
A Survey of
Concurrency
Constructs
Ted Leung
Sun Microsystems
ted.leung@sun.com
@twleung

mailto:ted.leung@sun.com
mailto:ted.leung@sun.com

16 threads

128 threads

Today’s model
 Threads
 Program counter
 Own stack
 Shared Memory

 Locks

Some of the problems
 Locks
 manually lock and unlock
 lock ordering is a big problem
 locks are not compositional

 How do we decide what is concurrent?
 Need to pre-design, but now we have to retrofit

concurrency via new requirements

Design Goals/Space

 Mutual Exclusion
 Serialization / Ordering
 Inherent / Implicit vs Explicit
 Fine / Medium / Coarse grained
 Composability

A good solution
 Is substantially less error prone
 Makes it much easier to identify concurrency
 Runs on today’s (and future) parallel hardware
 Works if you keep adding cores/threads

Theoretical Models
 Actors
 CSP
 CCS
 petri-nets
 pi-calculus
 join-calculus
 Functional Programming

Theoretical Models
 Actors
 CSP
 CCS
 petri-nets
 pi-calculus
 join-calculus
 Functional Programming

Theoretical Models

Implementation matters
 Threads are not free
 Message sending is not free
 Context/thread switching is not free
 Lock acquire/release is not free

The models
 Transactional Memory
 Persistent data structures

 Actors
 Dataflow
 Tuple spaces

Transactional Memory
 Original paper on STM 1995
 Idea goes as far back as 1986
 Tom Knight (Hardware Transactional Memory)

 First appearance in a programming language
 Concurrent Haskell 2005

The Model
 Use transactions on items in memory
 Enclose code in begin/end blocks
 Variations
 specify manual abort/retry
 specify an alternate path (way of controlling manual

abort)

Example

(defn deposit [account amount]
 (dosync
 (let [owner (account :owner)
 balance-ref (account :balance-ref)]
 (do
 (alter balance-ref + amount)
 (println “depositing” amount (account :owner)))))))

STM Design Space
 STM Algorithms / Strategies
 Granularity
 word vs block

 Locks vs Optimistic concurrency
 Conflict detection
 eager vs lazy

 Contention management

STM Problems
 Non transactional access to STM cells
 Non abortable operations
 I/O

 STM Overhead
 read/write barrier elimination

 Where to place transaction boundaries?
 Still need condition variables
 ordering problems are important
 1/3 of non-deadlock problems in one study

Implementations
 Haskell/GHC
 Use logs and aborts txns

 Clojure STM - via Refs
 based on ML Refs to confine changes, but ML Refs

have no automatic (i.e. STM) concurrency semantics
 only for Refs to aggregates
 Implementation uses MVCC
 Persistent data structures enable MVCC allowing

decoupling of readers/writers (readers don’t wait)

Persistent Data Structures
 Original formulation circa 1981
 Formalization 1986 Sarnoff
 Popularized by Clojure

The model
 Upon “update”, previous versions are still available
 preserve functionalness
 both versions meet O(x) characteristics

 In Clojure, combined with STM
 Motivated by copy on write
 hash-map, vector, sorted map

Available data structures
 Lists, Vectors, Maps
 hash list based on VLists
 VDList - deques based on VLists
 red-black trees

Available data structures
 Real Time Queues and Deques
 deques, output-restricted deques
 binary random access lists
 binomial heaps
 skew binary random access lists
 skew binomial heaps
 catenable lists
 heaps with efficient merging
 catenable deques

Problems
 Not really a full model
 Oriented towards functional programming

Actors
 Invented by Carl Hewitt at MIT (1973)
 Formal Model
 Programming languages
 Hardware
 Led to continuations, Scheme

 Recently revived by Erlang
 Erlang’s model is not derived explicitly from Actors

The Model

Example

object account extends Actor {

 private var balance = 0

 def act() {
 loop {
 react {
 case Withdraw(amount) =>
 balance -= amount
 sender ! Balance(balance)
 case Deposit(amount) =>
 balance += amount
 sender ! Balance(balance)
 case BalanceRequest =>
 sender ! Balance(balance)
 case TerminateRequest =>
 }
 }

}

Problems with actors
 DOS of the actor mail queue
 Multiple actor coordination
 reinvent transactions?

 Actors can still deadlock and starve
 Programmer defines granularity
 by choosing what is an actor

Actor Implementations
 Scala
 Scala Actors
 Lift Actors

 Erlang
 CLR
 F# / Axum

Java
 kilim
 http://www.malhar.net/sriram/kilim/

 Actor Foundry
 http://osl.cs.uiuc.edu/af/

 actorom
 http://code.google.com/p/actorom/

 Actors Guild
 http://actorsguildframework.org/

http://www.malhar.net/sriram/kilim/
http://www.malhar.net/sriram/kilim/
http://osl.cs.uiuc.edu/af/
http://osl.cs.uiuc.edu/af/
http://code.google.com/p/actorom/
http://code.google.com/p/actorom/

Measuring performance
 actor creation?
 message passing?
 memory usage?

