cluster.

11.3.1. What Happens When a Node Rejoins the Cluster
When you issue the rejoin command, the node first rejoins the cluster, then retrieves a copy of the applica-
tion catalog and the appropriate data for its partitions from other nodes in the cluster. Rejoining the cluster
only takes seconds and once this is done and the catalog is received, the node can accept and distribute
stored procedure requests like any other member.

However, the new node will not actively participate in the work until a full working copy of its partition
data is received. The rejoin process can happen in two different ways: blocking and "live".

During a blocking rejoin, the update process for each partition operates as a single transaction and will
block further transactions on the partition which is providing the data. While the node is rejoining and
being updated, the cluster continues to accept work. If the work queue gets filled (because the update is
blocking further work), the client applications will experience back pressure. Under normal conditions,
this means the calls to submit stored procedures with the callProcedure method (either synchronously or
asynchronously) will wait until the back pressure clears before returning control to the calling application.
The time this update process takes varies in length depending on the volume of data involved and network
bandwidth. However, the process should not take more than a few minutes.

During a live rejoin, the update separates the rejoin process from the standard transactional workflow,
allowing the database to continue operating with a minimal impact to throughput or latency. The advantage
of a live rejoin is that the database remains available and responsive to client applications throughout the

Availability

75

rejoin procedure. The deficit of a live rejoin is that, for large datasets, the rejoin process can take longer
to complete than with a blocking rejoin.

By default, VoltDB performs live rejoins, allowing the work of the database to continue. If, for any reason,
you choose to perform a blocking rejoin, you can do this by using the --blocking flag on the command
line. For example, the following command performs a blocking rejoin to the database cluster including
the node myclusternode5:

$ voltdb rejoin --blocking --host=myclusternode5 \
 --deployment mydeployment.xml

In rare cases, if the database is near capacity in terms of throughput, a live rejoin cannot keep up with the
ongoing changes made to the data. If this happens, VoltDB reports that the live rejoin cannot complete and
you must wait until database activity subsides or you can safely perform a blocking rejoin to reconnect
the server.

It is important to remember that the cluster is not fully K-safe until the restoration is complete. For example,
if the cluster was established with a K-safety value of two and one node failed, until that node rejoins and
is updated, the cluster is operating with a K-safety value of one. Once the node is up to date, the cluster
becomes fully operational and the original K-safety is restored.

11.3.2. Where and When Recovery May Fail
It is possible to rejoin any appropriately configured node to the cluster. It does not have to be the same
physical machine that failed. This way, if a node fails for hardware reasons, it is possible to replace it
in the cluster immediately with a new node, giving you time to diagnose and repair the faulty hardware
without endangering the database itself.

It is also possible, when doing blocking rejoins, to rejoin multiple nodes simultaneously, if multiple nodes
fail. That is, assuming the cluster is still viable after the failures. As long as there is at least one active
copy of every partition, the cluster will continue to operate and be available for nodes to rejoin. Note that
with live rejoin, only one node can rejoin at a time.

There are a few conditions in which the rejoin operation may fail. Those situations include the following:

• Insufficient K-safety

If the database is running without K-safety, or more nodes fail simultaneously than the cluster is capable
of sustaining, the entire cluster will fail and must be restarted from scratch. (At a minimum, a VoltDB
database running with K-safety can withstand at least as many simultaneous failures as the K-safety
value. It may be able to withstand more node failures, depending upon the specific situation. But the K-
safety value tells you the minimum number of node failures that the cluster can withstand.)

• Mismatched deployment file

If the deployment file that you specify when issuing the rejoin command does not match the current
deployment configuration of the database, the cluster will refuse to let the node rejoin.

• More nodes attempt to rejoin than have failed

If one or more nodes fail, the cluster will accept rejoin requests from as many nodes as failed. For
example, if one node fails, the first node requesting to rejoin with the appropriate catalog and deployment
file will be accepted. Once the cluster is back to the correct number of nodes, any further requests to
rejoin will be rejected. (This is the same behavior as if you tried to add more nodes than specified in
the deployment file when initially starting the database.)

• The rejoining node does not specify a valid username and/or password

Availability

76

When rejoining a cluster with security enabled, you must specify a valid username and password when
issuing the rejoin command. The username and password you specify must have sufficient privileges to
execute system procedures. If not, the rejoin request will be rejected and an appropriate error message
displayed.

11.4. Avoiding Network Partitions
VoltDB achieves scalability by creating a tightly bound network of servers that distribute both data and
processing. When you configure and manage your own server hardware, you can ensure that the cluster
resides on a single network switch, guaranteeing the best network connection between nodes and reducing
the possibility of network faults interfering with communication.

However, there are situations where this is not the case. For example, if you run VoltDB "in the cloud",
you may not control or even know what is the physical configuration of your cluster.

The danger is that a network fault — between switches, for example — can interrupt communication
between nodes in the cluster. The server nodes continue to run, and may even be able to communicate
with others nodes on their side of the fault, but cannot "see" the rest of the cluster. In fact, both halves of
the cluster think that the other half has failed. This condition is known as a network partition.

11.4.1. K-Safety and Network Partitions
When you run a VoltDB cluster without availability (in other words, no K-safety) the danger of a network
partition is simple: loss of the database. Any node failure makes the cluster incomplete and the database
will stop, You will need to reestablish network communications, restart VoltDB, and restore the database
from the last snapshot.

However, if you are running a cluster with K-safety, it is possible that when a network partition occurs, the
two separate segments of the cluster might have enough partitions each to continue running, each thinking
the other group of nodes has failed.

For example, if you have a 3 node cluster with 2 sites per node, and a K-safety value of 2, each node is a
separate, self-sustaining copy of the database, as shown in Figure 11.2, “Network Partition”. If a network
partition separates nodes A and B from node C, each segment has sufficient partitions remaining to sustain
the database. Nodes A and B think node C has failed; node C thinks that nodes A and B have failed.

Figure 11.2. Network Partition

Availability

77

The problem is that you never want two separate copies of the database continuing to operate and accepting
requests thinking they are the only viable copy. If the cluster is physically on a single network switch,
the threat of a network partition is reduced. But if the cluster is on multiple switches, the risk increases
significantly and must be accounted for.

11.4.2. Using Network Fault Protection
VoltDB provides a mechanism for guaranteeing that a network partition does not accidentally create two
separate copies of the database. The feature is called network fault protection.

Because the consequences of a partition are so severe, use of network partition detection is strongly rec-
ommended and VoltDB enables partition detection by default. In addition it is recommended that, wher-
ever possible, K-safe cluster by configured with an odd number of nodes.

However, it is possible to disable network fault protection in the deployment file, if you choose. You
enable and disable partition detection using the <partition-detection> tag. The <partition-detection> tag is
a child of <deployment> and peer of <cluster>. For example:

<deployment>
 <cluster hostcount="4"
 sitesperhost="2"
 kfactor="1" />
 <partition-detection enabled="true">
 <snapshot prefix="netfault"/>
 </partition-detection>
</deployment>

If a partition is detected, the affected nodes automatically do a snapshot of the current database before
shutting down. You can use the <snapshot> tag to specify the file prefix for the snapshot files. If you do
not explcitly enable partition detection, the default prefix is "partition_detection".

Network partition snapshots are saved to the same directory as automated snapshots. By default, this is
a subfolder of the VoltDB root directory as described in Section 6.1.2, “Configuring Paths for Runtime
Features”. However, you can select a specific path using the <paths> tag set. For example, the following
example sets the path for snapshots to /opt/voltdb/snapshots/.

 <partition-detection enabled="true">
 <snapshot prefix="netfaultsave"/>
 </partition-detection>
 <paths>
 <snapshots path="/opt/voltdb/snapshots/" />
 </paths>

When network fault protection is enabled, and a fault is detected (either due to a network fault or one or
more servers failing), any viable segment of the cluster will perform the following steps:

1. Determine what nodes are missing

2. Determine if the missing nodes are also a viable self-sustained cluster. If so...

3. Determine which segment is the larger segment (that is, contains more nodes).

• If the current segment is larger, continue to operate assuming the nodes in the smaller segment have
failed.

• If the other segment is larger, perform a snapshot of the current database content and shutdown to
avoid creating two separate copies of the database.

Availability

78

For example, in the case shown in Figure 11.2, “Network Partition”, if a network partition separates nodes
A and B from C, the larger segment (nodes A and B) will continue to run and node C will write a snapshot
and shutdown (as shown in Figure 11.3, “Network Fault Protection in Action”).

Figure 11.3. Network Fault Protection in Action

If a network partition creates two viable segments of the same size (for example, if a four node cluster
is split into two two-node segments), a special case is invoked where one segment is uniquely chosen
to continue, based on the internal numbering of the host nodes. Thereby ensuring that only one viable
segment of the partitioned database continues.

Network fault protection is a very valuable tool when running VoltDB clusters in a distributed or uncon-
trolled environment where network partitions may occur. The one downside is that there is no way to dif-
ferentiate between network partitions and actual node failures. In the case where network fault protection
is turned on and no network partition occurs but a large number of nodes actually fail, the remaining nodes
may believe they are the smaller segment. In this case, the remaining nodes will shut themselves down
to avoid partitioning.

For example, in the previous case shown in Figure 11.3, “Network Fault Protection in Action”, if rather
than a network partition, nodes A and B fail, node C is the only node still running. Although node C
is viable and could continue because the cluster was started with K-safety set to 2, if fault protection is
enabled node C will shut itself down to avoid a partition.

In the worst case, if half the nodes of a cluster fail, the remaining nodes may actually shut themselves down
under the special provisions for a network partition that splits a cluster into two equal parts. For example,
consider the situation where a two node cluster with a k-safety value of one has network partition detection
enabled. If one of the nodes fails (half the cluster), there is only a 50/50 chance the remaining node is the
"blessed" node chosen to continue under these conditions. If the remaining node is not the chosen node, it
will shut itself down to avoid a conflict, taking the database out of service in the process.

Because this situation — a 50/50 split — could result in either a network partition or a viable cluster
shutting down, VoltDB recommends always using network partition detection and using clusters with an
odd number of nodes. By using network partitioning, you avoid the dangers of a partition. By using an
odd number of servers, you avoid even the possibility of a 50/50 split, whether caused by partitioning or
node failures.

79

Chapter 12. Database Replication
There are times when it is useful to create a copy of a database. Not just a snapshot of a moment in time,
but a live, constantly updated copy.

K-safety maintains redundant copies of partitions within a single VoltDB database, which helps protect
the database cluster against individual node failure. Database replication also creates a copy. However,
database replication creates and maintains a separate and distinct copy of the entire database.

Database replication can be used for:

• Offloading read-only workloads, such as reporting

• Maintaining a "hot standby" in case of failure

• Protecting against catastrophic events, often called disaster recovery

The next section, Section 12.1, “How Database Replication Works”, explains the principles behind data-
base replication in VoltDB. Section 12.2, “Database Replication in Action” provides step-by-step instruc-
tions for establishing and managing database replication using the functions and features of VoltDB, in-
cluding:

• Starting Replication

• Stopping Replication

• What to Do in Case of a Disaster

• Monitoring and Managing Replication

12.1. How Database Replication Works
Database replication involves duplicating the contents of one database cluster (known as the master) to an-
other database cluster (known as the replica). The contents of the replica cluster are completely controlled
by the master, which is why this arrangement is sometimes referred to as a master/slave relationship.

The replica database can be in the rack next to the master, in the next room, the next building, or another city
entirely. The location depends upon your goals for replication. For example, if you are using replication for
disaster recovery, geographic separation of the master and replica is required. If you are using replication
for hot standby or offloading read-only queries, the physical location may not be important.

Database Replication

80

Figure 12.1. The Components of Database Replication

The process of retrieving completed transactions from the master and applying them to the replica is
managed by a separate process called the Data Replication (DR) agent. The DR agent is critical to the
replication process. It performs the following tasks:

• Initiates the replication, telling the master database to start queuing completed transactions and estab-
lishing a special client connection to the replica.

• POLLs and ACKs the completed transactions from the master database and recreates the transactions
on the replica.

• Monitors the replication process, detects possible errors in the replica or delays in synchronizing the
two clusters, and — when necessary — reports error conditions and cancels replication.

12.1.1. Starting Replication
Database Replication is easy to establish:

1. Any normal VoltDB database can be the master; you simply start the database as usual and the DR
agent tells the master when it should start queuing completed transactions.

2. Next, you create the replica database. You do this by starting the database with the create action and
the --replica flag. This creates a read-only database that waits for the DR agent to contact it.

3. Finally, you start the DR agent, specifying the location of the master and replica databases.

Note that the DR agent can be located anywhere. However, the replication process is optimized for the DR
agent to be co-located with the replica database (as shown in Figure 12.1, “The Components of Database
Replication”). Communication between the DR agent and the master database is kept to a minimum to
avoid bottlenecks; only write transactions are replicated and the messages between the master and the agent
are compressed. Whereas the DR agent sends transactions to the replica using standard client invocations.
Therefore, when distributing the database across a wide-area network (WAN), locating the DR agent near
the replica is recommended.

12.1.2. Replication and Existing Databases
If data already exists in the master database when the DR agent starts replication, the master first creates a
snapshot of the current contents and passes the snapshot to the DR agent so the master and the replica can

Database Replication

81

start from the same point. The master then queues and transmits all subsequent transactions to the agent,
as shown in Figure 12.2, “Replicating an Existing Database”.

Figure 12.2. Replicating an Existing Database

12.1.3. Database Replication and Disaster Recovery
If unforeseen events occur that make the master database unreachable, database replication lets you replace
the master with the replica and restore normal business operations with as little downtime as possible. You
switch the replica from read-only to a fully functional database by promoting it to a master itself. To do
this, perform the following steps:

1. Make sure the master is actually unreachable, because you do not want two live copies of the same
database. If it is reachable but not functioning properly, be sure to shut it down.

2. Stop the DR agent, if it has not stopped already.

3. Promote the replica to a master using the voltadmin promote command.

4. Redirect the client applications to the new master database.

Figure 12.3, “Promoting the Replica” illustrates how database replication reduces the risk of major disas-
ters by allowing the replica to replace the master if the master becomes unavailable.

Figure 12.3. Promoting the Replica

Database Replication

82

Once the master is offline and the replica is promoted to a master itself, the data is no longer being repli-
cated. As soon as normal business operations have been re-established, it is a good idea to also re-establish
replication. This can be done using any of the following options:

• If the original master database hardware can be restarted, take a snapshot of the current database (that
is, the original replica), restore the snapshot on the original master and redirect client traffic back to the
original. Replication can then be restarted using the original configuration.

• An alternative, if the original database hardware can be restarted but you do not want to (or need to)
redirect the clients away from the current database, use the original master hardware to create a new
replica — essentially switching the roles of the master and replica databases.

• If the original master hardware cannot be recovered effectively, create a new database cluster in a third
location to use as a replica of the current database.

12.1.4. Database Replication and Completeness

It is important to note that, unlike K-safety where multiple copies of each partition are updated simulta-
neously, database replication involves shipping completed transactions from the master database to the
replica. Because replication happens after the fact, there is no guarantee that the contents of the master and
replica cluster are identical at any given point in time. Instead, the replica database 'catches up" with the
master after the transactions are received and processed by the DR agent.

If the master cluster crashes, there is no guarantee that the DR agent has managed to retrieve all transactions
that were queued on the master. Therefore, it is possible that some transactions that completed on the
master are not reproduced on the replica.

The decision whether to promote the replica or wait for the master to return (and hopefully recover all
transactions from the command log) is not an easy one. Promoting the replica and using it to replace the
original master may involve losing one or more transactions. However, if the master cannot be recovered
or cannot not be recovered quickly, waiting for the master to return can result in significant business loss
or interruption.

Your own business requirements and the specific situation that caused the outage will determine which
choice to make. However, database replication makes the choice possible and significantly eases the dan-
gers of unforeseen events.

12.1.5. Database Replication and Read-only Clients

While database replication is occurring, the replica responds to write transactions (INSERT, UPDATE,
and DELETE) from the DR agent only. Other clients can connect to the replica and use it for read-only
transactions, including read-only ad hoc queries and system procedures. Any attempt to perform a write
transaction from a client other than the DR agent returns an error.

There will always be some delay between a transaction completing on the master and being replayed on the
replica. However, for read operations that do not require real-time accuracy (such as reporting), the replica
can provide a useful source for offloading certain less-frequent, read-only transactions from the master.

Database Replication

83

Figure 12.4. Read-Only Access to the Replica

12.2. Database Replication in Action
The previous section explains the principles behind database replication. The following sections provide
step-by-step instructions for setting up and managing replication using VoltDB.

All of the following examples use the same fictional servers to describe the replication process. The server
used for the master cluster is called serverA; the server for the replica is serverB.

12.2.1. Starting Replication

It is easy to establish database replication with VoltDB. You can replicate any VoltDB database — there
are no special requirements or configuration needed for the master database. It is also possible to begin
replication of a new (empty) database or an existing database that already has content in it.

The steps to start replication are:

1. Start the master database.

You can either create a new database or use an existing database as the master. When starting the
database, you can use either of the standard startup arguments: create or recover. For example:

$ voltdb create catalog.jar \
 -d deployment.xml \
 -H serverA \
 -l license.xml

If any of the servers in the master database cluster have two or more network interface cards (and
therefore multiple network addresses), you must explicitly identify which interface the server uses for
both internal and external communication when you start VoltDB. For example:

$ voltdb create catalog.jar \
 -d deployment.xml \
 -H serverA \
 -l license.xml \
 --externalinterface=10.11.169.10 \
 --internalinterface=10.12.171.14

Database Replication

84

If you do not specify which interface to use for multi-homed servers, replication will fail when the DR
agent attempts to connect to those servers of the master database.

2. Create a replica database.

You create a replica database just as you would any other VoltDB database, except instead of specifying
create as the startup action, you specify replica. For example:

$ voltdb create --replica catalog.jar \
 -d deployment.xml \
 -H serverB \
 -l license.xml

Note that the replica database must:

• Use the same version of the VoltDB server software.

• Start with the same catalog as the master database.

• Have the same configuration (that is, the same number of servers, sites per host, and K-safety value)
as the master database.

If these settings do not match, the DR agent will report an error and fail to start in the next step.

3. Start the DR agent.

The DR agent is a separate process that can be run on any server that meets the hardware and software
requirements for VoltDB. It is possible to run the agent on the same node as one of the master or replica
cluster nodes. However, for best performance, it is recommended that the DR agent run on a separate,
dedicated server located near the replica database.

To start the DR agent, use the dragent command specifying the IP address or hostname of a node from
the master database and a node from the replica database as arguments to the command. For example:

$ dragent master serverA replica serverB

If the master or replica use ports other than the default, you can specify which port the DR agent should
use as part of the server name. For example, the following command tells the agent to connect to the
master starting at port 6666 and the replica on port 23232:

$ dragent master serverA:6666 replica serverB:23232

If you are using the Enterprise Manager to manage your databases, you can start the master database (Step
1) as you would normally, using the create, restore, or recover action. There is also a replica option on the
Start Database dialog for creating a replica database (Step 2). The DR agent must be started by hand.

When the DR agent starts, it performs the following actions:

• Contacts both the master and replica databases.

• Verifies that the application catalogs match for the two databases.

• Verifies that the two clusters have the same number of unique partitions.

• Requests a snapshot from the master database. If data exists, the agent replays the snapshot on the replica.

• Begins to POLL and ACK the master database for completed transactions to be replayed on the replica.

Database Replication

85

12.2.2. Stopping Replication
If, for any reason, you wish to stop replication of a database, all you need to do is stop the DR agent process
or the replica database. If either the agent or the replica database is not capable of processing the stream
of transactions, the master will continue to queue completed transactions until the queue is full. At which
point the master will abandon replication, delete the queue, and resume normal operation.

In other words, except for logging error messages explaining that replication has stopped, there is no out-
ward change to the master cluster and no interruption of client activity. If you wish to shutdown replication
in a more orderly fashion, you can:

1. Pause the master cluster, using the voltadmin pause command, to put the database in admin mode and
stop client activity.

2. Once all transactions have passed through the DR agent to the replica (see Section 12.2.4.1, “Monitoring
the Replication Process”), stop the DR agent process.

3. Stop the replica database, using voltadmin shutdown to perform an orderly shutdown.

4. Resume normal client operations on the master database, using voltadmin resume.

12.2.3. Promoting the Replica When the Master Becomes
Unavailable

If the master database becomes unreachable for whatever reason (such as catastrophic system or network
failure) and you choose to “turn on” the replica as a live database in its place, you use the voltadmin
promote command to promote the replica to a fully active (writable) database. Specifically:

1. Stop the DR agent process. If not, the agent will report an error and stop after the following step.

2. Issue the voltadmin promote command on the replica database.

When you invoke voltadmin promote, the replica exits read-only mode and becomes a fully operational
VoltDB database. For example, the following Linux shell command uses voltadmin to promote the replica
node serverB:

$ voltadmin promote --host=serverB

12.2.4. Managing Database Replication
Database replication runs silently in the background, providing security against unexpected disruptions.
Ideally, the replica will never be needed. But it is there just in case and the replication process is designed
to withstand normal operational glitches. However, there are some conditions that can interrupt replication
and it is important to be able to recognize and be able to respond to those situations, in order to ensure
ongoing protection.

Both the master database and the DR agent maintain queues to handle fluctuations in the transmission of
transactions. Network hiccups or a sudden increase of load on the master database can cause delays. Nodes
on the master cluster may fail and rejoin (assuming K-safety). The queues help the replication process
survive such interruptions.

In the case of the master database, replication initially queues data in memory. If the pending data exceeds
the allocated queue size, data then overflows to disk in the directory voltdbroot/dr_overflow.

Database Replication

86

If the problem persists for too long, it is possible for the queues to fill up, resulting in either the master or
the DR agent (or both) canceling replication. When this happens, it is necessary to restart the replication
process. The following sections explain how to monitor the replication process and how to respond to
error conditions.

12.2.4.1. Monitoring the Replication Process

There are two ways to monitor the replication process:

• The DR agent provides a stream of informational messages concerning its status as part of its logs
(displayed on the console by default).

• You can query the master database about its current replication queue using the @Statistics system
procedure and the "DR" component type.

The DR agent logs information about the ongoing transmissions with the master and the replica. It also
reports any issues communicating with the master and continues to retry until communication is re-estab-
lished. If the agent encounters a problem it cannot recover from, it logs the error and the process stops. In
this situation, you must restart replication from the beginning. (See Section 12.2.4.2, “Restarting Replica-
tion if an Error Occurs” for details.)

If you do not want the log messages displayed on the console, you can redirect them by providing an
alternate Log4J configuration file. You specify the alternate configuration file with the environment vari-
able LOG4J_CONFIG_PATH. For example, the following commands start the DR agent and specify an
alternate log configuration file mylogconfig.xml in the current working directory:

$ export LOG4J_CONFIG_PATH="mylogconfig.xml"
$ dragent master serverA replica serverB

In addition to the DR agent logs, you can query the master database to determine the current state of its
replication queues using the @Statistics system procedure. The "DR" keyword returns information about
the amount of replication data currently in memory (waiting to be sent to the agent). One VoltTable reports
the amount of memory used for queuing transactions and another reports on the current status of any
snapshots (if any) waiting to be sent.

12.2.4.2. Restarting Replication if an Error Occurs

If an error does occur that causes replication to fail, you must restart replication from the beginning. In
other words:

1. Stop the DR agent process, if it is not already stopped.

2. Shutdown and restart the replica database.

3. If the master database is not running, restart it.

4. Restart the DR agent.

Note that, if the master is still running, it does not need to be stopped and restarted. However, both the DR
agent and the replica database must be restarted if any condition causes replication to fail. Situations that
will require restarting replication include the following:

• If the replica database stops.

• If the master database stops.

• If the DR agent stops.

Database Replication

87

• If a snapshot is restored to the master database. (Consequently, if restoring or recovering data when
restarting the master database, be sure the restore completes on the master before beginning replication.)

• If communication between the master and the DR agent is delayed to the point where the master cluster's
replication queues overflow.

• If any transaction replayed on the replica fails. Note that only successfully completed transactions are
sent to the replica. So if a transaction fails, the replica is no longer in sync with the master.

• If any transaction replayed on the replica returns a different result than received on the master. The
results are hashed and compared. Just as all replicated transactions must succeed, they must produce the
same results or the two databases are out of sync.

12.3. Using the Sample Applications to Demon-
strate Replication

One way to familiarize yourself with replication is to try it with an existing application. VoltDB comes
with several sample applications. You can use any of the samples to test or demonstrate replication.

The following sections show how to create a replicated database, using the voter application as an example.
The first section explains how to use the Enterprise Manager for the demonstration and the second uses
the VoltDB shell commands. Both examples assume you have three servers:

• ServerA as the master

• ServerB as the replica

• ServerC as the agent

It is also possible to perform this demonstration on two nodes by using ServerB for both the replica and
the DR agent.

12.3.1. Replicating the Voter Sample Using the Enterprise
Manager

First, using the command line, run the voter sample once to create the application catalog. Then, using
the Enterprise Manager:

1. Create two new databases, Voter Master and Voter Replica, using the voter application catalog for both
of them.

2. Add ServerA to the Voter Master database.

3. Add ServerB to the Voter Replica database.

4. Start both databases, using the create action for Voter Master and create and replica for Voter Replica.

From the command line on ServerC, start the DR agent using the following command:

$ dragent master serverA replica serverB

Finally, from the command line on ServerA, run the sample client application:

$ cd examples/voter

Database Replication

88

$./run.sh client

You should see the client inserts on the master database replicated on the replica. Note that you can also
start the client application before the DR agent, to show that replication can be started on an existing,
active database.

12.3.2. Replicating the Voter Sample Using the Command
Line

In the current release, the scripts for running the sample applications do not add the necessary command
line arguments for starting a master or replica database by default. However, you can use the voltdb
convenience command to solve this problem:

1. On both ServerA and ServerB, run the voter sample once to build the application catalog:

$ cd examples/voter
$./run.sh catalog

2. On ServerA, use the voltdb command to start the master database:

$ voltdb create voter.jar \
 -d deployment.xml -H localhost \
 -l ../../voltdb/license.xml

3. On ServerB, use the voltdb command to start the replica database:

$ voltdb create --replica voter.jar \
 -d deployment.xml -H localhost \
 -l ../../voltdb/license.xml

4. On ServerC, use the dragent command to start the DR agent:

$ dragent master serverA replica serverB

5. On ServerB, start the voter client application:

$./run.sh client

Note that you can also start the client application (step #5) before the DR agent (step #4), to show that
replication can be started on an existing, active database.

89

Chapter 13. Exporting Live Data
VoltDB is an in-memory, transaction processing database. It excels at managing large volumes of trans-
actions in real-time.

However, transaction processing is often only one aspect of the larger business context and data needs to
transition from system to system as part of the overall solution. The process of moving from one database
to another as data moves through the system is often referred to as Extract, Transform, and Load (ETL).
VoltDB supports ETL through the ability to selectively export data as it is committed to the database.

Exporting differs from save and restore (as described in Chapter 9, Saving & Restoring a VoltDB Database)
in several ways:

• You only export selected data (as required by the business process)

• Export is an ongoing process rather than a one-time event

• The outcome of exporting data is that information is used by other business processes, not as a backup
copy for restoring the database

The target for exporting data from VoltDB may be another database, a repository (such as a sequential log
file), or a process (such as a system monitor or accounting system). No matter what the target, VoltDB
helps automate the process for you. This chapter explains how to plan for and implement the exporting
of live data using VoltDB.

13.1. Understanding Export
VoltDB lets you automate the export process by specifying certain tables in the schema as sources for
export. At runtime, any data written to the specified tables is sent to the selected export connector, which
queues the data for export. Then, asynchronously, the connector sends the queued export data to the se-
lected output target. Which export connector runs depends on the target you choose when configuring ex-
port in the deployment file. Currently, VoltDB provides connectors for exporting to files, for exporting to
other business processes via a distributed message queue, and for exporting to other databases via JDBC.
The connector processes are managed by the database servers themselves, helping to distribute the work
and ensure maximum throughput.

Figure 13.1, “Overview of the Export Process” illustrates the basic export procedure, where Tables B and
D are specified as export tables.

Exporting Live Data

90

Figure 13.1. Overview of the Export Process

Note that you do not need to modify the schema or the client application to turn exporting of live data on
and off. The application's stored procedures insert data into the export-only tables; but it is the deployment
file that determines whether export actually occurs at runtime.

When a stored procedure uses an SQL INSERT statement to write data into an export-only table, rather than
storing that data in the database, it is handed off to the connector when the stored procedure successfully
commits the transaction.1 Export-only tables have several important characteristics:

• Export-only tables let you limit the export to only the data that is required. For example, in the preceding
example, Table B may contain a subset of columns from Table A. Whenever a new record is written to
Table A, the corresponding columns can be written to Table B for export to the remote database.

• Export-only tables let you combine fields from several existing tables into a single exported table. This
technique is particularly useful if your VoltDB database and the target of the export have different
schemas. The export-only table can act as a transformation of VoltDB data to a representation of the
target schema.

• Export-only tables let you control when data is exported. Again, in the previous example, Table D might
be an export-only table that is an exact replica of Table C. However, the records in Table C are updated
frequently. The client application can choose to copy records from Table C to Table D only when all
of the updates are completed and the data is finalized, significantly reducing the amount of data that
must pass through the connector.

Of course, there are restrictions to export-only tables. Since they have no storage associated with them,
they are for INSERT only. Any attempt to SELECT, UPDATE, or DELETE export-only tables will result
in an error when the project is compiled.

13.2. Planning your Export Strategy
The important point when planning to export data, is deciding:

• What data to export

• When to export the data

1There is no guarantee on the latency of export between the connector and the export target. The export function is transactionally correct; no export
occurs if the stored procedure rolls back and the export data is in the appropriate transaction order. But the flow of export data from the connector to
the target is not synchronous with the completion of the transaction. There may be several seconds delay before the export data reaches the target.

Exporting Live Data

91

It is possible to export all of the data in a VoltDB database. You would do this by creating export-only
replicas of all tables in the schema and writing to the export-only table whenever you insert into the normal
table. However, this means the same number of transactions and volume of data that is being processed
by VoltDB will be exported through the connector. There is a strong likelihood, given a high transaction
volume, that the target database will not be able to keep up with the load VoltDB is handling. As a conse-
quence you will usually want to be more selective about what data is exported when.

If you have an existing target database, the question of what data to export is likely decided for you (that is,
you need to export the data matching the target's schema). If you are defining both your VoltDB database
and your target at the same time, you will need to think about what information is needed "downstream"
and create the appropriate export-only tables within VoltDB.

The second consideration is when to export the data. For tables that are not updated frequently, inserting
the data to a complementary export-only table whenever data is inserted into the real table is the easiest and
most practical approach. For tables that are updated frequently (hundreds or thousands of times a second)
you should consider writing a copy of the data to an export-only table at an appropriate milestone.

Using the flight reservation system as an example, one aspect of the workflow not addressed by the ap-
plication described in Chapter 3, Designing Your VoltDB Application is the need to archive information
about the flights after takeoff. Changes to reservations (additions and cancellations) are important in real
time. However, once the flight takes off, all that needs to be recorded (for billing purposes, say) is what
reservations were active at the time.

In other words, the archiving database needs information about the customers, the flights, and the final
reservations. According to the workload in Table 3.1, “Example Application Workload”, the customer and
flight tables change infrequently. So data can be inserted into the export-only tables at the same time as the
"live" flight and reservation tables. (It is a good idea to give the export-only copy of the table a meaningful
name so its purpose is clear. In this example we identify the export-only tables with the export_ prefix or,
in the case of the reservation table which is not an exact copy, the _final suffix.)

The reservation table, on the other hand, is updated frequently. So rather than export all changes to a
reservation to the export-only reservation table in real-time, a separate stored procedure is invoked when
a flight takes off. This procedure copies the final reservation data to the export-only table and deletes the
associated flight and reservation records from the VoltDB database. Figure 13.2, “Flight Schema with Ex-
port Table” shows the modified database schema with the added export-only tables, EXPORT_FLIGHT,
EXPORT_CUSTOMER, and RESERVATION_FINAL.

Figure 13.2. Flight Schema with Export Table

This design adds a transaction to the VoltDB application, which is executed approximately once a second
(when a flight takes off). However, it reduces the number of reservation transactions being exported from

Exporting Live Data

92

1200 a second to less than 200 a second. These are the sorts of trade offs you need to consider when adding
export functionality to your application.

13.3. Identifying Export Tables in the Schema
Once you decide what data to export and define the appropriate tables in the schema, you are ready to
identify them as export-only tables. As mentioned before, export-only tables are defined in the database
schema just like any other table. So in the case of the flight application, we need to add the export tables to
our schema. The following example illustrates (in bold) the addition of an export-only table for reservations
with a subset of columns from the normal reservation table.

 . . .

CREATE TABLE Reservation (
 ReserveID INTEGER UNIQUE NOT NULL,
 FlightID INTEGER NOT NULL,
 CustomerID INTEGER NOT NULL,
 Seat VARCHAR(5) DEFAULT NULL,
 Confirmed TINYINT DEFAULT '0',
 PRIMARY KEY(ReserveID)
);
CREATE TABLE Reservation_final (
 ReserveID INTEGER UNIQUE NOT NULL,
 FlightID INTEGER NOT NULL,
 CustomerID INTEGER NOT NULL,
 Seat VARCHAR(5) DEFAULT NULL
);
 . . .

Again, it is a good idea to distinguish export-only tables by their table name, so anyone reading the schema
understands their purpose. Once you add the necessary tables to the schema, you then need to define them
as export-only tables. You do this by adding an EXPORT TABLE statement for each table to the schema
tags. For example:

EXPORT TABLE export_customer;
EXPORT TABLE export_flight;
EXPORT TABLE reservation_final;

If a table is not listed in an EXPORT TABLE statement, it is not exported. In the preceding example,
the export_customer, export_flight, and reservation_final tables are identified as the tables that will be
included in the export. In addition, since they are export-only tables, inserting data into these tables will
have no effect if export is disabled in the deployment file.

You can also specify whether the export-only tables are partitioned or not using the PARTITION TABLE
statement in the schema. For example, if an export table is a copy of a normal data table, it can be parti-
tioned on the same column. However, partitioning is not necessary for export-only tables. Whether they
are partitioned or "replicated", since no storage is associated with the export table, you can INSERT in-
to the table in either a single-partitioned or multi-partitioned stored procedure. In either case, the export
connector ensures that at least one copy of the tuple is written to the export stream.

13.4. Configuring Export in the Deployment File
To enable export at runtime, you include the <export> tag in the deployment file, specifying which
export connector to use in with the target attribute. For example:

Exporting Live Data

93

<export enabled="true" target="file">
 <configuration>
 . . .
 </configuration>
</export>

You must also configure the export connector by specifying properties as one or more <property>
tags within the <configuration> tag. For example, the following XML code enables export to com-
ma-separated (CSV) text files using the file prefix "MyExport".

<export enabled="true" target="file">
 <configuration>
 <property name="type">csv</property>
 <property name="nonce">MyExport</property>
 </configuration>
</export>

The properties that are allowed and/or required depend on the export connector you select. VoltDB comes
with five export connectors:

• Export to file

• Export to HTTP, including Hadoop

• Export to JDBC

• Export to Kafka

• Export to RabbitMQ

As the name implies, the file connector writes the exported data to local files, either as comma-separated
or tab-delimited files. Similarly, the JDBC connector writes data to a variety of possible destination data-
bases through the JDBC protocol. The Kafka connector writes export data to an Apache Kafka distributed
message queue, where one or more other processes can read the data. In all three cases you configure the
specific features of the connector using the <property> tag as described in the following sections.

13.5. The File Connector
The file connector receives the serialized data from the export tables and writes it out as text files (either
comma or tab separated) to disk. The file connector writes the data out one file per database table, "rolling"
over to new files periodically. The filenames of the exported data are constructed from:

• A unique prefix (specified with the nonce property)

• A unique value identifying the current version of the database catalog

• The table name

• A timestamp identifying when the file was started

While the file is being written, the file name also contains the prefix "active-". Once the file is complete
and a new file started, the "active-" prefix is removed. Therefore, any export files without the prefix are
complete and can be copied, moved, deleted, Ohor post-processed as desired.

There are two properties that must be set when using the file connector:

• The type property lets you choose between comma-separated files (csv) or tab-delimited files (tsv).

Exporting Live Data

94

• The nonce property specifies a unique prefix to identify all files that the connector writes out for this
database instance.

Table 13.1, “File Export Properties” describes the supported properties for the file connector.

Table 13.1. File Export Properties

Property Allowable Values Description

type* csv, tsv Specifies whether to create comma-separated (CSV) or tab-delimit-
ed (TSV) files,

nonce* string A unique prefix for the output files.

outdir directory path The directory where the files are created. If you do not specify an
output path, VoltDB writes the output files to the current default di-
rectory.

period Integer The frequency, in minutes, for "rolling" the output file. The default
frequency is 60 minutes.

binaryencoding hex, base64 Specifies whether VARBINARY data is encoded in hexadecimal or
BASE64 format. The default is hexadecimal.

dateformat format string The format of the date used when constructing the output file names.
You specify the date format as a Java SimpleDateFormat string. The
default format is "yyyyMMddHHmmss".

timezone string The time zone to use when formatting the timestamp. Specify the
time zone as a Java timezone identifier. The default is GMT.

delimiters string Specifies the delimiter characters for CSV output. The text string
specifies four characters: the field delimiter, the enclosing charac-
ter, the escape character, and the record delimiter. To use special or
non-printing characters (including the space character) encode the
character as an HTML entity. For example "<" for the "less than"
symbol.

batched true, false Specifies whether to store the output files in subfolders that are
"rolled" according to the frequency specified by the period property.
The subfolders are named according to the nonce and the timestamp,
with "active-" prefixed to the subfolder currently being written.

skipinternals true, false Specifies whether to include six columns of VoltDB metadata (such
as transaction ID and timestamp) in the output. If you specify skipin-
ternals as "true", the output files contain only the exported table da-
ta.

with-schema true, false Specifies whether to write a JSON representation of each table's
schema as part of the export. The JSON schema files can be used to
ensure the appropriate datatype and precision is maintained if and
when the output files are imported into another system.

