=l BACKBASE

Starter Kit

XML Data-Binding in Backbase 3.1
Intended Audience

This tutorial is intended for developers who want to learn how to best use the
data-binding features of Backbase 3.1, and is specifically aimed at people doing
data-binding for the first time. Basic knowledge of XML and BXML is assumed.

Introduction

Data-binding is a technique frequently used in many different programming
environments. Because of this, the term is overloaded and means different things
to different developers. We will therefore start this tutorial by giving a short
definition of data-binding.

On an abstract level, data-binding means connecting data from a server-side data
source to a client-side UI control. A good data-binding mechanism provides for an
easy way to achieve this connection and will free the developer from writing
plumbing code.

Concretely, a data-binding involves executing two tasks:

1. Loading and storing the data: The data is physically located on the server
and needs to be transferred between the client and the server.

2. Transformation to required format: The data is stored in some format in
the data source. Displaying data in the UI control requires the data to be
compatible with the client-side presentation format.

Data Source Ul Controls

5 - |
= [F undo
rld
Copy
Paste

ipt
=nt

Lorem Ipsum Dolor

Figure 1 "Data-binding Tasks"

An essential question when looking at different data-binding approaches is where
the two tasks (1) loading / storing and (2) transformation are executed, on the
client or on the server.

Backbase is an extremely flexible Ajax engine that lets developers use different
approaches. As shown in the figure below, there are two basic strategies:

1. Executing both loading / storing and transformation on the server,

2. Executing loading / storing on the server but transformation on the client.
Data Source Server Bindings Client Bindings Ul Controls

, se=ve L e |
[Reds
¢ N o =
+ L4 »
L [Ca T

Loading / Storing
Transformation

= _ _ L o |
P Y p . iy
[Reds’
¢ N 4 feaa I
A 4 + -
Corem tpsum | Dl

Loading / Storing Transformation

Figure 2 '"Data Binding Approaches"
The article will describe three strategies for data-binding by explaining the logic
for loading and storing and by showing how to transform data into BXML. Two of

the data-binding strategies involve doing the transformation client-side. The third
one is completely server-side.

1. XML Data-binding with the Browser XSLT Engine
2. XML Data-binding with the BPC XSLT Engine
3. XML Data-binding with the PHP XSLT Engine

The article will not only describe how to use the above three strategies but also
highlight the advantages of each method. As of version 3.1.1 you can find
complete code templates for each approach in the data-binding starterkit.

The Sample Application

The sample application is a table with movie data that end users can edit in the
browser. The screenshot below shows the application and the data-binding from
the end user's perspective. Some data is displayed, it can be edited, and the
changes can be saved.

Savwe Changes

Movie Director Genre Year Admin
American Beauty Sam Mendes Drama 1999
Apocalypse Mow Francis Ford Coppola Wi ar 1979
Battle Rovale Kinji Fukasaku Action 2000

Figure 3 "Example of data display and editing"

The Data-binding Loop

When data is stored on the server, displayed and edited in the client, and then
saved back on the server, it will be ready to go through this process again and
again. This is the data-binding loop. The picture below illustrates this loop in a
very general way.

Server Browser
Data Storage Server Logic User Interface
Data
—_—
Data
— L

Figure 4 ""Data-binding Overview"

Because the data is usually stored on the server in a different format from how it
is managed and displayed in the user interface, transformations between storage
and display formats are necessary.

In this article it is assumed that the server logic code already has the data
available as raw XML. In many environments a conversion from a SQL managed
database storage to XML format will be needed to get to this point. However, this
step depends heavily on the particular server environment in use, and handling
this lies not within the scope of this article. In our examples, we have worked
with data that is stored as a simple XML file on the server, so no additional
conversions are needed.

XML Data-binding with the Browser XSLT Engine
Overview

In our first case we will have a look at using the XSLT transformation engine
available in all browsers currently supported by Backbase. When using this
approach, it means the data is transferred from the server to the browser as raw
XML, as illustrated in the picture below.

Server Browser

Presentation Logic

Data Storage Business Logic
Browser XSLT Engine
XML Data
R —
Backbase ul
Presentation Controls
Client
XML Data
—

:

Browser XSLT Engine

Figure 5 "XML data-binding with the browser XSLT engine"

When the XML data arrives in the browser, the Backbase Presentation Client
(BPC) passes it through the browser XSLT engine to transform it to BXML. The
data can now be inserted into the BXML-Tree, and the BPC will automatically take
care of updating the interface with this new information.

