O REILLY

OSCON

Open Source Convention
.-.- A Survey of
Concurrency
'! Constructs
\()P.Bm Ted Leung
Sun Microsystems

\o@ = =
. —P ted.leung@sun.com
e
= @twleung

s

mailto:ted.leung@sun.com
mailto:ted.leung@sun.com

A T

..u. m~ J...lll.

1
-

o 4 o
! !
' et v
‘ - 4 + P

)
. -

[}

¥

)
v

Die size 265 mm2

of o
K -
-

Cl A CE
*‘1;'.':1 -

T

©)
41N
=

s
-~
-

: 0 'WO.-

—

L e e i L AR s]

aom zw,g

Intel Quad Core Nehalem

Gen.l/O & Bm.mm

LA T Sy | -

| 6 threads

-~ e B ol | ™ ™rrT | e

eI ade Fi aie L oie N ahe L =

1.

i
N 4
:

.

3

- ol | ada g™~ Y

19
l

- N

..-45-*._-_.5-—.\..-—4&_ o N TN e A = B Ny

TAG7

L2 atal. .
L DLy L]
L LT s

BankKk 4. .

L2 ata

PeEmm Stk ot 8
AREaR NN REaRn

T NSanK s
7 o = -

Bank 7
L2B6
L2 Data

Bank 6

-—r'l"- =y g v g e

-
|

O e sy P TN g g R g Sy U R ey T g g
: : !
- » - ah o» - - . - -n -9

| 28 threads

= Threads
* Program counter
= Own stack
= Shared Memory

= Locks

= Locks
= manually lock and unlock
* lock ordering is a big problem
* locks are not compositional
= How do we decide what is concurrent?

= Need to pre-design, but now we have to retrofit
concurrency via new requirements

= Mutual Exclusion

= Serialization / Ordering

= Inherent / Implicit vs Explicit

* Fine / Medium / Coarse grained

= Composability

= |s substantially less error prone

= Makes it much easier to identify concurrency

= Runs on today's (and future) parallel hardware
= Works if you keep adding cores/threads

= Actors

= CSP

= CCS

= petri-nets

= pi-calculus

= Jjoin-calculus

= Functional Programming

= Actors

= CSP

= CCS

= petri-nets

= pi-calculus

= Jjoin-calculus

= Functional Programming

= Threads are not free

= Message sending is not free

= Context/thread switching is not free
= Lock acquire/release is not free

= Transactional Memory

= Persistent data structures
= Actors
= Dataflow

= Tuple spaces

= Original paper on STM 1995
= |dea goes as far back as 1986
= Tom Knight (Hardware Transactional Memory)

= First appearance in a programming language
= Concurrent Haskell 2005

= Use transactions on items in memory
= Enclose code in begin/end blocks
= Variations

= specify manual abort/retry

= specify an alternate path (way of controlling manual
abort)

(defn deposit [account amount]
(dosync
(let [owner (account :owner)
balance-ref (account :balance-ref)]
(do
(alter balance-ref + amount)
(println “depositing” amount (account :owner)))))))

= STM Algorithms / Strategies
= Granularity
= word vs block
= Locks vs Optimistic concurrency
= Conflict detection
= eager vs lazy

= Contention management

= Non transactional access to STM cells
= Non abortable operations

= |/O
= STM Overhead

= read/write barrier elimination
= Where to place transaction boundaries?
= Still need condition variables

= ordering problems are important

= 1/3 of non-deadlock problems in one study

= Haskell/GHC
= Use logs and aborts txns
= Clojure STM - via Refs

= based on ML Refs to confine changes, but ML Refs
have no automatic (i.e. STM) concurrency semantics

= only for Refs to aggregates
= Implementation uses MVCC

= Persistent data structures enable MVCC allowing
decoupling of readers/writers (readers don’t wait)

= Original formulation circa 1981
* Formalization 1986 Sarnoff
= Popularized by Clojure

= Upon “update”, previous versions are still available
= preserve functionalness
= both versions meet O(x) characteristics

= In Clojure, combined with STM
= Motivated by copy on write

= hash-map, vector, sorted map

= Lists, Vectors, Maps

= hash list based on VLists

= VDList - deques based on VLists
* red-black trees

= Real Time Queues and Deques
= deques, output-restricted deques
= binary random access lists

= pbinomial heaps

= skew binary random access lists
= skew binomial heaps

= catenable lists

= heaps with efficient merging

= catenable deques

* Not really a full model

= Oriented towards functional programming

* Invented by Carl Hewitt at MIT (1973)
= Formal Model
= Programming languages
= Hardware
= L ed to continuations, Scheme
= Recently revived by Erlang

= Erlang’s model is not derived explicitly from Actors

mail queue

creates tasks /

/, . .
/ specifies replacement

\
\

\(‘1‘«'.’1 tes actors

maill queue

object account extends Actor {

private var balance = 0

def act() {
loop {
react {
case Withdraw(amount) =>
balance -= amount

sender ! Balance(balance)
case Deposit(amount) =>

balance += amount

sender ! Balance(balance)
case BalanceRequest =>

sender ! Balance(balance)
case TerminateRequest =>

= DOS of the actor mail queue
= Multiple actor coordination
* reinvent transactions?
= Actors can still deadlock and starve
= Programmer defines granularity

= by choosing what is an actor

= Scala
= Scala Actors
= Lift Actors

= Erlang

= CLR
= F# / Axum

= Kilim

= Actor Foundry

= actorom

= Actors Guild

http://www.malhar.net/sriram/kilim/
http://www.malhar.net/sriram/kilim/
http://osl.cs.uiuc.edu/af/
http://osl.cs.uiuc.edu/af/
http://code.google.com/p/actorom/
http://code.google.com/p/actorom/

= actor creation?

