
VoltDB Client Wire Protocol
VoltDB Team - 6/27/2011 - VoltDB Client Wire Protocol Version 0

Overview
A client connection to a VoltDB instance consists of a TCP connection on port 21212. After the initial login process the
only exchange between the client library and the VoltDB server is the invocation of and response to stored procedures.
All messages in the VoltDB wire protocol are big endian and all integers are signed. Every message is length preceded
with a 4 byte integer and the length does not included the length value. The first value after the length preceding value
is the version number of the wire protocol represented as a byte. These two items precede all messages.

The login message is the first message the client library sends to the VoltDB server and it is required even if
authentication is disabled in the server's configuration. The login message consists of a service name string, a username
string and a 160-bit SHA-1 hash of the password. The response from the server consists of a response byte. A value of
0 indicates successful authentication and all other values indicate failure. If authentication fails the server will close
the connection. The client can safely send invocations before receiving an authentication response.

The procedure invocation request contains the procedure to be called by name, and the serialized parameters to the
procedure. The message also includes an opaque 8 byte piece of client data that will be returned with the response,
and can be used by the client to correlate requests with responses.

The returned response contains a byte status code, an integer measuring intra-cluster latency, a serialized exception if
an error occured and the exception was serializable, an array of VoltTables (may be length 0, never null), a string value
containing any extra information the server included, and the 8 byte piece of client data contained in the originating
procedure invocation.

The following sections describe how values are serialized. The wire protocol is still under development and will be
adapted to support new authentication methods and new data types as necessary.

Basic Data Types
Binary fields do not have a wire type associated with them but they are present in certain messages. Binary fields
(opacque client data, hashes) do not have any endianness, sign, or size other then what is specified in the message
format.

Integer Types:
All integer types are signed, twos-compliment and big-endian.

• Byte - 1 Byte

• Short - 2 Bytes

• Integer - 4 Bytes

• Long - 8 Bytes

Floating Point Type
Only 8-Byte Double types are supported using the byte representation in IEEE 754 "double format." Positive and
negative infinity, as well as NaN, are supported on the wire, but not guaranteed to work as SQL values.

VoltDB Client Wire Protocol

2

String Type
Strings begin with a 4-byte integer storing the number of bytes of character data, followed by the character data. UTF-8
is the only supported character encoding. Note: Strings are artificially limited to 1 megabyte. The NULL string has a
length preceded value of -1 (negative one) followed by 0 (zero) bytes of string data. The empty string is represented
with a length preceding value of 0.

A String encoded into a parameter set has to be deserialized as a Java String before being passed to a stored procedure
and this is a relatively slow operation. If the stored procedure does not need the Java String representation it can specify
a byte array as its argument instead of String. The String should then be presented in the parameter set as a byte array
(not preceded with the String wire type).

If an array of bytes is passed as a parameter to a SQL statement in a stored procedure, and that parameter expects a
string, it will automatically be converted to a string on the native side without any Java deserialization. SQL statements
do not support array parameters so this is not ambigous. In the current implementation this can be a signficant
performance win, especially with large parameter sets with many strings.

The following table presents the byte by byte serialization of the string "foo"

Byte Offset Byte Value (dec) Field Desc Field Value Meaning

00 0

01 0

02 0

03 3

String Length 3 String is 3 bytes long

04 102 f

05 111 o

06 111

Characters

o

String data is "foo"

Varbinary Type
Varbinary is a effectively a binary string, using the same serialization and storage.

Like strings, varbinary begin with a 4-byte integer storing the number of bytes of raw data, followed by the raw data
itself. Note: Like strings, varbinary values are artificially limited to 1 megabyte. The NULL varbinary has a length
preceded value of -1 (negative one) followed by 0 (zero) bytes of data. The value of zero bytes is represented with
a length preceding value of 0.

