
WSO2 API Manager, version 1.8.0, WSO2 Inc.

1

WSO2 API Manager
Documentation

Version 1.8.0

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 2

Table of Contents
1. WSO2 API Manager Documentation . 5

1.1 About API Manager . 5
1.1.1 Introducing the API Manager . 6
1.1.2 About this Release . 6

1.2 Getting Started . 7
1.2.1 Quick Start Guide . 8
1.2.2 Downloading the Product . 31
1.2.3 Installation Prerequisites . 31
1.2.4 Installing the Product . 34

1.2.4.1 Installing on Linux or OS X . 35
1.2.4.2 Installing on Solaris . 36
1.2.4.3 Installing on Windows . 37
1.2.4.4 Installing as a Linux Service . 40
1.2.4.5 Installing as a Windows Service . 42

1.2.5 Building from Source . 47
1.2.6 Running the Product . 50
1.2.7 Upgrading from the Previous Release . 51
1.2.8 Get Involved . 53

1.2.8.1 WSO2 GitHub Repositories . 56
1.3 User Guide . 58

1.3.1 Key Concepts . 59
1.3.2 API Developer Tutorials . 78

1.3.2.1 Create and Publish an API . 80
1.3.2.2 Edit an API from the Source Code . 84
1.3.2.3 Add API Documentation . 85

1.3.2.3.1 Add API Documentation In-line, using a URL or a File . 85
1.3.2.3.2 Add Apache Solr-Based Indexing . 91

1.3.2.4 Manage the API Lifecycle . 93
1.3.2.4.1 Create a new API Version . 93
1.3.2.4.2 Deploy and Test as a Prototype . 96
1.3.2.4.3 Publish the new Version and Deprecate the old . 100

1.3.2.5 Publish to multiple external API stores . 102
1.3.2.6 Engage a new Throttling Policy . 105
1.3.2.7 Block Subscription to an API . 107
1.3.2.8 Enforce Throttling and Resource Access Policies . 112

1.3.3 Application Developer Tutorials . 116
1.3.3.1 Subscribe to an API . 118
1.3.3.2 Invoke an API using the Integrated API Console . 123
1.3.3.3 Invoke an API using the Integrated REST Client . 123
1.3.3.4 Use the Community Features . 130
1.3.3.5 Invoke an API using a SOAP Client . 134

1.3.4 Configuring the API Manager . 138
1.3.4.1 Customizing the API Store . 138
1.3.4.2 Configuring Multiple Tenants . 142

1.3.4.2.1 Multi Tenant Architecture . 142

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 3

1.3.4.2.2 Managing Tenants . 145
1.3.4.2.3 Tenant-Aware Load Balancing using WSO2 ELB . 147

1.3.4.3 Adding Internationalization and Localization . 148
1.3.4.4 Configuring Single Sign-on with SAML2 . 149
1.3.4.5 Changing the Default Transport . 156
1.3.4.6 Configuring Caching . 158
1.3.4.7 Working with Databases . 161

1.3.4.7.1 Setting up the Physical Database . 162
1.3.4.7.2 Managing Datasources . 199

1.3.4.8 Managing Users and Roles . 209
1.3.4.8.1 Adding User Roles . 210
1.3.4.8.2 Adding Users . 212

1.3.4.9 Configuring User Stores . 215
1.3.4.9.1 Realm Configuration . 216
1.3.4.9.2 Changing the RDBMS . 217
1.3.4.9.3 Configuring Primary User Stores . 218
1.3.4.9.4 Configuring Secondary User Stores . 234

1.3.4.10 Directing the Root Context to the API Store . 236
1.3.4.11 Adding Links to Navigate Between the Store and Publisher . 236
1.3.4.12 Maintaining Separate Production and Sandbox Gateways . 237
1.3.4.13 Configuring Transports . 240

1.3.5 Extending the API Manager . 240
1.3.5.1 Writing Custom Handlers . 241
1.3.5.2 Integrating with WSO2 Governance Registry . 245
1.3.5.3 Adding Mediation Extensions . 246
1.3.5.4 Adding Workflow Extensions . 248

1.3.5.4.1 Adding an Application Creation Workflow . 248
1.3.5.4.2 Adding an Application Registration Workflow . 251
1.3.5.4.3 Adding an API Subscription Workflow . 254
1.3.5.4.4 Adding a User Signup Workflow . 257
1.3.5.4.5 Invoking the API Manager from the BPEL Engine . 260
1.3.5.4.6 Customizing a Workflow Extension . 261
1.3.5.4.7 Configuring Workflows for Tenants . 265
1.3.5.4.8 Configuring Workflows in a Cluster . 272
1.3.5.4.9 Changing the Default User Role in Workflows . 275

1.3.5.5 Adding new Throttling Tiers . 275
1.3.5.6 Adding a Reverse Proxy Server . 277
1.3.5.7 Adding a new API Store Theme . 277
1.3.5.8 Transforming API Message Payload . 281

1.3.6 Working with Security . 289
1.3.6.1 Passing Enduser Attributes to the Backend Using JWT . 290
1.3.6.2 Encrypting Passwords . 294
1.3.6.3 Maintaining Logins and passwords . 297
1.3.6.4 Saving Access Tokens in Separate Tables . 298
1.3.6.5 Configuring WSO2 Identity Server as the Key Manager . 300
1.3.6.6 Configuring Transport Level Security . 300
1.3.6.7 Enabling the Java Security Manager . 303

1.3.7 Working with Statistics . 306

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 4

1.3.7.1 Publishing API Runtime Statistics . 306
1.3.7.2 Integrating with Google Analytics . 310
1.3.7.3 Viewing API Statistics . 312

1.4 Samples . 318
1.4.1 Setting up the Samples . 319
1.4.2 Deploying and Testing YouTube API . 320
1.4.3 Generating Billing Data . 322
1.4.4 Invoking APIs using a Web App Deployed in WSO2 AS . 325
1.4.5 Deploying and Testing a Wikipedia API . 327

1.5 Published APIs . 328
1.5.1 Publisher APIs . 329
1.5.2 Store APIs . 334
1.5.3 Token API . 339
1.5.4 WSO2 Admin Services . 350

1.6 Admin Guide . 354
1.6.1 Migrating the API Manager . 355
1.6.2 Deploying and Clustering the API Manager . 356
1.6.3 Tuning Performance . 356

1.7 Reference Guide . 361
1.7.1 Product Profiles . 362
1.7.2 Default Product Ports . 363
1.7.3 Changing the Default Ports with Offset . 365
1.7.4 Error Handling . 367
1.7.5 WSO2 Patch Application Process . 368

1.8 FAQ . 370
1.9 Getting Support . 377
1.10 Site Map . 378

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 5

WSO2 API Manager Documentation
Welcome to WSO2 API Manager Documentation! (APIM) is a fully open source, completeWSO2 API Manager
solution for creating, publishing and managing all aspects of an API and its lifecycle, and is ready for massively
scalable deployments.

Use the descriptions below to find the section you need, and then browse the topics in the left navigation panel. You
can also use the box on the left to find a term in this documentation, or use the search box in the topSearch
right-hand corner to search in all WSO2 product documentation.

To download a PDF of this document or a selected part of it, click (generate only one PDF at a time). Use thehere
same link to export to HTML or XML.

 About API Manager

Introduces WSO2 API
Manager, including the
business cases it solves, its
features, architecture and how
to get help.

 Getting Started

Instructions to download,
install, run and get started
quickly with WSO2 API
Manager.

 User Guide

Introduces the features and
functionality of the API
Manager, solution
development, testing,
debugging and deployment.

 Admin Guide

Introduces product deployment
and other system
administration tasks.

 Samples

Real-life business use cases
of the product.

 Published APIs

APIs to be used in your
applications.

http://wso2.com/products/api-manager
https://docs.wso2.org/spaces/flyingpdf/flyingpdf.action?key=AM180

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 6

About API Manager
The topics in this section introduce WSO2 API Manager, including the business cases it solves, its features, and
architecture.

Introducing the API Manager
About this Release

Introducing the API Manager

As an organization implements SOA, it can benefit by exposing core processes, data and services as APIs to the
public. External parties can mash up these APIs in innovative ways to build new solutions. A business can increase
its growth potential and partnership advancements by facilitating developments that are powered by its APIs in a
simple, decentralized manner.

However, leveraging APIs in a collaborative way introduces new challenges in exercising control, establishing trust,
security and regulation. As a result, proper API management is crucial.

WSO2 API Manager overcomes these challenges with a set of features for API creation, publication, lifecycle
management, versioning, monetization, governance, security etc. using proven WSO2 products such as WSO2

, , and . In addition, as it is also poweredEnterprise Service Bus WSO2 Identity Server WSO2 Governance Registry
by the and is immediately ready for massively scalable deployments.WSO2 Business Activity Monitor

WSO2 API Manager is fully open source and is released under one of theApache Software Version 2.0,License
most business-friendly licenses available today. It provides Web interfaces for development teams to deploy and
monitor APIs, and for consumers to subscribe to, discover and consume APIs through a user-friendly storefront. The
API Manager also provides complete API governance and shares the same metadata repository as WSO2
Governance Registry. If your setup requires to govern more than APIs, we recommend you to use WSO2 API
manager for API governance and WSO2 Governance Registry for the other artefacts.

The WSO2 API Manager is an on-going project with continuous improvements and enhancements introduced with
each new release to address new business challenges and customer expectations. WSO2 invites users, developers
and enthusiasts to or get the assistance of our development teams at many different levels through get involved
online forums, mailing lists and support options.

About this Release

What is new in this release

The is the successor of version . WSO2 API Manager version 1.8.0 1.7.0 It contains the following new features and
enhancements:

Upgraded Swagger. You now have the facility to edit the Swagger definition of an API in the API design time.
Improvements added to the ability to set up a reverse proxy server to pass server requests. See Adding a

.Reverse Proxy Server
Auto populated access token in the Swagger API console. See .Invoke an API using Swagger
Performance improvements in the API Store by retrieving subscription details only for the selected
application.
Self sign-up option available for tenant stores. The super admin no longer has to manually add a tenant user
to that store using the admin console.
Ability to plug in a custom JWT generator with your own logic to generate claims. See Passing Enduser

.Attributes to the Backend Using JWT
Ability to enable self sign up support for tenant API Stores. See .Enabling Self Sign-up

Compatible WSO2 product versions

The following products were tested for compatibility with WSO2 APIM 1.8.0:

WSO2 Governance Registry 4.6.0
WSO2 Identity Server 5.0.0
WSO2 Business Activity Monitor 2.5.0

WSO2 APIM 1.8.0 is based on WSO2 Carbon 4.2.0 and is expected to be compatible with any other WSO2 product

http://wso2.com/products/enterprise-service-bus
http://wso2.com/products/enterprise-service-bus
http://wso2.com/products/identity-server
http://wso2.com/products/governance-registry
http://wso2.com/products/business-activity-monitor
http://www.apache.org/licenses/LICENSE-2.0
https://docs.wso2.com/display/AM180/Invoke+an+API+using+Swagger
https://docs.wso2.com/display/AM180/Customizing+the+API+Store#CustomizingtheAPIStore-Enablingselfsign-up

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 7

that is based on the same Carbon version. If you get any compatibility issues, please . Forcontact team WSO2
information on the third-party software required with APIM 1.8.0, see .Installation Prerequisites

Deprecated features

From the 1.8.0, the in the API Store is deprecated and it will be removed fromintegrated WSO2 REST client
the next release onwards. We encourage you to use the to invoke the APIs.API console

Fixed issues

For a list of fixed issues in this release, see .WSO2 API Manager 1.8.0- Fixed Issues

Known issues

For a list of known issues, see .WSO2 API Manager- Known Issues

https://wso2.org/jira/issues/?filter=12092
https://wso2.org/jira/issues/?filter=10810

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 8

Getting Started
The following topics show how to download, install, run and get started quickly with WSO2 API Manager.

Quick Start Guide
Downloading the Product
Installation Prerequisites
Installing the Product
Building from Source
Running the Product
Upgrading from the Previous Release
Get Involved

Quick Start Guide

WSO2 API Manager is a complete solution for publishing APIs, creating and managing a developer community and
for routing API traffic in a scalable manner. It leverages the integration, security and governance components from
the WSO2 Enterprise Service Bus, WSO2 Identity Server, and WSO2 Governance Registry. In addition, as it is
powered by the WSO2 Business Activity Monitor (BAM), the WSO2 API Manager is ready for massively scalable
deployments immediately.

This guide walks you thorough the basic usecases of the API Manager:
Introduction to basic concepts
Starting the API Manager
Creating users and roles
Creating an API
Adding API documentation
Adding interactive documentation
Versioning the API
Publishing the API
Subscribing to the API
Invoking the API
Monitoring APIs and viewing statistics

Introduction to basic concepts

Let's take a look at the basic concepts that you need to know before using the API Manager.

[] [] [] [] [] [] [Components Users and roles API life cycle Applications Throttling tiers API keys Application
] [] []access tokens Application user access token API resources

Components

The API Manager comprises of the following components:

API Gateway: Secures, protects, manages, and scales API calls. It is a simple API proxy that intercepts API
requests and applies policies such as throttling and security checks. It is also instrumental in gathering API
usage statistics. The Web interface can be accessed via .https://<Server Host>:9443/carbon
Key Manager: Handles all security and key-related operations. API gateway connects with the Key Manager
to check the validity of OAuth tokens when the APIs are invoked. The Key Manager also provides a token API
to generate OAuth tokens that can be accessed via the Gateway.
API Publisher: Enables API providers to publish APIs, share documentation, provision API keys, and gather
feedback on features, quality and usage. You access the Web interface via https://<Server
Host>:9443/publisher.
API Store: Enables API consumers to self register, discover and subscribe to APIs, evaluate them and
interact with API publishers. You access the Web interface via https://<Server Host>:9443/store.
Additionally, statistics are provided by the monitoring component, which integrates with WSO2 BAM.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 9

Users and roles

The API manager offers three distinct community roles that are applicable to most enterprises:

Creator: A creator is a person in a technical role who understands the technical aspects of the API
(interfaces, documentation, versions, how it is exposed by the Gateway etc.) and uses the API publisher to
provision APIs into the API Store. The creator uses the API Store to consult ratings and feedback provided by
API users. Creators can add APIs to the store but cannot manage their life cycle (i.e., make them visible to
the outside world).
Publisher: A publisher manages a set of APIs across the enterprise or business unit and controls the API life
cycle and monetization aspects. The publisher is also interested in usage patterns for APIs and has access to
all API statistics.
Consumer: A consumer uses the API store to discover APIs, see the documentation and forums and
rate/comment on the APIs. S/he subscribes to APIs to obtain API keys.

API life cycle

An API is the published interface, while the service is the implementation running in the backend. APIs have their
own life cycles that are independent of the backend services they rely on. This life cycle is exposed in the API
Publisher Web interface and is managed by the publisher role.

The following stages are available in the default API life cycle:

CREATED: API metadata is added to the API Store, but it is not visible to subscribers yet, nor deployed to
the API Gateway
PROTOTYPED: The API is deployed and published in the API Store as a prototype. A prototyped API is
usually a mock implementation made public in order to get feedback about its usability. Users can try out a
prototyped API without subscribing to it.
PUBLISHED: The API is visible in the API Store and available for subscription.
DEPRECATED: The API is still deployed in the API Gateway (i.e., available at runtime to existing users) but
not visible to subscribers. You can deprecate an API automatically when a new version of it is published.
RETIRED: The API is unpublished from the API Gateway and deleted from the Store.
BLOCKED: Access to the API is temporarily blocked. Runtime calls are blocked and the API is not shown in

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 10

the API Store anymore.

You can manage the API and service life cycles in the same governance registry/repository and automatically link
them. This feature is available in WSO2 Governance Registry (version 4.5 onwards).

Applications

An application is primarily used to decouple the consumer from the APIs. It allows you to do the following:

Generate and use a single key for multiple APIs
Subscribe multiple times to a single API with different SLA levels

You create an application to subscribe to an API. The API Manager comes with a default application and you can
also create as many applications as you like.

Throttling tiers

Throttling tiers are associated to an API at subscription time. They define the throttling limits enforced by the API
Gateway. E.g., 10 TPS (transactions per second). You define the list of tiers that are available for a given API at the
publisher level. The API Manager comes with three predefined tiers () and a special tierGold/Silver/Bronze
called , which you can disable by editing the element of Unlimited <TierManagement> <APIM_HOME>/reposit

 file. ory/conf/api-manager.xml

API keys

The API Manager supports two scenarios for authentication:

An access token is used to identify and authenticate a whole application
An access token is used to identify the final user of an application (for example, the final user of a mobile
application deployed on many different devices)

Application access tokens

Application access tokens are generated by the API consumer and must be passed in the incoming API requests.
The API Manager uses the OAuth2 standard to provide key management. An API key is a simple string that you
pass with an HTTP header (e.g., " ") and it worksAuthorization: Bearer NtBQkXoKElu0H1a1fQ0DWfo6IX4a
equally well for SOAP and REST calls.

Application access tokens are generated at the application level and valid for all APIs that you associate to the
application. These tokens have a fixed expiration time, which is set to 60 minutes by default. You can change this to
a longer time, even for several weeks. Consumers can regenerate the access token directly from the API Store. To
change the default expiration time, you open the file and<APIM_HOME>/repository/conf/identity.xml
change the value of the element . If you set a negative<ApplicationAccessTokenDefaultValidityPeriod>
value, the token never expires.

Application user access token

You generate access tokens on demand using the Token API. In case a token expires, you use the Token API to
refresh it.

Application user access tokens have a fixed expiration time, which is 60 minutes by default. You can update it to a
longer time by editing the element in the <ApplicationAccessTokenDefaultValidityPeriod> <APIM_HOME

 file.>/repository/conf/identity.xml

The token API takes the following parameters to generate the access token:

Grant Type
Username
Password
Scope

To generate a new access token, you issue a Token API call with the above parameters where grant_type=pass

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 11

1.
2.
3.
4.

5.

1.

2.

3.

. The Token API then returns two tokens- an access token and a refresh token. The access token is saved in aword
session on the client side (the application itself does not need to manage users and passwords). On the API
Gateway side, the access token is validated for each API call. When the token expires, you refresh the token by
issuing a token API call with the above parameters where and passing the refreshgrant_type=refresh_token
token as a parameter.

API resources

An API is made up of one or more resources. Each resource handles a particular type of request and is analogous
to a method (function) in a larger API. API resources accept the following optional attributes:

verbs: Specifies the HTTP verbs a particular resource accepts. Allowed values are GET, POST, PUT,
OPTIONS, DELETE. You can give multiple values at once.
uri-template: A URI template as defined in (e.g., http://tools.ietf.org/html/rfc6570
/phoneverify/<phoneNumber>)
url-mapping: A URL mapping defined as per the servlet specification (extension mappings, path mappings
and exact mappings)
Throttling tiers: Limits the number of hits to a resource during a given period of time.
Auth-Type: Specifies the Resource level authentication along the HTTP verbs. Auth-type can be None,
Application or Application User.

None : Can access the particular API resource without any access tokens
Application: An application access token is required to access the API resource
Application User: A user access token is required to access the API resource

Starting the API Manager

Download WSO2 API Manager from .http://wso2.com/api-management/try-it
Install version 1.6.24 or later or 1.7.*.Oracle Java SE Development Kit (JDK)
Set the environment variable.JAVA_HOME
Using the command line, go to and execute (for Windows) or <APIM_HOME>/bin wso2server.bat wso2s

 (for Linux).erver.sh
Wait until you see the message "WSO2 Carbon started in 'n' seconds" where 'n' can be any number of
seconds.

The server started successfully. To stop the API Manager, simply hit Ctrl-C in the command window.

Creating users and roles

In we introduced a set of users that are commonly found in many enterprises. Let's see how you,Users and roles
can log in to the Management Console as an admin and create these roles.

Log in to the Management Console (of the API Manager using)https://<hostname>:9443/carbon
admin/admin credentials.
Select the menu under the menu.Users and Roles Configure

Click the link and then click .Roles Add New Role

http://tools.ietf.org/html/rfc6570
http://wso2.com/api-management/try-it
http://java.sun.com/javase/downloads/index.jsp
https://hostname:9443/carbon

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 12

3.

4.

5.

Give the role name as and click .creator Next

A list of permissions opens. Select the following and click .Finish
Configure > Governance and all underlying permissions.
Login
Manage > API > Create
Manage > Resources > Govern and all underlying permissions

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 13

5.

6.

7.

8.

Similarly, create the role with the following permissions.publisher
Login
Manage > API > Publish

Note that the API Manager comes with the role available by default. It has the followingsubscriber
permissions:

Login
Manage > API > Subscribe

Note that you have the following roles added:

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 14

8.

9.

10.

11.

Let's create users for each of the roles.
Click the menu under the menu again.Users and Roles Configure

Click the link and then click Users Add New User.

Give the username/password and click . For example, lets create a new user by the name Next apipublish
.er

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 15

11.

12.

13.

1.
2.

Select the role you want to assign to the user (e.g.,) and . Given below is a list ofpublisher Finish
usernames and the ro les we assign to them in th is guide.

Similarly, create a new user by the name and assign the creator role.apicreator

Creating an API

An API creator uses the API Publisher to create and publish APIs to the API Store. Let's create an API and add
interactive Swagger-based documentation to it.

Open the API Publisher (and log in as .)https://<hostname>:9443/publisher apicreator
Click the link and provide the information given in the table below. Click once you are done.Add Implement

Field Sample value

Name PhoneVerification

Context /phoneverify

Version 1.0.0

Visibility Public

https://hostname:9443/carbon

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 16

2.

3.

Resources URL pattern CheckPhoneNumber

 Request types GET, POST, OPTIONS

Give the following information in the tab that opens and click once you are done.Implement Manage

Field Sample value

Implementation
method

Backend

Endpoint type HTTP

Production
endpoint

In this guide, we work with a service exposed by the Cdyne services provider. We use
their phone validation service, which has SOAP and REST interfaces. Endpoint is http://
ws.cdyne.com/phoneverify/phoneverify.asmx.

This sample service has two operations as and CheckPhoneNumber CheckPhoneNumb

. Let's use here.ers CheckPhoneNumber

Endpoint
security
scheme

Non Secured (If secured, user is asked for credentials of the backend service)

http://ws.cdyne.com/phoneverify/phoneverify.asmx
http://ws.cdyne.com/phoneverify/phoneverify.asmx

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 17

3.

4. Click to go to the tab and provide the following information. Manage Manage

Field Value Description

Tier
Availability

Bronze/Gold/Silver/Unlimited The API can be available at different level of service; you can
select multiple entries from the list. At subscription time, the
consumer chooses which tier they are interested in.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 18

4.

5.

1.
2.

3.

Once you are done, click . Save

Adding API documentation

After saving the API, click on its thumbnail in the API Publisher to open it.
Click on the API's tab and click the link.Docs Add New Document

The document options appear. Note that you can create documentation inline, via a URL or as a file. For
inline documentation, you can edit the content directly from the API publisher interface. You get several
documents types:

How To

: For resources that have methods requiring authentication (i.e., Auth Type is not NONE), you set Tip
 None as the Auth type of OPTIONS to support CORS (Cross Origin Resource Sharing) between the
API Store and Gateway.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 19

3.

4.

5.

6.

Samples and SDK
Public forum / Support forum (external link only)
API message formats
Other

Create a 'How To,' using in-line content as the source. The document name is and SimpleClient click the
A d d D o c u m e n t b u t t o n .

Once the document is added, click link associated with it to opens an embedded editor.Edit Content

E n t e r y o u r A P I ' s d o c u m e n t a t i o n .

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 20

6.

1.

2.

3.

Adding interactive documentation

The API Manager provides facility to add interactive documentation support through the integration of Swagger.
Swagger is a specification and a complete framework implementation for describing, producing, consuming, and
visualizing RESTful Web services. You describe APIs in simple, static JSON representation through the Swagger
API definition in the API Store. When an API is created, the JSON representation of that API is automatically
generated and saved in the registry. This definition reflects the information you provide at the API creation stage.
You can customize it as follows:

Open the API Publisher (and log in as if you)https://<hostname>:9443/publisher apicreator
haven't done so already.
Click the API to open it and then click the link right next to the API's name. ThisPhoneVerification Edit
opens the API in its edit mode.

Click the button.Edit Swagger Definition

https://hostname:9443/carbon

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 21

3.

4.

5.

1.
2.

When the Swagger definition of the API opens, navigate to the GET method, add the following parameters to
it and remove the existing body parameter. The code is given below:

parameters:
 - description: Give the phone number to be validated
 name: PhoneNumber
 type: string
 required: "True"
 paramType: query
 - description: "Give the license key. If you don't have any, enter 0"
 name: LicenseKey
 type: string
 required: "True"
 paramType: query

Click once the changes are done. In a later section, we will see how these parameters appear toSave
subscribers in the API Console of the API Store.

Versioning the API

Let's create a new version of this API.

Log in to the API Publisher as if you are not logged in already.apicreator
Click on the API and then the button that appears in its tab. PhoneVerification Copy Overview

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 22

2.

3.

1.
2.

3.

Give a new vers ion number (e.g. , 2.0.0) and c l ick .Done

A new version of the API is created. It is a duplication of the original API, including its documentation. The PhoneVe
 API is now ready to be published. This is typically done by a user in the role.rification 2.0.0 publisher

Publishing the API

Log in to the API Publisher as that you created earlier in this guide.apipublisher
Click on the API version 2.0.0. Note that you now see a tab by the name inPhoneVerification Lifecycle
the API Publisher.
Go to the tab and select the state as from the drop-down list. Lifecycle PUBLISHED

Tip: The option means that you make this version the default in a group of different Default Version
versions of the API. A default API can be invoked without specifying the version number in the URL.
For example, if you mark http://host:port/youtube/ 2.0 as the default version when the API has 1.0 and
3.0 versions as well, requests made to get automatically routed to versionhttp://host:port/youtube/
2.0.

If you mark any version of an API as the default, you get two API URLs in its page in theOverview
API Store. One URL is with the version and the other is without. You can invoke a default version
using both URLs.

If you mark an unpublished API as the default, the previous default, published API will still be used as
the default until the new default API is published (or prototyped).

http://hostport/

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 23

3.

4.

1.
2.

The
three checkboxes mean the following:

Propagate Changes to API Gateway: Used to define an API proxy in the API Gateway runtime
component, allowing the API to be exposed to the consumers via the API Gateway. If this option is left
unselected, the API metadata will not change and you will have to manually configure the API
Gateway according to the information published in the API Store.
Deprecate Old Versions: If selected, any prior versions of the API that are published will be set to the
DEPRECATED state automatically.
Require Re-Subscription: Invalidates current user subscriptions, forcing users to subscribe again.

Go to the API Store (using your browser and note that the)https://<hostname>:9443/store PhoneVe
 is visible under the menu.rification 2.0.0 APIs

You have now published an API to the API Store. It is ready to be used by subscribers.

Subscribing to the API

You subscribe to APIs using the API Store.

Open the API Store (.)https://<hostname>:9443/store
Sel f s ign up to the API S to re us ing the l i nk .Sign-up

https://hostname:9443/carbon
https://hostname:9443/carbon

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 24

2.

3.

4.

5.
6.

After signing up, log in to the API Store and click the API that you published earlier (PhoneVerification
).2.0.0

Note that you can now see the subscription options on the right hand side of the UI. Select the default applica
 and tier, and click .tion Bronze Subscribe

Once the subscription is successful, choose to go to the page.My Subscriptions
In the page, click the buttons to generate access tokens that you need toMy Subscriptions Generate
i n v o k e t h e A P I .

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 25

6.

1.

You are now successfully subscribed to an API. Let's invoke it.

Invoking the API

Let's invoke the API using the integrated Swagger-based API Console.

Click the menu in the API Store and then click on the API that you want to invoke. When the API opens,APIs
g o t o i t s t a b .A P I C o n s o l e

Tip: You can set a token validity period in the given text box. By default, it is set to one hour. If you
set a minus value (e.g., -1), the token will never expire.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 26

1.

2.

3.

Expand the GET method of the resource . Note the parameters that you added in CheckPhoneNumber this
 now appearing with their descript ions in the console.step

Give sample values to the and and click to invoke the API. PhoneNumber LicenseKey Try it Out

Tip: If you cannot invoke the API's HTTPS endpoint (causes the SSLPeerUnverified exception),
it could be because the security certificate issued by the server is not trusted by your browser. To
resolve this issue, access the HTTPS endpoint directly from your browser and accept the security
certificate.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 27

3.

4. Note the response for the API invocation. As we used a valid phone number in this example, the response is
v a l i d .

You have invoked an API using the API Console.

Monitoring APIs and viewing statistics

Both the API publisher and store provide several statistical dashboards. Some of them are as follows:

Number of subscriptions per API (across all versions of an API)
Number of API calls being made per API (across all versions of an API)

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 28

1.

2.

The subscribers who did the last 10 API invocations and the APIs/versions they invoked
Usage of an API and from which resource path (per API version)
Number of times a user has accessed an API
The number of API invocations that failed to reach the endpoint per API per user
API usage per application
Users who make the most API invocations, per application
API usage from resource path, per application

Steps below explain how to configure with the API Manager. Let's do the configurations first.WSO2 BAM 2.4.1

Do the following changes in file:<APIM_HOME>/repository/conf/api-manager.xml
Enable API usage tracking by setting the element to true<APIUsageTracking>
Set the Thrift port to 7614
Uncomments and set the data source used for getting BAM statistics in element.<DataSourceName>
Set <BAMServerURL> to tcp://<BAM host IP>:7614/ where <BAM host IP> is the machine IP address.
Do not use localhost unless you're in a disconnected mode.

<APIUsageTracking>
 <!-- Enable/Disable the API usage tracker. -->
 <Enabled>true</Enabled>

<PublisherClass>org.wso2.carbon.apimgt.usage.publisher.APIMgtUsageDataBridgeDataP
ublisher</PublisherClass>
 <ThriftPort>7614</ThriftPort>
 <BAMServerURL>tcp://<BAM host IP>:7614/</BAMServerURL>
 <BAMUsername>admin</BAMUsername>
 <BAMPassword>admin</BAMPassword>
 <!-- JNDI name of the data source to be used for getting BAM statistics. This
data source should
 be defined in the master-datasources.xml file in conf/datasources
directory. -->
 <DataSourceName>jdbc/WSO2AM_STATS_DB</DataSourceName>
</APIUsageTracking>

Specify the datasource definition in <APIM_HOME>/repository/conf/datasources/master-datasou
 file as follows.rces.xml

If you are on , note the following:Windows

If you install JDK in Program Files in the Windows environment, avoid the space by using
PROGRA~1 when specifying environment variables for JAVA_HOME and PATH. Else, the server
throws an exception.

BAM analytics framework depends on ApacheInstall Cygwin (.) WSO2 http://www.cygwin.com
Hadoop, which requires Cygwin in order to run on Windows. Install at least the basic net
(OpenSSH,tcp_wrapper packages) and security related Cygwin packages. After Cygwin installation,
update the PATH variable with and restart BAM.C:/cygwin/bin

http://wso2.com/products/business-activity-monitor/
http://www.cygwin.com/

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 29

2.

3.
4.

5.

6.

7.

<datasource>
 <name>WSO2AM_STATS_DB</name>
 <description>The datasource used for getting statistics to API
Manager</description>
 <jndiConfig>
 <name>jdbc/WSO2AM_STATS_DB</name>
 </jndiConfig>
 <definition type="RDBMS">
 <configuration>
 <!-- JDBC URL to query the database -->

<url>jdbc:h2:<BAM_HOME>/repository/database/APIMGTSTATS_DB;AUTO_SERVER=TRUE</url>
 <username>wso2carbon</username>
 <password>wso2carbon</password>
 <driverClassName>org.h2.Driver</driverClassName>
 <maxActive>50</maxActive>
 <maxWait>60000</maxWait>
 <testOnBorrow>true</testOnBorrow>
 <validationQuery>SELECT 1</validationQuery>
 <validationInterval>30000</validationInterval>
 </configuration>
 </definition>
</datasource>

Next, prepare BAM to collect and analyze statistics from API manager.
Download WSO2 BAM 2.4.1 or later from location: .http://wso2.com/products/business-activity-monitor
Change port offset of BAM to by editing the file file3 <BAM_HOME>/repository/conf/carbon.xml
(search for the offset node).

<Offset>3</Offset>

This increments all ports used by the server by 3, which means the BAM server will run on port 9446. Port
offset is used to increment the default port by a given value. It avoids possible port conflicts when multiple
WSO2 products run in same host.
Do the following changes in fil<BAM_HOME>/repository/conf/datasources/bam_datasources.xml
e:

Copy/paste definition from API Manager's file. YouWSO2_AMSTATS_DB master-datasources.xml
edited it in step 2.
Replace the port of in URL (WSO2BAM_CASSANDRA_DATASOURCE jdbc:cassandra://localhost

). Note that localhost is used here; not the machine IP.: /EVENT_KS9163

Copy the file to directory <APIM_HOME>/statistics/API_Manager_Analytics.tbox <BAM_HOME>/r
. epository/deployment/server/bam-toolbox

If this folder is not in the BAM installation directory by default, create it. The toolbox describes the information
collected, how to analyze the data, as well as the location of the database where the analyzed data is stored.
Open conf/etc/hector-config.xml file and change the port to . You<BAM_HOME>/repository/ localhost:9163
must add the other nodes too when configuring a clustered setup.

Do not edit the , which is using the offsetWSO2BAM_UTIL_DATASOURCE
Cassandra is bound by default on localhost, unless you change the
data-bridge/data-bridge-config.xml file

http://wso2.com/products/business-activity-monitor
http://localhost:9163

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 30

7.

8.

9.

10.

11.

12.

<Nodes>localhost:9163</Nodes>

Restart the BAM server by running .<BAM_HOME>/bin/wso2server.[sh/bat]

Let's see the statistics now.
Generate some traffic via the API Gateway (invoke the Cdyne API we use in this guide) and wait a few
seconds.
Connect to the API Publisher as a creator or publisher.
In the publisher role, you are able to see all stats and as creator, you see stats specific to the APIs you
create.
Click the menu. We show the sample statistics here, but you will see graphs specific to yourStatistics
instance.

Similarly, API subscribers can also see statistics though the API Store. Click the menu as follows:Statistics

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 31

12.

1.
2.
3.

This concludes the API Manager quick start. You have set up the API Manager and gone through the basic
usecases of the product. For more advanced usecases, please see the and the of the APIUser Guide Admin Guide
Manager documentation.

Downloading the Product

Follow the instructions below to download the product. You can also download and .build the source code

In your Web browser, go to .http://wso2.com/products/api-manager
If you are a new user downloading WSO2 products for the first time, register and log in.
Once you are logged in, click the button in the upper right corner of the page.Binary

The binary distribution contains the binary files for both MS Windows and Linux-based operating systems,
compressed into a single ZIP file. This distribution is recommended for many users.

After downloading the binary distribution, go to for instructions on installing the necessaryInstallation Prerequisites
supporting applications.

Installation Prerequisites

Prior to installing any WSO2 Carbon based product, it is necessary to have the appropriate prerequisite software
installed on your system. Verify that the computer has the supported operating system and development platforms
before starting the installation.

System requirements

Memory ~ 2 GB minimum
~ 512 MB heap size. This is generally sufficient to process typical SOAP messages but the require
ments vary with larger message sizes and the number of messages processed concurrently.

http://wso2.com/products/api-manager

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 32

1.

2.

Disk ~ 500 MB for a fresh installation pack, excluding space allocated for log files and databases.

Environment compatibility

All WSO2 Carbon-based products are Java applications that can be run on any platform that is Oracle JDK
. 1.6.*/1.7.* compliant. JDK 1.8 is not supported yet Also, we .do not recommend or support OpenJDK

All WSO2 Carbon-based products are generally compatible with most common DBMSs. The embedded H2
database is suitable for development, testing, and some production environments. For most enterprise
production environments, however, we recommend you use an industry-standard RDBMS such as Oracle,
PostgreSQL, MySQL, MS SQL, etc. For more information, see . Additionally, we doWorking with Databases
not recommend the H2 database as a user store.
It is in a production environment due to scalability issues. Instead,not recommended to use Apache DS
use an LDAP like OpenLDAP for user management.
For environments that WSO2 products are tested with, see .Compatibility of WSO2 Products
If you have difficulty in setting up any WSO2 product in a specific platform or database, .please contact us

Required applications

The following applications are required for running the API Manager and its samples or for building from the source
code. Mandatory installs are marked with *.

Application Purpose Version Download Links

Oracle Java
S E
Development
Kit (JDK)*

Required to,

To launch
the product
as each
product is a
Java
application.
To build the
product from
the source

 (distribution
both JDK
and Apache
Maven are
required).
To run
Apache Ant.

1.6.27 or later / 1.7.*

If you are using , you might need to replace the JavaJDK 1.6
Cryptography Extension (JCE) policy files in your JDK with
the Java Cryptography Extension (JCE) Unlimited Strength

 files. This will avoid "illegal key size" errorsJurisdiction Policy
when you try to invoke a secured Web service.
To build the product from the source distribution, you must
use JDK 1.6 instead of JDK 1.7.
Oracle and IBM JRE 1.7 are also supported when running
(not building) WSO2 products.
If you are using , install theJDK 1.7 on Mac OS or Solaris
snappy-java library using the following steps:

Download the and extract it to asnappy-java JAR
preferred location. This folder will be referred to as <SNAP

.PY_HOME>
Copy the appropriate snappy-java library file i386.jnil

 (32bit) or (64bit), which is in the ib x86_64.jnilib <SN
direAPPY_HOME>/org/xerial/snappy/native/Mac/

ctory, to the directory.<APIM_HOME>
For more information on installing snappy-java library, see Sn

.appy-java fails on Mac OS JDK 1.7
We .do not recommend OpenJDK

http://java.sun.com/javase/downloads/index.jsp

https://docs.wso2.com/display/compatibility/Compatibility+of+WSO2+Products
http://www.oracle.com/technetwork/java/javase/downloads/jce-6-download-429243.html
http://www.oracle.com/technetwork/java/javase/downloads/jce-6-download-429243.html
https://docs.wso2.com/download/attachments/41747096/snappy-java-1.0.4.1.jar?version=1&modificationDate=1431921177000&api=v2
https://github.com/ptaoussanis/carmine/issues/5
https://github.com/ptaoussanis/carmine/issues/5
http://java.sun.com/javase/downloads/index.jsp

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 33

Apache
ActiveMQ J
MS Provider

To enable
the product's
JMS

 antransport
d try out
JMS
samples.
The
ActiveMQ
client
libraries
must be
installed in
the product's
classpath
before you
can enable
the JMS
transport.

5 . 5 . 0 o r l a t e r

If you use any other JMS provider (e.g., Apache Qpid), install any
necessary libraries and/or components.

http://activemq.apache.org

Apache Ant To compile
and run the
product

.samples

1.7.0 or later http://ant.apache.org

SVN Client To check out
the code to b
uild the
product from
the source

.distribution
If you are
installing by
downloading
and
extracting
the binary
distribution
instead of
building from
the source
code, you do

 need tonot
install SVN.

 Linux - http://subversion.apache.org/packa
ges.html
Windows - http://tortoisesvn.net/downloads
.html

http://activemq.apache.org
http://ant.apache.org/
http://subversion.apache.org/packages.html
http://subversion.apache.org/packages.html
http://tortoisesvn.net/downloads.html
http://tortoisesvn.net/downloads.html

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 34

Apache
Maven

To build the
product from
the source

 (distribution
both JDK
and Apache
Maven are
required). If
you are
installing by
downloading
and
extracting
the binary
distribution
instead of
building from
the source
code, you do

 need tonot
install
Maven.

3.0.* http://maven.apache.org

W e b
Browser

Required by
all WSO2
products to
access each
product's Ma
nagement

. Console Th
e Web
Browser
must be
JavaScript
enabled to
take full
advantage of
the
Management
console.

 NOTE: On
Windows Server
2003, you must
not go below the
medium security
level in Internet
Explorer 6.x.

You are now ready to install. Click one of the following links for instructions:

Installing on Linux or OS X
Installing on Solaris
Installing on Windows
Installing as a Linux Service

Installing the Product

Installing WSO2 is very fast and easy. Before you begin, be sure you have met the installation prerequisites, and

http://maven.apache.org

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 35

the ProductDownloading

Installation Prerequisites.

1.

2.

1.
2.

1.

2.

3.

4.

then follow the installation instructions for your platform. WSO2 also provides pre-configured packages for
automated installation based on Puppet or similar solutions. For information, .contact team WSO2

Installing on Linux or OS X
Installing on Solaris
Installing on Windows
Installing as a Linux Service
Installing as a Windows Service

Installing on Linux or OS X

Follow the instructions below to install API Manager on Linux or Mac OS X.

Installing the required applications

Log in to the command line (either as root or obtain root permissions after logging in via Terminal on Mac) su
or command.sudo

Ensure that your system meets the Java Development Kit (JDK) is essential to run
 the product.

Installing the API Manager

Download the latest version of the API Manager as described in .
Extract the archive file to a dedicated directory for the , which will hereafter be referred to as API Manager <AP

.IM_HOME>

Setting up JAVA_HOME

You must set your environment variable to point to the directory where the Java Development Kit (JDK)JAVA_HOME
is installed on the computer.

In your home directory, open the BASHRC file (.bash_profile) using editors such as vi, emacs, file on Mac
pico, or mcedit.
Assuming you have JDK 1.6.0_25 in your system, add the following two lines at the bottom of the file,
replacing with the actual directory where the JDK is installed./usr/java/jdk1.6.0_25

On Linux:
export JAVA_HOME=/usr/java/jdk1.6.0_25
export PATH=${JAVA_HOME}/bin:${PATH}

On OS X:
export JAVA_HOME=/System/Library/Java/JavaVirtualMachines/1.6.0.jdk/Contents/Home

Save the file.

To verify that the variable is set correctly, execute the following command:JAVA_HOME

Before you begin, to find out if this version of the product is fully testedplease see our compatibility matrix
on Linux or OS X.

Environment variables are global system variables accessible by all the processes running under the operating
system.

If you do not know how to work with text editors in a Linux SSH session, run the following command:
Paste the string from the clipboard and press "Ctrl+D."cat >> .bashrc.

https://docs.wso2.com/display/compatibility/Tested+Operating+Systems

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 36

the ProductDownloading

Installation Prerequisites

4.

5.

1.

2.

1.
2.

On Linux:
echo $JAVA_HOME

On OS X:
which java

If the above command gives you a path like /usr/bin/java, then it is a symbolic
link to the real location. To get the real location, run the following:
ls -l `which java`

The system returns the JDK installation path.

Setting system properties

If you need to set additional system properties when the server starts, you can take the following approaches:

Set the properties from a script: Setting your system properties in the startup script is ideal, because it
ensures that you set the properties every time you start the server. To avoid having to modify the script each
time you upgrade, the best approach is to create your own startup script that wraps the WSO2 startup script
and adds the properties you want to set, rather than editing the WSO2 startup script directly.
Set the properties from an external registry: If you want to access properties from an external registry, you
could create Java code that reads the properties at runtime from that registry. Be sure to store sensitive data
such as username and password to connect to the registry in a properties file instead of in the Java code and
secure the properties file with the .secure vault

You are now ready to run the product .

Installing on Solaris

Follow the instructions below to install API Manager on Solaris.

Installing the required applications

Establish a SSH connection to the Solaris machine or log in on the text console. You should either log in as
root or obtain root permissions after login via or command.su sudo

Be sure your system meets the . Java Development Kit (JDK) is essential to run the
 product.

Installing the API Manager

Download the latest version of the API Manager as described in .
Extract the archive file to a dedicated directory for the , which will hereafter be referred to as API Manager <AP

.IM_HOME>

Setting up JAVA_HOME

You must set your environment variable to point to the directory where the Java Development Kit (JDK)JAVA_HOME
is installed on the computer.

