Volt

VoltDB Client Wire Protocol

VoltDB Team - 6/27/2011 - VoltDB Client Wire Protocol Version O

Overview

A client connection to aV oltDB instance consists of a TCP connection on port 21212. After theinitial login processthe
only exchange between the client library and the V oltDB server istheinvocation of and response to stored procedures.
All messagesin the VoltDB wire protocol are big endian and all integers are signed. Every message islength preceded
with a4 byteinteger and the length does not included the length value. The first value after the length preceding value
is the version number of the wire protocol represented as a byte. These two items precede all messages.

The login message is the first message the client library sends to the VoltDB server and it is required even if
authentication isdisabled in the server's configuration. Thelogin message consists of aservice name string, ausername
string and a 160-bit SHA-1 hash of the password. The response from the server consists of aresponse byte. A value of
0 indicates successful authentication and all other values indicate failure. If authentication fails the server will close
the connection. The client can safely send invocations before receiving an authentication response.

The procedure invocation reguest contains the procedure to be called by name, and the serialized parameters to the
procedure. The message also includes an opaque 8 byte piece of client data that will be returned with the response,
and can be used by the client to correlate requests with responses.

The returned response contains a byte status code, an integer measuring intra-cluster latency, a serialized exception if
an error occured and the exception was seriaizable, an array of VoltTables (may belength O, never null), astring value
containing any extrainformation the server included, and the 8 byte piece of client data contained in the originating
procedure invocation.

The following sections describe how values are serialized. The wire protocol is still under development and will be
adapted to support new authentication methods and new data types as necessary.

Basic Data Types

Binary fields do not have a wire type associated with them but they are present in certain messages. Binary fields
(opacque client data, hashes) do not have any endianness, sign, or size other then what is specified in the message
format.

Integer Types:

All integer types are signed, twos-compliment and big-endian.
* Byte- 1Byte

» Short - 2 Bytes

* Integer - 4 Bytes

* Long - 8 Bytes

Floating Point Type

Only 8-Byte Double types are supported using the byte representation in |[EEE 754 "double format." Positive and
negative infinity, aswell as NaN, are supported on the wire, but not guaranteed to work as SQL values.

VoltDB Client Wire Protocol

String Type

Strings begin with a4-byteinteger storing the number of bytes of character data, followed by the character data. UTF-8
isthe only supported character encoding. Note: Strings are artificially limited to 1 megabyte. The NULL string has a
length preceded value of -1 (negative one) followed by O (zero) bytes of string data. The empty string is represented
with alength preceding value of 0.

A String encoded into a parameter set hasto be deserialized as a Java String before being passed to a stored procedure
andthisisarelatively slow operation. If the stored procedure does not need the Java String representation it can specify
abyte array asits argument instead of String. The String should then be presented in the parameter set as a byte array
(not preceded with the String wire type).

If an array of bytesis passed as a parameter to a SQL statement in a stored procedure, and that parameter expects a
string, it will automatically be converted to astring on the native side without any Javadeserialization. SQL statements
do not support array parameters so this is not ambigous. In the current implementation this can be a signficant
performance win, especially with large parameter sets with many strings.

The following table presents the byte by byte serialization of the string "foo"

Byte Offset Byte Value (dec) Field Desc Field Value M eaning

00 0 String Length 3 String is 3 bytes long
01 0

02 0

03 3

04 102 Characters f String datais "foo"
05 111 o}

06 111 o}

Varbinary Type

Varbinary is aeffectively abinary string, using the same serialization and storage.

Like strings, varbinary begin with a 4-byte integer storing the number of bytes of raw data, followed by the raw data
itself. Note: Like strings, varbinary values are artificially limited to 1 megabyte. The NULL varbinary has a length
preceded value of -1 (negative one) followed by 0 (zero) bytes of data. The value of zero bytes is represented with
alength preceding value of 0.

