
Welcome to VoltDB
A Tutorial

Welcome to VoltDB: A Tutorial
Copyright © 2013, 2014 VoltDB, Inc.

iii

Table of Contents
Preface .. iv

How to Use This Tutorial ... iv
1. Creating the Database .. 1

Compiling the Application Catalog .. 1
Starting the Database .. 1
Using SQL Queries ... 2

2. Loading and Managing Data ... 3
Restarting the Database ... 3
Loading the Data .. 4
Querying the Database .. 4

3. Partitioning .. 7
Partitioned Tables ... 7
Replicated Tables ... 8

4. Schema Updates and Durability ... 9
Saving and Restoring Data ... 9
Adding and Removing Tables ... 10
Updating Existing Tables ... 11
Restoring Data to a New Catalog .. 11
Durability and Automated Snapshots .. 12

5. Stored Procedures ... 14
Simple Stored Procedures ... 14
Writing More Powerful Stored Procedures .. 15
Compiling Java Stored Procedures ... 17
Putting it All Together ... 18

6. Client Applications .. 20
Making the Sample Application Interactive ... 20
Designing the Solution .. 20
Designing the Stored Procedures for Data Access ... 21
Creating the LoadWeather Client Application .. 22
Running the LoadWeather Application ... 24
Creating the GetWeather Application ... 24
VoltDB in User Applications .. 24
VoltDB in High Performance Applications .. 25
Running the GetWeather Application ... 27
In Conclusion ... 28

7. Next Steps ... 29

iv

Preface
VoltDB is designed to help you achieve world-class performance in terms of throughput and scalability.
However, at its core, VoltDB is still a relational database and can do all the things a traditional relational
database can do. So before we go into the fine points of tuning a database application for maximum per-
formance, let's just review the basics.

The following tutorial familiarizes you with the features and capabilities of VoltDB step by step, starting
with its roots in SQL and walking through the individual features that help VoltDB excel in both flexibility
and performance, including:

• Schema Definition

• SQL Queries

• Partitioning

• Schema Updates

• Stored Procedures

For the purposes of this tutorial, let's assume we want to learn more about the places where we live. How
many cities and towns are there? Where are they? How many people live there? What other interesting
facts can we find out?

Our study will take advantage of data that is freely available from government web sites. But for now,
let's start with the basic structure.

How to Use This Tutorial
Of course, you can just read the tutorial to get a feel for how VoltDB works. But we encourage you to
follow along using your own copy of VoltDB if you wish.

The data files used for the tutorial are freely available from public web sites; links are provided in the
text. However, the initial data is quite large. So we have created a subset of source files and pre-processed
data files that is available from the VoltDB web site at the following address for those who wish to try
it themselves:

http://voltdb.com/downloads/technologies/other/tutorial_files.zip

For each section of the tutorial, there is a subfolder containing the necessary source files, plus one sub-
folder, data, containing the data files. To follow along with the tutorial, do the following:

1. Create a folder to work in.

2. Unpack the tutorial files into the folder.

3. At the beginning of each section of the tutorial:

a. Set default to your tutorial folder.

b. Copy the sources for that current tutorial into the your working directory, like so:

$ cp -r tutorial1/* ./

http://voltdb.com/downloads/technologies/other/tutorial_files.zip

Preface

v

The tutorial also uses the VoltDB command line commands. Be sure to set up your environment so the
commands are available to you, as described in the installation chapter of Using VoltDB.

http://voltdb.com/docs/UsingVoltDB/ChapGetStarted.php
http://voltdb.com/docs/UsingVoltDB/

1

Part 1: Creating the Database
In VoltDB you define your database schema using SQL data definition language (DDL) statements just
like other SQL databases. So, if we want to create a database table for the places where we live, the DDL
schema might look like the following:

CREATE TABLE towns (
 town VARCHAR(64),
 county VARCHAR(64),
 state VARCHAR(2)
);

The preceding schema defines a single table with three columns: town, county, and state. We could also
set options, such as default values and primary keys. But for now we will keep it as simple as possible.

To create a database using this schema, we take three steps:

1. Save the schema as a text file.

2. Compile the schema into an application catalog.

3. Start the database using the catalog created in step #2.

For now, let's save the preceding schema into a file named towns.sql. The following sections explain
how to create the application catalog and start the database.

Compiling the Application Catalog
Once you have the schema defined, you can create an application catalog. The application catalog is one
way VoltDB achieves the performance it does, by pre-compiling important aspects of the database — such
as stored procedures and partitioning information — into a single file.

Although we are not interested in performance right now, we still need to create the application catalog
before we can start the database. You create the application catalog by compiling the schema:

$ voltdb compile towns.sql

In this simplest case, the voltdb compile command requires only one argument: the name of the schema
DDL file. By default, it creates the catalog as catalog.jar. If you want to name your catalog file, you
can use the -o or --output flag, like so:

$ voltdb compile -o towns.jar towns.sql

Assuming no typos or other errors in the DDL, VoltDB compiles the schema and creates the application
catalog towns.jar.

Starting the Database
Once you create the application catalog, you are ready to start the database. Again, there are several options
available when starting a VoltDB database, which we will discuss later. But for now, we can use the
simplest command to start the database using the default options on the current machine with the following
command:

$ voltdb create towns.jar

Creating the Database

2

The voltdb create command tells VoltDB to create a new, empty database. The argument tells VoltDB
which application catalog to use when creating the database.

Using SQL Queries
Congratulations! You have created your first VoltDB database. Of course, an empty database is not terribly
useful. So the first thing you will want to do is create and retrieve a few records to prove to yourself that
the database is running as you expect.

VoltDB supports all of the standard SQL query statements, such as INSERT, UPDATE, DELETE, and
SELECT. You can invoke queries programmatically, through standard interfaces such as JDBC and JSON,
or you can include them in stored procedures that are compiled and included in the application catalog.

But for now, we'll just try some ad hoc queries using the sqlcmd command line interface that VoltDB
provides. Create a new terminal window and issue the sqlcmd command from the shell prompt:

$ sqlcmd
SQL Command :: localhost:21212
1>

The VoltDB interactive SQL command line first reports what database it has connected to and then puts
up a numbered prompt. At the prompt, you can enter ad hoc SQL queries, execute stored procedures, or
type "exit" to end the program and return to the shell prompt.

Let's start by creating some records using the INSERT statement. The following example creates three
records, for the towns of Billerica, Buffalo, and Bay View. Be sure to include the semi-colon after each
statement.

1> insert into towns values ('Billerica','Middlesex','MA');
2> insert into towns values ('Buffalo','Erie','NY');
3> insert into towns values ('Bay View','Erie','OH');

We can also use ad hoc queries to verify that our inserts worked as expected. The following queries use
the SELECT statement to retrieve information about the database records.

4> select count(*) as total from towns;
TOTAL

 3

(1 row(s) affected)
5> select town, state from towns ORDER BY town;
TOWN STATE
------------ ------
Bay Village OH
Billerica MA
Buffalo NY

(3 row(s) affected)

When you are done working with the database, you can type "exit" to end the sqlcmd session and return
to the shell command prompt. Then switch back to the terminal session where you started the database
and press CTRL-C to end the database process.

This ends Part One of the tutorial.

3

Part 2: Loading and Managing Data
As useful as ad hoc queries are, typing in data by hand is not very efficient. Fortunately, VoltDB provides
several features to help automate this process.