When using SUSE Linux, it ignores and only looks at the file. This/etc/resolv.conf /etc/hosts
means that the server will throw an exception on startup if you have not specified anything besides
localhost. To avoid this error, add the following line above in the file127.0.0.1 localhost /etc/hosts
: <ip_address> <machine_name> localhost

, to find out if this version of the product is fully tested on Linux or OS X. Before you begin please see our compatibility matrix

http://docs.wso2.org/wiki/display/AM141/Installation+Prerequisites
https://docs.wso2.com/display/Carbon410/WSO2+Carbon+Secure+Vault
https://docs.wso2.com/display/compatibility/Tested+Operating+Systems

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 37

1.
2.

3.

4.

5.

In your home directory, open the BASHRC file in your favorite text editor, such as vi, emacs, pico, or mcedit.
Assuming you have JDK 1.6.0_25 in your system, add the following two lines at the bottom of the file,
replacing with the actual directory where the JDK is installed./usr/java/jdk1.6.0_25

export JAVA_HOME=/usr/java/jdk1.6.0_25
export PATH=${JAVA_HOME}/bin:${PATH}

The file should now look like this:

Save the file.

To verify that the variable is set correctly, execute the following command: JAVA_HOME

echo $JAVA_HOME

The system returns the JDK installation path.

Setting system properties

If you need to set additional system properties when the server starts, you can take the following approaches:

Set the properties from a script: Setting your system properties in the startup script is ideal, because it
ensures that you set the properties every time you start the server. To avoid having to modify the script each
time you upgrade, the best approach is to create your own startup script that wraps the WSO2 startup script
and adds the properties you want to set, rather than editing the WSO2 startup script directly.
Set the properties from an external registry: If you want to access properties from an external registry, you
could create Java code that reads the properties at runtime from that registry. Be sure to store sensitive data
such as username and password to connect to the registry in a properties file instead of in the Java code and
secure the properties file with the .secure vault

You are now ready to . run the product

Installing on Windows

Environment variables are global system variables accessible by all the processes running under the operating
system.

If you do not know how to work with text editors in an SSH session, run the following command: cat >>
.bashrc

Paste the string from the clipboard and press "Ctrl+D."

Before you begin, to find out if this version of the product is fully testedplease see our compatibility matrix
on Windows.

https://docs.wso2.com/display/Carbon410/WSO2+Carbon+Secure+Vault
https://docs.wso2.com/display/compatibility/Tested+Operating+Systems

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 38

the ProductDownloading

 Installation Prerequisites 1.

2.

1.
2.

1.

2.

Follow the instructions below to install API Manager on Windows.

Installing the required applications

Be sure your system meets the. Java Development Kit (JDK) is essential to run the
product.
Be sure that the environment variable is set to "C:\Windows\System32", because the windowPATH findstr

s exe is stored in this path.

Installing the API Manager

Download the latest version of the API Manager as described in.
Extract the archive file to a dedicated directory for the API Manager, which will hereafter be referred to as <AP

.IM_HOME>

Setting up JAVA_HOME

You must set your environment variable to point to the directory where the Java Development Kit (JDK)JAVA_HOME
is installed on the computer. Typically, the JDK is installed in a directory under , such asC:/Program Files/Java

 If you have multiple versions installed, choose the latest one, which./jdk1.6.0_27C:/Program Files/Java
you can find by sorting by date.

You set up JAVA_HOME using the System Properties, as described below. Alternatively, if you just want to set
JAVA_HOME temporarily for the current command prompt window, set it at the command prompt.

Setting up JAVA_HOME using the system properties

Right-click the icon on the desktop and choose .My Computer Properties

In the System Properties window, click the tab, and then click the button.Advanced Environment Variables

Environment variables are global system variables accessible by all the processes running under the operating
system. You can define an environment variable as a system variable, which applies to all users, or as a user
variable, which applies only to the user who is currently logged in.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 39

2.

3.

4.

1.

Click the New button under (for all users) or under (just for the user who isSystem variables User variables
currently logged in).

Enter the following information:
In the field, enter: Variable name JAVA_HOME
In the field, enter the installation path of the Java Development Kit, such as: Variable value c:/Prog

 ram Files/Java jdk1.6.0_27

The JAVA_HOME variable is now set and will apply to any subsequent command prompt windows you open. If you
have existing command prompt windows running, you must close and reopen them for the JAVA_HOME variable to
take effect, or manually set the JAVA_HOME variable in those command prompt windows as described in the next
section. To verify that the variable is set correctly, open a command window (from the menu, clickJAVA_HOME Start

, and then type and click) and execute the following command:Run CMD Enter

set JAVA_HOME

The system returns the JDK installation path. You are now ready to .run the product

Setting JAVA_HOME temporarily using the Windows command prompt (CMD)

You can temporarily set the environment variable within a Windows command prompt window (CMD).JAVA_HOME
This is useful when you have an existing command prompt window running and you do not want to restart it.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 40

1.

2.

3.

1.

In the command prompt window, enter the following command where <JDK_INSTALLATION_PATH> is the
JDK installation directory and press Enter.

set JAVA_HOME=<JDK_INSTALLATION_PATH>

For example: set JAVA_HOME=c:/Program Files/java/jdk1.6.0_27

The JAVA_HOME variable is now set for the current CMD session only.
To verify that the variable is set correctly, execute the following command:JAVA_HOME

set JAVA_HOME

The system returns the JDK installation path.

Setting system properties

If you need to set additional system properties when the server starts, you can take the following approaches:

Set the properties from a script: Setting your system properties in the startup script is ideal, because it
ensures that you set the properties every time you start the server. To avoid having to modify the script each
time you upgrade, the best approach is to create your own startup script that wraps the WSO2 startup script
and adds the properties you want to set, rather than editing the WSO2 startup script directly.
Set the properties from an external registry: If you want to access properties from an external registry, you
could create Java code that reads the properties at runtime from that registry. Be sure to store sensitive data
such as username and password to connect to the registry in a properties file instead of in the Java code and
secure the properties file with the .secure vault

You are now ready to .run the product

Installing as a Linux Service

Follow the sections below to run a WSO2 product as a Linux service:
Prerequisites
Setting up CARBON_HOME
Running the product as a Linux service

Prerequisites

Install JDK 1.6.24 or later or 1.7.* and set up the environment variable. JAVA_HOME

Setting up CARBON_HOME

Extract the WSO2 product to a preferred directory in your machine and set the environment variable CARBON_HOME
to the extracted directory location.

Running the product as a Linux service

To run the product as a service, create a startup script and add it to the boot sequence. The basic structure of
the startup script has three parts (i.e., start, stop and restart) as follows:

https://docs.wso2.com/display/Carbon410/WSO2+Carbon+Secure+Vault

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 41

1.

2.

#!/bin/bash

case “$1 in
start)
 echo “Starting the Service”
;;
stop)
 echo “Stopping the Service”
;;
restart)
 echo “Restarting the Service”
;;
*)
 echo $”Usage: $0 {start|stop|restart}”
exit 1
esac

Given below is a sample startup script. can vary depending on the WSO2 product's<PRODUCT_HOME>
directory.

#! /bin/sh
export JAVA_HOME="/usr/lib/jvm/jdk1.7.0_07"

startcmd='<PRODUCT_HOME>/bin/wso2server.sh start > /dev/null &'
restartcmd='<PRODUCT_HOME>/bin/wso2server.sh restart > /dev/null &'
stopcmd='<PRODUCT_HOME>/bin/wso2server.sh stop > /dev/null &'

case "$1" in
start)
 echo "Starting the WSO2 Server ..."
 su -c "${startcmd}" user1
;;
restart)
 echo "Re-starting the WSO2 Server ..."
 su -c "${restartcmd}" user1
;;
stop)
 echo "Stopping the WSO2 Server ..."
 su -c "${stopcmd}" user1
;;
*)
 echo "Usage: $0 {start|stop|restart}"
exit 1
esac

 For example, In the above script, the server is started as a user by the name user1 rather than the root user.
 su -c "${startcmd}" user1

Add the script to directory./etc/init.d/

If you want to keep the scripts in a location other than , you can add a symbolic folder/etc/init.d/
link to the script in and keep the actual script in a separate location. Say your script/etc/init.d/
name is prodserver and it is in folder, then the commands for adding a link to /opt/WSO2/ /etc/in

 is as follows:it.d/

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 42

2.

3.

4.

Install the startup script to respective runlevels using the command . update-rc.d For example, give the
following command for the sample script shown in step1:

sudo update-rc.d prodserver defaults

The option in the above command makes the service to start in runlevels 2,3,4 and 5 and to stopdefaults
in runlevels 0,1 and 6.

A is a mode of operation in Linux (or any Unix-style operating system). There are several runlevelsrunlevel
in a Linux server and each of these runlevels is represented by a single digit integer. Each runlevel
designates a different system configuration and allows access to a different combination of processes.
You can now start, stop and restart the server using service <service name> {start|stop|restart

 } command. You will be prompted for the password of the user (or root) who was used to start the service.

Installing as a Windows Service

WSO2 Carbon and any Carbon-based product can be run as a Windows service as described in the following
sections:

Prerequisites
Setting up the YAJSW wrapper configuration file
Setting up CARBON_HOME
Running the product in console mode
Working with the WSO2CARBON service

Prerequisites

Install JDK 1.6.24 or later or 1.7.* and set up the environment variable.JAVA_HOME

Download and install a service wrapper library to use for running your WSO2 product as a Windows service.
WSO2 recommends Yet Another Java Service Wrapper (YAJSW) version 11.03, and several WSO2 products
provide a default wrapper.conf file in their <PRODUCT_HOME>/bin/yajsw/ directory. The instructions

below describe how to set up this file.

Setting up the YAJSW wrapper configuration file

The configuration file used for wrapping Java Applications by YAJSW is , which is located in the wrapper.conf <Y
 directory and in the directory of many WSO2 products.AJSW_HOME>/conf/ <PRODUCT_HOME>/bin/yajsw/

Following is the minimal configuration for running a WSO2 product as a Windows service. Openwrapper.conf
your file, set its properties as follows, and save it in directory.wrapper.conf <YAJSW_HOME>/conf/

Minimal wrapper.conf configuration

#**
working directory
#**
wrapper.working.dir=${carbon_home}\\
Java Main class.

 Make executable: sudo chmod a+x /opt/WSO2/prodserver
 Add a link to :/etc/init.d/ sudo ln -snf /opt/WSO2/prodserver

/etc/init.d/prodserver

If you want to set additional properties from an external registry at runtime, store sensitive information like
usernames and passwords for connecting to the registry in a properties file and secure it with .secure vault

http://manpages.ubuntu.com/manpages/raring/man8/update-rc.d.8.html
http://sourceforge.net/projects/yajsw/
https://docs.wso2.com/display/Carbon420/WSO2+Carbon+Secure+Vault

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 43

YAJSW: default is "org.rzo.yajsw.app.WrapperJVMMain"
DO NOT SET THIS PROPERTY UNLESS YOU HAVE YOUR OWN IMPLEMENTATION
wrapper.java.mainclass=
#**
tmp folder
yajsw creates temporary files named in_.. out_.. err_.. jna..
per default these are placed in jna.tmpdir.
jna.tmpdir is set in setenv batch file to <yajsw>/tmp
#**
wrapper.tmp.path = ${jna_tmpdir}
#**
Application main class or native executable
One of the following properties MUST be defined
#**
Java Application main class
wrapper.java.app.mainclass=org.wso2.carbon.bootstrap.Bootstrap
Log Level for console output. (See docs for log levels)
wrapper.console.loglevel=INFO
Log file to use for wrapper output logging.
wrapper.logfile=${wrapper_home}\/log\/wrapper.log
Format of output for the log file. (See docs for formats)
#wrapper.logfile.format=LPTM
Log Level for log file output. (See docs for log levels)
#wrapper.logfile.loglevel=INFO
Maximum size that the log file will be allowed to grow to before
the log is rolled. Size is specified in bytes. The default value
of 0, disables log rolling by size. May abbreviate with the 'k' (kB) or
'm' (mB) suffix. For example: 10m = 10 megabytes.
If wrapper.logfile does not contain the string ROLLNUM it will be automatically
added as suffix of the file name
wrapper.logfile.maxsize=10m
Maximum number of rolled log files which will be allowed before old
files are deleted. The default value of 0 implies no limit.
wrapper.logfile.maxfiles=10
Title to use when running as a console
wrapper.console.title="WSO2 Carbon"
#**
Wrapper Windows Service and Posix Daemon Properties
#**
Name of the service
wrapper.ntservice.name="WSO2CARBON"
Display name of the service
wrapper.ntservice.displayname="WSO2 Carbon"
Description of the service
wrapper.ntservice.description="Carbon Kernel"
#**
Wrapper System Tray Properties
#**
enable system tray
wrapper.tray = true
TCP/IP port. If none is defined multicast discovery is used to find the port
Set the port in case multicast is not possible.
wrapper.tray.port = 15002
#**
Exit Code Properties
Restart on non zero exit code
#**
wrapper.on_exit.0=SHUTDOWN
wrapper.on_exit.default=RESTART

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 44

#**
Trigger actions on console output
#**
On Exception show message in system tray
wrapper.filter.trigger.0=Exception
wrapper.filter.script.0=scripts\/trayMessage.gv
wrapper.filter.script.0.args=Exception
#**
genConfig: further Properties generated by genConfig
#**
placeHolderSoGenPropsComeHere=
wrapper.java.command = ${java_home}\\bin\\java
wrapper.java.classpath.1 = ${java_home}\\lib\\tools.jar
wrapper.java.classpath.2 = ${carbon_home}\\bin*.jar
wrapper.app.parameter.1 = org.wso2.carbon.bootstrap.Bootstrap
wrapper.app.parameter.2 = RUN
wrapper.java.additional.1 = -Xbootclasspath\/a:${carbon_home}\\lib\\xboot*.jar
wrapper.java.additional.2 = -Xms256m
wrapper.java.additional.3 = -Xmx1024m
wrapper.java.additional.4 = -XX:MaxPermSize=256m
wrapper.java.additional.5 = -XX:+HeapDumpOnOutOfMemoryError
wrapper.java.additional.6 =
-XX:HeapDumpPath=${carbon_home}\\repository\\logs\\heap-dump.hprof
wrapper.java.additional.7 = -Dcom.sun.management.jmxremote
wrapper.java.additional.8 =
-Djava.endorsed.dirs=${carbon_home}\\lib\\endorsed;${java_home}\\jre\\lib\\endorsed
wrapper.java.additional.9 = -Dcarbon.registry.root=\/
wrapper.java.additional.10 = -Dcarbon.home=${carbon_home}
wrapper.java.additional.11 = -Dwso2.server.standalone=true
wrapper.java.additional.12 = -Djava.command=${java_home}\\bin\\java
wrapper.java.additional.13 = -Djava.io.tmpdir=${carbon_home}\\tmp
wrapper.java.additional.14 = -Dcatalina.base=${carbon_home}\\lib\\tomcat
wrapper.java.additional.15 =
-Djava.util.logging.config.file=${carbon_home}\\repository\\conf\\log4j.properties
wrapper.java.additional.16 = -Dcarbon.config.dir.path=${carbon_home}\\repository\\conf

wrapper.java.additional.17 = -Dcarbon.logs.path=${carbon_home}\\repository\\logs
wrapper.java.additional.18 =
-Dcomponents.repo=${carbon_home}\\repository\\components\\plugins
wrapper.java.additional.19 = -Dconf.location=${carbon_home}\\repository\\conf
wrapper.java.additional.20 =
-Dcom.atomikos.icatch.file=${carbon_home}\\lib\\transactions.properties
wrapper.java.additional.21 = -Dcom.atomikos.icatch.hide_init_file_path=true
wrapper.java.additional.22 =
-Dorg.apache.jasper.runtime.BodyContentImpl.LIMIT_BUFFER=true

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 45

1.

2.

wrapper.java.additional.23 = -Dcom.sun.jndi.ldap.connect.pool.authentication=simple
wrapper.java.additional.24 = -Dcom.sun.jndi.ldap.connect.pool.timeout=3000
wrapper.java.additional.25 = -Dorg.terracotta.quartz.skipUpdateCheck=true

Setting up CARBON_HOME

Extract the Carbon-based product that you want to run as a Windows service, and then set the Windows
environment variable to the extracted product directory location. For example, if you want to run ESBCARBON_HOME
4.5.0 as a Windows service, you would set to the extracted directory.CARBON_HOME wso2esb-4.5.0

Running the product in console mode

You will now verify that YAJSW is configured correctly for running the Carbon-based product as a Windows service.

Open a Windows command prompt and go to the directory. For example:<YAJSW_HOME>/bat/

cd C:\Documents and Settings\yajsw_home\bat

Start the wrapper in console mode using the following command:

runConsole.bat

For example:

If the configurations are set properly for YAJSW, you will see console output similar to the following and can now
access the WSO2 management console from your web browser via .https://localhost:9443/carbon

https://localhost:9443/carbon

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 46

Working with the serviceWSO2CARBON

To install the Carbon-based product as a Windows service, execute the following command in the <YAJSW_HOME>/
 directory:bat/

installService.bat

The console will display a message confirming that the service was installed.WSO2CARBON

To start the service, execute the following command in the same console window:

startService.bat

The console will display a message confirming that the service was started.WSO2CARBON

To stop the service, execute the following command in the same console window:

stopService.bat

The console will display a message confirming that the service has stopped.WSO2CARBON

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 47

To uninstall the service, execute the following command in the same console window:

uninstallService.bat

The console will display a message confirming that the service was removed.WSO2CARBON

Building from Source

WSO2 invites you to contribute by from the Subversion (SVN) source control system, checking out the source buildi
 and making changes, and then back to the source repository. (For moreng the product committing your changes

information on Subversion, see .) The following sections describe this process:http://svnbook.red-bean.com

Checking out the source
Setting up your development environment
Building the product
Committing your changes

Building from source is optional. Users who do not want to make changes to the source code can simply do
 of the product and install it.wnload the binary distribution

http://svnbook.red-bean.com/

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 48

1.
2.

Checking out the source

WSO2 products are built on top of WSO2 Carbon Kernel, which contains the Kernel libraries used by all products.
When there are changes in the Carbon Kernel, they are bundled and released in a new version (forWSO2 Carbon
example, WSO2 Carbon 4.2.0).

A WSO2 platform release is a set of WSO2 products based on the same Carbon release. For example, isTuring
the platform release name for WSO2 Carbon 4.2.0 and the WSO2 products that are based on it. Usually, not all
products in a platform get released at the same time, so they are released in , each of which contains thechunks
Carbon release and a subset of products. For example, the API Manager 1.8.0 comes in chunk 14 of the plTuring
atform.

Checking out the patches

Before checking out the product source, you need to checkout the patches related to the Carbon chunk using the
following command.

$ svn checkout https://svn.wso2.org/repos/wso2/carbon/kernel/branches/4.2.0 <local-pl
atform-directory-1>

Downloading the product source

For products based on WSO2 Carbon 4.2.0, use the below command to download the product source:

$ svn checkout
https://svn.wso2.org/repos/wso2/carbon/platform/tags/turing-<release-chunk>/<local-pl
atform-directory-2>

Replace with the release chunk, on which the specific product version is based on. To find out<release-chunk>
the respective release chunk, see the . For example, for products based on Chunk 14 of WSO2Release Matrix
Carbon 4.2.0, the command is as follows:

$ svn checkout
https://svn.wso2.org/repos/wso2/carbon/platform/tags/turing-chunk14/<local-platform-d
irectory-2>

Setting up your development environment

Before you edit the source code in your IDE, set up your development environment by running one of the following
commands:

If you are using this IDE... Run this command... Additional information

Eclipse mvn eclipse:eclipse http://maven.apache.org/plugins/maven-eclipse-plugin

IntelliJ IDEA mvn idea:idea http://maven.apache.org/plugins/maven-idea-plugin

If you are using a later Eclipse version and if you get errors (library path etc.) when trying to import the source code
using the , follow the steps below to solve them by importing the source code asExisting Projects into Workspace
a Maven project.

Build the source using the command: mvn clean install
Open Eclipse and click in the menu and then click as shown below Import File Existing Maven Projects :

Replace with a meaningful name, such as <local-platform-directory-1> wso2carbon-platform.

http://wso2.com/products/carbon/
http://wso2.com/products/carbon/release-matrix/
http://eclipseeclipse/
http://maven.apache.org/plugins/maven-eclipse-plugin/
http://ideaidea/
http://maven.apache.org/plugins/maven-idea-plugin/

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 49

2.

1.
2.

3.

4.

Building the product

Follow the instructions below to build the product after editing the source code:

Install Maven and JDK. See for compatible versions. Installation Prerequisites
Set the environment variable " MAVEN_OPTS="-Xms1024m -Xmx4096m -XX:MaxPermSize=1024m to
avoid the Maven OutOfMemoryError.
Navigate to each folder representing the patches within the and run the<local-platform-directory-1>
following commands to build the patches. For information on the patches, which areApache Maven
applicable for the respective Carbon chunk release, go to . Release Matrix

This command... Creates...

mvn clean install The binary and source distributions of the chunk release.

mvn clean install
-Dmaven.test.skip=true

The binary and source distributions, without running any of the unit tests.

mvn clean install
-Dmaven.test.skip=true
-o

The binary and source distributions, without running any of the unit tests,
in offline mode. This can be done only if you've already built the source at
least once.

For products based on Carbon 4.2.0, to create complete release artifacts of the products released with this
chunk version, including the binary and source distributions, go to <local-platform-directory-2>/pro

 and run the Apache Maven commands stated in theduct-releases/ d<release-chunk>/ irectory
above step. openTo build only a selected product/s, <local-platform-directory-2>/product-re

 file, and comment out the products you do not want to leases/<release-chunk>/products/pom.xml
build and run the relevant Maven command.

Make sure the build server has an active Internet connection to download dependencies while building.

After , you can find the artifacts/product binary distribution package of the product in thebuilding the source
d i r e c t o r y :

/<local-platform-directory-2> products/<product_name>/<product_release_version>/m

 directory.odules/distribution/target/

http://maven.apache.org/
http://wso2.com/products/carbon/release-matrix/

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 50

1.

2.

Committing your changes

If you are a committer, you can commit your changes using the following command (SVN will prompt you for your
password):

$ svn commit --username your-username -m "A message"

Running the Product

To run WSO2 products, you start the product server at the command line. You can then run the Management
Console application to configure and manage the product. This page describes how to run the product in the
following sections:

Starting the server
Running the management console
Stopping the server

Starting the server

To start the server, you run the script (on Windows) or (on Linux/Solaris) fromwso2server.bat wso2server.sh
the folder. Alternatively, you can install and run the server bin as a Windows service .

Open a command prompt:

On Windows, choose , type at the prompt, and press Enter.Start -> Run cmd
On Linux/Solaris, establish a SSH connection to the server or log in to the text Linux console.

Execute one of the following commands, where is the directory where you installed the<APIM_HOME>
product distribution:

On Windows: <APIM_HOME>/bin/wso2server.bat --run
On Linux/Solaris: sh <APIM_HOME>/bin/wso2server.sh

The operation log appears. When the product server is running, the log displays the message "WSO2 Carbon
started in 'n' seconds."

Running the management console

Once the server has started, you can run the Management Console by opening a Web browser and typing in the
management console's URL. The URL is displayed as the last line in the start script's console and log. For example:

Before you begin, note that the Management Console uses the default , which is HTTP-NIO transport
configured in the file in the directorcatalina-server.xml <APIM_HOME>/repository/conf/tomcat
y. This transport must be properly configured in this file for the Management Console to be accessible.

To start and stop the server in the background mode of Linux, run and wso2server.sh start wso2serv
commands. er.sh stop

If you want to provide access to the production environment without allowing any user group
(including admin) to log into the management console, execute one of the following
commands.

On Windows: <PRODUCT_HOME>\bin\wso2server.bat --run -DworkerNode
On Linux/Solaris: sh <PRODUCT_HOME>/bin/wso2server.sh -DworkerNode

If you want to check any additional options available to be used with the startup commands, ty
 pe -help after the command, such as: sh <PRODUCT_HOME>/bin/wso2server.sh

-help.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 51

The URL should be in the following format: https://<Server Host>:9443/carbon

You can use this URL to access the Management Console on this computer from any other computer connected to
the Internet or LAN. When accessing the Management Console from the same server where it's installed, you can
type "localhost" instead of the IP address: .https://localhost:9443/carbon

At the sign-in screen, sign in to the Management Console using as both the username and password. Youadmin
can then use the Management Console to manage the product. The tabs and menu items in the navigation pane on
the left may vary depending on the features installed.

To view information about a particular page, click the , or click the link in the top right corner of that pageHelp Docs
link to open this documentation for full information on managing the product.

If you leave the Management Console unattended, the session will time out. The default timeout value is 15 minutes,
but you can change this in file asthe <APIM_HOME>/repository/conf/tomcat/carbon/WEB-INF/web.xml
follows:

<session-config>
 <session-timeout>15</session-timeout>
</session-config>

Stopping the server

To stop the server, press in the command window, or click the link in the navigation paneCtrl+C Shutdown/Restart
in the Management Console.

Upgrading from the Previous Release

The following information describes how to upgrade your API Manager server from the previous release, which is
APIM 1.7.0. To upgrade from a version older than 1.7.0, start from the doc that was released immediately after your

Tip: in the The Management Console URL can be changed by modifying the value of the MgtHostName <P
 file.RODUCT_HOME>/repository/conf/carbon.xml

<MgtHostName>localhost</MgtHostName>

When the Management Console Sign-in page appears, the web browser will typically display an "insecure
connection" message, which requires your confirmation before you can continue.

The Management Console is based on HTTPS protocol, which is a combination of HTTP and SSL protocols.
This protocol is generally used to encrypt the traffic from the client to server for security reasons. The
certificate it works with is used for encryption only, and does not prove the server identity, so when you try to
access the Management Console, a warning of untrusted connection is usually displayed. To continue
working with this certificate, some steps should be taken to "accept" the certificate before access to the site
is permitted. If you are using the Mozilla Firefox browser, this usually occurs only on the first access to the
server, after which the certificate is stored in the browser database and marked as trusted. With other
browsers, the insecure connection warning might be displayed every time you access the server.

This scenario is suitable for testing purposes, or for running the program on the company's internal
networks. If you want to make the Management Console available to external users, your organization
should obtain a certificate signed by a well-known certificate authority, which verifies that the server actually
has the name it is accessed by and that this server belongs to the given organization.

https://localhost:9443/carbon

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 52

1.
2.
3.
4.

1.

2.

3.

1.
2.

3.

current release and upgrade incrementally.
Upgrading the product databases
Migrating the configurations
Upgrading APIM 1.7.0 to 1.8.0

Migration scripts' location is https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/products/apimgt/1.
.8.0/modules/distribution/resources/migration-1.7.0_to_1.8.0

Upgrading the product databases

Download the API Manager 1.8.0 from .http://wso2.com/products/api-manager
Stop all running API Manager server instances.
Back up the databases of your API Manager 1.7.0 server instance.
Download the migration scripts from the migration script location and execute the database upgrade scripts
on your old database. You must select the script corresponding to your database type. For example, if your
database is MySQL, execute migration-1.7.0_to_1.8.0/mysql.sql on it. The script adds all the
schema changes done to API Manager tables in the 1.8.0 release.

Migrating the configurations

In this section, you move all existing API Manager configurations from the current environment to the new one.

Open file and<APIM_1.8.0_HOME>/repository/conf/datasources/master-datasources.xml
provide the datasource configurations for the following databases. You can copy the configurations from the
same file in the API Manager 1.7.0 instance.

User Store
Registry database
API Manager Databases

Edit the registry configurations in the and the user<APIM_HOME>/repository/config/registry.xml
database in the file.<APIM_HOME>/repository/conf/user-mgt.xml
Move all your synapse configurations by copying and replacing <APIM_1.7.0_HOME>/repository/depl

 directory to oyment/server/synapse-config/default <APIM_1.8.0_HOME>/repository/deploy
 directory.ment/server/synapse-config/default

Upgrading APIM 1.7.0 to 1.8.0

Start the API Manager 1.8.0 and log in to its management console.
Copy the ' directory from the migration scripts location to 'swagger-doc-migration <APIM_1.8.0_HOME

. The new directory path will now be .> <APIM_1.8.0_HOME>/swagger-doc-migration
Configure file with the following/swagger-resource-migration/build.xml<APIM_1.8.0_HOME>
properties:

Property Description

registry.home Path to the APIM distribution. In a distributed setup, give the API Publisher node's path.

username Username for the server. For a tenant to log in, provide the tenant admin username.

password Password for the server. For a tenant to log in, provide the tenant admin password.

host IP of the running APIM server. In a distributed setup, give the host of the API Publisher
node.

port Port of the running APIM server. In a distributed setup, give the port of the APIM
Publisher node.

If you changed the default URLs in and files, do not replaceAuthorizeAPI.xml TokenAPI.xml
them when copying. They are application-specific APIs.

https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/products/apimgt/1.8.0/modules/distribution/resources/migration-1.7.0_to_1.8.0
https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/products/apimgt/1.8.0/modules/distribution/resources/migration-1.7.0_to_1.8.0
http://wso2.com/products/api-manager/

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 53

3.

4.

5.

6.

a.

b.
c.
d.

7.
a.
b.

8.
a.
b.

9.
a.
b.

version Version of the server.

Using the command line, go to folder and<APIM_1.8.0_HOME>/swagger-resource-migration
execute If the above configuration is successful, you get a message. It.ant run BUILD SUCCESSFUL
modifies the structure of Swagger content in the registry.
To re-index the artifacts in the registry, perform the two steps given below.

a) Rename the lastAccessTimeLocation in the / f<APIM_1.8.0_HOME> repository/conf/registry.xml
ile.

Eg: Change to /_system/local/repository/components/org.wso2.carbon.registry/indexing/lastaccesstime /_syst
em/local/repository/components/org.wso2.carbon.registry/indexing/lastaccesstime_1

b) Shutdown AM 1.8.0 and backup and delete the / director<APIM_1.8.0_HOME> repository/conf/solr
y and restart the server.

Upgrading tenants

If you have added to your API Manager instance, follow the steps below to migrate tenantmultiple tenants
configurations:

Copy the contents from your previous directory to the same<APIM_HOME>/repository/tenants
directory in the API Manager 1.8.0. Do not replace the , and _TokenAPI_.xml _RevokeAPI_.xml _

 files in the sub directory.AuthorizeAPI_.xml /default/api
Start the server
Execute steps 3 and 4 for all tenants in your system.
Execute steps 7 to 9 for all tenants in your system.

Upgrading external stores

If you have configured in the registry, follow the steps below:external stores
Log in to APIM 1.8.0 management console and click the menu.Resources -> Browse
Load the reso/_system/governance/apimgt/externalstores/external-api-stores.xml
urce in the registry browser UI, and save.configure your external stores

Upgrading Google analytics

If you have configured in the registry, follow the steps below:Google Analytics
Log in to APIM 1.8.0 management console and go to menu.Resources -> Browse
Load the resource in the registry/_system/governance/apimgt/statistics/ga-config.xml
browser UI, and save.configure the Google analytics

Upgrading workflows

If you have configured in the registry, follow the steps below:Workflows
Log in to APIM 1.8.0 management console and go to menu.Resources -> Browse
Load the res/_system/governance/apimgt/applicationdata/workflow-extensions.xml
ource in the registry browser UI, and save.configure your workflows

Get Involved

All WSO2 products are 100% open source and released under the Apache License Version 2.0. WSO2 welcomes
anyone who is interested in WSO2 products to become a contributor by getting involved in the WSO2
community and helping with the development of WSO2 projects.

How can I get involved in the community?
Contributing as a non-committer – anyone can do it!

Overview of the WSO2 repository
Contributing to the WSO2 code base
WSO2 GitHub Guidelines

How can I get involved in the community?

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 54

1.
2.

3.

You can get involved in the WSO2 community in various ways:

Use WSO2 products
The latest binary packs that correspond to the WSO2 product releases can be downloaded freely via the
respective product pages on the . We recommend that you download and use WSO2 productsWSO2 website
so that you can discover the advantages of our lean middleware stack. Your feedback on our products is
much appreciated, as it will help us to drive our product roadmaps and the underlying technology. For
information on product releases, go to the . For tutorials, articles, white papers, webinars,Release Matrix
WSO2 documentation, and other learning resources, look in the Resources menu on the .WSO2 website

Join WSO2 mailing lists
Many WSO2 mailing lists are open to the public, so anyone interested in WSO2 products can monitor the
mail threads. You can subscribe to the and mailing lists to getdev@wso2.org architecture@wso2.org
involved in the discussions on WSO2 development. For more information on subscribing to these mailing
lists, see .WSO2 Mailing Lists

Participate in user forums
The WSO2 team monitors and participates in the discussions on . If you have any technical orStack Overflow
programming questions related to WSO2 products, post them on Stack Overflow. Be sure to tag your
question with appropriate keywords such as WSO2 and the product name so that our team can easily find
your questions and provide answers. If you cannot find an answer on the user forum, you can email the
WSO2 development team directly using the relevant mailing lists described at . We alsoWSO2 Mailing Lists
encourage you to contribute by answering your fellow users' questions on Stack Overflow.

Report bugs
WSO2 has a public that you can use to report issues, submit enhancement requests,bug-tracking system
and track and comment on issues. You can also use this system to report issues related to WSO2 product

. If you find a bug, first search the dev mailing list to see if someone has faced the same issue,documentation
and also check the bug-tracking system. If you can't find any information on the issue, create an issue in the
bug-tracking system with as much information as possible, including the product version you were using, how
to reproduce the issue, etc.

Contribute to the WSO2 code base
WSO2 invites you to contribute by providing patches for bug fixes or features. For this purpose you can check
out the source of the relevant GitHub repository, build the product, and make changes. You can then
contribute your changes by sending a for review. For more information, see the next section.pull a request

Contributing as a non-committer – anyone can do it!

Anyone (not just committers) can share contributions to WSO2's open-source software products. Your work will be
recognized: if your contribution – feature enhancement, bug fix, or other improvements – is accepted, your name will

 Read on for details on how you can contribute.be included as an author in the official commit logs.

Overview of the WSO2 repository

WSO2 uses as its source control management system. The maintains the code repositoryGit WSO2 Git repository
and the active build for continuous delivery incorporated with integrated automation.

Contributing to the WSO2 code base

Follow these instructions to contribute to the WSO2 code base. Be sure to follow the .WSO2 GitHub Guidelines

Fork the respective code base to your Git account.
Clone the code base to your local machine.

git clone <GitHub-REPOSITORY-URL>

If you are not sure which repository needs to be cloned, send an email to .dev@wso2.org
Build the product using Maven.

http://wso2.com
http://wso2.com/products/carbon/release-matrix/
http://www.wso2.com/
http://wso2.com/mail/
http://stackoverflow.com
http://wso2.org/mail
https://wso2.org/jira/secure/Dashboard.jspa
http://docs.wso2.com/
http://docs.wso2.com/
https://help.github.com/articles/using-pull-requests
http://git-scm.com/documentation
https://github.com/wso2
https://help.github.com/articles/fork-a-repo

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 55

3.

4.
a.

b.

5.
a.
b.

6.

7.

8.

Prerequisites
Install Maven and JDK. See the page for compatible versions. Installation Prerequisites
Set the environment variable MAVEN_OPTS="-Xms768m -Xmx3072m

 to avoid the maven .-XX:MaxPermSize=1200m" OutOfMemoryError
Make sure the build server has an active Internet connection to download dependencies while
building.

Use the following commands to create complete release artifacts of a WSO2 product, including the binary
and source distributions.

Command Description

mvn clean install The binary and source distributions.

mvn clean install -Dmaven.test.skip=true The binary and source distributions, without
running any of the unit tests.

mvn clean install -Dmaven.test.skip=true -o The binary and source distributions, without
running any of the unit tests, in offline mode.
This can be done only if you've already built
the source at least once.

If you need to add a new file to the repository:
Add the new file.
git add <FILE-NAME>

 For example:
git add mycode.java
Commit the newly added file to your local repository.
git commit -m "<COMMIT-MESSAGE>"

 For example:
git commit -m "Adding a new file"

If you need to update an existing file in the repository:
Open the file that you want to update and make the necessary changes.
Commit the changes to your local repository.
git commit -m "<COMMIT-MESSAGE>" -a
For example:
git commit -m "Updated the clauses in the terms and conditions file" -a

Sync your changes with the upstream repository.

git remote add <TAG-NAME> <UPSTREAM-GIT-REPO-URL>
git fetch <TAG-NAME>
git merge <TAG-NAME>/<BRANCH-NAME>

For example:

git remote add wso2_upstream https://github.com/wso2/wso2-synapse.git
git fetch wso2_upstream
git merge wso2_upstream/master

Push the changes to your own Git repository.
git push
Send a to the WSO2 Git repository and add the URL of the Git pull request in the JIRA thatGit pull request
corresponds to the patch. Your pull request will be authorized only after it is reviewed by the team lead or
release manager or responsible person for the corresponding Git repository.

For more information on using GitHub, see the related help articles and .Fork a Repo Using Pull Requests

https://help.github.com/articles/creating-a-pull-request
https://help.github.com/articles/fork-a-repo
https://help.github.com/articles/using-pull-requests

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 56

WSO2 GitHub Guidelines

The respective should be forkedWSO2 Git repository
When contributing to WSO2 code base by way of a patch, make sure you identify the correct Git repository
that needs to be forked. For more information on WSO2 Git repositories, see . IfWSO2 GitHub Repositories
you still are not sure which repository needs to be cloned, send an email to so that a WSO2dev@wso2.org
team member can advise you.
Do not build any dependencies
You do not need to build any dependencies, as everything you need will be automatically fetched from the
Maven repository (Nexus) when you are building the product on your machine. Make sure the build server
has an active Internet connection to download dependencies while building.
Always sync with the forked repository before issuing a pull request
There is a high possibility that the forked repository may differ from the upstream repository (remote
repository that was forked) that you initially forked. Therefore, always sync the repository to prevent pull
requests from being rejected.

WSO2 GitHub Repositories

The following are the WSO2 GitHub repositories that need to be forked, so that you can contribute to the WSO2
community by offering patches for bug fixes or features for WSO2 products.

Kernel level Git repositories
Platform level Git repositories
Mobile platform Git repositories
Product level Git repositories
Other WSO2 Git repositories

Kernel level Git repositories

Repo URL Description

carbon-kernel Carbon 5 kernel repo

carbon4-kernel Carbon 4 kernel repo

Platform level Git repositories

Repo URL Description

carbon-analytics and features related to analytics services.Contains components

carbon-apimgt and features related to API management.Contains components

carbon-appmgt and features related to application management.Contains components

carbon-business-messaging Contains the components and features related to business messaging.

carbon-business-process and features related to business processes.Contains components

carbon-commons Contains common components and features shared across the platform
projects.

carbon-data Contains components and features related to data services.

carbon-deployment Contains components and features related to web application and service
development (i.e., JavaEE WebProfile support, JAX-WS/RS service
deployment, Webapp monitoring dashboards etc.).

carbon-event-processing and features related to event processing services.Contains components

carbon-governance Contains components and features related to governance services.

https://github.com/wso2
https://github.com/wso2/carbon-kernel.git
https://github.com/wso2/carbon4-kernel.git
https://github.com/wso2/carbon-analytics.git
https://github.com/wso2/carbon-apimgt.git
https://github.com/wso2/carbon-appmgt.git
https://github.com/wso2/carbon-business-messaging.git
https://github.com/wso2-dev/product-mb
https://github.com/wso2/carbon-business-process.git
https://github.com/wso2-dev/product-bps
https://github.com/wso2/carbon-commons.git
https://github.com/wso2-dev/carbon-data.git
https://github.com/wso2-dev/product-dss
https://github.com/wso2/carbon-deployment.git
https://github.com/wso2/carbon-event-processing.git
https://github.com/wso2-dev/product-cep
https://github.com/wso2/carbon-governance.git
https://github.com/wso2-dev/carbon-registry

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 57

carbon-mediation and features related to mediation services.Contains components

carbon-multitenancy

carbon-parent

carbon-platform-automated-test-suite

Contains WSO2 product integration test suites and Platform test suites
with ant based test executor.

carbon-platform-integration Contains WSO2 test automation framework modules.

carbon-platform-integration-utils Contains utilities related to WSO2 test automation framework which is
common to the whole product platform.

carbon-qos and features related to quality of service.Contains components

carbon-registry and features related to registry services.Contains components

carbon-rules and features related to business rules.Contains components

carbon-storage-management Contains sources corresponding to the components that are primarily
being used for storage provisioning and management related tasks. Out
of all the components being maintained within this particular repository
some components (i.e., Cassandra, HDFS) are used across the platform.
In addition, some of the tools developed for storage browsing (i.e.,
Cassandra-Explorer etc.) too are part of this repository.

carbon-utils Contains ntask, remote-tasks, ndatasource etc.

Mobile platform Git repositories

Repo URL Description

emm-agent-android Maintains the Android agent that is used to enroll the device to EMM server.

emm-agent-ios Maintains the iOS agent that is used to enroll the device to EMM server.

Product level Git repositories

Product Name Repo URL Description

API Manager product-apim Maintains sources corresponding to building and packaging of WSO2
API manager distribution.

App Factory product-af Maintains sources corresponding to building and packaging of WSO2
APP Factory distribution.

Application Server product-as Maintains sources corresponding to building and packaging of WSO2
Application Server distribution.

Business Activity
Monitor

product-bam Maintains sources corresponding to building and packaging of WSO2
Business Activity Monitor distribution.

Business Process
Server

product-bps Maintains sources corresponding to building and packaging of WSO2
Business Process Server distribution.

Business Rules
Server

product-brs Maintains sources corresponding to building and packaging of WSO2
Business Rules Server distribution.

Complex Event
Processor

product-cep Maintains sources corresponding to building and packaging of WSO2
Complex Event Processor distribution.

https://github.com/wso2/carbon-mediation.git
https://github.com/wso2/carbon-multitenancy.git
https://github.com/wso2/carbon-parent.git
https://github.com/wso2/carbon-platform-automated-test-suite.git
https://github.com/wso2-dev/carbon-platform-integration-utils
https://github.com/wso2/carbon-platform-integration
https://github.com/wso2/carbon-platform-integration-utils.git
https://github.com/wso2/carbon-qos.git
https://github.com/wso2/carbon-registry.git
https://github.com/wso2/carbon-rules.git
https://github.com/wso2/carbon-storage-management.git
https://github.com/wso2-dev/product-ss
https://github.com/wso2/carbon-utils.git
https://github.com/wso2/emm-agent-android.git
https://github.com/wso2/emm-agent-ios.git
https://github.com/wso2/product-apim.git
https://github.com/wso2/product-af.git
https://github.com/wso2/product-as.git
https://github.com/wso2/product-bam.git
https://github.com/wso2/product-bps.git
https://github.com/wso2/product-brs.git
https://github.com/wso2/product-cep.git

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 58

Data Services
Server

product-dss Maintains sources corresponding to building and packaging of WSO2
Data Services Server distribution.

Enterprise Mobility
Manager

product-emm Maintains sources corresponding to building and packaging of WSO2
Enterprise Mobility Manager distribution.

Enterprise Service
Bus

product-esb Maintains sources corresponding to building and packaging of WSO2
Enterprise Service Bus distribution.

Enterprise Store product-es Maintains sources corresponding to building and packaging of WSO2
Enterprise Store distribution.

Governance
Registry

product-greg Maintains sources corresponding to building and packaging of WSO2
Governance Registry distribution.

Identity Server product-identity Maintains sources corresponding to building and packaging of WSO2
Identity Server distribution.

Message Broker product-mb Maintains sources corresponding to building and packaging of WSO2
Message Broker distribution.

Private PaaS product-paas Maintains sources corresponding to building and packaging of WSO2
Private PaaS distribution.

Storage Server product-ss Maintains sources corresponding to building and packaging of WSO2
Storage Server distribution.

Task Server product-ts Maintains sources corresponding to building and packaging of WSO2
Task Server distribution.

Developer Studio developer-studio Maintains sources corresponding to building and packaging of WSO2
Developer Studio distribution.