The native java type for varbinary is byte]]. Stored procedures and SQL statements will accept byte]] as input for
varbinary parameters. For compatibility with textual SQL and less binary-friendly clients, varbinary parameters may
also be passed as hexidecimal strings using standard string serialization and the string type codeindicator. For example,
the string "aa" would represent asingle byte of value 170. The hex-encoding is case-insensitive and will fail oninvalid
input, such as odd-length strings.

Date Type

All dates are represented on the wire as Long values. This signed number represents the number of microseconds (not
the usual milliseconds before or after Jan. 1 1970 00:00:00 GMT, the Unix epoch.

Decimal Type

VoltDB implements a fixed precision and scale DECIMAL(38,12) type. This type is seridlized as a 128 hit
signed twos complement integer reperesenting the unscaled decimal value. The integer must be in big-endian

VoltDB Client Wire Protocol

byte order with the most significant bytes first. Null is seridlized as the smallest representable value which
is "-170141183460469231731687303715884105728." Serializing values (Null excluded) that are greater than
"99999999999999999999999999999999999999" or |ess than "'-99999999999999999999999999999999999999" will
result in an error response.

Note that the seridization is given above in terms of a 128 bit integer. Since the logical value
represented is actually scalled by 12 decima places, the logical maximum value, minimum value and null
values are "99999999999999999999999999.999999999999", "99999999999999999999999999.999999999999" and
"170141183460469231731687303.715884105728" respectively.

The following table presents the byte by byte serialization of the number "-23325.23425"

Byte Offset Byte Value (dec)
00 -1
01 -1
02 -1
03 -1
04 -1
05 -1
06 -1
o7 -1
08 -1
09 -83
10 33
11 -46
12 -78
13 57
14 -39
15 -128

Application Specific Data Types

A Byte value specifying the type of a serialized value on the wire.
* ARRAY =-99

e NULL=1

e TINYINT =3

* SMALLINT =4

* INTEGER=5

* BIGINT=6

« FLOAT=8

» STRING=9

 TIMESTAMP=11

VoltDB Client Wire Protocol

 DECIMAL =22

* VARBINARY =25

Procedure Call Status Code

A Byte value specifying the success or failure of aremote stored procedure call.
* SUCCESS=1
* USER _ABORT =-1

* GRACEFUL_FAILURE =-2

UNEXPECTED_FAILURE =-3

* CONNECTION_LOST =-4

Compound Data Types
Array Types

Arrays are represented as Byte value indicating the wire type of the elements and a 2 byte Short value indicating the
number of elements in the array, followed by the specified number of elements. The length preceding value for the
TINYINT (byte) typeislength preceded by a4 byte integer instead of a 2 byte short. Thisimportant exception allows
large quantities of binary or string data to be passed as a byte array. The size of byte arrays is artificially limited to
1 megabyte. Each array is serialized according to its type (Strings as Strings, VoltTables as VoltTables, Integers as
Integers). Arrays are only present as parameters in parameter sets.

» Sizeislimited to 32,767 values due to the signed short length with the exception of TINYINT (byte) arrays which
use a4 byte integer length and are limited to 1 megabyte.

« All values must be homogeneous with respect to type.

The following example serialization shows an array with two String elements ("fool", "foo2").

Byte Offset Byte Value (dec) Field Desc Field Value M eaning

00 9 Element Type 9 Array Elements are
Strings

01 0 Element Count 2 Array contains two

02 2 elements

03 0 String Length 4 String is 4 bytes long

04 0

05 0

06 4

07 102 Characters f String datais "fool"

08 111 o}

09 111 o}

10 49 1

11 0 String Length 4 String is 4 bytes long

VoltDB Client Wire Protocol

Byte Offset Byte Value (dec) Field Desc Field Value M eaning

12 0

13 0

14 4

15 102 Characters f String datais "foo2"
16 111 o}

17 111 o}

18 50 2

Complex API Data Types
VoltTable

On the wire a VoltTable is serialized as a header followed by tuple data. VoltTables, like all VoltDB serialized
structures are stored in network byte order.