*Required

Whatever properties you choose, the order and representation of the content within the output files is the
same. The export connector writes a separate line of data for every INSERT it receives, including the
following information:

• Six columns of metadata generated by the export connector. This information includes a transaction ID,
a timestamp, a sequence number, the site and partition IDs, as well as an integer indicating the query
type.

Exporting Live Data

95

• The remaining columns are the columns of the database table, in the same order as they are listed in
the database definition (DDL) file.

13.6. The HTTP Connector
The HTTP connector receives the serialized data from the export tables and writes it out via HTTP requests.
The connector is designed to be flexible enough to accommodate most potential targets. For example, the
connector can be configured to send out individual records using a GET request or batch multiple records
using POST and PUT requests. The connector also contains optimizations to support export to Hadoop
via WebHDFS.

13.6.1. Understanding HTTP Properties
The HTTP connector is a general purpose export utility that can export to any number of destinations
from simple messaging services to more complex REST APIs. The properties work together to create a
consistent export process. However, it is important to understand how the properties interact to configure
your export correctly. The four key properties you need to consider are:

• batch.mode — whether data is exported in batches or one record at a time

• method — the HTTP request method used to transmit the data

• type — the format of the output

• endpoint — the target HTTP URL to which export is written

The properties are described in detail in Table 13.2, “HTTP Export Properties”. This section explains the
relationship between the properties.

There are essentially two types of HTTP export: batch mode and one record at a time. Batch mode is
appropriate for exporting large volumes of data to targets such as Hadoop. Exporting one record at a time
is less efficient for large volumes but can be very useful for writing intermittent messages to other services.

In batch mode, the data is exported using a POST or PUT method, where multiple records are combined
in either command-separated value (CSV) or Avro format in the body of the request. When writing one
record at a time, you can choose whether to submit the HTTP request as a POST, PUT or GET (that is,
as a querystring attached to the URL). When exporting in batch mode, the method must be either POST
or PUT and the type must be either csv or avro. When exporting one record at a time, you can use the
GET, POST, or PUT method, but the output type must be form.

Finally, the endpoint property specifies the target URL where data is being sent, using either the http: or
https: protocol. Again, the endpoint must be compatible with the possible settings for the other properties.
In particular, if the endpoint is a WebHDFS URL, batch mode must enabled.

The URL can also contain placeholders that are filled in at runtime with metadata associated with the
export data. Each placeholder consists of a percent sign (%) and a single ASCII character. The following
are the valid placeholders for the HTTP endpoint property:

Placeholder Description

%t The name of the VoltDB export table. The table name is inserted into the endpoint in
all uppercase.

%p The VoltDB partition ID for the partition where the INSERT query to the export table
is executing. The partition ID is an integer value assigned by VoltDB internally and
can be used to randomly partition data. For example, when exporting to webHDFS, the
partition ID can be used to direct data to different HDFS files or directories.

Exporting Live Data

96

Placeholder Description

%g The export generation. The generation is an identifier assigned by VoltDB. The gener-
ation increments each time the database starts or the application catalog is modified in
any way.

%d The date and hour of the current export period. Applicable to WebHDFS export only.
This placeholder identifies the start of each period and the replacement value remains
the same until the period ends, at which point the date and hour is reset for the new
period.

You can use this placeholder to "roll over" WebHDFS export destination files on a
regular basis, as defined by the period property. The period property defaults to
one hour.

When exporting in batch mode, the endpoint must contain at least one instance each of the %t, %p, and
%g placeholders. However, beyond that requirement, it can contain as many placeholders as desired and
in any order. When not in batch mode, use of the placeholders are optional.

Table 13.2, “HTTP Export Properties” describes the supported properties for the HTTP connector.

Table 13.2. HTTP Export Properties

Property Allowable Values Description

endpoint* string Specifies the target URL. The endpoint can contain placeholders
for inserting the table name (%t), the partition ID (%p), the date and
hour (%d), and the export generation (%g).

avro.compress true, false Specifies whether Avro output is compressed or not. The default is
false and this property is ignored if the type is not Avro.

avro.schema.location string Specifies the location where the Avro schema will be written. The
schema location can be either an absolute path name on the lo-
cal database server or a webHDFS URL and must include at least
one instance of the placeholder for the table name (%t). Option-
ally it can contain other instances of both %t and %g. The default
location for the Avro schema is the file path export/avro/
%t_avro_schema.json on the database server under the voltd-
broot directory. This property is ignored if the type is not Avro.

batch.mode true, false Specifies whether to send multiple rows as a single request or send
each export row separately. The default is true. Batch mode must be
enabled for WebHDFS export.

method get, post, put Specifies the HTTP method for transmitting the export data. The de-
fault method is POST. For WebHDFS export, this property is ig-
nored.

period Integer Specifies the frequency, in hours, for "rolling" the WebHDFS output
date and time. The default frequency is every hour (1). For WebHD-
FS export only.

timezone string The time zone to use when formatting the timestamp. Specify the
time zone as a Java timezone identifier. The default is the local time
zone.

type csv, avro, form Specifies the output format. If batch.mode is true, the default type
is CSV. If batch.mode is false, the default and only allowable value
for type is form. Avro format is supported for WebHDFS export on-

Exporting Live Data

97

Property Allowable Values Description

ly (see Section 13.6.2, “Exporting to Hadoop via WebHDFS” for de-
tails.)

*Required

13.6.2. Exporting to Hadoop via WebHDFS

As mentioned earlier, the HTTP connector contains special optimizations to support exporting data to
Hadoop via the WebHDFS protocol. If the endpoint property contains a WebHDFS URL (identified by
the URL path component starting with the string "/webhdfs/1.0/"), special rules apply.

First, for WebHDFS URLs, the batch.mode property must be enabled. Also, the endpoint must have at
least one instance each of the table name (%t), the partition ID (%p), and the export generation (%g)
placeholders and those placeholders must be part of the URL path, not the domain or querystring.

Next, the method property is ignored. For WebHDFS, the HTTP connector uses a combination of POST,
PUT, and GET requests to perform the necessary operations using the WebHDFS REST API.

For example, The following deployment file configuration exports table data to WebHDFS using the HTTP
connector and writing each table to a separate directory, with separate files based on the partition ID,
generation, and period timestamp, rolling over every 2 hours:

<export enabled="true" target="http">
 <configuration>
 <property name="endpoint">
 http://myhadoopsvr/webhdfs/v1.0/%t/data%p-%g.%d.csv
 </property>
 <property name="batch.mode">true</property>
 <property name="period">2</property>
 </configuration>
</export>

Note that the HTTP connector will create any directories or files in the WebHDFS endpoint path that do
not currently exist and then append the data to those files, using the POST or PUT method as appropriate
for the WebHDFS REST API.

You also have a choice between two formats for the export data when using WebHDFS: comma-separated
values (CSV) and Apache Avro™ format. By default, data is written as CSV data with each record on
a separate line and batches of records attached as the contents of the HTTP request. However, you can
choose to set the output format to Avro by setting the type property, as in the following example:

<export enabled="true" target="http">
 <configuration>
 <property name="endpoint">
 http://myhadoopsvr/webhdfs/v1.0/%t/data%p-%g.%d.avro
 </property>
 <property name="type">avro</property>
 <property name="avro.compress">true</property>
 <property name="avro.schema.location">
 http://myhadoopsvr/webhdfs/v1.0/%t/schema.json
 </property>
 </configuration>
</export>

Exporting Live Data

98

Avro is a data serialization system that includes a binary format that is used natively by Hadoop utilities
such as Pig and Hive. Because it is a binary format, Avro data takes up less network bandwidth than text-
based formats such as CSV. In addition, you can choose to compress the data even further by setting the
avro.compress property to true, as in the previous example.

When you select Avro as the output format, VoltDB writes out an accompanying schema definition as a
JSON document. For compatibility purposes, the table name and columns names are converted, removing
underscores and changing the resulting words to lowercase with initial capital letters (sometimes called
"camelcase"). The table name is given an initial capital letter, while columns names start with a lowercase
letter. For example, the table EMPLOYEE_DATA and its column named EMPLOYEE_iD would be con-
verted to EmployeeData and employeeId in the Avro schema.

By default, the Avro schema is written to a local file on the VoltDB database server. However, you can
specify an alternate location, including a webHDFS URL. So, for example, you can store the schema in
the same HDFS repository as the data by setting the avro.schema.location property, as shown in
the preceding example.

See the Apache Avro web site for more details on the Avro format.

13.7. The JDBC Connector
The JDBC connector receives the serialized data from the export tables and writes it, in batches, to another
database through the standard JDBC (Java Database Connectivity) protocol.

When the JDBC connector opens the connection to the remote database, it first attempts to create tables in
the remote database to match the VoltDB export-only tables by executing CREATE TABLE statements
through JDBC. This is important to note because, it ensures there are suitable tables to receive the exported
data. The tables are created using either the table names from the VoltDB schema or (if you do not enable
the ignoregenerations property) the table name prefixed by the database generation ID.

If the target database has existing tables that match the VoltDB export-only tables in both name and struc-
ture (that is, the number, order, and datatype of the columns), be sure to enable the ignoregenerations
property in the export configuration to ensure that VoltDB uses those tables as the export target.

It is also important to note that the JDBC connector exports data through JDBC in batches. That is, multiple
INSERT instructions are passed to the target database at a time, in approximately two megabyte batches.
There are two consequences of the batching of export data:

• For many databases, such as Netezza, where there is a cost for individual invocations, batching reduces
the performance impact on the receiving database and avoids unnecessary latency in the export pro-
cessing.

• On the other hand, no matter what the target database, if a query fails for any reason the entire batch fails.

To avoid errors causing batch inserts to fail, it is strongly recommended that the target database not use
unique indexes on the receiving tables that might cause constraint violations.

If any errors do occur when the JDBC connector attempts to submit data to the remote database, the VoltDB
disconnects and then retries the connection. This process is repeated until the connection succeeds. If
the connection does not succeed, VoltDB eventually reduces the retry rate to approximately every eight
seconds.

Table 13.3, “JDBC Export Properties” describes the supported properties for the JDBC connector.

http://avro.apache.org/

Exporting Live Data

99

Table 13.3. JDBC Export Properties

Property Allowable Values Description

jdbcurl* connection string The JDBC connection string, also known as the URL.

jdbcuser* string The username for accessing the target database.

jdbcpassword string The password for accessing the target database.

jdbcdriver string The class name of the JDBC driver. The JDBC driver class must be
accessible to the VoltDB process for the JDBC export process to
work. Place the driver JAR files in the lib/extension/ direc-
tory where VoltDB is installed to ensure they are accessible at run-
time.

You do not need to specify the driver as a property value for several
popular databases, including MySQL, Netezza, Oracle, PostgreSQL,
and Vertica. However, you still must provide the driver JAR file.

schema string The schema name for the target database. The use of the schema
name is database specific. In some cases you must specify the data-
base name as the schema. In other cases, the schema name is not
needed and the connection string contains all the information neces-
sary. See the documentation for the JDBC driver you are using for
more information.

minpoolsize integer The minimum number of connections in the pool of connections to
the target database. The default value is 10.

maxpoolsize integer The maximum number of connections in the pool. The default value
is 100.

maxidletime integer The number of milliseconds a connection can be idle before it is re-
moved from the pool. The default value is 60000 (one minute).

maxstatementcached integer The maximum number of statements cached by the connection pool.
The default value is 50.

ignoregenerations true, false Specifies whether a unique ID for the generation of the database
is included as part of the output table name(s). The generation ID
changes each time a database restarts or the catalog is updated. The
default is false.

skipinternals true, false Specifies whether to include six columns of VoltDB metadata (such
as transaction ID and timestamp) in the output. If you specify skipin-
ternals as true, the output contains only the exported table data. The
default is false.

*Required

13.8. The Kafka Connector
The Kafka connector receives serialized data from the export tables and writes it to a message queue using
the Apache Kafka version 0.8 protocols. Apache Kafka is a distributed messaging service that lets you set
up message queues which are written to and read from by "producers" and "consumers", respectively. In
the Apache Kafka model, VoltDB export acts as a "producer".

Before using the Kafka connector, we strongly recommend reading the Kafka documentation and becom-
ing familiar with the software, since you will need to set up a Kafka 0.8 service and appropriate "con-
sumer" clients to make use of VoltDB's Kafka export functionality. The instructions in this section assume
a working knowledge of Kafka and the Kafka operational model.

http://kafka.apache.org/
http://kafka.apache.org/documentation.html

Exporting Live Data

100

When the Kafka connector receives data from the VoltDB export tables, it establishes a connection to the
Kafka messaging service as a Kafka producer. It then writes records to the service using the VoltDB table
name and a predetermined prefix as the Kafka "topic". How and when the data is transmitted to Kafka and
the name of the topic prefix are controlled by the export connector properties.

The majority of the Kafka properties are identical in both in name and content to the Kafka producer
properties listed in the Kafka documentation. All but one of these properties are optional for the Kaf-
ka connector and will use the standard Kafka default value. For example, if you do not specify the
queue.buffering.max.ms property it defaults to 5000 milliseconds.

The only required property is metadata.broker.list, which lists the Kafka servers that the VoltDB
export connector should connect to. You must specify this property so VoltDB knows where to send the
export data.

In addition to the standard Kafka producer properties, there are several custom properties specific to Volt-
DB. The properties binaryencoding, skipinternals, and timezone affect the format of the da-
ta. The topic.prefix and batch.mode properties affect how and when the data is written to Kafka.

The topic.prefix property specifies the text that precedes the table name when constructing the Kafka
topic. If you do not specify a prefix, it defaults to "voltdbexport". Note that unless you configure the Kafka
brokers with the auto.create.topics.enable property set to true, you must create the topics for
every export table manually before starting the export process. Enabling auto-creation of topics when
setting up the Kafka brokers is recommended.

The batch.mode property specifies whether messages are sent in batches, like the JDBC connector, or
one message at a time. When configuring the export connector, it is important to understand the relationship
between batch mode and synchronous versus asynchronous processing and their effect on database latency.

Using batch mode reduces the number of packets that must be sent to the Kafka servers, optimizing network
bandwidth. If the export data is sent asynchronously, by setting the property producer.type to "async",
the impact of export on the database is further reduced, since the export connector does not wait for the
Kafka server to respond. However, with asynchronous processing, VoltDB is not able to resend the data
if the message fails after it is sent.

If export to Kafka is done synchronously, the export connector waits for acknowledgement of each message
sent to the Kafka server before processing the next packet. This allows the connector to resend any packets
that fail. The drawback to synchronous processing is that on a heavily loaded database, the latency it
introduces means export may not be able to keep up with the influx of export data and and have to write
to overflow.

VoltDB guarantees that at least one copy of all export data is sent by the export connector. But when
operating in asynchronous mode, the Kafka connector cannot guarantee that the packet is actually received
and accepted by the Kafka broker. By operating in synchronous mode, VoltDB can catch errors returned
by the Kafka broker and resend any failed packets. However, you pay the penalty of additional latency
and possible export overflow.

To balance performance with durability of the exported data, the following are the two recommended
configurations for producer type and batch mode:

• Synchronous with batch mode — Using synchronous mode ensures all packets are received by the
Kafka system while batch mode reduces the possible latency impact by decreasing the number of packets
that get sent.

<property name="producer.type">sync</property>
<property namr="batch.mode">true</property>

Exporting Live Data

101

• Asynchronous without batch mode — Using asynchronous mode eliminates latency due to waiting
for responses from the Kafka infrastructure while not using batch mode ensures that if a request fails,
only one row of export data is affected, reducing the durability impact.

<property name="producer.type">async</property>
<property namr="batch.mode">false</property>

Finally, the actual export data is sent to Kafka as a comma-separated values (CSV) formatted string. The
message includes six columns of metadata (such as the transaction ID and timestamp) followed by the
column values of the export table.

Table 13.4, “Kafka Export Properties” lists the supported properties for the Kafka connector, including
the standard Kafka producer properties and the VoltDB unique properties.

Table 13.4. Kafka Export Properties

Property Allowable Val-
ues

Description

metadata.broker.list* string A comma-separated list of Kafka brokers.

batch.mode true, false Whether to submit multiple rows as a single request or
send each export row separately. The default is true.

partition.key {table}.{column}
[,...]

Specifies which table column value to use as the Kafka
partitioning key for each table. Kafka uses the partition
key to distribute messages across multiple servers.

By default, the value of the table's partitioning column is
used as the Kafka partition key. Using this property you
can specify a list of table column names, where the table
name and column name are separated by a period and the
list of table references is separated by commas. If the ta-
ble is not partitioned and you do not specify a key, the
server partition ID is used as a default.

binaryencoding hex, base64 Specifies whether VARBINARY data is encoded in
hexadecimal or BASE64 format. The default is hexadec-
imal.

skipinternals true, false Specifies whether to include six columns of VoltDB
metadata (such as transaction ID and timestamp) in the
output. If you specify skipinternals as true, the output
contains only the exported table data. The default is
false.

timezone string The time zone to use when formatting the timestamp.
Specify the time zone as a Java timezone identifier. The
default is GMT.

topic.prefix string The prefix to use when constructing the topic name.
Each row is sent to a topic identified by {prefix}{ta-
ble-name}. The default prefix is "voltdbexport".

metadata.broker.list,
request.required.acks,
request.timeout.ms, producer.type,
serializer.class, key.serializer.class,
partitioner.class, compression.codec,
compressed.topics,

various Standard Kafka producer properties can be specified as
properties to the VoltDB Kafka connector.

Exporting Live Data

102

Property Allowable Val-
ues

Description

message.send.max.retries,
retry.backoff.ms,
topic.metadata.refresh.interval.ms,
queue.buffering.max.ms,
queue.buffering.max.messages,
queue.enqueue.timeout.ms,
batch.num.messages,
send.buffer.bytes, client.id

*Required

13.9. The RabbitMQ Connector
The RabbitMQ connector fetches serialized data from the export tables and writes it to a RabbitMQ mes-
sage exchange. RabbitMQ is a popular message queueing service that supports multiple platforms, multi-
ple languages, and multiple protocols, including AMQP.

Before using the RabbitMQ connector, we strongly recommend reading the RabbitMQ documentation and
becoming familiar with the software, since you will need to set up a RabbitMQ exchange, queues, and
routing key filters to make use of VoltDB's RabbitMQ export functionality. The instructions in this section
assume a working knowledge of RabbitMQ and the RabbitMQ operational model.

You must also install the RabbitMQ Java client library before you can use the VoltDB connector. To install
the RabbitMQ Java client library:

1. Download the client library version 3.3.4 or later from the RabbitMQ website (http://
www.rabbitmq.com/java-client.html).

2. Copy the client JAR file into the lib/extension/ folder where VoltDB is installed for each node
in the cluster.

When the RabbitMQ connector receives data from the VoltDB export tables, it establishes a connection
to the RabbitMQ exchange as a producer. It then writes records to the service using the optional exchange
name and routing key suffix. RabbitMQ uses the routing key to identify which queue the data is sent to. The
exchange examines the routing key and based on the key value (and any filters defined for the exchange)
sends each message to the appropriate queue.

Every message sent by VoltDB to RabbitMQ contains a routing key that includes the name of the export
table. You can further refine the routing by appending a suffix to the table name, based on the contents
of individual table columns. By default, the value of the export table's partitioning column is used as a
suffix for the routing key. Alternately, you can specify a different column for each table by declaring the
routing.key.suffix property as a list of table and column name pairs, separating the table from the column
name with a period and separating the pairs with commas. For example:

<export enabled="true" target="rabbitmq">
 <configuration>
 <property name="broker.host">rabbitmq.mycompany.com</property>
 <property name="routing.key.suffix">
 voter_export.state,contestants_export.contestant_number
 </property>
 </configuration>
</export>

http://www.rabbitmq.com/
http://www.rabbitmq.com/documentation.html
http://www.rabbitmq.com/java-client.html
http://www.rabbitmq.com/java-client.html

Exporting Live Data

103

The important point to remember is that it is your responsibility to configure a RabbitMQ exchange that
matches the name associated with the exchange.name property (or take the default exchange) and cre-
ate queues and/or filters to match the routing keys generated by VoltDB. At a minimum, the exchange
must be able to handle routing keys starting with the export tables names. This can be achieved by
using a filter for each export table. For example, using the flight example in Section 13.2, “Planning
your Export Strategy”, you can create filters for EXPORT_FLIGHT.*, EXPORT_CUSTOMER.*, and
RESERVATION_FINAL.*.

Table 13.5, “RabbitMQ Export Properties” lists the supported properties for the RabbitMQ connector.

Table 13.5. RabbitMQ Export Properties

Property Allowable Values Description

broker.host* string The host name of a RabbitMQ exchange server.

broker.port integer The port number of the RabbitMQ server. The default port number
is 5672.

amqp.uri string An alternate method for specifying the location of the Rabbit-
MQ exchange server. Use of amqp.uri allows you to specify ad-
ditional RabbitMQ options as part of the connection URI. Either
broker.host or amqp.uri must be specified.

virtual.host string Specifies the namespace for the RabbitMQ exchange and queues.

username string The username for authenticating to the RabbitMQ host.

password string The password for authenticating to the RabbitMQ host.

exchange.name string The name of the RabbitMQ exchange to use. If you do not specify a
value, the default exchange for the RabbitMQ server is used.

routing.key.suffix {table}.{column}[,...] Specifies which table columns to use as a suffix for the RabbitMQ
routing key. The routing key always starts with the table name, in
uppercase. A suffix is then appended to the table name, separated by
a period.

By default, the value of the table's partitioning column is used as
the suffix. Using this property you can specify a list of table column
names, where the table name and column name are separated by a
period and the list of table references is separated by commas. This
syntax allows you to specify a different routing key suffix for each
table.

queue.durable true, false Whether the RabbitMQ queue is durable. That is, data in the queue
will be retained and restarted if the RabbitMQ server restarts. If you
specify the queue as durable, the messages themselves will also be
marked as durable to enable their persistence across server failure.
The default is true.

binaryencoding hex, base64 Specifies whether VARBINARY data is encoded in hexadecimal or
BASE64 format. The default is hexadecimal.

skipinternals true, false Specifies whether to include six columns of VoltDB metadata (such
as transaction ID and timestamp) in the output. If you specify skipin-
ternals as true, the output contains only the exported table data. The
default is false.

timezone string The time zone to use when formatting the timestamp. Specify the
time zone as a Java timezone identifier. The default is GMT.

*Required

Exporting Live Data

104

13.10. How Export Works
Two important aspects of export to keep in mind are:

• Export is automatic. When you enable export in the deployment file, the database servers take care of
starting and stopping the connector on each server when the database starts and stops, including if nodes
fail and rejoin the cluster.

• Export is asynchronous. The actual delivery of the data to the export target is asynchronous to the
transactions that initiate data transfer.

The advantage of an asynchronous approach is that any delays in delivering the exported data to the target
system do not interfere with the VoltDB database performance. The disadvantage is that VoltDB must
handle queueing export data pending its actual transmission to the target, including ensuring durability in
case of system failures. Again, this task is handled automatically by the VoltDB server process. But it is
useful to understand how the export queuing works and its consequences.

One consequence of this durability guarantee is that VoltDB will send at least one copy of every export
record to the target. However, it is possible when recovering command logs or rejoining nodes, that certain
export records are resent. It is up to the downstream target to handle these duplicate records. For example,
using unique indexes or including a unique record ID in the export table.

13.10.1. Export Overflow
For the export process to work, it is important that the connector keep up with the queue of exported
information. If too much data gets queued to the connector by the export function without being delivered
by the target system, the VoltDB server process consumes increasingly large amounts of memory.

If the export target does not keep up with the connector and the data queue fills up, VoltDB starts writing
overflow data in the export buffer to disk. This protects your database in several ways:

• If the destination is intermittently unreachable or cannot keep up with the data flow, writing to disk
helps VoltDB avoid consuming too much memory while waiting for the destination to catch up.

• If the database is stopped, the export data is retained across sessions. When the database restarts, the
connector will retrieve the overflow data and reinsert it in the export queue.

You can specify where VoltDB writes the overflow export data using the <exportoverflow> element in
the deployment file. For example:

<paths>
 <voltdbroot path="/opt/voltdb/" />
 <exportoverflow path="/tmp/export/"/>
</paths>

If you do not specify a path for export overflow, VoltDB creates a subfolder in the root directory (in the
preceding example, /opt/voltdb). See Section 6.1.2, “Configuring Paths for Runtime Features” for
more information about configuring paths in the deployment file.

13.10.2. Persistence Across Database Sessions
It is important to note that VoltDB only uses the disk storage for overflow data. However, you can force
VoltDB to write all queued export data to disk by either calling the @Quiesce system procedure or by
requesting a blocking snapshot. (That is, calling @SnapshotSave with the blocking flag set.) This means

Exporting Live Data

105

it is possible to perform an orderly shutdown of a VoltDB database and ensure all data (including export
data) is saved with the following procedure:

1. Put the database into admin mode with the voltadmin pause command.

2. Perform a blocking snapshot with voltadmin save, saving both the database and any existing queued
export data.

3. Shutdown the database with voltadmin shutdown.

You can then restore the database — and any pending export queue data — by starting the database in
admin mode, restoring the snapshot, and then exiting admin mode.

106

Chapter 14. Logging and Analyzing
Activity in a VoltDB Database

VoltDB uses Log4J, an open source logging service available from the Apache Software Foundation, to
provide access to information about database events. By default, when using the VoltDB shell commands,
the console display is limited to warnings, errors, and messages concerning the status of the current process.
A more complete listing of messages (of severity INFO and above) is written to log files in the subfolder
/log, relative to the user's current default location.

The advantages of using Log4J are:

• Logging is compiled into the code and can be enabled and configured at run-time.

• Log4J provides flexibility in configuring what events are logged, where, and the format of the output.

• By using Log4J in your client applications, you can integrate the logging and analysis of both the data-
base and the application into a single consistent output stream.

• By using an open source logging service with standardized output, there are a number of different ap-
plications, such as Chainsaw, available for filtering and presenting the results.

Logging is important because it can help you understand the performance characteristics of your applica-
tion, check for abnormal events, and ensure that the application is working as expected.

Of course, any additional processing and I/O will have an incremental impact on the overall database
performance. To counteract any negative impact, Log4J gives you the ability to customize the logging to
support only those events and servers you are interested in. In addition, when logging is not enabled, there
is no impact to VoltDB performance. With VoltDB, you can even change the logging profile on the fly
without having to shutdown or restart the database.

The following sections describe how to enable and customize logging of VoltDB using Log4J. This chap-
ter is not intended as a tutorial or complete documentation of the Log4J logging service. For general in-
formation about Log4J, see the Log4J web site at http://wiki.apache.org/logging-log4j/.

14.1. Introduction to Logging
Logging is the process of writing information about application events to a log file, console, or other
destination. Log4J uses XML files to define the configuration of logging, including three key attributes:

• Where events are logged. The destinations are referred to as appenders in Log4J (because events are
appended to the destinations in sequential order).

• What events are logged. VoltDB defines named classes of events (referred to as loggers) that can be
enabled as well as the severity of the events to report.

• How the logging messages are formatted (known as the layout),

14.2. Creating the Logging Configuration File
VoltDB ships with a default Log4J configuration file, voltdb/log4j.xml, in the installation directory. The
sample applications and the VoltDB shell commands use this file to configure logging and it is recom-
mended for new application development. This default Log4J file lists all of the VoltDB-specific logging

http://wiki.apache.org/logging-log4j/

Logging and Analyzing Ac-
tivity in a VoltDB Database

107

categories and can be used as a template for any modifications you wish to make. Or you can create a
new file from scratch.

The following is an example of a Log4J configuration file:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/">

<appender name="Async" class="org.apache.log4j.AsyncAppender">
 <param name="Blocking" value="true" />
 <appender-ref ref="Console" />
 <appender-ref ref="File" />
</appender>

<appender name="Console" class="org.apache.log4j.ConsoleAppender">
 <param name="Target" value="System.out" />
 <layout class="org.apache.log4j.TTCCLayout" />
</appender>

<appender name="File" class="org.apache.log4j.FileAppender">
 <param name="File" value="/tmp/voltdb.log" />
 <param name="Append" value="true" />
 <layout class="org.apache.log4j.TTCCLayout" />
</appender>

<logger name="AUTH">
<!-- Print all VoltDB authentication messages -->
 <level value="trace" />
</logger>

<root>
 <priority value="debug" />
 <appender-ref ref="Async" />
</root>
</log4j:configuration>

The preceding configuration file defines three destinations, or appenders, called Async, Console, and File.
The appenders define the type of output (whether to the console, to a file, or somewhere else), the location
(such as the file name), as well as the layout of the messages sent to the appender. See the log4J docmen-
tation for more information about layout.

Note that the appender Async is a superset of Console and File. So any messages sent to Async are routed
to both Console and File. This is important because for logging of VoltDB, you should always use an
asynchronous appender as the primary target to avoid the processing of the logging messages from blocking
other execution threads.

More importantly, you should not use any appenders that are susceptible to extended delays, blockages,
or slow throughput, This is particularly true for network-based appenders such as SocketAppender and
third-party log infrastructures including logstash and JMS. If there is any prolonged delay in writing to the
appenders, messages can end up being held in memory causing performance degradation and, ultimately,
possible out of memory errors.

The configuration file also defines a root class. The root class is the default logger and all loggers inherit the
root definition. So, in this case, any messages of severity "debug" or higher are sent to the Async appender.

Logging and Analyzing Ac-
tivity in a VoltDB Database

108

Finally, the configuration file defines a logger specifically for VoltDB authentication messages. The logger
identifies the class of messages to log (in this case "AUTH"), as well as the severity ("trace"). VoltDB
defines several different classes of messages you can log. Table 14.1, “VoltDB Components for Logging”
lists the loggers you can invoke.

Table 14.1. VoltDB Components for Logging

Logger Description

ADHOC Execution of ad hoc queries

AUTH Authentication and authorization of clients

COMPILER Interpretation of SQL in ad hoc queries

CONSOLE Informational messages intended for display on the
console

EXPORT Exporting data

GC Java garbage collection

HOST Host specific events

NETWORK Network events related to the database cluster

REJOIN Node recovery and rejoin

SNAPSHOT Snapshot activity

SQL Execution of SQL statements

TM Transaction management

.

14.3. Enabling Logging for VoltDB
Once you create your Log4J configuration file, you specify which configuration file to use by defining the
variable LOG4J_CONFIG_PATH before starting the VoltDB database. For example:

$ LOG4J_CONFIG_PATH="$HOME/MyLog4jConfig.xml"
$ voltdb create mycatalog.jar \
 -H localhost -d mydeployment.xml

14.4. Customizing Logging in the VoltDB Enter-
prise Manager

When using the VoltDB Enterprise Manager to manage your databases, the startup process is automated
for you. There is no command line for specifying a Log4J configuration file.

Instead, the Enterprise Manager provides a Log4J properties file that is used to start each
node in the cluster. You can change the logging configuration by modifying the properties file
server_log4j.properties included in the /management subfolder of the VoltDB installation.
The Enterprise Manager copies and uses this file to enable logging on all servers when it starts the database.

Note that the properties file used by the VoltDB Enterprise Manager is in a different format than the XML
file used when configuring Log4J on the command line. However, both files let you configure the same
logging attributes. In the case of the properties file, be sure to add your modifications to the end of the file
so as not to interfere with the logging required by the Enterprise Manager itself.

Logging and Analyzing Ac-
tivity in a VoltDB Database

109

14.5. Changing the Timezone of Log Messages
By default all VoltDB logging is reported in GMT (Greenwich Mean Time). If you want the logging to be
reported using a different timezone, you can use extensions to the Log4J service to achieve this.

To change the timezone of log messages:

1. Download the extras kit from the Apache Extras for Apache Log4J website, http://logging.apache.org/
log4j/extras/.

2. Unpack the kit and place the included JAR file in the /lib/extension folder of the VoltDB instal-
lation directory.

3. Update your Log4J configuration file to enable the Log4J extras and specify the desired timezone for
logging for each appender.

You enable the Log4J extras by specifying EnhancedPatternLayout as the layout class for the ap-
penders you wish to change. You then identify the desired timezone as part of the layout pattern. For
example, the following XML fragment changes the timezone of messages written to the file appender to
GMT minus four hours:

 <appender name="file" class="org.apache.log4j.DailyRollingFileAppender">
 <param name="file" value="log/volt.log"/>
 <param name="DatePattern" value="'.'yyyy-MM-dd" />
 <layout class="org.apache.log4j.EnhancedPatternLayout">
 <param name="ConversionPattern" value="%d{ISO8601}{GMT-4} %-5p [%t] %c: %m%n"/>
 </layout>
 </appender>

You can use any valid ISO-8601 timezone specification, including named timezones, such as EST.

To customize the timezone when using the VoltDB Enterprise Manager, you must specify the layout class
and pattern using the Log4J properties file in the /management folder. For example, the following
code appended to the file server_log4j.properties would make the same change to the timezone
for clusters started with the Enterprise Manager as the preceding example would when starting a server
manually:

Add your own log4j configurations below this line

log4j.appender.file.layout=org.apache.log4j.EnhancedPatternLayout
log4j.appender.file.layout.ConversionPattern=%d{ISO8601}{GMT-4} %-5p [%t] %c: %m%n

14.6. Changing the Configuration on the Fly
Once the database has started, you can still start or reconfigure the logging without having to stop and
restart the database. By calling the system procedure @UpdateLogging you can pass the configuration
XML to the servers as a text string. For any appenders defined in the new updated configuration, the
existing appender is removed and the new configuration applied. Other existing appenders (those not
mentioned in the updated configuration XML) remain unchanged.

http://logging.apache.org/log4j/extras/
http://logging.apache.org/log4j/extras/

110

Chapter 15. Using VoltDB with Other
Programming Languages

VoltDB stored procedures are written in Java and the primary client interface also uses Java. However,
that is not the only programming language you can use with VoltDB.

It is possible to have client interfaces written in almost any language. These client interfaces allow pro-
grams written in different programming languages to interact with a VoltDB database using native func-
tions of the language. The client interface then takes responsibility for translating those requests into a
standard communication protocol with the database server as described in the VoltDB wire protocol.

Some client interfaces are developed and packaged as part of the standard VoltDB distribution kit while
others are compiled and distributed as separate client kits. As of this writing, the following client interfaces
are available for VoltDB:

• C#

• C++

• Erlang

• Go

• Java (packaged with VoltDB)

• JDBC (packaged with VoltDB)

• JSON (packaged with VoltDB)

• Node.js

• ODBC

• PHP

• Python

• Ruby

The JSON client interface may be of particular interest if your favorite programming language is not listed
above. JSON is a data format, rather than a programming interface, and the JSON interface provides a
way for applications written in any programming language to interact with VoltDB via JSON messages
sent across a standard HTTP protocol.

The following sections explain how to use the C++, JSON, and JDBC client interfaces.

15.1. C++ Client Interface
VoltDB provides a client interface for programs written in C++. The C++ client interface is available pre-
compiled as a separate kit from the VoltDB web site, or in source format from the VoltDB github repository
(http://github.com/VoltDB/voltdb-client-cpp). The following sections describe how to write VoltDB client
applications in C++.

http://voltdb.com/
http://github.com/VoltDB/voltdb-client-cpp

Using VoltDB with Oth-
er Programming Languages

111

15.1.1. Writing VoltDB Client Applications in C++
When using the VoltDB client library, as with any C++ library, it is important to include all of the neces-
sary definitions at the beginning of your source code. For VoltDB client applications, this includes defin-
itions for the VoltDB methods, structures, and datatypes as well as the libraries that VoltDB depends on
(specifically, boost shared pointers). For example:

#include <boost/shared_ptr.hpp>
#include "Client.h"
#include "Table.h"
#include "TableIterator.h"
#include "Row.hpp"
#include "WireType.h"
#include "Parameter.hpp"
#include "ParameterSet.hpp"
#include <vector>

Once you have included all of the necessary declarations, there are three steps to using the interface to
interact with VoltDB:

1. Create and open a client connection

2. Invoke stored procedures

3. Interpret the results

The following sections explain how to perform each of these functions.

15.1.2. Creating a Connection to the Database Cluster
Before you can call VoltDB stored procedures, you must create a client instance and connect to the database
cluster. For example:

voltdb::ClientConfig config("myusername", "mypassword");
voltdb::Client client = voltdb::Client::create(config);
client.createConnection("myserver");

As with the Java client interface, you can create connections to multiple nodes in the cluster by making
multiple calls to the createConnection method specifying a different IP address for each connection.