Other WSO2 Git repositories

The following are GitHub repository URLs that correspond to independent projects managed by WSO2:

Repo URL Description

andes Message broker core engine implementation.

balana XACML core engine implementation.

charon SCIM core engine implementation.

esb-connectors Collection of connectors that allows you to interact with third-party productWSO2 ESB's
function.

jaggery This repo contains Jaggeryjs. Jaggery is a framework used to write webapps and
HTTP-focused web services for all aspects of the application: front-end, communication,
Server-side logic and persistence in pure Javascript.

jaggery-extensions This contains extensions for the Jaggery framework.

orbit Used to create OSGi bungles out of third-part dependencies.

siddhi Complex event processing core engine implementation.

https://github.com/wso2/product-dss.git
https://github.com/wso2/product-emm.git
https://github.com/wso2/product-esb.git
https://github.com/wso2/product-es
https://github.com/wso2/product-greg.git
https://github.com/wso2/product-identity.git
https://github.com/wso2/product-mb.git
https://github.com/wso2/private-paas
https://github.com/wso2/product-ss.git
https://github.com/wso2/product-ts.git
https://github.com/wso2/developer-studio.git
https://github.com/wso2/andes.git
https://github.com/wso2/balana.git
https://github.com/wso2/charon.git
https://github.com/wso2/esb-connectors.git
https://github.com/wso2/jaggery.git
https://github.com/wso2/jaggery-extensions.git
https://github.com/wso2/orbit.git
https://github.com/wso2/siddhi.git

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 59

.

User Guide
The user guide provides information about the features, functionality, solution development, testing and debugging
options of WSO2 API Manager.

Key Concepts
API Developer Tutorials
Application Developer Tutorials
Configuring the API Manager
Extending the API Manager
Working with Security
Working with Statistics

Key Concepts

Let's take a look at some concepts and terminology that you need to know in order to follow the use cases.

[] [] [] [] [] [] [API Manager components Users and roles API lifecycle Applications Access tokens Throttling tiers
] [] [] [] [API visibility and subscription API documentation visibility API resources Cross-origin resource sharing O

] [] [] [] []Auth scopes API templates Endpoints Sequences Caching

API Manager components

A component is made up of one or more bundles. A bundle is OSGi the modularization unit in OSGi, similar to a
 component-based architecture of all WSO2 products gives developers flexibility to remove or TheJAR file in Java.

add features with minimum dependencies.

The API Manager comprises the following high-level components:

Component Description

API
Publisher

Provides an end user, collaborative Web interface for API providers to publish APIs, share documentation, provision API
keys, and gather feedback on API features, quality and usage. For API Publisher use cases, see .API Developer Tutorials

API Store Provides an end-user, collaborative Web interface for API consumers to self register, discover API functionality, subscribe
to APIs, evaluate them and interact with API publishers. For API Store use cases, see .Application Developer Tutorials

API
Gateway

A runtime, back end component (an API proxy) developed using WSO2 ESB. API Gateway secures, protects, manages,
and scales API calls. It intercepts API requests, applies policies such as throttling and security using handlers and
manages API statistics. Upon validation of a policy, the Gateway passes Web service calls to the actual back end. If the

 service call is a token request, the Gateway passes it directly to the .Key Manager

When the API Manager is running, you can access the Gateway using the URL You.https://localhost:9443/carbon
integrate a monitoring and statistics component to the API Manager without any additional configuration effort. This
monitoring component integrates with WSO2 Business Activity Monitor, which can be deployed separately to analyze
events. For more information, see Publishing API Runtime Statistics

Although the API Gateway contains ESB features, it is recommended not to use it for ESB-specific tasks. Use it
only for Gateway functionality related to API invocations. For example, if you want to call external services like
SAP, use a separate ESB cluster for that.

http://www.osgi.org/Technology/HomePage
https://localhost:9443/carbon

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 60

hen an API is created, a file with its synapse configuration is added to the API Gateway. You can find in the <APIM_HOME
 folder. It has a set of handlers, each of>/repository/deployment/server/synapse-configs/default/api

which is executed on the APIs in the same order they appear in the configuration.

When the Gateway receives API invocation calls, it similarly
contacts the Key Manager service for verification. If is not enabled at the Gateway level, . caching
this verification call happens every time the Gateway receives an API invocation call

All tokens used for validation are based on OAuth 2.0.0 protocol. Secure authorization of APIs is provided by the OAuth
2.0 standard for key management. The API Gateway supports API authentication with OAuth 2.0, and enables IT
organizations to enforce rate limits and throttling policies.

Key
Manager

Handles all security and key-related operations. The Gateway connects with the key manager to check the validity of
OAuth tokens when APIs are invoked. The key manager also provides a token API to generate OAuth tokens that can be
accessed via the Gateway.

ugh a Web service call
Through a call (Thrift is the default communication protocol and is much faster than SOAP over HTTP)Thrift

If your setup has a cluster of multiple Key Manager nodes that are fronted by a instance for load balancing,WSO2 ELB
change the key management protocol from Thrift to WSClient using the element <KeyValidatorClientType> in <API

Thrift uses TCP load balancing and the ELB does not support it. . fileM_HOME>/repository/conf/api-manager.xml

 Handlers W You find the default handlers in any API's Synapse definition as shown below.

<handlers>
 <handler
class="org.wso2.carbon.apimgt.gateway.handlers.security.APIAuthenticationHandler"/>
 <handler class="org.wso2.carbon.apimgt.gateway.handlers.throttling.APIThrottleHandler">
 <property name="id" value="A"/>
 <property name="policyKey" value="gov:/apimgt/applicationdata/tiers.xml"/>
 </handler>
 <handler class="org.wso2.carbon.apimgt.usage.publisher.APIMgtUsageHandler"/>
 <handler
class="org.wso2.carbon.apimgt.usage.publisher.APIMgtGoogleAnalyticsTrackingHandler"/>
 <handler class="org.wso2.carbon.apimgt.gateway.handlers.ext.APIManagerExtensionHandler"/>
</handlers>

Let's see what each handler does:

APIAuthenticationHandler: Validates the OAuth2 bearer token used to invoke the API. It also determines
whether the token is of type or and sets variables as appropriate. ToProduction Sandbox MessageContext
extend the default authentication handler, see .Writing Custom Handlers
APIThrottleHandler: Throttles requests based on the throttling policy specified by the property.policyKey
Throttling is applied both at the application level as well as subscription level.
APIMgtUsageHandler: Publishes events to BAM for collection and analysis of statistics. This handler only comes to
effect if . See for more information.API usage tracking is enabled Publishing API Runtime Statistics
APIMgtGoogleAnalyticsTrackingHandler: Publishes events to Google Analytics. This handler only comes into
effect if Google analytics tracking is enabled. See for more information. Integrating with Google Analytics
APIManagerExtensionHandler: Extends the mediation flow of messages passing through the API Gateway. See

s for more information.Adding Mediation Extension

Statistics Additionally, statistics are provided by the monitoring component, which integrates with WSO2 BAM.

The components are depicted in the diagram below:

http://thrift.apache.org/static/files/thrift-20070401.pdf
http://wso2.com/products/elastic-load-balancer

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 61

Users and roles

The API Manager offers four distinct community roles that are applicable to most enterprises:

Admin: The API management provider who hosts and manages the . S/he is responsible for API Gateway
creating user roles in the system, assign them roles, managing databases, security etc. The Admin role is
available by default with credentials admin/admin.
Creator: a creator is a person in a technical role who understands the technical aspects of the API
(interfaces, documentation, versions etc.) and uses the API publisher to provision APIs into the API store.
The creator uses the API Store to consult ratings and feedback provided by API users. Creator can add APIs
to the store but cannot manage their lifecycle.
Publisher : a publisher manages a set of APIs across the enterprise or business unit and controls the API
lifecycle, subscriptions and monetization aspects. The publisher is also interested in usage patterns for APIs
and has access to all API statistics.
Subscriber : a subscriber uses the API store to discover APIs, read the documentation and forums,
rate/comment on the APIs, subscribes to APIs, obtain access tokens and invoke the APIs.

API lifecycle

An API is the published interface, while the service is the implementation running in the backend. APIs have their
own lifecycles that are independent to the backend services they rely on. This lifecycle is exposed in the API
publisher Web interface and is managed by the API publisher role.

The following stages are available in the default API lifecycle:

CREATED: API metadata is added to the API Store, but it is not deployed in the API gateway and therefore,
is not visible to subscribers in the API Store.
PROTOTYPED: the API is deployed and published in the API Store as a prototype. A prototyped API is
usually a mock implementation made public in order to get feedback about its usability. Users can invoke the

Tip: See for more information.Managing Users and Roles

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 62

1.
2.

API without a subscription.
PUBLISHED: The API is visible in the API Store and available for subscription.
DEPRECATED: When an API is deprecated, new subscriptions are disabled. But the API is still deployed in
the Gateway and is available at runtime to existing subscribers. Existing subscribers can continue to use it as
usual until the API is retired.
RETIRED: The API is unpublished from the API gateway and deleted from the store.
BLOCKED: Access to the API is temporarily blocked. Runtime calls are blocked and the API is not shown in
the API Store anymore.

Applications

An application is a logical collection of APIs. An application is primarily used to decouple the consumer from the
APIs. It allows you to :

Generate and use a single key for multiple APIs
Subscribe multiple times to a single API with different SLA levels

You subscribe to APIs through an application. Applications are available at different SLA levels, and have
application-level throttling tiers engaged in them. A throttling tier determines the maximum number of calls you can
make to an API during a given period of time.

The API Manager comes with a pre-created, default application, which allows unlimited access by default. You can
also create your own applications.

Access tokens

An is a simple string that is passed as an HTTP header of a request. For example, " access token Authorization
." Access tokens authenticate API users and applications, and: Bearer NtBQkXoKElu0H1a1fQ0DWfo6IX4a

ensure better security (e.g., prevent). If a token that is passed with a request is invalid, the request is DoS attacks
discarded in the first stage of processing. Access tokens work equally well for SOAP and REST calls.

There are two types of access tokens:

User access tokens
Application access tokens

User access tokens

Tokens to authenticate the final user of an API. User access tokens allow you to invoke an API even from a
. You generate/renew a user access token by third-party application like a mobile app calling the Login API through a

REST client. For more information, see .Token API

Application access tokens

Tokens to authenticate an application, which is a logical collection of APIs. You to access all APIs associated with
an application using a single token, and also subscribe multiple times to a single API with different SLA levels.
Application access tokens leverage OAuth2 to provide simple key management.

The steps below describe how to generate/renew application access tokens:

Log in to the API Store.
Click the menu, select the application from the drop-down list and click the or My Subscriptions Generate R

 but tons to create and renew access tokens.egenerate

https://docs.wso2.com/display/APICloud/Token+API

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 63

2.

Whenever an API call happens, the Gateway checks if the request originated from an allowed domain and
grants access accordingly. You can specify these domains in the . This ensures text boxAllowed Domains
that clients from a restricted domain cannot access an API even if an application key is stolen (when the key
is placed in client-side JS code).

Throttling tiers

Throttling allows you to limit the number of successful hits to an API during a given period of time, typically in cases
such as the following:

To protect your APIs from common types of security attacks such as denial of service (DOS)
To regulate traffic according to infrastructure availability
To make an API, application or a resource available to a consumer at different levels of service, usually for
monetization purpose

Tip: When the client makes a request to an API that is only allowed to some domains, the request
message must have an HTTP header to specify its domain name. Sending this header is mandatory
only if the API is restricted to certain domains. An admin can configure this header name using <Cli

 in element under the elemententDomainHeader> <APIGateway> <APIM_HOME>/repository/
.conf/api-manager.xml

For example, if the file contains , then<ClientDomainHeader>domain</ClientDomainHeader>
the API invocation request must contain an HTTP header called with values as shown in thedomain
example below: curl -v -H "Authorization: Bearer xxx" -H "domain: wso2.com" h

 ttp://localhost:8280/twitter/1.0.0/search.atom?q=cat

http://localhost:8280/twitter/1.0.0/search.atom?q=cat
http://localhost:8280/twitter/1.0.0/search.atom?q=cat

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 64

The following topics explain throttling:

Different levels of throttling
How throttling tiers work

Different levels of throttling

Throttling applies in the following levels:
[] [] [] []API-level throttling Application-level throttling Resource-level throttling IP-level throttling

API-level throttling

API-level throttling tiers are defined when using the API Publisher portal. The UI looks as follows:managing APIs

After API-level throttling tiers are set and the API is published, , the consumers of the API canat subscription time
log in to the and select which tier they are interested in as follows:API Store

According to the tiers the subscriber selects, s/he is granted a maximum number of requests to the API. The default
tiers are as follows:

Bronze: 1 request per minute
Silver: 5 requests per minute
Gold: 20 requests per minute
Unlimited: Allows unlimited access (you can disable the Unlimited tier by editing the n<TierManagement>
ode of the file)<APIM_HOME>/repository/conf/api-manager.xml

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 65

Setting tier permissions: Users with permission can set role-based permissions to API-levelManage Tiers
access throttling tiers. This is done using the menu in the API Publisher as shown below. Tier Permissions For
each tier, you can specify a comma-separated list of roles and either Allow or Deny access to the list.

A subscriber logged into the API Store can consume APIs using a specific tier only if s/he is assigned to a role that
is allowed access. In the API Store, the subscriber sees a list of tiers that is filtered based on the subscriber's role.
Only the ALLOWED roles appear here. By default, all tiers are allowed to everyone.

Application-level throttling

Application-level throttling tiers are defined at the time an application is created in the API Store as shown below:

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 66

An application is a logical collection of one or more APIs and is required to subscribe to an API. Applications allow
you to use a single access token to invoke a collection of APIs and to subscribe to one API multiple times with
different SLA levels.

An application is available to a consumer at different levels of service. For example, if you have infrastructure
limitations in facilitating more than a certain number of requests to an application at a time, the throttling tiers can be
set accordingly so that the application can have a maximum number of requests within a defined time. The default
throttling levels are are as follows:

Bronze: 1 request per minute
Silver: 5 requests per minute
Gold: 20 requests per minute
Unlimited: Unlimited access. The , which is provided out of the box has Unlimited tierDefault Application
set. You have the option to set it to a restricted limit.

Resource-level throttling

An API is made up of one or more resources. Each resource handles a particular type of request and is analogous
to a method (function) in a larger API. Resource-level throttling tiers are set to HTTP verbs of an API's wh resources
en using the API Publisher portal as shown below:Managing APIs

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 67

The default throttling levels are Gold, bronze, silver and unlimited, as explained in the previous sections.
When a subscriber views an API using the , s/he can see the resource-level tiers using the tab as follows:API Store throttling Throttle Info

Subscribers are not allowed to change these throttling tiers. They are simply notified of the limitations.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 68

1.
2.

3.

IP-level throttling

In IP-based throttling, you can limit the number of requests sent by a client IP (e.g., 10 calls from single client).

Log in to the management console and click the -> menu.Resources Browse
Navigate to the file in the registry location tiers.xml /_system/governance/apimgt/applicationda

.t a

Add your policy. For example, the throttling policy shown below allows only 1 API call per minute for a client
from 10.1.1.1 and 2 calls per minute for a client from any other IP address.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 69

3.

<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

xmlns:throttle="http://www.wso2.org/products/wso2commons/throttle">
<throttle:MediatorThrottleAssertion>
<wsp:Policy>
<throttle:ID throttle:type="IP">10.1.1.1</throttle:ID>
<wsp:Policy>
<throttle:Control>
<wsp:Policy>
<throttle:MaximumCount>1</throttle:MaximumCount>
<throttle:UnitTime>60000</throttle:UnitTime>
</wsp:Policy>
</throttle:Control>
</wsp:Policy>
</wsp:Policy>

<wsp:Policy>
<throttle:ID throttle:type="IP">other</throttle:ID>
<wsp:Policy>
<throttle:Control>
<wsp:Policy>
<throttle:MaximumCount>2</throttle:MaximumCount>
<throttle:UnitTime>60000</throttle:UnitTime>
 </wsp:Policy>
</throttle:Control>
</wsp:Policy>
</wsp:Policy>
</throttle:MediatorThrottleAssertion></wsp:Policy>

How throttling tiers work

With capability to define throttling at three levels, the final request limit granted to a given user on a given API is
ultimately defined by the consolidated output of all throttling tiers together.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 70

Example: Lets say two users subscribed to an API using the Gold subscription, which allows 20 requests per
minute. They both use the application App1 for this subscription, which again has a throttling tier set to 20 requests
per minute. All resource level throttling tiers are unlimited. In this scenario, although both users are eligible for 20
requests per minute access to the API, each ideally has a limit of only 10 requests per minute. This is due to the
application-level limitation of 20 requests per minute.

API visibility and subscription

Visibility settings prevent certain user roles from viewing and modifying APIs created by another user role.

: the API is visible to all users (registered and anonymous), and can be advertised in multiple storesPublic
(central and non-WSO2 stores).

: the API is visible to all users who are registered to the API's tenant domain.Visible to my domain
: The API is visible to it's tenant domain and only to the user roles that you specify.Restricted by Roles

Given below is how visibility levels work for users in different roles:

 API and roles can see all APIs in their tenant store even if you restrict access to them.creator publisher
This is because those roles have permission to view and edit all APIs in the API Publisher, and therefore,
does not have to be restricted in the Store.

 as Anonymous users can only see APIs that have visibility .Public
Registered users can see

public APIs of all tenant domains
all APIs in the registered user's tenant domain as long as the API is not restricted to a role that the
user is assigned to

An API's visibility is directly related to the API's because you cannot subscribe tosubscription availability

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 71

something you don't see in the store. The diagram below depicts this relationship:

API documentation visibility

By default, any document associated with an API has the same visibility level of the API. That is, if the API is public,
its documentation is also visible to . To enable other visibility levels to theall users (registered and anonymous)
documentation, go to file, uncomment and set the following<AM_HOME>/repository/conf/api-manager.xml
element to true:

<APIPublisher>

 <EnableAPIDocVisibilityLevels>true</EnableAPIDocVisibilityLevels>
</APIPublisher>

Then, log in to the API Publisher, go to the tab and click to see a new drop-down listDoc Add new Document
added to select visibility from:

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 72

You set visibility in the following ways:

: Visible to the same user roles who can see the API. For example, if the API'sSame as API visibility
visibility is public, its documentation is visible to all users.
Visible : Visible to all registered users in the API's tenant domain to my domain .

: Visible only to the users who have permission to log in to the API Publisher Web interface and createPrivate
and/or publish APIs to the API Store.

API resources

An API is made up of one or more resources. Each resource handles a particular type of request and is analogous
to a method (function) in a larger API.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 73

API resources accept following attributes:

Attribute
name

Description

OAuth
Scopes

See OAuth scopes

URL
Pattern

A URL pattern can be one of the following types:

As a url-mapping. E.g., /state/town/*
As a uri-template. E.g., /{state}/{town}

The terms url-mapping and uri-template come from . When an API issynapse configuration language
published in the API Publisher, a corresponding XML definition is created in the API Gateway. This
XML file has a dedicated section for defining resources. See examples below:

<resource methods="POST GET" url-mapping="/state/town/*">
<resource methods="POST GET" uri-template="/{state}/{town}">

url-mapping performs a one-to-one mapping with the request URL, whereas the uri-template performs
a pattern matching.

Parametrizing the URL allows the API Manager to map the incoming requests to the defined resource
templates based on the message content and request URI. Once a uri-template is matched, the
parameters in the template are populated appropriately. As per the above example, a request made
to sets the value of to and thehttp://gatewa_host:gateway_port/api/v1/texas/houston state texas
value of to . You can use these parameters within the synapse configuration fortown houston
various purposes and gain access to these property values through the and uri.var.province ur

 properties. For more information on how to use these properties, see i.var.district Introduction
 and the of the WSO2 ESB documentation.to REST API HTTP Endpoint

Also see on URI templates.http://tools.ietf.org/html/rfc6570

https://synapse.apache.org/Synapse_Configuration_Language.html
http://gatewa_hostgateway_port
http://docs.wso2.org/enterprise-service-bus/Sample+800%3A+Introduction+to+REST+API
http://docs.wso2.org/enterprise-service-bus/Sample+800%3A+Introduction+to+REST+API
http://docs.wso2.org/enterprise-service-bus/HTTP+Endpoint
http://tools.ietf.org/html/rfc6570

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 74

HTTP
Verb

The HTTP methods that specify the desired action to be performed on the resource. These methods
can be GET, POST, PUT, DELETE or OPTIONS. Multiple methods can be selected.

Auth
Type

The authentication type of each HTTP method of the resource. You can give one of the following:

: No authentication is applied and the API Gateway skips the authentication processNone
: Authentication is done by the application. The resource accepts application accessApplication

tokens.
: Authentication is done by the application user. The resource accepts userApplication User

access tokens.
: Both Application and Application User application and application user level authentication is

applied. Note that if you select this option in the UI, it appears as in the API Manager'sAny
internal data storage and data representation, and will appear in the response messages asAny
well.

Note that for the resources that have HTTP verbs (GET, POST etc.) requiring authentication (i.e.,
Auth Type is not NONE), set as the Auth type of . This is to support betweenNone OPTIONS CORS
the API Store and Gateway. (The above screenshot shows this).

The auth type is cached in the API Manager for better performance. If you change the auth type
through the UI, it takes about 15 minutes to refresh the cache. During that time, the server returns the
old auth type from the cache. If you want the changes to be reflected immediately, please restart the
server after changing the auth type.

A resource's parameters are cached in the at the API Gateway.resource cache

Once a request is accepted by a resource, it will be mediated through an in-sequence. Any response from the
backend is handled through the out-sequence. Fault sequences are used to mediate errors that might occur in either
sequence. The default in-sequence, out-sequence and fault sequences are generated when the API is published.

Cross-origin resource sharing

Cross-origin resource sharing (CORS) is a mechanism that allows restricted resources (e.g., fonts, JavaScript) of
Web page domaina to be requested from another outside the domain from which the resource originated.

The Swagger API Console that is integrated in the API Manager runs as a JavaScript client in the API Store and
makes calls from the Store to the API Gateway. Therefore, if you have the API Store and Gateway running on
different ports, enable CORS between them.

The CORS configuration is in file. Given below is a<APIM_HOME>/repository/conf/api-manager.xml
sample code.

<CORSConfiguration>
 <Enabled>true</Enabled>

<Access-Control-Allow-Origin>https://localhost:9443,http://localhost:9763</Access-Cont
rol-Allow-Origin>

<Access-Control-Allow-Headers>authorization,Access-Control-Allow-Origin,Content-Type</
Access-Control-Allow-Headers>
</CORSConfiguration>

The elements are described below:

XML Elements Values Description

https://docs.wso2.com/display/AM180/Configuring+Caching#ConfiguringCaching-Resourcecaching

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 75

<Enabled> True/False Used to enable/disable sending
CORS headers from the Gateway. By
default, CORS is enabled (True). This
is needed for Swagger to function
properly.

<Access-Control-Allow-Origin> HTTP and HTTPS Store Address. Change the Host and
Port for correct values of your store. For example, https:
//localhost:9443,http://localhost:9763

The value of the <Access-Control
. Default-Allow-Origin header>

values are API Store addresses that
are required for swagger to function
properly.

<Access-Control-Allow-Headers> Header values you need to pass when invoking the API.
For example, authorization,
Access-Control-Allow-Origin, Content-Type

Default values are sufficient for
Swagger to function.

Change your code according to the sample given here.

If you try to invoke an API with inline endpoints, you add the CORS Handler in the section of the<handlers>
API's configuration as follows. Find the API's configuration in the <APIM_HOME>/repository/deployment/ser

 folder.ver/synapse-configs/default/api

<handlers>
 <handler
class="org.wso2.carbon.apimgt.gateway.handlers.security.CORSRequestHandler"/>
</handlers>

OAuth scopes

Scopes enable fine-grained access control to API resources based on user roles. You define scopes to an API's
resources. When a user invokes the API, his/her OAuth 2 bearer token cannot grant access to any API resource
beyond its associated scopes.

You can apply scopes to an API resource at the time the API is created or modified. In the API Publisher, click the A
 menu (to add a new API) or the link next to an existing API. Then, navigate to the tab andPI -> Add Edit Manage

scroll down to see the button. A screen such as the following appears:Add Scopes

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 76

Scope
Key

A unique key for identifying the scope. Typically, it is prefixed by part of the API's name for
uniqueness, but is not necessarily reader-friendly.

Scope
Name

A human-readable name for the scope. It typically says what the scope does.

Roles The user role(s) that are allowed to obtain a token against this scope. E.g., manager, employee.

To illustrate the functionality of scopes, assume you have the following scopes attached to resources of an API:

Assume that users named and are assigned the employee role and both the employee and managerTom John
roles respectively.

Tom requests a token through the Token API as grant_type=password&username=nuwan&password=xxxx&
. However, as Tom is not in the manager role, he will only be granted a tokenscope= news_read news_write

bearing the scope. The response from the Token API will be similar to the following:news_read

"scope":"news_read","token_type":"bearer","expires_in":3299,
"refresh_token":"8579facb65d1d3eba74a395a2e78dd6",
"access_token":"eb51eff0b4d85cda1eb1d312c5b6a3b8"

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 77

Next, John requests a token as grant_type=password&username=john&password=john123&scope=news_
. As has both roles assigned, the token will bear both the requested scopes and theread news_write john

response will be similar to the following:

"scope":"news_read news_write", "token_type":"bearer", "expires_in":3299,
"refresh_token":"4ca244fb321bd555bd3d555df39315",
"access_token":"42a377a0101877d1d9e29c5f30857e"

This means that Tom can only access the GET operation of the API while John can access both as he is assigned
to both the employee and manager roles. If Tom tries to access the POST operation, there will be an HTTP 403
Forbidden error as follows:

<ams:fault xmlns:ams="http://wso2.org/apimanager/security">
 <ams:code>900910</ams:code>
 <ams:message>The access token does not allow you to access the requested
resource</ams:message>
 <ams:description>Access failure for API: /orgnews, version: 1.0.0 with key:
eb51eff0b4d85cda1eb1d312c5b6a3b8
 </ams:description>
</ams:fault>

API templates

An API template is its XML representation, which is saved in <APIM_HOME>/repository/resources/api_tem
file. This file comes with the API Manager by default. You can edit thisplates/ velocity_template.xml

default template to change the synapse configuration of all APIs that are created.

If you are using a distributed API Manager setup (i.e., Publisher, Store, Gateway and Key Manager components are
running on separate JVMs), edit the template in the Publisher node.

Endpoints

An endpoint is a specific destination for a message such as an address, WSDL, a failover group, a load-balance
group etc.

WSO2 API Manager has support for a range of different endpoint types, allowing the API Gateway to connect with
advanced types of backends. It supports , (also termed as address endpoint), HTTP endpoints URL endpoints WSDL

, , . For more information about endpoints and how to add, editendpoints Failover endpoints Load-balanced endpoints
or delete them, see the .WSO2 ESB documentation

Note the following:

You can expose both REST and SOAP services to consumers through APIs.
You cannot call backend services secured with OAuth through APIs created in the API Publisher. At the
moment, you can call only services secured with username/password.
The system reads gateway endpoints from the file.<JAVA_HOME>/Repository/conf/api-manager.xml
When there are multiple gateway environments defined, it picks the gateway endpoint of the production
environment. You can define both HTTP and HTTPS gateway endpoints as follows:

Tip: To invoke an API protected by scopes, you need to get an access token via the . TokensToken API
generated from the page in the API Store will not work.My Subscriptions

http://docs.wso2.org/enterprise-service-bus/HTTP+Endpoint
http://docs.wso2.org/enterprise-service-bus/Address+Endpoint
http://docs.wso2.org/enterprise-service-bus/WSDL+Endpoint
http://docs.wso2.org/enterprise-service-bus/WSDL+Endpoint
http://docs.wso2.org/enterprise-service-bus/Failover+Endpoint
http://docs.wso2.org/enterprise-service-bus/Load-balance+Endpoint
http://docs.wso2.org/enterprise-service-bus/Adding+an+Endpoint

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 78

<GatewayEndpoint>http://${carbon.local.ip}:${http.nio.port},https://${carbon.loca
l.ip}:${https.nio.port}</GatewayEndpoint>

If both types of endpoints are defined, the HTTPS endpoint will be picked as the server endpoint.

When creating (or updating) Failover endpoints through the Publisher UI (in the Implement tab), you need to
go into the of each endpoint and specify a set of Error Codes for the endpoint to fail overAdvanced Options
on and take off the Init ial Duration by sett ing i ts value to -1.

Sequences

The API Manager has a default mediation flow that is executed in each API invocation. There are 3 default
sequences engaged as , and .in out fault

Caching

For information on configuring caching response messages and caching API calls at the Gateway and Key Manager
server, see .Configuring Caching

API Developer Tutorials

API development is usually done by someone who understands the technical aspects of the API, interfaces,
documentation, versions etc., while API management is typically carried out by someone who understands the
business aspects of the APIs. In most business environments, API development is a responsibility that is distinct
from API publication and management.

WSO2 API Manager provides a simple Web interface called for API development, publicationWSO2 API Publisher
and management. It is a structured GUI designed for API creators to develop, document, scale and version APIs,
while also facilitating more API management-related tasks such as publishing API, monetization, analyzing statistics,
and promoting.

The diagram below shows the common lifecycle activities of an API developer/manager:

Tip: When you define secure (HTTPS) endpoints, set the <parameter
 element to in name="HostnameVerifier"> AllowAll <APIM_HOME>/repository/conf/axi

 file's HTTPS transport sender configurations2/axis2.xml :

 <parameter name="HostnameVerifier">AllowAll</parameter>

If not, .the server throws an exception

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 79

.Managing Users and Roles

In this documentation, we use a role by the name to carry out API development-related tasks, and a role bycreator
the name to carry out more management-related tasks. For instructions on adding the creator/publisherpublisher

roles, see

To open the API Publisher, run the API Manager (see access the following URL:) and Running the Product

https://<YourHostName>:9443/publisher

The API Publisher log-in page opens.

You can log in as the administrator using as the credentials or you can create users as described in admin/admin
. After logging in, see the following tutorials:Managing Users and Roles

Tip: You cannot access the API Publisher using HTTP. It is exposed as HTTPS only.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 80

1.
2.

Create and Publish an API
Edit an API from the Source Code
Add API Documentation
Manage the API Lifecycle
Publish to multiple external API stores
Engage a new Throttling Policy
Block Subscription to an API
Enforce Throttling and Resource Access Policies

Create and Publish an API

API creation is the process of linking an existing backend API implementation to the API Publisher so that you can
manage and monitor the API's lifecycle, documentation, security, community and subscriptions. Alternatively, you
can provide the API implementation in-line in the API Publisher itself.

The steps below show how to create a new API.

Log in to the API Publisher.
Click the link and provide the information given in the table below. Add

Field Sample value

Name PhoneVerification

Context /phoneverify

Version 1.0.0

Visibility Public

Resources URL
pattern

CheckPhoneNumber

 Request
types

GET, POST, OPTIONS

Click the following topics for a description of the concepts that you need to know when creating an API:

API visibility
Resources
Endpoints
Throttling tiers
Sequences
Response caching

Tip: Selecting the method is mandatory if you want to allowOPTIONS
subscribers to invoke the API using the API Console in the store.

For the resources that have methods requiring authentication (i.e., Auth
Type is not NONE), you set as the Auth type of to supportNone OPTIONS
CORS (Cross Origin Resource Sharing) between the API Store and
Gateway.

https://docs.wso2.com/display/AM180/Key+Concepts#KeyConcepts-APIvisibility
https://docs.wso2.com/display/AM180/Key+Concepts#KeyConcepts-APIresources
https://docs.wso2.com/display/AM180/Key+Concepts#KeyConcepts-Endpoints
https://docs.wso2.com/display/AM180/Key+Concepts#KeyConcepts-Throttlingtiers
https://docs.wso2.com/display/AM180/Key+Concepts#KeyConcepts-Sequences
https://docs.wso2.com/display/AM180/Key+Concepts#KeyConcepts-Responsecaching

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 81

2.

3. Click . After the resource is added, expand its method, add the following parametersAdd New Resource GET
t o i t a n d c l i c k . I m p l e m e n t
You add these parameters as they are required to invoke the API using our integrated API Console in later
tutorials.

Parameter
Name

Description Parameter
Type

Data
Type

Required

PhoneNumber Give the phone number to be validated Query String True

LicenseKey Give the license key as 0 for testing
purpose

Query String True

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 82

3.

4. The tab opens. Provide the information given in the table below. Click the liImplement Show More Options
nk to see the options that are not visible by default.

Field Sample value

Implementation
method

Backend

Endpoint type HTTP endpoint

Production
endpoint

This sample service has two operations as and CheckPhoneNumber CheckPhoneNum
. Le t ' s use here .bers CheckPhoneNumber

http://ws.cdyne.com/phoneverify/phoneverify.asmx

To verify the URL, click the button next to it.Test

Endpoint
security scheme

Non Secured
(If secured, user is asked for credentials of the backend service)

http://ws.cdyne.com/phoneverify/phoneverify.asmx

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 83

4.

5. Click to go to the tab and provide the following information.Manage Manage

Field Sample value

Tier Availability Select all

Transports HTTP/HTTPS

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 84

5.

6.

1.

2.

3.

Click . This will publish the API that you just created in the API Store so that subscribers canSave & Publish
use it.

You have created an API.

Edit an API from the Source Code

Most common API configurations are facilitated through the API Publisher. You log in to the Publisher and click the
 link next to the API's name to edit it using the UI. The link is visible only to users with creator privileges.Edit Edit

To do more advanced configurations, you can go to the API's code-level using the management console as follows,
or you can directly edit the file saved in <APIM_HOME>/repository/deployment/server/synapse-configs

./default/api

Log in to the management console () using credentialshttps://localhost:9443/carbon admin/admin
.
Select sub menu under the menu.Source View Service Bus

Source view contains the configuration of the API Gateway. You find sequences, filters, properties, APIs etc.

https://10.100.2.197:9443/carbon

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 85

3.

4.

5.

defined there. Search for the name of the API you want, and edit its content wrapped by the el<api></api>
ements.

C l i c k t o s a v e y o u r c h a n g e s .U p d a t e

Restart the server.

Add API Documentation

This section covers the following:
Add API Documentation In-line, using a URL or a File
Add Apache Solr-Based Indexing

Add API Documentation In-line, using a URL or a File

API documentation helps API subscribers understand the functionality of the API, and API publishers market their
APIs better and sustain competition. Using the API Publisher, you can add different types of documentation from
different sources. All documents created in the API Publisher have unique URLs to help improve SEO support.

The documentation types supported in the API Publisher as as follows:

In-line: Hosts documentation (How-tos, Samples, SDK, forums etc.) in the API Publisher itself and allows it to

You should not remove the default filter mediator and handler configurations in your API. They are
needed for routing requests based on the throttling/security policies. If you want to add a custom mediator
in the path of a request, add that inside the filter mediator configuration as shown in theinsequence
following example.

<filter source="$ctx:AM_KEY_TYPE" regex="PRODUCTION">
 <then>
 <class name="org.wso2.carbon.custommediator.CustomDataMediator"/>

 </then>
</filter>

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 86

1.
2.

3.

4.

be edited directly from the UI.
URL: Links to file references (URLs) of an external configuration management system.

: Allows to upload the documentation directly to the serverFile
Using the Swagger API Console

Log in to WSO2 API Publisher.
Click (e.g., 1.0.0). the API to which you want to add documentation to PhoneVerification

Select the tab of the API and click the link.Docs Add New Document

In-line documentation

Provide the following details to create a doc In-line.

Name SimpleClient

Type How To

Source In-line

Summary EXAMPLE REQUESTS TO PLACEFINDER WEBSERVICE

Tip: Do you want to set different visibility levels to the API documentation than the API? See API
.documentation visibility

https://docs.wso2.com/display/AM180/Key+Concepts#KeyConcepts-APIdocumentationvisibility
https://docs.wso2.com/display/AM180/Key+Concepts#KeyConcepts-APIdocumentationvisibility

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 87

4.

5.
6.

7.

8.

Click the button.Add Document
After adding the document, click the link associated with it.Edit Content

The embedded editor opens allowing you to edit the document's content in-line. Add in the content and click
.S a v e a n d C l o s e

The API's tab opens. Click the link again.Doc Add New Document

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 88

8.

9.

10.
11.

12.

Documentation using a URL

Then provide the following information to create another doc using a URL.

Name CDYNE Wiki

Type Other (Summary)

Source URL
http://api-portal.anypoint.mulesoft.com/cdyne/api/cdyne-phone-verification-api

Summary

CDYNE Phone Verification API

Click the button.Add Document
The API's tab opens again. Click the link again to add yet another document usingDoc Add New Document
a file.

Documentation using a file

Enter the following information:

Name API Manager Samples

Type Samples & SDK

Source You can provide any file format (common formats are PDF, HTML, .doc, text) of any size. For
example, use the sample PDF file .here

http://api-portal.anypoint.mulesoft.com/cdyne/api/cdyne-phone-verification-api
https://docs.wso2.com/download/attachments/39552969/WSO2%20API%20Manager%20Samples.pdf?version=3&modificationDate=1409562772000&api=v2

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 89

12.

13.

14.

Af ter adding the detai ls, c l ick the button.Add Document
You have now added three documents to the API: in-line, using a URL and a file.

Log in to the API Store and click the 1.0.0 API.PhoneVerification

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 90

14.

15.

16.

Go to the API's tab and see the documents listed by type. Documentation
As a subscriber, you can read the doc and learn about the API.

Expand the categories and click the or links to see the documentation content. View Content Download

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 91

16.

1.

You have created documentation using the API Publisher and viewed them as a subscriber in the API Store.

Add Apache Solr-Based Indexing

The API Manager has based indexing for API documentation content. It provides both the APIApache Solr
Publisher and Store full-text search facility to search through API documentation, find documents and related APIs.
The search syntax is Search criteria looks for the keyword in any word/phrase in the documentationdoc:keyword.
content and returns both the matching documents and associated APIs.

The following media types have Apache Solr based indexers by default, configured using the element<Indexers>
in .<APIM_HOME>/repository/conf/registry.xml

Text : text/plain
PDF : application/pdf
MS word : application/msword
MS Powerpoint : application/vnd.ms-powerpoint
MS Excel : application/vnd.ms-excel
XML : application/xml

Writing a custom index

In addition to the default ones, you can write your own indexer implementation and register it as follows:

Write a custom indexer. Given below is a sample indexer code.

https://lucene.apache.org/solr/

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 92

1.

2.
3.

package org.wso2.indexing.sample;

import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Arrays;
import org.apache.solr.common.SolrException;
import org.wso2.carbon.registry.core.exceptions.RegistryException;
import org.wso2.carbon.registry.core.utils.RegistryUtils;
import org.wso2.carbon.registry.indexing.IndexingConstants;
import org.wso2.carbon.registry.indexing.AsyncIndexer.File2Index;
import org.wso2.carbon.registry.indexing.indexer.Indexer;
import org.wso2.carbon.registry.indexing.solr.IndexDocument;

public class PlainTextIndexer implements Indexer {
 public IndexDocument getIndexedDocument(File2Index fileData) throws
SolrException,
 RegistryException {

 /* Create index document with resource path and raw content*/
 IndexDocument indexDoc = new IndexDocument(fileData.path,
RegistryUtils.decodeBytes(fileData.data), null);

 /* You can specify required field/value pairs for this indexing
document.
 * When searching we can query on these fields */
 Map<String, List<String>> fields = new HashMap<String,
List<String>>();
 fields.put("path", Arrays.asList(fileData.path));

 if (fileData.mediaType != null) {
 fields.put(IndexingConstants.FIELD_MEDIA_TYPE,
Arrays.asList(fileData.mediaType));
 } else {
 fields.put(IndexingConstants.FIELD_MEDIA_TYPE,
Arrays.asList("text/plain"));
 }

 /* set fields for index document*/
 indexDoc.setFields(fields);
 return indexDoc;
 }
}

Add the custom indexer JAR file to directory.<APIM_HOME>/repository/components/lib
Update the element in file with the new<Indexers> <APIM_HOME>/repository/conf/registry.xml
indexer. The content is indexed using this media type. For example,

<indexers>
 <indexer class="org.wso2.indexing.sample.PlainTextIndexer"
mediaTypeRegEx="text/plain" profiles="default,api-store,api-publisher"/>
</indexers>

The attributes of the above configuration are described below:

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 93

3.

4.
5.

1.
2.

3.

class Java class name of the indexer

mefiaTypeRegEx A regex pattern to match the media type

profiles APIM profiles in which the indexer is available

Restart the server.
Add API documentation using the new media type and then search some term in the documentation using the
syntax (). You will see how the documentation has got indexed according to the media type.doc:keyword

Manage the API Lifecycle

In this section, we show you how to
Create a new API Version
Deploy and Test as a Prototype
Publish the new Version and Deprecate the old

Create a new API Version

A new is created when you want to change a published API's behaviour, authentication mechanism,API version
resources, throttling tiers, target audiences etc. It isn't recommended to modify a published API that has subscribers
plugged to it.

After creating a new version, you typically deploy it as a for early promotion. A prototype can be used forprototype
testing, without subscription, along with the published versions of the API. After a period of time during which the
new version is used in parallel with the older versions, the prototyped API can be published and its older versions
deprecated.

The steps below show how to create a new version of an existing API.

Log in to the API Publisher as a user with the role assigned.publisher
Click the Browse elect menu and s the API that you want to create a version of (e.g., PhoneVerification

 .)1.0.0
The API 's page opens. Cl ick the but ton.Overview Copy

Create and Publish an API
The examples here use the API, which is created in section .PhoneVerification

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 94

3.

4.

5.

Give a version number, check the default version option and click .Done

The page opens. Click on the new API version to open it.All APIs

Tip: The option means that you Default Version make this version the default in a group of different
versions of the API. A default API can be invoked without specifying the version number in the URL.
For example, if you mark http://host:port/youtube/ 2.0 as the default version when the API has 1.0 and
3.0 versions as well, requests made to get automatically routed to versionhttp://host:port/youtube/
2.0.

If you mark any version of an API as the default, you get two API URLs in its page in theOverview
API Store. One URL is with the version and the other is without. You can invoke a default version
using both URLs.

If you mark an unpublished API as the default, the previous default, published API will still be used as
the default until the new default API is published (or prototyped).

http://hostport

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 95

5.

6.

7.

C l i c k t h e l i n k n e x t t o t h e A P I ' s n a m e .E d i t

Do the required modifications to the API. For example, assuming that the POST method is redundant, let's
delete it from the resource that we added to the API at the time it was created.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 96

7.

8.

1.

Click once the edits are done.Save

You have created a new version of an API. In the next tutorial, you and test it with itsdeploy this API as a prototype
older versions.
Deploy and Test as a Prototype

An is created for the purpose of early promotion and testing. API prototype You can deploy a new API or a new
It gives subscribers an early implementation of the API that they can try version of an existing API as a prototype.

out without a subscription or monetization, and provide feedback to After a period of time, publishers canimprove.
make changes the users request and publish the API.

Log in to the API Publisher and select the API (e.g.,) that you want toPhoneVerification 2.0.0
p r o t o t y p e .

Tip: By default, only the latest version of an API is shown in the API Store. If you want to display multiple
versions, set the <DisplayMultipleVersions> element to true in <APIM_HOME>/repository/conf/
api-manager.xml file.

The examples here use the API , which is created in the .PhoneVerification 2.0.0 previous tutorial

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 97

1.

2.

3.

Click the tab of the API and change the its state to . Lifecycle PROTOTYPED After creating a new version, you
 typically deploy it as a prototype for the purpose of testing and early promotion.

Log in to the API Store, click the menu and then click the newly prototyped API.Prototyped APIs

Tip: The option is used to automatically change the API Propagate Changes to API Gateway
metadata in the API Gateway according to the information published in the API Store.

: You can also deploy an API as a prototype using the Implement tab at the time it is created:Tip

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 98

3.

4.
5.

6.

The APIs page opens. Note that the subscription options are not available. Overview
Note that you can read documentation, rate, comment and take part in the forum and social media. Also note
that there are two URLs for both production and sandbox. This is because you marked the PhoneVerifica
tion 2.0.0 as the default version in step 4 of the previous tutorial.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 99

6.

7.

8.

Click the tab of the API and note that the method is not available as we removed that inAPI Console POST
t h e n e w v e r s i o n .

Let's invoke this API using the API Console.
Expand the method, give values to the and parameters and invoke the API.GET PhoneNumber LicenseKey
You added these parameters to the API Console when creating the API.