(Note: In the following description, the term "array" means a sequence of objects of the specified type, not aVoltDB
array object as described in the previous section. Because the number of columns s fixed and is already part of the
VoltTable descriptor, we know how many objects are in each array and afull array descriptor is not needed.)

It should also be noted that although a description of the VoltTable structureis being provided here for completeness,
in most cases the client interface does not need to interpret the structure, but rather passes it unchanged between the
server and the client application.

Name Type Length (bytes)|[Basic |
Compound |
Complex]

Total table| Integer 4 Basic

length

Table Metadata| Integer 4 Basic

Length

Status Code | Byte 1 Basic

Column Count | Short 2 Basic

Column Types |Array of Bytes |variable Compound

Column Names| Array of |variable Compound

Strings
Row Count Integer 4 Basic
Row Data...

Notes on the Header Format:

» The "Table Metadata Length" stores the length in bytes of the contents of the table from byte 8 (the end of the
metadatalength field) al theway to the end of the"Column Names" array. NOTE: It does not include the row count
value. See below for an example.

e The size of the "Column Types' and "Column Names" arrays is expected to equal the value stored in "Column
Count".

VoltDB Client Wire Protocol

e Column names are limited to the ASCII character set. Stringsin row values are still UTF-8 encoded.

» Vaues with 4-byte (integer) length fields are signed and are limited to amax of 1 megabyte.

Row Data Format:

Each row is prefixed by a 4 byte integer that holds the non-inclusive length of the row. If arow is a single 4-byte
integer column, the value of this length prefix will be 4. Row sizeis artifically restricted to 2 megabytes.

The body of the row is packed array of values. Thevalue at index i isis of type specified by the column type field for
index i. The values are serialized according to the serialization rules in "Basic Data Types' above.

Name Type Length (bytes)|[Basic |
Compound |
Complex]

Row Length |Integer 4 Basic

Single Row Value Array

Example VoltTable Serialization:

The following is a 35-byte long serialized table containing one column named "Test" of type BIGINT with one row
containing the number 5.

Byte Offset Byte Value (dec) Field Desc Field Value M eaning

00 0 Total TableLength |31 Table sizeis 31 bytes
01 0

02 0

03 31

04 0 Table Metadata| 12 Header sizeis12 bytes
05 0 Length

06

o7 12

08 0 Status Code 0 Status codeis 0

09 0 Column Count 1 Table contains 1
10 1 column

11 6 Column 1 Type VoltType.BIGINT Column 1 isaBigint
12 0 Col 1 Name Length |4 The name of column 1
13 0 has 4 chars (ASCII)
14 0

15 4

16 84 Column 1 Name|T Column 1 is named
17 101 Value e "Test"

18 115 s

19 116 t

VoltDB Client Wire Protocol

Byte Offset Byte Value (dec) Field Desc Field Value M eaning

20 Row Count 1 Tablehas 1 row
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Row 1 Length 8 First row is 8 bytes
long

Row 1Col 1Vdue |5 Valuein first row/first
col is5

| OO0 0|0 O0O|O0O|O0O||O|OC|O|FL,|O|O| O

Serializable exceptions

Currently serializable exceptionsare not apart of thewire protocol although they are present in theinvocation response
message. The length every serialized exception (4 byte integer) is part of the invocation response message and it can
be used to skip the exception. It is possible to retrieve the Byte ordinal that follows the exception's length preceding
value. The ordinal will not be present if the exception's length is 0.

» 1 EEException Generic failure in Volt. Should indicate a failure in the server and not the application code. These
should not occur in normal operation.

» 2 SQLException Base classfor al exceptionsthat can occur during normal operation. Thingslike constraint failures
(unique, string length, not null) that are caught and handled correct by Volt.

» 3 ConstraintFailureException Specialization of SQL Exception for contraint failures during the execution of astored
procedure.