15.1.3. Invoking Stored Procedures
The C++ client library provides both a synchronous and asynchronous interface. To make a synchronous
stored procedure call, you must declare objects for the parameter types, the procedure call itself, the para-
meters, and the response. Note that the datatypes, the procedure, and the parameters need to be declared
in a specific order. For example:

/* Declare the number and type of parameters */
vector<voltdb::Parameter> parameterTypes(3);
parameterTypes[0] = voltdb::Parameter(voltdb::WIRE_TYPE_BIGINT);
parameterTypes[1] = voltdb::Parameter(voltdb::WIRE_TYPE_STRING);
parameterTypes[2] = voltdb::Parameter(voltdb::WIRE_TYPE_STRING);

/* Declare the procedure and parameter structures */
voltdb::Procedure procedure("AddCustomer", parameterTypes);

Using VoltDB with Oth-
er Programming Languages

112

voltdb::ParameterSet* params = procedure.params();

/* Declare a client response to receive the status and return values */
boost::shared_ptr<voltdb::InvocationResponse> response;

Once you instantiate these objects, you can reuse them for multiple calls to the stored procedure, inserting
different values into params each time. For example:

params->addInt64(13505).addString("William").addString("Smith");
response = client->invoke(procedure);
params->addInt64(13506).addString("Mary").addString("Williams");
response = client->invoke(procedure);
params->addInt64(13507).addString("Bill").addString("Smythe");
response = client->invoke(procedure);

15.1.4. Invoking Stored Procedures Asynchronously
To make asynchronous procedure calls, you must also declare a callback structure and method that will
be used when the procedure call completes.

class AsyncCallback : public voltdb::ProcedureCallback
{
public:
 bool callback
 (boost::shared_ptr<voltdb::InvocationResponse> response)
 throw (voltdb::Exception)
 {
 /*
 * The work of your callback goes here...
 */
 }
]

Then, when you go to make the actual stored procedure invocation, you declare an callback instance and
invoke the procedure, using both the procedure structure and the callback instance:

boost::shared_ptr<AsyncCallback> callback(new AsyncCallback());
client->invoke(procedure, callback);

Note that the C++ interface is single-threaded. The interface is not thread-safe and you should not use
instances of the client, client response, or other client interface structures from within multiple concurrent
threads. Also, the application must release control occasionally to give the client interface an opportunity
to issue network requests and retrieve responses. You can do this by calling either the run() or runOnce()
methods.

The run() method waits for and processes network requests, responses, and callbacks until told not to.
(That is, until a callback returns a value of false.)

The runOnce() method processes any outstanding work and then returns control to the client application.

In most applications, you will want to create a loop that makes asynchronous requests and then calls
runOnce(). This allows the application to queue stored procedure requests as quickly as possible while
also processing any incoming responses in a timely manner.

Another important difference when making stored procedure calls asynchronously is that you must make
sure all of the procedure calls complete before the client connection is closed. The client objects destructor

Using VoltDB with Oth-
er Programming Languages

113

automatically closes the connection when your application leaves the context or scope within which the
client is defined. Therefore, to make sure all asynchronous calls have completed, be sure to call the drain
method until it returns true before leaving your client context:

while (!client->drain()) {}

15.1.5. Interpreting the Results
Both the synchronous and asynchronous invocations return a client response object that contains both the
status of the call and the return values. You can use the status information to report problems encountered
while running the stored procedure. For example:

if (response->failure())
{
 cout << "Stored procedure failed. " << response->toString();
 exit(-1);
}

If the stored procedure is successful, you can use the client response to retrieve the results. The results
are returned as an array of VoltTable structures. Within each VoltTable object you can use an iterator to
walk through the rows. There are also methods for retrieving each datatype from the row. For example,
the following example displays the results of a single VoltTable containing two strings in each row:

/* Retrieve the results and an iterator for the first volttable */
vector<boost::shared_ptr<voltdb::Table> > results = response->results();
voltdb::TableIterator iterator = results[0]->iterator();

/* Iterate through the rows */
while (iterator.hasNext())
{
 voltdb::Row row = iterator.next();
 cout << row.getString(0) << ", " << row.getString(1) << endl;
}

15.2. JSON HTTP Interface
JSON (JavaScript Object Notation) is not a programming language; it is a data format. The JSON "inter-
face" to VoltDB is actually a web interface that the VoltDB database server makes available for processing
requests and returning data in JSON format.

The JSON interface lets you invoke VoltDB stored procedures and receive their results through HTTP
requests. To invoke a stored procedure, you pass VoltDB the procedure name and parameters as a querys-
tring to the HTTP request, using either the GET or POST method.

Although many programming languages provide methods to simplify the encoding and decoding of JSON
strings, you still need to understand the data structures that are created. So if you are not familiar with
JSON encoding, you may want to read more about it at http://www.json.org.

15.2.1. How the JSON Interface Works
To use the VoltDB JSON interface, you must first enable JSON in the deployment file. You do this by
adding the following tags to the deployment file:

<httpd>

http://www.json.org/

Using VoltDB with Oth-
er Programming Languages

114

 <jsonapi enabled="true"/>
</httpd>

With JSON enabled, when a VoltDB database starts it opens port 80801 on the local machine as a simple
web server. Any HTTP requests sent to the location /api/1.0/ on that port are interpreted as requests to run
a stored procedure. The structure of the request is:

URL http://<server>:8080/api/1.0/

Arguments Procedure=<procedure-name>
Parameters=<procedure-parameters>
User=<username for authentication>
Password=<password for authentication>
Hashedpassword=<Hashed password for authentication>
admin=<true|false>
jsonp=<function-name>

The arguments can be passed either using the GET or the POST method. For example, the following URL
uses the GET method (where the arguments are appended to the URL) to execute the system procedure
@SystemInformation on the VoltDB database running on node voltsvr.mycompany.com:

http://voltsvr.mycompany.com:8080/api/1.0/?Procedure=@SystemInformation

Note that only the Procedure argument is required. You can authenticate using the User and Pass-
word (or Hashedpassword) arguments if security is enabled for the database. Use Password to send
the password as plain text or Hashedpassword to send the password as a SHA-1 encoded string. (The
hashed password must be a 40-byte hex-encoding of the 20-byte SHA-1 hash.)2

You can also include the parameters on the request. However, it is important to note that the parameters
— and the response returned by the stored procedure — are JSON encoded. The parameters are an array
(even if there is only one element to that array) and therefore must be enclosed in square brackets.

The admin argument specifies whether the request is submitted on the standard client port (the default)
or the admin port (when you specify admin=true). If the database is in admin mode, you must submit
requests over the admin port or else the request is rejected by the server.

The admin port should be used for administrative tasks only. Although all stored procedures can be invoked
through the admin port, using the admin port through JSON is far less efficient than using the client port.
All admin mode requests to JSON are separate synchronous requests; whereas calls to the normal client
port are asynchronous through a shared session.

The jsonp argument is provided as a convenience for browser-based applications (such as Javascript)
where cross-domain browsing is disabled. When you include the jsonp argument, the entire response is
wrapped as a function call using the function name you specify. Using this technique, the response is a
complete and valid Javascript statement and can be executed to create the appropriate language-specific
object. For example, calling the @Statistics system procedure in Javascript using the jQuery library looks
like this:

$.getJSON('http://myserver:8080/api/1.0/?Procedure=@Statistics' +
 '&Parameters=["MANAGEMENT",0]&jsonp=?',
 {},MyCallBack);

1You can specify an alternate port for the JSON interface when you start the VoltDB server by including the port number as an attribute of the
<httpd> tag in the deployment file. For example: <httpd port="{port-number}">.
2Hashing the password stops the text of your password from being detectable from network traffic. However, it does not make the database access
any more secure. To secure the transmission of credentials and data between client applications and VoltDB, use an SSL proxy server in front of
the database servers.

Using VoltDB with Oth-
er Programming Languages

115

Perhaps the best way to understand the JSON interface is to see it in action. If you build and start the Hello
World example application that is provided in the VoltDB distribution kit (including the client that loads
data into the database), you can then open a web browser and connect to the local system through port
8080, to retrieve the French translation of "Hello World". For example:

http://localhost:8080/api/1.0/?Procedure=Select&Parameters=["French"]

The resulting display is the following:

{"status":1,"appstatus":-128,"statusstring":null,"appstatusstring":null,
"exception":null,"results":[{"status":-128,"schema":[{"name":"HELLO",
"type":9},{"name":"WORLD","type":9}],"data":[["Bonjour","Monde"]]}]}

As you can see, the results (which are a JSON-encoded string) are not particularly easy to read. But then,
the JSON interface is not really intended for human consumption. It's real purpose is to provide a generic
interface accessible from almost any programming language, many of which already provide methods for
encoding and decoding JSON strings and interpreting their results.

15.2.2. Using the JSON Interface from Client Applications
The general process for using the JSON interface from within a program is:

1. Encode the parameters for the stored procedure as a JSON-encoded string

2. Instantiate and execute an HTTP request, passing the name of the procedure and the parameters as
arguments using either GET or POST.

3. Decode the resulting JSON string into a language-specific data structure and interpret the results.

The following are examples of invoking the Hello World Insert stored procedure from several different
languages. In each case, the three arguments (the name of the language and the words for "Hello" and
"World") are encoded as a JSON string.

PHP

// Construct the procedure name, parameter list, and URL.

 $voltdbserver = "http://myserver:8080/api/1.0/";
 $proc = "Insert";
 $a = array("Croatian","Pozdrav","Svijet");
 $params = json_encode($a);
 $params = urlencode($params);
 $querystring = "Procedure=$proc&Parameters=$params";

// create a new cURL resource and set options
 $ch = curl_init();
 curl_setopt($ch, CURLOPT_URL, $voltdbserver);
 curl_setopt($ch, CURLOPT_HEADER, 0);
 curl_setopt($ch, CURLOPT_FAILONERROR, 1);
 curl_setopt($ch, CURLOPT_POST, 1);
 curl_setopt($ch, CURLOPT_POSTFIELDS, $querystring);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);

// Execute the request
 $resultstring = curl_exec($ch);

Using VoltDB with Oth-
er Programming Languages

116

Python

import urllib
import urllib2
import json

Construct the procedure name, parameter list, and URL.
url = 'http://myserver:8080/api/1.0/'
voltparams = json.dumps(["Croatian","Pozdrav","Svijet"])
httpparams = urllib.urlencode({
 'Procedure': 'Insert',
 'Parameters' : voltparams
})
print httpparams
Execute the request
data = urllib2.urlopen(url, httpparams).read()

Decode the results
result = json.loads(data)

Perl

use LWP::Simple;

my $server = 'http://myserver:8080/api/1.0/';

Insert "Hello World" in Croatian
my $proc = 'Insert';
my $params = '["Croatian","Pozdrav","Svijet"]';
my $url = $server . "?Procedure=$proc&Parameters=$params";
my $content = get $url;
die "Couldn't get $url" unless defined $content;

C#

using System;
using System.Text;
using System.Net;
using System.IO;

namespace hellovolt

{
 class Program
 {
 static void Main(string[] args)
 {
 string VoltDBServer = "http://myserver:8080/api/1.0/";
 string VoltDBProc = "Insert";
 string VoltDBParams = "[\"Croatian\",\"Pozdrav\",\"Svijet\"]";
 string Url = VoltDBServer + "?Procedure=" + VoltDBProc
 + "&Parameters=" + VoltDBParams;

 string result = null;

Using VoltDB with Oth-
er Programming Languages

117

 WebResponse response = null;
 StreamReader reader = null;

 try
 {
 HttpWebRequest request = (HttpWebRequest)WebRequest.Create(Url);
 request.Method = "GET";
 response = request.GetResponse();
 reader = new StreamReader(response.GetResponseStream(),Encoding.UTF8);
 result = reader.ReadToEnd();

 }
 catch (Exception ex)

 { // handle error
 Console.WriteLine(ex.Message);
 }
 finally
 {
 if (reader != null)reader.Close();
 if (response != null) response.Close();

 }
 }
 }
}

15.2.3. How Parameters Are Interpreted
When you pass arguments to the stored procedure through the JSON interface, VoltDB does its best to
map the data to the datatype required by the stored procedure. This is important to make sure partitioning
values are interpreted correctly.

For integer values, the JSON interface maps the parameter to the smallest possible integer type capable of
holding the value. (For example, BYTE for values less than 128). Any values containing a decimal point
are interpreted as DOUBLE.

String values (those that are quoted) are handled in several different ways. If the stored procedure is ex-
pecting a BIGDECIMAL, the JSON interface will try to interpret the quoted string as a decimal value.
If the stored procedure is expecting a TIMESTAMP, the JSON interface will try to interpret the quoted
string as a JDBC-encoded timestamp value. (You can alternately pass the argument as an integer value
representing the number of microseconds from the epoch.) Otherwise, quoted strings are interpreted as
a string datatype.

Table 15.1, “Datatypes in the JSON Interface” summarizes how to pass different datatypes in the JSON
interface.

Table 15.1. Datatypes in the JSON Interface

Datatype How to Pass Example

Integers (Byte, Short, Integer,
Long)

An integer value 12345

DOUBLE A value with a decimal point 123.45

Using VoltDB with Oth-
er Programming Languages

118

Datatype How to Pass Example

BIGDECIMAL A quoted string containing a value
with a decimal point

"123.45"

TIMESTAMP Either an integer value or a quoted
string containing a JDBC-encod-
ed date and time

12345

"2010-07-01 12:30:21"

String A quoted string "I am a string"

15.2.4. Interpreting the JSON Results
Making the request and decoding the result string are only the first steps. Once the request is completed,
your application needs to interpret the results.

When you decode a JSON string, it is converted into a language-specific structure within your application,
composed of objects and arrays. If your request is successful, VoltDB returns a JSON-encoded string that
represents the same ClientResponse object returned by calls to the callProcedure method in the Java client
interface. Figure 15.1, “The Structure of the VoltDB JSON Response” shows the structure of the object
returned by the JSON interface.

Figure 15.1. The Structure of the VoltDB JSON Response

{ appstatus (integer, boolean)
 appstatusstring (string)
 exception (integer)
 results (array)
 [(object, VoltTable)
 { data (array)
 [(any type)
]
 schema (array)
 [name (string)
 type (integer, enumerated)
]
 status (integer, boolean)
 }
]
 status (integer)
 statusstring (string)
}

The key components of the JSON response are the following:

appstatus Indicates the success or failure of the stored procedure. If appstatus is false, appsta-
tusstring contains the text of the status message.

results An array of objects representing the data returned by the stored procedure. This is an array
of VoltTable objects. If the stored procedure does not return a value (i.e. is void or null),
then results will be null.

data Within each VoltTable object, data is the array of values.

schema Within each VoltTable, object schema is an array of objects with two elements: the name
of the field and the datatype of that field (encoded as an enumerated integer value).

Using VoltDB with Oth-
er Programming Languages

119

status Indicates the success or failure of the VoltDB server in its attempt to execute the stored
procedure. The difference between appstatus and status is that if the server cannot execute
the stored procedure, the status is returned in status, whereas if the stored procedure can be
invoked, but a failure occurs within the stored procedure itself (such as a SQL constraint
violation), the status is returned in appstatus.

It is possible to create a generic procedure for testing and evaluating the result values from any VoltDB
stored procedure. However, in most cases it is far more expedient to evaluate the values that you know
the individual procedures return.

For example, again using the Hello World example that is provided with the VoltDB software, it is possible
to use the JSON interface to call the Select stored procedure and return the values for "Hello" and "World"
in a specific language. Rather than evaluate the entire results array (including the name and type fields),
we know we are only receiving one VoltTable object with two string elements. So we can simplify the
code, as in the following python example:

import urllib
import urllib2
import json
import pprint

Construct the procedure name, parameter list, and URL.
url = 'http://localhost:8080/api/1.0/'
voltparams = json.dumps(["French"])
httpparams = urllib.urlencode({
 'Procedure': 'Select',
 'Parameters' : voltparams
})

Execute the request
data = urllib2.urlopen(url, httpparams).read()

Decode the results
result = json.loads(data)

Get the data as a simple array and display them
foreignwords = result[u'results'][0][u'data'][0]

print foreignwords[0], foreignwords[1]

15.2.5. Error Handling using the JSON Interface
There are a number of different reasons why a stored procedure request using the JSON interface may fail:
the VoltDB server may be unreachable, the database may not be started yet, the stored procedure name
may be misspelled, the stored procedure itself may fail... When using the standard Java client interface,
these different situations are handled at different times. (For example, server and database access issues
are addressed when instantiating the client, whereas stored procedure errors can be handled when the
procedures themselves are called.) The JSON interface simplifies the programming by rolling all of these
activities into a single call. But you must be more organized in how you handle errors as a consequence.

When using the JSON interface, you should check for errors in the following order:

1. First check to see that the HTTP request was submitted without errors. How this is done depends on what
language-specific methods you use for submitting the request. In most cases, you can use the appropriate
programming language error handlers (such as try-catch) to catch and interpret HTTP request errors.

Using VoltDB with Oth-
er Programming Languages

120

2. Next check to see if VoltDB successfully invoked the stored procedure. You can do this by verifying
that the HTTP request returned a valid JSON-encoded string and that its status is set to true.

3. If the VoltDB server successfully invoked the stored procedure, then check to see if the stored procedure
itself succeeded, by checking to see if appstatus is true.

4. Finally, check to see that the results are what you expect. (For example, that the data array is non-empty
and contains the values you need.)

15.3. JDBC Interface
JDBC (Java Database Connectivity) is a programming interface for Java programmers that abstracts data-
base specifics from the methods used to access the data. JDBC provides standard methods and classes
for accessing a relational database and vendors then provide JDBC drivers to implement the abstracted
methods on their specific software.

VoltDB provides a JDBC driver for those who would prefer to use JDBC as the data access interface. The
VoltDB JDBC driver supports ad hoc queries, prepared statements, calling stored procedures, and methods
for examining the metadata that describes the database schema.

15.3.1. Using JDBC to Connect to a VoltDB Database
The VoltDB driver is a standard class within the VoltDB software jar. To load the driver you use the
Class.forName method to load the class org.voltdb.jdbc.Driver.

Once the driver is loaded, you create a connection to a running VoltDB database server by constructing
a JDBC url using the "jdbc:" protocol, followed by "voltdb://", the server name, a colon, and the port
number. In other words, the complete JDBC connection url is "jdbc:voltdb://{server}:{port}". To connect
to multiple nodes in the cluster, use a comma separated list of server names and port numbers after the
"jdbc:voltdb://" prefix.

For example, the following code loads the VoltDB JDBC driver and connects to the servers svr1 and svr2
using the default client port:

Class.forName("org.voltdb.jdbc.Driver");
Connection c = DriverManager.getConnection(
 "jdbc:voltdb://svr1:21212,svr2:21212");

15.3.2. Using JDBC to Query a VoltDB Database
Once the connection is made, you use the standard JDBC classes and methods to access the database. (See
the JDBC documentation at http://download.oracle.com/javase/6/docs/technotes/
guides/jdbc for details.) Note, however, when running the JDBC application, you must make sure
both the VoltDB software jar and the Guava library are in the Java classpath. Guava is a third party library
that is shipped as part of the VoltDB kit in the /lib directory. Unless you include both components in the
classpath, your application will not be able to find and load the necessary driver class.

The following is a complete example that uses JDBC to access the Hello World tutorial that comes with
the VoltDB software in the subdirectory /doc/tutorials/helloworld. The JDBC demo program
executes both an ad hoc query and a call to the VoltDB stored procedure, Select.

import java.sql.*;
import java.io.*;

http://download.oracle.com/javase/6/docs/technotes/guides/jdbc
http://download.oracle.com/javase/6/docs/technotes/guides/jdbc

Using VoltDB with Oth-
er Programming Languages

121

public class JdbcDemo {

 public static void main(String[] args) {

 String driver = "org.voltdb.jdbc.Driver";
 String url = "jdbc:voltdb://localhost:21212";
 String sql = "SELECT dialect FROM helloworld";

 try {
 // Load driver. Create connection.
 Class.forName(driver);
 Connection conn = DriverManager.getConnection(url);

 // create a statement
 Statement query = conn.createStatement();
 ResultSet results = query.executeQuery(sql);
 while (results.next()) {
 System.out.println("Language is " + results.getString(1));
 }

 // call a stored procedure
 CallableStatement proc = conn.prepareCall("{call Select(?)}");
 proc.setString(1, "French");
 results = proc.executeQuery();
 while (results.next()) {
 System.out.printf("%s, %s!\n", results.getString(1),
 results.getString(2));
 }

 //Close statements, connections, etc.
 query.close();
 proc.close();
 results.close();
 conn.close();

 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

122

Appendix A. Supported SQL DDL
Statements

This appendix describes the subset of the SQL Data Definition Language (DDL) that VoltDB supports
when defining the schema for a VoltDB database. VoltDB also supports extensions to the standard syntax
to allow for the declaration of stored procedures and partitioning information related to tables and proce-
dures.

The following sections are not intended as a complete description of the standard SQL DDL. Instead, they
summarize the subset of standard SQL DDL statements that are allowed in a VoltDB schema definition
and any exceptions, extensions, or limitations that application developers should be aware of.

The supported standard SQL DDL statements are:

• CREATE INDEX
• CREATE TABLE
• CREATE VIEW

The supported VoltDB-specific extensions for declaring stored procedures and partitioning are:

• CREATE PROCEDURE AS
• CREATE PROCEDURE FROM CLASS
• CREATE ROLE
• EXPORT TABLE
• IMPORT CLASS
• PARTITION PROCEDURE
• PARTITION TABLE

Supported SQL DDL Statements

123

CREATE INDEX
CREATE INDEX — Creates an index for faster access to a table.

Syntax

CREATE [UNIQUE|ASSUMEUNIQUE] INDEX index-name ON table-name (index-column [,...])

Description
Creating an index on a table makes read access to the table faster when using the columns of the index as
a key. Note that VoltDB creates an index automatically when you specify a constraint, such as a primary
key, in the CREATE TABLE statement.

When you specify that the index is UNIQUE, VoltDB constrains the table to at most one row for each set
of index column values. If an INSERT or UPDATE statement attempts to create a row where all the index
column values match an existing indexed row, the statement fails.

Because the uniqueness constraint is enforced separately within each partition, only indexes on replicated
tables or containing the partitioning column of partitioned tables can ensure global uniqueness for parti-
tioned tables and therefore support the UNIQUE keyword.

If you wish to create an index on a partitioned table that acts like a unique index but does not include the
partitioning column, use the keyword ASSUMEUNIQUE instead of UNIQUE. Assumed unique indexes
are treated like unique indexes (VoltDB verifies they are unique within the current partition). However,
it is your responsibility to ensure these indexes are actually globally unique. Otherwise, it is possible an
index will generate a constraint violation during an operation that modifies the partitioning of the database
(such as adding nodes on the fly or restoring a snapshot to a different cluster configuration).

The indexed items (index-column) are either columns of the specified table or expressions, including func-
tions, based on the table. For example, the following statements index a table based on the calculated area
and its distance from a set location:

CREATE INDEX areaofplot ON plot (width * height);
CREATE INDEX distancefrom49 ON plot (ABS(latitude - 49));

By default, VoltDB creates a tree index. Tree indexes provide the best general performance for a wide
range of operations, including exact value matches and queries involving a range of values, such as
SELECT ... WHERE Score > 1 AND Score < 10.

If an index is used exclusively for exact matches (such as SELECT ... WHERE MyHashColumn
= 123), it is possible to create a hash index instead. To create a hash index, include the string "hash"
as part of the index name.

Examples
The following example creates two indexes on a single table. The first is, by default, a non-unique index
based on the departure time The second is a unique index based on the columns for the airline and flight
number.

CREATE INDEX flightTimeIdx ON FLIGHT (departtime);
CREATE UNIQUE INDEX FlightKeyIdx ON FLIGHT (airline, flightID);

Supported SQL DDL Statements

124

You can also use functions in the index definition. For example, the following is an index based on the
element movie within a JSON-encoded VARCHAR column named favorites and the member's ID.

CREATE INDEX FavoriteMovie ON MEMBER (
 FIELD(favorites, 'movie'), memberID
);

Supported SQL DDL Statements

125

CREATE PROCEDURE AS
CREATE PROCEDURE AS — Defines a stored procedure composed of a SQL query.

Syntax

CREATE PROCEDURE procedure-name [ALLOW role-name [,...]] AS sql-statement

CREATE PROCEDURE procedure-name [ALLOW role-name [,...]] AS ### source-code ###
LANGUAGE GROOVY

Description
You must declare stored procedures as part of the schema to make them accessible at runtime. The declared
procedures are evaluated and included in the application catalog when you compile the database schema.

Use CREATE PROCEDURE AS when declaring stored procedures directly within the schema definition.
There are two forms of the CREATE PROCEDURE AS statement:

• The SQL query form supports a single SQL query statement in the AS clause. The SQL statement
can contain question marks (?) as placeholders that are filled in at runtime with the arguments to the
procedure call.

• The embedded program code form supports the inclusion of program code in the AS clause. The embed-
ded program code is opened and closed by three pound signs (###) and followed by the LANGUAGE
clause specifying the programming language in use. VoltDB currently supports Groovy as an embedded
language.

In both cases, the procedure name must follow the naming conventions for Java class names. For example,
the name is case-sensitive and cannot contain any white space.

If security is enabled at runtime, only those roles named in the ALLOW clause have permission to invoke
the procedure. If security is not enabled at runtime, the ALLOW clause is ignored and all users have access
to the stored procedure.

Examples
The following example defines a stored procedure, CountUsersByCountry, as a single SQL query with a
placeholder for matching the country column:

CREATE PROCEDURE CountUsersByCountry AS
 SELECT COUNT(*) FROM Users WHERE country=?;

The next example restricts access to the stored procedure to only users with the admin role:

CREATE PROCEDURE ChangeAdminPassword ALLOW admin AS
 UPDATE Accounts SET (HashedPassword=?) WHERE userID='root';

Supported SQL DDL Statements

126

CREATE PROCEDURE FROM CLASS
CREATE PROCEDURE FROM CLASS — Defines a stored procedure associated with a Java class.

Syntax

CREATE PROCEDURE [ALLOW role-name [,...]] FROM CLASS class-name

Description
You must declare stored procedures to make them accessible at runtime. The declared procedures are
evaluated and included in the application catalog when you compile the database schema.

If security is enabled at runtime, only those roles named in the ALLOW clause have permission to invoke
the procedure. If security is not enabled at runtime, the ALLOW clause is ignored and all users have access
to the stored procedure.

Use CREATE PROCEDURE FROM CLASS when adding user-defined stored procedures written in Java.
The class-name is the name of the Java class. This class must be accessible from the classpath argument
used when compiling the application catalog.

Example
The following example declares a stored procedure matching the Java class MakeReservation. Note that
the class name includes its location within the current class path (in this case, as a child of flight and
procedures). However, the name itself, MakeReservation, must be unique within the catalog because at
runtime stored procedures are invoked by name only.

CREATE PROCEDURE FROM CLASS flight.procedures.MakeReservation;

Supported SQL DDL Statements

127

CREATE ROLE
CREATE ROLE — Defines a role and the permissions associated with that role.

Syntax

CREATE ROLE role-name [WITH permission [,...]]

Description
The CREATE ROLE statement defines a named role that can be used to assign access rights to specific
procedures and functions. When security is enabled in the deployment file, the permissions assigned in the
CREATE ROLE and CREATE PROCEDURE statements specify which users can access which functions.

Use the CREATE PROCEDURE statement to assign permissions to named roles for accessing specific
stored procedures. The CREATE ROLE statement lets you assign certain generic permissions. The per-
missions that can be assigned by the WITH clause are:

ADHOC Allows access to ad hoc queries (through the @AdHoc system procedure and sqlcmd
command)

DEFAULT-
PROC

Allows access to the default procedures for all tables

SYSPROC Allows access to all system procedures

The generic permissions are denied by default. So you must explicitly enable them for those roles that
need them. For example, if users assigned to the "interactive" role need to run ad hoc queries, you must
explicitly assign that permission in the CREATE ROLE statement:

CREATE ROLE interactive WITH adhoc;

Also note that the permissions are additive. So if a user is assigned to one role that allows access to
adhoc but not sysproc, but that user also is assigned to another role that allows sysproc, the user has both
permissions.

Example
The following example defines three roles — admin, developer, and batch — each with a different set
of permissions:

CREATE ROLE admin WITH sysproc, defaultproc;
CREATE ROLE developer WITH adhoc, defaultproc;
CREATE ROLE batch WITH defaultproc;

Supported SQL DDL Statements

128

CREATE TABLE
CREATE TABLE — Creates a table in the database.

Syntax

CREATE TABLE table-name (
column-definition [,...]
[, constraint-definition [,...]]

);

column-definition: column-name datatype [DEFAULT value] [NOT NULL] [index-type]

constraint-definition: [CONSTRAINT constraint-name] { index-definition | limit-definition }

index-definition: {index-type} (column-name [,...])

limit-definition: LIMIT PARTITION ROWS row-count

index-type: PRIMARY KEY | UNIQUE | ASSUMEUNIQUE

Description

The CREATE TABLE statement creates a table and its associated columns in the database. The supported
datatypes are described in Table A.1, “Supported SQL Datatypes”.

Table A.1. Supported SQL Datatypes

SQL Datatype Equivalent Ja-
va Datatype

Description

TINYINT byte 1-byte signed integer, -127 to 127a

SMALLINT short 2-byte signed integer, -32,767 to 32,767

INTEGER int 4-byte signed integer, -2,147,483,647 to
2,147,483,647

BIGINT long 8-byte signed integer, -9,223,372,036,854,775,807
to 9,223,372,036,854,775,807

FLOAT double 8-byte numeric, -(2-2-52)·21023 to (2-2-52)·21023

(Note that values less than or equal to -1.7E+308
are interpreted as null.)

DECIMAL BigDecimal 16-byte fixed scale of 12 and precision of 38,
-99999999999999999999999999.999999999999
to 99999999999999999999999999.999999999999

VARCHAR() String Variable length text string, with a maximum length
specified in either characters (the default) or bytes.
To specify the length in bytes, use the BYTES
keyword after the length value. For example:
VARCHAR(28 BYTES).

Supported SQL DDL Statements

129

SQL Datatype Equivalent Ja-
va Datatype

Description

VARBINARY() byte array Variable length binary string (sometimes referred
to as a "blob") with a maximum length specified in
bytes

TIMESTAMP long, VoltDB Time-
stampType

Time in microseconds

aFor integer and floating-point datatypes, VoltDB reserves the largest possible negative value to denote a null value. For example
-128 is interpreted as null for TINYINT, -32768 for SMALLINT, and so on.

The following limitations are important to note when using the CREATE TABLE statement in VoltDB:

• CHECK and FOREIGN KEY constraints are not supported.

• VoltDB does not support AUTO_INCREMENT, the automatic incrementing of column values.

• Each column has a maximum size of one megabyte and the total declared size of all of the columns in a
table cannot exceed two megabytes. For VARCHAR columns where the length is specified in characters,
the declared size is calculated as four bytes per character to allow for the longest potential UTF-8 string.

• If you intend to use a column to partition a table, that column cannot contain null values. You must
specify NOT NULL in the definition of the column or VoltDB issues an error when compiling the
schema.

• When you specify an index constraint, by default VoltDB creates a tree index. You can explicitly create
a hash index by including the string "hash" as part of the index name. For example, the following
declaration creates a hash index, Version_Hash_Idx, of three numeric columns.

CREATE TABLE Version (
 Major SMALLINT NOT NULL,
 Minor SMALLINT NOT NULL,
 baselevel INTEGER NOT NULL,
 ReleaseDate TIMESTAMP,
 CONSTRAINT Version_Hash_Idx PRIMARY KEY
 (Major, Minor, Baselevel)
);

See the description of CREATE INDEX for more information on the difference between hash and tree
indexes.

• To specify an index — either for an individual column or as a table constraint — that is globally unique
across the database, use the standard SQL keywords UNIQUE and PRIMARY KEY. However, for
partitioned tables, VoltDB can only ensure uniqueness if the index includes the partitioning column.
Otherwise, these keywords are not allowed.

It can be a performance advantage to define indexes or constraints on non-partitioning columns that you,
as the developer, know are going to contain unique values. Although VoltDB cannot ensure uniqueness
across the entire database, it does allow you to define indexes that are assumed to be unique by using
the ASSUMEUNIQUE keyword.

When you define an index on a partitioned table as ASSUMEUNIQUE, VoltDB verifies uniqueness
within the current partition when creating an index entry. However, it is your responsibility as developer
or administrator to ensure that the values are actually globally unique. If the database is repartitioned due
to adding new nodes or restoring a snapshot to a different cluster configuration, non-unique ASSUME-

Supported SQL DDL Statements

130

UNIQUE index entries may collide. When this occurs it results in a constraint violation error and the
database will not be able to complete its current action.

Therefore, ASSUMEUNIQUE should be used with caution. Also, it is not necessary and should not
be used with replicated tables or indexes that contain the partitioning column, which can be defined
as UNIQUE.

• VoltDB includes a special constraint, LIMIT PARTITION ROWS, that limits the number of rows of data
that can be inserted into any one partition for the table. This constraint is useful for managing memory
usage and avoiding accidentally running out of memory due to unbalanced partitions or unexpected
data growth.

Note that the limit, specified as an integer, limits the number of rows per partition, not for the table as
a whole. In the case of replicated tables, where each partition contains all rows of the table, the limit
applies equally to the table as a whole and each partition. Also, the constraint is applied to INSERT
operations. The constraint is not enforced when restoring a snapshot, updating the application catalog,
or rebalancing the cluster as part of elastically adding nodes. In these cases, ignoring the limit allows
the operation to succeed even if, as a result, a partition ends up containing more rows that specified
by the LIMIT PARTITION ROWS constraint. But once the limit has been exceeded, any attempt to
INSERT more table rows into that partition will result in an error, until sufficient rows are deleted to
reduce the row count below the limit.

• The length of VARCHAR columns can be specified in either characters (the default) or bytes. To specify
the length in bytes, include the BYTES keyword after the length value; for example VARCHAR(16
BYTES).

Specifying the VARCHAR length in characters is recommended because UTF-8 characters can require
a variable number of bytes to store. By specifying the length in characters you can be sure the column
has sufficient space to store any string of the specified length. Specifying the length in bytes is only
recommended when all values contain only single byte (ASCII) characters or when conserving space is
required and the strings are less than 64 bytes in length.

• The VARBINARY datatype provides variable storage for arbitrary strings of binary data and operates
similarly to VARCHAR(n BYTES) strings. You assign byte arrays to a VARBINARY column when
passing in variables, or you can use a hexidecimal string for assigning literal values in the SQL statement.
However, VARBINARY columns cannot be used in indexes or in conditional comparisons (such as in
SELECT ... WHERE statements).

• The VoltDB TIMESTAMP datatype is a long integer representing the number of microseconds since
the epoch. Two important points to note about this timestamp:

• The VoltDB TIMESTAMP is not the same as the Java Timestamp datatype or traditional Linux time
measurements, which are measured in milliseconds rather than microseconds. Appropriate conversion
is needed when casting values between a VoltDB TIMESTAMP and other timestamp datatypes.

• The VoltDB TIMESTAMP is interpreted as a Greenwich Meantime (GMT) value. Depending on
how time values are created, their value may or may not account for the local machine's default time
zone. Mixing timestamps from different time zones (for example, in WHERE clause comparisons)
can result in unexpected behavior.

• For TIMESTAMP columns, you can define a default value using the NOW or
CURRENT_TIMESTAMP keywords in place of a specific value. For example:

CREATE TABLE Event (
 Event_Id INTEGER UNIQUE NOT NULL,
 Event_Timestamp TIMESTAMP DEFAULT NOW,

Supported SQL DDL Statements

131

 Event_Description VARCHAR(128)
);

The default value is evaluated at runtime as an approximation, in milliseconds, of when the transaction
begins execution.

Example
The following example defines a table with five columns. The first column, Company, is not allowed
to be null, which is important since it is used as the partitioning column in the following PARTITION
TABLE statement. That column is also contained in the PRIMARY KEY constraint. Again, it is important
to include the partitioning column in any fully unique indexes for partitioned tables.

CREATE TABLE Inventory (
 Company VARCHAR(32) NOT NULL,
 ProductID BIGINT NOT NULL,
 Price DECIMAL,
 Category VARCHAR(32),
 Description VARCHAR(256),
 PRIMARY KEY (Company, ProductID)
);
PARTITION TABLE Inventory ON COLUMN Company;

Supported SQL DDL Statements

132

CREATE VIEW
CREATE VIEW — Creates a view into a table, used to optimize access to specific columns within a table.

Syntax

CREATE VIEW view-name (view-column-name [,...])
AS SELECT { column-name | selection-expression } [AS alias] [,...]
FROM table-name
[WHERE [NOT] boolean-expression [{AND | OR} [NOT] boolean-expression]...]
GROUP BY { column-name | selection-expression } [,...]

Description
The CREATE VIEW statement creates a view of a table with selected columns and aggregates. VoltDB
implements views as materialized views. In other words, the view is stored as a special table in the data-
base and is updated each time the corresponding database table is modified. This means there is a small,
incremental performance impact for any inserts or updates to the table, but selects on the view will execute
efficiently.

The following limitations are important to note when using the CREATE VIEW statement with VoltDB:

• Views are allowed on individual tables only. Joins are not supported.

• The SELECT statement must obey the following constraints:

• There must be a GROUP BY clause in the SELECT statement.

• All of the columns and selection expressions listed in the GROUP BY must be listed in the same
order at the start of the SELECT statement.

• SELECT must include a field specified as COUNT(*). Other aggregate functions (COUNT, MAX,
MIN, and SUM) are allowed following the COUNT(*).

Example
The following example defines a view that counts the number of records for a specific product item grouped
by its location (that is, the warehouse the item is in).