When you compile your application catalog, VoltDB automatically creates stored procedures to insert
records for each table. There is also a command line tool that uses these default stored procedures so you
can load data files into your database with a single command. The csvloader command reads a data file,
such as a comma-separated value (CSV) file, and writes each entry as a record in the specified database
table using the default insert procedure.

It just so happens that there is data readily available for towns and other landmarks in the United States.
The Geographic Names Information Service (GNIS), part of the U.S. Geological Survey, provides data
files of officially named locations throughout the United States. In particular, we are interested in the data
file for populated places. This data is available as a text file from their web site, http://geonames.usgs.gov/
domestic/download_data.htm

The information provided by GNIS not only includes the name, county and state, it includes each location's
position (latitude and longitude) and elevation. Since we don't need all of the information provided, we
can reduce the number of columns to only the information we want.

For our purposes, let's use information about the name, county, state, and elevation of any populated places.
This means we can go back and edit our schema file, towns.sql, to add the new columns:

CREATE TABLE towns (
 town VARCHAR(64),
 state VARCHAR(2),
 state_num TINYINT NOT NULL,
 county VARCHAR(64),
 county_num SMALLINT NOT NUL,
 elevation INTEGER
);

Note that the GNIS data includes both names and numbers for identifying counties and states. We re-
arranged the columns to match the order in which they appear in the data file. This makes loading the
data easier since the csvloader command assumes the data columns are in the same order as specified
in the schema.

Finally, we can use some shell magic to trim out the unwanted columns and rows from the data file. The
following script selects the desired columns and removes any records with empty fields:

$ cut --delimiter="|" --fields=2,4-7,16 POP_PLACES_20120801.txt \
 | grep -v "|$" \
 | grep -v "||" > data/towns.txt

To save time and space, the resulting file containing only the data we need is included with the tutorial
files in a subfolder as data/towns.txt.

Restarting the Database
Because we changed the schema we must recompile and restart the database. We use the same commands
we used in Part One of the tutorial to do this:

$ voltdb compile -o towns.jar towns.sql
$ voltdb create towns.jar

http://geonames.usgs.gov/domestic/download_data.htm
http://geonames.usgs.gov/domestic/download_data.htm
http://geonames.usgs.gov/domestic/download_data.htm

Loading and Managing Data

4

Loading the Data
Once the database is running, we are ready to load our new data. To do this, create a new terminal session,
set default to the /data subfolder in your tutorial directory, and use the csvloader command to load the
data file:

$ cd data
$ csvloader --separator "|" --skip 1 \
 --file towns.txt towns

In the preceding commands:

The --separator flag lets you specify the character separating the individual data entries. Since
the GNIS data is not a standard CSV, we use --separator to identify the correct delimiter.
The data file includes a line with column headings. The --skip 1 flag tells csvloader to skip the
first line.
The --file flag tells csvloader what file to use as input. If you do not specify a file, csvloader uses
standard input as the source for the data.
The argument, towns, tells csvloader which database table to load the data into.

The csvloader loads all of the records into the database and it generates three log files: one listing any
errors that occurred, one listing any records it could not load from the data file, and a summary report
including statistics on how long the loading process took and how many records were loaded.

Querying the Database
Now that we have real data, we can perform more interesting queries. For example, which towns are at
the highest elevation, or how many locations in the United States have the same name?

1> SELECT town,state,elevation from towns order by elevation desc limit 5;
TOWN STATE ELEVATION
------------------------- ------ ----------
Corona (historical) CO 3573
Quartzville (historical) CO 3529
Logtown (historical) CO 3524
Tomboy (historical) CO 3508
Rexford (historical) CO 3484

(5 row(s) affected)
2> select town, count(town) as duplicates from towns
3> group by town order by duplicates desc limit 5;
TOWN DUPLICATES
--------------- -----------
Midway 215
Fairview 213
Oak Grove 167
Five Points 150
Riverside 130

(5 row(s) affected)

Loading and Managing Data

5

As we can see, the five highest towns are all what appear to be abandoned mining towns in the Rocky
Mountains. And Springfield, as common as it is, doesn't make it into the top five named places in the
United States.

We can make even more interesting discoveries when we combine data. We already have information about
locations and elevation. The US Census Bureau can also provide us with information about population
density. Population data for individual towns and counties in the United States can be downloaded from
their web site, http://www.census.gov/popest/data/index.html.

To add the new data, we must add a new table to the database. So let's edit our schema to add a table for
population that we will call people. While we are at it, we can create indexes for both tables, using the
columns that will be used most frequently for searching and sorting, state_num and county_num.

CREATE TABLE towns (
 town VARCHAR(64),
 state VARCHAR(2),
 state_num TINYINT NOT NULL,
 county VARCHAR(64),
 county_num SMALLINT NOT NULL,
 elevation INTEGER
);
CREATE TABLE people (
 state_num TINYINT NOT NULL,
 county_num SMALLINT NOT NULL,
 state VARCHAR(20),
 county VARCHAR(64),
 population INTEGER
);
CREATE INDEX town_idx ON towns (state_num, county_num);
CREATE INDEX people_idx ON people (state_num, county_num);

Once again, we put the columns in the same order as they appear in the data file. We also need to trim
the data file to remove extraneous columns. The census bureau data includes both measured and estimated
values. For the tutorial, we will focus on one population number.

The shell command to trim the data file is the following. (Again, the resulting data file is available as part
of the downloadable tutorial package.)

$ grep -v "^040," CO-EST2011-Alldata.csv \
 | cut --delimiter="," --fields=4-8 > people.txt

Once we have the data and the updated schema, we can stop the database (using CTRL-C), recompile
the catalog, restart the database, and load the two tables. So in one terminal session compile and start the
database:

$ voltdb compile -o towns.jar towns.sql
$ voltdb create towns.jar

And in another terminal session load the two data files:

$ cd data
$ csvloader --separator "|" --skip 1 --file towns.txt towns
$ csvloader --file people.txt --skip 1 people

Now we can join the tables to look for correlations between elevation and population, like so:

http://www.census.gov/popest/data/index.html
http://www.census.gov/popest/data/index.html

Loading and Managing Data

6

$ sqlcmd
1> select top 5 min(t.elevation) as height,
2> t.state,t.county, max(p.population)
3> from towns as t, people as p
4> where t.state_num=p.state_num and t.county_num=p.county_num
5> group by t.state, t.county order by height desc;
HEIGHT STATE COUNTY C4
------- ------ --------- ------
 2754 CO Lake 7310
 2640 CO Hinsdale 843
 2609 CO Mineral 712
 2523 CO San Juan 699
 2454 CO Summit 27994

(5 row(s) affected)

It turns out that, even discounting ghost towns that have no population, the five inhabited counties with
highest elevation are all in Colorado. In fact, if we reverse the select expression to find the lowest inhabited
counties (by changing the sort order from descending to ascending), the lowest is Inyo county in California
— the home of Death Valley!

This ends Part Two of the tutorial.

7

Part 3: Partitioning
Now you have the hang of the basic features of VoltDB as a relational database, it's time to start looking
at what makes VoltDB unique. One of the most important features of VoltDB is partitioning.

Partitioning organizes the contents of a database table into separate autonomous units. Similar to sharding,
VoltDB partitioning is unique because:

• VoltDB partitions the database tables automatically, based on a partitioning column you specify. You
do not have to manually manage the partitions.