The native java type for varbinary is byte[]. Stored procedures and SQL statements will accept byte[] as input for
varbinary parameters. For compatibility with textual SQL and less binary-friendly clients, varbinary parameters may
also be passed as hexidecimal strings using standard string serialization and the string type code indicator. For example,
the string "aa" would represent a single byte of value 170. The hex-encoding is case-insensitive and will fail on invalid
input, such as odd-length strings.

Date Type
All dates are represented on the wire as Long values. This signed number represents the number of microseconds (not
the usual milliseconds before or after Jan. 1 1970 00:00:00 GMT, the Unix epoch.

Decimal Type
VoltDB implements a fixed precision and scale DECIMAL(38,12) type. This type is serialized as a 128 bit
signed twos complement integer reperesenting the unscaled decimal value. The integer must be in big-endian

VoltDB Client Wire Protocol

3

byte order with the most significant bytes first. Null is serialized as the smallest representable value which
is "-170141183460469231731687303715884105728." Serializing values (Null excluded) that are greater than
"99999999999999999999999999999999999999" or less than "-99999999999999999999999999999999999999" will
result in an error response.

Note that the serialization is given above in terms of a 128 bit integer. Since the logical value
represented is actually scalled by 12 decimal places, the logical maximum value, minimum value and null
values are "99999999999999999999999999.999999999999", "99999999999999999999999999.999999999999" and
"170141183460469231731687303.715884105728" respectively.

The following table presents the byte by byte serialization of the number "-23325.23425"

Byte Offset Byte Value (dec)

00 -1

01 -1

02 -1

03 -1

04 -1

05 -1

06 -1

07 -1

08 -1

09 -83

10 33

11 -46

12 -78

13 57

14 -39

15 -128

Application Specific Data Types
A Byte value specifying the type of a serialized value on the wire.

• ARRAY = -99

• NULL = 1

• TINYINT = 3

• SMALLINT = 4

• INTEGER = 5

• BIGINT = 6

• FLOAT = 8

• STRING = 9

• TIMESTAMP = 11

VoltDB Client Wire Protocol

4

• DECIMAL = 22

• VARBINARY = 25

Procedure Call Status Code
A Byte value specifying the success or failure of a remote stored procedure call.

• SUCCESS = 1

• USER_ABORT = -1

• GRACEFUL_FAILURE = -2

• UNEXPECTED_FAILURE = -3

• CONNECTION_LOST = -4

Compound Data Types

Array Types
Arrays are represented as Byte value indicating the wire type of the elements and a 2 byte Short value indicating the
number of elements in the array, followed by the specified number of elements. The length preceding value for the
TINYINT (byte) type is length preceded by a 4 byte integer instead of a 2 byte short. This important exception allows
large quantities of binary or string data to be passed as a byte array. The size of byte arrays is artificially limited to
1 megabyte. Each array is serialized according to its type (Strings as Strings, VoltTables as VoltTables, Integers as
Integers). Arrays are only present as parameters in parameter sets.

• Size is limited to 32,767 values due to the signed short length with the exception of TINYINT (byte) arrays which
use a 4 byte integer length and are limited to 1 megabyte.

• All values must be homogeneous with respect to type.

The following example serialization shows an array with two String elements ("foo1", "foo2").

Byte Offset Byte Value (dec) Field Desc Field Value Meaning

00 9 Element Type 9 Array Elements are
Strings

01 0

02 2

Element Count 2 Array contains two
elements

03 0

04 0

05 0

06 4

String Length 4 String is 4 bytes long

07 102 f

08 111 o

09 111 o

10 49

Characters

1

String data is "foo1"

11 0 String Length 4 String is 4 bytes long

VoltDB Client Wire Protocol

5

Byte Offset Byte Value (dec) Field Desc Field Value Meaning

12 0

13 0

14 4

15 102 f

16 111 o

17 111 o

18 50

Characters

2

String data is "foo2"

Complex API Data Types

VoltTable
On the wire a VoltTable is serialized as a header followed by tuple data. VoltTables, like all VoltDB serialized
structures are stored in network byte order.