Note that you get the expected result in the API Console. As this is a prototyped API, you do not need an
access token and can leave the f i e ld b lank .Header

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 100

8.

1.
2.

3.

you get an authentication error. This is becauseIf you try to invoke the version 1.0.0 without an access token,
the older API version is published and requires an access token to be invoked.

In the next tutorial, you You have prototyped an API and tested it along with its older and published versions. publish
the prototyped API and deprecate its older versions.
Publish the new Version and Deprecate the old

You to make it available for subscription in the API Store. If you set up multiple tenants, your tenant publish an API
store will be visible to other tenants as well. Therefore, users of the other tenants can view the APIs that are
published in your default API Store. This allows you to advertise your APIs to a wider audience. Although the APIs
that are published in your tenant store are visible to the users of other tenant stores, they need to log in to your
tenant store in order to subscribe to and use them.

The steps below show how to publish an API to its default API Store:
Log in to the API Publisher as a user who has the role assigned. publisher
Click the API that you deprecated in the previous tutorial (e.g.,).PhoneVerification 2.0.0

Go to the API's tab and select the state from the drop-down list. Then, select all theLifecycle PUBLISHED
options and click . Update

For a description of the API lifecycle stages, see . API lifecycle

Tip: The tab is only visible to users with publisher privileges.Lifecycle

https://docs.wso2.com/display/AM180/Key+Concepts#KeyConcepts-APIlifecycle

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 101

3.

4.

The three options are described below:

Option Description

Propagate
Changes to API
Gateway

Automatically changes the API metadata in the API Gateway according to the
information published in the API Store. If unselected, you have to manually configure
the Gateway.

Deprecate Old
Versions

Automatically deprecates all prior versions of the API, if any.

Require
Re-Subscription

Invalidates current user subscriptions, forcing the users to subscribe again.

The API is now published to the default API Store and all its previous versions are deprecated.
Log in to the default Store and click the menu to see the API that you just published listed there. APIs The
older version (e.g., PhoneVerification 1.0.0) is no longer listed here as it is deprecated.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 102

4.

5. Click the menu and look under the section. The subscriptions made toMy Subscriptions Subscribed APIs
t h e o l d e r A P I v e r s i o n s m u s t b e d e p r e c a t e d n o w .

You have published an API to the API Store and deprecated its previous versions.

Publish to multiple external API stores

Tip: When an API is deprecated, new subscriptions are disabled (you cannot see the subscription
options) and existing subscribers can continue to use the API as usual until it is eventually retired.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 103

1.

2.

3.

You can share an API to application developers who are subscribed to the API Stores of other tenants. This allows
you to advertize your APIs to a wider community. Subscribers of other tenant stores can view and browse your APIs
but to subscribe to them, the users must visit your (the original publisher's) store.

Capability to publish to external API Stores is not there by default. Follow the steps below to configure it.

Log in to APIM admin console () https://<Server Host>:9443/carbon as admin and select Browse m
 enu under Resources .

The Registry opens. G o to /_system/governance/apimgt/externalstores/external-api-store
s . x m l r e s o u r c e .

Click the link and change theEdit as Text element of each external API store that<ExternalAPIStores>
you need to publish APIs to. For example,

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 104

3.

4.
5.

<ExternalAPIStores>
 <StoreURL>http://localhost:9763/store</StoreURL>
 <ExternalAPIStore id="Store1" type="wso2">
 <DisplayName>Store1</DisplayName>
 <Endpoint>http://localhost:9763/store</Endpoint>
 <Username>xxxx</Username>
 <Password>xxxx</Password>
 </ExternalAPIStore>
 <ExternalAPIStore id="ProWeb" type="proWeb">
 <Name>ProgrammableWeb</Name>
 <Endpoint>xxxxx</Endpoint>
 </ExternalAPIStore>
 <ExternalAPIStore id="Store2" type="wso2">
 <DisplayName>Store2</DisplayName>
 <Endpoint>http://localhost:9764/store</Endpoint>
 <Username>xxxx</Username>
 <Password>xxxx</Password>
 </ExternalAPIStore>
</ExternalAPIStores>

Note the following in the configuration above:

Element Description

<ExternalAPIStore
id="" type="">

: The external store identifier, which is a unique value.id
: type Type of the Store. This can be a WSO2-specific API Store or an external

one.

<StoreURL> URL of the API store of the current APIM deployment. This is the URL to the API
in the original publisher's store. APIs that are published to external stores will be
redirected to this URL.

<DisplayName> The name of the Store that is displayed in the publisher UI.

<Endpoint> URL of the API Store.

 & <Username> <Pas
sword>

Credentials of a user who has permissions to create and publish APIs.

Registry changes are applied dynamically. You do not need to restart the server.
Using the management console, .create an API
Click on the newly created API to see a new tab called added to the API PublisherExternal API Stores
c o n s o l e .

https://docs.wso2.com/display/AM170/Creating+and+Managing+APIs

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 105

5.

6.
7.

1.

2.

3.

Note the following:

You can select multiple external API stores and click to publish your API to them. Save
 I f the API creator updates the API after publication to external stores, either the creator or a publisher

can simply push those changes to the published stores by selecting the stores and clicking againSave
.
If the API creator deletes the API, each external store that it is published to will receive a request to
delete the API.

Log in to an external API store where the API is published to and click it to open.
A link appears as and it directs you to the original publisher’s store through which youView Publisher Store
can subscribe to the API.

You have added multiple external stores to your registry and published your APIs to them.

Engage a new Throttling Policy

The steps below show how to engage a throttling policy to an API.

Write your throttling policy. For example, the following sample throttling policy points to a backend service
and allows 1000 concurrent requests to a service.

<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-uti
lity-1.0.xsd"
xmlns:throttle="http://www.wso2.org/products/wso2commons/throttle"
 wsu:Id="WSO2MediatorThrottlingPolicy">
 <throttle:MediatorThrottleAssertion>
 <throttle:MaximumConcurrentAccess>1000</throttle:MaximumConcurrentAccess>
 <wsp:Policy>
 <throttle:ID throttle:type="IP">other</throttle:ID>
 </wsp:Policy>
 </throttle:MediatorThrottleAssertion>
</wsp:Policy>

Log in to the API Manager's management console () and click the https://localhost:9443/carbon Res
 menu to view the registry.ource > Browse

Click the /_system/goverence/apimgt/applicationdata path to go to its detailed view.

Tip: For a description of throttling, see .Throttling Tiers

https://localhost:9443/carbon
https://docs.wso2.com/display/AM180/Key+Concepts#KeyConcepts-Throttlingtiers

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 106

3.

4.

5.
6.

7.

I n t h e d e t a i l v i e w , c l i c k t h e l i n k .A d d R e s o u r c e

Upload the policy file to the server as a registry resource.
In the management console, select the menu.Service Bus > Source View

The configurations of all APIs created in the API Manager instance opens. To engage the policy to a selected
API, add it to your API definition. In this example, we add it to the login API.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 107

7.

<?xml version="1.0" encoding="UTF-8"?><api
xmlns="http://ws.apache.org/ns/synapse" name="_WSO2AMLoginAPI_" context="/login">
 <resource methods="POST" url-mapping="/*">
 <inSequence>
 <send>
 <endpoint>
 <address uri="https://localhost:9493/oauth2/token"/>
 </endpoint>
 </send>
 </inSequence>
 <outSequence>
 <send/>
 </outSequence>
 </resource>
 <handlers>
 <handler
class="org.wso2.carbon.apimgt.gateway.handlers.throttling.APIThrottleHandler">
 <property name="id" value="A"/>
 <property name="policyKey"
value="gov:/apimgt/applicationdata/throttle.xml"/>
 </handler>
<handler
class="org.wso2.carbon.apimgt.gateway.handlers.ext.APIManagerExtensionHandler"/>
 </handlers>
</api>

You have successfully engaged a throttling policy to an API.

Block Subscription to an API

An API creator to an API as a way of disabling access to it and managing its usage andblocks subscription
monetization. A blocking can be temporary or permanent. There is an unblocking facility to allow API invocations
back.

You block APIs by subscriptions. That is, a given user is blocked access to a given API subscribed to using a given
application. If a user is subscribed to two APIs using the same application and you block access to only one of the
APIs, s/he can still continue to invoke the other APIs that s/he subscribed to using the same application. Also, s/he
can continue to access the same API subscribed to using different applications.

Blocking can be done in two levels:

 : Block production and sandbox access API access is blocked with both production and sandbox keys
: Allows sandbox access only. Useful when you wants to fix and test an issueBlock production access only

in an API. Rather than blocking all access, you can block production access only, allowing the developer to fix
and test.

When is enabled (it is enabled by default), eAPI Gateway caching ven after blocking a subscription, consumers
access APIs until the cache expires, which happens approximately every 15 minutes. might still be able to

Be sure to specify the same path used in step 5 in the policy key of your API definition.

See the following topics for a description of the concepts that you need to know when you block
subscriptions to an API:

Applications
Throttling
 Access tokens

https://docs.wso2.com/display/AM180/Key+Concepts#KeyConcepts-Gateway
https://docs.wso2.com/display/APICloud/Key+Concepts#KeyConcepts-Applications
https://docs.wso2.com/display/APICloud/Key+Concepts#KeyConcepts-Throttling
https://docs.wso2.com/display/APICloud/Introducing+the+Concepts#IntroducingtheConcepts-Accesstokens
https://docs.wso2.com/display/APICloud/Introducing+the+Concepts#IntroducingtheConcepts-Accesstokens
https://docs.wso2.com/display/APICloud/Key+Concepts#KeyConcepts-Accesstokens

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 108

1.
2.

3.

4.

Log in to the API Publisher.
Create two APIs by the names TestAPI1 and TestAPI2 and publish them to the API Store. In this example,
the two APIs use the same backend and resources that were used when creating the PhoneVerification
A P I i n t h e f i r s t t u t o r i a l .

Log in to the API Store, click the menu and note that the two APIs are visible in the page.APIs APIs

Subscribe to both APIs using the same application. You can use a default application or a new one.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 109

4.

5.

6.

Go to the page and create an access token to the application.My Subscriptions

Invoke both APIs using the access token you got in the previous step. In this example, we use the API
 t a b o f t h e A P I s t o i n v o k e i t .C o n s o l e

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 110

6.

7.

8.

No te t ha t you can success fu l l y i nvoke bo th AP Is .

You have subscribed to and invoked two APIs. Let's block one subscription and see the outcome.
Log in to the and cAPI Publisher lick the menu to open the page. It Subscriptions Subscriptions shows all
APIs /app l i ca t ions tha t each user i s subscr ibed to .

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 111

8.

9.

10.

11.

12.

Block your previous subscription for TestAPI1. Select the option and click the production and sandbox

 l i n k .B l o c k

Note that the link immediately turns to , allowing you to activate the subscription back at anyBlock Unblock
time.
Log back to the API Store and invoke the two APIs (and) again.TestAPI1 TestAPI2

Note that you can invoke only again. When you invoke , it gives a message that theTestAPI2 TestAPI1
requested API is temporarily blocked. Neither the API creator nor any subscriber can invoke the API until the
b l o c k i s r e m o v e d .

You might have to for if the access tokenregenerate the access token DefaultApplication
expiration time (1 hour by default) has passed since the last time you generated it. You can refresh
the access token by going to the page in the Store.My Subscriptions

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 112

12.

13.

14.

1.
2.

Go back to the API Publisher's page and the subscription. Subscriptions unblock

Invoke again and note that you can invoke it as usual.TestAPI1

You have subscribed to two APIs, blocked subscription to one and tested that you cannot invoke the blocked API.

Enforce Throttling and Resource Access Policies

Throttling allows you to limit the number of hits to an API during a given period of time, typically to protect your
APIs from security attacks and your backend services from overuse, regulate traffic according to infrastructure
limitations and to regulate usage for monetization. For information on different levels of throttling in WSO2 Cloud,
see .Throttling tiers

A
fter you created, published and subscribed to the API, let's see how the API Gateway enforces throttling and
resource access policies to the API.

Log in to the API Cloud and the API Publisher will open automatically.
Click the link in the top right-hand corner of the API Publisher to open your default APIGo to API Store
S t o r e .

Create and Publish an API and the tutorials to create, publish and subscribe to the Subscribe to an API Pho
using the throttling tier.neVerification API Bronze

This tutorial uses the API, which has one resource, GET and POST methods toPhoneVerification
access it and a throttling policy enforced.

Before you begin, follow the

https://docs.wso2.com/display/AM180/Key+Concepts#KeyConcepts-Throttlingtiers

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 113

2.

3.

C l i c k t h e t a b . A P I C o n s o l e

Tip: You can access any tenant's store using the URL http://<hostname>/Store?tenant=<te
.nant_name>

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 114

3.

4.

Expand the method, give the and parameters and invoke the API.GET PhoneNumber LicenseKey

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 115

4.

5.

6.
7.

The response appears in the console. As we used a valid phone number in this example, the response
returns as valid.

Within a minute after the first API invocation, make another attempt to invoke the API.
Note that you get a throttling error saying that you exceeded your quota. This is because you subscribed to
the API on the Bronze throttling tier and the Bronze tier only allows you to make one call to the API per

 m i n u t e .

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 116

7.

8.

9.

10.

Let's try to invoke an invalid resource.
Install if it is not there in your environment. Note that cURL comes by default in some operatingcURL
systems. You can also use any other REST client.
Open the command line and execute the following cURL command with an invalid resource name (e.g., Chec

.) Get the from the API's tab in the API Store.kPhoneNum <API URL> Overview

curl -H "Authorization:Bearer <access token>" -v '<API
URL>/CheckPhoneNum?PhoneNumber=123456&LicenseKey=0'

Note that you get a message as 'no matching resource.' This is because you are trying to access a REST
r e s o u r c e t h a t i s n o t d e f i n e d f o r t h e A P I .

In this tutorial, you saw how the API Gateway enforces throttling and resource access policies to APIs.

Application Developer Tutorials

API Manager provides a Web interface called the to host and advertise published APIs. APIWSO2 API Store
consumers and partners can browse the store and subscribe to secured, protected, authenticated APIs.

The diagram below shows common API consumer lifecycle activities:

http://curl.haxx.se/download.html

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 117

To open the API Store, run the API Manager (see access the following URL:) and Running the Product

https://<HostName>:9443/store

The API Store opens in the anonymous mode. You can see all public APIs without logging in, or self sign up using
the link to see all APIs.Sign-up

After logging in, see the following tutorials:
Subscribe to an API
Invoke an API using the Integrated API Console
Invoke an API using the Integrated REST Client

Tip: You cannot access the API Store using HTTP. It is exposed as HTTPS only.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 118

.Create and Publish an API

1.

2.

Use the Community Features
Invoke an API using a SOAP Client

Subscribe to an API

You to a published API before using it in your applications. Subscription enables you to receive accesssubscribe
tokens and be authenticated to invoke the API.

The examples here use the API, which is created in sectionPhoneVerification

Log in to the API Store () and click on an API (e.g.,https://<hostname>:9443/store PhoneVerifica
 to open it. 1.0.0)tion

Note the subscript ion opt ions on the API's page.Overview

See the following topics for a description of the concepts that you need to know when subscribing to an API:

API visibility and subscription availability
Applications
Application-level throttling
Access tokens

Tip: In a multi-tenanted API Manager setup, you can access any tenant's store using the URL http:
.//<hostname>/Store?tenant=<tenant_name>

https://docs.wso2.com/display/AM180/Key+Concepts#KeyConcepts-APIvisibilityandsubscription
https://docs.wso2.com/display/AM180/Key+Concepts#KeyConcepts-Applications
https://docs.wso2.com/display/AM180/Key+Concepts#KeyConcepts-Application-levelthrottling
https://docs.wso2.com/display/APICloud/Key+Concepts#KeyConcepts-Accesstokens
https://docs.wso2.com/display/APICloud/Key+Concepts#KeyConcepts-Accesstokens
https://docs.wso2.com/display/AM180/Key+Concepts#KeyConcepts-Accesstokens

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 119

2.

3. Click the menu and create a new application. My Applications

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 120

3.

4.

5.
6.

Go back to the API's subscription options and select the application you just created, a tier and click Subscri
.b e

Click the button when prompted. The subscriptions page opens.Go to My Subscriptions
Select the application from the drop-down list and click to create an application access token. YouGenerate
can use this token to invoke all APIs that you subscribe to using the same application.

Tip: Instead of creating a new application, you can also use the default application.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 121

6.

7.

8.

9.

Install if it is not there in your environment. Note that cURL comes by default in some operatingcURL
systems. You can also use any other REST client.
Open the command line and execute the following cURL command:

curl -H "Authorization: Bearer <access token>" -v '<API URL>'

Be sure to replace the placeholders as follows:
<access token>: Give the token generated in step 8
<API URL>: Go to the API's tab in the API Store and copy the production URL and appendOverview
the payload to it. E.g., http://localhost:8280/phoneverify/1.0.0/CheckPhoneNumber?PhoneNumber=12
3456&LicenseKey=0

Here's an example:

curl -H "Authorization :Bearer 8e64c4201d1c311c76a9c540856d1043" -v
'http://localhost:8280/phoneverify/1.0.0/CheckPhoneNumber?PhoneNumber=123456&Lice
nseKey=0'

Tip: You can set a token validity period in the given text box. By default, it is set to one hour. If you
set a minus value (e.g., -1), the token will never expire.

http://curl.haxx.se/download.html
http://192.168.1.2:8280/phoneverify/1.0.0?PhoneNumber=123456&LicenseKey=0
http://192.168.1.2:8280/phoneverify/1.0.0?PhoneNumber=123456&LicenseKey=0

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 122

9.

10.

Note the result that appears on the command line. In this example, the phone number is invalid.

Similarly, invoke the POST method using the following cURL command:

curl -H "Authorization :Bearer <your token here>" --data
"PhoneNumber=123456&LicenseKey=0"
http://localhost:8280/phoneverify/1.0.0/CheckPhoneNumber

You have subscribed to an API and invoked it.

To unsubscribe from an API, go to the menu in the API Store, select the applicationMy Subscriptions
used for the subscription, find the API under the section and click the delete iconSubscribed APIs
a s s o c i a t e d w i t h i t .

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 123

1.
2.

3.

Log in to the API Store and click an API (e.g.,).PhoneVerification
Subscribe to the API (e.g., 1.0.0) using the and an available tier.PhoneVerification default application

Go to the page and generate a production key to the default application using which youMy Subscriptions
s u b s c r i b e d t o t h e A P I .

.Create and Publish an API

1.

Invoke an API using the Integrated API Console

There are different ways to : using the integrated API console, the integrated or ainvoke an API WSO2 REST Client
third-party tool like cURL.

Swagger () is a specification and a complete framework for describing,https://developers.helloreverb.com/swagger
producing, consuming, and visualizing RESTful Web services as interactive documentation. For the Swagger
specification of API declaration, see https://github.com/wordnik/swagger-core/wiki/API-Declaration.

The API Publisher has integrated Swagger to facilitate simple, interactive API documentation and invocation. The
documentation is given in a Swagger API definition, which is the JSON representation of the API that is created
using the information provided at the time the API is created. The Swagger JSON files are saved in the registry. You
can edit the API definition using the JSONMate text editor in the API Publisher.

Let's see how to use the API Publisher to edit the Swagger API definition and then use the API Console in the Store
to invoke the API.

The examples here use the API, which is created in sectionPhoneVerification

If you unsubscribe from an API and then resubscribe with a different tier, it takes approximately 15 minutes
for the tier change to be reflected. This is because the older tier remains in the cache until it is refreshed
periodically by the system.

See the following topics for a description of the concepts that you need to know when invoking an API:

Applications
Throttling

 Access tokens
Cross-origin resource sharing if you have the or you wantAPI Store and Gateway in different ports
to invoke an API with .inline endpoints

https://developers.helloreverb.com/swagger
https://docs.wso2.com/display/AM171/Add+API+Documentation+using+Swagger
https://docs.wso2.com/display/AM180/Key+Concepts#KeyConcepts-Applications
https://docs.wso2.com/display/AM180/Key+Concepts#KeyConcepts-Throttlingtiers
https://docs.wso2.com/display/APICloud/Introducing+the+Concepts#IntroducingtheConcepts-Accesstokens
https://docs.wso2.com/display/APICloud/Introducing+the+Concepts#IntroducingtheConcepts-Accesstokens
https://docs.wso2.com/display/AM180/Key+Concepts#KeyConcepts-Accesstokens
https://docs.wso2.com/display/AM180/Key+Concepts#KeyConcepts-Cross-originresourcesharing

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 124

3.

4. Click the menu in the API Store and then click on the API that you want to invoke. When the API opens,APIs
g o t o i t s t a b .A P I C o n s o l e

1.
2.

3.

4.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 125

4.

5. Expand the GET method, provide the required parameters and click For example,Try it Out.

PhoneNumber E.g., 18006785432

LicenseKey Give 0 for testing purpose

Authorization The API console is automatically populated by the access token that you generated in
step 3 after subscribing to the API.
The token is prefixed by the string "Bearer" as per the OAuth bearer token profile. OAuth
security is enforced on all published APIs. If the application key is invalid, you get a 401
Unauthorized response in return.

4.

5.
6.

7.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 126

5.

Base URL Appears at the bottom of the console. Using the base URL and the parameters, the
system creates the API URL in the form <context>/<vhttp://<host_name>:8280/
ersion>/<Resource, if any><backend service requirements included

For example, as parameters, if any>. http://localhost:8280/phoneveri
 .fy/1.0.0/CheckPhoneNumber is the context, 1.0.0 is the version/phoneverify an

d is the resource.CheckPhoneNumber

7.

If you (causes the cannot invoke the API's HTTPS endpoint SSLPeerUnverifi
), it could be because the security certificate issued by the server ised exception

not trusted by your browser. To resolve this issue, access the HTTPS endpoint
directly from your browser and accept the security certificate.

Tip: If HTTP invocation is blocked in your corporate environment, you have to
change the base path of the API to its HTTPS endpoint in the Swagger definition.
This ensures that API invocations do not fail as a result of browsers blocking
HTTP calls within HTTPS sessions.

Tip: Your API's resource must have the method selected to allowOPTIONS
subscribers to invoke the API using the API Console.

For the resources that have methods requiring authentication (i.e., Auth Type is
not NONE), you set as the Auth type of to support CORS (CrossNone OPTIONS
Origin Resource Sharing) between the API Store and Gateway.

http://host:8280/
http://host:8280/phoneverify/1.0.1/CheckPhoneNumber
http://host:8280/phoneverify/1.0.1/CheckPhoneNumber

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 127

5.

6. Note the response for the API invocation. As we used a valid phone number in this example, the response is
v a l i d .

7.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 128

Create and Publish an API

6.

7.

API
URL

To get the URL, go to the API's tab in the API Store. The URL takes the form Overview http://<host_name>:8
context>/<version>/<Resource, if any><back end service requirements included as<280/

 For example, parameters, if any>. http://gateway.api.cloud.wso2.com:8280/t/yashiracom/pho
 where neverify/1.0.0/CheckPhoneNumber is the context, 1.0.0 is the version/phoneverify and CheckPho

 is the resource.neNumber

As you are going to make an HTTP GET call in this tutorial, append the payload to the URL. For example, http://
gateway.api.cloud.wso2.com:8280/t/yashiracom/phoneverify/1.0.0/CheckPhoneNumber?Phone
Number=18006785432&LicenseKey=0.

Header Authorization:Bearer <give the access token that you generated in step 4>
E.g, Authorization:Bearer U9znDo4OSYPfzoW16S2puHmKahga

OAuth security is enforced on all published APIs. Consumers must send the credentials (application access token)
as per the OAuth bearer token profile. If not, you receive a 401 Unauthorized response in return.

http://host:8280/
http://host:8280/
http://gateway.api.cloud.wso2.com:8280/t/yashiracom/phoneverify/1.0.0/CheckPhoneNumber?PhoneNumber=123456&LicenseKey=0
http://gateway.api.cloud.wso2.com:8280/t/yashiracom/phoneverify/1.0.0/CheckPhoneNumber?PhoneNumber=123456&LicenseKey=0
http://gateway.api.cloud.wso2.com:8280/t/yashiracom/phoneverify/1.0.0/CheckPhoneNumber?PhoneNumber=123456&LicenseKey=0
http://gateway.api.cloud.wso2.com:8280/t/yashiracom/phoneverify/1.0.0/CheckPhoneNumber?PhoneNumber=123456&LicenseKey=0
http://gateway.api.cloud.wso2.com:8280/t/yashiracom/phoneverify/1.0.0/CheckPhoneNumber?PhoneNumber=123456&LicenseKey=0
http://gateway.api.cloud.wso2.com:8280/t/yashiracom/phoneverify/1.0.0/CheckPhoneNumber?PhoneNumber=18006785432&LicenseKey=0
http://localhost:8280/phoneverify/1.0.0?PhoneNumber=18006785432&LicenseKey=0
http://localhost:8280/phoneverify/1.0.0?PhoneNumber=18006785432&LicenseKey=0
http://localhost:8280/phoneverify/1.0.0?PhoneNumber=18006785432&LicenseKey=0

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 129

7.

8.

9.
10.

Click the button to invoke the API. The response appears in the console.Send
As we used a valid phone number in this example, the response returns as valid.

Within a minute after the first API invocation, make another attempt to invoke the API.
Note that you get a throttling error. applied a Bronze tier at the time you subscribed toThis is because you
the API and the Bronze tier only allows one API call per minute.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 130

10.

You have invoked an API using the REST client integrated in the API Store.

Use the Community Features

The API Store provides several useful features to build and nurture an active community of users for your APIs. This
is required to advertize APIs, learn user requirements and market trends.

Let's see what community features are available in the API Store:
Use the search facility
Rate and comment
Share on social media/e-mail
Embed an API widget
Participate in the forum

Use the search facility

You can search for APIs in the API Publisher or Store in the following ways:

Clause Syntax

By the API's
name

As this is the default option, simply enter the API's name and search.

By API the
API provider

provider:xxxx. For example, provider:admin

Provider is the user who created the API.

By the API
version

version:xxxx. For example, version:1.0.0

A version is given to an API at the time it is created.

By the context context:xxxx. For example, context:/phoneverify

Context is the URL context of the API that is specified as /<context_name> at the time the API is
created.

By the API's
status

status:xxxx. For example, status:PUBLISHED

A state is any stage of an API's lifecycle. The default lifecycle stages include created,
prototyped, published, deprecated, retired and blocked.

By description description:xxxx

A description can be given to an API at the time it is created or later. There can be APIs without
descriptions as this parameter is optional.

By the
subcontext

subcontext:xxxx. For example, subcontext:/checkphonenumber.

A subcontext is the URL pattern of any resource of the API. API resources are created at the
time the API is created or later when it is modified. For example, if you create a resource by the
name , then becomes one subcontext of the API.checkphonenumber /checkphonenumber

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 131

1.
2.

3.

1.
2.

By the content
of the API
documentation

doc:xxxx

You can create API documentation in-line (using the API Publisher UI itself), by uploading a file
or referring to an external URL. This search enables you to give a sentence or word phrase that
is inside the in-line documentation and find the API that the documentation is added for.

Rate and comment

Rates and comments give useful insights to potential API consumers on the quality and usefulness of an API. You
can rate and comment on APIs per each version.

Log in to the API Store and click on a published API.
The API's page opens. Note the rating and commenting options there:Overview

Add a rating and a comment. Note that the comments appear sorted by the time they were entered, alongside
the author's name.

Share on social media/e-mail

Log in to the API Store and click on a published API.
On the API's page, you get the social media options using which you can share and advertizeOverview
APIs.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 132

2.

1.
2.

Embed an API widget

A widget is an embeddable version of the API in HTML that you can share on your Website or other Web pages.
This is similar to how Youtube videos can be embedded in a Web page.

Log in to the API Store and click on a published API.
Note the Embed tab under the API's sharing options.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 133

2.

1.
2.

Participate in the forum

Log in to the API Store.
Click the tab or menu to go to the forum where you can iForum nitiate conversations and share your opinions
with other users.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 134

Create and Publish an API

2.

1.
2.

Invoke an API using a SOAP Client

You can use any SOAP client to . We use the SOAP UI in this example. invoke an API

The examples here use the API, which is created in section . PhoneVerification

Let's invoke the API using a SOAP client. PhoneVerification

Log in to the API Store and click an API that you want to invoke (e.g.,).PhoneVerification
The API's page opens. Select an application, the and subscribe to the API.Overview Bronze tier

See the following topics for a description of the concepts that you need to know when invoking an API:

Applications
Throttling
Access tokens

https://docs.wso2.com/display/AM180/Key+Concepts#KeyConcepts-Applications
https://docs.wso2.com/display/AM180/Key+Concepts#KeyConcepts-Throttling
https://docs.wso2.com/display/APICloud/Introducing+the+Concepts#IntroducingtheConcepts-Accesstokens
https://docs.wso2.com/display/APICloud/Introducing+the+Concepts#IntroducingtheConcepts-Accesstokens
https://docs.wso2.com/display/AM180/Key+Concepts#KeyConcepts-Accesstokens

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 135

2.

3.

4.
5.

6.

Go to the page and generate a production key to the default application using which youMy Subscriptions
s u b s c r i b e d t o t h e A P I .

Copy the access token to the clipboard as you need it later to invoke the API.
Download the SOAP UI installation that suits your operating system from and open itshttp://www.soapui.org/
console.
In the SOAP UI, right click on the menu and create a new SOAP project. Projects

http://www.soapui.org/

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 136

6.

7.

8.

Give your API's WSDL and click . In this case, the WSDL is OK http://ws.cdyne.com/phoneverify/phoneverify.

.a s m x ? w s d l

The WSDL defines two operations. Let's work with . Double click on . Then,CheckPhoneNumber Request 1
add an authorization header to your request by clicking the add sign on the tab of the console.Header

http://ws.cdyne.com/phoneverify/phoneverify.asmx?wsdl
http://ws.cdyne.com/phoneverify/phoneverify.asmx?wsdl

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 137

8.

9.

10.
a.

b.

Give the value of the Authorization header as 'Bearer <the access token you copied in step 5>.

Add the following values and submit the request:

Change the endpoint with the production URL of the API. You can copy the production URL from the
API's tab in the API Store. Append the resources to the end of the URL, if any. The resourceOverview
is for the API that we use here./CheckPhoneNumber PhoneVerification

In the SOAP request, change the parameters, which are PhoneNumber and LicenseKey. Let's give
any dummy phone number and 0 as the license key

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 138

10.

11. Note the result on the right-hand side panel. As you gave a dummy phone number in this example, you get
t h e r e s u l t a s i n v a l i d .

You have invoked an API using a SOAP client.

Configuring the API Manager

This section covers the following
Customizing the API Store
Configuring Multiple Tenants
Adding Internationalization and Localization
Configuring Single Sign-on with SAML2
Changing the Default Transport
Configuring Caching
Working with Databases
Managing Users and Roles
Configuring User Stores
Directing the Root Context to the API Store
Adding Links to Navigate Between the Store and Publisher
Maintaining Separate Production and Sandbox Gateways
Configuring Transports

Customizing the API Store

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 139

1.
2.

3.

4.

5.
6.

You can customize the API Store in the following ways:
Enabling or disable self signup
Changing the theme
Changing language settings
Setting single login for all apps
Categorizing APIs

Enabling or disable self signup

In a multi-tenanted API Manager setup, self signup to the API Store is disabled by default to all tenants except the
super tenant. A tenant admin can enable it as follows:

Log in to the management console () as admin (or tenant admin).https://<HostName>:9443/carbon
Click the -> menu. Configure Users and Roles

In the User Management page that opens, c l ick .Roles

Add a role by the name subscriber (or any other name you prefer) and the following permissions:
Login
Manage > API > Subscribe

Go to the -> menu.Resources Browse
Load resource in the registry/_system/governance/apimgt/applicationdata/sign-up-config

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 140

6.

7.

8.
9.

b r o w s e r U I .

Do the following changes in the signup configuration and save.
Set to <EnableSignup> true
Set to and to Note that you should have the<RoleName> subscriber <IsExternalRole> true.
subscriber role created at this point.
Set and password to the tenant admin's username and password.<AdminUserName>

<SelfSignUp>
 <EnableSignup>true</EnableSignup>
 <!-- user storage to store users -->
 <SignUpDomain>PRIMARY</SignUpDomain>
 <!-- Tenant admin information. (for clustered setup credentials for
AuthManager) -->
 <AdminUserName>xxxx</AdminUserName>
 <AdminPassword>xxxx</AdminPassword>
 <!-- List of roles for the tenant user -->
 <SignUpRoles>
 <SignUpRole>
 <RoleName>subscriber</RoleName>
 <IsExternalRole>true</IsExternalRole>
 </SignUpRole>
 </SignUpRoles>
</SelfSignUp>

Open the API Store (.)https://<HostName>:9443/store
Note the link that appears in the top, right-hand corner of the window.Sign-up

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 141

9.

10.

1.

To disable the self signup capability, navigate to/_system/governance/apimgt/applicationdata/si
 in the registry again gn-up-config.xml and set the <SelfSignUp><EnableSignup> element to false.

Changing the theme

See .Adding a new API Store Theme

Changing language settings

To change the language of the API Store, see .Adding Internationalization and Localization

Setting single login for all apps

Single sign-on (SSO) allows users who are logged in to one application to automatically log in to multiple other
applications using the same credentials. They do not have to repeatedly authenticate themselves. To configure, see

.Configuring Single Sign-on with SAML2

Categorizing APIs

API providers add tags to APIs when designing them using the API Publisher. Tags allow API providers to
categorise APIs that have similar attributes. Once a tagged API gets published to the API Store, its tags appear as
clickable links to the API consumers, who can use them to quickly jump to a category of interest.

If you want to see the APIs grouped according to different topics in the API Store, do the following:

Go to directory,<APIM_HOME>/repository/deployment/server/jaggeryapps/store/site/conf

To engage your own signup process, see Adding a User Signup Workflow.:Tip

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 142

1.

2.

3.

open the file and set the attribute as true. site.json tagWiseMode
Go to the API Publisher and add tags with the suffix "-group" to APIs (e.g., Workflow APIs-group, Integration
APIs-group, Quote APIs-group.)
Restart the server.

After you publish the APIs, you see the APIs listed under their groups. You can click on a group to check what the
APIs are inside it.

Configuring Multiple Tenants

The goal of multitenancy is to maximize resource sharing by allowing multiple users (tenants) to log in and use a
single sever/cluster at the same time, in a tenant-isolated manner. That is, each user is given the experience of
using his/her own server, rather than a shared environment. Multitenancy ensures optimal performance of the
system's resources such as memory and hardware and also secures each tenant's personal data.

You can register tenant domains using the Management Console of WSO2 products.

This section covers the following topics:
Multi Tenant Architecture
Managing Tenants
Tenant-Aware Load Balancing using WSO2 ELB

Multi Tenant Architecture

The multi tenant architecture of WSO2 products allows you to deploy Web applications, Web services, ESB
mediators, mashups etc. in an environment that supports the following:

Tenant isolation: Each tenant has its own domain, which the other tenants cannot access.
Data isolation: Each tenant can manage its data securely, in an isolated manner.
Execution isolation: Each tenant can carry out business processes and workflows independent of the other
tenants. No action of a tenant is triggered or inhibited by another tenant.
Performance Isolation: No tenant has an impact on the performance of another tenant.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 143

Architecture

 The super tenant is the complete server space of a WSO2 product instance. Separate spaces within this server
space are allocated to individual tenants.

The super tenant as well as each individual tenant has its own configuration and context module.

Each tenant has its own security domain. A domain has a set of users, and permissions for those users to access
resources. Thus, a tenant is restricted by the users and permissions of the domain assigned to it. The artifact
repositories of the tenants are separated from each other.

An individual tenant can carry out the following activities within the boundaries of its own configuration and context
module:

Deploying artifacts
Applying security
User management
Data management
Request throttling
Response caching

WSO2 Carbon provides a number of Admin services which have special privileges to manage the server. These
admin services are deployed in the super tenant. Other tenants can make use of these admin services to manage
their deployment. The admin services operate in a tenant aware fashion. Thus, privileges and restrictions that apply
to any client using an admin service are taken into account.

Resource sharing

WSO2 Carbon supports the following methods for sharing resources among tenants:

Private Jet mode: This method allows the load of a tenant ID to be deployed in a single tenant mode. A
single tenant is allocated an entire service cluster. The purpose of this approach is to allow special privileges
(such as priority processing and improved performance) to a tenant.
Separation at hardware level: This method allows different tenants to share a common set of resources, but
each tenant has to run its own operating system. This approach helps to achieve a high level of isolation, but
it also incurs a high overhead cost.
Separation at JVM level: This method allows tenants to share the same operating system. This is done by
enabling each tenant to run a separate JVM instance in the operating system.
Native : This method involves allowing all the tenants to share a single JVM instance. Thismultitenancy
method minimises the overhead cost.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 144

Lazy loading

Lazy loading is a design pattern used specifically in cloud deployments to prolong the initialization of an object or
artifact until it is requested by a tenant or an internal process.
Tenants

Lazy loading of tenants is a feature that is built into all WSO2 products. This feature ensures that all the tenants are
not loaded at the time the server starts in an environment with multiple tenants. Instead, they are loaded only when
a request is made to a particular tenant. If a tenant is not utilized for a certain period of time (30 minutes by default),
it will be unloaded from the memory.

You can change the default time period allowed for tenant inactiveness by adding -Dtenant.idle.time=<time_
 . in_minutes> java property to the startup scrip of the product (/wso2server.sh file for Linux and wso2server.

 bat for Windows) as shown below.

JAVA_OPTS \
 -Dtenant.idle.time=30 \

Artifacts

Lazy loading of artifacts is a feature that is used by some WSO2 products, which can be enabled via the Carbon
server configuration file (carbon.xml). The deployer that handles lazy loading of artifacts is called the GhostDep

. A flag to enable or disable the is shown below. This is set to by default becauseloyer Ghost Deployer false
the works only with the HTTP/S transports. Therefore, if other transports are used, the Ghost Deployer Ghost

 does not have to be enabled.Deployer

<GhostDeployment>
 <Enabled>false</Enabled>
 <PartialUpdate>false</PartialUpdate>
</GhostDeployment>

When a stand-alone WSO2 product instance is started with lazy loading enabled, its services, applications and other
artifacts are not deployed immediately. They are first loaded in the Ghost form and the actual artifact is deployed
only when a request for the artifact is made. In addition, if an artifact has not been utilized for a certain period of
time, it will be unloaded from the memory.

When lazy loading of artifacts is enabled for PaaS deployments, lazy loading applies both for tenants as well as a
tenant artifacts. As a result, lazy loading is applicable on both levels for a tenant in a cloud environment. Therefore,
the associated performance improvements and resource utilization efficiencies are optimal.

Restrictions

The following restrictions are imposed to ensure that each individual tenant has the required level of isolation and
maintains fine grained security control over its own services without affecting the other tenants.

Only the super tenant can modify its own configuration. In addition, it can add, view and delete tenants.
When a tenant logs into the system, it can only access artifacts deployed under its own configuration. One
tenant cannot manipulate the code of another tenant.
The super admin or tenant admin can add user stores to their own domain. Dynamic configurations are
possible only for secondary user stores and the primary user store is not configurable at run time. This is
because primary user stores are available for all tenants and allowing changes to the configuration at run
time can lead to instability of the system. Therefore, the primary user store is treated as a static property in
the implementation and it should be configured prior to run time.
A tenant's code cannot invoke sensitive server side functionality. This is achieved via Java security.
Tenants share the transports provided by the system. They are not allowed to create their own transports.

Request dispatching

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 145

1.

2.

This section describes how the multi tenancy architecture described above works in a request dispatching scenario.

When a Carbon server receives a request, the message is first received by the handlers and dispatchers defined for
the server configuration (i.e. super tenant). The server configuration may include handlers that implement cross
tenant policies and Service Level Agreement (SLA) management. For example, a priority based dispatcher can be
applied at this stage to offer differentiated qualities of service to different clients. Once the relevant handlers and
dispatchers are applied, the request is sent to the tenant to which it is addressed. Then the message dispatchers
and handlers specific to that tenant will be applied. See for further informationViewing Handlers in Message Flows
on message handlers and dispatchers.

The following example further illustrates how message dispatching is carried out in a multi tenant server.

For example, two tenants named foo.com and bar.com may deploy a service named MyService. When this service
is hosted on the two tenants, they would have the following URLs.

http://example.com/t/foo.com/services/MyService
http://example.com/t/bar.com/services/MyService

The name of the tenant in the URL allows the tenant to be identified when the Carbon server receives a message
which is addressed to a specific client. Alternatively, you may configure a CNAME record in DNS (Domain Name
System) as an alias for this information.

If a request is addressed to the service hosted by , the message handlers and dispatchers ofMyService foo.com
the super tenant will be applied and the tenant will be identified by the tenant name in the URL. Then thefoo.com
request will be sent to where it will be processed.foo.com

Scaling

The multi tenancy architecture described above mainly refers to a scenario where a single instance of a Carbon
server acts as a single multi tenant node. In a situation where a very high load of requests are handles, you may
need multiple multi tenant nodes. In order to operate with multiple multi tenant nodes, you need load balancing. The
load balancer you use also needs to be tenant-aware. See Tenant Aware Load Balancing Using the WSO2 Elastic

 for further information.Load Balancer

Managing Tenants

You can add a new tenant in the management console and then view it by following the procedure below. In order to
add a new tenant, you should be logged in as a super user.

Click in the tab of your product's management console.Add New Tenant Configure

Enter the tenant information in screen as follows, and click .Register A New Organization Save

Parameter
Name

Description

Domain The domain name for the organization, which should be unique (e.g., abc.com). This is used
as a unique identifier for your domain. You can use it to log into the admin console to be
redirected to your specific tenant. The domain is also used in URLs to distinguish one tenant
from another.

Select
Usage
Plan for
Tenant

The usage plan defines limitations (such as number of users, bandwidth etc.) for the tenant.

http://example.com/t/foo.com/services/MyService
http://example.com/t/bar.com/services/MyService
https://docs.wso2.com/display/shared/Tenant-aware+Load+Balancing+Using+the+WSO2+Elastic+Load+Balancer
https://docs.wso2.com/display/shared/Tenant-aware+Load+Balancing+Using+the+WSO2+Elastic+Load+Balancer

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 146

2.

3.

1.

2.
3.

First
Name/Las
t Name

The name of the tenant admin.

Admin
Username

 The login username of the tenant admin. The username always ends with the domain name
(e.g.,) admin@abc.com

Admin
Password

The password used to log in using the admin username specified.

Admin
Password
(Repeat)

Repeat the password to confirm.

Email The email address of the admin.

After saving, the newly added tenant appears in the page as shown below. ClickTenants List View Tenants
 in the tab of the management console to see information of all the tenants that currently exist inConfigure
the system. If you want to view only tenants of a specific domain, enter the domain name in the Enter the

 p a r a m e t e r a n d c l i c k .T e n a n t D o m a i n F i n d

When you create multiple tenants in an API Manager deployment, the API Stores of each tenant are displayed in a
muti-tenanted view for all users to browse and permitted users to subscribe to as shown below:

Access the API Store URL (by default,) using a Web browser. You https://localhost:9443/store
see the storefronts of all the registered tenant domains listed there. For example,

This is called the public store. Each icon here is linked to the API Store of a registered tenant, including the
super tenant, which is . That is, the super tenant is also considered a tenant.carbon.super
Click the link associated with a given store to open it.Visit Store
Anonymous users can browse all stores and all public APIs that are published to them. However, in order to
subscribe to an API, the user must log in.

For example, if you are a user in the tenant domain,domain1.com
You can access the public store go to the (), https://localhost:9443/store domain1.com
store, log in to it and subscribe to its APIs.
You can also browse the other tenant stores listed in the public store. But, within other tenant stores,
you can only subscribe to the APIs to which your tenant domain is permitted to subscribe to. At the

https://localhost:9443/store

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 147

3.

time an API is created, t he API creator can specify which tenants are allowed to subscribe to the API .
 For information, see .API Subscriptions

Tenant-Aware Load Balancing using WSO2 ELB

Tenant partitioning is required in a clustered deployment to be able to scale to large numbers of tenants. There can
be multiple clusters for a single service and each cluster would have a subset of tenants as illustrated in the diagram
below. In such situations, the load balancers need to be tenant aware in order to route the requests to the required
tenant clusters. They also need to be service aware since it is the service clusters which are partitioned according to
the clients.