• You can have multiple partitions, or sites, on a single server. In other words, partitioning is not just for
scaling the data volume, it helps performance as well.

• VoltDB partitions both the data and the processing that accesses that data, which is how VoltDB lever-
ages the throughput improvements parallelism provides.

Partitioned Tables
You partition a table by specifying the partitioning column as part of your schema. If a table is partitioned,
each time you insert a row into that table, VoltDB decides which partition the row goes into based on the
value of the partitioning column. So, for example, if you partition the Towns table on the column Name,
The records for all towns with the same name end up in the same partition.

However, although partitioning by name may be reasonable in terms of evenly distributing the records, the
goal of partitioning is to distribute both the data and the processing. We don't often compare information
about towns with the same name. Whereas, comparing towns within a given geographic region is very
common. So let's partition the records by state so we can quickly do things like finding the largest or
highest town within a given state.

Both the Towns and the People tables have columns for the state name. However, they are slightly different;
one uses the state abbreviation and one uses the full name. To be consistent, we can use the State_num
column instead, which is common to both tables.

To partition the tables, we simply add a PARTITION TABLE statement to the database schema. Here are
the statements we can add to our schema to partition both tables by the State_num column:

PARTITION TABLE towns ON COLUMN state_num;
PARTITION TABLE people ON COLUMN state_num;

Having added partitioning information, we can stop the database, recompile our catalog, restart the data-
base and reload the data. The first thing you might notice, without doing any other queries, is that loading
the data files is faster.

In fact, when csvloader runs, it creates three log files summarizing the results of the loading process. One
of these files, csvloader_TABLE-NAME_insert_report.log, describes how long the process
took and the average transactions per second (TPS). Comparing the load times before and after adding
partitioning shows that adding partitioning increases the ingestion rate for the Towns table from approxi-
mately 5,000 to 16,000 TPS — more than three times as fast! This performance improvement is a result of
parallelizing the stored procedure calls across the two sites per host, which is the default setting. Increasing
the number of sites per host provides additional improvements, assuming the server has the core processors
necessary to manage the additional threads.

Partitioning

8

Replicated Tables
As mentioned earlier, the two tables Towns and People both have a VARCHAR column for the state name,
but its use is not consistent. Instead we use the State_num column to do partitioning and joining of the
two tables.

The State_num column contains the FIPS number. That is, a federal standardized identifier assigned to
each state. The FIPS number ensures unique and consistent identification of the state. However, as useful
as the FIPS number is for computation, most people think of their location by name, not number. So it
would be useful to have a consistent name to go along with the number.

Instead of attempting to modify the fields in the individual tables, we can normalize our schema and
create a separate table that provides an authoritative state name for each state number. Again, the federal
government makes this information freely available from the U.S. Environmental Protection Agency web
site, http://www.epa.gov/enviro/html/codes/state.html. Although it is not directly downloadable as a data
file, a copy of the FIPS numbers and names for all of the states is included in the tutorial files in the data
subfolder as data/state.txt.

So let's go and add a table definition for this data to our schema:

CREATE TABLE states (
 abbreviation VARCHAR(20),
 state_num TINYINT,
 name VARCHAR(20),
 PRIMARY KEY (state_num)
);

This sort of lookup table is very common in relational databases. They reduce redundancy and ensure data
consistency. Two of the most common attributes of lookup tables are that they are relatively small in size
and they are static. That is, they are primarily read-only.

It would be possible to partition the States table on the State_num column, like we do the Towns and
People tables. However, when a table is relatively small and not updated frequently, it is better to replicate
it to all partitions. This way, even if another table is partitioned (such as a customer table partitioned on
last name), stored procedures can join the two tables, no matter what partition the procedure executes in.

Tables where all the records appear in all the partitions are called replicated tables. Note that tables are
replicated by default. So to make the States table a replicated table, we simply include the CREATE
TABLE statement without an accompanying PARTITION TABLE statement.

One last caveat concerning replicated tables: the benefits of having the data replicated in all partitions is
that it can be read from any individual partition. However, the deficit is that any updates or inserts to a
replicated table must be executed in all partitions at once. This sort of multi-partition procedure reduces
the benefits of parallel processing and impacts throughput. Which is why you should not replicate tables
that are frequently updated.

This ends Part Three of the tutorial.

http://www.epa.gov/enviro/html/codes/state.html
http://www.epa.gov/enviro/html/codes/state.html
http://www.epa.gov/enviro/html/codes/state.html

9

Part 4: Schema Updates and Durability
Thus far in the tutorial we have restarted the database from scratch and reloaded the data manually each
time we changed the schema. This is often the easiest way to make changes when you are first developing
your application and making frequent changes. However, as your application — and the data it uses —
becomes more complex it is desirable to maintain your database state across sessions.

You may have noticed that in the previous section of the tutorial we modified the schema to add the States
table but did not add it to the running database yet. That is because we want to demonstrate ways of
modifying the database without having to start from scratch each time.

Note

The following examples make use of functionality available in the VoltDB Enterprise Edition;
specifically, the voltadmin update command for on-the-fly schema changes. If you are using the
VoltDB Community Edition you will need to save, restart, and restore to complete the schema
updates manually. See the section called “Restoring Data to a New Catalog” for details.

Saving and Restoring Data
First let's talk about durability. VoltDB is an in-memory database. Each time you start the database with the
create action, it creates a fresh, empty copy of the database. Obviously, in most real business situations you
want the data to persist. VoltDB has several features that preserve the database contents across sessions.
We will start by looking at snapshots.

Snapshots are a complete disk-based representation of a VoltDB database, including everything needed
to reproduce the database after a shutdown. You can create a snapshot of a running VoltDB database at
anytime using the voltadmin save command. For example, from our tutorial directory, we can save the
data to disk in a snapshot called "townsandpeople".

$ HERE=$(pwd)
$ voltadmin save $HERE/voltdbroot/snapshots/ "townsandpeople"

The arguments to the voltadmin save command are the directory where the snapshot files will be created
and the name for the snapshot. Note that the save command requires an absolute path for the directory.
In the preceding example, we assign the current working directory to a variable so the snapshot can be
saved in the subfolder ./voltdbroot/snapshots. VoltDB creates this folder by default when you
start the database. We will learn more about it shortly.

Now that you have a copy of the database contents, we can stop and restart the database. But this time,
instead of using the create command, we use recover:

^C
$ voltdb recover

When you specify recover as the startup action, VoltDB looks for and restores the most recent snapshot.
And since the snapshot contains both the catalog and the data, you do not have to specify the catalog on
the command line.

We can verify that the database was restored by doing some simple SQL queries in our other terminal
session:

Schema Updates and Durability

10

$ sqlcmd
SQL Command :: localhost:21212
1> select count(*) from towns;
C1

 193297

(1 row(s) affected)
2> select count(*) from people;
C1

 81691

(1 row(s) affected)

Adding and Removing Tables
Now that we know how to save and restore the database, we can add the States table we defined in Part
Three. Adding and dropping tables, or changing stored procedures can be done "on the fly", while the
database is running. We start by recompiling the application catalog using our new schema definition.
Then we use the voltadmin update command to update the catalog on the running database.1

When you update the catalog, you must provide both the catalog and the deployment file. VoltDB uses the
deployment file to set runtime configuration options, such as the number of servers, how many partitions
per host, and so on. Thus far we have used the default settings when starting the database, so have not
needed to specify a deployment file. However, VoltDB creates one for you when you do that. So we can
use the default deployment file that VoltDB creates to perform the update. So let's recompile the catalog
and update the database. We can also check to make sure our new table exists by checking how many
records it contains.