Fast & loosely coupled

The biggest advantage of using the browser transformation engine is
performance; it is very fast because it uses the browser's native XSLT
implementation. When transforming large amounts of data, this becomes
important. Also, by doing the transformation in the browser, the server can stay
agnostic of what the data is used for. This allows for a flexible and loosely coupled
services architecture.

Cross-browser compatibility

A drawback of this approach is that the developer needs to explicitly deal with
potential browser incompatibilities. For example, the XSLT implementation in
Internet Explorer 5.0 on Windows is based on an unfinished version of the W3C
XSLT specification. Some essential changes were made to this specification after
Internet Explorer 5.0 was released. This means that normal stylesheets are likely
to fail in that browser, and you might have to feed it alternative stylesheets
tailored to its quirks. This adds complexity to the development and maintenance
of your applications.

The cross-browser compatibility issue goes further than that though: if Backbase
starts supporting new browsers in the future, you will have to deal with their
particular XSLT implementations. These might not be powerful or flexible enough
to be used in dynamically updated Rich Internet Applications.

Using the browser XSLT engine: taking XML from the server

When loading an XSL stylesheet and XML data that will be transformed by the
browser engine, the code to set up the transformation will look a lot like this:

<!-- Load data and store as XML Document in a variable —-->
<s:variable b:name="filmdata-source" b:scope="global"/>
<s:task b:action="load"
b:url="data/filmdata.xml"
b:destination="$filmdata-source"/>
<s:task b:action="string2xml" b:variable="$filmdata-source"/>

<!-- Load stylesheet and store as XML Document in a variable -->
<s:variable b:name="stylesheet" b:scope="global"/>
<s:task b:action="load"
b:url="data/xml2bxml_standard.xsl"
b:destination="$stylesheet"/>
<s:task b:action="string2xml" b:variable="S$stylesheet"/>

<!-— Transform data, move output directly to BXML-Tree —-->

<s:task b:action="xsl-transform"
b:stylesheet="$stylesheet"
b:datasource="$filmdata-source"
b:destination="id('filmdisplay-container')"/>

Note the conversion of the loaded files from a string data type to an XML
Document data type. The name of the command that triggers the transformation
is xsl-transform and the output goes directly to a location in the BXML-Tree
specified with a simple XPath.

Note also the global scoping of all variables in this example. By storing the
stylesheet and XML data in these variables, they can be reused at a later point
without downloading them again.

Using the browser XSLT engine: putting the changes back in XML format

When preparing the changed data for transformation back to raw XML, the code
looks like this:

<!—-- Take changed data and store as XML Document in a variable ——>
<s:variable b:name="filmdata-delta"
b:select="id('delta-bxml-container')"
b:scope="global"/>
<s:task b:action="bxml2string" b:variable="$filmdata-delta"/>
<s:task b:action="string2xml" b:variable="$filmdata-delta"/>

<!-- Load stylesheet and store as XML Document in a variable —-->
<s:variable b:name="stylesheet" b:scope="global"/>
<s:task b:action="load"
b:url="data/bxml2xml_standard.xsl"
b:destination="$stylesheet"/>
<s:task b:action="string2xml" b:variable="$stylesheet"/>

<!-— Do the transformation, place output in a variable -->

<s:variable b:name="delta-xml" b:scope="global"/>

<s:task b:action="xsl-transform"
b:stylesheet="$stylesheet"
b:datasource="$filmdata-delta"
b:destination="$delta-xml"/>

The process of loading the stylesheet is the same as in the earlier example, but
the preparations for the input data are different. It needs to be converted from
the BXML data type to the XML Document data type. This does not mean that it
has already been transformed to the clean XML that the server wants, the tag
and attribute names and their structure are not affected by these data type
conversion routines. It's just a procedure for making the xsl-transform command
recognize its input as something it can handle.

XML Data-binding with the BPC XSLT Engine
Overview

In our second case we will look at how to use the XSLT transformation engine
offered by the Backbase Presentation Client (BPC). When you compare this
process with the browser engine approach, you will notice that again the data is
transferred as raw XML, but this time the transformation step between XML and
BXML is contained inside the BPC.

Server Browser

Presentation Logic

Data Storage Business Logic
Backbase Presentation Client

XDt BPC XSLT

—_

ul
Controls

XML Dats BPC XSLT

— - —

Engine

Figure 6 "XML data-binding with the BPC XSLT engine"

When the XML data arrives in the browser, the Backbase Presentation Client
transforms it to BXML with its integrated XSLT engine. Before sending the data
that was changed by the user back to the server, the BPC XSLT engine is used
again to transform it from BXML to XML format.