" message passing?

" memory usage?

= Erlang
= per process GC heap
= tail call
= distributed
- JVM
= per JVM heap
= no tail call (fixed in JSR-2927?)
= not distributed

= 2 kinds of actors (Scala)

= Kamaelia

* messages are sent to named boxes
= coordination language connects outboxes to inboxes

= box size Is explicitly controllable

= Clojure Agents
= Designed for loosely coupled stuff
= Code/actions sent to agents
= Code Is queued when it hits the agent
= Agent framework guarantees serialization

= State of agent is always available for read (unlike
actors which could be busy processing when you
send a read message)

= not in favor of transparent distribution

= Clojure agents can operate in an ‘open world’ - actors
answer a specific set of messages

= Actors are an assembly language
= OTP type stuff and beyond

= Akka - Jonas Boner

http://github.com/jboner/akka
http://github.com/jboner/akka

= Bill Ackerman’s PhD Thesis at MIT (1984)
= Declarative Concurrency in functional languages
= Research in the 1980°s and 90's
* Inherent concurrency
= Turns out to be very difficult to implement

* Interest in declarative concurrency is slowly returning

= Dataflow Variables
= create variable
= bind value
* read value or block
= Threads
= Dataflow Streams
= List whose talil is an unbound dataflow variable

= Deterministic computation!

object Test5 extends Application {
import DataFlow. _

val

val

X, Y, z = new DataFlowVariable[Int]

main = thread {

println("Thread 'main’")

X

<< 1

println("'x’ set to: " + x())

println("Waiting for 'y' to be set...")

if (xO > yO) {

< N X

z << X
println("'z’' set to 'x': " + z())
else {
z <Yy
println("'z' set to 'y': " + z())

. shutdown
. Shutdown
. Sshutdown
. shutdown

object Test5 extends Application {

val setY = thread {
println("Thread 'setY', sleeping...")
Thread.sleep(5000)
y << 2
println("'y’' set to: " + y())

)

// shut down the threads
main ! 'exit

setY ! 'exit

System.ex1t(0)

object Test4 extends Application {
import DataFlow. _

def ints(n: Int, max: Int, stream: DataFlowStream[Int]): Unit = if (n != max) {
println("Generating int: " + n)
stream <<< n
ints(n + 1, max, stream)
X
def sum(s: Int, in: DataFlowStream[Int], out: DataFlowStream[Int]): Unit = {
println(”"Calculating: " + s)
out << s
sum(in() + s, in, out)
3
def printSum(stream: DataFlowStream[Int]): Unit = {
println("Result: " + stream())
printSum(stream)

b

val producer = new DataFlowStream[Int]
val consumer new DataFlowStream[Int]

thread { ints(@, 1000, producer) }
thread { sum(@, producer, consumer) }
thread { printSum(consumer) }

fun {Ints N Max}
if N == Max then nil
else
{Delay 1000}
N|{Ints N+1 Max}
end
end

fun {Sum S Stream}

case Stream of nil then S

[] HIT then S|{Sum H+S T} end
end

local X Y in
thread X = {Ints @ 1000} end
thread Y = {Sum @ X} end
{Browse Y}

end

= Mozart Oz

= Jonas Boner’s Scala library (now part of Akka)

= dataflow variables and streams
= Ruby library

= dataflow variables and streams
= Groovy

http://github.com/jboner/scala-dataflow
http://github.com/jboner/scala-dataflow
http://code.google.com/p/gparallelizer/
http://code.google.com/p/gparallelizer/

= Futures

= Originated in Multilisp

= Eager/speculative evaluation

* Implementation quality matters
= |-Structures

= |d, pH (Parallel Haskell)

= Single assignment arrays

= cannot be rebound => no streams

= Can’t handle non-determinism
= like a server
* Need ports
= this leads to actor like things

= Originated in Linda (1984)
= Popularized by Jini

= Three operations
= write() (out) Tuplespace
= take() (in)
" read()

| read, take

Q00O

Processes

= Space uncoupling
= Time uncoupling
= Readers are decoupled from Writers
= Content addressable by pattern matching
= Can emulate
= Actor like continuations
= CSP
= Message Passing
= Semaphores

public class Account implements Entry {

public
public
public
public

this.
this.

}
)

try {

Integer accountNo;

Integer value;

Account() { ... }

Account(int accountNo, int value) {
accountNo = newInteger(accountNo);
value = newlInteger(value);

Account newAccount = new Account(accountNo, value);
space.write(newAccount, null, Lease.FOREVER);

}

space.read(accountNo);

= Jini/JavaSpaces

= BlitzSpaces

= PyLinda
* Rinda
= pullt in to Ruby

= Low level

= High latency to the space - the space is contention
point / hot spot

= Scalability

= More for distribution than concurrency

= Scala

= Erlang

= Clojure

= Kamaelia
= Haskell
= AXum/Fj
* Mozart/Oz
= Akka

= More in depth comparisons on 4+ core platforms
= Higher level frameworks
= Application architectures/patterns

= Web

= Middleware

= Shared State is troublesome
= Immutabillity or
= no sharing

= It's too early

= Actors: A Model of Concurrent Computation in
Distributed Systems - Gul Agha - MIT Press 1986

= Concepts, Techniques, and Models of Computer
Programming - Peter Van Roy and Seif Haridi - MIT
Press 2004

COncepts, Techniques, and Models
| of é&nputor Programming

- | ' PETER w‘(An ROY and SEIF HARIDI

= Q&A