(Note: In the following description, the term "array" means a sequence of objects of the specified type, not a VoltDB
array object as described in the previous section. Because the number of columns is fixed and is already part of the
VoltTable descriptor, we know how many objects are in each array and a full array descriptor is not needed.)

It should also be noted that although a description of the VoltTable structure is being provided here for completeness,
in most cases the client interface does not need to interpret the structure, but rather passes it unchanged between the
server and the client application.

Name Type Length (bytes) [Basic |
Compound |
Complex]

Total table
length

Integer 4 Basic

Table Metadata
Length

Integer 4 Basic

Status Code Byte 1 Basic

Column Count Short 2 Basic

Column Types Array of Bytes variable Compound

Column Names Array of
Strings

variable Compound

Row Count Integer 4 Basic

Row Data...

Notes on the Header Format:
• The "Table Metadata Length" stores the length in bytes of the contents of the table from byte 8 (the end of the

metadata length field) all the way to the end of the "Column Names" array. NOTE: It does not include the row count
value. See below for an example.

• The size of the "Column Types" and "Column Names" arrays is expected to equal the value stored in "Column
Count".

VoltDB Client Wire Protocol

6

• Column names are limited to the ASCII character set. Strings in row values are still UTF-8 encoded.

• Values with 4-byte (integer) length fields are signed and are limited to a max of 1 megabyte.

Row Data Format:
Each row is prefixed by a 4 byte integer that holds the non-inclusive length of the row. If a row is a single 4-byte
integer column, the value of this length prefix will be 4. Row size is artifically restricted to 2 megabytes.

The body of the row is packed array of values. The value at index i is is of type specified by the column type field for
index i. The values are serialized according to the serialization rules in "Basic Data Types" above.

Name Type Length (bytes) [Basic |
Compound |
Complex]

Row Length Integer 4 Basic

Single Row Value Array

Example VoltTable Serialization:
The following is a 35-byte long serialized table containing one column named "Test" of type BIGINT with one row
containing the number 5.

Byte Offset Byte Value (dec) Field Desc Field Value Meaning

00 0

01 0

02 0

03 31

Total Table Length 31 Table size is 31 bytes

04 0

05 0

06 0

07 12

Table Metadata
Length

12 Header size is 12 bytes

08 0 Status Code 0 Status code is 0

09 0

10 1

Column Count 1 Table contains 1
column

11 6 Column 1 Type VoltType.BIGINT Column 1 is a BigInt

12 0

13 0

14 0

15 4

Col 1 Name Length 4 The name of column 1
has 4 chars (ASCII)

16 84 T

17 101 e

18 115 s

19 116

Column 1 Name
Value

t

Column 1 is named
"Test"

VoltDB Client Wire Protocol

7

Byte Offset Byte Value (dec) Field Desc Field Value Meaning

20 0

21 0

22 0

23 1

Row Count 1 Table has 1 row

24 0

25 0

26 0

27 8

Row 1 Length 8 First row is 8 bytes
long

28 0

29 0

30 0

31 0

32 0

33 0

34 0

35 5

Row 1 Col 1 Value 5 Value in first row/first
col is 5

Serializable exceptions
Currently serializable exceptions are not a part of the wire protocol although they are present in the invocation response
message. The length every serialized exception (4 byte integer) is part of the invocation response message and it can
be used to skip the exception. It is possible to retrieve the Byte ordinal that follows the exception's length preceding
value. The ordinal will not be present if the exception's length is 0.

• 1 EEException Generic failure in Volt. Should indicate a failure in the server and not the application code. These
should not occur in normal operation.

• 2 SQLException Base class for all exceptions that can occur during normal operation. Things like constraint failures
(unique, string length, not null) that are caught and handled correct by Volt.

• 3 ConstraintFailureException Specialization of SQLException for contraint failures during the execution of a stored
procedure.