The following example further illustrates how this is achieved in WSO2 Elastic Load Balancer (ELB).

A request sent to a load balancer has the following host header to identify the cluster domain:

https://appserver.cloud-test. wso2.com/carbon.as1.domain/carbon/admin/login.jsp

In this URL:

appserver.cloud-test.wso2.com is the service domain which allows the load balancer to identify the
service.
carbon.as1.domain.com is the tenant domain which allows the load balancer to identify the tenant.

Services are configured with their cluster domains and tenant ranges in the in ELB_HOME/repository/conf/loa
file. These cluster domains and tenant ranges are picked by the load balancer when it loads. dbalancer.conf

The following is a sample configuration of the loadbalancer.conf file.

https://docs.wso2.com/display/AM180/Create+and+Publish+an+API#CreateandPublishanAPI-Subscriptions
https://appserver.cloud-test.wso2.com/t/ttt.ttt/carbon/admin/login.jsp

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 148

1.

2.

3.

4.

appserver {
multiple hosts should be separated by a comma.
hosts appserver.cloud-test.wso2.com;

domains {
carbon.as1.domain {
tenant_range 1-100;
}
carbon.as2.domain {
tenant_range 101-200;
}
}
}

In the above configuration, there is a host address which maps to the application server service. If required, you can
enter multiple host addresses separated by commas.

There are two cluster domains defined in the configuration. The cluster domain named iscarbon.as1.domain
used to load the range of tenants with IDs 1-100. The other cluster domain named is used tocarbon.as2.domain
load the tenants with IDs 101-200.

If the tenant ID of is 22, the request will be directed to the cluster.abc.com Carbon.AS1.domain

Adding Internationalization and Localization

The API Manager comes with two Web interfaces as API Publisher and API Store. The following steps show an
example of how to localize the API Publisher UI. Same instructions apply to localize the API Store.

Changing the browser settings

Follow the instructions in your Web browser's user guide and set the browser's language to a preferred one.
For example, in Google Chrome, you set the language using the Settings -> Show advanced settings ->

 menu.Languages
Set the browser's encoding type to UTF-8.

Introduction to resource files

Go to directory where <AM_HOME>/repository/deployment/server/jaggeryapps/publisher <AM_
 is the API Manager distribution's home.HOME>

There are two types of resource files used to define localization strings in the API Manager.
The resource file used to store the strings defined in .jag files according to browser locale (For
example,) is located in folder.locale_en.json .../publisher/site/conf/locales/jaggery
The resource file i18nResources.json, which is used to store strings defined in client-side javascript
files such as pop-up messages when a UI event is triggered, is located in
.../publisher/site/conf/locales/js folder.

For example,

To implement localization support for jaggery, we use its in-built script module 'i18n'. For more information,
refer to .http://jaggeryjs.org/apidocs/i18n.jag

http://jaggeryjs.org/apidocs/i18n.jag

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 149

4.

5.

6.

7.

8.

9.

Localizing strings in Jaggery files

To localize the API publisher to Spanish, first localize the strings defined in jaggery files. Create a new file by
the name inside folder. For example, iflocale_{lolcaleCode}.json ...publisher/site/conf/locales/jaggery
the language set in the browser is Spanish, the locale code is and the file name should be .es locale_es.json
Add the key-value pairs to locale_es.json file. For an example on adding key value pairs, refer to locale_en.j

 file in folder. It is the default resource file for jaggery.son ...publisher/site/conf/locales/jaggery

In addition, a section of a sample locale_es.json file is shown below for your reference.

Localizing strings in client-side Javascript files

To localize the javascript UI messages, navigate to publisher/site/conf/locales/js folder and update i18nReso
 file with relevant values for the key strings.urces.json

Once done, open the API Publisher web application in your browser (https: //<YourHostName>:9443/p
ublisher).
Note that the UI is now changed to Spanish.

Configuring Single Sign-on with SAML2

Single sign-on (SSO) allows users, who are authenticated against one application, gain access to multiple other
related applications as well without having to repeatedly authenticate themselves. It also allows the Web
applications gain access to a set of back-end services with the logged-in user's access rights, and the back-end
services can authorize the user based on different claims like user role.

WSO2 API Manager includes feature, which is implemented Single Sign-On with SAML 2.0 according to the SAML
2.0 Web browser-based SSO support that is facilitated by WSO2 Identity Server (IS). This feature is available in any
IS version from 4.1.0 onwards. We use in this guide. WSO2 Identity Server acts as an identity serviceIS 5.0.0
provider of systems enabled with single sign-on, while the Web applications such as API Manager apps act as SSO
service providers. Using this feature, you can configure SSO across the two API Manager Web applications, which
are API Publisher and API Store as well as other Web applications in your organization. After configuring, you will be
able to access API Store or API Publisher in a single authentication attempt.

The topics below explain the configurations:
Sharing the user store
Sharing the registry space
Configuring WSO2 Identity Server as a SAML 2.0 SSO Identity Provider
Configuring WSO2 API Manager apps as SAML 2.0 SSO service providers

Sharing the user store

First, point both WSO2 IS and WSO2 API Manager to a single user store using the instructions given in section Conf
. You do this to make sure that a user who tries to log in to the iguring User Stores API Manager console, the API

is . When a user tries to log in to either of the three applications, s/he Store or the Publisher authorized is redirected
provides the login credentials to beto the configured identity provider (WSO2 IS in this case) where s/he

authenticated. In addition to this, the user should also be authorized by the system as some user roles do not have
permission to perform certain actions. For the purpose of authorization, the IS and API Manager need to have a

To learn more about Single Sign-On with WSO2 Identity Server, refer the following article on WSO2 library:
http://wso2.org/library/articles/2010/07/saml2-web-browser-based-sso-wso2-identity-server

http://wso2.org/library/articles/2010/07/saml2-web-browser-based-sso-wso2-identity-server

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 150

1.

2.

3.

4.

5.

6.
7.

shared user store and user management database (by default, this is the H2 database in the <APIM_HOME>/repos
 file) where the user's role and permissions are stored.itory/conf/user-mgt.xml

For example, let's take a common JDBC user store (MySQL) for both IS and API Manager.

Create a MySQL database (e.g., 410_um_db) and run the script on it<AM_HOME>/dbscripts/mysql.sql

t o c r e a t e t h e r e q u i r e d t a b l e s .
If you are using a different database type, find the relevant script from the directory<AM_HOME>/dbscripts
.
Open file and add the<AM_HOME>/repository/conf/datasources/master-datasources.xml
datasource configuration for the database that you use for the shared user store and user management
information. For example,

<datasource>
 <name>WSO2_UM_DB</name>
 <description>The datasource used for registry and user manager</description>
 <jndiConfig>
 <name>jdbc/WSO2UMDB</name>
 </jndiConfig>
 <definition type="RDBMS">
 <configuration>
 <url>jdbc:mysql://localhost:3306/410_um_db</url>
 <username>username</username>
 <password>password</password>
 <driverClassName>com.mysql.jdbc.Driver</driverClassName>
 <maxActive>50</maxActive>
 <maxWait>60000</maxWait>
 <testOnBorrow>true</testOnBorrow>
 <validationQuery>SELECT 1</validationQuery>
 <validationInterval>30000</validationInterval>
 </configuration>
 </definition>
</datasource>

Add the same datasource configuration above to <IS_HOME>/repository/conf/datasources/master
 file.-datasources.xml

Copy the database driver JAR file to the <IS_HOME>/repository/components/lib and <AM_HOME>/r
 directories.epository/components/lib

Open file. The property points to the<AM_HOME>/repository/conf/user-mgt.xml dataSource
default H2 database. Change it to the jndiConfig name given above (i.e.,). This changesjdbc/WSO2UMDB
the datasource reference that is pointing to the default H2 database.

<Realm>
 <Configuration>
 ...
 <Property name="dataSource">jdbc/WSO2UMDB</Property>
 </Configuration>
 ...
</Realm>

Add the same configuration above to the file.<IS_HOME>/repository/conf/user-mgt.xml
The Identity Server has an embedded LDAP user store by default. As this is enabled by default, follow the
instructions in to disable the default LDAP and enable the JDBC userInternal JDBC User Store Configuration
store instead.

https://docs.wso2.com/display/AM180/Configuring+Primary+User+Stores#ConfiguringPrimaryUserStores-Configuringaninternal/externalJDBCuserstore

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 151

1.

2.

3.

Sharing the registry space

In a multi-tenanted environment, by default, the Identity Server uses the key store of the super tenant to sign SAML
responses. The API Store and Publishers are already registered as SPs in the super tenant. However, if you want

reate a commonthe Identity Server to use the registry key store of the tenant that the user belongs to, you can c
registry database and mount it on both the IS and the APIM.

Create a MySQL database (e.g., registry) and run the script on it to<IS_HOME>/dbscripts/mysql.sql
c r e a t e t h e r e q u i r e d t a b l e s .
If you are using a different database type, find the relevant script from the directory.<IS_HOME>/dbscripts
Add the following datasource configuration to both the <IS_HOME>/repository/conf/datasources/ma

 and ster-datasources.xml <AM_HOME>/repository/conf/datasources/master-datasources
 files..xml

<datasource>
 <name>WSO2REG_DB</name>
 <description>The datasource used for registry</description>
 <jndiConfig>
 <name>jdbc/WSO2REG_DB</name>
 </jndiConfig>
 <definition type="RDBMS">
 <configuration>

<url>jdbc:mysql://localhost:3306/registry?autoReconnect=true&relaxAutoCommit=
true&</url>
 <username>apiuser</username>
 <password>apimanager</password>
 <driverClassName>com.mysql.jdbc.Driver</driverClassName>
 <maxActive>50</maxActive>
 <maxWait>60000</maxWait>
 <testOnBorrow>true</testOnBorrow>
 <validationQuery>SELECT 1</validationQuery>
 <validationInterval>30000</validationInterval>
 </configuration>
 </definition>
</datasource>

Create the registry mounts by inserting the following sections into the <IS_HOME>/repository/conf/re

 gistry.xml file.

When doing this change, do not replace the existing <dbConfig> for " wso2registry ". Simply
 add the following configuration to the existing configurations.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 152

3.

4.

1.

2.

3.

<dbConfig name="govregistry">
 <dataSource>jdbc/WSO2REG_DB</dataSource>
</dbConfig>

<remoteInstance url="https://localhost">
 <id>gov</id>
 <dbConfig>govregistry</dbConfig>
 <readOnly>false</readOnly>
 <enableCache>true</enableCache>
 <registryRoot>/</registryRoot>
</remoteInstance>

<mount path="/_system/governance" overwrite="true">
 <instanceId>gov</instanceId>
 <targetPath>/_system/governance</targetPath>
</mount>

<mount path="/_system/config" overwrite="true">
 <instanceId>gov</instanceId>
 <targetPath>/_system/config</targetPath>
</mount>

Repeat the above step in the <AM_HOME>/repository/conf/registry.xml file as well.
Next, let us look at the SSO configurations.

Configuring WSO2 Identity Server as a SAML 2.0 SSO Identity Provider

Start the IS server and log in to its Management Console UI ().https://localhost:9443/carbon

Select under menu.Add Service Providers

G i ve a se rv i ce p rov ide r name and c l i c k .Regis te r

If you use login pages that are hosted externally to log in to the Identity Server, give the absolute
URLs of those login pages in the and authenticators.xml application-authenticators.x

 files in theml <IS_HOME>/repository/conf/security directory.

 In for all tenants to be able to log in to the APIM Web applications,a multi tenanted environment,

https://localhost:9443/carbon

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 153

3.

4.

5.

You are navigated to the detailed configuration page. nside the Expand iSAML2 Web SSO Configuration In
bound Authentication Configuration section.

 Provide configurations tothe register the API Publisher as the SSO service provider. These sample values
may change depending in your configuration.

Issuer : API_PUBLISHER
Assertion Consumer URL : . Change the IPhttps://localhost:9443/publisher/jagg/jaggery_acs.jag
and port accordingly. This is the URL for the acs page in your running publisher app.
Select the following options:

Use fully qualified username in the NameID
Enable Response Signing
Enable Assertion Signing

 Enable Single Logout
Click once done.Register

F o r e x a m p l e :

do the following:

Click the option that appears after registering the service provider. SaaS Application

If not, only users in the current tenant domain (the one you are defining the service provider in)
will be allowed to log in to the Web application and you have to register new service providers
for all Web applications (API Store and API Publisher in this case) from each tenant space
separately. For example, let's say you have three tenants as TA, TB and TC and you register
the service provider in TA only. If you tick the option, all users in TA, TB,SaaS Application
TC tenant domains will be able to log in. Else, only users in TA will be able to log in.
Add the following inside the element in the <SSOService> <IS_HOME>/repository/conf

 file and restart the server./identity.xml

<SSOService>

<UseAuthenticatedUserDomainCrypto>true</UseAuthenticatedUserDomainCry
pto>
 ...
</SSOService>

If not, you get an exception as SAML response signature verification fails.
Because the servers in a multi-tenanted environment interact with all tenants, all nodes should
share the same user store. Therefore, make sure you have a shared registry (JDBC mount,
WSO2 Governance Registry etc.) instance across all nodes.

https://localhost:9443/publisher/jagg/jaggery_acs.jag

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 154

5.

6.

7.

1.

Similarly, configurations to provide the register the API Store as the SSO service provider. These sample
values may change depending in your configuration.

Issuer : API_STORE
Assertion Consumer URL : . Change the IP andhttps://localhost:9443/store/jagg/jaggery_acs.jag
port accordingly. This is the URL for the acs page in your running store app.
Select the following options:

Use fully qualified username in the NameID
 Enable Response Signing
 Enable Assertion Signing

Enable Single Logout
Click once done.Register

Make sure that the element is set to in both the following files:<responseSigningEnabled> true
<AM_HOME>/repository/deployment/server/jaggeryapps/publisher/site/conf/site

 .json
<AM_HOME>/repository/deployment/server/jaggeryapps/store/site/conf/site.jso
n

Configuring WSO2 API Manager apps as SAML 2.0 SSO service providers

Open <AM_Home>/repository/deployment/server/jaggeryapps/publisher/site/conf/site
 and modify the following configurations found under ..json ssoConfiguration
enabled: Set this value to to enable SSO in the applicationtrue
issuer: API_PUBLISHER. This value can change depending on the value defined in WSO2 ISIssuer
SSO configuration above.
identityProviderURL: . Change the IP and port accordingly. This is thehttps://localhost:9444/samlsso
redirecting SSO URL in your running WSO2 IS server instance.
keyStoreName: The keystore of the running IDP. As you use a remote instance of WSO2 IS here, you
can import the public certificate of the IS keystore to the APIM and then point to the APIM keystore.

https://localhost:9443/store/jagg/jaggery_acs.jag
https://localhost:9444/samlsso

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 155

1.

2.

3.

4.

5.

6.

The default keystore of the APIM is <APIM_HOME>/repository/resources/security/wso2car
. bon.jks .Be sure to give the full path of the keystore here

keyStorePassword: Password for the above keystore
identityAlias: wso2carbon

Similarly, configure the API Store with SSO. The only difference in API Store SSO configurations is setting A
 as the .PI_STORE issuer

Reduce the priority of the configuration in the SAML2SSOAuthenticator <APIM_HOME>/repository/co
 file. nf/security/authenticators.xml

You do this as a workaround for a known issue that will be fixed in a future release. The SAML2SSOAuthent
 handler does not process only SAML authentication requests at the moment. If you set its priorityicator

higher than that of the handler, the tries to process theBasicAuthenticator SAML2SSOAuthenticator
basic authentication requests as well. This causes login issues in the API Publisher/Store.

<Authenticator name="SAML2SSOAuthenticator" disabled="false">
 <Priority>0</Priority>

</Authenticator>

Access the API Publisher: (e.g.,).https://localhost:<Port number>/publisher https://localhost:9443/publisher
Observe the request redirect to WSO2 IS SAML2.0 based SSO login page. For example,

Enter user credentials. If the user authentication is successful against WSO2 IS, it will redirect to the API
Publisher Web application with the user already authenticated.
Access the API Store application, click its link (top, right-hand corner) and verify that the same user isLogin
already authenticated in API Store.

Even with SSO enabled, if the user doesn't have sufficient privileges to access API Publisher/Store or any
other application, s/he will not be authorized to access them.

The steps above explain how to configure SSO between the API Publisher and Store Jagger applications,
using WSO2 IS as the IDP. If there are many WSO2 products in your environment, you can configure SSO
for the management consoles of those products by changing the configurationSAML2SSOAuthenticator
in the file as follows:<APIM_HOME>/repository/conf/security/authenticators.xml

Set attributes in element to disabled <Authenticator> false
ServiceProviderID : In this example, it is the issuer name of the service provider created in step
1
IdentityProviderSSOServiceURL : In this example, it is the Identity Server port

https://localhost:9443/publisher
https://localhost:9443/publisher

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 156

Changing the Default Transport

APIs are synapse configurations in the back-end and API Manager accesses them using HTTP-NIO transport by
default. You can switch to a different transport such as PassThrough. To change the default transport of API
Manager, go to folder and rename file to .<APIM_HOME>/repository/conf/axis2 axis2.xml_PT axis2.xml
Similarly, you can switch back to NHTTP by simply renaming file to .axis2.xml_NHTTP axis2.xml

The following topics explain HTTP-NIO and PassThrough transports:
HTTP-NIO transport
HTTP PassThrough transport

HTTP-NIO transport

HTTP-NIO transport is a module of the Apache Synapse project. Apache Synapse as well as WSO2 APIM ship the
HTTP-NIO transport as the default HTTP transport implementation. The two classes that implement the receiver and
sender APIs are and org.apache.synapse.transport.nhttp.HttpCoreNIOListener org.apache.syna

 respectively. These classes are available in the JAR file named pse.transport.nhttp.HttpCoreNIOSender s
. This non-blocking transport implementation improves performance. Theynapse-nhttp-transport.jar

transport implementation is based on Apache HTTP Core - NIO and uses a configurable pool of non-blocking worker
threads to grab incoming HTTP messages off the wire.

Transport receiver parameters

Parameter
Name

Description Requried Possible Values Default
Value

port The port on which this transport
receiver should listen for incoming
messages.

No A positive integer less than
65535

8280

non-blocking Setting this parameter to true is
vital for reliable messaging and a
number of other scenarios to work
properly.

Yes true

<Authenticator name="SAML2SSOAuthenticator" disabled="false">
 <Priority>10</Priority>
 <Config>
 <Parameter
name="LoginPage">/carbon/admin/login.jsp</Parameter>
 <Parameter name="ServiceProviderID">carbonserver1</Parameter>
 <Parameter
name="IdentityProviderSSOServiceURL">https://localhost:9444/samlsso</Pa
rameter>
 <Parameter
name="NameIDPolicyFormat">urn:oasis:names:tc:SAML:1.1:nameid-format:unspec
ified</Parameter>
</Config>

Make sure the of the is less than that of the <priority> SAML2SSOAuthenticator BasicAuthe
 handler. See for more information.nticator here

In transport parameter tables, literals displayed in italic mode under the "Possible Values" column should be
considered as fixed literal constant values. Those values can be directly put in transport configurations.

https://docs.wso2.com/display/AM180/FAQ#FAQ-priority

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 157

bind-address The address of the interface to
which the transport listener should
bind.

No A host name or an IP address 127.0.0.1

hostname The host name of the server to be
displayed in service EPRs,
WSDLs etc. This parameter takes
effect only when the
WSDLEPRPrefix parameter is not
set.

No A host name or an IP address localhost

WSDLEPRPrefix A URL prefix which will be added
to all service EPRs and EPRs in
WSDLs etc.

No A URL of the form
<protocol>://<hostname>:<port>/

Transport sender parameters

Parameter Name Description Requried Possible
Values

Default
Value

http.proxyHost If the outgoing messages should be sent through
an HTTP proxy server, use this parameter to
specify the target proxy.

No A host name or
an IP address

http.proxyPort The port through which the target proxy accepts
HTTP traffic.

No A positive
integer less than
65535

http.nonProxyHosts The list of hosts to which the HTTP traffic should
be sent directly without going through the proxy.

No A list of host
names or IP
addresses
separated by '|'

non-blocking Setting this parameter to true is vital for reliable
messaging and a number of other scenarios to
work properly.

Yes true

HTTP PassThrough transport

HTTP PassThrough Transport is the default, non-blocking HTTP transport implementation based on HTTP Core
NIO and is specially designed for streaming messages. It is similar to the old message relay transport, but it does
not care about the content type and simply streams all received messages through. It also has a simpler and cleaner
model for forw arding messages back and forth. It can be used as an alternative to the NHTTP transport.

The HTTP PassThrough Transport is enabled by default. If you want to use the NHTTP transport instead,
uncomment the relevant NHTTP transport entries in and comment out the HTTP PassThroughaxis2.xml
transport entries. T he PassThrough Transport does not require the binary relay builder and expanding formatter.

Connection throttling

With the HTTP PassThrough and HTTP NIO transports, you can enable connection throttling to restrict the number
of simultaneous open connections. To enable connection throttling, edit the <PRODUCT_HOME>/repository/con

 (for the HTTP NIO transport) or f/nhttp.properties <PRODUCT_HOME>/repository/conf/passthru.pro
 (for the PassThrough transport) and add the following line:perties max_open_connections = 2

This will restrict simultaneous open incoming connections to 2. To disable throttling, delete the max_open_connect
 setting or set it to -1.ions

Connection throttling is never exact. For example, setting this property to 2 will result in roughly two

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 158

1.

2.

Configuring Caching

When an API call hits the API Gateway, the Gateway carries out security checks to verify if the token is valid. During
these verifications, the API Gateway extracts parameters such as access token, API and API version that are
passed on to it. Since the entire load of traffic to APIs goes through the API Gateway, this verification process needs
to be fast and efficient in order to prevent overhead and delays. The API Manager uses caching for this purpose,
where the validation information is cached with the token, API name and version, and the cache is stored in either
the API Gateway or the key manager server.

This section covers the following:
Caching at API Gateway
Resource caching
Caching at Key Manager server
Response caching

Caching at API Gateway

When and a request hits the Gateway, it first populates the cached entry for a caching is enabled at the Gateway
given token. If a cache entry does not exist in cache, it calls the key manager server. This process is carried out
using Web service calls. Once the key manager server returns the validation information, it gets stored in the
Gateway. Because the API Gateway issues a Web service call to the key manager server only if it does not have a
cache entry, this method reduces the number of Web service calls to the key manager server. Therefore, it is faster
than the alternative method.

By default, the API Gateway cache is enabled by setting the element to true in <EnableGatewayKeyCache> <API
 file:M_HOME>/repository/conf/api-manager.xml

<EnableGatewayKeyCache>true</EnableGatewayKeyCache>

Clearing the API Gateway cache

To remove old tokens that might still remain active in the Gateway cache, you configure the elem<RevokeAPIURL>
ent in file by providing the URL of the that is deployed in the API Gateway node.api-manager.xml Revoke API
The revoke API invokes the cache clear handler, which extracts information form transport headers of the revoke
request and clears all associated cache entries. If there's a cluster of API Gateways in your setup, provide the URL
of the revoke API deployed in one node in the cluster. This way, all revoke requests route to the OAuth service
through the Revoke API.

Given below is how to configure this in a distributed API Manager setup.

In the file of the key manager node, point the revoke endpoint as follows:api-manager.xml

<RevokeAPIURL>https://${carbon.local.ip}:${https.nio.port}/revoke</RevokeAPIURL>

In the API Gateway, point the Revoke API to the OAuth application deployed in the key manager node. For
example,

simultaneous open connections at any given time.

WSO2 products do not use the HTTP/S servlet transport configurations that are in file. Instead,axis2.xml
they use Tomcat-level servlet transports, which are used by the management console in <PRODUCT_HOME>

 ./repository/conf/tomcat/catalina-server.xml file

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 159

2.

<api name="_WSO2AMRevokeAPI_" context="/revoke">
 <resource methods="POST" url-mapping="/*" faultSequence="_token_fault_">
 <inSequence>
 <send>
 <endpoint>
 <address
uri="https://keymgt.wso2.com:9445/oauth2/revoke"/>
 </endpoint>
 </send>
 </inSequence>
 <outSequence>
 <send/>
 </outSequence>
 </resource>
 <handlers>
 <handler
class="org.wso2.carbon.apimgt.gateway.handlers.ext.APIManagerCacheExtensionHandle
r"/>
 </handlers>
</api>

Resource caching

An API's resources are HTTP methods that handle particular types of requests such as GET, POST etc. They are
similar to methods of a particular class. Each resource has parameters such as its throttling level, Auth type etc.

Users can make requests to an API by calling any one of the HTTP methods of the API's resources. The API
Manager uses the resource cache at the Gateway node to store the API's resource-level parameters (Auth type and
throttling level). The cache entry is identified by a cache key, which is based on the API's context, version, request
path and HTTP method. Caching avoids the need to do a separate back-end call to check the Auth type and
throttling level of a resource, every time a request to the API comes. It improves performance.

Note that if you change a resource's parameters such as the Auth type through the UI, it takes about 15 minutes to
refresh the resource cache. During that time, the server returns the old Auth type from the cache. If you want the
changes to be reflected immediately, please restart the server after changing the value.

By default, the resource cache is enabled by setting the element to true in <EnableGatewayResourceCache> <A
 file:PIM_HOME>/repository/conf/api-manager.xml

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 160

1.

2.

3.

<EnableGatewayResourceCache>true</EnableGatewayResourceCache>

Caching at Key Manager server

In this method, the cache is maintained at the key manager server rather than the API Gateway. As a result, for
each and every API call that hits the API Gateway, the Gateway issues a Web service call to the key manager
server. If the cache entry is available in the key manager server, it is returned to the Gateway. Else, the database
will be checked for the validity of the token.

This method has low performance compared to the earlier one, but the the advantage of this method over the other
is that we do not have to store any security-related information at the Gateway side.

By default, caching is enabled at the Gateway side as it is the faster method. If you want to change this default
configuration, disable caching at the Gateway side and enable it at the key manager server side by using the
instructions below.

Disable caching at API Gateway by adding the following entry to section of APIGateway <APIM_HOME>/rep
 file.ository/conf/api-manager.xml

<EnableGatewayKeyCache>false</EnableGatewayKeyCache>

Enable key manager server-side caching by adding the following entry to section of theAPIKeyManager
api-manager.xml file.

<EnableKeyMgtValidationInfoCache>true</EnableKeyMgtValidationInfoCache>

The API Manager generates JWT tokens for each validation information object. Usually, JWT tokens also get
cached with the validation information object, but you might want to generate JWT per each call. You can do
this by enabling JWT caching at key manager server. Add the following entry to section ofAPIKeyManager
the api-manager.xml file.

<EnableJWTCache>true</EnableJWTCache>

Also enable token generation by setting the following entry to at the root level of the api-manager.xmltrue
file.

<APIConsumerAuthentication>
 <EnableTokenGeneration>true</EnableTokenGeneration>
 ...
</APIConsumerAuthentication>

Response caching

The API Manager uses toWSO2 ESB's cache mediator cache response messages per each API. Caching improves
performance, because the backend server does not have to process the same data for a request multiple times. To
offset the risk of stale data in the cache, you set an appropriate timeout period.

Note that you must disable caching at the key manager server side in order to generate JWT per
each call.

http://docs.wso2.org/enterprise-service-bus/Cache+Mediator

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 161

You enable response caching when creating a new API or editing an existing one using the API Publisher UI. Go to
the API Publisher and click the menu (to create a new API) or the link associated with an existing API.Add API Edit
Then, navigate to the tab where you find the response caching section. You can set it to and giveManage Enabled
a timeout value. This enables the default response caching settings.

 To change the default response caching settings, edit the following cache mediator properties in <APIM_HOME>/re
 file:pository/resources/api_templates/velocity_template.xml

Property Description

collector true : specifies that the mediator instance is a response collection instance
:false specifies that the mediator instance is a cache serving instance

 max Message
Size

Specifies the maximum size of a message to be cached in bytes. An optional attribute, with the
default value set to .unlimited

maxSize Defines the maximum number of elements to be cached

hashGenerator Defines the hash generator class.

When caching response messages, a hash value is generated based on the request's URI,
transport headers and the payload (if available). WSO2 has a default REQUESTHASHGenerato

 class written to generate the hash value. See sample .r here

If you want to change this default implementation (for example, to exclude certain headers), you
can write a new hash generator implementation by extending the anREQUESTHASHGenerator
d overriding its method. Once done, add the new class as the getDigest() hashGenerator
attribute of the <cache> element in the file.velocity_template.xml

https://docs.wso2.com/download/attachments/41747169/REQUESTHASHGenerator.java?version=1&modificationDate=1414132933000&api=v2

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 162

1.
2.

3.

4.

Working with Databases

The default databases that WSO2 products uses to store registry, user manager and product-specific data are the
H2 databases in as follows:<PRODUCT_Home>/repository/database

WSO2CARBON_DB.h2.db: used to store registry and user manager data
WSO2AF_DB.h2.db: used to store App Factory specific data

These embedded H2 databases are suitable for development, testing, and some production environments. For most
production environments, however, we recommend you to use an industry-standard RDBMS such as Oracle,
PostgreSQL, MySQL, MS SQL, etc. You can use the scripts provided with WSO2 products to install and configure
several other types of relational databases, including MySQL, IBM DB2, Oracle, and more.

The following sections explain how to change the default databases:

Setting up the Physical Database
Managing Datasources

Setting up the Physical Database

The topics in this section describe how to use scripts in folder to set up each type<PRODUCT_HOME>/dbscripts/
of physical database. After you set up the database, you create datasources to connect to it.

Setting up IBM DB2
Setting up Derby
Setting up H2
Setting up IBM Informix
Setting up Microsoft SQL
Setting up MySQL
Setting up MySQL Cluster
Setting up OpenEdge
Setting up Oracle
Setting up Oracle RAC
Setting up PostgreSQL

Setting up IBM DB2

The following sections describe how to replace the default H2 databases with IBM DB2:
Prerequisites
Setting up the database and users
Setting up DB2 JDBC drivers
Setting up datasource configurations
Creating database tables
Changing the product-specific/identity/storage databases

Prerequisites

Download the latest version of and install it on your computer.DB2 Express-C

Setting up the database and users

Create the database using either or as described below.DB2 command processor DB2 control center
Using the DB2 command processor

Run DB2 console and execute the command in CLI to open DB2.db2start
Create the database using the following command:
create database <DB_NAME>
Before issuing a SQL statement, establish the connection to the database using the following command:
connect to <DB_NAME> user <USER_ID> using <PASSWORD>

For instructions on installing DB2 Express-C, see this .ebook

http://www-01.ibm.com/software/data/db2/express/download.html
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Big%20Data%20University/page/FREE%20eBook%20-%20Getting%20Started%20with%20DB2%20Express-C

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 163

4.

1.

2.

3.

Grant required permissions for users as follows:

connect to DB_NAME
grant <AUTHORITY> on database to user <USER_ID>

For example:

Using the DB2 control center

Open the DB2 control center using the command as follows:db2cc

Right-click in the control center tree (inside the object browser), click , andAll Databases Create Database
then click and follow the steps in the wizard. Standard Create New Database

Click in the control center tree to create users for the newly created database. User and Group Objects

For more information on DB2 commands, see the .DB2 Express-C Guide

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Big%20Data%20University/page/FREE%20eBook%20-%20Getting%20Started%20with%20DB2%20Express-C

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 164

3.

4. Give the required permissions to the newly created users.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 165

4.

1.

Setting up DB2 JDBC drivers

Copy the DB2 JDBC drivers (and) from db2jcc.jar db2jcc_license_c0u.jar <DB2_HOME>/SQLLIB/java/
directory to the directory.<PRODUCT_HOME>/repository/components/lib/

Setting up datasource configurations
After creating the database, you create a datasource to point to it in the following files:

Edit the default datasource configuration in the < PRODUCT_HOME>/repository/conf/datasources/m a
 file. Replace the , , and settingsster-datasources.xml url username password driverClassName

with your custom values and also the other values accordingly as shown below:

<DB2_HOME> refers to the installation directory of DB2 Express-C, and < refers to thePRODUCT _HOME>
directory where you run the WSO2 product instance.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 166

1.

<datasource>
 <name>WSO2_CARBON_DB</name>
 <description>The datasource used for registry and user
manager</description>
 <jndiConfig>
 <name>jdbc/WSO2CarbonDB</name>
 </jndiConfig>
 <definition type="RDBMS">
 <configuration>
 <url>jdbc:db2://SERVER_NAME:PORT/DB_NAME</url>
 <username>regadmin</username>
 <password>regadmin</password>
 <driverClassName>com.ibm.db2.jcc.DB2Driver</driverClassName>
 <maxActive>80</maxActive>
 <maxWait>360000</maxWait>
 <minIdle>5</minIdle>
 <testOnBorrow>true</testOnBorrow>
 <validationQuery>SELECT 1</validationQuery>
 <validationInterval>30000</validationInterval>
 </configuration>
 </definition>
</datasource>

The elements in the above configuration are described below:

Element Description

url The URL of the database. The default port for a DB2 instance is 50000.

username and pa
ssword

The name and password of the database user

driverClassName The class name of the database driver

maxActive The maximum number of active connections that can be allocated at the same
time from this pool. Enter any negative value to denote an unlimited number of active
connections.

maxWait The maximum number of milliseconds that the pool will wait (when there are no
available connections) for a connection to be returned before throwing an exception.
You can enter zero or a negative value to wait indefinitely.

minIdle The minimum number of active connections that can remain idle in the pool without
extra ones being created, or enter zero to create none.

testOnBorrow The indication of whether objects will be validated before being borrowed from the
pool. If the object fails to validate, it will be dropped from the pool, and another
attempt will be made to borrow another.

validationQuery The SQL query that will be used to validate connections from this pool before
returning them to the caller.

validationInterval The indication to avoid excess validation, and only run validation at the most, at this
frequency (time in milliseconds). If a connection is due for validation, but has been
validated previously within this interval, it will not be validated again.

For more information on other parameters that can be defined in the <PRODUCT_HOME>/repositor
 file, see .y/conf/datasources/ master-datasources.xml Tomcat JDBC Connection Pool

http://tomcat.apache.org/tomcat-7.0-doc/jdbc-pool.html#Tomcat_JDBC_Enhanced_Attributes

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 167

1.

1.

2.

1.

2.

1.

2.

Creating database tables

To create the database tables, connect to the database that you created earlier and run the following scripts in the
DB2 Express-C command editor.

To create tables in the registry and user manager database ()WSO2CARBON_DB , use the below script:

<PRODUCT_HOME>/dbscripts/db2.sql

Restart the server.

Changing the product-specific/identity/storage databases

The topics above show how to change the , which is used to store registry and user managerWSO2_CARBON_DB
information. If you changed the product-specific database that come by default or set up a separate database for
identity related data, the instructions are the same. In summary:

Add the datasource to the file. master-datasources.xml The datasource for the product-specific
database is already there in the file by the name . Change itsmaster-datasources.xml WSO2AM_DB
elements with your custom values.
Create the database tables using the following scripts:

For the product-specific
database

Use the scripts in folder <PRODUCT_HOME>/dbscripts/apimgt

For the identity database Use the scripts in fold<PRODUCT_HOME>/dbscripts/identity
er

Setting up Derby

You can set up either an embedded Derby database or a remote database as described in the following topics:

Setting up Embedded Derby
Setting up Remote Derby

Setting up Embedded Derby

The following sections describe how to replace the default H2 databases with embedded Derby:
Creating the database
Setting up drivers
Setting up datasource configurations
Creating database tables
Changing the product-specific/identity/storage databases

Creating the database

Follow the steps below to set up an embedded Derby database:

Download .Apache Derby

You can create database tables automatically by using the when starting the product for the first time -D
 parameter as follows:setup

For Windows: <PRODUCT_HOME>/bin/wso2server.bat -Dsetup
For Linux: <PRODUCT_HOME>/bin/wso2server.sh -Dsetup

http://apache.mesi.com.ar/db/derby/db-derby-10.8.2.2/

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 168

2.

1.

Install Apache Derby on your computer.

Setting up drivers

Copy , , and from the < to the <derby.jar derbyclient.jar derbynet.jar DERBY_HOME>/lib/ directory
 directory (the classpath of the WSO2 Carbon webPRODUCT_HOME>/repository/components/extensions/

application).
Setting up datasource configurations

After , you create a datasource to point to it in the following files:creating the database

Edit the default datasource configuration in the < PRODUCT_HOME>/repository/conf/datasources/m a
 file. Replace the , , and settingsster-datasources.xml url username password driverClassName

with your custom values and also the other values accordingly as shown below:

<datasource>
 <name>WSO2_CARBON_DB</name>
 <description>The datasource used for registry and user manager</description>
 <jndiConfig>
 <name>jdbc/WSO2CarbonDB</name>
 </jndiConfig>
 <definition type="RDBMS">
 <configuration>
 <url>jdbc:derby://localhost:1527/db;create=true</url>
 <username>regadmin</username>
 <password>regadmin</password>

<driverClassName>org.apache.derby.jdbc.EmbeddedDriver</driverClassName>
 <maxActive>80</maxActive>
 <maxWait>60000</maxWait>
 <minIdle>5</minIdle>
 <testOnBorrow>true</testOnBorrow>
 <validationQuery>SELECT 1</validationQuery>
 <validationInterval>30000</validationInterval>
 </configuration>
 </definition>
</datasource>

The elements in the above configuration are described below:

Element Description

url The URL of the database. The default port for a DB2 instance is 50000.

username and pa
ssword

The name and password of the database user

driverClassName The class name of the database driver

maxActive The maximum number of active connections that can be allocated at the same
time from this pool. Enter any negative value to denote an unlimited number of active
connections.

maxWait The maximum number of milliseconds that the pool will wait (when there are no
available connections) for a connection to be returned before throwing an exception.
You can enter zero or a negative value to wait indefinitely.

For instructions on installing Apache Derby, see the .Apache Derby documentation

http://db.apache.org/derby/manuals/

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 169

1.

1.

2.

3.

4.

5.

minIdle The minimum number of active connections that can remain idle in the pool without
extra ones being created, or enter zero to create none.

testOnBorrow The indication of whether objects will be validated before being borrowed from the
pool. If the object fails to validate, it will be dropped from the pool, and another
attempt will be made to borrow another.

validationQuery The SQL query that will be used to validate connections from this pool before
returning them to the caller.

validationInterval The indication to avoid excess validation, and only run validation at the most, at this
frequency (time in milliseconds). If a connection is due for validation, but has been
validated previously within this interval, it will not be validated again.

Creating database tables

You can create database tables by executing the database scripts as follows:

Run the tool located in the directory as illustrated below:ij <DERBY_HOME>/bin/

Create the database and connect to it using the following command inside the prompt:ij

connect 'jdbc:derby:repository/database/WSO2CARBON_DB;create=true';

Exit from the the tool by typing the command.ij exit

exit;

Log in to the tool with the username and password that you set in and :ij registry.xml user-mgt.xml
connect 'jdbc:derby:repository/database/WSO2CARBON_DB' user 'regadmin' password
'regadmin';
Use the scripts given in the following locations to create the database tables:

To create tables for the , run the belowregistry and user manager database ()WSO2CARBON_DB
command:

run '<PRODUCT_HOME>/dbscripts/derby.sql';

Restart the server.

For more information on other parameters that can be defined in the <PRODUCT_HOME>/repositor
 file, see .y/conf/datasources/ master-datasources.xml Tomcat JDBC Connection Pool

Replace the database file path in the above command with the full path to your database.

Now the product is running using the embedded Apache Derby database.

You can create database tables automatically by usingwhen starting the product for the first time
the parameter as follows:-Dsetup

For Windows: <PRODUCT_HOME>/bin/wso2server.bat -Dsetup
For Linux: <PRODUCT_HOME>/bin/wso2server.sh -Dsetup

The product is configured to run using an embedded Apache Derby database.

http://tomcat.apache.org/tomcat-7.0-doc/jdbc-pool.html#Tomcat_JDBC_Enhanced_Attributes

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 170

1.

2.

1.
2.

3.

1.

Changing the product-specific/identity/storage databases

The topics above show how to change the , which is used to store registry and user manager WSO2_CARBON_DB
information. If you changed the product-specific database that come by default or set up a separate database for
identity related data, the instructions are the same. In summary:

Add the datasource to the file. The datasource for the product-specificmaster-datasources.xml
database is already there in the file by the name Change itsmaster-datasources.xml WSO2AM_DB.
elements with your custom values.
Create the database tables using the following scripts:

For the product-specific
database

Use the scripts in folder<PRODUCT_HOME>/dbscripts/apimgt

For the identity database Use the scripts in folde<PRODUCT_HOME>/dbscripts/identity
r

Setting up Remote Derby

The following sections describe how to replace the default H2 databases with a remote Derby database:
Creating the database
Setting up drivers
Setting up datasource configurations
Creating database tables
Changing the product-specific/identity databases

Creating the database

Follow the steps below to set up a remote Derby database.

Download .Apache Derby
Install Apache Derby on your computer.

Go to the / directory and run the Derby network server start script. Usually it is named <DERBY_HOME>/bin s
.tartNetworkServer

Setting up drivers

Copy , , and from the < directory to the <derby.jar derbyclient.jar derbynet.jar DERBY_HOME>/lib/ PR
 directory (the classpath of the Carbon webODUCT_HOME>/repository/components/extensions/

application).
Setting up datasource configurations

After , you create a datasource to point to it in the following files:creating the database

Edit the default datasource configuration in the < PRODUCT_HOME>/repository/conf/datasources/m a
 file. Replace the , , and settingsster-datasources.xml url username password driverClassName

with your custom values and also the other values accordingly as shown below:

In contrast to setting up with remote Derby, when setting up with the embedded mode, set the database
driver name (the element) to the value driverClassName org.apache.derby.jdbc.EmbeddedDrive

 and the database URL (the element) to the database directory location relative to the installation. Inr url
the above sample configuration, it is inside the directory.<DERBY_HOME>/WSO2_CARBON_DB/

For instructions on installing Apache Derby, see the Apache Derby documentation .

http://apache.mesi.com.ar/db/derby/db-derby-10.8.2.2/
http://db.apache.org/derby/manuals/

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 171

1.

<datasource>
 <name>WSO2_CARBON_DB</name>
 <description>The datasource used for registry and user manager</description>
 <jndiConfig>
 <name>jdbc/WSO2CarbonDB</name>
 </jndiConfig>
 <definition type="RDBMS">
 <configuration>
 <url>jdbc:derby://localhost:1527/db;create=true</url>
 <username>regadmin</username>
 <password>regadmin</password>

<driverClassName>org.apache.derby.jdbc.ClientDriver</driverClassName>
 <maxActive>80</maxActive>
 <maxWait>60000</maxWait>
 <minIdle>5</minIdle>
 <testOnBorrow>true</testOnBorrow>
 <validationQuery>SELECT 1</validationQuery>
 <validationInterval>30000</validationInterval>
 </configuration>
 </definition>
</datasource>

The elements in the above configuration are described below:

Element Description

url The URL of the database. The default port for a DB2 instance is 50000.

username and pa
ssword

The name and password of the database user

driverClassName The class name of the database driver

maxActive The maximum number of active connections that can be allocated at the same
time from this pool. Enter any negative value to denote an unlimited number of active
connections.

maxWait The maximum number of milliseconds that the pool will wait (when there are no
available connections) for a connection to be returned before throwing an exception.
You can enter zero or a negative value to wait indefinitely.

minIdle The minimum number of active connections that can remain idle in the pool without
extra ones being created, or enter zero to create none.

testOnBorrow The indication of whether objects will be validated before being borrowed from the
pool. If the object fails to validate, it will be dropped from the pool, and another
attempt will be made to borrow another.

validationQuery The SQL query that will be used to validate connections from this pool before
returning them to the caller.

validationInterval The indication to avoid excess validation, and only run validation at the most, at this
frequency (time in milliseconds). If a connection is due for validation, but has been
validated previously within this interval, it will not be validated again.