CREATE VIEW inventory_count_by_warehouse (
 productID,
 warehouse,
 total_inventory
) AS SELECT
 productID,
 warehouse,
 COUNT(*)
FROM inventory GROUP BY productID, warehouse;

Supported SQL DDL Statements

133

EXPORT TABLE
EXPORT TABLE — Specifies that a table is for export only.

Syntax

EXPORT TABLE table-name

Description
At runtime, any records written to an export-only table are queued to the export connector, as described
in Chapter 13, Exporting Live Data. If export is enabled, this data is then passed to the export connector
that manages the export process.

The EXPORT TABLE statement lets you specify which tables in the schema are export-only tables. These
tables become write-only. That is, they can be used in INSERT statements, but not SELECT, UPDATE,
or DELETE statements.

If export is not enabled at runtime, writing to export-only tables has no effect.

Example
The following example defines two tables — User and User_Export — with similar columns. The second
table is then defined as an export table. By inserting into the User_Export table every time a row is inserted
into the User table, an automated list of users can be maintained external to the active VoltDB database.

CREATE TABLE User (
 UserID VARCHAR(15) NOT NULL,
 EmailAddress VARCHAR(128) NOT NULL,
 Created TIMESTAMP,
 Password VARCHAR(14),
 LastLogin TIMESTAMP);

CREATE TABLE User_Export (
 UserID BIGINT NOT NULL,
 EmailAddress VARCHAR(128) NOT NULL,
 Created TIMESTAMP);

EXPORT TABLE User_Export;

Supported SQL DDL Statements

134

IMPORT CLASS
IMPORT CLASS — Specifies additional Java classes to include in the application catalog.

Syntax

IMPORT CLASS class-name

Description
The IMPORT CLASS statement lets you specify class files to be added to the application catalog when
the schema is compiled. You can include individual class files only; the IMPORT CLASS statement does
not extract classes from JAR files. However, you can use Ant-style wildcards in the class specification to
include multiple classes. For example:

IMPORT CLASS org.mycompany.utils.*;

Use the IMPORT CLASS statement to include reusable code that is accessed by multiple stored proce-
dures. Any classes and methods called by stored procedures must follow the same rules for deterministic
behavior that stored procedures follow, as described in Section 3.2.2, “VoltDB Stored Procedures and
Determinism”.

Code imported using IMPORT CLASS is included in the application catalog and, therefore, can be updated
on a running database through the @UpdateApplicationCatalog system procedure. For static libraries that
stored procedures use but that do not need to be modified often, the recommended approach is to include
the code by placing JAR files in the /lib directory where VoltDB is installed on the database servers.

Example
The following example imports a class containing common financial algorithms so they can be used by
any stored procedures in the catalog:

IMPORT CLASS org.mycompany.common.finance;

Supported SQL DDL Statements

135

PARTITION PROCEDURE
PARTITION PROCEDURE — Specifies that a stored procedure is partitioned.

Syntax

PARTITION PROCEDURE procedure-name ON TABLE table-name COLUMN column-name
[PARAMETER position]

Description
Partitioning a stored procedure means that the procedure executes within a unique partition of the database.
The partition in which the procedure executes is chosen at runtime based on the table and column specified
by table-name and column-name and the value of the first parameter to the procedure. For example:

PARTITION TABLE Employees ON COLUMN BadgeNumber;
PARTITION PROCEDURE FindEmployee ON TABLE Employees COLUMN BadgeNumber;

The procedure FindEmployee is partitioned on the table Employees, and table Employees is in turn parti-
tioned on the column BadgeNumber. This means that when the stored procedure FindEmployee is invoked
VoltDB determines which partition to run the stored procedure in based on the value of the first parameter
to the procedure and the corresponding partitioning value for the column BadgeNumber. So to find the
employee with badge number 145303 you would invoke the stored procedure as follows:

clientResponse response = client.callProcedure("FindEmployee", 145303);

By default, VoltDB uses the first parameter to the stored procedure as the partitioning value. However, if
you want to use the value of a different parameter, you can use the PARAMETER clause. The PARAME-
TER clause specifies which procedure parameter to use as the partitioning value, with position specifying
the parameter position, counting from zero. (In other words, position 0 is the first parameter, position 1
is the second, and so on.)

The specified table must be a partitioned table and cannot be an export-only or replicated table.

You specify the procedure by its simplified class name. Do not include any other parts of the class path.
Note that the simple procedure name you specify in the PARTITION PROCEDURE may be different than
the class name you specify in the CREATE PARTITION statement, which can include a relative path. For
example, if the class for the stored procedure is mydb.procedures.FindEmployee, the procedure name in
the PARTITION PROCEDURE statement should be FindEmployee:

CREATE PARTITION FROM CLASS mydb.procedures.FindEmployee;
PARTITION PROCEDURE FindEmployee ON TABLE Employees COLUMN BadgeNumber;

Examples
The following example declares a stored procedure, using an inline SQL query, and then partitions the
procedure on the Customer table, Note that the PARTITION PROCEDURE statement includes the PA-
RAMETER clause, since the partitioning column is not the first of the placeholders in the SQL query.
Also note that the PARTITION argument is zero-based, so the value "1" identifies the second placeholder.

CREATE PROCEDURE GetCustomerByName AS
 SELECT * from Customer WHERE FirstName=? AND LastName = ?
 ORDER BY LastName, FirstName, CustomerID;

Supported SQL DDL Statements

136

PARTITION PROCEDURE GetCustomerByName
 ON TABLE Customer COLUMN LastName
 PARAMETER 1;

The next example declares a stored procedure as a Java class. Since the first argument to the procedure's
run method is the value for the LastName column, The PARTITION PROCEDURE statement does not
require a POSITION clause and can use the default.

CREATE PROCEDURE FROM CLASS org.mycompany.ChangeCustomerAddress;

PARTITION PROCEDURE ChangeCustomerAddress
 ON TABLE Customer COLUMN LastName;

Supported SQL DDL Statements

137

PARTITION TABLE
PARTITION TABLE — Specifies that a table is partitioned and which is the partitioning column.

Syntax

PARTITION TABLE table-name ON COLUMN column-name

Description
Partitioning a table specifies that different records are stored in different unique partitions, based on the
value of the specified column. The table table-name and column column-name must be valid, declared
elements in the current DDL file or VoltDB generates an error when compiling the schema.

For a table to be partitioned, the partitioning column must be declared as NOT NULL. If you do not declare
a partitioning column of a table in the DDL, the table is assumed to be a replicated table.

Example
The following example partitions the table Employee on the column EmployeeID.

PARTITION TABLE Employee on COLUMN EmployeeID;

138

Appendix B. Supported SQL Statements
This appendix describes the SQL syntax that VoltDB supports in stored procedures.

This is not intended as a complete description of the SQL language and how it operates. Instead, it summa-
rizes the subset of standard SQL statements that are allowed in VoltDB and any exceptions or limitations
that application developers should be aware of.

The supported SQL statements are:

• DELETE
• INSERT
• SELECT
• TRUNCATE TABLE
• UPDATE
• UPSERT

Supported SQL Statements

139

DELETE
DELETE — Deletes one or more records from the database.

Syntax

DELETE FROM table-name
[WHERE [NOT] boolean-expression [{AND | OR} [NOT] boolean-expression]...]

Description
The DELETE statement deletes rows from the specified table that meet the constraints of the WHERE
clause. The following limitations are important to note when using the DELETE statement in VoltDB:

• The DELETE statement can operate on only one table at a time (no joins or subqueries).

• The WHERE expression supports the boolean operators: equals (=), not equals (!= or <>), greater than
(>), less than (<), greater than or equal to (>=), less than or equal to (<=), IS NULL, AND, OR, and NOT.
Note, however, although OR is supported syntactically, VoltDB does not optimize these operations and
use of OR may impact the performance of your queries.

Examples
The following example removes rows from the EMPLOYEE table where the EMPLOYEE_ID column
is equal to 145303.

DELETE FROM employee WHERE employee_id = 145303;

The following example removes rows from the BID table where the BIDDERID is 12345 and the BID-
PRICE is less than 100.00.

DELETE FROM bid WHERE bidderid=12345 AND bidprice<100.0;

Supported SQL Statements

140

INSERT
INSERT — Creates new rows in the database, using the specified values for the columns.

Syntax

INSERT INTO table-name [(column-name [,...])] VALUES (value-expression [,...])

INSERT INTO table-name [(column-name [,...])] SELECT select-expression

Description
The INSERT statement creates one or more new rows in the database. There are two forms the the INSERT
statement, INSERT INTO... VALUES and INSERT INTO... SELECT. The INSERT INTO... VALUES
statement lets you enter specific values for a adding a single row to the database. The INSERT INTO...
SELECT statement lets you insert multiple rows into the database, depending upon the number of rows
returned by the select expression.

The INSERT INTO... SELECT statement is often used for copying rows from one table to another. For
example, say you want to export all of the records associated with a particular column value. The following
INSERT statement copies all of the records from the table ORDERS with a warehouseID of 25 into the
table EXPORT_ORDERS:

INSERT INTO Export_Orders SELECT * FROM Orders WHERE CustomerID=25;

However, the select expression can be more complex, including joining multiple tables. The following
limitations currently apply to the INSERT INTO... SELECT statement:

• INSERT INTO... SELECT can join partitioned tables only if they are joined on equality of the parti-
tioning columns. Also, the resulting INSERT must apply to a partitioned table and be inserted using the
same partition column value, whether the query is executed in a single-partitioned or multi-partitioned
stored procedure.

• INSERT INTO... SELECT does not support UNION statements.

In addition to the preceding limitations, there are certain instances where the select expression is too com-
plex to be processed. Cases of invalid select expressions in INSERT INTO... SELECT include:

• A LIMIT or TOP clause applied to a partitioned table in a multi-partitioned query

• A GROUP BY of a partitioned table where the partitioning column is not in the GROUP BY clause

Deterministic behavior is critical to maintaining the integrity of the data in a K-safe cluster. Because an
INSERT INTO... SELECT statement performs both a query and an insert based on the results of that query,
if the selection expression would produces non-deterministic results, the VoltDB query planner rejects the
statement and returns an error. See Section 3.2.2, “VoltDB Stored Procedures and Determinism” for more
information on the importance of determinism in SQL queries.

If you specify the column names following the table name, the values will be assigned to the columns in
the order specified. If you do not specify the column names, values will be assigned to columns based on
the order specified in the schema definition. However, if you specify a subset of the columns, you must
specify values for any columns that are explicitly defined in the schema as NOT NULL and do not have
a default value assigned.

Supported SQL Statements

141

Examples
The following example inserts values into the columns (firstname, mi, lastname, and emp_id) of an EM-
PLOYEE table:

INSERT INTO employee VALUES ('Jane', 'Q', 'Public', 145303);

The next example performs the same operation with the same results, except this INSERT statement ex-
plicitly identifies the column names and changes the order:

INSERT INTO employee (emp_id, lastname, firstname, mi)
 VALUES (145303, 'Public', 'Jane', 'Q');

The last example assigns values for the employee ID and the first and last names, but not the middle initial.
This query will only succeed if the MI column is nullable or has a default value defined in the database
schema.

INSERT INTO employee (emp_id, lastname, firstname)
 VALUES (145304, "Doe", "John");

Supported SQL Statements

142

SELECT
SELECT — Fetches the specified rows and columns from the database.

Syntax

Select-statement [{set-operator} Select-statement] ...

Select-statement:
SELECT [TOP integer-value]
{ * | [ALL | DISTINCT] { column-name | selection-expression } [AS alias] [,...] }
FROM { table-reference } [join-clause]...
[WHERE [NOT] boolean-expression [{AND | OR} [NOT] boolean-expression]...]
[clause...]

table-reference:
{ table-name [AS alias] | view-name [AS alias] | sub-query AS alias }

sub-query:
(Select-statement)

join-clause:
,table-reference
[INNER | {LEFT | RIGHT} [OUTER]] JOIN [{table-reference}] [join-condition]

join-condition:
ON conditional-expression
USING (column-reference [,...])

clause:
ORDER BY { column-name | alias } [ASC | DESC] [,...]
GROUP BY { column-name | alias } [,...]
HAVING boolean-expression
LIMIT integer-value [OFFSET row-count]

set-operator:
UNION [ALL]
INTERSECT [ALL]
EXCEPT

Description

The SELECT statement retrieves the specified rows and columns from the database, filtered and sorted
by any clauses that are included in the statement. In its simplest form, the SELECT statement retrieves
the values associated with individual columns. However, the selection expression can be a function such
as COUNT and SUM.

The following features and limitations are important to note when using the SELECT statement with
VoltDB:

• See Appendix C, SQL Functions for a full list of the SQL functions the VoltDB supports.

Supported SQL Statements

143

• VoltDB supports the following operators in expressions: addition (+), subtraction (-), multiplication (*),
division (*) and string concatenation (||).

• TOP n is a synonym for LIMIT n.

• The WHERE expression supports the boolean operators: equals (=), not equals (!= or <>), greater than
(>), less than (<), greater than or equal to (>=), less than or equal to (<=), LIKE, IS NULL, AND,
OR, and NOT. Note, however, although OR is supported syntactically, VoltDB does not optimize these
operations and use of OR may impact the performance of your queries.

• The boolean expression LIKE provides text pattern matching in a VARCHAR column. The syntax of
the LIKE expression is {string-expression} LIKE '{pattern}' where the pattern can
contain text and wildcards, including the underscore (_) for matching a single character and the percent
sign (%) for matching zero or more characters. The string comparison is case sensitive.

Where an index exists on the column being scanned and the pattern starts with a text prefix (rather than
starting with a wildcard), VoltDB will attempt to use the index to maximize performance, For example, a
query limiting the results to rows from the EMPLOYEE table where the primary index¸ the JOB_CODE
column, begins with the characters "Temp" looks like this:

SELECT * from EMPLOYEE where JOB_CODE like 'Temp%';

• The boolean expression IN determines if a given value is found within a list of alternatives. For exam-
ple, in the following code fragment the IN expression looks to see if a record is part of Hispaniola by
evaluating whether the column COUNTRY is equal to either "Dominican Republic" or "Haiti":

WHERE Country IN ('Dominican Republic', 'Haiti')

Note that the list of alternatives must be enclosed in parentheses. The result of an IN expression is
equivalent to a sequence of equality conditions separated by OR. So the preceding code fragment pro-
duces the same boolean result as:

WHERE Country='Dominican Republic' OR Country='Haiti'

The advantages are that the IN syntax provides more compact and readable code and can provide im-
proved performance by using an index on the initial expression where available.

• When using placeholders in SQL statements involving the IN list expression, you can either do replace-
ment of individual values within the list or replace the list as a whole. For example, consider the fol-
lowing statements:

SELECT * from EMPLOYEE where STATUS IN (?, ?,?);
SELECT * from EMPLOYEE where STATUS IN ?;

In the first statement, there are three parameters that replace individual values in the IN list, allowing
you to specify exactly three selection values. In the second statement the placeholder replaces the entire
list, including the parentheses. In this case the parameter to the procedure call must be an array and
allows you to change not only the values of the alternatives but the number of criteria considered.

The following Java code fragment demonstrates how these two queries can be used in a stored procedure,
resulting in equivalent SQL statements being executed:

String arg1 = "Salery";
String arg2 = "Hourly";
String arg3 = "Parttime";
voltQueueSQL(query1, arg1, arg2, arg3);

Supported SQL Statements

144

String listargs[] = new String[3];
listargs[0] = arg1;
listargs[1] = arg2;
listargs[2] = arg3;
voltQueueSQL(query2, (Object) listargs);

Note that when passing arrays as parameters in Java, it is a good practice to explicitly cast them as an
object to avoid the array being implicitly expanded into individual call parameters.

• VoltDB supports the use of CASE-WHEN-THEN-ELSE-END for conditional operations. For exam-
ple, the following SELECT expression uses a CASE statement to return different values based on the
contents of the price column:

SELECT Prod_name,
 CASE WHEN price > 100.00
 THEN 'Expensive'
 ELSE 'Cheap'
 END
FROM products ORDER BY Prod_name;

For more complex conditional operations with multiple alternatives, use of the DECODE() function is
recommended.

• VoltDB supports both inner and outer joins.

• The SELECT statement supports subqueries as a table reference in the FROM clause. Subqueries must
be enclosed in parentheses and must be assigned a table alias. Note that subqueries are only support-
ed in the SELECT statement; they cannot be used in data manipulation statements such UPDATE or
DELETE.

• You can only join two or more partitioned tables if those tables are partitioned on the same value and
joined on equality of the partitioning column. Joining two partitioned tables on non-partitioned columns
or on a range of values is not supported. However, there are no limitations on joining to replicated tables.

• Extremely large result sets (greater than 50 megabytes in size) are not supported. If you execute a
SELECT statement that generates a result set of more than 50 megabytes, VoltDB will return an error.

Set Operations
VoltDB also supports the set operations UNION, INTERSECT, and EXCEPT. These keywords let you
perform set operations on two or more SELECT statements. UNION includes the combined results sets
from the two SELECT statements, INTERSECT includes only those rows that appear in both SELECT
statement result sets, and EXCEPT includes only those rows that appear in one result set but not the other.

Normally, UNION and INTERSECT provide a set including unique rows. That is, if a row appears in
both SELECT results, it only appears once in the combined result set. However, if you include the ALL
modifier, all matching rows are included. For example, UNION ALL will result in single entries for the
rows that appear in only one of the SELECT results, but two copies of any rows that appear in both.

The UNION, INTERSECT, and EXCEPT operations obey the same rules that apply to joins:

• You cannot perform set operations on SELECT statements that reference the same table.

• All tables in the SELECT statements must either be replicated tables or partitioned tables partitioned
on the same column value, using equality of the partitioning column in the WHERE clause.

Supported SQL Statements

145

Examples
The following example retrieves all of the columns from the EMPLOYEE table where the last name is
"Smith":

SELECT * FROM employee WHERE lastname = 'Smith';

The following example retrieves selected columns for two tables at once, joined by the employee_id using
an implicit inner join and sorted by last name:

SELECT lastname, firstname, salary
 FROM employee AS e, compensation AS c
 WHERE e.employee_id = c.employee_id
 ORDER BY lastname DESC;

The following example includes both a simple SQL query defined in the schema and a client application
to call the procedure repeatedly. This combination uses the LIMIT and OFFSET clauses to "page" through
a large table, 500 rows at a time.

When retrieving very large volumes of data, it is a good idea to use LIMIT and OFFSET to constrain the
amount of data in each transaction. However, to perform LIMIT OFFSET queries effectively, the database
must include a tree index that encompasses all of the columns of the ORDER BY clause (in this example,
the lastname and firstname columns).

Schema:

CREATE PROCEDURE EmpByLimit AS
 SELECT lastname, firstname FROM employee
 WHERE company = ?
 ORDER BY lastname ASC, firstname ASC
 LIMIT 500 OFFSET ?;

PARTITION PROCEDURE EmpByLimit ON TABLE Employee COLUMN Company;

Java Client Application:

long offset = 0;
String company = "ACME Explosives";
boolean alldone = false;
while (! alldone) {
 VoltTable results[] = client.callProcedure("EmpByLimit",
 company,offset).getResults();
 if (results[0].getRowCount() < 1) {
 // No more records.
 alldone = true;
 } else {
 // do something with the results.
 }
 offset += 500;
}

Supported SQL Statements

146

TRUNCATE TABLE
TRUNCATE TABLE — Deletes all records from the specified table.

Syntax

TRUNCATE TABLE table-name

Description
The TRUNCATE TABLE statement deletes all of the records from the specified table. TRUNCATE TA-
BLE is the same as the statement DELETE FROM {table-name} with no selection clause. These
statements contain optimizations to increase performance and reduce memory usage over an equivalent
DELETE statement containing a WHERE selection clause.

The following behavior is important to remember when using the TRUNCATE TABLE statement in Volt-
DB:

• Executing a TRUNCATE TABLE query on a partitioned table within a single-partitioned stored pro-
cedure will only delete the records within the current partition. Records in other partitions will be un-
affected.

• You cannot execute a TRUNCATE TABLE query on a replicated table from within a single-partition
stored procedure. To truncate a replicated table you must execute the query within a multi-partition
stored procedure or as an ad hoc query.

Examples
The following example removes all data from the CURRENT_STANDINGS table:

TRUNCATE TABLE Current_standings;

Supported SQL Statements

147

UPDATE
UPDATE — Updates the values within the specified columns and rows of the database.

Syntax

UPDATE table-name SET column-name = value-expression [, ...]
[WHERE [NOT] boolean-expression [{AND | OR} [NOT] boolean-expression]...]

Description
The UPDATE statement changes the values of columns within the specified records. The following limi-
tations are important to note when using the UPDATE statement with VoltDB:

• VoltDB supports the following arithmetic operators in expressions: addition (+), subtraction (-), multi-
plication (*), and division (*).

• The WHERE expression supports the boolean operators: equals (=), not equals (!= or <>), greater than
(>), less than (<), greater than or equal to (>=), less than or equal to (<=), IS NULL, AND, OR, and NOT.
Note, however, although OR is supported syntactically, VoltDB does not optimize these operations and
use of OR may impact the performance of your queries.

Examples
The following example changes the ADDRESS column of the EMPLOYEE record with an employee ID
of 145303:

UPDATE employee
 SET address = '49 Lavender Sweep'
 WHERE employee_id = 145303;

The following example increases the starting price by 25% for all ITEM records with a category ID of 7:

UPDATE item SET startprice = startprice * 1.25 WHERE categoryid = 7;

Supported SQL Statements

148

UPSERT
UPSERT — Either inserts new rows or updates existing rows depending on the primary key value.

Syntax

UPSERT INTO table-name [(column-name [,...])] VALUES (value-expression [,...])

UPSERT INTO table-name [(column-name [,...])] SELECT select-expression

Description
The UPSERT statement has the same syntax as the INSERT statement and will perform the same function,
assuming a record with a matching primary key does not already exist in the database. If such a record does
exist, UPSERT updates the existing record with the new column values. Note that the UPSERT statement
can only be executed on tables that have a primary key.

UPSERT has the same two forms as the INSERT statement: UPSERT INTO... VALUES and UPSERT
INTO... SELECT. The UPSERT statement also has similar constraints and limitations as the INSERT
statement with regards to joining partitioned tables and overly complex SELECT clauses. (See the de-
scription of the INSERT statement for details.)

However, UPSERT INTO... SELECT has an additional limitation: the SELECT statement must produce
deterministically ordered results. That is, the query must not only produce the same rows, they must be in
the same order to ensure the subsequent inserts and updates produce identical results.

Examples
The following examples use two tables, Employee and Manager, both of which define the column emp_id
as a primary key. In the first example, the UPSERT statement either creates a new row with the specified
values or updates an existing row with the primary key 145303.

UPSERT INTO employee (emp_id, lastname, firstname, title, department)
 VALUES (145303, 'Public', 'Jane', 'Manager', 'HR');

The next example copies records from the Employee table to the Manager table, if the employee's title
is "Manager". Again, new records will be created or existing records updated depending on whether the
employee already has a record in the Manager table. Notice the use of the primary key in an ORDER BY
clause to ensure deterministic results from the SELECT statement.

UPSERT INTO Manager (emp_id, lastname, firstname, title, department)
 SELECT * from Employee WHERE title='Manager' ORDER BY emp_id;

149

Appendix C. SQL Functions
Functions let you aggregate column values and perform other calculations and transformations on data
within your SQL queries. This appendix lists the functions alphabetically, describing for each their syntax
and purpose. The functions can also be grouped by the type of data they produce or operate on, as listed
below.

Column Aggregation Functions

• AVG()
• COUNT()
• MAX()
• MIN()
• SUM()

Date and Time Functions

• CURRENT_TIMESTAMP
• DAY(), DAYOFMONTH()
• DAYOFWEEK()
• DAYOFYEAR()
• EXTRACT()
• FROM_UNIXTIME()
• HOUR()
• MINUTE()
• MONTH()
• NOW
• QUARTER()
• SECOND()
• SINCE_EPOCH()
• TO_TIMESTAMP()
• TRUNCATE()
• WEEK(), WEEKOFYEAR()
• WEEKDAY()
• YEAR()

JSON Functions

• ARRAY_ELEMENT()
• ARRAY_LENGTH()
• FIELD()
• SET_FIELD()

Logic and Conversion Functions

• CAST()
• COALESCE()
• DECODE()

Math Function

• ABS()

SQL Functions

150

• CEILING()
• EXP()
• FLOOR()
• POWER()
• SQRT()

String Functions

• CHAR()
• CHAR_LENGTH()
• CONCAT()
• FORMAT_CURRENCY()
• LEFT()
• LOWER()
• OCTET_LENGTH()
• OVERLAY()
• POSITION()
• REPEAT()
• REPLACE()
• RIGHT()
• SPACE()
• SUBSTRING()
• TRIM()
• UPPER()

SQL Functions

151

ABS()
ABS() — Returns the absolute value of a numeric expression.

Syntax

ABS(numeric-expression)

Description
The ABS() function returns the absolute value of the specified numeric expression.

Example
The following example sorts the results of a SELECT expression by its proximity to a target value (spec-
ified by a placeholder), using the ABS() function to normalize values both above and below the intended
target.

SELECT price, product_name FROM product_list
 ORDER BY ABS(price - ?) ASC;

SQL Functions

152

ARRAY_ELEMENT()
ARRAY_ELEMENT() — Returns the element at the specified location in a JSON array.

Syntax

ARRAY_ELEMENT(JSON-array, element-position)

Description
The ARRAY_ELEMENT() function extracts a single element from a JSON array. The array position is
zero-based. In other words, the first element in the array is in position "0". The function returns the element
as a string. For example, the following function invocation returns the string "two":

ARRAY_ELEMENT('["zero","one","two","three"]',2)

Note that the array element is always returned as a string. So in the following example, the function returns
"2" as a string rather than an integer:

ARRAY_ELEMENT('[0,1,2,3]',2)

Finally, the element may itself be a valid JSON-encoded object. For example, the following function
returns the string "[0,1,2,3]":

ARRAY_ELEMENT('[[0,1,2,3],["zero","one","two","three"]]',0)

The ARRAY_ELEMENT() function can be combined with other functions, such as FIELD(), to traverse
more complex JSON structures. The function returns a NULL value if any of the following conditions
are true:

• The position argument is less than zero

• The position argument is greater than or equal to the length of the array

• The JSON string does not represent an array (that is, the string is a valid JSON scalar value or object)

The function returns an error if the first argument is not a valid JSON string.

Example
The following example uses the ARRAY_ELEMENT() function along with FIELD() to extract specific
array elements from one field in a JSON-encoded VARCHAR column:

SELECT language,
 ARRAY_ELEMENT(FIELD(words,'colors'),1) AS color,
 ARRAY_ELEMENT(FIELD(words,'numbers'),2) AS number
 FROM world_languages WHERE language = 'French';

Assuming the column words has the following structure, the query returns the strings "French', "vert",
and "trois".

{"colors":["rouge","vert","bleu"],
 "numbers":["un","deux","trois"]}

SQL Functions

153

ARRAY_LENGTH()
ARRAY_LENGTH() — Returns the number of elements in a JSON array.

Syntax

ARRAY_LENGTH(JSON-array)

Description
The ARRAY_LENGTH() returns the length of a JSON array; that is, the number of elements the array
contains. The length is returned as an integer.

The ARRAY_LENGTH() function can be combined with other functions, such as FIELD(), to traverse
more complex JSON structures.

The function returns NULL if the argument is a valid JSON string but does not represent an array. The
function returns an error if the argument is not a valid JSON string.

Example
The following example uses the ARRAY_LENGTH(), ARRAY_ELEMENT(), and FIELD() functions to
return the last element of an array in a larger JSON string. The functions perform the following actions:

• Innermost, the FIELD() function extracts the JSON field "alerts", which is assumed to be an array, from
the column messages.

• ARRAY_LENGTH() determines the number of elements in the array.

• ARRAY_ELEMENT() returns the last element based on the value of ARRAY_LENGTH() minus one
(because the array positions are zero-based).

SELECT ARRAY_ELEMENT(FIELD(messages,'alerts'),
 ARRAY_LENGTH(FIELD(messages,'alerts'))-1) AS last_alert,
 station FROM reportlog
 WHERE station=?;

SQL Functions

154

AVG()
AVG() — Returns the average of a range of numeric column values.

Syntax

AVG(column-expression)

Description
The AVG() function returns the average of a range of numeric column values. The values being averaged
depend on the constraints defined by the WHERE and GROUP BY clauses.

Example
The following example returns the average price for each product category.

SELECT AVG(price), category FROM product_list
 GROUP BY category ORDER BY category;

SQL Functions

155

CAST()
CAST() — Explicitly converts an expression to the specified datatype.

Syntax

CAST(expression AS datatype)

Description
The CAST() function converts an expression to a specified datatype. Cases where casting is beneficial
include when converting between numeric types (such as integer and float) or when converting a numeric
value to a string.

All numeric datatypes can be used as the source and numeric or string datatypes can be the target. When
converting from decimal values to integers, values are truncated. You can also cast from a TIMESTAMP
to a VARCHAR or from a VARCHAR to a TIMESTAMP, assuming the text string is formatted as YYYY-
MM-DD or YYYY-MM-DD HH:MM:SS.nnnnnnn. Where the runtime value cannot be converted (for ex-
ample, the value exceeds the maximum allowable value of the target datatype) an error is thrown.

You cannot use VARBINARY as either the target or the source datatype. To convert between numeric and
TIMESTAMP values, use the TO_TIMESTAMP(), FROM_UNIXTIME(), and EXTRACT() functions.

The result of the CAST() function of a null value is the corresponding null in the target datatype.

Example
The following example uses the CAST() function to ensure the result of an expression is also a floating
point number and does not truncate the decimal portion.

SELECT contestant, CAST((votes * 100) as FLOAT) / ? as percentage
 FROM contest ORDER BY votes, contestant

SQL Functions

156

CEILING()
CEILING() — Returns the smallest integer value greater than or equal to a numeric expression.

Syntax

CEILING(numeric-expression)

Description
The CEILING() function returns the next integer greater than or equal to the specified numeric expression.
In other words, the CEILING() function "rounds up" numeric values. For example:

CEILING(3.1415) = 4
CEILING(2.0) = 2
CEILING(-5.32) = -5

Example
The following example uses the CEILING function to calculate the shipping costs for a product based on
its weight in the next whole number of pounds.

SELECT shipping.cost_per_lb * CEILING(product.weight),
 product.prod_id FROM product, shipping
 ORDER BY product.prod_id;

SQL Functions

157

CHAR()
CHAR() — Returns a string with a single UTF-8 character associated with the specified character code.

Syntax

CHAR(integer)

Description
The CHAR() function returns a string containing a single UTF-8 character that matches the specified
UNICODE character code. One use of the CHAR() function is to insert non-printing and other hard to
enter characters into string expressions.

Example
The following example uses CHAR() to add a copyright symbol into a VARCHAR field.

UPDATE book SET copyright_notice= CHAR(169) || CAST(? AS VARCHAR)
 WHERE isbn=?;

SQL Functions

158

CHAR_LENGTH()
CHAR_LENGTH() — Returns the number of characters in a string.

Syntax

CHAR_LENGTH(string-expression)

Description
The CHAR_LENGTH() function returns the number of text characters in a string.

Note that the number of characters and the amount of physical space required to store those characters can
differ. To measure the length of the string, in bytes, use the OCTET_LENGTH() function.

Example
The following example returns the string in the column LastName as well as the number of characters and
length in bytes of that string.

SELECT LastName, CHAR_LENGTH(LastName), OCTET_LENGTH(LastName)
 FROM Customers ORDER BY LastName, FirstName;

SQL Functions

159

COALESCE()
COALESCE() — Returns the first non-null argument, or null.

Syntax

COALESCE(expression [, ...])

Description
The COALESCE() function takes multiple arguments and returns the value of the first argument that is
not null, or — if all arguments are null — the function returns null.

Examples
The following example uses COALESCE to perform two functions:

• Replace possibly null column values with placeholder text

• Return one of several column values

In the second usage, the SELECT statement returns the value of the column State, Province, or Territory
depending on the first that contains a non-null value. Or the function returns a null value if none of the
columns are non-null.

SELECT lastname, firstname,
 COALESCE(address,'[address unkown]'),
 COALESCE(state, province, territory),
 country FROM users ORDER BY lastname;

SQL Functions

160

CONCAT()
CONCAT() — Concatenates two or more strings and returns the result.

Syntax

CONCAT(string-expression { , ... })

Description
The CONCAT() function concatenates two or more strings and returns the resulting string. The string
concatenation operator || performs the same function as CONCAT().

Example
The following example concatenates the contents of two columns as part of a SELECT expression.

SELECT price, CONCAT(category,part_name) AS full_part_name
 FROM product_list ORDER BY price;

The next example does something similar but uses the || operator as a shorthand to concatenate three strings,
two columns and a string constant, as part of a SELECT expression.

SELECT lastname || ', ' || firstname AS full_name
 FROM customers ORDER BY lastname, firstname;

SQL Functions

161

COUNT()
COUNT() — Returns the number of rows selected containing the specified column.

Syntax

COUNT(column-expression)

Description
The COUNT() function returns the number of rows selected for the specified column. Since the actual
value of the column is not used to calculate the count, you can use the asterisk (*) as a wildcard for any
column. For example the query SELECT COUNT(*) FROM widgets returns the number of rows in
the table widgets, without needing to know what columns the table contains.

The one case where the column name is significant is if you use the DISTINCT clause to constrain the
selection expression. For example, SELECT COUNT(DISTINCT last_name) FROM customer
returns the count of unique last names in the customer table.

Example
The following example returns the number of rows where the product name starts with the captial letter A.

SELECT COUNT(*) FROM product_list
 WHERE product_name LIKE 'A%';

The next example returns the total number of unique product categories in the product list.

SELECT COUNT(DISTINCT category) FROM product_list;

SQL Functions

162

CURRENT_TIMESTAMP
CURRENT_TIMESTAMP — Returns the current time as a timestamp value.

Syntax

CURRENT_TIMESTAMP

Description
The CURRENT_TIMESTAMP function returns the current time as a VoltDB timestamp. The value of the
timestamp is determined when the query or stored procedure is invoked. Several important aspects of how
the CURRENT_TIMESTAMP function operates are:

• The value returned is guaranteed to be identical for all partitions that execute the query.

• The value returned is measured in milliseconds then padded to create a timestamp value in microseconds.

• During command logging, the returned value is stored as part of the log, so when the command log is
replayed, the same value is used during the replay of the query.

• Similarly, for database replication (DR) the value returned is passed and reused by the replica database
when replaying the query.

• You can specify CURRENT_TIMESTAMP as a default value in the CREATE TABLE statement when
defining the schema of a VoltDB database.

• The CURRENT_TIMESTAMP function cannot be used in the CREATE INDEX or CREATE VIEW
statements.

The NOW and CURRENT_TIMESTAMP functions are synonyms and perform an identical function.

Example
The following example uses CURRENT_TIMESTAMP in the WHERE clause to delete alert events that
occurred in the past:

DELETE FROM Alert_event WHERE event_timestamp < CURRENT_TIMESTAMP;

SQL Functions

163

DAY(), DAYOFMONTH()
DAY(), DAYOFMONTH() — Returns the day of the month as an integer value.

Syntax

DAY(timestamp-value)

DAYOFMONTH(timestamp-value)

Description
The DAY() function returns an integer value between 1 and 31 representing the timestamp's day of the
month. The DAY() and DAYOFMONTH() functions are synonyms. These functions produce the same
result as using the DAY or DAY_OF_MONTH keywords with the EXTRACT() function.

Examples
The following example uses the DAY(), MONTH(), and YEAR() functions to return a timestamp column
as a formatted date string.

SELECT MONTH(starttime) || '/' ||
 DAY(starttime) || '/' ||
 YEAR(starttime), title, description
 FROM event ORDER BY starttime;

SQL Functions

164

DAYOFWEEK()
DAYOFWEEK() — Returns the day of the week as an integer between 1 and 7.

Syntax

DAYOFWEEK(timestamp-value)

Description
The DAYOFWEEK() function returns an integer value between 1 and 7 representing the day of the week
in a timestamp value. For the DAYOFTHEWEEK() function, the week starts (1) on Sunday and ends (7)
on Saturday.

This function produces the same result as using the DAY_OF_WEEK keyword with the EXTRACT()
function.

Examples
The following example uses DAYOFWEEK() and the DECODE() function to return a string value repre-
senting the day of the week for the specified TIMESTAMP value.

SELECT eventtime,
 DECODE(DAYOFWEEK(eventtime),
 1, 'Sunday',
 2, 'Monday',
 3, 'Tuesday',
 4, 'Wednesday',
 5, 'Thursday',
 6, 'Friday',
 7, 'Saturday') AS eventday
 FROM event ORDER BY eventtime;

SQL Functions

165

DAYOFYEAR()
DAYOFYEAR() — Returns the day of the year as an integer between 1 and 366.

Syntax

DAYOFYEAR(timestamp-value)

Description
The DAYOFYEAR() function returns an integer value between 1 and 366 representing the day of the year
of a timestamp value. This function produces the same result as using the DAY_OF_YEAR keyword with
the EXTRACT() function.

Examples
The following example uses the DAYOFYEAR() function to determine the number of days until an event
occurs.

SELECT DECODE(YEAR(NOW), YEAR(starttime),
 CAST(DAYOFYEAR(starttime) - DAYOFYEAR(NOW) AS VARCHAR)
 || ' days remaining',
 CAST(YEAR(starttime) - YEAR(NOW)
 || ' years remaining'),
 eventname FROM event;

SQL Functions

166

DECODE()
DECODE() — Evaluates an expression against one or more alternatives and returns the matching response.