In the future a set of serializable exceptions and their serialization format will be added to the wire protocol.

Parameter Set
A parameter set contains all the parameters to be passed to a stored procedure and it is one of the structures bundled
inside a stored procedure invocation request. The first value of a parameter set is a Short indicating the number of
parameters that follow. The following values are a series of <wire type, value> pairs. Each value is preceded by its
wire type represented as a Byte. NULL is a valid wire type and value and it is not followed by any additional value.
Arrays are preceded by the wire type -99 and the array value contains the type of the array elements as well as the
number of elements (see Array type). A parameter set cannot contain a nested parameter set (there is no wire type
for parameter set).

Note that varbinary values using type number 25 and arrays of bytes using type number -99, followed by type 3 are
effectively interchangeable.

VoltDB Client Wire Protocol

8

Parameter set
Name Type Length (bytes) [Basic |

Compound |
Complex]

Parameter
count

Short 2 Basic

Parameters...

Parameter
Name Type Length (bytes) [Basic | Compound |

Complex]

Parameter type Byte 1 Basic

Parameter Any Basic | Compound
| Complex excluding
parameter sets

variable Basic | Compound |
Complex

The following example parameter set serialization shows a parameter set consisting of an array of two strings ("foo1,
"foo2") and a decimal.

Byte Offset Byte Value (dec) Field Desc Field Value Meaning

00 0

01 2

Parameter Count 2 Parameter set contains
two parameters

02 -99 Parameter Type -99 Next parameter is an
array

03 9 Element Type 9 Array Elements are
Strings

04 0

05 2

Element Count 2 Array contains two
elements

06 0

07 0

08 0

09 4

String Length 4 String is 4 bytes long

10 102 f

11 111 o

12 111 o

13 49

Characters

1

String data is "foo1"

14 0

15 0

16 0

17 4

String Length 4 String is 4 bytes long

18 102 f

19 111

Characters

o

String data is "foo2"

VoltDB Client Wire Protocol

9

Byte Offset Byte Value (dec) Field Desc Field Value Meaning

20 111 o

21 50 2

22 22 Parameter Type 22 Next parameter is a
decimal

23 -1

24 -1

25 -1

26 -1

27 -1

28 -1

29 -1

30 -1

31 -1

32 -83

33 33

34 -46

35 -78

36 57

37 -39

38 -128

Decimal data -23325.23425 Decimal value
"-23325.23425"

Message formats

Message header
The header that is included at the beginning of all messages. The length value includes the protocol version byte but
not the 4 byte length value.

Name Type Length (bytes) [Basic | Compound |
Complex]

Message length Integer 4 Basic

Protocol version Byte 1 Basic

The following table shows and example header for a 140,000 byte message.

Byte Offset Byte Value (dec) Field Desc Field Value Meaning

00 0

01 2

02 34

03 -32

Message Length 140000 The message is
140,000 bytes long

04 0 Protocol version 0 This messages is a
Volt Wire Protocol
version 0 message

VoltDB Client Wire Protocol

10

Login message
The login message is the first message a client can send to a server after opening a connection. A client does not need
to wait for a response to the login message to begin sending invocation requests. The login message identifies a service
to authenticate to. There are currently two supported services: the "database" service authenticates stored procedure
callers; the "export" service authenticates export connector callers. Export connectors are extensible and future plugin
connectors may handle other service string values.

Name Type Length (bytes) [Basic |
Compound |
Complex]

Message Header

Service String variable Basic

Username String variable Basic

SHA-1
password hash

Binary 20 Basic

The following table shows an example login message for username "scooby" password "doo"

Byte Offset Byte Value (dec) Field Desc Field Value Meaning

00 0

01 0

02 0

03 43

Message Length 43 The message is 42
bytes long

04 0 Protocol version 0 This messages is a
Volt Wire Protocol
version 0 message

05 0

06 0

07 0

08 8

Service length 8 Service string is 8
bytes long

09 d

10 97 a

11 116 t

12 97 a

13 98 b

14 97 a

15 115 s

16 101

Characters

e

Service string is
"database"

