
Solving DEBS Grand Challenge
with WSO2 CEP

Srinath Perera, Suhothayan Sriskandarajah,
Mohanadarshan Vivekanandalingam,

Paul Fremantle, Sanjiva Weerawarana
WSO2 Inc.

Outline
• Grand

Challenge
• CEP
• Basic Solution
• Optimizations
• Beyond Grand

Challenge

Photo by John Trainoron Flickr http://www.flickr.com/photos/trainor/2902023575/,
Licensed under CC

Grand Challenge Problem
• Smart Home electricity

data: power and load
• 90 days, 40 houses, 120GB,

2125 sensors
• Event frequency per plug

– load values: once 2s.
– Work values: once 10-50s.

Value sent through when the
difference is more than 1Wh

• Queries
– Load prediction
– Outlier detection

Complex Event Processing

WSO2 CEP Operators
• Filters or transformations (process a single event)

– From MeterReadings[load>10] select .. insert into ..
• Windows + aggregation (track window of events:

time, length)
– from MeterReadings#window.time(30s) select avg(load) ..

• Joins (join two event streams to one)
– From MeterReadings#window.time(30s) as b join Cricket as c on ..

• Patterns (state machine implementation)
– From e1 = MeterReadings-> e2 = MeterReadings[load > e1.load + 10]

within 1h
 select ..

• Event tables (join events against stored data)
– Define table ReadingSummary(v double) using .. db info ..

• WSO2 CEP Performance: (core i5 processor)
– 2-9 million events/sec on same JVM
– 300k events/sec over the network

How we did this?
• Basic version using CEP EQL

Queries
• Does it use machines fully?

(load average > 2X number
of cores)

• Find and fix bottlenecks
(Write extensions if
needed)

• Repeat until the deadline
☺

“About 97% of the time: premature
optimization is the root of all evil"

From http://seedtofeedme.blogspot.in/2013/09/watering-plants.html

Correcting Load Values
• We receive load values roughly once every 2 seconds from each

plug. Sensors send work values only when the difference is more
than 1Wh: this happens roughly every 10 to 50 seconds.

• Correcting function
– Simple linear fitting using last two work values and the

calculate load using that value
– Correct using the fact that work from t2 and t < 1kWh as we

have not seen the work value.

• Micro-benchmark with 100 million events.
– Errors < 16% of the load value 75% of the time.
– Error Percentiles 25%=1.9 50%=6.39 75%=15.41

Q1 Challenges
• CEP engine is single

threaded, hence cannot
use a multi-core machine
fully.

• Avoid calculating each
timeslot (1,5 .. 120m)
separately

• Batch windows. Median
calculations only keep <
129,600 events
– No memory problem
– Median calculated once

for 30 sec, Min-Max Heap
is good enough

Query 1: Single Node Solution

Optimizations: Improve Parallelism
• Do we have enough

parallelism? Does load
average > 2X number of
cores

• Scale, parallelism => data
partitions

• Partition data and assign
to different CEP engines
– Partition by House (let us

go up to 40 threads)
• Not all houses would have

the same workload
– We use CEP engines and

threads independently and
use work stealing

Q2 Challenges
• Sliding window has to

remember each event in
the window to expire
them.
– (1h=3M events and

24h=74M events)
• Calculating mean over

window. Q2 is limited by
the Global median

• Per plug windows and
the global windows will
keep two copies of
events

Query 2: Single Node Solution

Calculating Median
• MinMax Heap
• Buckets – track how

many fall on each
bucket

• Buckets with variable
resolution
– Does not work when

median shift
• Reservoir Sampling
• Re-Median

Micro-benchmark: (1
million values)

– Min-Max Heap 1000ms
– Reservoir Sampling 4ms
– Bucketing <1ms.

Disk backed Window

• Sliding window reads from one end and writes
to the other
– Write in batches
– Pre-fetch data in batches
– Micro-benchmark shows almost no latency addition

More Optimizations

• 1 Sec Slide
– Windows slide by 1second
– Rather than tracking all events in a window, we can

aggregate events in each second
– Then adjust the Buckets accordingly when they are

added or removed.
• Q2 only asks for how many plugs are greater or

less than the global median
– If you know the global median, then you can check

plug median < or > the global median without
calculating plug median.

Q1 Single Node Results

• 16 core, 24GB machine
• Fast (0.4M events/sec) with with 1s

latency
• Stable with different number of houses

Q2 Single Node Results

• 16 core, 24GB machine
• Fast (3M to 1M events/sec) with < 100ms

latency
• Sensitive to houses (number of events),

because that increases the number of events
in windows

Query 1: Distributed Solution

• Embarrassingly parallel by house
• Partition by house

Distributed Communication
• WSO2 CEP uses a thrift based

binary protocol (can handle
variable size messages) that
can do 0.3M events/sec

• Too slow to scale up (only
got 0.18M/sec with thrift)

• We did a custom fixed message size solution (using
java ByteBuffer) that can do up to 0.8M events/
sec

• Then we got close 1M events/sec for Q1
distributed

• Also tried ZeroMQ, which was bit slower.

Query 2: Distributed Solution

Q1 Distributed Results

• Using Amazon c1.xlarge, 1 client to 2 CEP
nodes ratio

• Got close to 1M msg/sec 2X speedup

Beyond Grand Challenge

• Support for automatic parallelization on
partitions with WSO2 CEP

• Adding some custom functions as inbuilt
operators

• Describing distributed deployment via
queries and automating the deployment

• All new features (e.g. disk backed
window, median, scaling) released with
WSO2 CEP coming 2014 Q4.

Scaling CEP

• Think like MapReduce! ask user to define partitions:
parallel and non parallel parts of computations.

• Each node as Storm bolt, communication and HA via
storm

WSO2 CEP
• WSO2 is an opensource

middleware company
– 350+ people
– Customers: Ebay, Boeing, Cisco …
– Funded by Intel Capital, Quest,

Cisco
• WSO2 CEP is available opensource

under apache license from
https://github.com/wso2/siddhi

• We welcome contributions (both
code and ideas)!! and
collaborations

• If you want to build your research
on top of WSO2 CEP, let us know.
(architecture@wso2.org)

https://github.com/wso2/siddhi
https://github.com/wso2/siddhi

Conclusions
• Main Ideas

– Load correction via linear
prediction

– Partitioning data via house
for parallelism and
distribution

– Did an study for median
calculation options

– Disk backed window with
paging

– Fixed message sized protocol
– About 400k single node

throughput and close to 1M
distributed throughput

• Try out WSO2 CEP/ Siddhi:
Open source under Apache
License.

Questions?