$ voltdb compile -o towns.jar towns.sql
$ voltadmin update towns.jar voltdbroot/deployment.xml
$ sqlcmd
SQL Command :: localhost:21212
1> select count(*) from states;
C1

 0

(1 row(s) affected)
3> exit

Next we can load the state information from the data file and save a new copy of the database.

$ csvloader --skip 1 -f data/states.csv states
$ HERE=$(pwd)
$ voltadmin save $HERE/voltdbroot/snapshots/ "states"

1If you are using the VoltDB Community Edition, you will need to stop and restart the database to change the schema, as described in the section
called “Restoring Data to a New Catalog”.

Schema Updates and Durability

11

Updating Existing Tables
Now that we have a definitive lookup table for information about the states, we no longer need the redun-
dant columns in the Towns and People tables. We want to keep the FIPS column, State_num, but can
remove the State column from each table. Our updated schema for the two tables looks like this:

CREATE TABLE towns (
 town VARCHAR(64),
-- state VARCHAR(2),
 state_num TINYINT NOT NULL,
 county VARCHAR(64),
 county_num SMALLINT NOT NULL,
 elevation INTEGER
);
CREATE TABLE people (
 state_num TINYINT NOT NULL,
 county_num SMALLINT NOT NULL,
-- state VARCHAR(20),
 town VARCHAR(64),
 population INTEGER
);

We can recompile the catalog as before.

Many schema changes, including adding and removing columns, can be done on the fly just like adding
and dropping tables. However, there are some limitations. For example, you cannot add new uniqueness
constraints to an existing index or column. In these cases, the best method is to save the existing data, then
restore the data to a fresh copy of the database using the new catalog.

Although the preceding changes are permissible for voltadmin update, in the next section we will show
you how to change the schema by restoring a snapshot to an updated schema, just so you know how it
is done.

Restoring Data to a New Catalog
When you start a database with recover, VoltDB restores both the data and the associated catalog. To
replace the catalog but keep the data you need to create a new database using the updated catalog and then
manually restore the data using the voltadmin restore command.

If you haven't already, stop the database, recompile your catalog using the modified schema (which is
townsupdate.sql in the source files), and create a new database using the updated catalog:

^C
$ cp townsupdate.sql towns.sql
$ voltdb compile -o towns.jar towns.sql
$ voltdb create towns.jar

Once the database has started, you can use the voltadmin restore command from another terminal session
to restore the data — but not the catalog — from the previous session. The restore command takes the same
first two arguments as save. That is, the directory where the snapshot resides and the unique identifier.

Schema Updates and Durability

12

$ HERE=$(pwd)
$ voltadmin restore $HERE/voltdbroot/snapshots/ "states"
HOST_ID HOSTNAME SITE_ID TABLE PARTITION_ID RESULT ERR_MSG
-------- --------- -------- ------- ------------- -------- --------
 0 pollux 0 STATES -1 SUCCESS
 0 pollux 0 STATES -1 SUCCESS
 0 NULL 0 PEOPLE 1 SUCCESS
 0 NULL 0 PEOPLE 0 SUCCESS
 0 NULL 0 PEOPLE 1 SUCCESS
 0 NULL 0 PEOPLE 0 SUCCESS
 0 NULL 0 TOWNS 1 SUCCESS
 0 NULL 0 TOWNS 0 SUCCESS
 0 NULL 0 TOWNS 0 SUCCESS
 0 NULL 0 TOWNS 1 SUCCESS

Again, we can use SQL queries to verify that the column has been removed.

$ sqlcmd
SQL Command :: localhost:21212
1> select top 1 * from towns order by state_num,county_num;
TOWN STATE_NUM COUNTY COUNTY_NUM ELEVATION
------------- ---------- -------- ----------- ----------
Autaugaville 1 Autauga 1 49

(1 row(s) affected)

Finally, we can save the database one more time. To save space, we can delete the old snapshots from the
directory before saving the new one. Like so:

$ rm voltdbroot/snapshots/*
$ voltadmin save $HERE/voltdbroot/snapshots/ "tutorial"

Durability and Automated Snapshots
Up to now we have manually saved the database when we made changes, which is fine during development
or when doing an explicit save and restore to update the catalog. But in most production environments it is
important to keep the snapshots up to date in case of accidents or unexpected events, such as system failure.

VoltDB provides several features to ensure the durability of your data. At a minimum, it is a good idea to
schedule regular snapshots to maintain a recent copy of the database. Establishing an automated snapshot
schedule is one of the configuration options you set when starting the database.

We have been starting VoltDB with the default configuration. However, you can enable specific features
using a deployment file. You can see the default deployment file in the voltdbroot subfolder:

Schema Updates and Durability

13

$ cat voltdbroot/deployment.xml
<?xml version="1.0"?>
<!-- IMPORTANT: This file is an auto-generated ...
 ... -->
<deployment>
 <cluster hostcount="1" sitesperhost="2" />
 <httpd enabled="true">
 <jsonapi enabled="true" />
 </httpd>
</deployment>

The default settings use a single machine, localhost, with two partitions per host and with the http and
JSON interfaces enabled. You can copy this file to your working directory and edit it, or create a new
deployment.xml file, adding the tags necessary to enable automated snapshots. Your updated deployment
file looks like this:

<?xml version="1.0"?>
<deployment>
 <cluster hostcount="1" sitesperhost="2" />
 <httpd enabled="true">
 <jsonapi enabled="true" />
 </httpd>
 <snapshot prefix="tutorial"
 frequency="5m"
 retain="3"
 />
</deployment>

The attributes of the <snapshot> tag in the preceding example set the name (or prefix) of the snapshots to
"tutorial", the frequency of snapshots to every 5 minutes, and tells VoltDB to retain only the three most
recent copies. (Older snapshots are deleted to save space.) Now when we start or recover the database we
can specify our custom deployment file to have VoltDB automatically snapshot every 5 minutes.

$ voltdb recover --deployment=deployment.xml

Once automated snapshots are in place, you don't have to manually create a snapshot before stopping the
database. You can use the snapshots created automatically by VoltDB, using the command in the preceding
example.

Note that the deployment settings are runtime options and are not saved as part of the snapshot. So you
should always specify your deployment file on the command line when starting VoltDB unless you want to
use the default configuration. VoltDB has several other features that provide additional protection against
data loss and increase the resilience of the database, including K-safety, command logging, and database
replication. See the Using VoltDB manual for more information about availability options.

This ends Part Four of the tutorial.

http://voltdb.com/docs/UsingVoltDB/

14

Part 5: Stored Procedures
We now have a complete database that we can interact with using SQL queries. For example, we can find
the least populous county for any given state (California, for example) with the following SQL query:

$ sqlcmd
1> SELECT TOP 1 county, abbreviation, population
2> FROM people, states WHERE people.state_num=6
3> AND people.state_num=states.state_num
4> ORDER BY population ASC;

However, typing in the same query with a different state number over and over again gets tiring very
quickly. The situation gets worse as the queries get more complex.

Simple Stored Procedures
For queries you run frequently only changing the input, you can create a simple stored procedure. Stored
procedures let you define the query once and change the input values when you execute the procedure.
Stored procedures have an additional benefit; because they are pre-compiled as part of the application
catalog, the queries do not need to be planned at runtime, reducing the time it takes for each query to
execute.