Loosely coupled, flexible & integrated, XPath 2.0, cross-browser

Like in the case of using the browser XSLT engine, the data is transferred from
the server to the browser as raw XML. This allows for a loosely coupled enterprise
application architecture based on platform-independent XML communication.

By using the BPC XSLT engine you can take advantage of its excellent integration
features to increase development productivity. You can start using variables in
some powerful ways. For example, it becomes easy to set up a paging interface
that shows (and transforms) only a range of records from a large dataset at a
time, say numbers 101 to 120.

That same selection principle can be taken to a higher level by combining several
user controls that access the same data source. This is perfect for interface
patterns like the one used in Mozilla Thunderbird, where you have a folder
category view, an email list view and an email detail view. The data displayed in
the list and detail views need only be accessed and transformed based on what
the user selects. Setting up this selective transformation pattern is easy with the
integrated variables that can be used in the BPC XSLT engine.

Backbase 3.1 supports a large part of XPath 2.0, a significant improvement over
XPath 1.0. The most notable additions are more XPath functions and more
operators. This, together with the other features of the BPC XSLT engine, further
strengthens its flexibility and level of control over transformations.

Finally, a big advantage of the BPC XSLT engine is that it is cross-browser
compatible. It will work in all browsers without a problem.

Performance limits and stylesheet namespacing

The BPC XSLT engine has a limit to the amount of data it can reasonably process
at a time. You do not want to transform too much data at once; otherwise the
user interface might start responding slowly to changes.

Another characteristic that should be mentioned is that stylesheets written for the
BPC engine use slightly different namespacing prefixes. Instead of the xsl
namespace, it uses the s namespace.

Using the BPC XSLT engine: taking XML from the server

The preparations for doing a transformation with the BPC engine look like this:

<!-- Load data and store as string in a variable -->
<s:variable b:name="filmdata_string" b:scope="global"/>
<s:task b:action="load"
b:url="data/filmdata.xml"
b:destination="$filmdata_string"/>

<!-— Remove XML declaration from string if present -->
<s:if b:test="contains ($filmdata_string, '?>"')">
<s:task b:action="assign"
b:target="$filmdata_string"
b:select="substring-after ($filmdata_string, '?>")"/>
</s:if>

<!-— Move data to Data Island —-—>
<s:task b:action="assign"
b:target="$filmdata_string"
b:select="concat (
'<s:xml b:name=" filmdata_xmlé" ',
'xmlns:s="http://www.backbase.com/s" ',
'xmlns:b=" http://www.backbase.com/bs" > "',
$filmdata_string,
'< /s:xml> '
)" />

<s:task b:action="move" b:destination="." b:source="$filmdata_string"/>

<!-- Load stylesheet to BXML-Tree, where it becomes a Data Island --—>
<s:task b:action="load"

b:url="data/xml2bxml_bpc.xsl"

b:destination="."/>

<!--— Transform the data and output the result directly to the BXML-Tree -->
<s:task b:action="transform"
b:stylesheet="$xml2bxml"
b:datasource="$filmdata_xml"
b:destination="id('filmdisplay-container')"/>

What's happening here is that the raw XML is first loaded into a variable, at which
point its data type is String. Then two things need to be taken care of:

1. Itis possible that the loaded XML document starts with an XML
declaration. If it does, this is stripped off because it would give a conflict
when inserted into the BXML-Tree.

2. The string must then be wrapped inside an s:xml tag, and this s:xml tag
be moved into the BXML-Tree.

What this accomplishes is that the XML data now has a special abstract data type
that we will refer to in this article as a BXML Data Island. Although it has been
moved into the BXML-Tree, it is not processed as deeply as a normal node in the
BXML-Tree, which improves performance.

You may already have spotted the presence of a b:name attribute on the s:xml
tag: b:name=squot; filmdata_xmlsquot;. This is the variable name that is used to
refer to the Data Island when it is used as input for the transformation.

Some of these steps will be simplified in the next Backbase update.

The XSL stylesheet for the BPC XSLT engine becomes a Data Island as well.
Because it doesn't need to be checked for an XML declaration and wrapped in an
s:xml tag, it can be loaded directly into the BXML-Tree. The s:stylesheet tag in
the XSL file also has an identifier: b:name="xm12bxm1". This identifier is used in the
transform command, and the output of the transformation goes directly to the
BXML-Tree.

Using the BPC XSLT engine: putting the changes back in XML format

The reverse process for transforming the changed data from BXML to XML format
is simple and direct. The reference identifier to the stylesheet works because the
b:name of the s:stylesheet element in the bxml2xml_bpc.xsl file has the value
bxmI2xml.