Erlang vs JVM
 Erlang
 per process GC heap
 tail call
 distributed

 JVM
 per JVM heap
 no tail call (fixed in JSR-292?)
 not distributed
 2 kinds of actors (Scala)

Actor variants
 Kamaelia
 messages are sent to named boxes
 coordination language connects outboxes to inboxes
 box size is explicitly controllable

Actor variants
 Clojure Agents
 Designed for loosely coupled stuff
 Code/actions sent to agents
 Code is queued when it hits the agent
 Agent framework guarantees serialization
 State of agent is always available for read (unlike

actors which could be busy processing when you
send a read message)

 not in favor of transparent distribution
 Clojure agents can operate in an ‘open world’ - actors

answer a specific set of messages

Last thoughts on Actors
 Actors are an assembly language
 OTP type stuff and beyond
 Akka - Jonas Boner
 http://github.com/jboner/akka

http://github.com/jboner/akka
http://github.com/jboner/akka

Dataflow
 Bill Ackerman’s PhD Thesis at MIT (1984)
 Declarative Concurrency in functional languages
 Research in the 1980’s and 90’s
 Inherent concurrency
 Turns out to be very difficult to implement

 Interest in declarative concurrency is slowly returning

The model
 Dataflow Variables
 create variable
 bind value
 read value or block

 Threads
 Dataflow Streams
 List whose tail is an unbound dataflow variable

 Deterministic computation!

Example: Variables 1
object Test5 extends Application {
 import DataFlow._

 val x, y, z = new DataFlowVariable[Int]

 val main = thread {
 println("Thread 'main'")
 x << 1
 println("'x' set to: " + x())
 println("Waiting for 'y' to be set...")
 if (x() > y()) {
 z << x
 println("'z' set to 'x': " + z())
 } else {
 z << y
 println("'z' set to 'y': " + z())
 }

 x.shutdown
 y.shutdown
 z.shutdown
 v.shutdown
 }

Example: Variables 2
object Test5 extends Application {

 val setY = thread {
 println("Thread 'setY', sleeping...")
 Thread.sleep(5000)
 y << 2
 println("'y' set to: " + y())
 }

 // shut down the threads
 main ! 'exit
 setY ! 'exit

 System.exit(0)
}

Example: Streams
object Test4 extends Application {
 import DataFlow._

 def ints(n: Int, max: Int, stream: DataFlowStream[Int]): Unit = if (n != max) {
 println("Generating int: " + n)
 stream <<< n
 ints(n + 1, max, stream)
 }
 def sum(s: Int, in: DataFlowStream[Int], out: DataFlowStream[Int]): Unit = {
 println("Calculating: " + s)
 out <<< s
 sum(in() + s, in, out)
 }
 def printSum(stream: DataFlowStream[Int]): Unit = {
 println("Result: " + stream())
 printSum(stream)
 }

 val producer = new DataFlowStream[Int]
 val consumer = new DataFlowStream[Int]

 thread { ints(0, 1000, producer) }
 thread { sum(0, producer, consumer) }
 thread { printSum(consumer) }
}

Example: Streams (Oz)

fun {Ints N Max}
 if N == Max then nil
 else
 {Delay 1000}
 N|{Ints N+1 Max}
 end
end

fun {Sum S Stream}
 case Stream of nil then S
 [] H|T then S|{Sum H+S T} end
end

local X Y in
 thread X = {Ints 0 1000} end
 thread Y = {Sum 0 X} end
 {Browse Y}
end

Implementations
 Mozart Oz
 http://www.mozart-oz.org/

 Jonas Boner’s Scala library (now part of Akka)
 http://github.com/jboner/scala-dataflow
 dataflow variables and streams

 Ruby library
 http://github.com/larrytheliquid/dataflow
 dataflow variables and streams

 Groovy
 http://code.google.com/p/gparallelizer/

http://github.com/jboner/scala-dataflow
http://github.com/jboner/scala-dataflow
http://code.google.com/p/gparallelizer/
http://code.google.com/p/gparallelizer/

Variations
 Futures
 Originated in Multilisp
 Eager/speculative evaluation
 Implementation quality matters

 I-Structures
 Id, pH (Parallel Haskell)
 Single assignment arrays
 cannot be rebound => no streams

Problems
 Can’t handle non-determinism
 like a server
 Need ports
 this leads to actor like things

Tuple Spaces
 Originated in Linda (1984)
 Popularized by Jini

The Model
 Three operations
 write() (out)
 take() (in)
 read()

The Model
 Space uncoupling
 Time uncoupling
 Readers are decoupled from Writers
 Content addressable by pattern matching
 Can emulate
 Actor like continuations
 CSP
 Message Passing
 Semaphores

Example

public class Account implements Entry {
 public Integer accountNo;
 public Integer value;
 public Account() { ... }
 public Account(int accountNo, int value) {
 this.accountNo = newInteger(accountNo);
 this.value = newInteger(value);
 }
}

try {
 Account newAccount = new Account(accountNo, value);
 space.write(newAccount, null, Lease.FOREVER);
}

space.read(accountNo);

Implementations
 Jini/JavaSpaces
 http://incubator.apache.org/river/RIVER/index.html

 BlitzSpaces
 http://www.dancres.org/blitz/blitz_js.html

 PyLinda
 http://code.google.com/p/pylinda/

 Rinda
 built in to Ruby

Problems
 Low level
 High latency to the space - the space is contention

point / hot spot
 Scalability
 More for distribution than concurrency

Projects
 Scala
 Erlang
 Clojure
 Kamaelia
 Haskell
 Axum/F#
 Mozart/Oz
 Akka

Work to be done
 More in depth comparisons on 4+ core platforms
 Higher level frameworks
 Application architectures/patterns
 Web
 Middleware

Final thoughts
 Shared State is troublesome
 immutability or
 no sharing

 It’s too early

References
 Actors: A Model of Concurrent Computation in

Distributed Systems - Gul Agha - MIT Press 1986
 Concepts, Techniques, and Models of Computer

Programming - Peter Van Roy and Seif Haridi - MIT
Press 2004

Thanks!
 Q&A