To create simple stored procedures — that is, procedures consisting of a single SQL query — you can
define the entire procedure in your database schema using the CREATE PROCEDURE AS statement.
So, for example to turn our previous query into a stored procedure, we can add the following statement
to our schema:

CREATE PROCEDURE leastpopulated AS
 SELECT TOP 1 county, abbreviation, population
 FROM people, states WHERE people.state_num=?
 AND people.state_num=states.state_num
 ORDER BY population ASC;

In the CREATE PROCEDURE AS statement:

The label, in this case leastpopulated, is the name given to the stored procedure.
Question marks are used as placeholders for values that will be input at runtime.

In addition to creating the stored procedure, we can also specify if it is single-partitioned or not. When you
partition a stored procedure, you associate it with a specific partition based on the table that it accesses.
For example, the preceding query accesses the People table and, more importantly, narrows the focus to
a specific value of the partitioning column, State_num.

Note that you can access more than one table in a single-partition procedure, as we do in the preceding
example. However, all of the data you access must be in that partition. In other words, all the tables you
access must be partitioned on the same key value or, for read-only SELECT statements, you can also
include replicated tables.

So we can partition our new procedure using the People table by adding a PARTITION PROCEDURE
statement:

PARTITION PROCEDURE leastpopulated ON TABLE people COLUMN state_num;

Stored Procedures

15

Now when we invoke the stored procedure, it is executed only in the partition where the State_num column
matches the first argument to the procedure, leaving the other partitions free to process other requests.

Of course, before we can use the procedure we need to compile it into the catalog. Modifying stored
procedures can be done on the fly, like adding and removing tables. So we do not need to restart the
database, just recompile the catalog and update the running database.1

$ voltdb compile -o towns.jar towns.sql
$ voltadmin update towns.jar deployment.xml

Once we update the catalog, the new procedure becomes available. (Although, if you are using interactive
commands, as in this tutorial, it is a good idea to exit and reenter sqlcmd to make sure it recognizes the new
procedure name.) So we can now execute the query multiple times for different states simply by changing
the argument to the procedure:

$ sqlcmd
SQL Command :: localhost:21212
1> exec leastpopulated 6;
COUNTY ABBREVIATION POPULATION
-------------- ------------- -----------
Alpine County CA 1175

(1 row(s) affected)
2> exec leastpopulated 48;
COUNTY ABBREVIATION POPULATION
-------------- ------------- -----------
Loving County TX 82

(1 row(s) affected)

Writing More Powerful Stored Procedures
Simple stored procedures written purely in SQL are very handy as short cuts. However, some procedures
are more complex, requiring multiple queries and additional computation based on query results. For more
involved procedures, VoltDB supports writing stored procedures in Java.

It isn't necessary to be a Java programming wizard to write VoltDB stored procedures. All VoltDB stored
procedures have the same basic structure. For example, the following code reproduces the simple stored
procedure leastpopulated we wrote in the previous section using Java:

import org.voltdb.*;

public class LeastPopulated extends VoltProcedure {

 public final SQLStmt getLeast = new SQLStmt(
 " SELECT TOP 1 county, abbreviation, population "
 + " FROM people, states WHERE people.state_num=?"
 + " AND people.state_num=states.state_num"
 + " ORDER BY population ASC;");

1If you are using the VoltDB Community Edition see the section called “Restoring Data to a New Catalog”.

Stored Procedures

16

 public VoltTable[] run(integer state_num)
 throws VoltAbortException {

 voltQueueSQL(getLeast, state_num);
 return voltExecuteSQL();

 }
}

In this example:

We start by importing the necessary VoltDB classes and methods.
The procedure itself is defined as a Java class. The Java class name is the name we use at runtime to
invoke the procedure. In this case, the procedure name is LeastPopulated.
At the beginning of the class, you declare the SQL queries that the stored procedure will use. Here
we use the same SQL query from the simple stored procedure, including the use of a question mark
as a placeholder.
The body of the procedure is a single run method. The arguments to the run method are the arguments
that must be provided when invoking the procedure at runtime.
Within the run method, the procedure queues one or more queries, specifying the SQL query name,
declared in step 3, and the arguments to be used for the placeholders. (Here we only have the one
query with one argument, the state number.)
Finally, a call executes all of the queued queries and the results of those queries are returned to the
calling application.

Now, writing a Java stored procedure to execute a single SQL query is overkill. But it does illustrate the
basic structure of the procedure.

Java stored procedures become important when designing more complex interactions with the database.
One of the most important aspects of VoltDB stored procedures is that each stored procedure is executed
as a complete unit, a transaction, that either succeeds or fails as a whole. If any errors occur during the
transaction, earlier queries in the transaction are rolled back before a response is returned to the calling
application, or any further work is done by the partition.

One such transaction might be updating the database. It just so happens that the population data from the
U.S. Census Bureau contains both actual census results and estimated population numbers for following
years. If we want to update the database to replace the 2010 results with the 2011 estimated statistics (or
some future estimates), we would need a procedure to:

1. Check to see if a record already exists for the specified state and county.

2. If so, use the SQL UPDATE statement to update the record.

3. If not, use an INSERT statement to create a new record.

We can do that by extending our original sample Java stored procedure. We can start be giving the Java
class a descriptive name, UpdatePeople. Next we include the three SQL statements we will use (SELECT,
UPDATE, and INSERT). We also need to add more arguments to the procedure to provide data for all of
the columns in the People table. Finally, we add the query invocations and conditional logic needed. Note
that we queue and execute the SELECT statement first, then evaluate its results (that is, whether there is
at least one record or not) before queuing either the UPDATE or INSERT statement.

The following is the completed stored procedure source code.

Stored Procedures

17

import org.voltdb.*;

public class UpdatePeople extends VoltProcedure {

 public final SQLStmt findCurrent = new SQLStmt(
 " SELECT * FROM people WHERE state_num=? AND county_num=?;");
 public final SQLStmt updateExisting = new SQLStmt(
 " UPDATE people SET population=?"
 + " WHERE state_num=? AND county_num=?;");
 public final SQLStmt addNew = new SQLStmt(
 " INSERT INTO people VALUES (?,?,?,?);");

 public VoltTable[] run(byte state_num,
 short county_num,
 String county,
 long population)
 throws VoltAbortException {

 voltQueueSQL(findCurrent, state_num, county_num);
 VoltTable[] results = voltExecuteSQL();

 if (results[0].getRowCount() > 0) { // found a record
 voltQueueSQL(updateExisting, population,
 state_num,
 county_num);

 } else { // no existing record
 voltQueueSQL(addNew, state_num,
 county_num,
 county,
 population);

 }
 return voltExecuteSQL();
 }
}

Compiling Java Stored Procedures
Once we write the Java stored procedure, we need to compile it into the catalog the same way we do with
simple stored procedures. But first, the Java class itself needs compiling. We use the Java compiler, javac,
to compile the procedure the same way we would any other Java program.