17 0

18 0

19 0

20 6

Username length 6 Username is 6 bytes
long

21 115 Characters s Username is "scooby"

VoltDB Client Wire Protocol

11

Byte Offset Byte Value (dec) Field Desc Field Value Meaning

22 99 c

23 111 o

24 111 o

25 98 b

26 121 y

27 100

28 0

29 -50

30 -61

31 125

32 -52

33 35

34 -99

35 11

36 -7

37 -126

38 -3

39 108

40 114

41 -5

42 3

43 -56

44 -90

45 -73

46 -113

SHA-1 Hash SHA-1("doo") Password has is
SHA-1("doo")

Login response
A response is generated to a login request and success is indicated with a result code of 0. Any other value indicates
authentication failure and will be followed by the server closing the connection. A response code of 1 indicates that
the there are too many connections. A response code of 2 indicates that authentication failed because the client took
too long to transmit credentials. A response code of 3 indicates a corrupt or invalid login message. If the response code
is 0 the response will also contain additional information following the result code. A 4 byte integer specifying the
host id of the Volt node . An 8 byte long specifying a connection id that is unique among connections to that node.
An 8 byte long timestamp (milliseconds since Unix epoch) and a 4 byte IPV4 address representing the time the cluster
was started and the address of the leader node. These two values uniquely identify a Volt cluster instance. And finally
a string containing a textual description of the build the node being connected to is running.

Name Type Length (bytes) [Basic |
Compound |
Complex]

Message Header

VoltDB Client Wire Protocol

12

Name Type Length (bytes) [Basic |
Compound |
Complex]

Authentication
result code

Byte 1 Basic

Server Host ID Integer 4 Basic

Connection ID Long 8 Basic

Cluster start
timestamp
(milliseconds
since Unix
epoch)

Long 8 Basic

Leader IPV4
address

Integer 4 Basic

Build string String variable Basic

The following table shows a login response indicating success

Byte Offset Byte Value (dec) Field Desc Field Value Meaning

00 0

01 0

02 0

03 82

Message Length 82 The message is 82
bytes long

04 0 Protocol version 0 This messages is a
Volt Wire Protocol
version 0 message

05 0 Result code 0 Authentication
succeded

06 0

07 0

08 0

09 0

Server Host ID 0 The Host ID of the
server is 0

10 0

11 0

12 0

13 0

14 0

15 0

16 0

17 12

Connection ID 12 The ID of the
connection is 12

18 0

19 0

20 0

Cluster start
timestamp

105 The cluster was
started 105
milliseconds after the
Unix epoch

VoltDB Client Wire Protocol

13

Byte Offset Byte Value (dec) Field Desc Field Value Meaning

21 0

22 0

23 0

24 0

25 105

26 192

27 168

28 0

29 1

Leader IPV4 address 192.168.0.1 The IPV4 address
of the leader that
started the cluster was
192.168.0.1

30 0

31 0

32 0

33 52

Build string length 52 The length of the build
string is 52

34 48 ("0")

35 46 (".")

36 55 ("7")

37 46 (".")

38 48 ("0")

39 49 ("1")

40 32 (" ")

41 104 ("h"

42 116 ("t")

43 116 ("t")

44 112 ("p")

45 115 ("s")

46 58 (":")

47 47 ("/")

48 47 ("/")

49 115 ("s")

50 118 ("v")

51 110 ("n")

52 46 (".")

53 118 ("v")

54 111 ("o")

55 108 ("l")

56 116 ("t")

57 100 ("d")

58 98 ("b")

Build string 0.7.01 https://
svn.voltdb.com/eng/
trunk?revision=443

Build is version 0.7.01
off the trunk revision
443/td>

VoltDB Client Wire Protocol

14

Byte Offset Byte Value (dec) Field Desc Field Value Meaning

59 46 (".")

