VOIt Do's & Don'ts

The following is a collection of best practices to make your work with VoltDB successful.

Do's
1.

Partition your tables to maximize the frequency of single-partition transactions and minimize
multi-partition transactions.

Estimate the data volumes and frequency of each transaction for your application to determine
what columns to use for partitioning.

Be sure to indicate when a stored procedure is single-partitioned using the @ProcInfo
annotation. (Otherwise VoltDB assumes it is multi-partitioned.)

Use multiple SQL queries in your stored procedures. Ten SQL queries in one single-partition
procedure can be 10x faster than ten procedures with one query each.

Set the IsFinal flag to true on the last voltExecuteSQL() call in each stored procedure. This
improves performance, especially for multi-partitioned transactions.

Benchmark, benchmark, benchmark. Different applications and hardware have different
performance characteristics. Use benchmarking to determine the optimal number of partitions
for your application.

Use asynchronous procedure calls and create client connections to all nodes in your cluster to
maximize throughput.

If you encounter any confusing errors, get stuck, or need help, post your questions in the
VoltDB forums (http://community.voltdb.com/forum) We are here to help.

Copyright 2011. VoltDB, Inc


http://community.voltdb.com/forum

Don'ts

1. Don't create tables with very large rows (that is, lots of columns or large VARCHAR columns).
Several smaller tables with a common partitioning key are better.

2. Don't create queries that return large volumes of data (such as SELECT * FROM FOO with no
constraints) especially for multi-partition transactions. Be conservative in the data returned by
stored procedures.

3. Don't replicate a table just because it has a small number of rows. Even small tables must be
partitioned if they are updated frequently.

4. Don't do extensive processing in your asynchronous callbacks. Only one callback is processed at
a time, so make the callback procedures efficient to avoid stalls.

5. Don't try to benchmark your application on a single machine. Be sure to benchmark the impact
of different cluster configurations.

6. Don't assume exceptionally low latency for any single VoltDB transaction. VoltDB is optimized
for application throughput, not individual transaction latency. However, VoltDB's latency is
competitive with other database products.

7. Don't call ClientFactory.createClient() more than once in each client application. There can be
multiple client applications and each can have multiple connections to the database cluster. But
there should be only one client instance within each client application.

Copyright 2011. VoltDB, Inc