For more information on other parameters that can be defined in the <PRODUCT_HOME>/reposito
 file, see .ry/conf/datasources/ master-datasources.xml Tomcat JDBC Connection Pool

http://tomcat.apache.org/tomcat-7.0-doc/jdbc-pool.html#Tomcat_JDBC_Enhanced_Attributes

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 172

1.

1.

2.

3.

4.

5.

6.

1.

2.

Creating database tables

You can create database tables by executing the following script(s):

Run the tool located in the directory.ij <DERBY_HOME>/bin/

Create the database and connect to it using the following command inside the prompt:ij

connect
'jdbc:derby://localhost:1527/db;user=regadmin;password=regadmin;create=true';

Exit from the tool by typing the command as follows:ij exit
exit;
Log in to the tool with the username and password you just used to create the database.ij

connect 'jdbc:derby://localhost:1527/db' user 'regadmin' password 'regadmin';

You can create database tables manually by executing the following scripts.
To create tables in the registry and user manager database ()WSO2CARBON_DB , use the below script:

run '<PRODUCT_HOME>/dbscripts/derby.sql';

Restart the server.

Changing the product-specific/identity databases

The topics above show how to change the , which is used to store registry and user manager WSO2_CARBON_DB
information. If you changed the product-specific database () that come by default or set up a separateWSO2AM_DB
database for identity related data, the instructions are the same. In summary:

Add the datasource to the file. master-datasources.xml The datasource for the product-specific
database is already there in the file by the name Change its elements with your custom values. WSO2AM_DB.
Create the database tables using the following scripts:

For the product-specific database Use the scripts in folder<PRODUCT_HOME>/dbscripts/apimgt

In contrast to setting up with embedded Derby, in the remote registry you set the database driver
name (the element) to the value and thedriverName org.apache.derby.jdbc.ClientDriver
database URL (the element) to the database remote location.url

Replace the database file path, user name, and password in the above command to suit your
requirements.

You can create database tables automatically by usingwhen starting the product for the first time
the parameter as follows:-Dsetup

For Windows: <PRODUCT_HOME>/bin/wso2server.bat -Dsetup
For Linux: <PRODUCT_HOME>/bin/wso2server.sh -Dsetup

The product is now configured to run using a remote Apache Derby database.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 173

2.

1.

2.

1.

For the identity database Use the scripts in fold<PRODUCT_HOME>/dbscripts/identity
er

Setting up H2

You can set up either an embedded H2 database or a remote H2 database using the instructions in the following
topics:

Setting up Embedded H2
Setting up Remote H2

Setting up Embedded H2

The following sections describe how to replace the default H2 databases with Embedded H2:
Preparing the database
Setting up drivers
Setting up datasource configurations
Creating database tables
Changing the product-specific/identity databases

Preparing the database

Download and install the H2 database engine in your computer.

Setting up drivers

WSO2 currently ships H2 database engine version h2-1.2.140.* and its related H2 database driver. If you want to
use a different H2 database driver, take the following steps:

Delete the following H2 database-related JAR file, which is shipped with WSO2 products:
<PRODUCT_HOME>/repository/components/plugins/h2-database-engine_1.2.140.wso2v3.j

ar

Find the JAR file of the new H2 database driver (, where is the H2<H2_HOME>/bin/h2-*.jar <H2_HOME>
installation directory) and copy it to your WSO2 product's <PRODUCT_HOME>/repository/components/l

 directory.ib/
Setting up datasource configurations

After , you create a datasource to point to it in the following files:creating the database

Edit the default datasource configuration in the < PRODUCT_HOME>/repository/conf/datasources/m a
 file. Replace the , , and settingsster-datasources.xml url username password driverClassName

with your custom values and also the other values accordingly as shown below:

For instructions on installing DB2 Express-C, see H2 installation guide.

http://www.h2database.com/html/quickstart.html

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 174

1.

<datasource>
 <name>WSO2_CARBON_DB</name>
 <description>The datasource used for registry and user manager</description>
 <jndiConfig>
 <name>jdbc/WSO2CarbonDB</name>
 </jndiConfig>
 <definition type="RDBMS">
 <configuration>

<url>jdbc:h2:repository/database/WSO2CARBON_DB;DB_CLOSE_ON_EXIT=FALSE;LOCK_TIMEOU
T=60000</url>
 <username>wso2carbon</username>
 <password>wso2carbon</password>
 <driverClassName>org.h2.Driver</driverClassName>
 <maxActive>50</maxActive>
 <maxWait>60000</maxWait>
 <minIdle>5</minIdle>
 <testOnBorrow>true</testOnBorrow>
 <validationQuery>SELECT 1</validationQuery>
 <validationInterval>30000</validationInterval>
 </configuration>
 </definition>
</datasource>

The elements in the above configuration are described below:

Element Description

url The URL of the database. The default port for a DB2 instance is 50000.

username and pa
ssword

The name and password of the database user

driverClassName The class name of the database driver

maxActive The maximum number of active connections that can be allocated at the same
time from this pool. Enter any negative value to denote an unlimited number of active
connections.

maxWait The maximum number of milliseconds that the pool will wait (when there are no
available connections) for a connection to be returned before throwing an exception.
You can enter zero or a negative value to wait indefinitely.

minIdle The minimum number of active connections that can remain idle in the pool without
extra ones being created, or enter zero to create none.

testOnBorrow The indication of whether objects will be validated before being borrowed from the
pool. If the object fails to validate, it will be dropped from the pool, and another
attempt will be made to borrow another.

validationQuery The SQL query that will be used to validate connections from this pool before
returning them to the caller.

validationInterval The indication to avoid excess validation, and only run validation at the most, at this
frequency (time in milliseconds). If a connection is due for validation, but has been
validated previously within this interval, it will not be validated again.

For more information on other parameters that can be defined in the <PRODUCT_HOME>/repositor

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 175

1.

1.
2.
3.
4.
5.

1.

2.

1.

Creating database tables

To create the database tables, connect to the database that you created earlier and run the following scripts in
the H2 shell or web console:

To create tables in the registry and user manager database ()WSO2CARBON_DB , use the below script:

<PRODUCT_HOME>/dbscripts/h2.sql

Follow the steps below to run the script in web console:

Run the command to start the web console../h2.sh
Copy the script text from the SQL file.
Paste it into the console.
Click .Run
Restart the server.

Changing the product-specific/identity databases

The topics above show how to change the , which is used to store registry and user manager WSO2_CARBON_DB
information. If you changed the product-specific database () that comes by default or set up a separateWSO2AM_DB
database for identity related data, the instructions are the same. In summary:

Add the datasource to the file. master-datasources.xml The datasource for the product-specific
database is already there in the file by the name Change its elements with your custom values. WSO2AM_DB.
Create the database tables using the following scripts:

For the product-specific database Use the scripts in folder<PRODUCT_HOME>/dbscripts/apimgt

For the identity database Use the scripts in fold<PRODUCT_HOME>/dbscripts/identity
er

Setting up Remote H2

The following sections describe how to replace the default H2 databases with Remote H2:
Preparing the remote H2 database
Setting up drivers
Setting up datasource configurations
Creating database tables
Changing the product-specific/identity databases

Preparing the remote H2 database

Follow the steps below to set up a Remote H2: database.

Download and install the H2 database engine on your computer as follows.

 file, see .y/conf/datasources/ master-datasources.xml Tomcat JDBC Connection Pool

You can create database tables automatically by usingwhen starting the product for the first time
the parameter as follows:-Dsetup

For Windows: <PRODUCT_HOME>/bin/wso2server.bat -Dsetup
For Linux: <PRODUCT_HOME>/bin/wso2server.sh -Dsetup

For instructions on installing, see the .H2 installation guide

http://tomcat.apache.org/tomcat-7.0-doc/jdbc-pool.html#Tomcat_JDBC_Enhanced_Attributes
http://www.h2database.com/html/quickstart.html

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 176

1.

2.

3.

4.

1.

2.

1.

Go to the < directory and run the H2 network server starting script as follows, where <H2_HOME>/bin/ H2_H
 is the H2 installation directory:OME>

Run the H2 database server with the following commands:

For Linux:

$./h2.sh

For Windows:

$ h2.bat

Click to open a web browser containing a client application, which you use to connect to aStart Browser
database. If a database does not already exist by the name you provided in the text box, H2 willJDBC URL
automatically create a database.

Setting up drivers

WSO2 currently ships H2 database engine version h2-1.2.140.* and its related H2 database driver. If you want to
use a different H2 database driver, take the following steps:

Delete the following H2 database-related JAR file, which is shipped with WSO2 products:
<PRODUCT_HOME>/repository/components/plugins/h2-database-engine_1.2.140.wso2v3.j
ar
Find the JAR file of the new H2 database driver (, where is the H2<H2_HOME>/bin/h2-*.jar <H2_HOME>
installation directory) and copy it to your WSO2 product's <PRODUCT_HOME>/repository/components/l

 directory.ib/
Setting up datasource configurations

After , you create a datasource to point to it in the following files:creating the database

Edit the default datasource configuration in the < PRODUCT_HOME>/repository/conf/datasources/m a
 file. Replace the , , and settingsster-datasources.xml url username password driverClassName

with your custom values and also the other values accordingly as shown below:

The script starts the database engine and opens a pop-up window.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 177

1.

<datasource>
 <name>WSO2_CARBON_DB</name>
 <description>The datasource used for registry and user
manager</description>
 <jndiConfig>
 <name>jdbc/WSO2CarbonDB</name>
 </jndiConfig>
 <definition type="RDBMS">
 <configuration>
 <url>jdbc:h2:tcp://localhost/~/registryDB;create=true</url>
 <username>regadmin</username>
 <password>regadmin</password>
 <driverClassName>org.h2.Driver</driverClassName>
 <maxActive>80</maxActive>
 <maxWait>60000</maxWait>
 <minIdle>5</minIdle>
 <testOnBorrow>true</testOnBorrow>
 <validationQuery>SELECT 1</validationQuery>
 <validationInterval>30000</validationInterval>
 </configuration>
 </definition>
</datasource>

The elements in the above configuration are described below:

Element Description

url The URL of the database. The default port for a DB2 instance is 50000.

username and pa
ssword

The name and password of the database user

driverClassName The class name of the database driver

maxActive The maximum number of active connections that can be allocated at the same
time from this pool. Enter any negative value to denote an unlimited number of active
connections.

maxWait The maximum number of milliseconds that the pool will wait (when there are no
available connections) for a connection to be returned before throwing an exception.
You can enter zero or a negative value to wait indefinitely.

minIdle The minimum number of active connections that can remain idle in the pool without
extra ones being created, or enter zero to create none.

testOnBorrow The indication of whether objects will be validated before being borrowed from the
pool. If the object fails to validate, it will be dropped from the pool, and another
attempt will be made to borrow another.

validationQuery The SQL query that will be used to validate connections from this pool before
returning them to the caller.

validationInterval The indication to avoid excess validation, and only run validation at the most, at this
frequency (time in milliseconds). If a connection is due for validation, but has been
validated previously within this interval, it will not be validated again.

For more information on other parameters that can be defined in the <PRODUCT_HOME>/repositor
 file, see .y/conf/datasources/ master-datasources.xml Tomcat JDBC Connection Pool

http://tomcat.apache.org/tomcat-7.0-doc/jdbc-pool.html#Tomcat_JDBC_Enhanced_Attributes

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 178

1.

1.
2.
3.
4.

5.

1.

Creating database tables

To create the database tables, connect to the database that you created earlier and run the following scripts in H2
shell or web console:

To create tables in the registry and user manager database () :WSO2CARBON_DB , use the below script

<PRODUCT_HOME>/dbscripts/h2.sql

Follow the steps below to run the script in web console:

Run the command to start the web console../h2.sh
Copy the script text from the SQL file.
Paste it into the console.
Click .Run

Restart the server.

Changing the product-specific/identity databases

The topics above show how to change the , which is used to store registry and user managerWSO2_CARBON_DB
information. If you changed the product-specific database () that comes by default or set up a separateWSO2AM_DB
database for identity related data, the instructions are the same. In summary:

You can create database tables automatically by usingwhen starting the product for the first time
the parameter as follows:-Dsetup

For Windows: <PRODUCT_HOME>/bin/wso2server.bat -Dsetup
For Linux: <PRODUCT_HOME>/bin/wso2server.sh -Dsetup

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 179

1.

2.

1.

Add the datasource to the file. master-datasources.xml The datasource for the product-specific
database is already there in the file by the name Change its elements with your custom values. WSO2AM_DB.
Create the database tables using the following scripts:

For the product-specific database Use the scripts in folder<PRODUCT_HOME>/dbscripts/apimgt

For the identity database Use the scripts in fold<PRODUCT_HOME>/dbscripts/identity
er

Setting up IBM Informix

The following sections describe how to replace the default H2 databases with IBM Informix:
Prerequisites
Creating the database
Setting up Informix JDBC drivers
Setting up datasource configurations
Creating database tables
Changing the product-specific/identity databases

Prerequisites

Download the latest version of and install it on your computer.IBM Informix

Creating the database

Create the database and users in Informix.

Setting up Informix JDBC drivers

Download the Informix JDBC drivers and copy them to your WSO2 product's <PRODUCT_HOME>/repository/co
directory.mponents/lib/

Setting up datasource configurations

After , you create a datasource to point to it in the following files:creating the database

Edit the default datasource configuration in the < PRODUCT_HOME>/repository/conf/datasources/m a
 file. Replace the , , and settingsster-datasources.xml url username password driverClassName

with your custom values and also the other values accordingly as shown below:

For instructions on creating the database and users, see Informix product documentation .

http://www-01.ibm.com/software/data/informix/downloads.html
http://www-947.ibm.com/support/entry/portal/all_documentation_links/information_management/informix_servers?productContext=-1122713425
http://www-01.ibm.com/software/data/informix/

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 180

1.

<datasource>
 <name>WSO2AM_DB</name>
 <description>The datasource used for API Manager
database</description>
 <jndiConfig>
 <name>jdbc/WSO2AM_DB</name>
 </jndiConfig>
 <definition type="RDBMS">
 <configuration>
 <!-- IP ADDRESS AND PORT OF DB SERVER -->
 <url>jdbc:informix-sqli://localhost:1533/AM_DB</url>
 <username>wso2carbon</username>
 <password>wso2carbon</password>

<driverClassName>com.informix.jdbc.IfxDriver</driverClassName>
 <maxActive>50</maxActive>
 <maxWait>60000</maxWait>
 <testOnBorrow>true</testOnBorrow>
 <validationQuery>SELECT 1</validationQuery>
 <validationInterval>30000</validationInterval>
 </configuration>
 </definition>
 </datasource>

The elements in the above configuration are described below:

Element Description

url The URL of the database. The default port for a DB2 instance is 50000.

username and pa
ssword

The name and password of the database user

driverClassName The class name of the database driver

maxActive The maximum number of active connections that can be allocated at the same
time from this pool. Enter any negative value to denote an unlimited number of active
connections.

maxWait The maximum number of milliseconds that the pool will wait (when there are no
available connections) for a connection to be returned before throwing an exception.
You can enter zero or a negative value to wait indefinitely.

minIdle The minimum number of active connections that can remain idle in the pool without
extra ones being created, or enter zero to create none.

testOnBorrow The indication of whether objects will be validated before being borrowed from the
pool. If the object fails to validate, it will be dropped from the pool, and another
attempt will be made to borrow another.

validationQuery The SQL query that will be used to validate connections from this pool before
returning them to the caller.

validationInterval The indication to avoid excess validation, and only run validation at the most, at this
frequency (time in milliseconds). If a connection is due for validation, but has been
validated previously within this interval, it will not be validated again.

For more information on other parameters that can be defined in the < PRODUCT_HOME>/reposito

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 181

1.

1.

2.

1.

2.

1.
2.
3.
4.

5.

Creating database tables

To create the database tables, connect to the database that you created earlier and run the following scripts.

To create tables in the registry and user manager database (WSO2CARBON_DB) , use the below script:

<PRODUCT_HOME>/dbscripts/informix.sql

R e s t a r t t h e s e r v e r .

Changing the product-specific/identity databases

The topics above show how to change the , which is used to store registry and user manager WSO2_CARBON_DB
information. If you changed the product-specific database () that comes by default or set up a separateWSO2AM_DB
database for identity related data, the instructions are the same. In summary:

Add the datasource to the file. master-datasources.xml The datasource for the product-specific
database is already there in the file by the name Change its elements with your custom values. WSO2AM_DB.
Create the database tables using the following scripts:

For the product-specific database Use the scripts in folder<PRODUCT_HOME>/dbscripts/apimgt

For the identity database Use the scripts in fold<PRODUCT_HOME>/dbscripts/identity
er

Setting up Microsoft SQL

The following sections describe how to replace the default H2 database with MS SQL:
Setting up the database and users
Copying the JDBC driver
Setting up datasource configurations
Creating the database tables
Changing the product-specific/identity databases

Setting up the database and users

Follow the steps below to set up the Microsoft SQL database and users.
Enable TCP/IP

In the start menu, click and launch Programs Microsoft SQL Server 2005.
Click , and then click . Configuration Tools SQL Server Configuration Manager
Enable and disable from protocols of your Microsoft SQL server.TCP/IP Named Pipes
Double click to open the TCP/IP properties window, and set to on the tab.TCP/IP Listen All Yes Protocol

On the tab, disable by leaving it blank and give a valid TCP port, so thatIP Address TCP Dynamic Ports
Microsoft SQL server will listen on that port.

 file, see .ry/conf/datasources/ master-datasources.xml Tomcat JDBC Connection Pool

You can create database tables automatically by usingwhen starting the product for the first time
the parameter as follows:-Dsetup

For Windows: <PRODUCT_HOME>/bin/wso2server.bat -Dsetup
For Linux: <PRODUCT_HOME>/bin/wso2server.sh -Dsetup

http://tomcat.apache.org/tomcat-7.0-doc/jdbc-pool.html#Tomcat_JDBC_Enhanced_Attributes

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 182

5.

6.

7.

1.
2.
3.

1.

Similarly, enable TCP/IP from and disable . Also checkSQL Native Client Configuration Named Pipes
whether the port is set correctly to 1433.
Restart Microsoft SQL Server.

Create the database and user

Open Microsoft SQL Management Studio to create a database and user.
Click from the menu, and specify all the options to create a new database.New Database Database
Click from the menu, and specify all the necessary options.New Login Logins

Grant permissions

Assign newly created users the required grants/permissions to log in, create tables, and insert, index, select, update,
and delete data in tables in the newly created database, as the minimum set of SQL server permissions.

Copying the JDBC driver

Download and copy the Microsoft SQL JDBC driver file to the WSO2 product's sqljdbc4 <PRODUCT_HOME>/reposi
 directory. Use as the tory/components/lib/ com.microsoft.sqlserver.jdbc.SQLServerDriver <driv

 in your datasource configuration in erClassName> mast<PRODUCT_HOME>/repository/conf/datasources/

 file.er-datasources.xml

Setting up datasource configurations

After creating the database, you create a datasource to point to it in the following files:

Edit the default datasource configuration in the < PRODUCT_HOME>/repository/conf/datasources/m a
 file. Replace the , , and settingsster-datasources.xml url username password driverClassName

with your custom values and also the other values accordingly as shown below:

<datasource>
 <name>WSO2_CARBON_DB</name>
 <description>The datasource used for registry and user manager</description>
 <jndiConfig>
 <name>jdbc/WSO2CarbonDB</name>
 </jndiConfig>
 <definition type="RDBMS">
 <configuration>
 <url>jdbc:sqlserver://<IP>:1433;databaseName=wso2greg</url>
 <username>regadmin</username>
 <password>regadmin</password>

<driverClassName>com.microsoft.sqlserver.jdbc.SQLServerDriver</driverClassName>
 <maxActive>50</maxActive>
 <maxWait>60000</maxWait>
 <testOnBorrow>true</testOnBorrow>
 <validationQuery>SELECT 1</validationQuery>
 <validationInterval>30000</validationInterval>
 </configuration>
 </definition>
</datasource>

The elements in the above configuration are described below:

Element Description

url The URL of the database. Change the with the IP of the server. <IP> The best
practice is to use port 1433, because you can use it in order processing services.

The best practice is to use port 1433, because you can use it in order processing services.

https://msdn.microsoft.com/en-us/data/aa937724.aspx

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 183

1.

1.

2.

1.

2.

username and pa
ssword

The name and password of the database user

driverClassName The class name of the database driver

maxActive The maximum number of active connections that can be allocated at the same
time from this pool. Enter any negative value to denote an unlimited number of active
connections.

maxWait The maximum number of milliseconds that the pool will wait (when there are no
available connections) for a connection to be returned before throwing an exception.
You can enter zero or a negative value to wait indefinitely.

minIdle The minimum number of active connections that can remain idle in the pool without
extra ones being created, or enter zero to create none.

testOnBorrow The indication of whether objects will be validated before being borrowed from the
pool. If the object fails to validate, it will be dropped from the pool, and another
attempt will be made to borrow another.

validationQuery The SQL query that will be used to validate connections from this pool before
returning them to the caller.

validationInterval The indication to avoid excess validation, and only run validation at the most, at this
frequency (time in milliseconds). If a connection is due for validation, but has been
validated previously within this interval, it will not be validated again.

Creating the database tables

To create the database tables, connect to the database that you created earlier and run the following scripts.

To create tables in the registry and user manager database ()WSO2CARBON_DB , use the below script:

<PRODUCT_HOME>/dbscripts/mssql.sql

Restart the server.

Changing the product-specific/identity databases

The topics above show how to change the , which is used to store registry and user manager WSO2_CARBON_DB
information. If you changed the product-specific database () that comes by default or set up a separateWSO2AM_DB
database for identity related data, the instructions are the same. In summary:

Add the datasource to the file. master-datasources.xml The datasource for the product-specific
database is already there in the file by the name Change its elements with your custom values. WSO2AM_DB.
Create the database tables using the following scripts:

For more information on other parameters that can be defined in the <PRODUCT_HOME>/repositor
datasources/ file, see .y/conf/ master-datasources.xml Tomcat JDBC Connection Pool

You can create database tables automatically by usingwhen starting the product for the first time
the parameter as follows:-Dsetup

For Windows: <PRODUCT_HOME>/bin/wso2server.bat -Dsetup
For Linux: <PRODUCT_HOME>/bin/wso2server.sh -Dsetup

http://tomcat.apache.org/tomcat-7.0-doc/jdbc-pool.html#Tomcat_JDBC_Enhanced_Attributes

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 184

2.

1.

2.

3.

4.

5.

6.

For the product-specific database Use the scripts in folder<PRODUCT_HOME>/dbscripts/apimgt

For the identity database Use the scripts in fold<PRODUCT_HOME>/dbscripts/identity
er

Setting up MySQL

The following sections describe how to replace the default H2 databases with MySQL:
Setting up the database and users
Setting up the drivers
Setting up datasource configurations
Creating database tables
Changing the registry/user management databases
Changing the product-specific/identity databases

Setting up the database and users

Follow the steps below to set up a MySQL database:

Download and install MySQL on your computer using the following command:

sudo apt-get install mysql-server mysql-client

Start the MySQL service using the following command:

sudo /etc/init.d/mysql start

Log in to the MySQL client as the root user (or any other user with database creation privileges).

mysql -u root -p

Enter the password when prompted.

In the MySQL command prompt, create the database using the following command:

create database regdb;

Give authorization of the database to the regadmin user as follows:

GRANT ALL ON regdb.* TO regadmin@localhost IDENTIFIED BY "regadmin";

For instructions on installing MySQL on MAC OS, go to .Homebrew

In most systems, there is no default root password. Press the Enter key without typing anything if you
have not changed the default root password.

For users of Microsoft Windows, when creating the database in MySQL, it is important to specify the
character set as latin1. Failure to do this may result in an error (error code: 1709) when starting your
cluster. This error occurs in certain versions of MySQL (5.6.x), and is related to the UTF-8 encoding.
MySQL originally used the latin1 character set by default, which stored characters in a 2-byte
sequence. However, in recent versions, MySQL defaults to UTF-8 to be friendlier to international
users. Hence, you must use latin1 as the character set as indicated below in the database creation
commands to avoid this problem. Note that this may result in issues with non-latin characters (like
Hebrew, Japanese, etc.). The database creation command should be as follows:

mysql> create database <DATABASE_NAME> character set latin1;

For users of other operating systems, the standard database creation commands will suffice. For
these operating systems, t .he database creation command should be as follows:

mysql> create database <DATABASE_NAME>;

http://brew.sh/

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 185

7.

8.

1.

Once you have finalized the permissions, reload all the privileges by executing the following command:

FLUSH PRIVILEGES;

Log out from the MySQL prompt by executing the following command:

quit;

Setting up the drivers

Download the MySQL Java connector , and copy it to the <JAR file PRODUCT_HOME>/repository/components/
 directory.lib/

Setting up datasource configurations

The H2 database that comes by default stores registry and user management related data. Follow the steps below
to change the type of the default database or create new databases to manage registry or/and user management
related data separately.
Changing the default database

Follow the steps below to change the type of the default H2 database.

Edit the default datasource configuration in the < PRODUCT_HOME>/repository/conf/datasources/m a
 file. Replace the , , and settingsster-datasources.xml url username password driverClassName

with your custom values and also the other values accordingly as shown below.

<datasource>
 <name>WSO2_CARBON_DB</name>
 <description>The datasource used for registry and user
manager</description>
 <jndiConfig>
 <name>jdbc/WSO2CarbonDB</name>
 </jndiConfig>
 <definition type="RDBMS">
 <configuration>
 <url>jdbc:mysql://localhost:3306/regdb</url>
 <username>regadmin</username>
 <password>regadmin</password>
 <driverClassName>com.mysql.jdbc.Driver</driverClassName>
 <maxActive>80</maxActive>
 <maxWait>60000</maxWait>
 <minIdle>5</minIdle>
 <testOnBorrow>true</testOnBorrow>
 <validationQuery>SELECT 1</validationQuery>
 <validationInterval>30000</validationInterval>
 </configuration>
 </definition>
</datasource>

The elements in the above configuration are described below:

Element Description

url The URL of the database. The default port for MySQL is 3306

Do not change the datasource name in the below configurations.WSO2_CARBON_DB

http://dev.mysql.com/downloads/connector/j/5.1.html

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 186

1.

1.

2.

3.

username and pa
ssword

The name and password of the database user

driverClassName The class name of the database driver

maxActive The maximum number of active connections that can be allocated at the same
time from this pool. Enter any negative value to denote an unlimited number of active
connections.

maxWait The maximum number of milliseconds that the pool will wait (when there are no
available connections) for a connection to be returned before throwing an exception.
You can enter zero or a negative value to wait indefinitely.

minIdle The minimum number of active connections that can remain idle in the pool without
extra ones being created, or enter zero to create none.

testOnBorrow The indication of whether objects will be validated before being borrowed from the
pool. If the object fails to validate, it will be dropped from the pool, and another
attempt will be made to borrow another.

validationQuery The SQL query that will be used to validate connections from this pool before
returning them to the caller.

validationInterval The indication to avoid excess validation, and only run validation at the most, at this
frequency (time in milliseconds). If a connection is due for validation, but has been
validated previously within this interval, it will not be validated again.

Creating new databases to manage registry or user management related data

Follow the steps below to create new databases to manage registry or/and user management related data
separately.

Add the datasource to the <PRODUCT_HOME>/repository/conf/datasources/master-datasources
 file by copying the.xml datasource configurationsWSO2_CARBON_DB . Change its elements with your

custom values.
If you are setting up a separate database to store registry related data, update the following configurations in
the <PRODUCT_HOME>/repository/conf/ registry.xml fi le.

<dbConfig name="wso2registry">
 <dataSource>jdbc/WSO2CarbonDB</dataSource>
</dbConfig>

If you are setting up a separate database to store user management related data, update the following
configurations in the<PRODUCT_HOME>/repository/conf/ user-mgt.xml file.

<Configuration>
 <Property name="dataSource">jdbc/WSO2CarbonDB</Property>
</Configuration>

For more information on other parameters that can be defined in the <PRODUCT_HOME>/reposito
datasources/ file, see .ry/conf/ master-datasources.xml Tomcat JDBC Connection Pool

http://tomcat.apache.org/tomcat-7.0-doc/jdbc-pool.html#Tomcat_JDBC_Enhanced_Attributes

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 187

3.

1.

2.

1.

1.

2.

Creating database tables

To create the database tables, connect to the database that you created earlier and run the following scripts

To create tables in the registry and user manager database ()WSO2CARBON_DB , use the below script:

mysql -u regadmin -p -Dregdb < '<PRODUCT_HOME>/dbscripts/mysql.sql';

Restart the server.

Changing the registry/user management databases

If you change the database that come by default or set up a separate database for registry or user management
related data, follow the below instructions.

Add the datasource to the <PRODUCT_HOME>/repository/conf/datasources/master-datasources
 file.xml . Change its elements with your custom values. For instructions, see Setting up datasource

configurations.

Changing the product-specific/identity databases

The topics above show how to change the , which is used to store registry and user manager WSO2_CARBON_DB
information. If you changed the product-specific database () that comes by default or set up a separateWSO2AM_DB
database for identity related data, the instructions are the same. In summary:

Add the datasource to the file. master-datasources.xml The datasource for the product-specific
database is already there in the file by the name Change its elements with your custom values. WSO2AM_DB.
Create the database tables using the following scripts:

For the product-specific database

Use the scripts in folder<PRODUCT_HOME>/dbscripts/apimgt

For the identity database Use the scripts in fold<PRODUCT_HOME>/dbscripts/identity
er

Setting up MySQL Cluster

For instructions on setting up any WSO2 product with a MySQL cluster, see , which is published in thethis article
WSO2 library.
Setting up OpenEdge

The following sections describe how to set up the default H2 database with OpenEdge:
Setting up the database and user
Setting up the drivers
Setting up datasource configurations
Creating database tables

 You may have to enter the password for each command when prompted.

You can create database tables automatically by usingwhen starting the product for the first time
the parameter as follows:-Dsetup

For Windows: <PRODUCT_HOME>/bin/wso2server.bat -Dsetup
For Linux: <PRODUCT_HOME>/bin/wso2server.sh -Dsetup

http://wso2.com/library/articles/2013/04/deploying-wso2-platform-mysql-cluster/

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 188

1.
2.
3.
4.

5.

6.

7.

8.

1.

Setting up the database and user

Follow the steps below to set up an OpenEdge (OE) database.

Download and install OpenEdge on you computer.
Go to the directory and use the script to set up the environment variables. <OE_HOME>/bin/ proenv

Add to the environment variable.<OE_HOME>/java/prosp.jar CLASSPATH

Create an empty database using the script as follows. This script creates a database by copying anprodb

existing database provided with the installation.

prodb CARBON_DB <OE-installation-directory>/empty8

Start the database using the script as follows. Provide the database name and a port asproserve

arguments to this script using the and parameters.-db -S

proserve -db CARBON_DB -S 6767

Use the script to start the default SQL explorer that comes with the OpenEdge installation. Connectsqlexp

to the database you just created by using the and parameters as follows:-db -S

sqlexp -db CARBON_DB -S 6767

Use the following commands to create a user and grant that user the required permissions to the database:

CREATE USER 'wso2carbon','wso2carbon';
GRANT dba,resource TO 'wso2carbon';
COMMIT;

Log out from the SQL explorer by typing the following command: exit

Setting up the drivers

Copy the file to your WSO2 product's <OE_HOME>/java/openedge.jar <PRODUCT_HOME>/repository/comp
 directory. onents/lib/

Setting up datasource configurations

After , you create a datasource to point to it in the following files:creating the database

Edit the default datasource configuration in the < PRODUCT_HOME>/repository/conf/datasources/m a
 file. Replace the , , and settingsster-datasources.xml url username password driverClassName

with your custom values and also the other values accordingly as shown below:

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 189

1.

<datasource>
 <name>WSO2_CARBON_DB</name>
 <description>The datasource used for registry and user manager</description>
 <jndiConfig>
 <name>jdbc/WSO2CarbonDB</name>
 </jndiConfig>
 <definition type="RDBMS">
 <configuration>

<url>jdbc:datadirect:openedge://localhost:6767;databaseName=CARBON_DB</url>
 <username>regadmin</username>
 <password>regadmin</password>

<driverClassName>com.ddtek.jdbc.openedge.OpenEdgeDriver</driverClassName>
 <maxActive>80</maxActive>
 <maxWait>60000</maxWait>
 <minIdle>5</minIdle>
 <testOnBorrow>true</testOnBorrow>
 <validationQuery>SELECT 1</validationQuery>
 <validationInterval>30000</validationInterval>
 </configuration>
 </definition>
</datasource>

The elements in the above configuration are described below:

Element Description

url The URL of the database. The default port for a DB2 instance is 50000.

username and pa
ssword

The name and password of the database user

driverClassName The class name of the database driver

maxActive The maximum number of active connections that can be allocated at the same
time from this pool. Enter any negative value to denote an unlimited number of active
connections.

maxWait The maximum number of milliseconds that the pool will wait (when there are no
available connections) for a connection to be returned before throwing an exception.
You can enter zero or a negative value to wait indefinitely.

minIdle The minimum number of active connections that can remain idle in the pool without
extra ones being created, or enter zero to create none.

testOnBorrow The indication of whether objects will be validated before being borrowed from the
pool. If the object fails to validate, it will be dropped from the pool, and another
attempt will be made to borrow another.

validationQuery The SQL query that will be used to validate connections from this pool before
returning them to the caller.

validationInterval The indication to avoid excess validation, and only run validation at the most, at this
frequency (time in milliseconds). If a connection is due for validation, but has been
validated previously within this interval, it will not be validated again.

For more information on other parameters that can be defined in the <PRODUCT _HOME>/reposito

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 190

1.

1.

2.
3.

4.

5.

1.
2.

3.

4.

5.

6.

Creating database tables

To create the database tables, connect to the database that you created earlier and run the following scripts

To create tables in the registry and user manager database ()WSO2CARBON_DB , use the below script:

<PRODUCT_HOME>/dbscripts/openedge.sql

Follow the steps below to create the database tables by executing the scripts.

Modify the OpenEdge script provided with the product to create the tables manually. Make a backup of the <P
 script under the name .RODUCT_HOME>/dbscripts/openedge.sql openedge_manual.sql

Replace all the "/" symbols in the script with the ";" symbol.openedge_manual.sql
At the end of the script, add the following line and save the script:openedge_manual.sql

COMMIT;

Run the modified script using the SQL explorer as follows:

sqlexp -db CARBON_DB -S 6767 -user wso2carbon -password wso2carbon
<PRODUCT_HOME>/dbscripts/openedge_manual.sql

Restart the server.

Setting up Oracle

The following sections describe how to replace the default H2 database with Oracle:
Setting up the database and user
Copying the JDBC driver
Setting up datasource configurations
Creating the database tables
Changing the product-specific/identity databases

Setting up the database and user

Follow the steps below to set up a Oracle database.

Create a new database by using the Oracle database configuration assistant (dbca) or manually.
Make the necessary changes in the Oracle and files in order to definetnsnames.ora listner.ora
addresses of the databases for establishing connections to the newly created database.
After configuring the files, start the Oracle instance using the following command:.ora

$ sudo /etc/init.d/oracle-xe restart

Connect to Oracle using SQL*Plus as SYSDBA as follows:

$./$<ORACLE_HOME>/config/scripts/sqlplus.sh sysadm/password as SYSDBA
Connect to the instance with the username and password using the following command:

$ connect

As SYSDBA, create a database user and grant privileges to the user as shown below:

 file, see .ry/conf/datasources/ master-datasources.xml Tomcat JDBC Connection Pool

You can create database tables automatically by usingwhen starting the product for the first time
the parameter as follows:-Dsetup

For Windows: <PRODUCT_HOME>/bin/wso2server.bat -Dsetup
For Linux: <PRODUCT_HOME>/bin/wso2server.sh -Dsetup

http://tomcat.apache.org/tomcat-7.0-doc/jdbc-pool.html#Tomcat_JDBC_Enhanced_Attributes

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 191

6.

7.

1.

2.

1.

Create user USER_NAME identified by password account unlock;
grant connect to USER_NAME;
grant create session, create table, create sequence, create trigger to USER_NAME;
commit;

Exit from the SQL*Plus session by executing the command.quit

Copying the JDBC driver

Copy the Oracle JDBC libraries (for example, < to the <ORACLE_HOME/jdbc/lib/ojdbc14.jar) PRODUC
 directory.T_HOME>/repository/components/lib/

Remove the old database driver from the direct<PRODUCT_HOME>/repository/components/dropins/
ory.

Setting up datasource configurations

After , you create a datasource to point to it in the following files:creating the database

Edit the default datasource configuration in the < PRODUCT_HOME>/repository/conf/datasources/m a
 file. Replace the , , and settingsster-datasources.xml url username password driverClassName

with your custom values and also the other values accordingly as shown below:

<datasource>
 <name>WSO2_CARBON_DB</name>
 <description>The datasource used for registry and user manager</description>
 <jndiConfig>
 <name>jdbc/WSO2CarbonDB</name>
 </jndiConfig>
 <definition type="RDBMS">
 <configuration>
 <url>jdbc:oracle:thin:@SERVER_NAME:PORT/DB_NAME</url>
 <username>regadmin</username>
 <password>regadmin</password>
 <driverClassName>oracle.jdbc.driver.OracleDriver</driverClassName>
 <maxActive>80</maxActive>
 <maxWait>60000</maxWait>
 <minIdle>5</minIdle>
 <testOnBorrow>true</testOnBorrow>
 <validationQuery>SELECT 1 FROM DUAL</validationQuery>
 <validationInterval>30000</validationInterval>
 </configuration>
 </definition>
</datasource>

The elements in the above configuration are described below:

If you get a error when u settimezone region not found sing the ojdbc6.jar with WSO2 servers,
the Java property as follows: export JAVA_OPTS="-Duser.timezone='+05:30'"

The value of this property should be the GMT difference of the country. If it is necessary to set this property
permanently, define it inside the as a new property.wso2server.sh JAVA_OPT

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 192

1.

1.

2.

Element Description

url The URL of the database. The default port for a DB2 instance is 50000.

username and pa
ssword

The name and password of the database user

driverClassName The class name of the database driver

maxActive The maximum number of active connections that can be allocated at the same
time from this pool. Enter any negative value to denote an unlimited number of active
connections.

maxWait The maximum number of milliseconds that the pool will wait (when there are no
available connections) for a connection to be returned before throwing an exception.
You can enter zero or a negative value to wait indefinitely.

minIdle The minimum number of active connections that can remain idle in the pool without
extra ones being created, or enter zero to create none.

testOnBorrow The indication of whether objects will be validated before being borrowed from the
pool. If the object fails to validate, it will be dropped from the pool, and another
attempt will be made to borrow another.

validationQuery The SQL query that will be used to validate connections from this pool before
returning them to the caller.

validationInterval The indication to avoid excess validation, and only run validation at the most, at this
frequency (time in milliseconds). If a connection is due for validation, but has been
validated previously within this interval, it will not be validated again.

Creating the database tables

To create the database tables, connect to the database that you created earlier and run the following scripts in
SQL*Plus:

To create tables in the registry and user manager database ()WSO2CARBON_DB , use the below script:

SQL> @$<PRODUCT_HOME>/dbscripts/oracle.sql

Restart the server.

Changing the product-specific/identity databases

The topics above show how to change the , which is used to store registry and user manager WSO2_CARBON_DB

The default port for Oracle is 1521.

For more information on other parameters that can be defined in the <PRODUCT_HOME>/repositor
 file, see .y/conf/datasources/ master-datasources.xml Tomcat JDBC Connection Pool

You can create database tables automatically by usingwhen starting the product for the first time
the parameter as follows:-Dsetup

For Windows: <PRODUCT_HOME>/bin/wso2server.bat -Dsetup
For Linux: <PRODUCT_HOME>/bin/wso2server.sh -Dsetup

http://tomcat.apache.org/tomcat-7.0-doc/jdbc-pool.html#Tomcat_JDBC_Enhanced_Attributes

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 193

1.

2.

1.

2.

information. If you changed the product-specific database () that comes by default or set up a separateWSO2AM_DB
database for identity related data, the instructions are the same. In summary:

Add the datasource to the file. master-datasources.xml The datasource for the product-specific
database is already there in the file by the name Change its elements with your custom values. WSO2AM_DB.
Create the database tables using the following scripts:

For the product-specific database Use the scripts in folder<PRODUCT_HOME>/dbscripts/apimgt

For the identity database Use the scripts in fold<PRODUCT_HOME>/dbscripts/identity
er

Setting up Oracle RAC

The following sections describe how to replace the default H2 database with Oracle RAC:
Setting up the database and user
Copying the JDBC driver
Setting up datasource configurations
Creating the database tables
Changing the product-specific/identity databases

Oracle Real Application Clusters (RAC) is an option for the Oracle Database for clustering and high availability in
Oracle database environments. In the Oracle RAC environment, some of the commands used in areoracle.sql
considered inefficient. Therefore, the product has a separate SQL script for Oracle RAC. Theoracle_rac.sql
Oracle RAC-friendly script is located in the folder together with other scripts.dbscripts .sql

Setting up the database and user

Follow the steps below to set up an Oracle RAC database.

Set environment variables < , , and with the corresponding values ORACLE_HOME> PATH ORACLE_SID /ora
, , and as follows:cle/app/oracle/product/11.2.0/dbhome_1 $PATH:<ORACLE_HOME>/bin orcl1

Connect to Oracle using SQL*Plus as SYSDBA.

To test products on Oracle RAC, rename to before running .oracle_rac.sql oracle.sql -Dsetup

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 194

2.

3.

4.

1.

Create a database user and grant privileges to the user as shown below:

Create user USER_NAME identified by PASSWORD account unlock;
grant connect to USER_NAME;
grant create session, dba to USER_NAME;
commit;

Exit from the SQL*Plus session by executing the command.quit

Copying the JDBC driver

Copy the Oracle JDBC libraries (for example, the file) to the <ORACLE_HOME>/jdbc/lib/ojdbc14.jar <PRODU
 directory. CT_HOME>/repository/components/lib/

Setting up datasource configurations

After , you create a datasource to point to it in the following files:creating the database

Remove the old database driver from the direc<PRODUCT_HOME>/repository/components/dropins/
tory when you upgrade the database driver.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 195

1. Edit the default datasource configuration in the < PRODUCT_HOME>/repository/conf/datasources/m a
 file. Replace the , , and settingsster-datasources.xml url username password driverClassName

with your custom values and also the other values accordingly as shown below:

<datasource>
 <name>WSO2_CARBON_DB</name>
 <description>The datasource used for registry and user manager</description>
 <jndiConfig>
 <name>jdbc/WSO2CarbonDB</name>
 </jndiConfig>
 <definition type="RDBMS">
 <configuration>
 <url>jdbc:oracle:thin:@(DESCRIPTION=(LOAD_BALANCE=on)
 (ADDRESS=(PROTOCOL=TCP)(HOST=racnode1) (PORT=1521))
 (ADDRESS=(PROTOCOL=TCP)(HOST=racnode2) (PORT=1521))
 (CONNECT_DATA=(SERVICE_NAME=rac)))</url>
 <username>regadmin</username>
 <password>regadmin</password>
 <driverClassName>oracle.jdbc.driver.OracleDriver</driverClassName>
 <maxActive>80</maxActive>
 <maxWait>60000</maxWait>
 <minIdle>5</minIdle>
 <testOnBorrow>true</testOnBorrow>
 <validationQuery>SELECT 1 FROM DUAL</validationQuery>
 <validationInterval>30000</validationInterval>
 </configuration>
 </definition>
</datasource>

The elements in the above configuration are described below:

Element Description

url The URL of the database. The default port for a DB2 instance is 50000.

username and pa
ssword

The name and password of the database user

driverClassName The class name of the database driver

maxActive The maximum number of active connections that can be allocated at the same
time from this pool. Enter any negative value to denote an unlimited number of active
connections.

maxWait The maximum number of milliseconds that the pool will wait (when there are no
available connections) for a connection to be returned before throwing an exception.
You can enter zero or a negative value to wait indefinitely.

minIdle The minimum number of active connections that can remain idle in the pool without
extra ones being created, or enter zero to create none.

testOnBorrow The indication of whether objects will be validated before being borrowed from the
pool. If the object fails to validate, it will be dropped from the pool, and another
attempt will be made to borrow another.

validationQuery The SQL query that will be used to validate connections from this pool before
returning them to the caller.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 196

1.