Syntax

DECODE(expression, { comparison-value, result } [,...] [,default-result])

Description
The DECODE() function compares an expression against one or more possible comparison values. If the
expression matches the comparison-value, the associated result is returned. If the expression does not
match any of the comparison values, the default-result is returned. If the expression does not match any
comparison value and no default result is specified, the function returns NULL.

The DECODE() function operates the same way an IF-THEN-ELSE, or CASE statement does in other
languages.

Example
The following example uses the DECODE() function to interpret a coded data column and replace it with
the appropriate meaning for each code.

SELECT title, industry, DECODE(salary_range,
 'A', 'under $25,000',
 'B', '$25,000 - $34,999',
 'C', '$35,000 - $49,999',
 'D', '$50,000 - $74,999',
 'E', '$75,000 - $99,000',
 'F', '$100,000 and over',
 'unspecified') from survey_results
 order by industry, title;

The next example tests a value against three columns and returns the name of the column when a match
is found, or a message indicating no match if none is found.

SELECT product_name, DECODE(?,product_name,'PRODUCT NAME',
 part_name, 'PART NAME',
 category, 'CATEGORY',
 'NO MATCH FOUND')
 FROM product_list ORDER BY product_name;

SQL Functions

167

EXP()
EXP() — Returns the exponential of the specified numeric expression.

Syntax

EXP(numeric-expression)

Description
The EXP() function returns the exponential of the specified numeric expression. In other words, EXP(x)
is the equivalent of the mathematical expression ex.

Example
The following example uses the EXP function to calculate the potential population of certain species of
animal projecting out ten years.

SELECT species, population AS current,
 (population/2) * EXP(10*(gestation/365)*litter) AS future
 FROM animals
 WHERE species = "rabbit"
 ORDER BY population;

SQL Functions

168

EXTRACT()
EXTRACT() — Returns the value of a selected portion of a timestamp.

Syntax

EXTRACT(selection-keyword FROM timestamp-expression)

EXTRACT(selection-keyword, timestamp-expression)

Description
The EXTRACT() function returns the value of the selected portion of a timestamp. Table C.1, “Selectable
Values for the EXTRACT Function” lists the supported keywords, the datatype of the value returned by
the function, and a description of its contents.

Table C.1. Selectable Values for the EXTRACT Function

Keyword Datatype Description

YEAR INTEGER The year as a numeric value.

QUARTER TINYINT The quarter of the year as a single numeric value between 1
and 4.

MONTH TINYINT The month of the year as a numeric value between 1 and 12.

DAY TINYINT The day of the month as a numeric value between 1 and 31.

DAY_OF_MONTH TINYINT The day of the month as a numeric value between 1 and 31
(same as DAY).

DAY_OF_WEEK TINYINT The day of the week as a numeric value between 1 and 7, start-
ing with Sunday.

DAY_OF_YEAR SMALLINT The day of the year as a numeric value between 1 and 366.

WEEK TINYINT The week of the year as a numeric value between 1 and 52.

WEEK_OF_YEAR TINYINT The week of the year as a numeric value between 1 and 52
(same as WEEK).

WEEKDAY TINYINT The day of the week as a numeric value between 0 and 6, start-
ing with Monday.

HOUR TINYINT The hour of the day as a numeric value between 0 and 23.

MINUTE TINYINT The minute of the hour as a numeric value between 0 and 59.

SECOND DECIMAL The whole and fractional part of the number of seconds within
the minute as a floating point value between 0 and 60.

The timestamp expression is interpreted as a VoltDB timestamp; That is, time measured in microseconds.

Example
The following example lists all the contacts by name and birthday, listing the birthday as three separate
fields for month, day, and year.

SELECT Last_name, first_name, EXTRACT(MONTH FROM dateofbirth),

SQL Functions

169

 EXTRACT(DAY FROM dateofbirth), EXTRACT(YEAR FROM dateofbirth)
 FROM contact_list
 ORDER BY last_name, first_name;

SQL Functions

170

FIELD()
FIELD() — Extracts a field value from a JSON-encoded string column.

Syntax

FIELD(column, field-name-path)

Description
The FIELD() function extracts a field value from a JSON-encoded string. For example, assume the VAR-
CHAR column Profile contains the following JSON string:

{"first":"Charles","last":"Dickens","birth":1812,
 "description":{"genre":"fiction",
 "period":"Victorian",
 "output":"prolific",
 "children":["Charles","Mary","Kate","Walter","Francis",
 "Alfred","Sydney","Henry","Dora","Edward"]
 }
}

It is possible to extract individual field values using the FIELD() function, as in the following SELECT
statement:

SELECT FIELD(profile,'first') AS firstname,
 FIELD(profile,'last') AS lastname FROM Authors;

It is also possible to find records based on individual JSON fields by using the FIELD() function in the
WHERE clause. For example, the following query retrieves all records from the Authors table where the
JSON field birth is 1812. Note that the FIELD() function always returns a string, even if the JSON type is
numeric. The comparison must match the string datatype, so the constant '1812' is in quotation marks:

SELECT * FROM Authors WHERE FIELD(profile,'birth') = '1812';

The second argument to the FIELD() function can be a simple field name, as in the previous examples.
In which case the function returns a first-level field matching the specified name. Alternately, you can
specify a path representing a hierarchy of names separated by periods. For example, you can specify the
genre element of the description field by specifying "description.genre" as the second argument, like so

SELECT * FROM Authors WHERE
 FIELD(profile,'description.genre') = 'fiction';

You can also use array notation — with square brackets and an integer value — to identify array elements
by their position. So, for example, the function can return "Kate", the third child, by using the path spec-
ifier "description.children[2]", where "[2]" identifies the third array element because JSON arrays are ze-
ro-based.

Two important points to note concerning input to the FIELD() function:

• If the requested field name does not exist, the function returns a null value.

• The first argument to the FIELD() function must be a valid JSON-encoded string. However, the content
is not evaluated until the function is invoked at runtime. Therefore, it is the responsibility of the database

SQL Functions

171

application to ensure the validity of the content. If the FIELD() function encounters invalid content,
the query will fail.

Example
The following example uses the FIELD() function to both return specific JSON fields within a VARCHAR
column and filter the results based on the value of a third JSON field:

SELECT product_name, sku,
 FIELD(specification,'color') AS color,
 FIELD(specification,'weight') AS weight FROM Inventory
 WHERE FIELD(specification, 'category') = 'housewares'
 ORDER BY product_name, sku;

SQL Functions

172

FLOOR()
FLOOR() — Returns the largest integer value less than or equal to a numeric expression.

Syntax

FLOOR(numeric-expression)

Description
The FLOOR() function returns the largest integer less then or equal to the specified numeric expression.
In other words, the FLOOR() function truncates fractional numeric values. For example:

FLOOR(3.1415) = 3
FLOOR(2.0) = 2
FLOOR(-5.32) = -6

Example
The following example uses the FLOOR function to calculate the whole number of stocks owned by a
specific shareholder.

SELECT customer, company,
 FLOOR(num_of_stocks) AS stocks_available_for_sale
 FROM shareholders WHERE customer_id = ?
 ORDER BY company;

SQL Functions

173

FORMAT_CURRENCY()
FORMAT_CURRENCY() — Converts a DECIMAL to a text string as a monetary value.

Syntax

FORMAT_CURRENCY(decimal-value, rounding-position)

Description
The FORMAT_CURRENCY() function converts a DECIMAL value to its string representation, rounding
to the specified position. The resulting string is formatted with commas separating every three digits of
the whole portion of the number (indicating thousands, millions, and so on) and a decimal point before
the fractional portion, as needed.

The rounding-position argument must be an integer between 12 and -25 and indicates the place to which the
numeric value should be rounded. Positive values indicate a decimal place; for example 2 means round to
2 decimal places. Negative values indicate rounding to a whole number position; for example, -2 indicates
the number should be rounded to the nearest hundred. A zero indicates that the value should be rounded
to the nearest whole number.

Rounding is performed using "banker's rounding", in that any fractional half is rounded to the nearest even
number. So, for example, if the rounding-position is 2, the value 22.225 is rounded to 22.22, but the value
33.335 is rounded to 33.34. The following list demonstrates some sample results.

FORMAT_CURRENCY(.123456789, 4) = 0.1235
FORMAT_CURRENCY(123456789.123, 2) = 123,456,789.12
FORMAT_CURRENCY(123456789.123, 0) = 123,456,789
FORMAT_CURRENCY(123456789.123, -2) = 123,456,800
FORMAT_CURRENCY(123456789.123, -6) = 123,000,000
FORMAT_CURRENCY(123456789.123, 6) = 123,456,789.123000

Example
The following example uses the FORMAT_CURRENCY() function to return a DECIMAL column as a
string representation of its monetary value, rounding to two decimal places and appending the appropriate
currency symbol from a VARCHAR column.

SELECT country,
 currency_symbol || format_currency(budget,2) AS annual_budget
 FROM world_economy ORDER BY country;

SQL Functions

174

FROM_UNIXTIME()
FROM_UNIXTIME() — Converts a UNIX time value to a VoltDB timestamp.

Syntax

FROM_UNIXTIME(integer-expression)

Description
The FROM_UNIXTIME() function converts an integer expression to a VoltDB timestamp, interpreting
the integer value as a POSIX time value; that is the number of seconds since the epoch (00:00.00 on
January 1, 1970 Consolidated Universal Time). This function is a synonym for TO_TIMESTAMP(second,
integer-expression).

Example
The following example inserts a record using FROM_UNIXTIME to convert the first argument, a POSIX
time value, into a VoltDB timestamp:

INSERT event (when, what, where) VALUES (FROM_UNIX_TIME(?),?,?);

SQL Functions

175

HOUR()
HOUR() — Returns the hour of the day as an integer value.

Syntax

HOUR(timestamp-value)

Description
The HOUR() function returns an integer value between 0 and 23 representing the hour of the day in a time-
stamp value. This function produces the same result as using the HOUR keyword with the EXTRACT()
function.

Examples
The following example uses the HOUR(), MINUTE(), and SECOND() functions to return the time portion
of a TIMESTAMP value in a formatted string.

SELECT eventname,
 CAST(HOUR(starttime) AS VARCHAR) || ' hours, ' ||
 CAST(MINUTE(starttime) AS VARCHAR) || ' minutes, and ' ||
 CAST(SECOND(starttime) AS VARCHAR) || ' seconds.'
 AS timestring FROM event;

SQL Functions

176

LEFT()
LEFT() — Returns a substring from the beginning of a string.

Syntax

LEFT(string-expression, numeric-expression)

Description
The LEFT() function returns the first n characters from a string expression, where n is the second argument
to the function.

Example
The following example uses the LEFT function to return an abbreviation (the first three characters) of the
product category as part of the SELECT expression.

SELECT LEFT(category,3), product_name, price FROM product_list
 ORDER BY category, product_name;

SQL Functions

177

LOWER()
LOWER() — Returns a string converted to all lowercase characters.

Syntax

LOWER(string-expression)

Description
The LOWER() function returns a copy of the input string converted to all lowercase characters.

Example
The following example uses the LOWER function to perform a case-insensitive search of a VARCHAR
field.

SELECT product_name, product_id FROM product_list
 WHERE LOWER(product_name) LIKE 'acme%'
 ORDER BY product_name, product_id

SQL Functions

178

MAX()
MAX() — Returns the maximum value from a range of column values.

Syntax

MAX(column-expression)

Description
The MAX() function returns the highest value from a range of column values. The range of values depends
on the constraints defined by the WHERE and GROUP BY clauses.

Example
The following example returns the highest price in the product list.

SELECT MAX(price) FROM product_list;

The next example returns the highest price for each product category.

SELECT category, MAX(price) FROM product_list
 GROUP BY category
 ORDER BY category;

SQL Functions

179

MIN()
MIN() — Returns the minimum value from a range of column values.

Syntax

MIN(column-expression)

Description
The MIN() function returns the lowest value from a range of column values. The range of values depends
on the constraints defined by the WHERE and GROUP BY clauses.

Example
The following example returns the lowest price in the product list.

SELECT MIN(price) FROM product_list;

The next example returns the lowest price for each product category.

SELECT category, MIN(price) FROM product_list
 GROUP BY category
 ORDER BY category;

SQL Functions

180

MINUTE()
MINUTE() — Returns the minute of the hour as an integer value.

Syntax

MINUTE(timestamp-value)

Description
The MINUTE() function returns an integer value between 0 and 59 representing the minute of the hour
in a timestamp value. This function produces the same result as using the MINUTE keyword with the
EXTRACT() function.

Examples
The following example uses the HOUR(), MINUTE(), and SECOND() functions to return the time portion
of a TIMESTAMP value in a formatted string.

SELECT eventname,
 CAST(HOUR(starttime) AS VARCHAR) || ' hours, ' ||
 CAST(MINUTE(starttime) AS VARCHAR) || ' minutes, and ' ||
 CAST(SECOND(starttime) AS VARCHAR) || ' seconds.'
 AS timestring FROM event;

SQL Functions

181

MONTH()
MONTH() — Returns the month of the year as an integer value.

Syntax

MONTH(timestamp-value)

Description
The MONTH() function returns an integer value between 1 and 12 representing the timestamp's month
of the year. The MONTH() function produces the same result as using the MONTH keyword with the
EXTRACT() function.

Examples
The following example uses the DAY(), MONTH(), and YEAR() functions to return a timestamp column
as a formatted date string.

SELECT MONTH(starttime) || '/' ||
 DAY(starttime) || '/' ||
 YEAR(starttime), title, description
 FROM event ORDER BY starttime;

SQL Functions

182

NOW
NOW — Returns the current time as a timestamp value.

Syntax

NOW

Description
The NOW function returns the current time as a VoltDB timestamp. The value of the timestamp is deter-
mined when the query or stored procedure is invoked. Several important aspects of how the NOW function
operates are:

• The value returned is guaranteed to be identical for all partitions that execute the query.

• The value returned is measured in milliseconds then padded to create a timestamp value in microseconds.

• During command logging, the returned value is stored as part of the log, so when the command log is
replayed, the same value is used during the replay of the query.

• Similarly, for database replication (DR) the value returned is passed and reused by the replica database
when replaying the query.

• You can specify NOW as a default value in the CREATE TABLE statement when defining the schema
of a VoltDB database.

• The NOW function cannot be used in the CREATE INDEX or CREATE VIEW statements.

The NOW and CURRENT_TIMESTAMP functions are synonyms and perform an identical function.

Example
The following example uses NOW in the WHERE clause to delete alert events that occurred in the past:

DELETE FROM Alert_event WHERE event_timestamp < NOW;

SQL Functions

183

OCTET_LENGTH()
OCTET_LENGTH() — Returns the number of bytes in a string.

Syntax

OCTET_LENGTH(string-expression)

Description
The OCTET_LENGTH() function returns the number of bytes of data in a string.

Note that the number of bytes required to store a string and the actual characters that make up the string
can differ. To count the number of characters in the string use the CHAR_LENGTH() function.

Example
The following example returns the string in the column LastName as well as the number of characters and
length in bytes of that string.

SELECT LastName, CHAR_LENGTH(LastName), OCTET_LENGTH(LastName)
 FROM Customers ORDER BY LastName, FirstName;

SQL Functions

184

OVERLAY()
OVERLAY() — Returns a string overwriting a portion of the original string with the specified replacement.

Syntax

OVERLAY(string PLACING replacement-string FROM position [FOR length])

Description
The OVERLAY() function overwrites a portion of the original string with the replacement string and
returns the result. The replacement starts at the specified position in the original string and either replaces
the characters one-for-one for the length of the replacement string or, if a FOR length is specified, replaces
the specified number of characters.

For example, if the original string is 12 characters in length, the replacement string is 3 characters in length
and starts at position 4, and the FOR clause is left off, the resulting string consists of the first 3 characters
of the original string, the replacement string, and the last 6 characters of the original string:

OVERLAY('abcdefghijkl' PLACING 'XYZ' FROM 4) = 'abcXYZghijkl'

If the FOR clause is included specifying that the replacement string replaces 6 characters, the result is the
first 3 characters of the original string, the replacement string, and the last 3 characters of the original string:

OVERLAY('abcdefghijkl' PLACING 'XYZ' FROM 4 FOR 6) = 'abcXYZjkl'

If the combination of the starting position and the replacement length exceed the length of the original
string, the resulting output is extended as necessary to include all of the replacement string:

OVERLAY('abcdef' PLACING 'XYZ' FROM 5) = 'abcdXYZ'

If the starting position is greater than the length of the original string, the replacement string is appended
to the original string:

OVERLAY('abcdef' PLACING 'XYZ' FROM 20) = 'abcdefXYZ'

Similarly, if the combination of the starting position and the FOR length is greater than the length of the
original string, the replacement string simply overwrites the remainder of the original string:

OVERLAY('abcdef' PLACING 'XYZ' FROM 2 FOR 20) = 'aXYZ'

The starting position and length must be specified as non-negative integers. The starting position must be
greater than zero and the length can be zero or greater.

Example
The following example uses the OVERLAY function to redact part of a name.

SELECT OVERLAY(fullname PLACING '****' FROM 2
 FOR CHAR_LENGTH(fullname)-2
) FROM users ORDER BY fullname;

SQL Functions

185

POSITION()
POSITION() — Returns the starting position of a substring in another string.

Syntax

POSITION(substring-expression IN string-expression)

Description
The POSITION() function returns the starting position of a substring in another string. The position, if a
match is found, is an integer number between one and the length of the string being searched. If no match
is found, the function returns zero.

Example
The following example selects all books where the title contains the word "poodle" and returns the book's
title and the position of the substring "poodle" in the title.

SELECT Title, POSITION('poodle' IN Title) FROM Books
 WHERE Title LIKE '%poodle%' ORDER BY Title;

SQL Functions

186

POWER()
POWER() — Returns the value of the first argument raised to the power of the second argument.

Syntax

POWER(numeric-expression, numeric-expression)

Description
The POWER() function takes two numeric expressions and returns the value of the first raised to the power
of the second. In other words, POWER(x,y) is the equivalent of the mathematical expression xy.

Example
The following example uses the POWER function to return the surface area and volume of a cube.

SELECT length, 6 * POWER(length,2) AS surface,
 POWER(length,3) AS volume FROM Cube
 ORDER BY length;

SQL Functions

187

QUARTER()
QUARTER() — Returns the quarter of the year as an integer value

Syntax

QUARTER(timestamp-value)

Description
The QUARTER() function returns an integer value between 1 and 4 representing the quarter of the year
in a TIMESTAMP value. The QUARTER() function produces the same result as using the QUARTER
keyword with the EXTRACT() function.

Examples
The following example uses the QUARTER() and YEAR() functions to group and sort records containing
a timestamp.

SELECT year(starttime), quarter(starttime),
 count(*) as eventsperquarter
 FROM event
 GROUP BY year(starttime), quarter(starttime)
 ORDER BY year(starttime), quarter(starttime);

SQL Functions

188

REPEAT()
REPEAT() — Returns a string composed of a substring repeated the specified number of times.

Syntax

REPEAT(string-expression, numeric-expression)

Description
The REPEAT() function returns a string composed of the substring string-expression repeated n times
where n is defined by the second argument to the function.

Example
The following example uses the REPEAT and the CHAR_LENGTH functions to replace a column's actual
contents with a mask composed of the letter "X" the same length as the original column value.

SELECT username, REPEAT('X', CHAR_LENGTH(password)) as Password
 FROM accounts ORDER BY username;

SQL Functions

189

REPLACE()
REPLACE() — Returns a string replacing the specified substring of the original string with new text.

Syntax

REPLACE(string, substring, replacement-string)

Description
The REPLACE() function returns a copy of the first argument, replacing all instances of the substring
identified by the second argument with the third argument. If the substring is not found, no changes are
made and a copy of the original string is returned.

Example
The following example uses the REPLACE function to update the Address column, replacing the string
"Ceylon" with "Sri Lanka".

UPDATE Customers SET address=REPLACE(address,'Ceylon', 'Sri Lanka')
 WHERE address LIKE '%Ceylon%';

SQL Functions

190

RIGHT()
RIGHT() — Returns a substring from the end of a string.

Syntax

RIGHT(string-expression, numeric-expression)

Description
The RIGHT() function returns the last n characters from a string expression, where n is the second argument
to the function.

Example
The following example uses the LEFT() and RIGHT() functions to return an abbreviated summary of the
Description column, ensuring the result fits within 20 characters.

SELECT product_name,
 LEFT(description,10) || '...' || RIGHT(description,7)
 FROM product_list ORDER BY product_name;

SQL Functions

191

SECOND()
SECOND() — Returns the seconds of the minute as a floating point value.

Syntax

SECOND(timestamp-value)

Description
The SECOND() function returns an floating point value between 0 and 60 representing the whole and
fractional part of the number of seconds in the minute of a timestamp value. This function produces the
same result as using the SECOND keyword with the EXTRACT() function.

Examples
The following example uses the HOUR(), MINUTE(), and SECOND() functions to return the time portion
of a TIMESTAMP value in a formatted string.

SELECT eventname,
 CAST(HOUR(starttime) AS VARCHAR) || ' hours, ' ||
 CAST(MINUTE(starttime) AS VARCHAR) || ' minutes, and ' ||
 CAST(SECOND(starttime) AS VARCHAR) || ' seconds.'
 AS timestring FROM event;

SQL Functions

192

SET_FIELD()
SET_FIELD() — Returns a copy of a JSON-encoded string, replacing the specified field value.

Syntax

SET_FIELD(column, field-name-path, string-value)

Description

The SET_FIELD() function finds the specified field within a JSON-encoded string and returns a copy of
the string with the new value replacing that field's previous value. Note that the SET_FIELD() function
returns an altered copy of the JSON-encoded string — it does not change any column values in place. So
to change existing database columns, you must use SET_FIELD() with an UPDATE statement.

For example, assume the Product table contains a VARCHAR column Productinfo which for one row
contains the following JSON string:

{"product":"Acme widget",
 "availability":"plenty",
 "info": { "description": "A fancy widget.",
 "sku":"ABCXYZ",
 "part_number":1234},
 "warehouse":[{"location":"Dallas","units":25},
 {"location":"Chicago","units":14},
 {"location":"Troy","units":67}]
}

It is possible to change the value of the availability field using the SET_FIELD function, like so:

UPDATE Product SET Productinfo =
 SET_FIELD(Productinfo,'availability','"limited"')
 WHERE FIELD(Productinfo,'product') = 'Acme widget';

The second argument to the SET_FIELD() function can be a simple field name, as in the previous example,
In which case the function replaces the value of the top field matching the specified name. Alternately, you
can specify a path representing a hierarchy of names separated by periods. For example, you can replace
the SKU number by specifying "info.sku" as the second argument, or you can replace the number of units
in the second warehouse by specifying the field path "warehouse[1].units". For example, the following
UPDATE statement does both by nesting SET_FIELD commands:

UPDATE Product SET Productinfo =
 SET_FIELD(
 SET_FIELD(Productinfo,'info.sku','"DEFGHI"'),
 'warehouse[1].units', '128')
 WHERE FIELD(Productinfo,'product') = 'Acme widget';

Note that the third argument is the string value that will be inserted into the JSON-encoded string. To insert
a numeric value, you enclose the value in single quotation marks, as in the preceding example where '128'
is used as the replacement value for the warehouse[1].units field. To insert a string value, you must
include the string quotation marks within the replacement string itself. For example, the preceding code
uses the SQL string constant '"DEFGHI"' to specify the replacement value for the text field info.sku.

SQL Functions

193

Finally, the replacement string value can be any valid JSON value, including another JSON-encoded object
or array. It does not have to be a scalar string or numeric value.

Example
The following example uses the SET_FIELD() function to add a new array element to the warehouse field.

UPDATE Product SET Productinfo =
 SET_FIELD(Productinfo,'warehouse',
 '[{"location":"Dallas","units":25},
 {"location":"Chicago","units":14},
 {"location":"Troy","units":67},
 {"location":"Phoenix","units":23}]')
 WHERE FIELD(Productinfo,'product') = 'Acme widget';

SQL Functions

194

SINCE_EPOCH()
SINCE_EPOCH() — Converts a VoltDB timestamp to an integer number of time units since the POSIX
epoch.

Syntax

SINCE_EPOCH(time-unit, timestamp-expression)

Description
The SINCE_EPOCH() function converts a VoltDB timestamp into an 64-bit integer value (BIGINT) rep-
resenting the equivalent number since the POSIX epoch in a specified time unit. POSIX time is usually
represented as the number of seconds since the epoch; that is, since 00:00.00 on January 1, 1970 Consoli-
dated Universal Time (UTC). So the function SINCE_EPOCH(SECONDS, timestamp) returns the POSIX
time equivalent for the value of timestamp. However, you can also request the number of milliseconds or
microseconds since the epoch. The valid keywords for specifying the time units are:

• SECOND — Seconds since the epoch

• MILLISECOND, MILLIS — Milliseconds since the epoch

• MICROSECOND, MICROS — Microseconds since the epoch

You cannot perform arithmetic on timestamps directly. So SINCE_EPOCH() is useful for performing
calculations on timestamp values in SQL expressions. For example, the following SQL statement looks for
events that are less than a minute in length, based on the timestamp columns STARTTIME and ENDTIME:

SELECT * FROM Event
 WHERE (SINCE_EPOCH(Second, endtime)
 - SINCE_EPOCH(Second, starttime)) < 60;

The TO_TIMESTAMP() function performs the inverse of SINCE_EPOCH(), by converting an integer
value to a VoltDB timestamp based on the specified time units.

Example
The following example returns a timestamp column as the equivalent POSIX time value.

SELECT event_id, event_name,
 SINCE_EPOCH(Second, starttime) as posix_time FROM Event
 ORDER BY event_id;

The next example uses SINCE_EPOCH() to return the length of an event, in microseconds, by calculating
the difference between two timestamp columns.

SELECT event_type,
 SINCE_EPOCH(Microsecond, endtime)
 -SINCE_EPOCH(Microsecond, starttime) AS delta
 FROM Event GROUP BY event_type;

SQL Functions

195

SPACE()
SPACE() — Returns a string of spaces of the specified length.

Syntax

SPACE(numeric-expression)

Description
The SPACE() function returns a string composed of n spaces where the string length n is specified by the
function's argument. SPACE(n) is a synonym for REPEAT(' ', n).

Example
The following example uses the SPACE and CHAR_LENGTH functions to ensure the result is a fixed
length, padded with blank spaces.

 SELECT product_name || SPACE(80 - CHAR_LENGTH(product_name))
 FROM product_list ORDER BY product_name;

SQL Functions

196

SQRT()
SQRT() — Returns the square root of a numeric expression.

Syntax

SQRT(numeric-expression)

Description
The SQRT() function returns the square root of the specified numeric expression.

Example
The following example uses the SQRT and POWER functions to return the distance of a graph point from
the origin.

SELECT location, x, y,
 SQRT(POWER(x,2) + POWER(y,2)) AS distance
 FROM points ORDER BY location;

SQL Functions

197

SUBSTRING()
SUBSTRING() — Returns the specified portion of a string expression.

Syntax

SUBSTRING(string-expression FROM position [TO length])

SUBSTRING(string-expression, position [, length])

Description
The SUBSTRING() function returns a specified portion of the string expression, where position specifies
the starting position of the substring (starting at position 1) and length specifies the maximum length of
the substring. The length of the returned substring is the lower of the remaining characters in the string
expression or the value specified by length.

For example, if the string expression is "ABCDEF" and position is specified as 3, the substring starts with
the character "C". If length is also specified as 3, the return value is "CDE". If, however, the length is
specified as 5, only the remaining four characters "CDEF" are returned.

If length is not specified, the remainder of the string, starting from the specified by position, is returned.
For example, SUBSTRING("ABCDEF",3) and SUBSTRING("ABCDEF"3,4) return the same value.

Example
The following example uses the SUBSTRING function to return the month of the year, which is a VAR-
CHAR column, as a three letter abbreviation.

SELECT event, SUBSTRING(month,1,3), day, year FROM calendar
 ORDER BY event ASC;

SQL Functions

198

SUM()
SUM() — Returns the sum of a range of numeric column values.

Syntax

SUM(column-expression)

Description
The SUM() function returns the sum of a range of numeric column values. The values being added together
depend on the constraints defined by the WHERE and GROUP BY clauses.

Example
The following example uses the SUM() function to determine how much inventory exists for each product
type in the catalog.

SELECT category, SUM(quantity) AS inventory FROM product_list
 GROUP BY category ORDER BY category;

SQL Functions

199

TO_TIMESTAMP()
TO_TIMESTAMP() — Converts an integer value to a VoltDB timestamp based on the time unit specified.

Syntax

TO_TIMESTAMP(time-unit, integer-expression)

Description
The TO_TIMESTAMP() function converts an integer expression to a VoltDB timestamp, interpreting the
integer value as the number of specified time units since the POSIX epoch. POSIX time is usually repre-
sented as the number of seconds since the epoch; that is, since 00:00.00 on January 1, 1970 Consolidat-
ed Universal Time (UTC). So the function TO_TIMESTAMP(Second, timeinsecs) returns the VoltDB
TIMESTAMP equivalent of timeinsecs as a POSIX time value. However, you can also request the integer
value be interpreted as milliseconds or microseconds since the epoch. The valid keywords for specifying
the time units are:

• SECOND — Seconds since the epoch

• MILLISECOND. MILLIS — Milliseconds since the epoch

• MICROSECOND, MICROS — Microseconds since the epoch

You cannot perform arithmetic on timestamps directly. So TO_TIMESTAMP() is useful for converting the
results of arithmetic expressions to VoltDB TIMESTAMP values. For example, the following SQL state-
ment uses TO_TIMESTAMP to convert a POSIX time value before inserting it into a VoltDB TIMES-
TAMP column:

INSERT Event (event_id,event_name,event_type, starttime)
 VALUES(?,?,?,TO_TIMESTAMP(Second, ?));

The SINCE_EPOCH() function performs the inverse of TO_TIMESTAMP(), by converting a VoltDB
TIMESTAMP to an integer value based on the specified time units.

Example
The following example updates a TIMESTAMP column, adding one hour (in seconds) to the current value
using SINCE_EPOCH() and TO_TIMESTAMP() to perform the conversion and arithmetic:

UPDATE Contest
 SET deadline=TO_TIMESTAMP(Second, SINCE_EPOCH(Second,deadline) + 3600)
 WHERE expired=1;

SQL Functions

200

TRIM()
TRIM() — Returns a string with leading and/or training spaces removed.

Syntax

TRIM([[LEADING | TRAILING | BOTH] [character] FROM] string-expression)

Description
The TRIM() function returns a string with leading and/or trailing spaces removed. By default, the TRIM
function removes spaces from both the beginning and end of the string. If you specify the LEADING or
TRAILING clause, spaces are removed from either the beginning or end of the string only.

You can also specify an alternate character to remove. By default only spaces (UTF-8 character code 32)
are removed. If you specify a different character, only that character will be removed. For example, the
following INSERT statement uses the TRIM function to remove any TAB characters from the beginning
of the string input for the ADDRESS column:

INSERT INTO Customers (first, last, address)
 VALUES(?, ?, TRIM(LEADING CHAR(9) FROM ?));

Example
The following example uses TRIM() to remove extraneous leading and trailing spaces from the input for
three VARCHAR columns:

INSERT INTO Customers (first, last, address)
 VALUES(TRIM(?), TRIM(?), TRIM(?));

SQL Functions

201

TRUNCATE()
TRUNCATE() — Truncates a VoltDB timestamp to the specified time unit.

Syntax

TRUNCATE(time-unit, timestamp)

Description
The TRUNCATE() function truncates a timestamp value to the specified time unit. For example,
if the timestamp column Apollo has the value July 20, 1969 4:17:40 P.M, then using the function
TRUNCATE(hour,apollo) would return the value July 20, 1969 4:00:00 P.M. Allowable time units for
truncation include the following:

• YEAR
• QUARTER
• MONTH
• DAY
• HOUR
• MINUTE
• SECOND
• MILLISECOND, MILLIS

Example
The following example uses the TRUNCATE function to find records where the timestamp column, inci-
dent, falls within a specific day, entered as a POSIX time value.

SELECT incident, description FROM securitylog
 WHERE TRUNCATE(DAY, incident) = TRUNCATE(DAY,FROM_UNIXTIME(?))
 ORDER BY incident, description;

SQL Functions

202

UPPER()
UPPER() — Returns a string converted to all uppercase characters.

Syntax

UPPER(string-expression)

Description
The UPPER() function returns a copy of the input string converted to all uppercase characters.

Example
The following example uses the UPPER function to return results alphabetically regardless of case.

SELECT UPPER(product_name), product_id FROM product_list
 ORDER BY UPPER(product_name)

SQL Functions

203

WEEK(), WEEKOFYEAR()
WEEK(), WEEKOFYEAR() — Returns the week of the year as an integer value.

Syntax

WEEK(timestamp-value)

WEEKOFYEAR(timestamp-value)

Description
The WEEK() and WEEKOFYEAR() functions are synonyms and return an integer value between 1 and
52 representing the timestamp's week of the year. These functions produce the same result as using the
WEEK_OF_YEAR keyword with the EXTRACT() fucntion.

Examples
The following example uses the WEEK() function to group and sort records containing a timestamp.

SELECT week(starttime), count(*) as eventsperweek
 FROM event GROUP BY week(starttime) ORDER BY week(starttime);

SQL Functions

204

WEEKDAY()
WEEKDAY() — Returns the day of the week as an integer between 0 and 6.

Syntax

WEEKDAY(timestamp-value)

Description
The WEEKDAY() function returns an integer value between 0 and 6 representing the day of the week in a
timestamp value. For the WEEKDAY() function, the week starts (0) on Monday and ends (6) on Sunday.

This function is provided for compatibility with MySQL and produces the same result as using the WEEK-
DAY keyword with the EXTRACT() function.

Examples
The following example uses WEEKDAY() and the DECODE() function to return a string value represent-
ing the day of the week for the specified TIMESTAMP value.

SELECT eventtime,
 DECODE(WEEKDAY(eventtime),
 0, 'Monday',
 1, 'Tuesday',
 2, 'Wednesday',
 3, 'Thursday',
 4, 'Friday',
 5, 'Saturday',
 6, 'Sunday') AS eventday
 FROM event ORDER BY eventtime;

SQL Functions

205

YEAR()
YEAR() — Returns the year as an integer value.

Syntax

YEAR(timestamp-value)

Description
The YEAR() function returns an integer value representing the year of a TIMESTAMP value. The YEAR()
function produces the same result as using the YEAR keyword with the EXTRACT() function.

Examples
The following example uses the DAY(), MONTH(), and YEAR() functions to return a timestamp column
as a formatted date string.

SELECT MONTH(starttime) || '/' ||
 DAY(starttime) || '/' ||
 YEAR(starttime), title, description
 FROM event ORDER BY starttime;

206

Appendix D. VoltDB CLI Commands
VoltDB provides shell or CLI (command line interpreter) commands to perform common functions for
developing, starting, and managing VoltDB applications and databases. This appendix describes those
shell commands in detail.

The commands are listed in alphabetical order.

• csvloader
• dragent
• jdbcloader
• kafkaloader
• sqlcmd
• voltadmin
• voltdb

VoltDB CLI Commands

207

csvloader
csvloader — Imports the contents of a CSV file and inserts it into a VoltDB table.

Syntax

csvloader table-name [arguments]

csvloader -p procedure-name [arguments]

Description
The csvloader command reads comma-separated values and inserts each valid line of data into the specified
table in a VoltDB database. The most common way to use csvloader is to specify the database table to be
loaded and a CSV file containing the data, like so:

$ csvloader employees -f acme_employees.csv

Alternately, you can use standard input as the source of the data:

$ csvloader employees < acme_employees.csv

In addition to inserting all valid content into the specified database table, csvloader creates three output
files:

• Error log — The error log provides details concerning any errors that occur while processing the input
file. This includes errors in the format of the input as well as errors that occur attempting the insert into
VoltDB. For example, if two rows contain the same value for a column that is declared as unique, the
error log indicates that the second insert fails due to a constraint violation.

• Failed input — A separate file contains the contents of each line that failed to load. This file is useful
because it allows you to correct any formatting issues and retry just the failed content, rather than having
to restart and reload the entire table.

• Summary report — Once all input lines are processed, csvloader generates a summary report listing
how many lines were read, how many were successfully loaded and how long the operation took.

All three files are created, by default, in the current working directory using "csvloader" and the table
name as prefixes. For example, using csvloader to insert contestants into the sample voter database creates
the following files:

csvloader_contestants_insert_log.log
csvloader_contestants_invalidrows.csv
csvloader_contestants_insert_report.log

It is possible to use csvloader to load text files other than CSV files, using the --separator, --
quotechar, and --escape flags. Note that csvloader uses Python to process the command line argu-
ments. So to enter certain non-alphanumeric characters, you must use the appropriate escaping mechanism
for Python command lines. For example, to use a tab-delimited file as input, you need to use the --sep-
arator flag, escaping the tab character like so:

$ csvloader --separator=$'\t' \
 -f employees.tab employees

VoltDB CLI Commands

208

Arguments

--batch {integer}
Specifies the number of rows to submit in a batch. If you do not specify an insert procedure, rows of
input are sent in batches to maximize overall throughput. You can specify how many rows are sent
in each batch using the --batch flag. The default batch size is 200. If you use the --procedure
flag, no batching occurs and each row is sent separately.