When compiling stored procedures, the Java compiler must be able to find the VoltDB classes and methods
imported at the beginning of the procedure. To do that, we must include the VoltDB libraries in the Java
classpath. The libraries are in the subfolder /voltdb where you installed VoltDB. For example, if you
installed VoltDB in the directory /opt/voltdb, the command to compile the UpdatePeople procedure
is the following:

$ javac -cp "$CLASSPATH:/opt/voltdb/voltdb/*" UpdatePeople.java

Once we compile the source code into a Java class, we can then declare the stored procedure in our schema,
in much the same way simple stored procedures are declared. But this time we use the CREATE PRO-

Stored Procedures

18

CEDURE FROM CLASS statement, specifying the class name rather than the SQL query. We can also
partition the procedure on the People table, since all of the queries are constrained to a specific value of
State_num, the partitioning column. Here are the statements we add to the schema.

CREATE PROCEDURE FROM CLASS UpdatePeople;
PARTITION PROCEDURE UpdatePeople ON TABLE people COLUMN state_num;

The updated schema definition is included in the tutorial files as townsupdate.sql. So, if you are
following along, rename the file to towns.sql to bring your sample files up to date.

$ cp townsupdate.sql towns.sql

Putting it All Together
OK. Now we have a Java class file for the new stored procedure and an updated schema. We are ready
to recompile the catalog.

Just as Java needs to know where the VoltDB classes are when it compiles your stored procedure, VoltDB
needs to know where your stored procedure classes are when it compiles the catalog. You tell VoltDB
where to look by adding the location of the stored procedure class files to the classpath. You can add them
to the classpath using the -c or --classpath flag to the voltdb compile command.

If you compile your Java classes into a subdirectory, which is common for larger projects with multiple
classes, that subdirectory would be the path you should specify. Since our example does not specify an
alternate location for the Java classes, the classes are in the current working directory and we can use ./
to identify their location.

So we can use the same commands we have used throughout (with the addition of the --classpath flag) to
compile our catalog and update the database:

$ voltdb compile --classpath=./ -o towns.jar towns.sql
$ voltadmin update towns.jar deployment.xml

Obviously, we don't want to invoke our new procedure manually for each record in the People table. We
could write a program to do it for us. Fortunately, there is a program already available that we can use.

The csvloader command normally uses the default INSERT procedures to load data into a table. However,
you can specify an different procedure if you wish. So we can use csvloader to invoke our new procedure
to update the database with every record in the data file.

First we must filter the data to the columns we need. We use the same shell commands we used to create
the initial input file, except we switch to selecting the column with data for the 2011 estimate rather than
the actual census results. We can save this file as data/people2011.txt (which is included with
the source files):

$ grep -v "^040," data/CO-EST2011-Alldata.csv \
| cut --delimiter="," --fields=4,5,7,11 > data/people2011.txt

Before we update the database, let's just check to see which are the two counties with the smallest pop-
ulation:

Stored Procedures

19

$ sqlcmd
SQL Command :: localhost:21212
1> SELECT TOP 2 county, abbreviation, population
2> FROM people,states WHERE people.state_num=states.state_num
3> ORDER BY population ASC;
COUNTY ABBREVIATION POPULATION
--------------- ------------- -----------
Loving County TX 82
Kalawao County HI 90

(2 row(s) affected)

Now we can run csvloader to update the database, using the -p flag indicating that we are specifying a
stored procedure name rather than a table name:

$ csvloader --skip 1 --file data/people2011.txt \
 -p UpdatePeople

And finally, we can check to see the results of the update by repeating our earlier query:

$ sqlcmd
SQL Command :: localhost:21212
1> SELECT TOP 2 county, abbreviation, population
2> FROM people,states WHERE people.state_num=states.state_num
3> ORDER BY population ASC;
COUNTY ABBREVIATION POPULATION
--------------- ------------- -----------
Kalawao County HI 90
Loving County TX 94

(2 row(s) affected)

Aha! In fact, the estimates show that Loving County, Texas is growing and is no longer the smallest!

20

Part 6: Client Applications
We now have a working sample database with data. We even wrote a stored procedure demonstrating how
to update the data. To run the stored procedure we used the pre-existing csvloader utility. However, most
applications require more logic than a single stored procedure. Understanding how to integrate calls to the
database into your client applications is key to producing a complete business solution, In this lesson, we
explain how to interact with VoltDB from client applications.

VoltDB provides client libraries in a number of different programming languages, each with their own
unique syntax, supported datatypes, and capabilities. However, the general process for calling VoltDB
from client applications is the same no matter what programming language you use:

1. Create a client connection to the database.

2. Make one of more calls to stored procedures and interpret their results.

3. Close the connection when you are done.

This lesson will show you how to perform these steps in several different languages.

Making the Sample Application Interactive
As interesting as the population and location information is, it isn't terribly dynamic. Population does not
change that quickly and locations even less so. Creating an interactive application around this data alone
is difficult. However, if we add just one more layer of data things get interesting.

The United States National Weather Service (part of the Department of Commerce) issues notices describ-
ing dangerous weather conditions. These alerts are available online in XML format and include the state
and county FIPS numbers of the areas affected by each weather advisory. This means it is possible to load
weather advisories correlated to the same locations for which we have population and elevation data. Not
only is it possible to list the weather alerts for a given state and county, we could also determine which
events have the highest impact, in terms of population affected.

Designing the Solution
To make use of this new data, we can build a solution composed of two separate applications:

• One to load the weather advisory data

• Another to fetch the alerts for a specific location

This matches the natural break down of activities, since loading the data can be repeated periodically —
every five or ten minutes say — to ensure the database has the latest information. Whereas fetching the
alerts would normally be triggered by a user request.

At any given time, there are only a few hundred weather alerts and the alerts are updated only every
5-10 minutes on the NWS web site. Because it is a small data set updated infrequently, the alerts would
normally be a good candidate for a replicated table. However, in this case, there can be — and usually
are — multiple state/county pairs associated with each alert. Also, performance of user requests to look
up alerts for a specific state and county could be critically important depending on the volume and use of
that function within the business solution.

Client Applications

21

So we can normalize the data into two separate tables: nws_alert for storing general information about
the alerts and local_event which correlates each alert (identified by a unique ID) to the state and county it
applies to. This second table can be partitioned on the same column, state_num, as the towns and people
tables. The new tables and associated indexes look like this:

CREATE TABLE nws_event (
 id VARCHAR(256) NOT NULL,
 type VARCHAR(128),
 severity VARCHAR(128),
 SUMMARY VARCHAR(1024),
 starttime TIMESTAMP,
 endtime TIMESTAMP,
 updated TIMESTAMP,
 PRIMARY KEY (id)
);

CREATE TABLE local_event (
 state_num TINYINT NOT NULL,
 county_num SMALLINT NOT NULL,
 id VARCHAR(256) NOT NULL
);

CREATE INDEX local_event_idx ON local_event (state_num, county_num);
CREATE INDEX nws_event_idx ON nws_event (id);

PARTITION TABLE local_event ON COLUMN state_num;

It is possible to add the new table declarations to the existing schema file. However, VoltDB allows you
to compile multiple schema into a single catalog. So to help organize our source files, we can create the
new table declarations in a separate schema file, weather.sql. We will also need some new stored
procedures, so we won't recompile the catalog right now. But you can view the weather.sql file in your
tutorial directory to see the new table declarations.

Designing the Stored Procedures for Data Ac-
cess

Having defined the schema, we can now define the stored procedures that the client applications need. The
first application, which loads the weather alerts, needs two stored procedures:

• FindAlert — to determine if a given alert already exists in the database

• LoadAlert — to insert the information into both the nws_alert and local_alert table

The first stored procedure is a simple SQL query based on the id column and can be defined in the schema.
The second procedure needs to create a record in the replicated table nws_alert and then as many records
in local_alert as needed. Additionally, the input file lists the state and county FIPS numbers as a string
of six digit values separated by spaces rather than as separate fields. As a result, the second procedure
must be written in Java so it can queue multiple queries and decipher the input values before using them
as query arguments. You can find the code for this stored procedure in the file LoadAlert.java in
the tutorial directory.