In the future a set of serializable exceptions and their serialization format will be added to the wire protocol.

Parameter Set

A parameter set contains al the parameters to be passed to a stored procedure and it is one of the structures bundled
inside a stored procedure invocation request. The first value of a parameter set is a Short indicating the number of
parameters that follow. The following values are a series of <wire type, value> pairs. Each value is preceded by its
wire type represented as a Byte. NULL isavalid wire type and value and it is not followed by any additional value.
Arrays are preceded by the wire type -99 and the array value contains the type of the array elements as well as the
number of elements (see Array type). A parameter set cannot contain a nested parameter set (there is no wire type
for parameter set).

Note that varbinary values using type number 25 and arrays of bytes using type number -99, followed by type 3 are
effectively interchangeable.

VoltDB Client Wire Protocol

Parameter set

Name Type Length (bytes)|[Basic |
Compound |
Complex]
Parameter Short 2 Basic
count
Parameters...
Parameter
Name Type Length (bytes) [Basic | Compound |
Complex]
Parameter type Byte 1 Basic
Parameter Any Basic | Compound|variable Basic | Compound |
| Complex excluding Complex
parameter sets

The following example parameter set serialization shows a parameter set consisting of an array of two strings ("fool,
"foo2") and adecimal.

Byte Offset Byte Value (dec) Field Desc Field Value M eaning

00 0 Parameter Count 2 Parameter set contains

o1 2 two parameters

02 -99 Parameter Type -99 Next parameter is an
array

03 9 Element Type 9 Array Elements are
Strings

04 0 Element Count 2 Array contains two

05 2 elements

06 0 String Length 4 String is 4 bytes long

07 0

08 0

09 4

10 102 Characters f String datais "fool"

11 111 (o]

12 111 0

13 49 1

14 0 String Length 4 String is 4 bytes long

15

16

17

18 102 Characters f String datais "foo2"

19 111 (o]

VoltDB Client Wire Protocol

Byte Offset Byte Value (dec) Field Desc Field Value M eaning

20 111 o}

21 50 2

22 22 Parameter Type 22 Next parameter is a
decimal

23 -1 Decimal data -23325.23425 Decimal value

24 1 "-23325.23425"

25 -1

26 -1

27 -1

28 -1

29 -1

30 -1

31 -1

32 -83

33 33

34 -46

35 -78

36 57

37 -39

38 -128

Message formats

Message header

The header that is included at the beginning of all messages. The length value includes the protocol version byte but
not the 4 byte length value.

Name Type Length (bytes) [Basic | Compound |
Complex]

Message length Integer 4 Basic

Protocol version Byte 1 Basic

The following table shows and example header for a 140,000 byte message.

Byte Offset Byte Value (dec) Field Desc Field Value M eaning

00 0 Message Length 140000 The message is
o1 2 140,000 bytes long

02 34

03 -32

04 0 Protocol version 0 This messages is a

Volt Wire Protocol
version 0 message

VoltDB Client Wire Protocol

Login message

The login message is the first message a client can send to a server after opening a connection. A client does not need
to wait for aresponse to the |ogin message to begin sending invocation requests. Thelogin messageidentifiesaservice
to authenticate to. There are currently two supported services. the "database” service authenticates stored procedure
callers; the "export" service authenticates export connector callers. Export connectors are extensible and future plugin

connectors may handle other service string values.