1.

2.

1.

2.

1.

2.

validationInterval The indication to avoid excess validation, and only run validation at the most, at this
frequency (time in milliseconds). If a connection is due for validation, but has been
validated previously within this interval, it will not be validated again.

Creating the database tables

To create the database tables, connect to the database that you created earlier and run the following scripts in
SQL*Plus:

To create tables in the registry and user manager database ()WSO2CARBON_DB , use the below script:

SQL> @$<PRODUCT_HOME>/dbscripts/oracle.sql

Restart the server.

Changing the product-specific/identity databases

The topics above show how to change the , which is used to store registry and user manager WSO2_CARBON_DB
information. If you changed the product-specific database () that comes by default or set up a separateWSO2AM_DB
database for identity related data, the instructions are the same. In summary:

Add the datasource to the file. master-datasources.xml The datasource for the product-specific
database is already there in the file by the name Change its elements with your custom values. WSO2AM_DB.
Create the database tables using the following scripts:

For the product-specific database Use the scripts in folder<PRODUCT_HOME>/dbscripts/apimgt

For the identity database Use the scripts in fold<PRODUCT_HOME>/dbscripts/identity
er

Setting up PostgreSQL

The following sections describe how to replace the default H2 database with PostgreSQL:
Setting up the database and login role
Setting up the drivers
Setting up datasource configurations
Creating database tables
Changing the product-specific/identity databases

Setting up the database and login role

Follow the steps below to set up a PostgreSQL database.

Install PostgreSQL on your computer as follows:

For more information on other parameters that can be defined in the <PRODUCT_HOME>/repositor
 file, see .y/conf/datasources/ master-datasources.xml Tomcat JDBC Connection Pool

You can create database tables automatically by usingwhen starting the product for the first time
the parameter as follows:-Dsetup

For Windows: <PRODUCT_HOME>/bin/wso2server.bat -Dsetup
For Linux: <PRODUCT_HOME>/bin/wso2server.sh -Dsetup

http://tomcat.apache.org/tomcat-7.0-doc/jdbc-pool.html#Tomcat_JDBC_Enhanced_Attributes

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 197

2.

3.
4.

5.
6.
7.

8.
9.

1.
2.

1.

Start the PostgreSQL service using the following command:

Create a database and the login role from a GUI using the .PGAdminIII tool
To connect PGAdminIII to a PostgreSQL database server, locate the server from the object browser,
right-click the client, and click . This will show you the databases, tablespaces, and login roles as Connect
follows:

To create a database, click in the tree (inside the object browser), and click .Databases New Database
In the dialog box, give a name to the database (for example: gregdb) and click . New Database OK
To create a login role, click in the tree (inside the object browser), and click .Login Roles New Login Role
Enter the role name and a password.

Optionally enter other policies, such as the expiration time for the login and the connection limit.
Click to finish creating the login role. OK

Setting up the drivers

Download the .PostgreSQL JDBC4 driver
Copy the driver to your WSO2 product's < directory. PRODUCT_HOME>/repository/components/lib

Setting up datasource configurations

After , you create a datasource to point to it in the following files.creating the database

Edit the default datasource configuration in the < PRODUCT_HOME>/repository/conf/datasources/m a

These values will be used in the product configurations as described in the following sections. In the
sample configuration, will be used as both the role name and the password.gregadmin

http://www.pgadmin.org/download/
http://jdbc.postgresql.org/download.html

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 198

1.

 file. Replace the , , and settingsster-datasources.xml url username password driverClassName
with your custom values and also the other values accordingly as shown below:

<datasource>
 <name>WSO2_CARBON_DB</name>
 <description>The datasource used for registry and user
manager</description>
 <jndiConfig>
 <name>jdbc/WSO2CarbonDB</name>
 </jndiConfig>
 <definition type="RDBMS">
 <configuration>
 <url>jdbc:postgresql://localhost:5432/gregdb</url>
 <username>regadmin</username>
 <password>regadmin</password>
 <driverClassName>org.postgresql.Driver</driverClassName>
 <maxActive>80</maxActive>
 <maxWait>60000</maxWait>
 <minIdle>5</minIdle>
 <testOnBorrow>true</testOnBorrow>
 <validationQuery>SELECT 1</validationQuery>
 <validationInterval>30000</validationInterval>
 </configuration>
 </definition>
</datasource>

The elements in the above configuration are described below:

Element Description

url The URL of the database. The default port for a DB2 instance is 50000.

username and pa
ssword

The name and password of the database user

driverClassName The class name of the database driver

maxActive The maximum number of active connections that can be allocated at the same
time from this pool. Enter any negative value to denote an unlimited number of active
connections.

maxWait The maximum number of milliseconds that the pool will wait (when there are no
available connections) for a connection to be returned before throwing an exception.
You can enter zero or a negative value to wait indefinitely.

minIdle The minimum number of active connections that can remain idle in the pool without
extra ones being created, or enter zero to create none.

testOnBorrow The indication of whether objects will be validated before being borrowed from the
pool. If the object fails to validate, it will be dropped from the pool, and another
attempt will be made to borrow another.

validationQuery The SQL query that will be used to validate connections from this pool before
returning them to the caller.

validationInterval The indication to avoid excess validation, and only run validation at the most, at this
frequency (time in milliseconds). If a connection is due for validation, but has been
validated previously within this interval, it will not be validated again.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 199

1.

1.

2.

1.

2.

Creating database tables

To create the database tables, connect to the database that you created earlier and run the following scripts.

To create tables in the registry and user manager database ()WSO2CARBON_DB , use the below script:

<PRODUCT_HOME>/dbscripts/postgresql.sql

Restart the server.

Changing the product-specific/identity databases

The topics above show how to change the , which is used to store registry and user manager WSO2_CARBON_DB
information. If you changed the product-specific database () that comes by default or set up a separateWSO2AM_DB
database for identity related data, the instructions are the same. In summary:

Add the datasource to the file. master-datasources.xml The datasource for the product-specific
database is already there in the file by the name Change its elements with your custom values. WSO2AM_DB.
Create the database tables using the following scripts:

For the product-specific database Use the scripts in folder<PRODUCT_HOME>/dbscripts/apimgt

For the identity database Use the scripts in fold<PRODUCT_HOME>/dbscripts/identity
er

Managing Datasources

A datasource provides information that a server can use to connect to a database. Datasource management is
provided by the following feature in the WSO2 feature repository:

Name : WSO2 Carbon - da tasource management fea tu re
Identifier: org.wso2.carbon.datasource.feature.group

If datasource management capability is not included in your product by default, add it by installing the above feature,
using the instructions given under the Feature Management section of this documentation.

Click on the tab of the product's management console to view, edit, and delete theData Sources Configure
datasources in your product instance.

Adding Datasources

If the datasource management feature is installed in your WSO2 product instance, you can add datasources that allow the server to connect to
databases and other external data stores.

For more information on other parameters that can be defined in the <PRODUCT_HOME>/repositor
 file, see .y/conf/datasources/ master-datasources.xml Tomcat JDBC Connection Pool

You can create database tables automatically by usingwhen starting the product for the first time
the parameter as follows:-Dsetup

For Windows: <PRODUCT_HOME>/bin/wso2server.bat -Dsetup
For Linux: <PRODUCT_HOME>/bin/wso2server.sh -Dsetup

 You can view, edit, and delete the datasources in your product instance by clicking on the Data Sources C
 tab of the product management console. However, you cannot edit or delete theonfigure

default <WSO2_CARBON_DB> datasource.

http://tomcat.apache.org/tomcat-7.0-doc/jdbc-pool.html#Tomcat_JDBC_Enhanced_Attributes

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 200

1.

2.
3.

Use the following steps to add a datasource:
In the product management console, click on the tab. Data Sources Configure

Click . Add Data Source
Specify the required options for connecting to the database. The available options are based on the type of
datasource you are creating:

Configuring a RDBMS Datasource
Configuring a Custom Datasource

After adding datasources, they will appear on the page. You can edit and delete them as needed byData Sources
clicking or links.Edit Delete

Configuring an RDBMS Datasource

When adding a datasource, if you select RDBMS as the datasource type, the following screen appears:

This is the default RDBMS datasource configuration provided by WSO2. You can also write your own RDBMS
configuration by selecting the custom datasource option. Enter values for the following fields when using the default
RDBMS datasource configuration:

When adding an RDBMS datasource, be sure to copy the JDBC driver JAR file for your database to <PROD
.UCT_HOME>/repository/components/lib

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 201

Data Source Type: RDBMS
Name: Name of the datasource (must be a unique value)
Data Source Provider: Specify the datasource provider.
Driver: The class name of the JDBC driver to use. Make sure to copy the JDBC driver relevant to the
database engine to the directory. For example, if you<PRODUCT_HOME>/repository/components/lib/
are using MySQL, specify as the driver and copy com.mysql.jdbc.Driver mysql-connector-java-5

 file to this directory. If you do not copy the driver to this directory when you create the.XX-bin.jar
datasource, you will get an exception similar to Cannot load JDBC driver class

.com.mysql.jdbc.Driver
URL: The connection URL to pass to the JDBC driver to establish the connection.
User Name: The connection user name that will be passed to the JDBC driver to establish the connection.
Password: The connection password that will be passed to the JDBC driver to establish the connection.
Expose as a JNDI Data Souce: Allows you to specify the JNDI datasource.
Data Source Configuration Parameters: Allows you to specify the datasource connection pool parameters
when creating a RDBMS datasource.

For more details on datasource configuration parameters, see .ApacheTomcat JDBC Connection Pool guide

After creating datasources, they appear on the page. You can edit and delete them as needed byData Sources
clicking or links.Edit Delete

Configuring the Datasource Provider

A datasource provider connects to a source of data such as a database, accesses its data, and returns the results of
the access queries. When creating a RDBMS datasource, use the default provider or link to an external provider.Def
ault datasource provider

To use the default datasource provider, select , and then enter the Driver, URL, User Name, anddefault
Password connection properties as follows:

External datasource provider

If you need to add a datasource supported by an external provider class such as com.mysql.jdbc.jdbc2.optio
, select , click , and then enter the name and valuenal.MysqlXADataSource External Data Source Add Property

of each connection property you need to configure. Following is an example datasource for an external datasource
provider:

http://tomcat.apache.org/tomcat-7.0-doc/jdbc-pool.html

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 202

Configuring a JNDI Datasource

Java Naming and Directory Interface (JNDI) is a Java Application Programming Interface (API) that provides naming
and directory functionality for Java software clients, to discover and look up data and objects via a name. It helps
decoupling object creation from the object look-up. When you have registered a datasource with JNDI, others can
discover it through a JNDI look-up and use it.

When adding a datasource, to expose a RDBMS datasource as a JNDI datasource, click Expose as a JNDI Data
 to display the JNDI fields as follows:Source

Following are descriptions of the JNDI fields:

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 203

Name: Name of the JNDI datasource that will be visible to others in object look-up.
Use Data Source Factory: To make the datasource accessible from an external environment, you must use
a datasource factory. When this option is selected, a reference object will be created with the defined
datasource properties. The datasource factory will create the datasource instance based on the values of the
reference object when accessing the datasource from an external environment. In the datasource
configuration, this is set as: . <jndiConfig useDataSourceFactory="true">
JNDI Properties: Properties related to the JNDI datasource (such as password).
When you select this option, set the following properties:

java.naming.factory.initial: Selects the registry service provider as the initial context.
java.naming.provider.url: Specifies the location of the registry when the registry is being used
as the initial context.

Configuring the Datasource Connection Pool Parameters

When the server processes a database operation, it spawns a database connection from an associated datasource.
After using this connection, the server returns it to the pool of connections. This is called datasource connection
pooling. It is a recommended way to gain more performance/throughput in the system. In datasource connection
pooling, the physical connection is not dropped with the database server, unless it becomes stale or the datasource
connection is closed.

RDBMS datasources in WSO2 products use Tomcat JDBC connection pool ().org.apache.tomcat.jdbc.pool
It is common to all components that access databases for data persistence, such as the registry, user management
(if configured against a JDBC userstore), etc.

You can configure the datasource connection pool parameters, such as how long a connection is persisted in the
pool, using the datasource configuration parameters section that appears in the product management console when
creating a datasource. Click and expand the option as shown below:

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 204

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 205

Following are descriptions of the parameters you can configure. For more details on datasource configuration
parameters, see .ApacheTomcat JDBC Connection Pool guide

Parameter
name

Description

Transaction
isolation

The default state of connections created by this pool are as follows:TransactionIsolation

TRANSACTION_UNKNOWN
TRANSACTION_NONE
TRANSACTION_READ_COMMITTED
TRANSACTION_READ_UNCOMMITTED
TRANSACTION_REPEATABLE_READ
TRANSACTION_SERIALIZABLE

Initial Size
(int)

The initial number of connections created, when the pool is started. Default value is zero.

Max. Active
(int)

Maximum number of active connections that can be allocated from this pool at the same time. The
default value is 100.

Max. Idle
(int)

Maximum number of connections that should be kept in the pool at all times. Default value is 8. Idle
connections are checked periodically (if enabled), and connections that have been idle for longer
than will be released. (also see)minEvictableIdleTimeMillis testWhileIdle

Min. Idle
(int)

Minimum number of established connections that should be kept in the pool at all times. The
connection pool can shrink below this number, if validation queries fail. Default value is zero. For
more information, see .testWhileIdle

Max. Wait
(int)

Maximum number of milliseconds that the pool waits (when there are no available connections) for
a connection to be returned before throwing an exception. Default value is 30000 (30 seconds).

Validation
Query
(String)

The SQL query used to validate connections from this pool before returning them to the caller. If
specified, this query does not have to return any data, it just can't throw a SQLException. The
default value is null. Example values are SELECT 1 (mysql), select 1 from dual (oracle), SELECT 1
(MS Sql Server).

Test On
Return
(boolean)

Used to indicate if objects will be validated before returned to the pool. The default value is false.

Test On
Borrow
(boolean)

Used to indicate if objects will be validated before borrowed from the pool. If the object fails to
validate, it will be dropped from the pool, and we will attempt to borrow another. Default value is
false.

For a true value to have any effect, the parameter must be set to avalidationQuery
non-null string.

For a true value to have any effect, the parameter must be set to avalidationQuery
non-null string. In order to have a more efficient validation, see .validationInterval

http://tomcat.apache.org/tomcat-7.0-doc/jdbc-pool.html

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 206

Test While
Idle
(boolean)

The indication of whether objects will be validated by the idle object evictor (if any). If an object fails
to validate, it will be dropped from the pool. The default value is false and this property has to be
set in order for the pool cleaner/test thread to run. For more information, see timeBetweenEviction

 .RunsMillis

Time
Between
Eviction
Runs Mills
(int)

Number of milliseconds to sleep between runs of the idle connection validation/cleaner thread. This
value should not be set under 1 second. It indicates how often we check for idle, abandoned
connections, and how often we validate idle connections. The default value is 5000 (5 seconds).

Minimum
Evictable
Idle Time
(int)

Minimum amount of time an object may sit idle in the pool before it is eligible for eviction. The
default value is 60000 (60 seconds).

Remove
Abandoned
(boolean)

Flag to remove abandoned connections if they exceed the . If set to true,removeAbandonedTimout
a connection is considered abandoned and eligible for removal, if it has been in use longer than the

Setting this to true can recover database connections fromremoveAbandonedTimeout.
applications that fail to close a connection. For more information, see . The defaultlogAbandoned
value is false.

Remove
Abandoned
Timeout
(int)

Timeout in seconds before an abandoned (in use) connection can be removed. The default value is
60 (60 seconds). The value should be set to the longest running query that your applications might
have.

Log
Abandoned
(boolean)

Flag to log stack traces for application code which abandoned a connection. Logging of abandoned
connections, adds overhead for every connection borrowing, because a stack trace has to be
generated. The default value is false.

Auto
Commit
(boolean)

The default auto-commit state of connections created by this pool. If not set, default is JDBC driver
default. If not set, then the method will not be called.setAutoCommit

Default
Read Only
(boolean)

The default read-only state of connections created by this pool. If not set then the msetReadOnly
ethod will not be called. (Some drivers don't support read only mode. For example: Informix)

Default
Catalog
(String)

The default catalog of connections created by this pool.

Validator
Class
Name
(String)

The name of a class which implements the .Validates theorg.apache.tomcat.jdbc.pool
interface and provides a no-arg constructor (may be implicit). If specified, the class will be used to
create a instance, which is then used instead of any validation query to validateValidator
connections. The default value is null. An example value is com.mycompany.project.SimpleV

.alidator

Connection
Properties
(String)

Connection properties that will be sent to our JDBC driver when establishing new connections.
Format of the string must be . The default value is null.[propertyName=property;]*

For a true value to have any effect, the parameter must be set to avalidationQuery
non-null string.

The and properties will be passed explicitly, so that they do not need touser password
be included here.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 207

Init SQL Ability to run a SQL statement exactly once, when the connection is created.

JDBC
Interceptors

Flexible and pluggable interceptors to create any customizations around the pool, the query
execution and the result set handling.

Validation
Interval
(long)

To avoid excess validation, only run validation at most at this frequency - time in milliseconds. If a
connection is due for validation, but has been validated previously within this interval, it will not be
validated again. The default value is 30000 (30 seconds).

JMX
Enabled
(boolean)

Register the pool with JMX or not. The default value is true.

Fair Queue
(boolean)

Set to true, if you wish that calls to should be treated fairly in a true FIFO fashion.getConnection
This uses the implementation for theorg.apache.tomcat.jdbc.pool.FairBlockingQueue
list of the idle connections. The default value is true. This flag is required when you want to use
asynchronous connection retrieval. Setting this flag ensures that threads receive connections in the
order they arrive. During performance tests, there is a very large difference in how locks and lock
waiting is implemented. When , there is a decision making process based onfairQueue=true
what operating system the system is running. If the system is running on Linux (property os.name

), then to disable this Linux specific behavior and still use the fair queue, simply add the=Linux
property to yourorg.apache.tomcat.jdbc.pool.FairBlockingQueue.ignoreOS=true
system properties, before the connection pool classes are loaded.

Abandon
When
Percentage
Full (int)

Connections that have been abandoned (timed out) will not get closed and reported up, unless the
number of connections in use are above the percentage defined by abandonWhenPercentageFu

. The value should be between 0-100. The default value is zero, which implies that connectionsll
are eligible for closure as soon as has been reached.removeAbandonedTimeout

Max Age
(long)

Time in milliseconds to keep this connection. When a connection is returned to the pool, the pool
will check to see if the current time when connected, is greater than the that has beenmaxAge
reached. If so, it closes the connection rather than returning it to the pool. The default value is zero,
which implies that connections will be left open and no age check will be done upon returning the
connection to the pool.

Use Equals
(boolean)

Set to true, if you wish the class to use and set to falseProxyConnection String.equals,
when you wish to use when comparing method names. This property does not apply to added==
interceptors as those are configured individually. The default value is true.

Suspect
Timeout
(int)

Timeout value in seconds. Default value is zero. Similar to to the valremoveAbandonedTimeout
ue, but instead of treating the connection as abandoned, and potentially closing the connection, this
simply logs the warning if is set to true. If this value is equal or less than zero, nologAbandoned
suspect checking will be performed. Suspect checking only takes place if the timeout value is larger
than zero, and the connection was not abandoned, or if abandon check is disabled. If a connection
is suspected, a warning message gets logged and a JMX notification will be sent.

Alternate
User Name
Allowed
(boolean)

By default, the will ignore the jdbc-pool DataSource.getConnection(username,passwor
 call, and simply return a previously pooled connection under the globally configured propertiesd)

username and password, for performance reasons.

The pool can however be configured to allow use of different credentials each time a connection is
requested. To enable the functionality described in the DataSource.getConnection(usernam

 call, simply set the property to true. If youe,password) alternateUsernameAllowed,
request a connection with the credentials user1/password1, and the connection was previously
connected using different user2/password2, then the connection will be closed, and reopened with
the requested credentials. This way, the pool size is still managed on a global level, and not on a
per-schema level. The default value is false.

Configuring a Custom Datasource

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 208

When adding a datasource, if you select the custom datasource type, the following screen will appear:

Following are descriptions of the custom datasource fields:

Data Source Type: Custom
Custom Data Source Type: Specify whether the data is in a table or accessed through a query as described

.below
Name: Enter a unique name for this datasource
Description: Description of the datasource
Configuration: XML configuration of the datasource

Custom datasource type

When creating a custom datasource, specify whether the datasource type is DS_CUSTOM_TABULAR (the data is
stored in tables), or DS_CUSTOM_QUERY (non-tabular data accessed through a query). More information about
each type are explained below.
Custom tabular datasources

Tabular datasources are used for accessing tabular data, that is, the data is stored in rows in named tables that can
be queried later. To implement tabular datasources, the interface org.wso2.carbon.dataservices.core.cus

 is used. For more information, see a sample implementation of atom.datasource.TabularDataBasedDS
tabular custom datasource at .InMemoryDataSource

A tabular datasource is typically associated with a SQL data services query. WSO2 products use an internal SQL
parser to execute SQL against the custom datasource. For more information, see a sample data service descriptor
at . Carbon datasources also support tabular data with the InMemoryDSSample org.wso2.carbon.dataservic

 datasource reader implementation. If youes.core.custom.datasource.CustomTabularDataSourceReader
have Data Services Server installed, for more information see the <PRODUCT_HOME>\repository\conf\dataso

 file, which is a sample Carbon datasource configuration. urces\custom-datasources.xml
Custom query datasources

Custom query-based datasources are used for accessing non-tabular data through a query expression. To
implement query-based datasources, the org.wso2.carbon.dataservices.core.custom.datasource.Cu

 interface is used. You can create any non-tabular datasource using the query-basedstomQueryBasedDS
approach. Even if the target datasource does not have a query expression format, you can create and use your own.
For example, you can support any NoSQL type datasource using this type of a datasource.

For more information, see a sample implementation of a custom query-based datasource at ,EchoDataSource
and a sample data service descriptor with custom query datasources in . Carbon datasourcesInMemoryDSSample

https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/components/data-services/org.wso2.carbon.dataservices.core/4.2.0/src/main/java/org/wso2/carbon/dataservices/core/custom/datasource/TabularDataBasedDS.java
https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/components/data-services/org.wso2.carbon.dataservices.core/4.2.0/src/main/java/org/wso2/carbon/dataservices/core/custom/datasource/TabularDataBasedDS.java
https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/components/data-services/org.wso2.carbon.dataservices.core/4.2.0/src/main/java/org/wso2/carbon/dataservices/core/custom/datasource/InMemoryDataSource.java
https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/products/dss/3.1.0/modules/samples/dbs/inmemory/InMemoryDSSample.dbs
https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/components/data-services/org.wso2.carbon.dataservices.core/4.2.0/src/main/java/org/wso2/carbon/dataservices/core/custom/datasource/CustomTabularDataSourceReader.java
https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/components/data-services/org.wso2.carbon.dataservices.core/4.2.0/src/main/java/org/wso2/carbon/dataservices/core/custom/datasource/CustomTabularDataSourceReader.java
https://svn.wso2.org/repos/wso2/carbon/platform/branches/4.0.0/components/data-services/org.wso2.carbon.dataservices.core/4.0.2/src/main/java/org/wso2/carbon/dataservices/core/custom/datasource/CustomQueryBasedDS.java
https://svn.wso2.org/repos/wso2/carbon/platform/branches/4.0.0/components/data-services/org.wso2.carbon.dataservices.core/4.0.2/src/main/java/org/wso2/carbon/dataservices/core/custom/datasource/CustomQueryBasedDS.java
https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/components/data-services/org.wso2.carbon.dataservices.core/4.2.0/src/main/java/org/wso2/carbon/dataservices/core/custom/datasource/EchoDataSource.java
https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/products/dss/3.1.0/modules/samples/dbs/inmemory/InMemoryDSSample.dbs

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 209

also support query-based data with the org.wso2.carbon.dataservices.core.custom.datasource.Cust
 datasource reader implementation. If you have Data Services Server installed, foromQueryDataSourceReader

more information, see the fi<PRODUCT_HOME>\repository\conf\datasources\custom-datasources.xml
le, which is a sample Carbon datasource configuration.

In the methods of all custom datasources, user-supplied properties will be parsed to initialize the datasourceinit
accordingly. Also, a property named , which contains a UUID to uniquely identify the<__DATASOURCE_ID__>
current datasource, will be passed. This can be used by custom datasource authors to identify the datasources
accordingly, such as datasource instances communicating within a server cluster for data synchronization.

Shown below is an example configuration of a custom datasource of type :<DS_CUSTOM_TABULAR>

After creating datasources, they will appear on the page. You can edit and delete them as needed byData Sources
clicking or links.Edit Delete

Managing Users and Roles

Before you begin, note the following:

Only system administrators can add, modify and remove users and roles. To set up administrators, see Real
.m Configuration

Your product has a primary user store where the users/roles that you create using the management console
are stored by default. It's default configurations are as follows. configurations ensure thatRegEx RegEx
parameters like the length of a user name/password meet the requirements of the user store.

PasswordJavaRegEx-------- ^[\S]{5,30}$
PasswordJavaScriptRegEx-- ^[\S]{5,30}$
UsernameJavaRegEx-------- ^~!#$;%*+={}\\{3,30}$
UsernameJavaScriptRegEx-- ^[\S]{3,30}$
RolenameJavaRegEx-------- ^~!#$;%*+={}\\{3,30}$
RolenameJavaScriptRegEx-- ^[\S]{3,30}$

When creating users/roles, if you enter a username, password etc. that does not conform to the configRegEx
urations, the system throws an exception. You can either change the configuration or enter values thatRegEx

https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/components/data-services/org.wso2.carbon.dataservices.core/4.2.0/src/main/java/org/wso2/carbon/dataservices/core/custom/datasource/CustomQueryDataSourceReader.java
https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/components/data-services/org.wso2.carbon.dataservices.core/4.2.0/src/main/java/org/wso2/carbon/dataservices/core/custom/datasource/CustomQueryDataSourceReader.java

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 210

1.

2.
3.

conform to the . If you or , configure the RegEx change the default user store set up a secondary user store Re
 accordingly under the user store manager configurations in gEx <APIM_HOME>/repository/conf/user-

 file.mgt.xml

This chapter contains the following information:

Adding User Roles
Adding Users

Adding User Roles

Roles contain permissions for users to manage the server. They can be reused and they eliminate the overhead of
 granting permissions to users individually.

Throughout this documentation, we use the following are typically used in many enterprises. You can also roles that
define different user roles depending on your requirements.

admin: The API management provider who hosts and manages the . S/he is responsible for API Gateway
creating user roles in the system, assign them roles, managing databases, security etc. The Admin role is
available by default with credentials admin/admin.
creator: A creator is typically a person in a technical role who understands the technical aspects of the API
(interfaces, documentation, versions etc.) and uses the to provision APIs into the API store.API publisher
The creator uses the API Store to consult ratings and feedback provided by API users. Creator can add APIs
to the store but cannot manage their lifecycle.
publisher: A person in a managerial role and overlooks a set of APIs across the enterprise and controls the
API lifecycle, subscriptions and monetization aspects. The publisher is also interested in usage patterns for
APIs and has access to all API statistics.
subscriber: A user or an application developer who searches the to discover APIs and use them. API store
S/he reads the documentation and forums, rates/comments on the APIs, subscribes to APIs, obtains access
tokens and invokes the APIs.

Follow the instructions below to create the , and roles in the API Manager.creator publisher subscriber

Create user roles

Log in to the management console () as admin (default credentials arehttps://localhost:9443/carbon
admin/admin).

Select Users and Roles under the Configure menu.
In the User Management page that opens, c l ick .Roles

https://docs.wso2.com/display/AM180/Key+Concepts#KeyConcepts-APIManagercomponents
https://docs.wso2.com/display/AM180/Key+Concepts#KeyConcepts-APIManagercomponents
https://docs.wso2.com/display/AM180/Key+Concepts#KeyConcepts-APIManagercomponents
https://192.168.1.2:9443/carbon/

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 211

3.

4.

5.

6.

C l i c k A d d N e w .R o l e

Enter the name of the user role (e.g.,) and click .creator Next

The permissions page opens. Select the permissions according to the role that you create. The table below
lists the permissions of the , and roles:creator publisher subscriber

Roles Permissions UI

creator Configure > Governance and all underlying permissions.
Login
Manage > API > Create
Manage > Resources > Govern and all underlying permissions

: The drop-down list contains all user stores configured in the system. By default, youTip Domain
only have the PRIMARY user store. To configure secondary user stores, see Configuring Secondary

.User Stores

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 212

Follow the steps below to create users and assign them to roles. Also see how to add users via or a e-mail
.social network login

Users are consumers who interact with your enterprise's applications, databases or any other systems. These users
can be persons, devices or applications/programs within or outside of the enterprise's network. Since these users
interact with internal systems and access data, the need to define which user is allowed to do what is critical. This is
called user management.

6.

7.

1.

2.

3.

publisher Login
Manage > API > Publish

subscriber

Login
Manage > API > Subscribe

 Click Finish once you are done adding permission.

Adding Users

 from to the Management Console and select Users and Roles the Configure menu.

Cl ick Users in the window that opens.User Management

C l i c k .A d d N e w U s e r

The Users link is only visible to admins .

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 213

3.

4.

5.

The Add User p age opens. Provide the username and password and click . Next

Select the roles you want to assign to the user. In this example, we assign the role defined in thecreator
p r e v i o u s s e c t i o n .

: The drop-down list contains all user stores configured in the system. By default, youTip Domain
only have the PRIMARY user store. To configure secondary user stores, see Configuring Secondary

.User Stores

See how to :create a user with the e-mail as the username Tip:

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 214

5.

6. Click Finish to complete. The new use appears in the Users list.

From here, you can change the user's password, assign different roles or delete it.

Create a user with the e-mail as the username

When adding a user, if you provided an e-mail address as the username, modify the following files:

File Modification

<AM_HOME>/repository/conf/carbon.xml Set the element to <EnableEmailUserName> true

<AM_HOME>/repository/conf/api-manager.xml
<LoginConfig>
 <UserIdLogin primary="true">
 <ClaimUri></ClaimUri>
 </UserIdLogin>
 <EmailLogin primary="false">
 <ClaimUri>http://wso2.org/claims/emailaddress</ClaimUri>
 </EmailLogin>
</LoginConfig>

You cannot change the user name of an existing user.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 215

<AM_HOME>/repository/conf/user-mgt.xml Set two properties as:

<UserStoreManager class="org.wso2.carbon.user.core.jdbc.JDBCUserStoreManager">
 ...
 <Property name="IsEmailUserName">true</Property>
 <Property
name="UsernameJavaRegEx">^[^~!#$;%^*+={}\\|\\\\<>,\'\"]{3,30}$</Property>
 ...
</UserStoreManager>

Note that if you already have an element by the name to<UsernameWithEmailJavaScriptRegEx>
define the regular expression, it takes priority over the < element.UsernameJavaRegEx>

Add users from a social network login

You can auto provision users based on a by integrating the API Manager with WSO2 Identitysocial network login
Server. But, this is not supported in a . multi-tenant environment

In a multi-tenant environment, the system cannot identify the tenant domain in the login request that comes to API
Manager's Publisher/Store. Therefore, the service provider is registered as a SaaS application within the super
tenant's space. Configuring user provisioning is part of creating the service provider. In order to authenticate the
user through a third party identity provider such as a social network login, you must enable identity federation. As
the service provider is created in the super tenant's space, the provisioned user is also created within the super
tenant's space. As a result, it is not possible to provision the user in the tenant's space.

To overcome this limitation, you can write a custom authenticator to retrieve the tenant domain of the user and write
a custom login page where the user can enter the tenant domain, which is then added to the authenticator context. T
hen, write a custom provisioning handler to provision the user in the tenant domain that maintained in the context.

For information on writing a custom authenticator, see Creating Custom Authenticators in the WSO2 IS
documentation.
For information on writing a custom login page, see Customizing Login Pages in the WSO2 IS
documentation.

Configuring User Stores

A user store is the database where information of the users and/or user roles is stored. User information includes
log-in name, password, fist name, last name, e-mail etc.

All WSO2 products have an embedded H2 database except for WSO2 Identity Server, which has an embedded
LDAP as its user store. Permission is stored in a separate database called the user management database, which
by default is H2. However, users have the ability to connect to external user stores as well.

The user stores of Carbon products can be configured to operate in either one of the following modes.

User store operates in read/write mode - In Read/Write mode, WSO2 Carbon reads/writes into the user store.
User store operates in read only mode - In Read Only mode, WSO2 Carbon guarantees that it does not
modify any data in the user store. Carbon maintains roles and permissions in the Carbon database but it can
read users/roles from the configured user store.

The sections below provide configuration details:
Realm Configuration
Changing the RDBMS
Configuring Primary User Stores

E-mail login does not work for any tenant including the super tenant in a . Thismulti-tenant environment
facility is currently only available in single tenant mode (i.e., users of the tenant only).carbon.super

https://docs.wso2.com/display/IS500/Creating+Custom+Authenticators
https://docs.wso2.com/display/IS500/Customizing+Login+Pages

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 216

Configuring Secondary User Stores

Realm Configuration

The at the top of the file section<Configuration> <PRODUCT_HOME>/repository/conf/user-mgt.xml

allows you to specify basic configuration for connecting to this user store (also called a).realm

<Realm>
 <Configuration>
 <AddAdmin>true</AddAdmin>
 <AdminRole>admin</AdminRole>
 <AdminUser>
 <UserName>admin</UserName>
 <Password>admin</Password>
 </AdminUser>
 <EveryOneRoleName>everyone</EveryOneRoleName> <!-- By default users in this role
see the registry root -->
 <Property name="dataSource">jdbc/WSO2CarbonDB</Property>
 </Configuration>
...
</Realm>

Note the following regarding the configuration above.

Element Description

<AddAdmin> When , this element creates the admin user based on the true Adm
 element. inUser It also indicates whether to create the specified

admin user if it doesn't already exist. When connecting to an
external read-only LDAP or Active Directory user store, this
property needs to be if an admin user and admin role existfalse
within the user store. If the admin user and admin role do not exist
in the user store, this value should be , so that the role istrue
added to the user management database. However, if the admin
user is not there in the user store, we must add that user to the user
store manually. If the value is set to in this case, itAddAdmin true
will generate an exception.

<AdminRole>wso2admin</AdminRole> This is the role that has all administrative privileges of the WSO2
product, so all users having this role are admins of the product. You
can provide any meaningful name for this role. This role is created
in the internal H2 database when the product starts. This role has
permission to carry out any actions related to the Management
Console. If the user store is read-only, this role is added to the
system as a special internal role where users are from an external
user store.

<AdminUser> Configures the default administrator for the WSO2 product. If the
user store is read-only, the admin user must exist in the user store
or the system will not start. If the external user store is read-only,
you must select a user already existing in the external user store
and add it as the admin user that is defined in the el<AdminUser>
ement. If the external user store is in read/write mode, and you set

 to , the user you specify will be automatically<AddAdmin> true
created.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 217

1.

2.
3.

<UserName> This is the username of the default administrator or super tenant of
the user store. If the user store is read-only, the admin user MUST
exist in the user store for the process to work.

<Password> Do NOT put the password here but leave the default value as it is if
the user store is read-only as this element and its value are
ignored. This password is used only if the user store is read-write
and the value is set to .AddAdmin true

<EveryOneRoleName> The name of the "everyone" role. All users in the system belong to
this role.

The main property given below contains details of the database connection.

Property
Name

Description Mandatory/Optional

dataSource Data sources are configured in the <PRODUCT_HOME>/repository/conf/datasou
 file. This property indicates the relevant datarces/master-datasources.xml

source configuration for the User Management database.

Mandatory

Given below are optional properties that can be used.

Property Name Description

testOnBorrow It is recommended to set this property to 'true' so that object connections will be
validated before being borrowed from the JDBC pool. For this property to be effective,
the parameter in the validationQuery <PRODUCT_HOME>/repository/conf/da

 should be a non-string value. This filetasources/master-datasources.xml
setting will avoid connection failures. See the section on performance tuning of WSO2
products for more information.

CaseSensitiveAuthorizationRules Permissions, and the rules (role name, action, resource) linked to each permission are
stored in the RDBMS of the server. By default, these rules are not case sensitive. This
property can be used if you want to make the rules case sensitive.

Changing the RDBMS

The default database of user manager is the H2 database that comes with WSO2 products. You can configure it to
point to databases by other vendors.

Add the JDBC driver to the by dropping the JAR into classpath <PRODUCT_HOME>/repository/compon
.ents/lib

Change values of properties given in on the page appropriately. Realm Configuration
Create the database by running the relevant script in and restart the server: dbscript/<PRODUCT_HOME>

Note that the password in the user-mgt.xml file is written
to the primary user store when the server starts for the first
time. Thereafter, the password will be validated from the
primary user store and not from the user-mgt.xml file.
Therefore, if you need to change the admin password
stored in the user store, you cannot simply change the
value in the user-mgt.xml file. To change the admin
password, you must use the Change Password option
from the management console.

https://docs.wso2.com/display/AS510/Realm+Configuration

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 218

3.

For Linux: or sh wso2server.sh sh wso2server.sh -Dsetup
For Windows: or wso2server.bat wso2server.bat -Dsetup

Configuring Primary User Stores

Every WSO2 product comes with an embedded, internal user store, which is configured in <PRODUCT_HOME>/repo
. In WSO2 Identity Server, the embedded user store is LDAP, and in other productssitory/conf/user-mgt.xml

it is JDBC. Because the domain name (unique identifier) of this default user store is set to by default, it isPRIMARY
called the primary user store.

Instead of using the embedded user store, you can set your own user store as the primary user store. Since the user
store you want to connect to might have different schemas from the ones available in the embedded user store, it
needs to go through an adaptation process. WSO2 products provide the following adapters to enable you to
authenticate users from different types of user stores and plug into LDAP, Active Directory, and JDBC to perform
authentication:

User store manager class Description

org.wso2.carbon.user.core.ldap.ReadOnlyLDAPUserStoreManager Use to do read-only operations forReadOnlyLDAPUserStoreManager
external LDAP user stores.

org.wso2.carbon.user.core.ldap.ReadWriteLDAPUserStoreManager Use for external LDAP user stores to doReadWriteLDAPUserStoreManager
both read and write operations. This is the user store configuration which is
uncommented in the code in the file.user-mgt.xml

org.wso2.carbon.user.core.ldap.ActiveDirectoryUserStoreManager Use to configure an Active DirectoryActiveDirectoryUserStoreManager
Domain Service (AD DS) or Active Directory Lightweight Directory Service (AD
LDS). This can be used for read/write operations. If you need to use AD asonly
read-only you must use org.wso2.carbon.user.core.ldap.ReadOnlyLD

.APUserStoreManager

org.wso2.carbon.user.core.jdbc.JDBCUserStoreManager Use for both internal and external JDBC userJDBCUserStoreManager
stores.

The file already has sample configurations for all of the above user stores. To enable theseuser-mgt.xml
configurations, you must uncomment them in the code and comment out the ones that you do not need.

The following topics provide details on the various primary user stores you can configure.

Configuring an external LDAP or Active Directory user store
Configuring an internal/external JDBC user store

Configuring an external LDAP or Active Directory user store

All WSO2 products can read and write users and roles from external Active Directory or LDAP user stores. You can
configure WSO2 products to access these user stores in one of the following modes:

Read-only mode
Read/write mode

If you are using (secured) to connect to the Active Directory as shown below, you need to import theldaps
certificate of Active Directory to the of the WSO2 product. See the topic onclient-truststore.jks
configuring keystores for information on how to add certificates to the trust-store.

<Property name="ConnectionURL">ldaps://10.100.1.100:636</Property>

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 219

1.

2.

Read-only mode

When you configure a product to read users/roles from your company LDAP in read-only mode, it does not write any
data into the LDAP.

Comment out the following user store which is enabled by default in the <PRODUCT_HOME>/repository/c
 f i l e .o n f / u s e r - m g t . x m l

< U s e r S t o r e M a n a g e r
class="org.wso2.carbon.user.core.ldap.ReadWriteLDAPUserStoreManager">
Given below is a sample for the LDAP user store. This configuration is found in the <PRODUCT_HOME>/repo

 need to uncomment them and make the appropriatesitory/conf/user-mgt.xml file, however, you
adjustments. Also ensure that you comment out the configurations for other user stores which you are not
using.

Before you begin
If you create the file yourself, be sure to save it in the user-mgt.xml <PRODUCT_HOME>/reposit

 directory.ory/conf
The attribute for a read-only LDAP is class <UserStoreManager
class="org.wso2.carbon.user.core.ldap.ReadOnlyLDAPUserStoreManager">

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 220

2.

a.

b.

<UserManager>
 <Realm>
 ...
 <UserStoreManager
class="org.wso2.carbon.user.core.ldap.ReadOnlyLDAPUserStoreManager">
 <Property
name="TenantManager">org.wso2.carbon.user.core.tenant.CommonHybridLDAPTenantManag
er</Property>
 <Property name="ReadOnly">true</Property>
 <Property name="Disabled">false</Property>
 <Property name="MaxUserNameListLength">100</Property>
 <Property name="ConnectionURL">ldap://localhost:10389<</Property>
 <Property name="ConnectionName">uid=admin,ou=system</Property>
 <Property name="ConnectionPassword">admin</Property>
 <Property name="PasswordHashMethod">PLAIN_TEXT</Property>
 <Property name="UserSearchBase">ou=system</Property>
 <Property name="UserNameListFilter">(objectClass=person)</Property>
 <Property
name="UserNameSearchFilter">(&(objectClass=person)(uid=?))</Property>
 <Property name="UserNameAttribute">uid</Property>
 <Property name="ReadGroups">true</Property>
 <Property name="GroupSearchBase">ou=system</Property>
 <Property
name="GroupNameListFilter">(objectClass=groupOfNames)</Property>
 <Property
name="GroupNameSearchFilter">(&(objectClass=groupOfNames)(cn=?))</Property>
 <Property name="GroupNameAttribute">cn</Property>
 <Property name="SharedGroupNameAttribute">cn</Property>
 <Property
name="SharedGroupSearchBase">ou=SharedGroups,dc=wso2,dc=org</Property>
 <Property
name="SharedGroupNameListFilter">(objectClass=groupOfNames)</Property>
 <Property
name="SharedTenantNameListFilter">(objectClass=organizationalUnit)</Property>
 <Property name="SharedTenantNameAttribute">ou</Property>
 <Property
name="SharedTenantObjectClass">organizationalUnit</Property>
 <Property name="MembershipAttribute">member</Property>
 <Property name="UserRolesCacheEnabled">true</Property>
 <Property name="ReplaceEscapeCharactersAtUserLogin">true</Property>
 <Property name="MaxRoleNameListLength">100</Property>
 <Property name="MaxUserNameListLength">100</Property>
 <Property name="SCIMEnabled">false</Property>
 </UserStoreManager>
 </Realm>
</UserManager>

Update the connection details to match your user store. For example:

<Property name="ConnectionURL">ldap://localhost:10389</Property>

Obtain a user who has permission to read all users/attributes and perform searches on the user store
from your LDAP/Active Directory administrator. For example, if the privileged user is "AdminLDAP" and
the password is "2010#Avrudu", update the following sections of the realm configuration as follows:

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 221

2.

b.

c.

d.

e.

f.

g.

3.

<Property name="ConnectionName">uid=AdminLDAP,ou=system</Property>
<Property name="ConnectionPassword">2010#Avrudu</Property>

Update with the directory name where the users are<Property name="UserSearchBase">
stored. When LDAP searches for users, it will start from this location of the directory.

<Property name="UserSearchBase">ou=system</Property>

Set the attribute to use as the username, typically either cn or uid for LDAP. Ideally, <Property
 and shouldname="UserNameAttribute"> <Property name="UserNameSearchFilter">

refer to the same attribute. If you are not sure what attribute is available in your user store, check with
your LDAP/Active Directory administrator.

