Solving DEBS Grand Challenge
with WS02 CEP

Srinath Perera, Suhothayan Sriskandarajah,
Mohanadarshan Vivekanandalingam,

Paul Fremantle, Sanjiva Weerawarana
WSO2 Inc.

Oftline

Grand
Challenge

CEP
Basic Solution '
Optimizations

Beyond Grand
Challenge

Photo by John Trainoron Flickr http://www.flickr.com/photos/trainor/2902023575/,
icensed under CC

Grand Challenge Problem

Smart Home electricity —F—
data: power and load »

90 days, 40 houses, 120GB, R VAR
2125 sensors
Event frequency per plug
— load values: once 2s.

— Work values: once 10-50s.
Value sent through when the
difference is more than 1Wh

Queries

— Load prediction

— Qutlier detection

——
e — -

Complex Event Processing

s A
‘ -------------- N
CEP Query from MeterReadings[load>5]#window.time(30s)
Author select avg(load) insert into AvgLoad
> : 5
Incomlng > CEP Server Results
Data >
> Queries
_ 1. Filter
e.g.Thrift, HTTP, 2. Windows + {JOIN or Aggregate}
MQTT, SOAP, JMS, FIX 3. Event Patterns

4. Event Tables

WS02 CEP Operators

Filters or transformations (process a single event)
— From MeterReadings[load>10] select .. 1insert into ..

Windows + aggregation (track window of events:
time, length

— from MeterRead1ngs#w1ndow time (30s) select avg(load) ..

Joins (join two event streams to one)

— From MeterReadings#window.time (30s) as b join Cricket as c on ..

Patterns (state machine implementation)

— From el = MeterReadings-> e2 = MeterReadings[load > el.load + 10]

within 1h
select ..
Event tables (join events against stored data)
— Define table ReadingSummary (v double) using .. db info ..

WSO2 CEP Performance: (core i5 processor)
— 2-9 million events/sec on same JVM
— 300k events/sec over the network

How we did this?

Basic version using CEP EQL
Queries

Does it use machines fully?
(load average > 2X number
of cores)

Find and fix bottlenecks
(Write extensions if
needed)

Repeat until the deadline

From http://seedtofeedme.blogspot.in/2013/09/watering-plants.html

Correcting Load Values

We receive load values roughly once every 2 seconds from each
plug. Sensors send work values only when the difference is more

than 1Wh: this happens roughly every 10 to 50 seconds.

1000 . 1 w2 — W1
load(t) = —— t—
0ad(t) = 3e00 ¥ Minl 4, we Tt =) x
Correcting function

— Simple linear fitting using last two work values and the
calculate load using that value

— Correct using the fact that work from t2 and t < 1TkWh as we
have not seen the work value.

Micro-benchmark with 100 million events.
— Errors < 16% of the load value 75% of the time.
— Error Percentiles 25%=1.9 50%=6.39 75%=15.41

)

Q1 Challenges

* CEP engine is single
threaded, hence cannot
use a multl -core machine
fully.

* Avoid calculating each
timeslot (1,5 .. 120m)
separately

. Batch windows. Median

alculations only keep <
129 600 events

— No memory problem

— Median calculated once
for 30 sec, Min-Max Heap
is good enough

Query 1: Single Node Solution

--

Partition Time slice
Avg 1,5 .. oty Predictor J—-—»
120m X |

TimeSlice Window 1

E - S
'L 4| TimeSlice Window k |
: L) Median

TimeSlice Window n

Events

Optimizations: Improve Parallelism

Priority
Do we have enough Worker Queue

parallelism? Does load (Sorted by individual

average > 2X number of Quevesize¢y
cores " . N
Scale, parallelism => data , P
partitions) =)l (o) Leer
Partition data and assign | ————— 0
to different CEP engines (a) (cer) '
— Partition by House (letus | — —t
go up to 40 threads) () (cep N/ @ \‘<
Not all houses would have | [Pa
the same workload \ @
— We use CEP engines and N A /

threads independently and
use work stealing Worker Pool

Q2 Challenges

* Sliding window has to T Rk -
remember each event in iﬁ E
the window to expire N
them. ¥ .

— (1h=3M events and y % ‘
4h=74M events) B N
- Calculating mean over '
window. Q2 is limited by “&%
the Global median TN

* Per plug windows and
the global windows will

keep two copies of
events

Query 2: Single Node Solution

Calculating Median

MinMax Heap

Buckets - track how
many fall on each
bucket

Buckets with variable
resolution

— Does not work when '
median shift Micro-benchmark: (1

: : million values)
ReSGI’VO.lI’ Samplmg — Min-Max Heap 1000ms
Re-Median — Reservoir Sampling 4ms

— Bucketing <1ms.

Disk backed Window
__, A E__.