<!-- Load stylesheet to BXML-Tree, where it becomes a Data Island --—>
<s:task b:action="load"

b:url="data/bxml2xml_bpc.xsl"

b:destination="."/>

<!—- Do transformation using XPaths to source and destination BXML nodes —->
<s:task b:action="transform"
b:stylesheet="$bxml2xml"
b:datasource="id('delta-bxml-container')"
b:destination="id('delta—-xml-container')"/>

For sending the changed data back to the server, the load command is used. The
b:data attribute contains the XML:

<s:variable b:name="delta-xml" b:select="id('delta-xml-container')/*"/>
<s:task b:action="bxml2string" b:variable="$delta-xml"/>
<s:variable b:name="response"/>
<s:task b:action="load"
b:method="POST"
b:data="{concat ('xmldata="', S$delta-xml) }"
b:destination="$response"
b:url="save_xml.php"/>

XML Data-binding with the PHP XSLT Engine
Overview

Instead of doing the transformations between XML and BXML in the browser, you
can do this on the server. As illustrated below, this means that the data will be
transferred as BXML, and little processing needs to be done in the browser.

Server Browser

Presentation Logic

Data Storage | | Business Logic | | Presentation Logic

Backbase
Presentation Client
BXML Data
B PHP XSLT
Engine
Controls
BXML Data
L | PHP XSLT
Engine

Figure 7 "XML data-binding with the PHP XSLT engine"

When the BXML data arrives in the browser, it can be immediately inserted in the
BXML-Tree.

High performance

The advantage of delivering the data from a server straight to the Backbase
Presentation Client in BXML format is optimum client side performance. The
received data is displayed immediately and the client system's processing and
memory resources are taxed less. This advantage is balanced with the drawback
that more server roundtrips will be needed, because every transformation
requires server activity. The server load will be higher than with client side
transformations. This should be considered if you want to scale up the amount of
simultaneous users.

Communication flexibility and maintenance

A server communicating in BXML can't communicate with other enterprise
services quite as easily as when it is outputting and consuming raw XML. Also,
because part of the presentation logic is done on the server, care must be taken
not to mix it up with the business logic. This helps minimize maintenance costs
later on.

Using the PHP XSLT engine: taking BXML from the server

The BXML code required to load the data into the BXML-Tree is very simple:

<!-- Load the BXML data directly into the BXML-Tree —--—>
<s:task b:action="load"
b:url="load_bxml.php"
b:destination="id('filmdisplay-container')"/>

Using the PHP XSLT engine: sending the changes back in BXML format

Sending the changed data back in BXML format is also very easy. With the send
command you can specify an XPath to the BXML node containing the changed
data:

<!-- Send the changed data to the server in BXML format -->
<s:variable b:name="response"/>
<s:task b:action="send"
b:source="id('delta-container"')"
b:destination="$response"
b:url="save_bxml.php"/>

When using the send command, remember that it wraps a b:backbase node
around the BXML you are sending. This is done to ensure that the sent data has a
single root element, and correctly declared namespaces. Take this into account
when manipulating the data on the server.

If the server sends back some information to confirm how it has handled the
saving action, this information will become available immediately in the response
variable.

Security

Security is always an issue when manipulating data on the server and allowing
user input. Every good RIA performs client side validation of the user input, but
this is mainly a service provided to the user to improve the interaction flow. A
browser client is ultimately controlled by the person running it on his computer,
and potentially everything can be changed or faked. This is why people can cause
accidental or intentional damage if they manage to send malformed input to the
server that does not get validated there. This is why server side validation must
always be performed regardless of whether client side validation is implemented
in your RIA. In the examples and templates in this article no server side
validation is done, but you will have to add it in real-world deployments.

Conclusion

By using client side XSLT transformations to do your XML data-binding, you get a
clean, flexible and easy to maintain architecture, especially when using the BPC
XSLT engine. If you have large datasets or a heavy interface that already burdens
the browser client, it is wise to use server side XSLT transformations. In that
case, performance and responsiveness in the browser will be better.

Also, these approaches can be combined if necessary. In the examples above the
same XSLT engine was used each time for going from XML to BXML and back, but
this is not a necessity.

Basically, with Backbase 3.1 you have a lot of flexibility right out of the box, and
you can always choose an approach that suits your project's needs.

Download complete code

A complete and working code template for each approach and this article in PDF
format can be found in the starter kit directory of your Backbase installation, e.g.
C:\backbase\3_1_1\starterkits\xml_databinding_3_1.

As a pre-requisite, the templates require PHP 5 with XSLT enabled in order to run
completely and allow for saving the changed data.