60 99 ("c")

61 111 ("o")

62 109 ("m")

63 47 ("/")

64 101 ("e")

65 110 ("n")

66 103 ("g")

67 47 ("/")

68 116 ("t")

69 114 ("r")

70 117 ("u")

71 110 ("n")

72 107 ("k")

73 63 ("?")

74 114 ("r")

75 101 ("e")

76 118 ("v")

77 105 ("i")

78 115 ("s")

79 105 ("i")

80 111 ("o")

81 110 ("n")

82 61 ("=")

83 52 ("4")

84 52 ("4")

85 51 ("3")

Invocation request
A request to invoke a stored procedure identifies the procedure to invoke by name, the parameters to pass to the
procedure, and an 8 byte piece of client data that will be returned with the response to the invocation request. A client
does not need to wait for a response to a request to continue sending requests. The server will use TCP backpressure
to avoid running out of memory when a client sends too many invocations for the server to handle.

Name Type Length (bytes) [Basic |
Compound |
Complex]

Message Header

Procedure
name

String variable Basic

VoltDB Client Wire Protocol

15

Name Type Length (bytes) [Basic |
Compound |
Complex]

Client data Binary 8 Basic

Parameters Parameter Set variable Complex

The following table shows the serialization for invoking a procedure called "proc" with a parameter set containing an
array of two strings ("foo1", "foo2") and a decimal value "-23325.23425"

Byte Offset Byte Value (dec) Field Desc Field Value Meaning

00 0

01 0

02 0

03 56

Message Length 56 The message is 56
bytes long

04 0 Protocol version 0 This messages is a
Volt Wire Protocol
version 0 message

05 0

06 0

07 0

08 4

Procedure name
length

4 Procedure name is 4
bytes long

09 112 p

10 114 r

11 111 o

12 99

Characters

c

Stored procedure
name is "proc"

13 0

14 1

15 2

16 3

17 4

18 5

19 6

20 7

Client Data Opaque client data

21 0

22 2

Parameter Count 2 Parameter set contains
two parameters

23 -99 Parameter Type -99 Next parameter is an
array

24 9 Element Type 9 Array Elements are
Strings

25 0

26 2

Element Count 2 Array contains two
elements

27 0 String Length 4 String is 4 bytes long

VoltDB Client Wire Protocol

16

Byte Offset Byte Value (dec) Field Desc Field Value Meaning

28 0

29 0

30 4

31 102 f

32 111 o

33 111 o

34 49

Characters

1

String data is "foo1"

35 0

36 0

37 0

38 4

String Length 4 String is 4 bytes long

39 102 f

40 111 o

41 111 o

42 50

Characters

2

String data is "foo2"

43 22 Parameter Type 22 Next parameter is a
decimal

44 -1

45 -1

46 -1

47 -1

48 -1

49 -1

50 -1

51 -1

52 -1

53 -83

54 33

55 -46

56 -78

57 57

58 -39

59 -128

Decimal data -23325.23425 Decimal value
"-23325.23425"

Invocation response
An invocation response contains the results of the server's attempt to execute the stored procedure. The response
includes optional fields and the first byte after the header is used to indicate which optional fields are present. The
status string, application status string, and serializable exception are all optional fields. Bit 7 indicates the presence of
a serializable exception, bit 6 indicates the presence of a status string, and bit 8 indicates the presence of an app status

VoltDB Client Wire Protocol

17

string. The serializable exception that can be included in some responses is currently not a part of the wire protocol.
The exception length value should be used to skip exceptions if they are present. The status string is used to return any
human readable information the server or stored procedure wants to return with the response. The app status code and
app status string can be set by application code from within stored procedures and is returned with the response.