 Sliding window reads from one end and writes
to the other

— Write in batches
— Pre-fetch data in batches
— Micro-benchmark shows almost no latency addition

More Optimizations

* 1 Sec Slide
— Windows slide by 1second

— Rather than tracking all events in a window, we can
aggregate events in each second

— Then adjust the Buckets accordingly when they are
added or removed.

* Q2 only asks for how many plugs are greater or
less than the global median
— If you know the global median, then you can check

plug median < or > the global median without
calculating plug median.

Q1 Single Node Results

Throughput vs. Number of Houses Response Time vs. Number of Houses
2 : ' 3000 , 1
2 10-90% == 10-90% mm
g 0.8 - Mean -x- _ Té? 2500 F Mean -x- -
g g 2000 |
8 06 =
3 g 1500
g %4r) ' ! 1 & 1000} \ |
g o2r 1 & soof
< 0 0 20 30 40 50 0 0 20 30 40 50
Number of Houses Number of Houses
* 16 core, 24GB machine
» Fast (0.4M events/sec) with with 1s
latency
» Stable with different number of houses

Q2 Single Node Results

. Throughput vs. Number of Houses Response Time vs. Number of Houses

8 8 1 | I 1 L I

£ 2L 10-90% wm | 160 - 10-90% ==

= Mean -~ = 140 | Mean -<-

v Or g 120

g ST = 100 |

g af 1 & st -

g§ 3 yi 8 60} 1)

g 2[: | & ©or |

Q 1 l ' 0 20 |

8 0 - L 1 L -1

« 0 10 20 30 40 50 0 10 20 30 40 50
Number of Houses Number of Houses

* 16 core, 24GB machine

« Fast (3M to 1M events/sec) with < 100ms

latency
°

Sensitive to houses (number of events),
because that increases the number of events
in windows

Query 1: Distributed Solution

ar |

Parition i
By Q1
House

Q1

S

« Embarrassingly parallel by house
* Partition by house

Distributed Communication

WS02 CEP uses a thrift based [~

binary protocol (can handle P P' S é
variable size messages) that © asmseies o 5
can do 0.3M events/sec i) 2
Too slow to scale up (only g;;.‘,;;',: 4 §
got 0.18M/sec with thrift) it gﬁgﬂ,kﬁmcg

RAAS A S AD O o o st o

SRR B Do BB R D DD D B D DD 2N

We did a custom fixed message size solution (using
java ByteBuffer) that can do up to 0.8M events/
sec

Then we got close 1M events/sec for Q1
distributed

Alean ¥frind 7arahA www/hicrhkh wwine R1F clAavarar

Query 2: Distributed Solution

__

Partition {Time Window

1h/24h

Time Window
1h/24h

__

Time Tme Wmdow ;
.| Window | E 1h/24h Median :
+ | 1h/24h L 5
; ‘i [Time Window |
; o (1h/24h |
n
n

Q1 Distributed Results

Throughput vs. Number of Nodes

)

c 2 T T

2 10-90% mm
g Mean -
5 15 F

-

o

o

N ' r

= |

@ 05 -

@ 5 L

7 i

()}

—

8 0 1 L L L L

@ 0 1 2 3 4 5 6

Number of Nodes

» Using Amazon c1.xlarge, 1 client to 2 CEP
nodes ratio

* Got close to 1M msg/sec 2X speedup

Beyond Grand Challenge

Support for automatic parallelization on
partitions with WSO2 CEP

Adding some custom functions as inbuilt
operators

Describing distributed deployment via
queries and automating the deployment

All new features (e.g. disk backed

window, median, scaling) released with
WS02 CEP coming 2014 Q4.

Scaling CEP

Scalable Layer

(n copies of each query) Non-Scalable Layer

(1 copy of query)

{Window + Aggrigation}
{Window + Aggrigation}

N Notification
Receivers
J

{Filters}

{Partition
Logic}

= J
Partition 1 {Any Query} g - —
: & |_von
a \ J
"
Partition N {Any Query}

=

—
|

-~
— ‘

Reorder

« Think like MapReduce! ask user to define partitions:
parallel and non parallel parts of computations.

* Each node as Storm bolt, communication and HA via
storm

WS02 CEP

WSQ?2 is an opensource
middleware company s .. P
— 350+ people ' R .
— Customers: Ebay, Boeing, Cisco ...
— Funded by Intel Capital, Quest,
Cisco

WS02 CEP is available opensourcg
under apache license from ,
https://github.com/wso2/siddhi _

We welcome contributions (both
code and ideas)!! and
collaborations

If you want to build your research
on top of WS02 CEP, let us know.
(architecture@wso2.org)

https://github.com/wso2/siddhi
https://github.com/wso2/siddhi

Conclusions

 Main ldeas

— Load correction via linear
prediction

— Partitioning data via house
for parallelism and
distribution

— Did an study for median
calculation options

— Disk backed window with
paging

— Fixed message sized protocol

— About 400k single node
throughput and close to 1M
distributed throughput

* Try out WSO2 CEP/ Siddhi:
Open source under Apache
License.

Questions?