These procedures are not partitioned because they access the replicated table nws_alert and — in the case
of the second procedure — must insert records into the partitioned table local_alert using multiple different
partitioning column values.

Client Applications

22

Finally, we also need a stored procedure to retrieve the alerts associated with a specific state and county.
In this case, we can partition the procedure based on the state_num field. This last procedure is called
GetAlertsByLocation.

The following procedure declarations complete the weather.sql schema file:

CREATE PROCEDURE FindAlert AS
 SELECT id, updated FROM nws_event
 WHERE id = ?;

CREATE PROCEDURE FROM CLASS LoadAlert;

CREATE PROCEDURE GetAlertsByLocation AS
 SELECT w.id, w.summary, w.type, w.severity,
 w.starttime, w.endtime
 FROM nws_event as w, local_event as l
 WHERE l.id=w.id and
 l.state_num=? and l.county_num = ? and
 w.endtime > TO_TIMESTAMP(MILLISECOND,?)
 order by w.endtime;

PARTITION PROCEDURE GetAlertsByLocation
 ON TABLE local_event COLUMN state_num;

Now the stored procedures are written and the additional schema file created, we can compile the Java
stored procedure and create the new application catalog. Remember, we wrote the additional schema in-
formation into a separate file, so we need to specify both schema files on the command line when we
invoke the VoltDB compiler. We can also give the resulting catalog a new name to distinguish it from
earlier versions and then update the database:

$ javac -cp "$CLASSPATH:/opt/voltdb/voltdb/*" LoadAlert.java
$ voltdb compile --classpath=./ -o weather.jar towns.sql weather.sql
$ voltadmin update weather.jar deployment.xml

Creating the LoadWeather Client Application
The goal of the first client application, LoadWeather, is to read the weathers alerts from the National
Weather Service and load them into the database. The basic program logic is:

1. Read and parse the NWS alerts feed.

2. For each alert, first check if it already exists in the database using the FindAlert procedure.

• If yes, move on.

• If no, insert the alert using the LoadAlert procedure.

Since this application will be run periodically, we should write it in a programming language that allows
for easy parsing of XML and can be run from the command line. Python meets these requirements so we
will use it for the example application.

The first task for the client application is to include all the libraries we need. In this case we need the
VoltDB client library and standard Python libraries for input/output and parsing XML. The start of our
Python program looks like this:

Client Applications

23

import sys
from xml.dom.minidom import parseString
from voltdbclient import *

The beginning of the program also contains code to read and parse the XML from standard input and define
some useful functions. You can find this in the program LoadWeather.py in the tutorial directory.

More importantly, we must, as mentioned before, create a client connection. In Python this is done by
creating an instance of the FastSerializer:

client = FastSerializer("localhost", 21212)

In Python, we must also declare any stored procedures we intend to use. In this case, we must declare
FindAlert and LoadAlert:

finder = VoltProcedure(client, "FindAlert", [
FastSerializer.VOLTTYPE_STRING,
])

loader = VoltProcedure(client, "LoadAlert", [
FastSerializer.VOLTTYPE_STRING,
FastSerializer.VOLTTYPE_STRING,
FastSerializer.VOLTTYPE_STRING,
FastSerializer.VOLTTYPE_STRING,
FastSerializer.VOLTTYPE_STRING,
FastSerializer.VOLTTYPE_STRING,
FastSerializer.VOLTTYPE_STRING,
FastSerializer.VOLTTYPE_STRING
])

The bulk of the work of the application is a set of loops that walk through each alert in the XML structure
checking if it already exists in the database and, if not, adding it. Again, the code for parsing the XML
can be found in the tutorial directory if you are interested. But the code for calling the VoltDB stored
procedures is the following:

Check to see if the alert is already in the database.
response = finder.call([id])
if (response.tables):
 if (response.tables[0].tuples):
 # Existing alert
 cOld += 1
 else:
 # New alert
 response = loader.call([id, wtype, severity, summary,
 starttime, endtime, updated, fips])
 if response.status == 1:
 cLoaded += 1

Note how the application uses the response from the procedures in two different ways:

• The response from FindAlert (finder) is used to check if any records were returned. If so, the alert
already exists in the database.

• The response from LoadAlert (loader) is used to verify the status of the call. If the return status is one,
or success, then we know the alert was successfully added to the database.

Client Applications

24

There is additional information in the procedure response besides just a status code and the data returned
by the queries. But LoadWeather shows two of the most commonly used components.

The last step, once all the alerts are processed, is to close the connection to the database:

client.close()

Running the LoadWeather Application
Because Python is a scripting language, you do not need to compile your code before running it. However,
you do need to tell Python where to find any custom libraries, such as the VoltDB client. Simply add the
location of the VoltDB client library to the environment variable PYTHONPATH. For example, if VoltDB
is installed in your home directory as the folder ~/voltdb, the command to use is:

$ export PYTHONPATH="$HOME/voltdb/lib/python/"

Once you define PYTHONPATH, you are ready to run LoadWeather. Of course, you will also need weath-
er alerts data to load. A sample file of weather data is included in the tutorial files data directory:

$ python LoadWeather.py < data/alerts.xml

Or you can pipe the most recent alerts directly from the NWS web site:

$ curl http://alerts.weather.gov/cap/us.php?x=0 | python LoadWeather.py

Creating the GetWeather Application
Now the database contains weather data, we can write the second half of the solution — an application
to retrieve all of the alerts associated with a specific location. In a real world example, the GetWeather
application is relatively simple, consisting of a single call to the GetAlertsByLocation stored procedure
for the user's current location. Run manually, one query at a time, this is not much of a test of VoltDB —
or any database. But in practice, where there can be hundreds or thousands of users running the application
simultaneously, VoltDB's performance profile excels.

To demonstrate both aspects of our hypothetical solution, we can write two versions of the GetWeather
application:

• A user interface showing what it looks like to the user and how easy it is to integrate VoltDB into such
applications.

• A high-performance application to emulate real world loads on the database.

VoltDB in User Applications
The first example adds VoltDB access to a user application. In this case, a web interface implemented in
HTML and Javascript. You can find the complete application in the /MyWeather folder in the tutorial
directory. Run the application by opening the file GetWeather.html in a web browser. If you use the
sample alert data included in the tutorial directory, you can look up alerts for Adams County in Colorado
to see what the warnings look like to the user.

Most of the application revolves around the user interface, including HTML. CSS, and Javascript code
to display the initial form and format the results. Only a very small part of the code is related to VoltDB
access.

In fact, for applications like this VoltDB has simplified programming interfaces that do not require the
explicit setup and tear down of a normal database application. In this case, we can use the JSON interface,

Client Applications

25

which does not require you to open and close an explicit connection. Instead, you simply call the database
with your query and it returns the results in standard JavaScript Object Notation (JSON). VoltDB takes
care of managing the connection, pooling queries, and so on.

So the actual database call only takes up two statements in the file GetAlerts.js;

• One to construct the URL that will be invoked, identifying the database server, the stored procedure
(GetAlertsByLocation), and the parameters.