--blank {error | null | empty }
Specifies what to do with missing values in the input. By default, if a line contains a missing value,
it is interpreted as a null value in the appropriate datatype. If you do not want missing values to
be interpreted as nulls, you can use the --blank argument to specify other behaviors. Specifying --
blank error results in an error if a line contains any missing values and the line is not inserted.
Specifying --blank empty returns the corresponding "empty" value in the appropriate datatype.
An empty value is interpreted as the following:

• Zero for all numeric columns

• Zero, or the Unix epoch value, for timestamp columns

• An empty or zero-length string for VARCHAR and VARBINARY columns

--columnsizelimit {integer}
Specifies the maximum size of quoted column input, in bytes. Mismatched quotation marks in the
input can cause csvloader to read all subsequent input — including line breaks — as part of the column.
To avoid excessive memory use in this situation, the flag sets a limit on the maximum number of bytes
that will be accepted as input for a column that is enclosed in quotation marks and spans multiple
lines. The default is 16777216 (that is, 16MB).

--escape {character}
Specifies the escape character that must precede a separator or quotation character that is supposed to
be interpreted as a literal character in the CSV input. The default escape character is the backslash (\).

-f, --file {file-specification}
Specifies the location of a CSV file to read as input. If you do not specify an input file, csvloader
reads input from standard input.

--limitrows {integer}
Specifies the maximum number of rows to be read from the input stream. This argument (along with
--skip) lets you load a subset of a larger CSV file.

-m, --maxerrors {integer}
Specifies the target number of errors before csvloader stops processing input. Once csvloader encoun-
ters the specified number of errors while trying to insert rows, it will stop reading input and end the
process. Note that, since csvloader performs inserts asynchronously, it often attempts more inserts
before the target number of exceptions are returned from the database. So it is possible more errors
could be returned after the target is met. This argument lets you conditionally stop a large loading
process if more than an acceptable number of errors occur.

--nowhitespace
Specifies that the CSV input must not contain any whitespace between data values and separators. By
default, csvloader ignores extra space between values, quotation marks, and the value separators. If
you use this argument, any input lines containing whitespace will generate an error and not be inserted
into the database.

VoltDB CLI Commands

209

--password {text]
Specifies the password to use when connecting to the database. You must specify a username and
password if security is enabled for the database.

--port {port-number}
Specifies the network port to use when connecting to the database. If you do not specify a port,
csvloader uses the default client port 21212.

-p, --procedure {procedure-name}
Specifies a stored procedure to use for loading each record from the data file. The named procedure
must exist in the database catalog and must accept the fields of the data record as input parameters.
By default, csvloader uses a custom procedure to batch multiple rows into a single insert operation.
If you explicitly name a procedure, batching does not occur.

--quotechar {character}
Specifies the quotation character that is used to enclose values. By default, the quotation character is
the double quotation mark (").

-r, --reportdir {directory}
Specifies the directory where csvloader writes the three output files. By default, csvloader writes
output files to the current working directory. This argument lets you redirect output to an alternative
location.

--s, --servers=server-id[,...]
Specifies the network address of one or more nodes of a database cluster. By default, csvloader at-
tempts to insert the CSV data into a database on the local system (localhost). To load data into a remote
database, use the --servers argument to specify the database nodes the loader should connect to.

--separator {charactor}
Specifies the character used to separate individual values in the input. By default, the separator char-
acter is the comma (,).

--skip {integer}
Specifies the number of lines from the input stream to skip before inserting rows into the database.
This argument (along with --limitrows) lets you load a subset of a larger CSV file.

--strictquotes
Specifies that all values in the CSV input must be enclosed in quotation marks. If you use this argu-
ment, any input lines containing unquoted values will generate an error and not be inserted into the
database.

--user {text}
Specifies the username to use when connecting to the database. You must specify a username and
password if security is enabled for the database.

Examples
The following example loads the data from a CSV file, languages.csv, into the helloworld table from
the Hello World example database and redirects the output files to the ./logs subfolder.

$ csvloader helloworld -f languages.csv -r ./logs

The following example performs the same function, providing the input interactively.

$ csvloader helloworld -r ./logs
"Hello", "World", "English"

VoltDB CLI Commands

210

"Bonjour", "Monde", "French"
"Hola", "Mundo", "Spanish"
"Hej", "Verden", "Danish"
"Ciao", "Mondo", "Italian"
CTRL-D

VoltDB CLI Commands

211

dragent
dragent — Starts the database replication agent.

Syntax

dragent master server-id[:port-num] replica server-id[:port-num] [statsinterval seconds] [user-
name username-string password password-string]

Description
The dragent command starts the database replication agent and begins replicating the master database to
the replica. See Chapter 12, Database Replication for more information about the database replication
process.

Arguments
master server-id[:port-num]

Specifies the network address of one node from the master database cluster. The server-id can be an IP
address or hostname. The port number to connect to is optional. By default, the replication agent uses
three ports to connect to the master database server, starting with the default replication port (5555).
If a different replication port was specified when the database server was started, you must specify
that port number when starting the DR agent.

replica server-id[:port-num]
Specifies the network address of one node from the replica database cluster. The server-id can be an
IP address or hostname. The port number to connect to is optional. By default, the replication agent
uses the standard client port.

If security is enabled for the replica database, you must also specify a username and password as
additional arguments. For example, the following command connects to the replica database antarctic
using the username penguin and password wheretheylive:

$ dragent master arctic replica antarctic \
 username penguin password wheretheylive

statsinterval seconds
Specifies the frequency with which the agent reports statistics concerning the replication throughput.
These statistics are useful in determining if replication is keeping up with the throughput from the
master database.

Example
The following example starts database replication between the master database cluster that includes the
node zeus and the replica database cluster that includes the node apollo. The replication agent uses the
admin port to connect to apollo.

$ dragent master zeus replica apollo:21211

VoltDB CLI Commands

212

jdbcloader
jdbcloader — Extracts a table from another database via JDBC and inserts it into a VoltDB table.

Syntax

jdbcloader table-name [arguments]

jdbcloader -p procedure-name [arguments]

Description

The jdbcloader command uses the JDBC interface to fetch all records from the specified table in a remote
database and then insert those records into a matching table in VoltDB. The most common way to use
jdbcloader is to copy matching tables from another database to VoltDB. In this case, you specify the name
of the table, plus any JDBC-specific arguments that are needed. Usually, the required arguments are the
JDBC connection URL, the source table, the username, password, and local JDBC driver. For example:

$ jdbcloader employees \
 --jdbcurl=jdbc:postgresql://remotesvr/corphr \
 --jdbctable=employees \
 --jdbcuser=charlesdickens \
 --jdbcpassword=bleakhouse \
 --jdbcdriver=org.postgresql.Driver

In addition to inserting all valid content into the specified database table, jdbcloader creates three output
files:

• Error log — The error log provides details concerning any errors that occur while processing the input
file. This includes errors that occur attempting the insert into VoltDB. For example, if two rows contain
the same value for a column that is declared as unique, the error log indicates that the second insert fails
due to a constraint violation.

• Failed input — A separate file contains the contents of each record that failed to load. The records are
stored in CSV (comma-separated value) format. This file is useful because it allows you to correct any
formatting issues and retry just the failed content using the csvloader.

• Summary report — Once all input records are processed, jdbcloader generates a summary report listing
how many records were read, how many were successfully loaded and how long the operation took.

All three files are created, by default, in the current working directory using "jdbcloader" and the table
name as prefixes. For example, using jdbcloader to insert contestants into the sample voter database creates
the following files:

jdbcloader_contestants_insert_log.log
jdbcloader_contestants_insert_invalidrows.csv
jdbcloader_contestants_insert_report.log

It is possible to use jdbcloader to perform other input operations. For example, if the source table does
not have the same structure as the target table, you can use a custom stored procedure to perform the
necessary translation from one to the other by specifying the procedure name on the command line with
the --procedure flag:

VoltDB CLI Commands

213

$ jdbcloader --procedure translateEmpRecords \
 --jdbcurl=jdbc:postgresql://remotesvr/corphr \
 --jdbctable=employees \
 --jdbcuser=charlesdickens \
 --jdbcpassword=bleakhouse \
 --jdbcdriver=org.postgresql.Driver

Arguments

--batch {integer}
Specifies the number of rows to submit in a batch to the target VoltDB database. If you do not specify
an insert procedure, rows of input are sent in batches to maximize overall throughput. You can specify
how many rows are sent in each batch using the --batch flag. The default batch size is 200. If you
use the --procedure flag, no batching occurs and each row is sent separately.

--fetchsize {integer}
Specifies the number of records to fetch in each JDBC call to the source database. The default fetch
size is 100 records,

--jdbcdriver {class-name}
Specifies the class name of the JDBC driver to invoke. The driver must exist locally and be accessible
either from the CLASSPATH environment variable or in the lib/extension directory where
VoltDB is installed.

--jdbcpassword {text}
Specifies the password to use when connecting to the source database via JDBC. You must specify a
username and password if security is enabled on the source database.

--jdbctable {table-name}
Specifies the name of source table on the remote database. By default, jdbcloader assumes the source
table has the same name as the target VoltDB table.

--jdbcurl {connection-URL}
Specifies the JDBC connection URL for the source database. This argument is required.

--jdbcuser {text}
Specifies the username to use when connecting to the source database via JDBC. You must specify a
username and password if security is enabled on the source database.

--limitrows {integer}
Specifies the maximum number of rows to be read from the input stream. This argument lets you load
a subset of a remote database table.

-m, --maxerrors {integer}
Specifies the target number of errors before jdbcloader stops processing input. Once jdbcloader en-
counters the specified number of errors while trying to insert rows, it will stop reading input and end
the process. Note that, since jdbcloader performs inserts asynchronously, it often attempts more inserts
before the target number of exceptions are returned from the database. So it is possible more errors
could be returned after the target is met. This argument lets you conditionally stop a large loading
process if more than an acceptable number of errors occur.

--password {text]
Specifies the password to use when connecting to the VoltDB database. You must specify a username
and password if security is enabled on the target database.

VoltDB CLI Commands

214

--port {port-number}
Specifies the network port to use when connecting to the VoltDB database. If you do not specify a
port, jdbcloader uses the default client port 21212.

-p, --procedure {procedure-name}
Specifies a stored procedure to use for loading each record from the input source. The named procedure
must exist in the VoltDB catalog and must accept the fields of the data record as input parameters.
By default, jdbcloader uses a custom procedure to batch multiple rows into a single insert operation.
If you explicitly name a procedure, batching does not occur.

-r, --reportdir {directory}
Specifies the directory where jdbcloader writes the three output files. By default, jdbcloader writes
output files to the current working directory. This argument lets you redirect output to an alternative
location.

--s, --servers=server-id[,...]
Specifies the network address of one or more nodes of a VoltDB cluster. By default, jdbcloader at-
tempts to insert the data into a VoltDB database on the local system (localhost). To load data into a
remote database, use the --servers argument to specify the VoltDB database nodes the loader should
connect to.

--user {text}
Specifies the username to use when connecting to the VoltDB database. You must specify a username
and password if security is enabled on the target database.

Example
The following example loads records from the Products table of the Warehouse database on server
hq.mycompany.com and writes the records into the Products table of the VotlDB database on servers svrA,
svrB, and svrC, using the MySQL JDBC driver to access to source database. Note that the --jdbctable flag
is not needed since the source and target tables have the same name.

$ jdbcloader Products --servers="svrA,svrB,svrC" \
 --jdbcurl="jdbc:mysql://hq.mycompany.com/warehouse" \
 --jdbcdriver="com.mysql.jdbc.Driver" \
 --jdbcuser="ceo" \
 --jdbcpassword="headhoncho"

VoltDB CLI Commands

215

kafkaloader
kafkaloader — Imports data from a Kafka message queue into the specified database table.

Syntax

kafkaloader table-name [arguments]

Description
The kafkaloader utility loads data from a Kafka message queue and inserts each message as a separate
record into the specified database table. Apache Kafka is a distributed messaging service that lets you set
up message queues which are written to and read from by "producers" and "consumers", respectively. In
the Apache Kafka model, the kafkaloader acts as a "consumer".

When you start the kafkaloader, you must specify at least three arguments:

• The database table

• The Kafka server to read messages from, specified using the --zookeeper flag

• The Kafka "topic" where the messages are stored, specified using the --topic flag

For example:

$ kafkaloader --zookeeper=quesvr:2181 --topic=voltdb_customer customer

Note that Kafka does not impose any specific format on the messages it manages. The format of the
messages are application specific. In the case of kafkaloader, VoltDB assumes the messages are encoded
as standard comma-separated value (CSV) strings, with the values representing the columns of the table
in the order listed in the schema definition. Each Kafka message contains a single row to be inserted into
the database table.

It is also important to note that, unlike the csvloader which reads a static file, the kafkaloader is reading
from a queue where messages can be written at any time, on an ongoing basis. Therefore, the kafkaloader
process does not stop when it reads the last message on the queue; instead it continues to monitor the queue
and process any new messages it receives. The kafkaloader process will continue to read from the queue
until one of the following events occur:

• The connection to all of the VoltDB servers is broken and so kafkaloader can no longer access the
VoltDB database.

• The maximum number of errors (specified by --maxerrors) is reached.

• The user explicitly stops the process.

The kafkaloader will not terminate if it loses its connection to the Kafka zookeeper. Therefore, it is impor-
tant to monitor the Kafka service and restart the kafkaloader if and when the Kafka service is interrupted.

Finally, kafkaloader acks, or acknowledges, receipt of the messages from Kafka as soon as they are read
from the queue. The messages are then batched for insert into the VoltDB database. This means that the
queue messages are acked regardless of whether they are successfully inserted into the database or not. It
is also possible messages may be lost if the loader process stops between when the messages are read and
the insert transaction is sent to the VoltDB database.

http://kafka.apache.org/

VoltDB CLI Commands

216

Arguments
--batch {integer}

Specifies the number of rows to submit in a batch. By default, rows of input are sent in batches to
maximize overall throughput. You can specify how many rows are sent in each batch using the --
batch flag. The default batch size is 200.

Note that --batch and --flush work together. Whichever limit is reached first triggers an insert to the
database.

--flush {integer}
Specifies the maximum number of seconds before pending data is written to the database. The default
flush period is 10 seconds.

If data is inserted into the kafka queue intermittently, there could be a long delay between when data
is read from the queue and when enough records have been read to meet the --batch limit. The
flush value avoids unnecessary delays in this situation by periodically writing all pending data. If the
flush limit is reached, all pending records are written to the database, even if the --batch limit has
not been satisfied.

-m, --maxerrors {integer}
Specifies the target number of input errors before kafkaloader stops processing input. Once
kafkaloader encounters the specified number of errors while trying to insert rows, it will stop reading
input and end the process.

The default maximum error count is 100. Since kafka import can be an persistent process, you can
avoid having input errors cancel ongoing import by setting the maximum error count to zero, which
means that the loader will continue to run no matter how many input errors are generated.

--password {text]
Specifies the password to use when connecting to the database. You must specify a username and
password if security is enabled for the database.

--port {port-number}
Specifies the network port to use when connecting to the database. If you do not specify a port,
kafkaloader uses the default client port 21212.

--s, --servers=server-id[,...]
Specifies the network address of one or more nodes of a database cluster. By default, kafkaloader
attempts to insert the data into a database on the local system (localhost). To load data into a remote
database, use the --servers argument to specify the database nodes the loader should connect to.

--user {text}
Specifies the username to use when connecting to the database. You must specify a username and
password if security is enabled for the database.

--zookeeper {kafka-server[:port]}
Specifies the network address of the Kafka Zookeeper instance to connect to. The Kafka service must
be running Kafka 0.8.

Examples
The following example starts the kafkaloader to read messages from the voltdb_customer topic on the
Kafka server quesvr:2181, inserting the resulting records into the CUSTOMER table in the VoltDB cluster

VoltDB CLI Commands

217

that includes the servers dbsvr1, dbsvr2, and dbsvr3. The process will continue, regardless of errors, until
connection to the VoltDB database is lost or the user explicitly ends the process.

$ kafkaloader --maxerrors=0 customer \
 --zookeeper=quesvr:2181 --topic=voltdb_customer
 --servers=dbsvr1,dbsvr2,dbsvr3

VoltDB CLI Commands

218

sqlcmd
sqlcmd — Starts an interactive command prompt for issuing SQL queries to a running VoltDB database

Syntax

sqlcmd [args...]

Description

The sqlcmd command lets you query a VoltDB database interactively. You can execute SQL statements,
invoke stored procedures, or use commands to examine the structure of the database. When sqlcmd starts
it provides its own command line prompt until you exit the session. When you start the session, you can
optionally specify one or more database servers to access. By default, sqlcmd accesses the database on
the local system via localhost.

At the sqlcmd prompt, you have several options:

• SQL queries — You can enter ad hoc SQL queries that are run against the database and the results
displayed. You must terminate the query with a semi-colon and carriage return.

• Procedure calls — You can have sqlcmd execute a stored procedure. You identify a procedure call
with the exec command, followed by the procedure class name, the procedure parameters, and a closing
semi-colon. For example, the following sqlcmd command executes the @SystemCatalog system pro-
cedure requesting information about the stored procedures.

$ sqlcmd
1> exec @SystemCatalog procedures;

Note that string values can be entered as plain text or enclosed in single or double quotation marks.
Also, the exec command must be terminated by a semi-colon.

• Show and Explain commands — The show and explain commands let you examine the structure of
the schema and user-defined stored procedures. Valid commands are:

• SHOW CLASSES — Lists the user-defined classes in the catalog. Classes are grouped into proce-
dures classes (those that can be invoked as a stored procedure) and non-procedure classes (shared
classes that cannot themselves be called as stored procedures but can be invoked from within stored
procedures).

• SHOW PROCEDURES — Lists the user-defined, default, and system procedures for the current
database, including the type and number of arguments for each.

• SHOW TABLES — Lists the tables in the schema.

• EXPLAIN {sql-query} — Displays the execution plan for the specified SQL statement.

• EXPLAINPROC {procedure-name} — Displays the execution plan for the specified stored proce-
dure.

• Command recall — You can recall previous commands using the up and down arrow keys. Or you
can recall a specific command by line number (the command prompt shows the line number) using the
recall command. For example:

VoltDB CLI Commands

219

$ sqlcmd
1> select * from votes;
2> show procedures;
3> recall 1
select * from votes;

Once recalled, you can edit the command before reissuing it using typical editing keys, such as the left
and right arrow keys and backspace and delete.

• Script files — You can run multiple queries or stored procedures in a single command using the file
command. The file command takes a text file as an argument and executes all of the SQL queries and
exec commands in the file as if they were entered interactively. Any show, explain, recall, or exit
commands are ignored. For example, the following command processes all of the SQL queries and
procedure invocations in the file myscript.sql:

$ sqlcmd
1> file myscript.sql;

• Exit — When you are done with your interactive session, enter the exit command to end the session
and return to the shell prompt.

To run a sqlcmd command without starting the interactive prompt, you can pipe the command through
standard input to the sqlcmd command. For example:

$ echo "select * from contestants;" | sqlcmd

In general, the sqlcmd commands are not case sensitive and must be terminated by a semi-colon. However,
the semi-colon is optional for the exit, file, and recall commands. Also, list and quit are supported as
synonyms for the show and exit commands, respectively.

Arguments
--help

Displays the sqlcmd help text then returns to the shell prompt.

--servers=server-id[,...]
Specifies the network address of one or more nodes in the database cluster. By default, sqlcmd attempts
to connect to a database on localhost.

--port=port-num
Specifies the port number to use when connecting to the database servers. All servers must be using
the same port number. By default, sqlcmd connects to the standard client port (21212).

--user=user-id
Specifies the username to use for authenticating to the database. The username is required if the
database has security enabled.

--password=password-string
Specifies the password to use for authenticating to the database. The password is required if the data-
base has security enabled.

--output-format={csv | fixed | tab}
Specifies the format of the output of query results. Output can be formatted as comma-separated values
(csv), fixed monospaced text (fixed), or tab-separated text fields (tab). By default, the output is in
fixed monospaced text.

VoltDB CLI Commands

220

--output-skip-metadata
Specifies that the column headings and other metadata associated with query results are not displayed.
By default, the output includes such metadata. However, you can use this argument, along with the
--output-format argument, to write just the data itself to an output file.

Example
The following example demonstrates an sqlcmd session, accessing the voter sample database running on
node zeus.

$ sqlcmd --servers=zeus
SQL Command :: zeus:21212
1> select * from contestants;
 1 Edwina Burnam
 2 Tabatha Gehling
 3 Kelly Clauss
 4 Jessie Alloway
 5 Alana Bregman
 6 Jessie Eichman

(6 row(s) affected)
2> select sum(num_votes) as total, contestant_number from
v_votes_by_contestant_number_State group by contestant_number
order by total desc;
TOTAL CONTESTANT_NUMBER
------- ------------------
 757240 1
 630429 6
 442962 5
 390353 4
 384743 2
 375260 3

(6 row(s) affected)
3> exit
$

VoltDB CLI Commands

221

voltadmin
voltadmin — Performs administrative functions on a VoltDB database.

Syntax

voltadmin [args...] {command}

Description
The voltadmin command allows you to perform administrative tasks on a VoltDB database. You specify
the database server to access and, optionally, authentication credentials using arguments to the voltadmin
command. Individual administrative commands may have they own unique arguments as well.

Arguments
The following global arguments are available for all voltadmin commands.

-h, --help
Displays information about how to use a command. The --help flag and the help command perform
the same function.

-H, --host=server-id[:port]
Specifies which database server to connect to. You can specify the server as a network address or
hostname. By default, voltadmin attempts to connect to a database on localhost. You can optionally
specify the port number. If you do not specify a port, voltadmin uses the default admin port.

-p, --password=password
Specifies the password to use for authenticating to the database. The password is required if the data-
base has security enabled..

-u, --user=user-id
Specifies the username to use for authenticating to the database. The username is required if the
database has security enabled.

-v, -verbose
Displays additional information about the specific commands being executed.

Commands
The following are the administrative functions that you can invoke using voltadmin.

help [command]
Displays information about the usage of individual commands or, if you do not specify a command,
summarizes usage information for all commands. The help command and --help qualifier are syn-
onymous.

pause
Pauses the database, stopping any additional activity on the client port.

promote
Promotes a replica database, stopping replication and enabling read/write queries on the client port.

VoltDB CLI Commands

222

resume
Resumes normal database operation after a pause.

save {directory} {unique-ID}
Creates a snapshot containing the current database contents. The contents are saved to disk on the
server(s) using the unique ID as a file prefix and the directory specification as the file path. Additional
arguments for the save command are:

--format={ csv | native }
Specifies the format of the snapshot files. The allowable formats are CSV (comma-separated
value) and native formats. Native format snapshots can be used for restoring the database. CSV
files can be used by other utilities (such as spreadsheets or the VoltDB CSV loader) but cannot
be restored using the voltadmin restore command.

--blocking
Specifies that the snapshot will block all other transactions until the snapshot is complete. The
advantage of blocking snapshots is that once the command completes you know the snapshot is
finished. The disadvantage is that the snapshot blocks ongoing use of the database.

By default, voltadmin performs non-blocking snapshots so as not to interfere with ongoing data-
base operation. However, note that the non-blocking save command only starts the snapshot. You
must use show snapshots to determine when the snapshot process is finished if you want to know
when it is safe, for example, to shutdown the database.

restore {directory} {unique-ID}
Restores the data from a snapshot to the database. The data is read from a snapshot using the same
unique ID and directory path that were used when the snapshot was created.

show snapshots
Displays information about up to ten previous snapshots. This command is useful for determining the
success or failure of snapshots started with the save command.

update {catalog} {deployment}
Updates the catalog and deployment configuration on a running database. There are some limitations
on what changes can be made on a live update. For example, you cannot rename a table or change
its partitioning column. See the description of the @UpdateApplicationCatalog stored procedure for
details.

shutdown
Stops the database.

Example
The following example illustrates one way to perform an orderly shutdown of a VoltDB cluster, including
pausing and saving the database contents.

$ voltadmin pause
$ voltadmin save --blocking ./ mydb
$ voltadmin shutdown

VoltDB CLI Commands

223

voltdb
voltdb — Performs management tasks on the current server, such as compiling the application catalog and
starting the database.

Syntax

voltdb collect [args] voltdbroot-directory

voltdb compile [args] [DDL-file ...]

voltdb create [args] application-catalog

voltdb recover [args]

voltdb add [args]

voltdb rejoin [args]

Description
The voltdb command performs local management functions on the current system, including:

• Compiling schema files and stored procedures into an application catalog

• Starting the database process

• Collecting log files into a single compressed file

The action that is performed depends on which start action you specify to the voltdb command:

• collect — the collect option collects system and process logs related to the VoltDB database process
on the current system and compresses them into a single file. This command is helpful when reporting
problems to VoltDB support. The only required argument to the collect command is the path to the
voltdbroot directory where the database was run. By default, the root directory is a subfolder, voltd-
broot, in the current working directory where the database was started.

• compile — the compile option compiles the database schema and stored procedures into an application
catalog. You can specify one or more data definition language (DDL) files that describe the schema
of the database, the stored procedures, and the partitioning columns. See Appendix A, Supported SQL
DDL Statements for the SQL statements supported in the DDL files. The output of the compile action
is an application catalog that can be used to start the VoltDB database. The default output filename is
catalog.jar. However, you can use the --output argument to specify a different file name or
location. See the next section for other arguments to the compile action.

• create — the create option starts a new, empty database. This option is useful when starting a database
for the first time or if you are updating the catalog by performing a save, shutdown, startup, and restore.
(See Chapter 7, Updating Your VoltDB Database for information on updating your application catalog.)

• recover — the recover option starts the database and restores a previous state from the last known
snapshot or from command logs. VoltDB uses the snapshot and command log paths specified in the
deployment file when looking for content to restore. If you specify recover as the startup action and no
snapshots or command logs can be found, startup will fail.

VoltDB CLI Commands

224

• add — the add option adds the current node to an existing cluster. See Section 7.4, “Updating the
Hardware Configuration” for details on elastic scaling.

• rejoin — If a node on a K-safe cluster fails, you can use the rejoin start action to have the node (or a
replacement node) rejoin the cluster. The host-id you specify with the host argument can be any node
still present in the database cluster; it does not have to be the host node specified when the cluster was
started. You can also request a blocking rejoin by including the --blocking flag.

Finally, when starting a new database you can include the --replica flag to create a recipient for database
replication.

When starting the database, the voltdb command uses Java to instantiate the process. It is possible to
customize the Java environment, if necessary, by passing command line arguments to Java through the
following environment variables:

• LOG4J_CONFIG_PATH — Specifies an alternate Log4J configuration file.

• VOLTDB_HEAPMAX — Specifies the maximum heap size for the Java process. Specify the value
as an integer number of megabytes. By default, the maximum heap size is set to 2048.

• VOLTDB_OPTS — Specifies all other Java command line arguments. You must include both the
command line flag and argument. For example, this environment variable can be used to specify system
properties using the -D flag:

export VOLTDB_OPTS="-DmyApp.DebugFlag=true"

Log Collection Arguments

The following arguments apply specifically to the collect action.

--days={integer}
Specifies the number of days of log files to collect. For example, using --days=1 will collect data
from the last 24 hours. By default, VoltDB collects 14 days (2 weeks) worth of logs.

--dry-run
Lists the actions that will be taken, including the files that will be collected, but does not actually
perform the collection or upload.

--no-prompt
Specifies that the process will not prompt for input, such as whether to delete the output file after
uploading is complete. This argument is useful when starting the collect action from within a script.

--prefix={file-prefix}
Specifies the prefix for the resulting output file. The default prefix is "voltdb_logs".

--skip-heap-dump
Specifies that the heap dump not be included in the collection. The heap dump is usually significantly
larger than the other log files and can be excluded to save space.

--upload={host}
Specifies a host server to which the output file will uploaded using SFTP.

--username={account-name}
Specifies the SFTP account to use when using the --upload option. If you specify --upload but not --
username, you will be prompted for the account name.

VoltDB CLI Commands

225

--password={password}
Specifies the password to use when using the --upload option. If you specify --upload but not --pass-
word, you will be prompted for the password.

Schema Compilation Arguments

The following arguments apply specifically to the compile action.

-c, --classpath={Java-classpath}
Specifies additional classpath locations for the compilation process to search when looking for stored
procedure class files. The classpath you specify with this argument is appended to any existing class-
path definition.

-o, --output={application-catalog}
Specifies the file and path name to use for the application catalog that is created as a result of the
compilation.

Database Startup Arguments

The following arguments apply to the add, create, recover, and rejoin start actions.

{application-catalog}
Specifies the application catalog containing the schema and stored procedures to load when starting
the database. Two special notes concerning the catalog:

• The catalog must be identical on all nodes when starting a cluster.

• The catalog specified on the command line is only used when creating a new database.

If you recover previous data using the recover start action, the catalog saved with the snapshot or
command log is loaded and any catalog you specify on the command line is ignored.

-H, --host={host-id}
Specifies the network address of the node that coordinates the starting of the database or the adding
or rejoining of a node. When starting a database, all nodes must specify the same host address. Note
that once the database starts and the cluster is complete, the role of the host node is complete and all
nodes become peers.

When rejoining or adding a node, you can specify any node still in the cluster as the host. The host for
an add or rejoin operation does not have to be the same node as the host specified when the database
started.

The default if you do not specify a host when creating or recovering the database is localhost.
In other words, a single node cluster running on the current system. You must specify a host on the
command line when adding or rejoining a node.

If the host node is using an internal port other than the default (3021), you must specify the port as
part of the host string, in the format host:port.

-d, --deployment={deployment-file}
Specifies the location of the database configuration file. The configuration file is an XML file that
defines the database configuration, including the initial size of the cluster and which options are en-
abled when the database is started. See Appendix E, Deployment File (deployment.xml) for a complete
description of the syntax of the configuration file.

VoltDB CLI Commands

226

The default, if you do not specify a deployment file, is a single node cluster without K-safety and
with two sites per host.

-l, --license={license-file}
Specifies the location of the license file, which is required when using the VoltDB Enterprise Edition.
The argument is ignored when using the community edition.

-B, --background
Starts the server process in the background (as a daemon process).

--blocking
For the rejoin operation only, specifies that the database should block client transactions for the af-
fected partitions until the rejoin is complete.

Network Configuration Arguments
In addition to the arguments listed above, there are additional arguments that specify the network config-
uration for server ports and interfaces when starting a VoltDB database. In most cases, the default values
can and should be accepted for these settings. The exceptions are the external and internal interfaces that
should be specified whenever there are multiple network interfaces on a single machine.

You can also, optionally, specify a unique network interface for individual ports by preceding the port
number with the interface's IP address (or hostname) followed by a colon. Specifying the network interface
as part of an individual port setting overrides the default interface for that port set by --externalinterface
or --internalinterface.

The network configuration arguments to the voltdb command are listed below. See the appendix on server
configuration options in the VoltDB Administrator's Guide for more information about network configu-
ration options.

--externalinterface={ip-address}
Specifies the default network interface to use for external ports, such as the admin and client ports.

--internalinterface ={ip-address}
Specifies the default network interface to use for internal communication, such as the internal port.

--internal=[ip-address:]{port-number}
Specifies the internal port used to communicate between cluster nodes.

--client=[ip-address:]{port-number}
Specifies the client port.

--admin=[ip-address:]{port-number}
Specifies the admin port. The --admin flag overrides the admin port setting in the deployment file.

--http=[ip-address:]{port-number}
Specifies the http port. The --http flag both sets the port number (and optionally the interface) and
enables the http port, overriding the http setting, if any, in the deployment file.

--replication=[ip-address:]{port-number}
Specifies the first of three replication ports used for database replication. The --replication flag over-
rides the replication port setting in the deployment file.

--zookeeper=[ip-address:]{port-number}
Specifies the zookeeper port. By default, the zookeeper port is bound to the server's internal interface
(127.0.0.1).

http://docs.voltdb.com/AdminGuide/

VoltDB CLI Commands

227

Examples
The first example uses the compile action to create an application catalog from two DDL files. The --
classpath argument specifies the location of the stored procedure class files.

$ voltdb compile --classpath=./obj employees.sql company.sql

The next example shows the command for creating a database running the voter sample application, using
a custom configuration file, 2nodedeploy.xml, and the node zeus as the host.

$ voltdb create voter.jar --deployment=2nodedeploy.xml \
 --host=zeus

The following example takes advantage of the defaults for the host and deployment arguments to start a
single-node database on the current system using the voter catalog.

$ voltdb create voter.jar

228

Appendix E. Deployment File
(deployment.xml)

The deployment file describes the physical configuration of a VoltDB database cluster at runtime, includ-
ing the number of hosts in the cluster and the number of sites per hosts, among other things. This appendix
describes the syntax for each component within the deployment file.

The deployment file is a fully-conformant XML file. If you are unfamiliar with XML, see Section E.1,
“Understanding XML Syntax” for a brief explanation of XML syntax.

E.1. Understanding XML Syntax
The deployment file is a fully-conformant XML file. XML files consist of a series of nested elements iden-
tified by beginning and ending "tags". The beginning tag is the element name enclosed in angle brackets
and the ending tag is the same except that the element name is preceded by a slash. For example:

<deployment>
 <cluster>
 </cluster>
</deployment>

Elements can be nested. In the preceding example cluster is a child of the element deployment.

Elements can also have attributes that are specified within the starting tag by the attribute name, an equals
sign, and its value enclosed in single or double quotes. In the following example the hostcount and sites-
perhost attributes of the cluster element are assigned values of "2" and "4", respectively.

<deployment>
 <cluster hostcount="2" sitesperhost="4">
 </cluster>
</deployment>

Finally, as a shorthand, elements that do not contain any children can be entered without an ending tag by
adding the slash to the end of the initial tag. In the following example, the cluster and heartbeat
tags use this form of shorthand:

<deployment>
 <cluster hostcount="2" sitesperhost="4"/>
 <heartbeat timeout="10"/>
</deployment>

For complete information about the XML standard and XML syntax, see the official XML site at http://
www.w3.org/XML/.

E.2. The Structure of the Deployment File
The deployment file starts with the XML declaration. After the XML declaration, the root element of the
deployment file is the deployment element. The remainder of the XML document consists of elements
that are children of the deployment element.

Figure E.1, “Deployment XML Structure” shows the structure of the deployment file. The indentation
indicates the hierarchical parent-child relationships of the elements and an ellipsis (...) shows where an
element may appear multiple times.

http://www.w3.org/XML/
http://www.w3.org/XML/

Deployment File (deployment.xml)

229

Figure E.1. Deployment XML Structure

<deployment>
 <cluster/>
 <paths>
 <commandlog/>
 <commandlogsnapshot/>
 <exportoverflow/>
 <snapshots/>
 <voltdbroot/>
 </paths>
 <admin-mode/>
 <commandlog>
 <frequency/>
 <commandlog/>
 <export>
 <configuration>
 <property/>...
 </configuration>
 </export>
 <heartbeat/>
 <httpd>
 <jsonapi/>
 </httpd>
 <partition-detection>
 <snapshot/>
 </partition-detection>
 <replication/>
 <security/>
 <snapshot/>
 <systemsettings>
 <elastic/>
 <snapshot/>
 <temptables/>
 </systemsettings>
 <users>
 <user/>...
 </users>
</deployment>

Table E.1, “Deployment File Elements and Attributes” provides further detail on the elements, including
their relationships (as child or parent) and the allowable attributes for each.

Table E.1. Deployment File Elements and Attributes

Element Child of Parent of Attributes

deployment* (root element) admin-mode, commandlog,
cluster, export, heartbeat,
httpd, partition-detection,
paths, security, snapshot,
systemsettings, users

cluster* deployment hostcount={int}*

sitesperhost={int}

Deployment File (deployment.xml)

230

Element Child of Parent of Attributes

kfactor={int}

admin-mode deployment port={int}
adminstartup={true|false}

heartbeat deployment timeout={int}*

partition-detection deployment snapshot enabled={true|false}

snapshot* partition-detection prefix={text}*

commandlog deployment frequency enabled={true|false}
synchronous={true|false}
logsize={int}

frequency commandlog time={int}
transactions={int}

export deployment configuration enabled={true|false}
target={file|jdbc|custom}
exportconnectorclass={class-name}

configuration* export property

property configuration name={text}*

httpd deployment jsonapi port={int}
enabled={true|false}

jsonapi httpd enabled={true|false}

paths deployment exportoverflow, snapshots,
voltdbroot

commandlog paths path={directory-path}*

commandlogsnapshot paths path={directory-path}*

exportoverflow paths path={directory-path}*

snapshots paths path={directory-path}*

voltdbroot paths path={directory-path}*

replication deployment port={int}

security deployment enabled={true|false}
provider={hash|kerberos}

snapshot deployment frequency={int}{s|m|h}*

prefix={text}*

retain={int}*

enabled={true|false}

systemsettings deployment elastic, query, snapshot,
temptables

elastic systemsettings duration={int}
throughput={int}

query systemsettings timeout={int}*

snapshot systemsettings priority={int}*

temptables systemsettings maxsize={int}*

users deployment user

user users name={text}*

Deployment File (deployment.xml)

231

Element Child of Parent of Attributes

password={text}*

roles={role-name[,..]}1

*Required
1The attribute "groups" can be used in place of "roles" for backwards compatibility.

232

Appendix F. VoltDB Datatype
Compatibility

VoltDB supports nine datatypes. When invoking stored procedures from different programming languages
or queuing SQL statements within a Java stored procedure, you must use an appropriate language-specific
value and datatype for arguments corresponding to placeholders in the query. This appendix provides the
mapping of language-specific datatypes to the corresponding VoltDB datatype.

In several cases, there are multiple possible language-specific datatypes that can be used. The following
tables highlight the best possible matches in bold.