Name Type Length (bytes)|[Basic |
Compound |
Complex]

M essage Header

Service String variable Basic

Username String variable Basic

SHA-1 Binary 20 Basic

password hash

The following table shows an example login message for username " scooby" password "doo"

Byte Offset Byte Value (dec) Field Desc Field Value M eaning

00 0 Message Length 43 The message is 42

o1 0 byteslong

02 0

03 43

04 0 Protocol version 0 This messages is a
Volt Wire Protocol
version 0 message

05 0 Service length 8 Service string is 8

06 0 byteslong

07 0

08 8

09 Characters Service string is

10 97 a " database”

11 116 t

12 97 a

13 98 b

14 97 a

15 115 s

16 101 e

17 Username length 6 Username is 6 bytes

18 long

19

20

21 115 Characters s Usernameis " scooby"

10

VoltDB Client Wire Protocol

Byte Offset Byte Value (dec) Field Desc Field Value M eaning
22 99 c

23 111 o}

24 111 (o]

25 98 b

26 121 y

27 100 SHA-1 Hash SHA-1("doo") Password has s
28 0 SHA-1("doo")
29 -50

30 -61

31 125

32 -52

33 35

34 -99

35 11

36 -7

37 -126

38 -3

39 108

40 114

41 -5

42 3

43 -56

44 -90

45 -73

46 -113

Login response

A response is generated to alogin request and success is indicated with a result code of 0. Any other value indicates
authentication failure and will be followed by the server closing the connection. A response code of 1 indicates that
the there are too many connections. A response code of 2 indicates that authentication failed because the client took
too long to transmit credentials. A response code of 3 indicatesacorrupt or invalid login message. If the response code
is 0 the response will also contain additional information following the result code. A 4 byte integer specifying the
host id of the Volt node . An 8 byte long specifying a connection id that is unique among connections to that node.
An 8 byte long timestamp (milliseconds since Unix epoch) and a4 byte | PV 4 address representing the time the cluster
was started and the address of the leader node. These two values uniquely identify aVolt cluster instance. And finally
astring containing atextual description of the build the node being connected to is running.

Name Type Length (bytes)|[Basic |
Compound |
Complex]

M essage Header

11

VoltDB Client Wire Protocol

Name Type Length (bytes)|[Basic |
Compound |
Complex]

Authentication |Byte 1 Basic

result code

Server Host ID |Integer Basic

Connection ID |Long Basic

Cluster start|{Long 8 Basic

timestamp

(milliseconds

since Unix

epoch)

Leader IPV4|Integer 4 Basic

address

Build string String variable Basic

The following table shows alogin response indicating success

Byte Offset Byte Value (dec) Field Desc Field Value M eaning

00 0 Message Length 82 The message is 82

01 0 byteslong

02 0

03 82

04 0 Protocol version 0 This messages is a
Volt Wire Protocol
version 0 message

05 0 Result code 0 Authentication
succeded

06 0 Server Host ID 0 The Host ID of the

07 0 serveris0

08 0

09 0

10 0 Connection ID 12 The ID of the

1 0 connectionis 12

12 0

13 0

14 0

15 0

16 0

17 12

18 0 Cluster start| 105 The cluster was

19 timestamp started 105
milliseconds after the

20 Unix epoch

12

VoltDB Client Wire Protocol

Byte Offset Byte Value (dec) Field Desc Field Value M eaning

21 0

22 0

23 0

24 0

25 105

26 192 Leader IPV4 address (192.168.0.1 The IPV4 address

27 168 of the leader that
started the cluster was

28 0 192.168.0.1

29 1

30 0 Build string length 52 Thelength of thebuild

31 0 string is 52

32 0

33 52

34 48 ("0 Build string 0.7.01 https://|Buildisversion 0.7.01

35 46 (") svn.voltdp.g:om/eng/ off the trunk revision

trunk?revision=443 | 443/td>

36 55 ("7")

37 46 (".")

38 48 ("0")

39 49 ("1")

40 320"

41 104 ("h"

42 116 ("t")

43 116 ("t")

44 112 ("p")

45 115("s")

46 58 (":")

47 a7 ('

48 47 ("I

49 115("s")

50 118 ("v")

51 110 ("n")

52 46 (".")