• Another to do the actual invocation and specify a callback routine.

 var url = "http://localhost:8080/api/1.0/" +
 "?Procedure=GetAlertsByLocation&Parameters=" +
 "[" + statenum + "," + countynum + "," + currenttime + "]";
 callJSON(url,"loadAlertsCallback");

Once the stored procedure completes, the callback routine is invoked. The callback routine uses the pro-
cedure response, this time in JSON format, much the same way the LoadWeather application does. First
it checks the status to make sure the procedure succeeded and then it parses the results and formats them
for display to the user.

function loadAlertsCallback(data) {

 if (data.status == 1) {
 var output = "";
 var results = data.results[0].data;
 if (results.length > 0) {
 var datarow = null;
 for (var i = 0; i < results.length; i++) {
 datarow = results[i];
 var link = datarow[0];
 var descr = datarow[1];
 var type = datarow[2];
 var severity = datarow[3];
 var starttime = datarow[4]/1000;
 var endtime = datarow[5]/1000;
 output += '<p>' + type + ' '
 + severity + '
' + descr + '</p>';
 }
 } else {
 output = "<p>No current weather alerts for this location.</p>";
 }
 var panel = document.getElementById('alerts');
 panel.innerHTML = "<h3>Current Alerts</h3>" + output;

 } else {
 alert("Failure: " + data.statusstring);
 }
}

VoltDB in High Performance Applications
The second example of GetWeather emulates many users accessing the database at the same time. It is
very similar to the voter sample application that comes with the VoltDB software.

Client Applications

26

In this case we can write the application in Java. As we did before with LoadWeather, we need to import
the VoltDB libraries and open a connection to the database. The code to do that in Java looks like this:

import org.voltdb.*;
import org.voltdb.client.*;

 [. . .]

 /*
 * Instantiate a client and connect to the database.
 */
 org.voltdb.client.Client client;
 client = ClientFactory.createClient();
 client.createConnection("localhost");

The program then does one ad hoc query. You can add ad hoc queries to your applications by calling the
@AdHoc system procedure with the SQL statement you want to execute as the only argument to the call.
Normally, it is best for performance to always use stored procedures since they are precompiled and can
be partitioned. However, in this case, where the query is run only once at the beginning of the program to
get a list of valid county numbers per state, there is little or no negative impact.

You use system procedures such as @AdHoc just as you would your own stored procedures, identifying
the procedure and any arguments in the callProcedure method. Again, we use the status in the procedure
response to verify that the procedure completed successfully.

ClientResponse response = client.callProcedure("@AdHoc",
 "Select state_num, max(county_num) from people " +
 "group by state_num order by state_num;");
if (response.getStatus() != ClientResponse.SUCCESS){
 System.err.println(response.getStatusString());
 System.exit(-1);
}

The bulk of the application is a program loop that randomly assigns a state and county number and looks up
weather alerts for that location using the GetAlertsByLocation stored procedure. The major difference here
is that rather than calling the procedure synchronously and waiting for the results, we call the procedure
asynchronously and move immediately on to the next call.

while (currenttime - starttime < timelimit) {

 // Pick a state and county
 int s = 1 + (int)(Math.random() * maxstate);
 int c = 1 + (int)(Math.random() * states[s]);

 // Get the alerts
 client.callProcedure(new AlertCallback(),
 "GetAlertsByLocation",
 s, c, new Date().getTime());

 currenttime = System.currentTimeMillis();
 if (currenttime > lastreport + reportdelta) {
 DisplayInfo(currenttime-lastreport);
 lastreport = currenttime;
 }
}

Client Applications

27

Asynchronous procedure calls are very useful for high velocity applications because they ensure that the
database always has queries to process. If you call stored procedures synchronously, one at a time, the
database can only process queries as quickly as your application can send them. Between each stored
procedure call, while your application is processing the results and setting up the next procedure call, the
database is idle. Essentially, all of the parallelism and partitioning of the database are wasted while your
application does other work.

By calling stored procedures asynchronously, the database can queue the queries and process multiple
single-partitioned in parallel, while your application sets up the next procedure invocation. In other words,
both your application and the database can run at top speed. This is also a good way to emulate multiple
synchronous clients accessing the database simultaneously.

Once an asynchronous procedure call completes, the application is notified by invoking the callback pro-
cedure identified in the first argument to the callProcedure method. In this case, the AlertCall-
back procedure. The callback procedure then processes the procedure response, which it receives as an
argument, just as your application would after a synchronous call.

static class AlertCallback implements ProcedureCallback {
 @Override
 public void clientCallback(ClientResponse response) throws Exception {
 if (response.getStatus() == ClientResponse.SUCCESS) {
 VoltTable tuples = response.getResults()[0];
 // Could do something with the results.
 // For now we throw them away since we are
 // demonstrating load on the database
 tuples.resetRowPosition();
 while (tuples.advanceRow()) {
 String id = tuples.getString(0);
 String summary = tuples.getString(1);
 String type = tuples.getString(2);
 String severity = tuples.getString(3);
 long starttime = tuples.getTimestampAsLong(4);
 long endtime = tuples.getTimestampAsLong(5);
 }
 }
 txns++;
 if ((txns % 50000) == 0) System.out.print(".");
 }
}

Finally, once the application has run for the predefined time period (by default, five minutes) it prints out
one final report and closes the connection.

 // one final report
if (txns > 0 && currenttime > lastreport)
 DisplayInfo(currenttime - lastreport);

client.close();

Running the GetWeather Application
How you compile and run your client applications depends on the programming language they are written
in. For Java programs, like the sample GetWeather application, you need to include the VoltDB JAR file
in the class path. If you installed VoltDB as ~/voltdb, a subdirectory of your home directory, you can
add the VoltDB and associated JAR files and your current working directory to the Java classpath like so:

Client Applications

28

$ export CLASSPATH="$CLASSPATH:$HOME/voltdb/voltdb/*:$HOME/voltdb/lib/*:./"

You can then compile and run the application using standard Java commands:

$ javac GetWeather.java
$ java GetWeather
Emulating read queries of weather alerts by location...
............................
1403551 Transactions in 30 seconds (46783 TPS)
...............................
1550652 Transactions in 30 seconds (51674 TPS)

As the application runs, it periodically shows metrics on the number of transactions processed. These
values will vary based on the type of server, the configuration of the VoltDB cluster (sites per host, notes in
the cluster, etc) and other environmental factors. But the numbers give you a rough feel for the performance
of your database under load.

In Conclusion
How your database schema is structured, how tables and procedures are partitioned, and how your client ap-
plication is designed, will all impact performance. When writing client applications, although the specifics
vary for each programming language, the basics are:

• Create a connection to the database.

• Call stored procedures and interpret the results. Use asynchronous calls where possible to maximize
throughput.

• Close the connection when done.

Much more information about how to design your client application and how to tune it and the database for
maximum performance can be found online in the Using VoltDB manual and VoltDB Performance Guide.

http://voltdb.com/docs/UsingVoltDB/
http://voltdb.com/docs/PerfGuide/

29

Part 7: Next Steps
This tutorial has introduced you to the basic features of VoltDB. There are many more capabilities within
VoltDB to optimize and enhance your database applications. To see more examples of VoltDB in action,
see the sample applications that are included in the VoltDB kit in the /examples subfolder. To learn
more about individual features and capabilities, see the Using VoltDB manual for more information.

http://voltdb.com/docs/UsingVoltDB/