F.1. Java and VoltDB Datatype Compatibility
Table F.1, “Java and VoltDB Datatype Compatibility” shows the compatible Java datatypes for each Volt-
DB datatype when:

• Queuing SQL statements using the voltdbQueueSql method

• Calling simple stored procedures defined using the CREATE PROCEDURE AS statement

• Calling default stored procedures created for each table in the schema

Note that when calling user-defined stored procedures written in Java, you can use additional datatypes,
including arrays and the VoltTable object, as arguments to the stored procedure, as long as the actual query
invocations within the stored procedure use the following datatypes. Another important distinction to be
aware of is that VoltDB only accepts primitive numeric types (byte, short, int, and so on) and not their
reference type equivalents (Byte, Short Int, etc.).

Table F.1. Java and VoltDB Datatype Compatibility

SQL Datatype Compatible Java Datatypes Notes

TINYINT byte
short
int
long
String

Larger datatypes (short, int, and long) are
valid input types. However, VoltDB throws a
runtime error if the value exceeds the allow-
able range of a TINYINT.

String input must be a properly formatted
text representation of an integer value in the
correct range.

SMALLINT byte
short
int
long
String

Larger datatypes (int and long) are valid in-
put types. However, VoltDB throws a run-
time error if the value exceeds the allowable
range of a SMALLINT.

String input must be a properly formatted
text representation of an integer value in the
correct range.

INTEGER byte
short
int
long

A larger datatype (long) is a valid input type.
However, VoltDB throws a runtime error if
the value exceeds the allowable range of an
INTEGER.

VoltDB Datatype Compatibility

233

SQL Datatype Compatible Java Datatypes Notes

String String input must be a properly formatted
text representation of an integer value in the
correct range.

BIGINT byte
short
int
long
String

String input must be a properly formatted
text representation of an integer value in the
correct range.

FLOAT double
float
byte
short
int
long
String

String input must be a properly formatted
text representation of a floating point value.

DECIMAL BigDecimal
double
float
byte
short
int
long
String

String input must be a properly formatted
text representation of a decimal number.

VARCHAR() String
byte[]
byte
short
int
long
float
double
BigDecimal
VoltDB TimestampType

Byte arrays are interpreted as UTF-8 encod-
ed string values. String objects can use other
encodings.

Numeric and timestamp values are convert-
ed to their string representation. For exam-
ple, the double value 13.25 is interpreted as
"13.25" when converted to a VARCHAR.

VARBINARY() String
byte[]

String input is interpreted as a hex-encoded
binary value.

TIMESTAMP VoltDB TimestampType
int
long
String

For String variables, the text must be
formatted as either YYYY-MM-DD
hh.mm.ss.nnnnnn or just the date por-
tion YYYY-MM-DD.

234

Appendix G. System Procedures
VoltDB provides system procedures that perform system-wide administrative functions. You can invoke
system procedures interactively using the sqlcmd utility, or you can invoke them programmatically like
other stored procedures, using the VoltDB client method callProcedure.

This appendix describes the following system procedures.

• @AdHoc
• @Explain
• @ExplainProc
• @GetPartitionKeys
• @Pause
• @Promote
• @Quiesce
• @Resume
• @Shutdown
• @SnapshotDelete
• @SnapshotRestore
• @SnapshotSave
• @SnapshotScan
• @SnapshotStatus
• @Statistics
• @StopNode
• @SystemCatalog
• @SystemInformation
• @UpdateApplicationCatalog
• @UpdateLogging

System Procedures

235

@AdHoc
@AdHoc — Executes an SQL statement specified at runtime.

Syntax

@AdHoc String SQL-statement

Description
The @AdHoc system procedure lets you perform arbitrary SQL queries on a running VoltDB database.

You can execute multiple SQL queries in a single call to @AdHoc by separating the individual queries
with semicolons. When you do this, the queries are performed as a single transaction. That is, the queries
all succeed as a group or they all roll back if any of them fail.

Performance of ad hoc queries is optimized, where possible. However, it is important to note that ad hoc
queries are not pre-compiled, like queries in stored procedures. Therefore, use of stored procedures is
recommended over @AdHoc for frequent, repetitive, or performance-sensitive queries.

Return Values
Returns one VoltTable for each query, with as many rows as there are records returned by the query. The
column names and datatypes match the names and datatypes of the fields returned by the query.

Examples
The following program example uses @AdHoc to execute an SQL SELECT statement and display the
number of reservations for a specific customer in the flight reservation database.

try {
 VoltTable[] results = client.callProcedure("@AdHoc",
 "SELECT COUNT(*) FROM RESERVATION " +
 "WHERE CUSTOMERID=" + custid).getResults();
 System.out.printf("%d reservations found.\n",
 results[0].fetchRow(0).getLong(0));
}
catch (Exception e) {
 e.printStackTrace();
}

Note that you do not need to explicitly invoke @AdHoc when using sqlcmd. You can type your query
directly into the sqlcmd prompt, like so:

$ sqlcmd
1> SELECT COUNT(*) FROM RESERVATION WHERE CUSTOMERID=12345;

System Procedures

236

@Explain
@Explain — Returns the execution plan for the specified SQL query.

Syntax

@Explain String SQL-statement

Description
The @Explain system procedure evaluates the specified SQL query and returns the resulting execution
plan. Execution, or explain, plans describe how VoltDB expects to execute the query at runtime, including
what indexes are used, the order the tables are joined, and so on. Execution plans are useful for identifying
performance issues in query design. See the chapter on execution plans in the VoltDB Performance Guide
for information on how to interpret the plans.

Return Values
Returns one VoltTable with one row and one column.

Name Datatype Description

EXECUTION_PLAN VARCHAR The execution plan as text.

Examples
The following program example uses @Explain to evaluate an ad hoc SQL SELECT statement against
the voter sample application.

try {
 String query = "SELECT COUNT(*) FROM CONTESTANTS;";
 VoltTable[] results = client.callProcedure("@Explain",
 query).getResults();
 System.out.printf("Query: %d\nPlan:\n%d",
 query, results[0].fetchRow(0).getString(0));
}
catch (Exception e) {
 e.printStackTrace();
}

In the sqlcmd utility, the "explain" command is a shortcut for "exec @Explain". So the following two
commands are equivalent:

$ sqlcmd
1> exec @Explain 'SELECT COUNT(*) FROM CONTESTANTS';
2> explain SELECT COUNT(*) FROM CONTESTANTS;

http://community.voltdb.com/docs/PerfGuide/ChapExecPlans
http://community.voltdb.com/docs/PerfGuide/index

System Procedures

237

@ExplainProc
@ExplainProc — Returns the execution plans for all SQL queries in the specified stored procedure.

Syntax

@ExplainProc String procedure-name

Description
The @ExplainProc system procedure returns the execution plans for all of the SQL queries within the spec-
ified stored procedure. Execution, or explain, plans describe how VoltDB expects to execute the queries
at runtime, including what indexes are used, the order the tables are joined, and so on. Execution plans
are useful for identifying performance issues in query and stored procedure design. See the chapter on
execution plans in the VoltDB Performance Guide for information on how to interpret the plans.

Return Values
Returns one VoltTable with one row for each query in the stored procedure.

Name Datatype Description

SQL_STATEMENT VARCHAR The SQL query.

EXECUTION_PLAN VARCHAR The execution plan as text.

Examples
The following example uses @ExplainProc to evaluate the execution plans associated with the Contes-
tantWinningStates stored procedure in the voter sample application.

try {
 VoltTable[] results = client.callProcedure("@ExplainProc",
 "ContestantWinningStates").getResults();
 results[0].resetRowPosition();
 while (results[0].advanceRow()) {
 System.out.printf("Query: %d\nPlan:\n%d",
 results[0].getString(0),results[0].getString(1));
 }
}
catch (Exception e) {
 e.printStackTrace();
}

In the sqlcmd utility, the "explainproc" command is a shortcut for "exec @ExplainProc". So the following
two commands are equivalent:

$ sqlcmd
1> exec @ExplainProc 'ContestantWinningStates';
2> explainproc ContestantWinningStates;

http://community.voltdb.com/docs/PerfGuide/ChapExecPlans
http://community.voltdb.com/docs/PerfGuide/index

System Procedures

238

@GetPartitionKeys
@GetPartitionKeys — Returns a list of partition values, one for every partition in the database.

Syntax

@GetPartitionKeys String datatype

Description
The @GetPartitionKeys system procedure returns a set of partition values that you can use to reach every
partition in the database. This procedure is useful when you want to run a stored procedure in every partition
but you do not want to use a multi-partition procedure. By running multiple single-partition procedures,
you avoid the impact on latency and throughput that can result from a multi-partition procedure. This
is particularly true for longer running procedures. Using multiple, smaller procedures can also help for
queries that modify large volumes of data, such as large deletes.

When you call @GetPartitionKeys you specify the datatype of the keys to return as the second parameter.
You specify the datatype as a case-insensitive string. Valid options are "INTEGER", "STRING", and
"VARCHAR" (where "STRING" and "VARCHAR" are synonyms).

Note that the results of the system procedure are valid at the time they are generated. If the cluster is static
(that is, no nodes are being added and any rebalancing is complete), the results remain valid until the next
elastic event. However, during rebalancing, the distribution of partitions is likely to change. So it is a good
idea to call @GetPartitionKeys once to get the keys, act on them, then call the system procedure again to
verify that the partitions have not changed.

Return Values
Returns one VoltTable with a row for every unique partition in the cluster.

Name Datatype Description

PARTITION_ID INTEGER The numeric ID of the partition.

PARTITION_KEY INTEGER or
STRING

A valid partition key for the partition. The datatype of the
key matches the type requested in the procedure call.

Examples
The following example shows the use of sqlcmd to get integer key values from @GetPartitionKeys:

$sqlcmd
1> exec @GetPartitionKeys integer;

The next example shows a Java program using @GetPartitionKeys to execute a stored procedure to clear
out old records, one partition at a time.

VoltTable[] results = client.callProcedure("@GetPartitionKeys",
 "INTEGER").getResults();
VoltTable keys = results[0];
for (int k=0;k<keys.getRowCount();k++) {
 long key = keys.fetchRow(k).getLong(1);

System Procedures

239

 client.callProcedure("PurgeOldData", key);
}

System Procedures

240

@Pause
@Pause — Initiates admin mode on the cluster.

Syntax

@Pause

Description
The @Pause system procedure initiates admin mode on the cluster. In admin mode, no further transaction
requests are accepted from clients on the client port. All interactions with a database in admin mode must
occur through the admin port specified in the deployment file.

There may be existing transactions still in the queue after admin mode is initiated. Until these transactions
are completed, the database is not entirely paused. You can use the @Statistics system procedure with the
"LIVECLIENTS" keyword to determine how many transactions are outstanding for each client connection.

The goal of admin mode is to pause the system and ensure no further changes to the database can occur
when performing sensitive administrative operations, such as taking a snapshot before shutting down.

Several important points to consider concerning @Pause are:

• @Pause must be called through the admin port, not the standard client port.

• Although new stored procedure invocations received on the client port are rejected in admin mode,
existing connections from client applications are not removed.

• To return to normal database operation, you must call the system procedure @Resume on the admin port.

Return Values
Returns one VoltTable with one row.

Name Datatype Description

STATUS BIGINT Always returns the value zero (0) indicating success.

Examples
It is possible to call @Pause using the sqlcmd utility. However, you must explicitly connect to the admin
port when starting sqlcmd to do this. Also, it is often easier to use the voltadmin utility, which connects
to the admin port by default. For example, the following commands demonstrate pausing and resuming
the database using both sqlcmd and voltadmin:

$ sqlcmd --port=21211
1> exec @Pause;
2> exec @Resume;

$ voltadmin pause
$ voltadmin resume

The following program example, if called through the admin port, initiates admin mode on the database
cluster.

System Procedures

241

client.callProcedure("@Pause");

System Procedures

242

@Promote
@Promote — Promotes a replica database to normal operation.

Syntax

@Promote

Description
The @Promote system procedure promotes a replica database to normal operation. During database repli-
cation, the replica database only accepts input from the database replication (DR) agent. If, for any reason,
the master database fails and replication stops, you can use @Promote to change the replica database from
a replica to a normal database. When you invoke the @Promote system procedure, the replica exits read-
only mode and becomes a fully operational VoltDB database that can receive and execute both read-only
and read/write queries.

Note that once a database is promoted, it cannot return to its original role as the receiving end of database
replication without first stopping and reinitializing the database as a replica. If the database is not a replica,
invoking @Promote returns an error.

Return Values
Returns one VoltTable with one row.

Name Datatype Description

STATUS BIGINT Always returns the value zero (0) indicating success.

Examples
The following programming example promotes a database cluster.

client.callProcedure("@Promote");

It is also possible to promote a replica database using sqlcmd or the voltadmin promote command. The
following commands are equivalent:

$ sqlcmd
1> exec @Promote;

$ voltadmin promote

System Procedures

243

@Quiesce
@Quiesce — Waits for all queued export data to be written to the connector.

Syntax

@Quiesce

Description
The @Quiesce system procedure waits for any queued export data to be written to the export connector
before returning to the calling application. @Quiesce also does an fsync to ensure any pending export
overflow is written to disk. This system procedure should be called after stopping client applications and
before calling @Shutdown to ensure that all export activity is concluded before shutting down the database.

If export is not enabled, the procedure returns immediately.

Return Values
Returns one VoltTable with one row.

Name Datatype Description

STATUS BIGINT Always returns the value zero (0) indicating success.

Examples
The following example calls @Quiesce using sqlcmd:

$ sqlcmd
1> exec @Quiesce;

The following program example uses drain and @Quiesce to complete any asynchronous transactions and
clear the export queues before shutting down the database.

 // Complete all outstanding activities
try {
 client.drain();
 client.callProcedure("@Quiesce");
}
catch (Exception e) {
 e.printStackTrace();
}

 // Shutdown the database.
try {
 client.callProcedure("@Shutdown");
}
 // We expect an exception when the connection drops.
 // Report any other exception.
catch (org.voltdb.client.ProcCallException e) { }
catch (Exception e) { e.printStackTrace(); }

System Procedures

244

@Resume
@Resume — Returns a paused database to normal operating mode.

Syntax

@Resume

Description
The @Resume system procedure switches all nodes in a database cluster from admin mode to normal
operating mode. In other words, @Resume is the opposite of @Pause.

After calling this procedure, the cluster returns to accepting new connections and stored procedure invo-
cations from clients connected to the standard client port.

@Resume must be invoked from a connection to the admin port.

Return Values
Returns one VoltTable with one row.

Name Datatype Description

STATUS BIGINT Always returns the value zero (0) indicating success.

Examples
You can call @Resume using the sqlcmd utility. However, you must explicitly connect to the admin port
when starting sqlcmd to do this. It is often easier to use the voltadmin resume command, which connects
to the admin port by default. For example, the following commands are equivalent:

$ sqlcmd --port=21211
1> exec @Resume;

$ voltadmin resume

The following program example uses @Resume to return the cluster to normal operation.

client.callProcedure("@Resume");

System Procedures

245

@Shutdown
@Shutdown — Shuts down the database.

Syntax

@Shutdown

Description
The @Shutdown system procedure performs an orderly shut down of a VoltDB database on all nodes of
the cluster.

VoltDB is an in-memory database. By default, data is not saved when you shut down the database. If
you want to save the data between sessions, you can enable command logging or save a snapshot (either
manually or using automated snapshots) before the shutdown. See Chapter 10, Command Logging and
Recovery and Chapter 9, Saving & Restoring a VoltDB Database for more information.

Note that once the database shuts down, the client connection is lost and the calling program cannot make
any further requests to the server.

Examples
The following examples show calling @Shutdown from sqlcmd and using the voltadmin shutdown com-
mand. These two commands are equivalent:

$ sqlcmd
1> exec @Shutdown;

$ voltadmin shutdown

The following program example uses @Shutdown to stop the database cluster. Note the use of catch to
separate out a VoltDB call procedure exception (which is expected) from any other exception.

try {
 client.callProcedure("@Shutdown");
}

 // we expect an exception when the connection drops.
catch (org.voltdb.client.ProcCallException e) {
 System.out.println("Database shutdown initiated.");
}
 // report any other exception.
catch (Exception e) {
 e.printStackTrace();
}

System Procedures

246

@SnapshotDelete
@SnapshotDelete — Deletes one or more native snapshots.

Syntax

@SnapshotDelete String[] directory-paths, String[] Unique-IDs

Description
The @SnapshotDelete system procedure deletes native snapshots from the database cluster. This is a clus-
ter-wide operation and a single invocation will remove the snapshot files from all of the nodes.

The procedure takes two parameters: a String array of directory paths and a String array of unique IDs
(prefixes).

The two arrays are read as a series of value pairs, so that the first element of the directory path array and
the first element of the unique ID array will be used to identify the first snapshot to delete. The second
element of each array will identify the second snapshot to delete. And so on.

@SnapshotDelete can delete native format snapshots only. The procedure cannot delete CSV format snap-
shots.

Return Values
Returns one VoltTable with a row for every snapshot file affected by the operation.

Name Datatype Description

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

PATH STRING The directory path where the snapshot file resides.

NONCE STRING The unique identifier for the snapshot.

NAME STRING The file name.

SIZE BIGINT The total size, in bytes, of the file.

DELETED STRING String value indicating whether the file was successfully
deleted ("TRUE") or not ("FALSE").

RESULT STRING String value indicating the success ("SUCCESS") or failure
("FAILURE") of the request.

ERR_MSG STRING If the result is FAILURE, this column contains a message
explaining the cause of the failure.

Example
The following example uses @SnapshotScan to identify all of the snapshots in the directory /tmp/volt-
db/backup/. This information is then used by @SnapshotDelete to delete those snapshots.

try {
 results = client.callProcedure("@SnapshotScan",

System Procedures

247

 "/tmp/voltdb/backup/").getResults();
}
catch (Exception e) { e.printStackTrace(); }

VoltTable table = results[0];
int numofsnapshots = table.getRowCount();
int i = 0;

if (numofsnapshots > 0) {
 String[] paths = new String[numofsnapshots];
 String[] nonces = new String[numofsnapshots];
 for (i=0;i<numofsnapshots;i++) { paths[i] = "/etc/voltdb/backup/"; }
 table.resetRowPosition();
 i = 0;
 while (table.advanceRow()) {
 nonces[i] = table.getString("NONCE");
 i++;
 }

 try {
 client.callProcedure("@SnapshotDelete",paths,nonces);
 }
 catch (Exception e) { e.printStackTrace(); }
}

System Procedures

248

@SnapshotRestore
@SnapshotRestore — Restores a database from disk using a native format snapshot.

Syntax

@SnapshotRestore String directory-path, String unique-ID

Description
The @SnapshotRestore system procedure restores a previously saved database from disk to memory. The
snapshot must be in native format. (You cannot restore a CSV format snapshot using @SnapshotRestore.)
The restore request is propagated to all nodes of the cluster, so a single call to @SnashotRestore will
restore the entire database cluster.

The first parameter, directory-path, specifies where VoltDB looks for the snapshot files.

The second parameter, unique-ID, is a unique identifier that is used as a filename prefix to distinguish
between multiple snapshots.

You can perform only one restore operation on a running VoltDB database. Subsequent attempts to call
@SnapshotRestore result in an error. Note that this limitation applies to both manual and automated re-
stores. Since command logging often includes snapshots, you should never perform a manual @Snap-
shotRestore after recovering a database using command logs.

See Chapter 9, Saving & Restoring a VoltDB Database for more information about saving and restoring
VoltDB databases.

Return Values
Returns one VoltTable with a row for every table restored at each execution site.

Name Datatype Description

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

SITE_ID INTEGER Numeric ID of the execution site on the host node.

TABLE STRING The name of the table being restored.

PARTITION_ID INTEGER The numeric ID for the logical partition that this site rep-
resents. When using a K value greater than zero, there are
multiple copies of each logical partition.

RESULT STRING String value indicating the success ("SUCCESS") or failure
("FAILURE") of the request.

ERR_MSG STRING If the result is FAILURE, this column contains a message
explaining the cause of the failure.

Examples
The following example uses @SnapshotRestore to restore previously saved database content from the path
/tmp/voltdb/backup/ using the unique identifier flight.

System Procedures

249

$ sqlcmd
1> exec @SnapshotRestore '/tmp/voltdb/backup/', 'flight';

Alternately, you can use the voltadmin restore command to perform the same function:

$ voltadmin restore /tmp/voltdb/backup/ flight

Since there are a number of situations that impact what data is restored, it is a good idea to review the return
values to see what tables and partitions were affected. In the following program example, the contents of
the VoltTable array is written to standard output so the operator can confirm that the restore completed
as expected.

VoltTable[] results = null;

try {
 results = client.callProcedure("@SnapshotRestore",
 "/tmp/voltdb/backup/",
 "flight").getResults();
}
catch (Exception e) {
 e.printStackTrace();
}

for (int t=0; t<results.length; t++) {
 VoltTable table = results[t];
 for (int r=0;r<table.getRowCount();r++) {
 VoltTableRow row = table.fetchRow(r);
 System.out.printf("Node %d Site %d restoring " +
 "table %s partition %d.\n",
 row.getLong("HOST_ID"), row.getLong("SITE_ID"),
 row.getString("TABLE"),row.getLong("PARTITION"));
 }
}

System Procedures

250

@SnapshotSave
@SnapshotSave — Saves the current database contents to disk.

Syntax

@SnapshotSave String directory-path, String unique-ID, Integer blocking-flag

@SnapshotSave String json-encoded-options

Description
The @SnapshotSave system procedure saves the contents of the current in-memory database to disk. Each
node of the database cluster saves its portion of the database locally.

There are two forms of the @SnapshotSave stored procedure: a procedure call with individual argument
parameters and a procedure call with all arguments in a single JSON-encoded string. When you specify the
arguments as individual parameters, VoltDB creates a native mode snapshot that can be used to recover
or restore the database. When you specify the arguments as a JSON-encoded string, you can request a
different format for the snapshot, including CSV (comma-separated value) files that can be used for import
into other databases or utilities.

Individual Arguments
When you specify the arguments as individual parameters, you must specify three arguments:

1. The directory path where the snapshot files are stored

2. An identifier that is included in the file names to uniquely identify the files that make up a single
snapshot

3. A flag value indicating whether the snapshot should block other transactions until it is complete or not

The resulting snapshot consists of multiple files saved to the directory specified by directory-path using
unique-ID as a filename prefix. The third argument, blocking-flag, specifies whether the save is performed
synchronously (thereby blocking any following transactions until the save completes) or asynchronously.
If this parameter is set to any non-zero value, the save operation will block any following transactions. If
it is zero, others transactions will be executed in parallel.

The files created using this invocation are in native VoltDB snapshot format and can be used to restore or
recover the database at some later time. This is the same format used for automatic snapshots. See Chap-
ter 9, Saving & Restoring a VoltDB Database for more information about saving and restoring VoltDB
databases.

JSON-Encoded Arguments
When you specify the arguments as a JSON-encoded string, you can specify what snapshot format you
want to create. Table G.1, “@SnapshotSave Options” describes all possible options when creating a snap-
shot using JSON-encoded arguments.

Table G.1. @SnapshotSave Options

Option Description

System Procedures

251

uripath Specifies the path where the snapshot files are created. Note that, as a JSON-encoded
argument, the path must be specified as a URI, not just a system directory path.
Therefore, a local directory must be specified using the file:// identifier, such
as "file:///tmp", and the path must exist on all nodes of the cluster.

nonce Specifies the unique identifier for the snapshot.

block Specifies whether the snapshot should be synchronous (true) and block other trans-
actions or asynchronous (false).

format Specifies the format of the snapshot. Valid formats are "csv" and "native".

When you save a snapshot in CSV format, the resulting files are in standard com-
ma-separated value format, with only one file for each table. In other words, dupli-
cates (from replicated tables or duplicate partitions due to K-safety) are eliminated.
CSV formatted snapshots are useful for import or reuse by other databases or utili-
ties. However, they cannot be used to restore or recover a VoltDB database.

When you save a snapshot in native format, each node and partition saves its contents
to separate files. These files can then be used to restore or recover the database. It
is also possible to later convert native format snapshots to CSV using the snapshot
utilities described in the VoltDB Administrator's Guide.

For example, the JSON-encoded arguments to synchronously save a CSV formatted snapshot to /tmp using
the unique identifier "mydb" is the following:

{uripath:"file:///tmp",nonce:"mydb",block:true,format:"csv"}

The block and format arguments are optional. If you do not specify them they default to block:false
and format:"native". The arguments uripath and nonce are required.

Because the unique identifier is used in the resulting filenames, the identifier can contain only characters
that are valid for Linux file names. In addition, hyphens ("-") and commas (",") are not permitted.

Note that it is normal to perform manual saves synchronously, to ensure the snapshot represents a known
state of the database. However, automatic snapshots are performed asynchronously to reduce the impact
on ongoing database activity.

Return Values
The @SnapshotSave system procedure returns two different VoltTables, depending on the outcome of
the request.

Option #1: one VoltTable with a row for every execution site. (That is, the number of hosts multiplied
by the number of sites per host.).

Name Datatype Description

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

SITE_ID INTEGER Numeric ID of the execution site on the host node.

RESULT STRING String value indicating the success ("SUCCESS") or failure
("FAILURE") of the request.

ERR_MSG STRING If the result is FAILURE, this column contains a message
explaining the cause of the failure.

http://community.voltdb.com/docs/AdminGuide/

System Procedures

252

Option #2: one VoltTable with a variable number of rows.

Name Datatype Description

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

TABLE STRING The name of the database table. The contents of each table
is saved to a separate file. Therefore it is possible for the
snapshot of each table to succeed or fail independently.

RESULT STRING String value indicating the success ("SUCCESS") or failure
("FAILURE") of the request.

ERR_MSG STRING If the result is FAILURE, this column contains a message
explaining the cause of the failure.

Examples
The following example uses @SnapshotSave to save the current database content in native snapshot format
to the path /tmp/voltdb/backup/ using the unique identifier flight on each node of the cluster.

$ sqlcmd
1> exec @SnapshotSave '/tmp/voltdb/backup/', 'flight', 1;

Alternately, you can use the voltadmin save command to perform the same function. When using the
voltadmin save command, you use the --blocking flag instead of a third parameter to request a block-
ing save:

$ voltadmin save --blocking /tmp/voltdb/backup/ flight

Note that the procedure call will return successfully even if the save was not entirely successful. The
information returned in the VoltTable array tells you what parts of the operation were successful or not.
For example, save may succeed on one node but not on another.

The following code sample performs the same function, but also checks the return values and notifies the
operator when portions of the save operation are not successful.

VoltTable[] results = null;

try { results = client.callProcedure("@SnapshotSave",
 "/tmp/voltdb/backup/",
 "flight", 1).getResults(); }
catch (Exception e) { e.printStackTrace(); }

for (int table=0; table<results.length; table++) {
 for (int r=0;r<results[table].getRowCount();r++) {
 VoltTableRow row = results[table].fetchRow(r);
 if (row.getString("RESULT").compareTo("SUCCESS") != 0) {
 System.out.printf("Site %s failed to write " +
 "table %s because %s.\n",
 row.getString("HOSTNAME"), row.getString("TABLE"),
 row.getString("ERR_MSG"));
 }
 }
}

System Procedures

253

@SnapshotScan
@SnapshotScan — Lists information about existing native snapshots in a given directory path.

Syntax

@SnapshotScan String directory-path

Description
The @SnapshotScan system procedure provides information about any native snapshots that exist within
the specified directory path for all nodes on the cluster. The procedure reports the name (prefix) of the
snapshot, when it was created, how long it took to create, and the size of the individual files that make
up the snapshot(s).

@SnapshotScan does not include CSV format snapshots in its output. Only native format snapshots are
listed.

Return Values
On successful completion, this system procedure returns three VoltTables providing the following infor-
mation:

• A summary of the snapshots found

• Available space in the directories scanned

• Details concerning the Individual files that make up the snapshots

The first table contains one row for every snapshot found.

Name Datatype Description

PATH STRING The directory path where the snapshot resides.

NONCE STRING The unique identifier for the snapshot.

TXNID BIGINT The transaction ID of the snapshot.

CREATED BIGINT The timestamp when the snapshot was created (in millisec-
onds).

SIZE BIGINT The total size, in bytes, of all the snapshot data.

TABLES_REQUIRED STRING A comma-separated list of all the table names listed in the
snapshot digest file. In other words, all of the tables that
make up the snapshot.

TABLES_MISSING STRING A comma-separated list of database tables for which no data
can be found. (That is, the corresponding files are missing
or unreadable.)

TABLES_INCOMPLETE STRING A comma-separated list of database tables with only partial
data saved in the snapshot. (That is, data from some parti-
tions is missing.)

COMPLETE STRING A string value indicating whether the snapshot as a whole is
complete ("TRUE") or incomplete ("FALSE"). If this col-

System Procedures

254

Name Datatype Description

umn is "FALSE", the preceding two columns provide addi-
tional information concerning what is missing.

The second table contains one row for every host.

Name Datatype Description

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

PATH STRING The directory path specified in the call to the procedure.

TOTAL BIGINT The total space (in bytes) on the device.

FREE BIGINT The available free space (in bytes) on the device.

USED BIGINT The total space currently in use (in bytes) on the device.

RESULT STRING String value indicating the success ("SUCCESS") or failure
("FAILURE") of the request.

ERR_MSG STRING If the result is FAILURE, this column contains a message
explaining the cause of the failure.

The third table contains one row for every file in the snapshot collection.

Name Datatype Description

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

PATH STRING The directory path where the snapshot file resides.

NAME STRING The file name.

TXNID BIGINT The transaction ID of the snapshot.

CREATED BIGINT The timestamp when the snapshot was created (in millisec-
onds).

TABLE STRING The name of the database table the data comes from.

COMPLETED STRING A string indicating whether all of the data was successfully
written to the file ("TRUE") or not ("FALSE").

SIZE BIGINT The total size, in bytes, of the file.

IS_REPLICATED STRING A string indicating whether the table in question is replicat-
ed ("TRUE") or partitioned ("FALSE").

PARTITIONS STRING A comma-separated string of partition (or site) IDs from
which data was taken during the snapshot. For partitioned
tables where there are multiple sites per host, there can be
data from multiple partitions in each snapshot file. For repli-
cated tables, data from only one copy (and therefore one
partition) is required.

TOTAL_PARTITIONS BIGINT The total number of partitions from which data was taken.

READABLE STRING A string indicating whether the file is accessible ("TRUE")
or not ("FALSE").

RESULT STRING String value indicating the success ("SUCCESS") or failure
("FAILURE") of the request.

System Procedures

255

Name Datatype Description

ERR_MSG STRING If the result is FAILURE, this column contains a message
explaining the cause of the failure.

If the system procedure fails because it cannot access the specified path, it returns a single VoltTable with
one row and one column.

Name Datatype Description

ERR_MSG STRING A message explaining the cause of the failure.

Examples
The following example uses @SnapshotScan to list information about the snapshots in the directory /
tmp/voltdb/backup/.

$ sqlcmd
1> exec @SnapshotScan /tmp/voltdb/backup/;

The following program example performs the same function, using the VoltTable toString() method
to display the results of the procedure call:

VoltTable[] results = null;

try { results = client.callProcedure("@SnapshotScan",
 "/tmp/voltdb/backup/").getResults();
}
catch (Exception e) { e.printStackTrace(); }

for (VoltTable t: results) {
 System.out.println(t.toString());
}

In the return value, the first VoltTable in the array lists the snapshots and certain status information. The
second element of the array provides information about the directory itself (such as used, free, and total disk
space). The third element of the array lists specific information about the individual files in the snapshot(s).

System Procedures

256

@SnapshotStatus
@SnapshotStatus — Lists information about the most recent snapshots created from the current database.

Syntax

@SnapshotStatus

Description

Warning

The @SnapshotStatus system procedure is being deprecated and may be removed in future ver-
sions. Please use the @Statistics "SNAPSHOTSTATUS" selector, which returns the same results,
to retrieve information about recent snapshots.

The @SnapshotStatus system procedure provides information about up to ten of the most recent snapshots
performed on the current database. The information provided includes the directory path and prefix for
the snapshot, when it occurred and how long it took, as well as whether the snapshot was completed
successfully or not.

@SnapshotStatus provides status of any snapshots, including both native and CSV snapshots, as well as
manual, automated, and command log snapshots.

Note that @SnapshotStatus does not tell you whether the snapshot files still exist, only that the snapshot
was performed. You can use the procedure @SnapshotScan to determine what snapshots are available.

Also, the status information is reset each time the database is restarted. In other words, @SnapshotStatus
only provides information about the most recent snapshots since the current database instance was started.

Return Values
Returns one VoltTable with a row for every snapshot file in the recent snapshots performed on the cluster.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the snapshot was initiated (in millisec-
onds).

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

TABLE STRING The name of the database table whose data the file contains.

PATH STRING The directory path where the snapshot file resides.

FILENAME STRING The file name.

NONCE STRING The unique identifier for the snapshot.

TXNID BIGINT The transaction ID of the snapshot.

START_TIME BIGINT The timestamp when the snapshot began (in milliseconds).

END_TIME BIGINT The timestamp when the snapshot was completed (in mil-
liseconds).

System Procedures

257

Name Datatype Description

SIZE BIGINT The total size, in bytes, of the file.

DURATION BIGINT The length of time (in milliseconds) it took to complete the
snapshot.

THROUGHPUT FLOAT The average number of bytes per second written to the file
during the snapshot process.

RESULT STRING String value indicating whether the writing of the snapshot
file was successful ("SUCCESS") or not ("FAILURE").

Examples
The following example uses @SnapshotStatus to display information about the most recent snapshots
performed on the current database:

$ sqlcmd
1> exec @SnapshotStatus;

The following code example demonstrates how to perform the same function programmatically:

VoltTable[] results = null;

try {
 results = client.callProcedure("@SnapshotStatus").getResults();
}
catch (Exception e) { e.printStackTrace(); }

for (VoltTable t: results) {
 System.out.println(t.toString());
}

System Procedures

258

@Statistics
@Statistics — Returns statistics about the usage of the VoltDB database.

Syntax

@Statistics String component, Integer delta-flag

Description

The @Statistics system procedure returns information about the VoltDB database. The second argument,
component, specifies what aspect of VoltDB to return statistics about. The third argument, delta-flag,
specifies whether statistics are reported from when the database started or since the last call to @Statistics
where the flag was set.

If the delta-flag is set to zero, the system procedure returns statistics since the database started. If the delta-
flag is non-zero, the system procedure returns statistics for the interval since the last time @Statistics was
called with a non-zero flag. (If @Statistics has not been called with a non-zero flag before, the first call
with the flag set returns statistics since startup.)

Note that in a cluster with K-safety, if a node fails, the statistics reported by this procedure are reset to
zero for the node when it rejoins the cluster.

The following are the allowable values of component:

"CPU" Returns information about the amount of CPU used by each VoltDB server
process. CPU usage is returned as a number between 0 and 100 representing
the amount of CPU used by the VoltDB process out of the total CPU avail-
able for that server.

"DR" Returns information about the status of database replication, including how
much data is waiting to be sent to the DR agent. This information is available
only if the database is licensed for database replication.

"INDEX" Returns information about the indexes in the database, including the number
of keys for each index and the estimated amount of memory used to store
those keys. Separate information is returned for each partition in the data-
base.

"INITIATOR" Returns information on the number of procedure invocations for each stored
procedure (including system procedures). The count of invocations is report-
ed for each connection to the database.

"IOSTATS" Returns information on the number of messages and amount of data (in
bytes) sent to and from each connection to the database.

"LIVECLIENTS" Returns information about the number of outstanding requests per client.
You can use this information to determine how much work is waiting in the
execution queues.

"MANAGEMENT" Returns the same information as INDEX, INITIATOR, IOSTATS, MEMO-
RY, PROCEDURE, and TABLE, except all in a single procedure call.

System Procedures

259

"MEMORY" Returns statistics on the use of memory for each node in the cluster. MEMO-
RY statistics include the current resident set size (RSS) of the VoltDB server
process; the amount of memory used for Java temporary storage, database
tables, indexes, and string (including varbinary) storage; as well as other in-
formation.

"PARTITIONCOUNT" Returns information on the number of unique partitions in the cluster. The
VoltDB cluster creates multiple partitions based on the number of servers
and the number of sites per host requested. So, for example, a 2 node cluster
with 4 sites per host will have 8 partitions. However, when you define a
cluster with K-safety, there are duplicate partitions. PARTITIONCOUNT
only reports the number of unique partitions available in the cluster.

"PLANNER" Returns information on the use of cached plans within each partition. Queries
in stored procedures are planned when the application catalog is compiled.
However, ad hoc queries must be planned at runtime. To improve perfor-
mance, VoltDB caches plans for ad hoc queries so they can be reused when
a similar query is encountered later. There are two caches: the level 1 cache
performs exact matches on queries and the level 2 cache parameterizes con-
stants so it can match queries with the same plan but different input. The
planner statistics provide information about the size of each cache, how fre-
quently it is used, and the minimum, maximum, and average execution time
of ad hoc queries as a result.

"PROCEDURE" Returns information on the usage of stored procedures for each site within
the database cluster sorted by partition. The information includes the name
of the procedure, the number of invocations (for each site), and selected per-
formance information on minimum, maximum, and average execution time.

"PROCEDUREINPUT" Returns summary information on the size of the input data submitted with
stored procedure invocations. PROCEDUREINPUT uses information from
PROCEDURE, except it focuses on the input parameters and aggregates data
for the entire cluster.