53 118 ("v")

54 111 ("0")

55 108 ("I")

56 116 ("t")

57 100 ("d")

58 98 ("b")

13

VoltDB Client Wire Protocol

Byte Offset Byte Value (dec) Field Desc Field Value M eaning
59 46 (".")
60 99 ("c")
61 111 ("0")
62 109 ("m")
63 a7 ("I")
64 101 ("e")
65 110 ("n")
66 103 ("g")
67 a7 ("I")
68 116 ("t")
69 114 ("r)
70 117 ("u")
71 110 ("n")
72 107 ("k")
73 63 ("?")
74 114 ("r)
75 101 ("e")
76 118 ("v")
77 105 ("i*)
78 115("s")
79 105 ("i")
80 111 ("0")
81 110 ("n")
82 61 ("=")
83 52 ("4")
84 52 ("4")
85 51 ("3")

Invocation request

A request to invoke a stored procedure identifies the procedure to invoke by name, the parameters to pass to the
procedure, and an 8 byte piece of client datathat will be returned with the response to the invocation request. A client
does not need to wait for a response to a request to continue sending requests. The server will use TCP backpressure
to avoid running out of memory when a client sends too many invocations for the server to handle.

Name Type Length (bytes)|[Basic |
Compound |
Complex]

M essage Header

Procedure String variable Basic

name

14

VoltDB Client Wire Protocol

Name Length (bytes)|[Basic |
Compound |
Complex]

Client data Binary 8 Basic

Parameters Parameter Set |variable Complex

The following table shows the serialization for invoking a procedure called "proc" with a parameter set containing an
array of two strings ("fool", "foo2") and a decimal value "-23325.23425"

Byte Offset Byte Value (dec) Field Desc Field Value M eaning

00 0 Message Length 56 The message is 56

01 0 byteslong

02 0

03 56

04 0 Protocol version 0 This messages is a
Volt Wire Protocol
version 0 message

05 0 Procedure name| 4 Procedure name is 4

06 0 length byteslong

07 0

08 4

09 112 Characters p Stored procedure

10 114 r nameis "proc"

11 111 (o]

12 99 c

13 0 Client Data Opague client data

14 1

15 2

16 3

17 4

18 5

19 6

20 7

21 0 Parameter Count 2 Parameter set contains

22 2 two parameters

23 -99 Parameter Type -99 Next parameter is an
array

24 9 Element Type 9 Array Elements are
Strings

25 0 Element Count 2 Array contains two

26 elements

27 String Length 4 String is 4 bytes long

15

VoltDB Client Wire Protocol

Byte Offset Byte Value (dec) Field Desc Field Value M eaning

28 0

29 0

30 4

31 102 Characters f String datais "fool"

32 111 o]

33 111 o]

34 49 1

35 String Length 4 String is 4 bytes long

36

37

38

39 102 Characters f String datais "foo2"

40 111 o]

41 111 o]

42 50 2

43 22 Parameter Type 22 Next parameter is a
decimal

44 -1 Decimal data -23325.23425 Decimal value

45 1 "-23325.23425"

46 -1

47 -1

48 -1

49 -1

50 -1

51 -1

52 -1

53 -83

54 33

55 -46

56 -78

57 57

58 -39

59 -128

Invocation response

An invocation response contains the results of the server's attempt to execute the stored procedure. The response
includes optional fields and the first byte after the header is used to indicate which optional fields are present. The
status string, application status string, and serializable exception are all optional fields. Bit 7 indicates the presence of
aserializable exception, bit 6 indicates the presence of a status string, and bit 8 indicates the presence of an app status

16

VoltDB Client Wire Protocol

string. The serializable exception that can be included in some responses is currently not a part of the wire protocol.
The exception length value should be used to skip exceptionsif they are present. The status string is used to return any
human readable information the server or stored procedure wants to return with the response. The app status code and

app status string can be set by application code from within stored procedures and is returned with the response.