Name Type Length (bytes) [Basic |
Compound |
Complex]

Message Header

Client data Binary 8 Basic

Fields present Byte (bit field) 1 Basic

Status Byte 1 Basic

Status string String (optional
field)

variable Basic

Application
Status

Byte 1 Basic

Application
Status string

String (optional
field)

variable Basic

Serialized
exception
length

Integer
(optional field)

4 Basic

Serialized
exception

Serializable
exception
(optional field)

variable Complex

Result count Short 2 Basic

Result tables Series of
VoltTables

variable Compound
(containing
Complex)

The following table shows a response to a previous invocation. For demonstrational purposes two tables are returned,
but in a real failure case there would be no tables returned.

Byte Offset Byte Value (dec) Field Desc Field Value Meaning

00 0

01 0

02 0

03 109

Message Length 109 The message is 109
bytes long

04 0 Protocol version 0 This messages is a
Volt Wire Protocol
version 0 message

05 0

06 1

07 2

08 3

09 4

10 5

Client Data Opaque client data

VoltDB Client Wire Protocol

18

Byte Offset Byte Value (dec) Field Desc Field Value Meaning

11 6

12 7

13 -32 Fields present -32 The optional status
string, app status
string, and serializable
exception fields are
present

14 2 Status code 2 Status code is graceful
failure (2)

15 0

16 0

17 0

18 4

Status String length 4 Status string length is
4

19 102 f

20 97 a

21 105 i

22 108

Status String

l

The status string was
"fail"

23 99 Application status
code

99 Application status
code is 99

24 0

25 0

26 0

27 4

Application status
string length

4 Application status
string length is 4

28 118 v

29 111 o

30 108 l

31 116

Application status
string

t

The application status
string was "volt"

32 0

33 0

34 0

35 5

Serialized Exception
length

5 Serialized exception is
5 bytes long

36 1 Exception ordinal 1 Exception is a SQL
exception

37 0

38 0

39 0

40 0

Exception body Opaque Opaque

41 0

42 2

Result table count 2 Two result tables
follow

43 0 Total Table Length 32 Table size is 32 bytes

VoltDB Client Wire Protocol

19

Byte Offset Byte Value (dec) Field Desc Field Value Meaning

44 0

45 0

46 32

47 0

48 0

49 0

50 12

Table Metadata
Length

12 Header size is 12 bytes

51 0 Status Code 0 Status code is 0

52 0

53 1

Column Count 1 Table contains 1
column

54 6 Column 1 Type VoltType.BIGINT Column 1 is a BigInt

55 0

56 0

57 0

58 4

Col 1 Name Length 4 The name of column 1
has 4 chars (ASCII)

59 84 T

60 101 e

61 115 s

62 116

Column 1 Name
Value

t

Column 1 is named
"Test"

63 0

64 0

65 0

66 1

Row Count 1 Table has 1 row

67 0

68 0

69 0

70 8

Row 1 Length 8 First row is 8 bytes
long

71 0

72 0

73 0

74 0

75 0

76 0

77 0

78 5

Row 1 Col 1 Value 5 Value in first row/first
col 5

79 0

80 0

81 0

Total Table Length 32 Table size is 32 bytes

VoltDB Client Wire Protocol

20

Byte Offset Byte Value (dec) Field Desc Field Value Meaning

82 32

83 0

84 0

85 0

86 12

Table Metadata
Length

12 Header size is 12 bytes

87 0 Status Code 0 Status code is 0

88 0

89 1

Column Count 1 Table contains 1
column

90 6 Column 1 Type VoltType.BIGINT Column 1 is a BigInt

91 0

92 0

93 0

94 4

Col 1 Name Length 4 The name of column 1
has 4 chars (ASCII)

95 84 T

96 101 e

97 115 s

98 116

Column 1 Name
Value

t

Column 1 is named
"Test"

99 0

100 0

101 0

102 1

Row Count 1 Table has 1 row

103 0

104 0

105 0

106 8

Row 1 Length 8 First row is 8 bytes
long

107 0

108 0

109 0

110 0

111 0

112 0

113 0

114 5

Row 1 Col 1 Value 5 Value in first row/first
col 5