"PROCEDUREOUTPUT" Returns summary information on the size of the result sets returned by
stored procedure invocations. PROCEDUREOUTPUT uses information
from PROCEDURE, except it focuses on the result sets and aggregates data
for the entire cluster.

"PROCEDURE-
PROFILE"

Returns summary information on the usage of stored procedures averaged
across all partitions in the cluster. The information from PROCEDURE-
PROFILE is similar to the information from PROCEDURE, except it focus-
es on the performance of the individual procedures rather than on procedures
by partition. The weighted average across partitions is helpful for determin-
ing which stored procedures the application is spending most of its time in.

"REBALANCE" Returns information on the current progress of rebalancing on the cluster.
Rebalancing occurs when one or more nodes are added "on the fly" to an
elastic cluster. If no rebalancing is occurring, no data is returned. During a
rebalance, this selector returns information about the speed of migration of
the data, the latency of rebalance tasks, and the estimated time until comple-
tion.

For rebalance, the delta flag to the system procedure is ignored. All rebalance
statistics are cumulative for the current rebalance activity.

System Procedures

260

"SNAPSHOTSTATUS" Returns information about up to ten of the most recent snapshots performed
by the database. The results include the directory path and prefix for the
snapshot, when it occurred, how long it took, and whether the snapshot was
completed successfully or not. The results report on both native and CSV
snapshots, as well as manual, automated, and command log snapshots. Note
that this selector does not tell you whether the snapshot files still exist, only
that the snapshot was performed. Use the @SnapshotScan procedure to de-
termine what snapshots are available.

"TABLE" Returns information about the database tables, including the number of rows
per site for each table. This information can be useful for seeing how well
the rows are distributed across the cluster for partitioned tables.

Note that INITIATOR and PROCEDURE report information on both user-declared stored procedures and
system procedures. These include certain system procedures that are used internally by VoltDB and are
not intended to be called by client applications. Only the system procedures documented in this appendix
are intended for client invocation.

Return Values
Returns different VoltTables depending on which component is requested. The following tables identify
the structure of the return values for each component. (Note that the MANAGEMENT component returns
seven VoltTables.)

CPU — Returns a row for every server in the cluster.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

PERCENT_USED BIGINT The percentage of total CPU available used by the database
server process.

DR — Returns two VoltTables. The first table contains information about the replication streams, which
consist of a row per partition for each server. The data shows the current state of replication and how much
data is currently queued for the DR agent.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

PARTITION_ID INTEGER The numeric ID for the logical partition.

STREAMTYPE STRING The type of stream, which can either be "TRANSAC-
TIONS" or "SNAPSHOT".

TOTALBYTES BIGINT The total number of bytes currently queued for transmission
to the DR agent.

TOTALBYTESIN
MEMORY

BIGINT The total number of bytes of queued data currently held
in memory. If the amount of total bytes is larger than the

System Procedures

261

Name Datatype Description

amount in memory, the remainder is kept in overflow stor-
age on disk.

TOTALBUFFERS BIGINT The total number of buffers in this partition currently wait-
ing for acknowledgement from the DR agent. Partitions cre-
ate a buffer every five milliseconds.

LASTACKTIMESTAMP BIGINT The timestamp of the last acknowledgement received from
the DR agent.

ISSYNCED STRING A text string indicating whether the database is currently be-
ing replicated. If replication has not started, or the overflow
capacity has been exceeded (that is, replication has failed),
the value of ISSYNCED is "false". If replication is current-
ly in progress, the value is "true".

MODE STRING A text string indicating whether this particular partition
is replicating data for the DR agent ("NORMAL") or not
("PAUSED"). Only one copy of each logical partition actu-
ally sends data to the DR agent during replication. So for
clusters with a K-safety value greater than zero, not all phys-
ical partitions will report "NORMAL" even when replica-
tion is in progress.

The second table returns a row for every host in the cluster, showing whether a replication snapshot is in
progress and if it is, the status of transmission to the DR agent.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

ENABLED STRING A text string indicating whether the database is currently
being replicated. Possible values are "true" and "false".

SYNCSNAPSHOTSTATE STRING A text string indicating the current state of the synchroniza-
tion snapshot that begins replication. During normal opera-
tion, this value is "NOT_SYNCING" indicating either that
replication is not active or that transactions are actively be-
ing replicated. If a synchronization snapshot is in progress,
this value provides additional infomation about the specific
activity underway.

ROWSINSYNC
SNAPSHOT

BIGINT Reserved for future use.

ROWSACKEDFORSYNC
SNAPSHOT

BIGINT Reserved for future use.

INDEX — Returns a row for every index in every execution site.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST_ID BIGINT Numeric ID for the host node.

System Procedures

262

Name Datatype Description

HOSTNAME STRING Server name of the host node.

SITE_ID BIGINT Numeric ID of the execution site on the host node.

PARTITION_ID BIGINT The numeric ID for the logical partition that this site rep-
resents. When using a K value greater than zero, there are
multiple copies of each logical partition.

INDEX_NAME STRING The name of the index.

TABLE_NAME STRING The name of the database table to which the index applies.

INDEX_TYPE STRING A text string identifying the type of the index as either a
hash or tree index and whether it is unique or not. Possible
values include the followiing:

CompactingHashMultiMapIndex
CompactingHashUniqueIndex
CompactingTreeMultiMapIndex
CompactingTreeUniqueIndex

IS_UNIQUE TINYINT A byte value specifying whether the index is unique (1) or
not (0).

IS_COUNTABLE TINYINT A byte value specifying whether the index maintains a
counter to optimize COUNT(*) queries.

ENTRY_COUNT BIGINT The number of index entries currently in the partition.

MEMORY_ESTIMATE INTEGER The estimated amount of memory (in kilobytes) consumed
by the current index entries.

INITIATOR — Returns a separate row for each connection and the stored procedures initiated by that
connection.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

SITE_ID INTEGER Numeric ID of the execution site on the host node.

CONNECTION_ID BIGINT Numeric ID of the client connection invoking the proce-
dure.

CONNECTION_HOST
NAME

STRING The server name of the node from which the client connec-
tion originates.

PROCEDURE_NAME STRING The name of the stored procedure.

INVOCATIONS BIGINT The number of times the stored procedure has been invoked
by this connection on this host node.

AVG_EXECUTION_TIME INTEGER The average length of time (in milliseconds) it took to exe-
cute the stored procedure.

MIN_EXECUTION_TIME INTEGER The minimum length of time (in milliseconds) it took to ex-
ecute the stored procedure.

MAX_EXECUTION_TIME INTEGER The maximum length of time (in milliseconds) it took to
execute the stored procedure.

System Procedures

263

Name Datatype Description

ABORTS BIGINT The number of times the procedure was aborted.

FAILURES BIGINT The number of times the procedure failed unexpectedly. (As
opposed to user aborts or expected errors, such as constraint
violations.)

IOSTATS — Returns one row for every client connection on the cluster.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

CONNECTION_ID BIGINT Numeric ID of the client connection invoking the proce-
dure.

CONNECTION_HOST
NAME

STRING The server name of the node from which the client connec-
tion originates.

BYTES_READ BIGINT The number of bytes of data sent from the client to the host.

MESSAGES_READ BIGINT The number of individual messages sent from the client to
the host.

BYTES_WRITTEN BIGINT The number of bytes of data sent from the host to the client.

MESSAGES_WRITTEN BIGINT The number of individual messages sent from the host to
the client.

LIVECLIENTS — Returns a row for every client connection currently active on the cluster.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

CONNECTION_ID BIGINT Numeric ID of the client connection invoking the proce-
dure.

CLIENT_HOSTNAME STRING The server name of the node from which the client connec-
tion originates.

ADMIN TINYINT A byte value specifying whether the connection is to the
client port (0) or the admin port (1).

OUTSTANDING_
REQUEST_BYTES

BIGINT The number of bytes of data sent from the client currently
pending on the host.

OUTSTANDING_
RESPONSE_MESSAGES

BIGINT The number of messages on the host queue waiting to be
retrieved by the client.

OUTSTANDING_
TRANSACTIONS

BIGINT The number of transactions (that is, stored procedures) ini-
tiated on behalf of the client that have yet to be completed.

MEMORY — Returns a row for every server in the cluster.

System Procedures

264

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

RSS INTEGER The current resident set size. That is, the total amount of
memory allocated to the VoltDB processes on the server.

JAVAUSED INTEGER The amount of memory (in kilobytes) allocated by Java and
currently in use by VoltDB.

JAVAUNUSED INTEGER The amount of memory (in kilobytes) allocated by Java but
unused. (In other words, free space in the Java heap.)

TUPLEDATA INTEGER The amount of memory (in kilobytes) currently in use for
storing database records.

TUPLEALLOCATED INTEGER The amount of memory (in kilobytes) allocated for the stor-
age of database records (including free space).

INDEXMEMORY INTEGER The amount of memory (in kilobytes) currently in use for
storing database indexes.

STRINGMEMORY INTEGER The amount of memory (in kilobytes) currently in use for
storing string and binary data that is not stored "in-line" in
the database record.

TUPLECOUNT BIGINT The total number of database records currently in memory.

POOLEDMEMORY BIGINT The total size of memory (in kilobytes) allocated for tasks
other than database records, indexes, and strings. (For ex-
ample, pooled memory is used for temporary tables while
processing stored procedures.)

PHYSICALMEMORY BIGINT The total size of physical memory (in kilobytes) on the serv-
er.

PARTITIONCOUNT — Returns one row identifying the total number of partitions and the host that
provided that information.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

PARTITION_COUNT INTEGER The number of unique or logical partitions on the cluster.
When using a K value greater than zero, there are multiple
copies of each logical partition.

PLANNER — Returns a row for every planner cache. That is, one cache per execution site, plus one
global cache per server. (The global cache is identified by a site and partition ID of minus one.)

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

System Procedures

265

Name Datatype Description

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

SITE_ID INTEGER Numeric ID of the execution site on the host node.

PARTITION_ID INTEGER The numeric ID for the logical partition that this site rep-
resents. When using a K value greater than zero, there are
multiple copies of each logical partition.

CACHE1_LEVEL INTEGER The number of query plans in the level 1 cache.

CACHE2_LEVEL INTEGER The number of query plans in the level 2 cache.

CACHE1_HITS INTEGER The number of queries that matched and reused a plan in
the level 1 cache.

CACHE2_HITS INTEGER The number of queries that matched and reused a plan in
the level 2 cache.

CACHE_MISSES INTEGER The number of queries that had no match in the cache and
had to be planned from scratch

PLAN_TIME_MIN BIGINT The minimum length of time (in nanoseconds) it took to
complete the planning of ad hoc queries.

PLAN_TIME_MAX BIGINT The maximum length of time (in nanoseconds) it took to
complete the planning of ad hoc queries.

PLAN_TIME_AVG BIGINT The average length of time (in nanoseconds) it took to com-
plete the planning of ad hoc queries.

FAILURES BIGINT The number of times planning for an ad hoc query failed.

PROCEDURE — Returns a row for every stored procedure that has been executed on the cluster, grouped
by execution site.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

SITE_ID INTEGER Numeric ID of the execution site on the host node.

PARTITION_ID INTEGER The numeric ID for the logical partition that this site rep-
resents. When using a K value greater than zero, there are
multiple copies of each logical partition.

PROCEDURE STRING The class name of the stored procedure.

INVOCATIONS BIGINT The total number of invocations of this procedure at this
site.

TIMED_INVOCATIONS BIGINT The number of invocations used to measure the minimum,
maximum, and average execution time.

MIN_EXECUTION_TIME BIGINT The minimum length of time (in nanoseconds) it took to
execute the stored procedure.

MAX_EXECUTION_TIME BIGINT The maximum length of time (in nanoseconds) it took to
execute the stored procedure.

System Procedures

266

Name Datatype Description

AVG_EXECUTION_TIME BIGINT The average length of time (in nanoseconds) it took to exe-
cute the stored procedure.

MIN_RESULT_SIZE INTEGER The minimum size (in bytes) of the results returned by the
procedure.

MAX_RESULT_SIZE INTEGER The maximum size (in bytes) of the results returned by the
procedure.

AVG_RESULT_SIZE INTEGER The average size (in bytes) of the results returned by the
procedure.

MIN_PARAMETER
_SET_SIZE

INTEGER The minimum size (in bytes) of the parameters passed as
input to the procedure.

MAX_PARAMETER
_SET_SIZE

INTEGER The maximum size (in bytes) of the parameters passed as
input to the procedure.

AVG_PARAMETER
_SET_SIZE

INTEGER The average size (in bytes) of the parameters passed as input
to the procedure.

ABORTS BIGINT The number of times the procedure was aborted.

FAILURES BIGINT The number of times the procedure failed unexpectedly. (As
opposed to user aborts or expected errors, such as constraint
violations.)

PROCEDUREINPUT — Returns a row for every stored procedure that has been executed on the cluster,
summarized across the cluster.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

PROCEDURE STRING The class name of the stored procedure.

WEIGHTED_PERC BIGINT A weighted average expressed as a percentage of the para-
meter set size for invocations of this stored procedure com-
pared to all stored procedure invocations.

INVOCATIONS BIGINT The total number of invocations of this procedure.

MIN_PARAMETER
_SET_SIZE

BIGINT The minimum parameter set size in bytes.

MAX_PARAMETER
_SET_SIZE

BIGINT The maximum parameter set size in bytes.

AVG_PARAMETER
_SET_SIZE

BIGINT The average parameter set size in bytes.

TOTAL_PARAMETER
_SET_SIZE_MB

BIGINT The total input for all invocations of this stored procedure
measured in megabytes.

PROCEDUREOUTPUT — Returns a row for every stored procedure that has been executed on the
cluster, summarized across the cluster.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

System Procedures

267

Name Datatype Description

PROCEDURE STRING The class name of the stored procedure.

WEIGHTED_PERC BIGINT A weighted average expressed as a percentage of the re-
sult set size returned by invocations of this stored procedure
compared to all stored procedure invocations.

INVOCATIONS BIGINT The total number of invocations of this procedure.

MIN_RESULT_SIZE BIGINT The minimum result set size in bytes.

MAX_RESULT_SIZE BIGINT The maximum result set size in bytes.

AVG_RESULT_SIZE BIGINT The average result set size in bytes.

TOTAL_RESULT
_SIZE_MB

BIGINT The total output returned by all invocations of this stored
procedure measured in megabytes.

PROCEDUREPROFILE — Returns a row for every stored procedure that has been executed on the
cluster, summarized across the cluster.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

PROCEDURE STRING The class name of the stored procedure.

WEIGHTED_PERC BIGINT A weighted average expressed as a percentage of the exe-
cution time for this stored procedure compared to all stored
procedure invocations.

INVOCATIONS BIGINT The total number of invocations of this procedure.

AVG BIGINT The average length of time (in nanoseconds) it took to exe-
cute the stored procedure.

MIN BIGINT The minimum length of time (in nanoseconds) it took to
execute the stored procedure.

MAX BIGINT The maximum length of time (in nanoseconds) it took to
execute the stored procedure.

ABORTS BIGINT The number of times the procedure was aborted.

FAILURES BIGINT The number of times the procedure failed unexpectedly. (As
opposed to user aborts or expected errors, such as constraint
violations.)

REBALANCE — Returns one row if the cluster is rebalancing. No data is returned if the cluster is not
rebalancing.

Warning

The rebalance selector is still under development. The return values are likely to change in up-
coming releases.

Name Datatype Description

TOTAL_RANGES BIGINT The total number of partition segments to be migrated.

PERCENTAGE_MOVED FLOAT The percentage of the total segments that have already been
moved.

System Procedures

268

Name Datatype Description

MOVED_ROWS BIGINT The number of rows of data that have been moved.

ROWS_PER_SECOND FLOAT The average number of rows moved per second.

ESTIMATED_REMAININGBIGINT The estimated time remaining until the rebalance is com-
plete, in milliseconds.

MEGABYTES_PER_SECONDFLOAT The average volume of data moved per second, measured
in megabytes.

CALLS_PER_SECOND FLOAT The average number of rebalance work units, or transac-
tions, executed per second.

CALLS_LATENCY FLOAT The average execution time for rebalance transactions, in
milliseconds.

SNAPSHOTSTATUS — Returns a row for every snapshot file in the recent snapshots performed on the
cluster.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the snapshot was initiated (in millisec-
onds).

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

TABLE STRING The name of the database table whose data the file contains.

PATH STRING The directory path where the snapshot file resides.

FILENAME STRING The file name.

NONCE STRING The unique identifier for the snapshot.

TXNID BIGINT The transaction ID of the snapshot.

START_TIME BIGINT The timestamp when the snapshot began (in milliseconds).

END_TIME BIGINT The timestamp when the snapshot was completed (in mil-
liseconds).

SIZE BIGINT The total size, in bytes, of the file.

DURATION BIGINT The length of time (in milliseconds) it took to complete the
snapshot.

THROUGHPUT FLOAT The average number of bytes per second written to the file
during the snapshot process.

RESULT STRING String value indicating whether the writing of the snapshot
file was successful ("SUCCESS") or not ("FAILURE").

TABLE — Returns a row for every table, per partition. In other words, the number of tables, multiplied
by the number of sites per host and the number of hosts.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST_ID BIGINT Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

System Procedures

269

Name Datatype Description

SITE_ID BIGINT Numeric ID of the execution site on the host node.

PARTITION_ID BIGINT The numeric ID for the logical partition that this site rep-
resents. When using a K value greater than zero, there are
multiple copies of each logical partition.

TABLE_NAME STRING The name of the database table.

TABLE_TYPE STRING The type of the table. Values returned include "Persistent-
Table" for normal data tables and views and "Streamed-
Table" for export-only tables.

TUPLE_COUNT BIGINT The number of rows currently stored for this table in the
current partition. For export-only tables, the cumulative to-
tal number of rows inserted into the table.

TUPLE_ALLOCATED
_MEMORY

INTEGER The total size of memory, in kilobytes, allocated for storing
inline data associated with this table in this partition. The
allocated memory can exceed the currently used memory
(TUPLE_DATA_MEMORY). For export-only tables, this
field identifies the amount of memory currently in use to
queue export data (both in memory and as export overflow)
prior to its being passed to the export target.

TUPLE_DATA_MEMORY INTEGER The total memory, in kilobytes, used for storing inline data
associated with this table in this partition. The total memo-
ry used for storing data for this table is the combination of
memory used for inline (tuple) and non-inline (string) data.

STRING_DATA
_MEMORY

INTEGER The total memory, in kilobytes, used for storing non-inline
variable length data (VARCHAR and VARBINARY) as-
sociated with this table in this partition. The total memo-
ry used for storing data for this table is the combination of
memory used for inline (tuple) and non-inline (string) data.

TUPLE_LIMIT INTEGER The row limit for this table. Row limits are optional and are
defined in the schema as a maximum number of rows that
any partition can contain. If no row limit is set, this value
is null.

PERCENT_FULL INTEGER The percentage of the row limit currently in use by table
rows in this partition. If no row limit is set, this value is zero.

Examples

The following example uses @Statistics to gather information about the distribution of table rows within
the cluster:

$ sqlcmd
1> exec @Statistics TABLE, 0;

The next program example shows a procedure that collects and displays the number of transactions (i.e.
stored procedures) during a given interval, by setting the delta-flag to a non-zero value. By calling this
procedure iteratively (for example, every five minutes), it is possible to identify fluctuations in the database
workload over time (as measured by the number of transactions processed).

System Procedures

270

void measureWorkload() {
 VoltTable[] results = null;
 String procName;
 int procCount = 0;
 int sysprocCount = 0;

 try { results = client.callProcedure("@Statistics",
 "INITIATOR",1).getResults(); }
 catch (Exception e) { e.printStackTrace(); }

 for (VoltTable t: results) {
 for (int r=0;r<t.getRowCount();r++) {
 VoltTableRow row = t.fetchRow(r);
 procName = row.getString("PROCEDURE_NAME");
 /* Count system procedures separately */
 if (procName.substring(0,1).compareTo("@") == 0)
 { sysprocCount += row.getLong("INVOCATIONS"); }
 else
 { procCount += row.getLong("INVOCATIONS"); }
 }
 }
 System.out.printf("System procedures: %d\n" +
 "User-defined procedures: %d\n",+
 sysprocCount,procCount);
}

System Procedures

271

@StopNode
@StopNode — Stops a VoltDB server process, removing the node from the cluster.

Syntax

@StopNode Integer host-ID

Description
The @StopNode system procedure lets you stop a specific server in a K-safe cluster. You specify which
node to stop using the host ID, which is the unique identifier for the node assigned by VoltDB when the
server joins the cluster.

Note that by calling the @StopNode procedure on a node other than the node being stopped, you will
receive a return status indicating the success or failure of the call. If you call the procedure on the node that
you are requesting to stop, the return status can only indicate that the call was interrupted (by the VoltDB
process on the node stopping), not whether it was successfully completed or not.

If you call @StopNode on a node or cluster that is not K-safe — either because it was started with a K-
safety value of zero or one or more nodes have failed so any further failure could crash the database — the
@StopNode procedure will not be executed. You can only stop nodes on a cluster that will remain viable
after the node stops. To stop the entire cluster, please use the @Shutdown system procedure.

Return Values
Returns one VoltTable with one row.

Name Datatype Description

STATUS BIGINT Always returns the value zero (0) indicating success.

Examples
The following program example uses grep, sqlcmd, and the @SystemInformation stored procedure to
identify the host ID for a specific node (doodah) of the cluster. The example then uses that host ID (2) to
call @StopNode and stop the desired node.

$ echo "exec @SystemInformation overview;" | sqlcmd | grep "doodah"
 2 HOSTNAME doodah
$ sqlcmd
1> exec @StopNode 2;

The following Java code fragment performs the same function.

try {
 results = client.callProcedure("@SystemInformation",
 "overview").getResults();
}
catch (Exception e) { e.printStackTrace(); }

VoltTable table = results[0];

System Procedures

272

table.resetRowPosition();
int targetHostID = -1;

while (table.advanceRow() && targetHostId < 0) {
 if ((table.getString("KEY") == "HOSTNAME") &&
 (table.getString("VALUE") == targetHostName)) {
 targetHostId = (int) table.getLong("HOST_ID");
 }
}

try {
 client.callProcedure("@SStopNode",
 targetHostId).getResults();
 }
 catch (Exception e) { e.printStackTrace(); }

System Procedures

273

@SystemCatalog
@SystemCatalog — Returns metadata about the database schema.

Syntax

@SystemCatalog String component

Description
The @SystemCatalog system procedure returns information about the schema of the VoltDB database, de-
pending upon the component keyword you specify. The following are the allowable values of component:

"TABLES" Returns information about the tables in the database.

"COLUMNS" Returns a list of columns for all of the tables in the database.

"INDEXINFO" Returns information about the indexes in the database schema. Note that the
procedure returns information for each column in the index. In other words,
if an index is composed of three columns, the result set will include three
separate entries for the index, one for each column.

"PRIMARYKEYS" Returns information about the primary keys in the database schema. Note
that the procedure returns information for each column in the primary key.
If an primary key is composed of three columns, the result set will include
three separate entries.

"PROCEDURES" Returns information about the stored procedures defined in the application
catalog, including system procedures.

"PROCEDURECOLUM-
NS"

Returns information about the arguments to the stored procedures.

Return Values
Returns a different VoltTable for each component. The layout of the VoltTables is designed to match the
corresponding JDBC data structures. Columns are provided for all JDBC properties, but where VoltDB
has no corresponding element the column is unused and a null value is returned.

For the TABLES component, the VoltTable has the following columns:

Name Datatype Description

TABLE_CAT STRING Unused.

TABLE_SCHEM STRING Unused.

TABLE_NAME STRING The name of the database table.

TABLE_TYPE STRING Specifies whether the table is a data table ("TABLE"), a
materialized view ("VIEW"), or an export-only table ('EX-
PORT").

REMARKS STRING Unused.

TYPE_CAT STRING Unused.

System Procedures

274

Name Datatype Description

TYPE_SCHEM STRING Unused.

TYPE_NAME STRING Unused.

SELF_REFERENCING
_COL_NAME

STRING Unused.

REF_GENERATION STRING Unused.

For the COLUMNS component, the VoltTable has the following columns:

Name Datatype Description

TABLE_CAT STRING Unused.

TABLE_SCHEM STRING Unused.

TABLE_NAME STRING The name of the database table the column belongs to.

COLUMN_NAME STRING The name of the column.

DATA_TYPE INTEGER An enumerated value specifying the corresponding Java
SQL datatype of the column.

TYPE_NAME STRING A string value specifying the datatype of the column.

COLUMN_SIZE INTEGER The length of the column in bits, characters, or digits, de-
pending on the datatype.

BUFFER_LENGTH INTEGER Unused.

DECIMAL_DIGITS INTEGER The number of fractional digits in a DECIMAL datatype
column. (Null for all other datatypes.)

NUM_PREC_RADIX INTEGER Specifies the radix, or numeric base, for calculating the col-
umn size. A radix of 2 indicates the column size is measured
in bits while a radix of 10 indicates a measurement in bytes
or digits.

NULLABLE INTEGER Indicates whether the column value can be null (1) or not
(0).

REMARKS STRING Contains the string "PARTITION_COLUMN" if the col-
umn is the partitioning key for a partitioned table. Other-
wise null.

COLUMN_DEF STRING The default value for the column.

SQL_DATA_TYPE INTEGER Unused.

SQL_DATETIME_SUB INTEGER Unused.

CHAR_OCTET_LENGTH INTEGER For variable length columns (VARCHAR and VARBI-
NARY), the maximum length of the column. Null for all
other datatypes.

ORDINAL_POSITION INTEGER An index specifying the position of the column in the list of
columns for the table, starting at 1.

IS_NULLABLE STRING Specifies whether the column can contain a null value
("YES") or not ("NO").

SCOPE_CATALOG STRING Unused.

SCOPE_SCHEMA STRING Unused.

SCOPE_TABLE STRING Unused.

System Procedures

275

Name Datatype Description

SOURCE_DATE_TYPE SMALLINT Unused.

IS_AUTOINCREMENT STRING Specifies whether the column is auto-incrementing or not.
(Always returns "NO").

For the INDEXINFO component, the VoltTable has the following columns:

Name Datatype Description

TABLE_CAT STRING Unused.

TABLE_SCHEM STRING Unused.

TABLE_NAME STRING The name of the database table the index applies to.

NON_UNIQUE TINYINT Value specifying whether the index is unique (0) or not (1).

INDEX_QUALIFIER STRING Unused.

INDEX_NAME STRING The name of the index that includes the current column.

TYPE SMALLINT An enumerated value indicating the type of index as either
a hash (2) or other type (3) of index.

ORDINAL_POSITION SMALLINT An index specifying the position of the column in the index,
starting at 1.

COLUMN_NAME STRING The name of the column.

ASC_OR_DESC STRING A string value specifying the sort order of the index. Pos-
sible values are "A" for ascending or null for unsorted in-
dexes.

CARDINALITY INTEGER Unused.

PAGES INTEGER Unused.

FILTER_CONDITION STRING Unused.

For the PRIMARYKEYS component, the VoltTable has the following columns:

Name Datatype Description

TABLE_CAT STRING Unused.

TABLE_SCHEM STRING Unused.

TABLE_NAME STRING The name of the database table.

COLUMN_NAME STRING The name of the column in the primary key.

KEY_SEQ SMALLINT An index specifying the position of the column in the pri-
mary key, starting at 1.

PK_NAME STRING The name of the primary key.

For the PROCEDURES component, the VoltTable has the following columns:

Name Datatype Description

PROCEDURE_CAT STRING Unused.

PROCEDURE_SCHEM STRING Unused.

PROCEDURE_NAME STRING The name of the stored procedure.

RESERVED1 STRING Unused.

System Procedures

276

Name Datatype Description

RESERVED2 STRING Unused.

RESERVED3 STRING Unused.

REMARKS STRING Unused.

PROCEDURE_TYPE SMALLINT An enumerated value that specifies the type of procedure.
Always returns zero (0), indicating "unknown".

SPECIFIC_NAME STRING Same as PROCEDURE_NAME.

For the PROCEDURECOLUMNS component, the VoltTable has the following columns:

Name Datatype Description

PROCEDURE_CAT STRING Unused.

PROCEDURE_SCHEM STRING Unused.

PROCEDURE_NAME STRING The name of the stored procedure.

COLUMN_NAME STRING The name of the procedure parameter.

COLUMN_TYPE SMALLINT An enumerated value specifying the parameter type. Al-
ways returns 1, corresponding to procedureColumnIn.

DATA_TYPE INTEGER An enumerated value specifying the corresponding Java
SQL datatype of the column.

TYPE_NAME STRING A string value specifying the datatype of the parameter.

PRECISION INTEGER The length of the parameter in bits, characters, or digits,
depending on the datatype.

LENGTH INTEGER The length of the parameter in bytes. For variable length
datatypes (VARCHAR and VARBINARY), this value
specifies the maximum possible length.

SCALE SMALLINT The number of fractional digits in a DECIMAL datatype
parameter. (Null for all other datatypes.)

RADIX SMALLINT Specifies the radix, or numeric base, for calculating the pre-
cision. A radix of 2 indicates the precision is measured in
bits while a radix of 10 indicates a measurement in bytes
or digits.

NULLABLE SMALLINT Unused.

REMARKS STRING If this column contains the string
"PARTITION_PARAMETER", the parameter is the parti-
tioning key for a single-partitioned procedure. If the column
contains the string "ARRAY_PARAMETER" the parame-
ter is a native Java array. Otherwise this column is null.

COLUMN_DEF STRING Unused.

SQL_DATA_TYPE INTEGER Unused.

SQL_DATETIME_SUB INTEGER Unused.

CHAR_OCTET_LENGTH INTEGER For variable length columns (VARCHAR and VARBI-
NARY), the maximum length of the column. Null for all
other datatypes.

ORDINAL_POSITION INTEGER An index specifying the position in the parameter list for the
procedure, starting at 1.

System Procedures

277

Name Datatype Description

IS_NULLABLE STRING Unused.

SPECIFIC_NAME STRING Same as COLUMN_NAME

Examples
The following example calls @SystemCatalog to list the stored procedures in the active database catalog:

$ sqlcmd
1> exec @SystemCatalog procedures;

The next program example uses @SystemCatalog to display information about the tables in the database
schema.

VoltTable[] results = null;
try {
 results = client.callProcedure("@SystemCatalog",
 "TABLES").getResults();
 System.out.println("Information about the database schema:");
 for (VoltTable node : results) System.out.println(node.toString());
}
catch (Exception e) {
 e.printStackTrace();
}

System Procedures

278

@SystemInformation
@SystemInformation — Returns configuration information about VoltDB and the individual nodes of the
database cluster.

Syntax

@SystemInformation

@SystemInformation String component

Description
The @SystemInformation system procedure returns information about the configuration of the VoltDB
database or the individual nodes of the database cluster, depending upon the component keyword you
specify. The following are the allowable values of component:

"DEPLOY-
MENT"

Returns information about the configuration of the database. In particular, this key-
word returns information about the various features and settings enabled through the
deployment file, such as export, snapshots, K-safety, and so on. These properties are
returned in a single VoltTable of name/value pairs.

"OVERVIEW" Returns information about the individual servers in the database cluster, including the
host name, the IP address, the version of VoltDB running on the server, as well as the
path to the catalog and deployment files in use. The overview also includes entries
for the start time of the server and length of time the server has been running.

If you do not specify a component, @SystemInformation returns the results of the OVERVIEW component
(to provide compatibility with previous versions of the procedure).

Return Values
Returns one of two VoltTables depending upon which component is requested.

For the DEPLOYMENT component, the VoltTable has the columns specified in the following table.

Name Datatype Description

PROPERTY STRING The name of the deployment property being reported.

VALUE STRING The corresponding value of that property in the deployment
file (either explicitly or by default).

For the OVERVIEW component, information is reported for each server in the cluster, so an additional
column is provided identifying the host node.

Name Datatype Description

HOST_ID INTEGER A numeric identifier for the host node.

KEY STRING The name of the system attribute being reported.

VALUE STRING The corresponding value of that attribute for the specified
host.

System Procedures

279

Examples
The first example displays information about the individual servers in the database cluster:

$ sqlcmd
1> exec @SystemInformation overview;

The following program example uses @SystemInformation to display information about the nodes in the
cluster and then about the database itself.

VoltTable[] results = null;
try {
 results = client.callProcedure("@SystemInformation",
 "OVERVIEW").getResults();
 System.out.println("Information about the database cluster:");
 for (VoltTable node : results) System.out.println(node.toString());

 results = client.callProcedure("@SystemInformation",
 "DEPLOYMENT").getResults();
 System.out.println("Information about the database deployment:");
 for (VoltTable node : results) System.out.println(node.toString());

}
catch (Exception e) {
 e.printStackTrace();
}

System Procedures

280

@UpdateApplicationCatalog
@UpdateApplicationCatalog — Reconfigures the database by replacing the application catalog and/or
deployment configuration.

Syntax

@UpdateApplicationCatalog byte[] catalog, String deployment

Description
The @UpdateApplicationCatalog system procedure lets you make modifications to a running database
without having to shutdown and restart. @UpdateApplicationCatalog supports the following changes:

• Add, remove, or modify stored procedures

• Add, remove, or modify database tables and columns

• Add, remove, or modify indexes (except where new constraints are introduced)

• Add or remove views and export-only tables

• Modify the security permissions for the database

• Modify the settings for automated snapshots (whether they are enabled or not, their frequency, location,
prefix, and number retained)

When modifying indexes, you can add, remove, or rename non-unique indexes, you can add or remove
columns from a non-unique index, and you can rename, add columns to, or remove in its entirety a unique
index. The only limitations are that you cannot add a unique index or remove a column from an existing
unique index.

The arguments to the system procedure are a byte array containing the contents of the new catalog jar and
a string containing the contents of the deployment file. That is, you pass the actual contents of the catalog
and deployment files, using a byte array for the binary catalog and a string for the text deployment file.
You can use null for either argument to change just the catalog or the deployment.

The new catalog and the deployment file must not contain any changes other than the allowed modifications
listed above. Currently, if there are any other changes from the original catalog and deployment file (such
as changes to the export configuration or to the configuration of the cluster), the procedure returns an error
indicating that an incompatible change has been found.

If you call @UpdateApplicationCatalog on a master database while database replication (DR) is active, the
DR process automatically communicates any changes to the application catalog to the replica database to
keep the two databases in sync. However, any changes to the deployment file apply to the master database
only. To change the deployment settings on a replica database, you must stop and restart the replica (and
database replication) using an updated deployment file.

To simplify the process of encoding the catalog contents, the Java client interface includes two helper
methods (one synchronous and one asynchronous) to encode the files and issue the stored procedure re-
quest:

ClientResponse client.updateApplicationCatalog(File catalog-file, File deployment-file)

System Procedures

281

ClientResponse client.updateApplicationCatalog(clientCallback callback, File catalog-file, File
deployment-file)

Similarly, the sqlcmd utility interprets both arguments as filenames.

Examples
The following example uses sqlcmd to update the application catalog using the files mycatalog.jar
and mydeploy.xml:

$ sqlcmd
1> exec @UpdateApplicationCatalog mycatalog.jar, mydeploy.xml;

An alternative is to use the voltadmin update command. In which case, the following command performs
the same function as the preceding sqlcmd example:

$ voltadmin update mycatalog.jar mydeploy.xml

The following program example uses the @UpdateApplicationCatalog procedure to update the cur-
rent database catalog, using the catalog at project/newcatalog.jar and configuration file at
project/production.xml.

String newcat = "project/newcatalog.jar";
String newdeploy = "project/production.xml";

try {
 File file = new File(newcat);
 FileInputStream fin = new FileInputStream(file);
 byte[] catalog = new byte[(int)file.length()];
 fin.read(catalog);
 fin.close();
 file = new File(newdeploy);
 fin = new FileInputStream(file);
 byte[] deploybytes = new byte[(int)file.length()];
 fin.read(deploybytes);
 fin.close();
 String deployment = new String(deploybytes, "UTF-8");
 client.callProcedure("@UpdateApplicationCatalog",catalog, deployment);
}
catch (Exception e) { e.printStackTrace(); }

The following example uses the synchronous helper method to perform the same operation.

String newcat = "project/newcatalog.jar";
String newdeploy = "project/production.xml";
try {
 client.updateApplicationCatalog(new File(newcat), new File(newdeploy));
}
catch (Exception e) { e.printStackTrace(); }

System Procedures

282

@UpdateLogging
@UpdateLogging — Changes the logging configuration for a running database.

Syntax

@UpdateLogging CString configuration

Description
The @UpdateLogging system procedure lets you change the logging configuration for VoltDB. The second
argument, configuration, is a text string containing the Log4J XML configuration definition.

Return Values
Returns one VoltTable with one row.

Name Datatype Description

STATUS BIGINT Always returns the value zero (0) indicating success.

Examples
It is possible to use sqlcmd to update the logging configuration. However, the argument is interpreted as
raw XML content rather than as a file specification. Consequently, it can be difficult to use interactively.
But you can write the file contents to an input file and then pipe that to sqlcmd, like so:

$ echo "exec @UpdateLogging '" > sqlcmd.input
$ cat mylog4j.xml >> sqlcmd.input
$ echo "';" >> sqlcmd.input
$ cat sqlcmd.input | sqlcmd

The following program example demonstrates another way to update the logging, using the contents of an
XML file (identified by the string xmlfilename).

try {
 Scanner scan = new Scanner(new File(xmlfilename));
 scan.useDelimiter("\\Z");
 String content = scan.next();
 client.callProcedure("@UpdateLogging",content);
}
catch (Exception e) {
 e.printStackTrace();
}