Name Type Length (bytes)|[Basic |
Compound |
Complex]
M essage Header
Client data Binary 8 Basic
Fieldspresent |Byte (bit field) |1 Basic
Status Byte 1 Basic
Status string | String (optional | variable Basic
field)
Application Byte 1 Basic
Status
Application String (optional |variable Basic
Status string [field)
Serialized Integer 4 Basic
exception (optional field)
length
Serialized Seridizable variable Complex
exception exception
(optional field)
Result count | Short 2 Basic
Result tables | Series of |variable Compound
VoltTables (containing
Complex)

The following table shows a response to a previous invocation. For demonstrational purposes two tables are returned,
but in areal failure case there would be no tables returned.

Byte Offset Byte Value (dec) Field Desc Field Value M eaning

00 0 Message Length 109 The message is 109

o1 0 byteslong

02 0

03 109

04 0 Protocol version 0 This messages is a
Volt Wire Protocol
version 0 message

05 0 Client Data Opaque client data

06 1

07 2

08 3

09 4

10 5

17

VoltDB Client Wire Protocol

Byte Offset Byte Value (dec) Field Desc Field Value M eaning

11 6

12 7

13 -32 Fields present -32 The optional status
string, app status
string, and serializable
exception fields are
present

14 2 Status code 2 Status code is graceful
failure (2)

15 0 Status String length |4 Status string length is

16 0 4

17 0

18 4

19 102 Status String f The status string was

20 97 a “tal®

21 105 i

22 108 I

23 99 Application status| 99 Application status

code codeis99

24 0 Application status|4 Application status

25 0 string length string length is 4

26 0

27 4

28 118 Application status|v The application status

29 11 string o string was "volt"

30 108 I

31 116 t

32 0 Serialized Exception|5 Serialized exceptionis

33 0 length 5 byteslong

34 0

35 5

36 1 Exception ordinal 1 Exception is a SQL
exception

37 0 Exception body Opaque Opaque

38 0

39 0

40 0

41 0 Result table count 2 Two result tables

42 2 follow

43 0 Total TableLength |32 Tablesizeis 32 bytes

18

VoltDB Client Wire Protocol

Byte Offset Byte Value (dec) Field Desc Field Value M eaning

44 0

45 0

46 32

47 0 Table Metadata| 12 Header sizeis12 bytes

48 0 Length

49

50

[N
N

51 Status Code 0 Status code is 0

52 Column Count 1 Table contains 1

53 column

54 Column 1 Type VoltType.BIGINT Column 1isaBigint

55 Col 1 NameLength |4 The name of column 1

56 has 4 chars (ASCII)

57

58

gbOOOCDI—‘OO

59 Column 1 Name Column 1 is named

60 101 Val ue "Ta"

61 115

62 116

Rl~]olol4

63 Row Count Table has 1 row

64

65

66

67 Row 1 Length 8 First row is 8 bytes

68 long

69

70

71 Row 1Col 1Vadue |5 Vauein first row/first

72 col 5

73

74

75

76

77

78

79 Total TableLength |32 Tablesizeis 32 bytes

80

OO0 O| 0|0 O] O|OC|O|0|O|O|OC|F,|O|O|O

81

19

VoltDB Client Wire Protocol

Byte Offset Byte Value (dec) Field Desc Field Value M eaning

82 32

83 0 Table Metadata| 12 Header sizeis12 bytes

84 0 Length

85

86

87 Status Code 0 Status code is 0

88 Column Count 1 Table contains 1

89 column

90 Column 1 Type VoltType.BIGINT Column 1isaBigint

91 Col 1 Name Length |4 The name of column 1

2 has 4 chars (ASCII)

93

94

gbOOOCDHOOIIGO

95 Column 1 Name Column 1 is named

96 101 Val ue "Tﬂ"

97 115

98 116

Pl~lo]lo] 4

929 Row Count Table has 1 row

100

101

102

103 Row 1 Length 8 First row is 8 bytes

104 long

105

106

107 Row 1 Col 1Vaue |5 Vauein first row/first

108 col 5

109

110

111

112

113

OO O 00| 0|0 OC||O|O|O|,|O|O| O

114

20