For example:

<Property name="UserNameAttribute">uid</Property>

Set the ReadGroups property to 'true', if it should be allowed to read roles from this user store. When
this property is 'true', you must also specify values for the GroupSearchBase, GroupSearchFilter and
GroupNameAttribute properties as shown in the following example:

<Property name="ReadGroups">true</Property>
<Property name="GroupSearchBase">ou=system</Property>
<Property name="GroupSearchFilter">(objectClass=groupOfNames)</Property>
<Property name="GroupNameAttribute">cn</Property>

If the ReadGroups property is set to 'false', only Users can be read from the user store.
Optionally, configure the realm to read roles from the user store by reading the user/role mapping
based on a membership (user list) or backlink attribute. The following code snippet represents reading
roles based on a membership attribute. This is used by the ApacheDirectory server and OpenLDAP

.

<Property name="ReadLDAPGroups">false</Property>
<Property name="GroupSearchBase">ou=system</Property>
<Property name="GroupSearchFilter">(objectClass=groupOfNames)</Property>
<Property name="GroupNameAttribute">cn</Property>
<Property name="MembershipAttribute">member</Property>

For Active Directory, you can use to enable<Property name="Referral">follow</Property>

referrals within the user store. The AD user store may be partitioned into multiple domains. However,
according to the use store configurations in the file, we are only connecting to one ofuser-mgt.xml

the domains. Therefore, when a request for an object is received to the user store, the <Property

name="Referral">follow</Property> property ensures that all the domains in the directory will

be searched to locate the requested object.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 222

Active Directory User StoreLDAP User Store

3.

1.

2.

Start your server and try to log in as the admin user you specified. The password is the admin user's
password in the LDAP server.

Read/write mode

The <PRODUCT_HOME>/repository/conf/user-mgt.xml file has commented-out configurations for external
LDAP/AD user stores.

Enable the or the in<ReadWriteLDAPUserStoreManager> < >ActiveDirectoryUserStoreManager
the file by uncommenting the code. When it is<PRODUCT_HOME>/repository/conf/user-mgt.xml
enabled, the user manager reads/writes into the LDAP/AD user store. Note that these configurations already
exist in the file so you only need to uncomment them and make the appropriate adjustments.user-mgt.xml
Also ensure that you comment out the configurations for other user stores which you are not using.
The default configuration for the external read/write user store in the file is as follows.user-mgt.xml
Change the values according to your requirements.

LDAP user store sample:

Before you begin
To read and write to an Active Directory user store, set the property to insteadWriteGroups true
of .false
To write user entries to an LDAP user store (roles are not written, just user entries), you follow the
steps in the section but specify the following class instead:Read-only mode

<UserStoreManager
class="org.wso2.carbon.user.core.ldap.ReadWriteLDAPUserStoreManager">

Use the following class for Active Directory.

<UserStoreManager
class="org.wso2.carbon.user.core.ldap.ActiveDirectoryUserStoreManager">

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 223

2.

<UserStoreManager
class="org.wso2.carbon.user.core.ldap.ReadWriteLDAPUserStoreManager">
 <Property
name="TenantManager">org.wso2.carbon.user.core.tenant.CommonHybridLDAPTenantManag
er</Property>
 <Property
name="ConnectionURL">ldap://localhost:${Ports.EmbeddedLDAP.LDAPServerPort}</Prope
rty>
 <Property name="ConnectionName">uid=admin,ou=system</Property>
 <Property name="ConnectionPassword">admin</Property>
 <Property name="PasswordHashMethod">SHA</Property>
 <Property name="UserNameListFilter">(objectClass=person)</Property>
 <Property name="UserEntryObjectClass">wso2Person</Property>
 <Property name="UserSearchBase">ou=Users,dc=wso2,dc=org</Property>
 <Property
name="UserNameSearchFilter">(&(objectClass=person)(uid=?))</Property>
 <Property name="UserNameAttribute">uid</Property>
 <Property name="PasswordJavaScriptRegEx">[\\S]{5,30}</Property>
 <Property name="UsernameJavaScriptRegEx">[\\S]{3,30}</Property>
 <Property
name="UsernameJavaRegEx">^[^~!@#$;%^*+={}\\|\\\\<>,\'\"]{3,30}$</Property>
 <Property name="RolenameJavaScriptRegEx">[\\S]{3,30}</Property>
 <Property
name="RolenameJavaRegEx">^[^~!@#$;%^*+={}\\|\\\\<>,\'\"]{3,30}$</Property>
 <Property name="ReadLDAPGroups">true</Property>
 <Property name="WriteLDAPGroups">true</Property>
 <Property name="EmptyRolesAllowed">true</Property>
 <Property name="GroupSearchBase">ou=Groups,dc=wso2,dc=org</Property>
 <Property name="GroupNameListFilter">(objectClass=groupOfNames)</Property>
 <Property name="GroupEntryObjectClass">groupOfNames</Property>
 <Property
name="GroupNameSearchFilter">(&(objectClass=groupOfNames)(cn=?))</Property>
 <Property name="GroupNameAttribute">cn</Property>
 <Property name="SharedGroupNameAttribute">cn</Property>
 <Property
name="SharedGroupSearchBase">ou=SharedGroups,dc=wso2,dc=org</Property>
 <Property name="SharedGroupEntryObjectClass">groups</Property>
 <Property
name="SharedTenantNameListFilter">(object=organizationalUnit)</Property>
 <Property name="SharedTenantNameAttribute">ou</Property>
 <Property name="SharedTenantObjectClass">organizationalUnit</Property>
 <Property name="MembershipAttribute">member</Property>
 <Property name="UserRolesCacheEnabled">true</Property>
 <Property name="UserDNPattern">uid={0},ou=Users,dc=wso2,dc=org</Property>
</UserStoreManager>

Active directory user store sample:

Tip: Be sure to set the EmptyRolesAllowed property to true. If not, you will get the following error

at start up- APIManagementException: Error while creating subscriber role: subscriber - Self

registration might not function properly.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 224

2.

<UserStoreManager
class="org.wso2.carbon.user.core.ldap.ActiveDirectoryUserStoreManager">
 <Property
name="TenantManager">org.wso2.carbon.user.core.tenant.CommonHybridLDAPTenantManag
er</Property>
 <Property name="defaultRealmName">WSO2.ORG</Property>
 <Property name="Disabled">false</Property>

 <Property name="kdcEnabled">false</Property>
 <Property name="ConnectionURL">ldaps://10.100.1.100:636</Property>
 <Property
name="ConnectionName">CN=admin,CN=Users,DC=WSO2,DC=Com</Property>
 <Property name="ConnectionPassword">A1b2c3d4</Property>
 <Property name="PasswordHashMethod">PLAIN_TEXT</Property>
 <Property name="UserSearchBase">CN=Users,DC=WSO2,DC=Com</Property>
 <Property name="UserEntryObjectClass">user</Property>
 <Property name="UserNameAttribute">cn</Property>
 <Property name="isADLDSRole">false</Property>
 <Property name="userAccountControl">512</Property>
 <Property name="UserNameListFilter">(objectClass=user)</Property>
 <Property
name="UserNameSearchFilter">(&(objectClass=user)(cn=?))</Property>
 <Property
name="UsernameJavaRegEx">[a-zA-Z0-9._-|//]{3,30}$</Property>
 <Property name="UsernameJavaScriptRegEx">^[\S]{3,30}$</Property>
 <Property name="PasswordJavaScriptRegEx">^[\S]{5,30}$</Property>
 <Property name="RolenameJavaScriptRegEx">^[\S]{3,30}$</Property>
 <Property
name="RolenameJavaRegEx">[a-zA-Z0-9._-|//]{3,30}$</Property>
 <Property name="ReadGroups">true</Property>
 <Property name="WriteGroups">true</Property>
 <Property name="EmptyRolesAllowed">true</Property>
 <Property name="GroupSearchBase">CN=Users,DC=WSO2,DC=Com</Property>
 <Property name="GroupEntryObjectClass">group</Property>
 <Property name="GroupNameAttribute">cn</Property>
 <Property name="SharedGroupNameAttribute">cn</Property>
 <Property
name="SharedGroupSearchBase">ou=SharedGroups,dc=wso2,dc=org</Property>
 <Property name="SharedGroupEntryObjectClass">groups</Property>
 <Property
name="SharedTenantNameListFilter">(object=organizationalUnit)</Property>
 <Property name="SharedTenantNameAttribute">ou</Property>
 <Property
name="SharedTenantObjectClass">organizationalUnit</Property>
 <Property name="MembershipAttribute">member</Property>
 <Property
name="GroupNameListFilter">(objectcategory=group)</Property>
 <Property
name="GroupNameSearchFilter">(&(objectClass=group)(cn=?))</Property>
 <Property name="UserRolesCacheEnabled">true</Property>
 <Property name="Referral">follow</Property>
 <Property name="BackLinksEnabled">true</Property>
 <Property name="MaxRoleNameListLength">100</Property>
 <Property name="MaxUserNameListLength">100</Property>
 <Property name="SCIMEnabled">false</Property>
</UserStoreManager>

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 225

Active DirectoryLDAP

2.

3.

4.

Set the attribute to use as the username, typically either cn or uid for LDAP. Ideally, <Property
 and should refer to thename="UserNameAttribute"> <Property name="UserNameSearchFilter">

same attribute. If you are not sure what attribute is available in your user store, check with your LDAP/Active
Directory administrator.

For example:

<Property name="UserNameAttribute">uid</Property>

<Property name="UserNameAttribute">sAMAccountName</Property>

The following code snippet represents reading roles based on a backlink attribute. This is used by the Active
Directory.

Tip: Be sure to set the EmptyRolesAllowed property to true. If not, you will get the following error

at start up- APIManagementException: Error while creating subscriber role: subscriber - Self

registration might not function properly.

When working with Active Directory it is best to enable the propertyGetAllRolesOfUserEnabled
in the as follows.AuthorizationManager

<AuthorizationManager
class="org.wso2.carbon.user.core.authorization.JDBCAuthorizationManager">
 <Property name="AdminRoleManagementPermissions">/permission</Property>
 <Property name="AuthorizationCacheEnabled">true</Property>
 <Property name="GetAllRolesOfUserEnabled">true</Property>
</AuthorizationManager>

While using the user store manager does not depend on this property, you must consider enabling
this if there are any performance issues in your production environment. Enabling this property
affects the performance when the user logs in. This depends on the users, roles and permissions
stats.

If you create the file yourself, be sure to save it in the user-mgt.xml <PRODUCT_HOME>/reposit
 directory.ory/conf

The attribute of the element indicates whether it is an Active Directoryclass UserStoreManager
or LDAP user store:

Active Directory: <UserStoreManager
class="org.wso2.carbon.user.core.ldap.ActiveDirectoryUserStoreManager
">
Read-only LDAP:<UserStoreManager
class="org.wso2.carbon.user.core.ldap.ReadOnlyLDAPUserStoreManager">

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 226

External JDBC User StoreInternal JDBC User Store

4.

5.

6.

1.

<Property name="ReadLDAPGroups">true</Property>
<Property name="GroupSearchBase">cn=users,dc=wso2,dc=lk</Property>
<Property name="GroupSearchFilter">(objectcategory=group)</Property>
<Property name="GroupNameAttribute">cn</Property>
<Property name="MemberOfAttribute">memberOf</Property>

For Active Directory, you can use to enable<Property name="Referral">follow</Property>
referrals within the user store. The AD user store may be partitioned into multiple domains. However,
according to the use store configurations in the file, we are only connecting to one of theuser-mgt.xml
domains. Therefore, when a request for an object is received to the user store, the <Property
name="Referral">follow</Property> property ensures that all the domains in the directory will be
searched to locate the requested object.
Start your server and try to log in as the admin user you specified. The password is the admin user's
password in the LDAP server.

Configuring an internal/external JDBC user store

The default internal JDBC user store reads/writes into the internal database of the Carbon server. JDBC user stores
can be configured using the file's <PRODUCT_HOME>/repository/conf/user-mgt.xml JDBCUserStoreMana

 configuration section. Additionally, all Carbon-based products can work with an external RDBMS. You canger
configure Carbon to read users/roles from your company RDBMS and even write to it. Therefore, in this scenario,
the user core connects to two databases:

The Carbon database where authorization information is stored internally.
Your company database where users/roles reside.

Therefore, the file must contain details for two database connections. The connection detailsuser-mgt.xml
mentioned earlier are used by the authorization manager. If we specify another set of database connection details
inside the UserStoreManager, it reads/writes users to that database. The following are step-by-step guidelines for
connecting to an internal and external JDBC user store in read-only mode:

Uncomment the following section in :<PRODUCT_HOME>/repository/conf/user-mgmt.xml

<UserStoreManager class="org.wso2.carbon.user.core.jdbc.JDBCUserStoreManager">

The following are samples for the internal and external JDBC user store configuration:

Internal JDBC user store configuration sample:

When configuring an external LDAP for Governance Registry or API Manager, the user name and
password for the default admin will change to the LDAP admin. As a result, the
<PRODUCT_HOME>/repository/conf/api-manager.xml file must be updated with the new LDAP
admin credentials.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 227

1.

<UserStoreManager class="org.wso2.carbon.user.core.jdbc.JDBCUserStoreManager">
 <Property
name="TenantManager">org.wso2.carbon.user.core.tenant.JDBCTenantManager</Property
>
 <Property name="ReadOnly">false</Property>
 <Property name="MaxUserNameListLength">100</Property>
 <Property name="IsEmailUserName">false</Property>
 <Property name="DomainCalculation">default</Property>
 <Property name="PasswordDigest">SHA-256</Property>
 <Property name="StoreSaltedPassword">true</Property>
 <Property name="UserNameUniqueAcrossTenants">false</Property>
 <Property name="PasswordJavaRegEx">[\S]{5,30}$</Property>
 <Property name="PasswordJavaScriptRegEx">[\\S]{5,30}</Property>
 <Property
name="UsernameJavaRegEx">^[^~!#$;%^*+={}\\|\\\\<>,\'\"]{3,30}$</Property>
 <Property name="UsernameJavaScriptRegEx">[\\S]{3,30}</Property>
 <Property
name="RolenameJavaRegEx">^[^~!@#$;%^*+={}\\|\\\\<>,\'\"]{3,30}$</Property>
 <Property name="RolenameJavaScriptRegEx">[\\S]{3,30}</Property>
 <Property name="UserRolesCacheEnabled">true</Property>
</UserStoreManager>

External JDBC user store configuration sample:

<UserStoreManager class="org.wso2.carbon.user.core.jdbc.JDBCUserStoreManager">
 <Property
name="TenantManager">org.wso2.carbon.user.core.tenant.JDBCTenantManager</Property
>
 <Property name="driverName">com.mysql.jdbc.Driver</Property>
 <Property name="url">jdbc:mysql://localhost:3306/tcsdev</Property>
 <Property name="userName">shavantha</Property>
 <Property name="password">welcome</Property>
 <Property name="Disabled">false</Property>
 <Property name="MaxUserNameListLength">100</Property>
 <Property name="MaxRoleNameListLength">100</Property>
 <Property name="UserRolesCacheEnabled">true</Property>
 <Property name="PasswordDigest">SHA-256</Property>
 <Property name="ReadGroups">true</Property>
 <Property name="ReadOnly">false</Property>
 <Property name="IsEmailUserName">false</Property>
 <Property name="DomainCalculation">default</Property>
 <Property name="StoreSaltedPassword">true</Property>
 <Property name="WriteGroups">false</Property>
 <Property name="UserNameUniqueAcrossTenants">false</Property>
 <Property name="PasswordJavaRegEx">^[\S]{5,30}$</Property>
 <Property name="PasswordJavaScriptRegEx">^[\S]{5,30}$</Property>
 <Property name="UsernameJavaRegEx">^[\S]{5,30}$</Property>
 <Property name="UsernameJavaScriptRegEx">^[\S]{5,30}$</Property>
 <Property name="RolenameJavaRegEx">^[\S]{5,30}$</Property>
 <Property name="RolenameJavaScriptRegEx">^[\S]{5,30}$</Property>
 <Property name="SCIMEnabled">false</Property>
 <Property name="SelectUserSQL">SELECT * FROM UM_USER WHERE UM_USER_NAME=?
AND UM_TENANT_ID=?</Property>
 <Property name="GetRoleListSQL">SELECT UM_ROLE_NAME, UM_TENANT_ID,
UM_SHARED_ROLE FROM UM_ROLE WHERE UM_ROLE_NAME LIKE ? AND UM_TENANT_ID=? AND

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 228

1.

UM_SHARED_ROLE ='0' ORDER BY UM_ROLE_NAME</Property>
 <Property name="GetSharedRoleListSQL">SELECT UM_ROLE_NAME, UM_TENANT_ID,
UM_SHARED_ROLE FROM UM_ROLE WHERE UM_ROLE_NAME LIKE ? AND UM_SHARED_ROLE ='1'
ORDER BY UM_ROLE_NAME</Property>
 <Property name="UserFilterSQL">SELECT UM_USER_NAME FROM UM_USER WHERE
UM_USER_NAME LIKE ? AND UM_TENANT_ID=? ORDER BY UM_USER_NAME</Property>
 <Property name="UserRoleSQL">SELECT UM_ROLE_NAME FROM UM_USER_ROLE,
UM_ROLE, UM_USER WHERE UM_USER.UM_USER_NAME=? AND
UM_USER.UM_ID=UM_USER_ROLE.UM_USER_ID AND UM_ROLE.UM_ID=UM_USER_ROLE.UM_ROLE_ID
AND UM_USER_ROLE.UM_TENANT_ID=? AND UM_ROLE.UM_TENANT_ID=? AND
UM_USER.UM_TENANT_ID=?</Property>
 <Property name="UserSharedRoleSQL">SELECT UM_ROLE_NAME,
UM_ROLE.UM_TENANT_ID, UM_SHARED_ROLE FROM UM_SHARED_USER_ROLE INNER JOIN UM_USER
ON UM_SHARED_USER_ROLE.UM_USER_ID = UM_USER.UM_ID INNER JOIN UM_ROLE ON
UM_SHARED_USER_ROLE.UM_ROLE_ID = UM_ROLE.UM_ID WHERE UM_USER.UM_USER_NAME = ? AND
UM_SHARED_USER_ROLE.UM_USER_TENANT_ID = UM_USER.UM_TENANT_ID AND
UM_SHARED_USER_ROLE.UM_ROLE_TENANT_ID = UM_ROLE.UM_TENANT_ID AND
UM_SHARED_USER_ROLE.UM_USER_TENANT_ID = ?</Property>
 <Property name="IsRoleExistingSQL">SELECT UM_ID FROM UM_ROLE WHERE
UM_ROLE_NAME=? AND UM_TENANT_ID=?</Property>
 <Property name="GetUserListOfRoleSQL">SELECT UM_USER_NAME FROM
UM_USER_ROLE, UM_ROLE, UM_USER WHERE UM_ROLE.UM_ROLE_NAME=? AND
UM_USER.UM_ID=UM_USER_ROLE.UM_USER_ID AND UM_ROLE.UM_ID=UM_USER_ROLE.UM_ROLE_ID
AND UM_USER_ROLE.UM_TENANT_ID=? AND UM_ROLE.UM_TENANT_ID=? AND
UM_USER.UM_TENANT_ID=?</Property>
 <Property name="GetUserListOfSharedRoleSQL">SELECT UM_USER_NAME FROM
UM_SHARED_USER_ROLE INNER JOIN UM_USER ON UM_SHARED_USER_ROLE.UM_USER_ID =
UM_USER.UM_ID INNER JOIN UM_ROLE ON UM_SHARED_USER_ROLE.UM_ROLE_ID =
UM_ROLE.UM_ID WHERE UM_ROLE.UM_ROLE_NAME= ? AND
UM_SHARED_USER_ROLE.UM_USER_TENANT_ID = UM_USER.UM_TENANT_ID AND
UM_SHARED_USER_ROLE.UM_ROLE_TENANT_ID = UM_ROLE.UM_TENANT_ID</Property>
 <Property name="IsUserExistingSQL">SELECT UM_ID FROM UM_USER WHERE
UM_USER_NAME=? AND UM_TENANT_ID=?</Property>
 <Property name="GetUserPropertiesForProfileSQL">SELECT UM_ATTR_NAME,
UM_ATTR_VALUE FROM UM_USER_ATTRIBUTE, UM_USER WHERE UM_USER.UM_ID =
UM_USER_ATTRIBUTE.UM_USER_ID AND UM_USER.UM_USER_NAME=? AND UM_PROFILE_ID=? AND
UM_USER_ATTRIBUTE.UM_TENANT_ID=? AND UM_USER.UM_TENANT_ID=?</Property>
 <Property name="GetUserPropertyForProfileSQL">SELECT UM_ATTR_VALUE FROM
UM_USER_ATTRIBUTE, UM_USER WHERE UM_USER.UM_ID = UM_USER_ATTRIBUTE.UM_USER_ID AND
UM_USER.UM_USER_NAME=? AND UM_ATTR_NAME=? AND UM_PROFILE_ID=? AND
UM_USER_ATTRIBUTE.UM_TENANT_ID=? AND UM_USER.UM_TENANT_ID=?</Property>
 <Property name="GetUserLisForPropertySQL">SELECT UM_USER_NAME FROM UM_USER,
UM_USER_ATTRIBUTE WHERE UM_USER_ATTRIBUTE.UM_USER_ID = UM_USER.UM_ID AND
UM_USER_ATTRIBUTE.UM_ATTR_NAME =? AND UM_USER_ATTRIBUTE.UM_ATTR_VALUE =? AND
UM_USER_ATTRIBUTE.UM_PROFILE_ID=? AND UM_USER_ATTRIBUTE.UM_TENANT_ID=? AND
UM_USER.UM_TENANT_ID=?</Property>
 <Property name="GetProfileNamesSQL">SELECT DISTINCT UM_PROFILE_ID FROM
UM_USER_ATTRIBUTE WHERE UM_TENANT_ID=?</Property>
 <Property name="GetUserProfileNamesSQL">SELECT DISTINCT UM_PROFILE_ID FROM
UM_USER_ATTRIBUTE WHERE UM_USER_ID=(SELECT UM_ID FROM UM_USER WHERE
UM_USER_NAME=? AND UM_TENANT_ID=?) AND UM_TENANT_ID=?</Property>
 <Property name="GetUserIDFromUserNameSQL">SELECT UM_ID FROM UM_USER WHERE
UM_USER_NAME=? AND UM_TENANT_ID=?</Property>
 <Property name="GetUserNameFromTenantIDSQL">SELECT UM_USER_NAME FROM
UM_USER WHERE UM_TENANT_ID=?</Property>
 <Property name="GetTenantIDFromUserNameSQL">SELECT UM_TENANT_ID FROM
UM_USER WHERE UM_USER_NAME=?</Property>
 <Property name="AddUserSQL">INSERT INTO UM_USER (UM_USER_NAME,
UM_USER_PASSWORD, UM_SALT_VALUE, UM_REQUIRE_CHANGE, UM_CHANGED_TIME,

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 229

1.

UM_TENANT_ID) VALUES (?, ?, ?, ?, ?, ?)</Property>
 <Property name="AddUserToRoleSQL">INSERT INTO UM_USER_ROLE (UM_USER_ID,
UM_ROLE_ID, UM_TENANT_ID) VALUES ((SELECT UM_ID FROM UM_USER WHERE UM_USER_NAME=?
AND UM_TENANT_ID=?),(SELECT UM_ID FROM UM_ROLE WHERE UM_ROLE_NAME=? AND
UM_TENANT_ID=?), ?)</Property>
 <Property name="AddRoleSQL">INSERT INTO UM_ROLE (UM_ROLE_NAME,
UM_TENANT_ID) VALUES (?, ?)</Property>
 <Property name="AddSharedRoleSQL">UPDATE UM_ROLE SET UM_SHARED_ROLE = ?
WHERE UM_ROLE_NAME = ? AND UM_TENANT_ID = ?</Property>
 <Property name="AddRoleToUserSQL">INSERT INTO UM_USER_ROLE (UM_ROLE_ID,
UM_USER_ID, UM_TENANT_ID) VALUES ((SELECT UM_ID FROM UM_ROLE WHERE UM_ROLE_NAME=?
AND UM_TENANT_ID=?),(SELECT UM_ID FROM UM_USER WHERE UM_USER_NAME=? AND
UM_TENANT_ID=?), ?)</Property>
 <Property name="AddSharedRoleToUserSQL">INSERT INTO UM_SHARED_USER_ROLE
(UM_ROLE_ID, UM_USER_ID, UM_USER_TENANT_ID, UM_ROLE_TENANT_ID) VALUES ((SELECT
UM_ID FROM UM_ROLE WHERE UM_ROLE_NAME=? AND UM_TENANT_ID=?),(SELECT UM_ID FROM
UM_USER WHERE UM_USER_NAME=? AND UM_TENANT_ID=?), ?, ?)</Property>
 <Property name="RemoveUserFromSharedRoleSQL">DELETE FROM
UM_SHARED_USER_ROLE WHERE UM_ROLE_ID=(SELECT UM_ID FROM UM_ROLE WHERE
UM_ROLE_NAME=? AND UM_TENANT_ID=?) AND UM_USER_ID=(SELECT UM_ID FROM UM_USER
WHERE UM_USER_NAME=? AND UM_TENANT_ID=?) AND UM_USER_TENANT_ID=? AND
UM_ROLE_TENANT_ID = ?</Property>
 <Property name="RemoveUserFromRoleSQL">DELETE FROM UM_USER_ROLE WHERE
UM_USER_ID=(SELECT UM_ID FROM UM_USER WHERE UM_USER_NAME=? AND UM_TENANT_ID=?)
AND UM_ROLE_ID=(SELECT UM_ID FROM UM_ROLE WHERE UM_ROLE_NAME=? AND
UM_TENANT_ID=?) AND UM_TENANT_ID=?</Property>
 <Property name="RemoveRoleFromUserSQL">DELETE FROM UM_USER_ROLE WHERE
UM_ROLE_ID=(SELECT UM_ID FROM UM_ROLE WHERE UM_ROLE_NAME=? AND UM_TENANT_ID=?)
AND UM_USER_ID=(SELECT UM_ID FROM UM_USER WHERE UM_USER_NAME=? AND
UM_TENANT_ID=?) AND UM_TENANT_ID=?</Property>
 <Property name="DeleteRoleSQL">DELETE FROM UM_ROLE WHERE UM_ROLE_NAME = ?
AND UM_TENANT_ID=?</Property>
 <Property name="OnDeleteRoleRemoveUserRoleMappingSQL">DELETE FROM
UM_USER_ROLE WHERE UM_ROLE_ID=(SELECT UM_ID FROM UM_ROLE WHERE UM_ROLE_NAME=? AND
UM_TENANT_ID=?) AND UM_TENANT_ID=?</Property>
 <Property name="DeleteUserSQL">DELETE FROM UM_USER WHERE UM_USER_NAME = ?
AND UM_TENANT_ID=?</Property>
 <Property name="OnDeleteUserRemoveUserRoleMappingSQL">DELETE FROM
UM_USER_ROLE WHERE UM_USER_ID=(SELECT UM_ID FROM UM_USER WHERE UM_USER_NAME=? AND
UM_TENANT_ID=?) AND UM_TENANT_ID=?</Property>
 <Property name="OnDeleteUserRemoveUserAttributeSQL">DELETE FROM
UM_USER_ATTRIBUTE WHERE UM_USER_ID=(SELECT UM_ID FROM UM_USER WHERE
UM_USER_NAME=? AND UM_TENANT_ID=?) AND UM_TENANT_ID=?</Property>
 <Property name="UpdateUserPasswordSQL">UPDATE UM_USER SET UM_USER_PASSWORD=
?, UM_SALT_VALUE=?, UM_REQUIRE_CHANGE=?, UM_CHANGED_TIME=? WHERE UM_USER_NAME= ?
AND UM_TENANT_ID=?</Property>
 <Property name="UpdateRoleNameSQL">UPDATE UM_ROLE set UM_ROLE_NAME=? WHERE
UM_ROLE_NAME = ? AND UM_TENANT_ID=?</Property>
 <Property name="AddUserPropertySQL">INSERT INTO UM_USER_ATTRIBUTE
(UM_USER_ID, UM_ATTR_NAME, UM_ATTR_VALUE, UM_PROFILE_ID, UM_TENANT_ID) VALUES
((SELECT UM_ID FROM UM_USER WHERE UM_USER_NAME=? AND UM_TENANT_ID=?), ?, ?, ?,
?)</Property>
 <Property name="UpdateUserPropertySQL">UPDATE UM_USER_ATTRIBUTE SET
UM_ATTR_VALUE=? WHERE UM_USER_ID=(SELECT UM_ID FROM UM_USER WHERE UM_USER_NAME=?
AND UM_TENANT_ID=?) AND UM_ATTR_NAME=? AND UM_PROFILE_ID=? AND
UM_TENANT_ID=?</Property>
 <Property name="DeleteUserPropertySQL">DELETE FROM UM_USER_ATTRIBUTE WHERE
UM_USER_ID=(SELECT UM_ID FROM UM_USER WHERE UM_USER_NAME=? AND UM_TENANT_ID=?)
AND UM_ATTR_NAME=? AND UM_PROFILE_ID=? AND UM_TENANT_ID=?</Property>

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 230

1.

 <Property name="UserNameUniqueAcrossTenantsSQL">SELECT UM_ID FROM UM_USER
WHERE UM_USER_NAME=?</Property>
 <Property name="IsDomainExistingSQL">SELECT UM_DOMAIN_ID FROM UM_DOMAIN
WHERE UM_DOMAIN_NAME=? AND UM_TENANT_ID=?</Property>
 <Property name="AddDomainSQL">INSERT INTO UM_DOMAIN (UM_DOMAIN_NAME,
UM_TENANT_ID) VALUES (?, ?)</Property>
 <Property name="AddUserToRoleSQL-mssql">INSERT INTO UM_USER_ROLE
(UM_USER_ID, UM_ROLE_ID, UM_TENANT_ID) SELECT (SELECT UM_ID FROM UM_USER WHERE
UM_USER_NAME=? AND UM_TENANT_ID=?),(SELECT UM_ID FROM UM_ROLE WHERE
UM_ROLE_NAME=? AND UM_TENANT_ID=?),(?)</Property>
 <Property name="AddRoleToUserSQL-mssql">INSERT INTO UM_USER_ROLE
(UM_ROLE_ID, UM_USER_ID, UM_TENANT_ID) SELECT (SELECT UM_ID FROM UM_ROLE WHERE
UM_ROLE_NAME=? AND UM_TENANT_ID=?),(SELECT UM_ID FROM UM_USER WHERE
UM_USER_NAME=? AND UM_TENANT_ID=?), (?)</Property>
 <Property name="AddUserPropertySQL-mssql">INSERT INTO UM_USER_ATTRIBUTE
(UM_USER_ID, UM_ATTR_NAME, UM_ATTR_VALUE, UM_PROFILE_ID, UM_TENANT_ID) SELECT
(SELECT UM_ID FROM UM_USER WHERE UM_USER_NAME=? AND UM_TENANT_ID=?), (?), (?),
(?), (?)</Property>
 <Property name="AddUserToRoleSQL-openedge">INSERT INTO UM_USER_ROLE
(UM_USER_ID, UM_ROLE_ID, UM_TENANT_ID) SELECT UU.UM_ID, UR.UM_ID, ? FROM UM_USER
UU, UM_ROLE UR WHERE UU.UM_USER_NAME=? AND UU.UM_TENANT_ID=? AND
UR.UM_ROLE_NAME=? AND UR.UM_TENANT_ID=?</Property>
 <Property name="AddRoleToUserSQL-openedge">INSERT INTO UM_USER_ROLE
(UM_ROLE_ID, UM_USER_ID, UM_TENANT_ID) SELECT UR.UM_ID, UU.UM_ID, ? FROM UM_ROLE
UR, UM_USER UU WHERE UR.UM_ROLE_NAME=? AND UR.UM_TENANT_ID=? AND
UU.UM_USER_NAME=? AND UU.UM_TENANT_ID=?</Property>
 <Property name="AddUserPropertySQL-openedge">INSERT INTO UM_USER_ATTRIBUTE
(UM_USER_ID, UM_ATTR_NAME, UM_ATTR_VALUE, UM_PROFILE_ID, UM_TENANT_ID) SELECT
UM_ID, ?, ?, ?, ? FROM UM_USER WHERE UM_USER_NAME=? AND UM_TENANT_ID=?</Property>

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 231

1.

2.

3.

4.
5.

 <Property name="DomainName">wso2.org</Property>
 <Property name="Description"/>
</UserStoreManager>

Find a valid user that resides in the RDBMS. For example, say a valid username is AdminSOA. Update the
Admin user section of your configuration as follows. You do not have to update the password element; leave
it as is.

<AdminUser>
 <UserName>AdminSOA</UserName>
 <Password>XXXXXX</Password>
</AdminUser>

Add the property to the UserStoreManager configuration for PasswordHashMethod JDBCUserStoreMana

. For example:ger

<UserStoreManager class="org.wso2.carbon.user.core.jdbc.JDBCUserStoreManager">
 <Property name="PasswordHashMethod">SHA</Property>
 ...
</UserStoreManager>

The property specifies how the password should be stored. It usually has thePasswordHashMethod
following values:

SHA - Uses SHA digest method.
MD5 - Uses MD 5 digest method.
PLAIN_TEXT - Plain text passwords.

In addition, it also supports all digest methods in http://docs.oracle.com/javase/6/docs/api/java/security/Mess
.ageDigest.html

Update the connection details found within the class based on your preferences. <UserStoreManager>
In the realm configuration section, set the value of the property to MultiTenantRealmConfigBuilder or

. g.wso2.carbon.user.core.config.multitenancy.SimpleRealmConfigBuilder For example:

<Property
name="MultiTenantRealmConfigBuilder">org.wso2.carbon.user.core.config.multitenanc
y.SimpleRealmConfigBuilder</Property>

The sample for the external JDBC user store consists of properties pertaining to various SQL
statements. This is because the schema may be different for an external user store, and these
adjustments need to be made in order to streamline the configurations with WSO2 products.

You can define a data source in <PRODUCT_HOME>/repository/conf/datasources/master-
 and refer to it from the file. This takes the properties defined indatasources.xml user-mgt.xml

the file and reuses them in the file. To do this, youmaster-datasources.xml user-mgt.xml
need to define the following property:

<Property name = "dataSource">jdbc/WSO2CarbonDB</Property>

http://docs.oracle.com/javase/6/docs/api/java/security/MessageDigest.html
http://docs.oracle.com/javase/6/docs/api/java/security/MessageDigest.html

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 232

5.

6.

7.

Add the JDBC driver to the classpath by copying its JAR file into the <PRODUCT_HOME>/repository/comp

 directory.onents/lib
Edit the SQLs in the file according to your requirements, and then start the server.user-mgt.xml

Related Links

 - For a Properties of Primary User Stores comprehensive understanding on the configuration details.
Properties of Primary User Stores

The following table provides descriptions of the key properties you use to configure primary user stores.

Property name Description

MaxUserNameListLength Controls the number of users listed in the user store of a WSO2 product. This is useful when you have a large number of users and don't
want to list them all. Setting this property to 0 displays all users.

ConnectionURL Connection URL to the user store server. In the case of default LDAP in Carbon, the port is specified in the file, and acarbon.xml
reference to that port is included in this configuration.

ConnectionName The username used to connect to the database and perform various operations. This user does not have to be an administrator in the user
store or have an administrator role in the WSO2 product that you are using, but this user MUST have permissions to read the user list and
users' attributes and to perform search operations on the user store. The value you specify is used as the DN ()Distinguish Name
attribute of the user. This property is mandatory.

ConnectionPassword Password for the user.ConnectionName

PasswordHashMethod Password hash method to use when storing user entries in the user store.

UserNameListFilter Filtering criteria for listing all the user entries in the user store. This query or filter is used when doing search operations on users. In this
case, the search operation only provides the objects created from the specified class. This query is the same as listing out all the available
users in the management console.

UserEntryObjectClass Object class used to construct user entries. By default, it is a custom object class defined with the name .wso2Person

UserSearchBase DN of the context or object under which the user entries are stored in the user store. In this case, it is the "users" container. When the user
store searches for users, it will start from this location of the directory.

UserNameSearchFilter Filtering criteria used to search for a particular user entry.

UserNameAttribute The attribute used for uniquely identifying a user entry. Users can be authenticated using their email address, UID, etc.

UsernameWithEmailJavaScriptRegEx This property defines the JavaScript regular expression pattern when the property is set to in coEnableEmailUserName true carbon.xml
nfiguration file. If you need to support both email as a user name and normal user names, you can set this property as follows.

<Property name="UsernameWithEmailJavaScriptRegEx">^[\S]{3,30}$</Property>

PasswordJavaScriptRegEx Policy that defines the password format.

UsernameJavaScriptRegEx The regular expression used by the front-end components for username validation.

Different databases have different search bases.

The name of the attribute is considered as the username.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 233

UsernameJavaRegEx A regular expression to validate usernames. By default, strings have a length of 5 to 30. Only non-empty characters are allowed. You can
provide ranges of alphabets, numbers and also ranges of ASCII values in the RegEx properties.

<Property
name="UsernameJavaRegEx">[a-zA-z0-9._-|!#$%"'*-=?^`():,;~//\u00C0-\u1FFF\u2C00-\uD7FF\w]{3,30}$</Property>

RolenameJavaScriptRegEx The regular expression used by the front-end components for role name validation.

RolenameJavaRegEx A regular expression used to validate role names. By default, strings have a length of 5 to 30. Only non-empty characters are allowed.

ReadGroups Specifies whether groups should be read from the user store. If this is disabled by setting it to false, none of the groups in the user store
can be read, and the following group configurations are NOT mandatory: , , or GroupSearchBase GroupNameListFilter GroupNameAtt

.ribute

WriteGroups Specifies whether groups should be written to user store.

EmptyRolesAllowed Specifies whether the underlying user store allows empty groups to be created. In the case of LDAP in Carbon, the schema is modified such
that empty groups are allowed to be created. Usually LDAP servers do not allow you to create empty groups.

GroupSearchBase DN of the context under which user entries are stored in the user store.

GroupSearchFilter The query used to search for groups.

GroupNameListFilter Filtering criteria for listing all the group entries in the user store. Groups are created in LDAP using the " " class. The groupgroupOfName
search operation only returns objects created from this class.

GroupEntryObjectClass Object class used to construct group entries.

GroupNameSearchFilter Filtering criteria used to search for a particular group entry.

GroupNameAttribute Attribute used for uniquely identifying a user entry. This attribute is to be treated as the group name.

MembershipAttribute Attribute used to define members of groups.

UserRolesCacheEnabled This is to indicate whether to cache the role list of a user. By default this is set to . Set it to if the user roles are changed bytrue false
external means and those changes should be instantly reflected in the Carbon instance.

UserDNPattern (LDAP) The patten for the user's DN, which can be defined to improve the search. When there are many user entries in the LDAP user store,
defining a provides more impact on performances as the LDAP does not have to travel through the entire tree to findUserDNPattern
users.

ReplaceEscapeCharactersAtUserLogin (LDAP) If the user name has special characters it replaces it to validate the user logging in. Only " " and " " are identified as escape\ \\
characters.

TenantManager Includes the location of the tenant manager.

ReadOnly (LDAP and JDBC) Indicates whether the user store of this realm operates in the user read only mode or not.

IsEmailUserName (JDBC) Indicates whether the user's email is used as their username (apply when realm operates in read-only mode).

DomainCalculation (JDBC) Can be either default or custom (this applies when the realm operates in read only mode).

PasswordDigest (JDBC) Digesting algorithm of the password. Has values such as, PLAIN_TEXT, SHA etc.

StoreSaltedPassword (JDBC) Indicates whether to salt the password.

UserNameUniqueAcrossTenants (JDBC) An attribute used for multi-tenancy.

PasswordJavaRegEx (LDAP and JDBC) A regular expression to validate passwords. By default, strings having a length between 5 to 30 with non-empty
characters are allowed.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 234

1.
2.

3.
4.

PasswordJavaScriptRegEx The regular expression used by the front-end components for password validation.

UsernameJavaRegEx A regular expression to validate usernames. By default, strings having a length 5 to 30 non-empty characters are allowed.between with

UsernameJavaScriptRegEx The regular expression used by the front-end components for username validation.

RolenameJavaRegEx A regular expression to validate role names. By default, strings having a length 5 to 30 with non-empty characters are allowed.between

RolenameJavaScriptRegEx The regular expression used by the front-end components for rolename validation.

MultiTenantRealmConfigBuilder Tenant Manager specific realm config parameter. Can be used to build different types of realms for the tenant.

SharedGroupEnabled This property is used to enable/disable the shared role functionality.

SharedGroupSearchBase Shared roles are created for other tenants to access under the mentioned DN.

SharedTenantObjectClass Object class for the shared groups created.

SharedTenantNameAttribute Name attribute for the shared group.

SharedTenantNameListFilter This is currently not used.

Configuring Secondary User Stores

The default configurations of WSO2 products have a single, embedded user store. If required, you can configure
WSO2 products to connect to several secondary user stores as well. After configuration, users from different stores
can log in and perform operations depending on their roles/permissions. You can also configure your own
customized user stores and connect them with the products as secondary stores.

The topics below explain how to configure secondary user stores manually or using the management console:
Configuring using the management console
Configuring manually

Configuring using the management console

Log in to the management console and click sub menu under menu.User Store Management Configure
The page opens. Initially, there are no secondary user stores.User Store Management

Click .Add Secondary User Store
The page opens. Enter a unique domain name and fill in the rest of the data.User Store Manager

For details on each property, see the respective property description that is provided. Also, select the

Tip: If you set up a database other than the default H2 that comes with the product to store user information,
select the script relevant to your database type from the folder and run it on<APIM_HOME>/dbscripts
your database. It creates the necessary tables.

Tip: If your setup has multiple product clusters such as the API Manager cluster, WSO2 ESB cluster etc,
when you add a secondary user store in one cluster, it will be unknown to the other product clusters. This is
because the WSO2 deployment synchroniser does not facilitate cross product synchronisation of artefacts.
Therefore, you need to create the same user store in one node of each product cluster.

Fox example, if your setup has a WSO2 Identity Server instance serving an APIM cluster and an ESB
cluster, the user store needs to be created in one APIM node and one ESB node.

Note: You cannot update the at run time, so it is not visible on this page.PRIMARY user store

Domain names must be unique and must not include underscore character (_).

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 235

4.

5.
6.

7.
8.
9.

required implementation of user store manager from the drop-down list. TheUser Store Manager Class
displayed property list varies depending on the selected user store manager implementation. By default, all
WSO2 products come with four user store manager implementations as follows:

ReadWriteLDAPUserStoreManager
ReadOnlyLDAPUserStoreManager
ActiveDirectoryUserStoreManager
JDBCUserStoreManager

You can also populate this drop-down list with custom user store manager implementations by adding them to
the server. A sample custom user store manager can be found in .the repository

Ensure that all the mandatory fields are filled and a valid domain name is given and click Add.
A message appears saying that the user stores are being added.

Refresh the page after a few seconds to check the status.
If the new user store is successfully added, it will appear in the page.User Store Management
After adding to the server, you can edit the properties of the new secondary user store and enable/disable it
in a dynamic manner.

Configuring manually

By default, the configuration of the primary user store is saved in the file. user-mgt.xml When you create a
secondary user store using the management console as explained above, its configuration is saved to an XML file
with the same name as the domain name you specify. Alternatively, you can create this XML file manually and save
it as follows:

Note: The above message does not imply that the user store is added successfully. It simply means
that the server is attempting to add the new user store to the end of the available chain of stores.

https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/products/is/4.5.0/modules/samples/user-mgt/SampleCustomeUserStoreManager/

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 236

1.
2.
3.

4.
5.

1.

2.

When you configure multiple user stores, you must igive a unique domain name to each user store
n the element. If you configure a user store without specifying a domain name, the<DomainName>
server throws an exception at start up.
If it is the configuration of a super tenant, save the secondary user store definitions in <PRODUCT_HOM

directory.E>/repository/deployment/server/userstores
If it is a general tenant, save the configuration in <PRODUCT_HOME>/repository/tenants/<tena

directory.ntid>/userstores
The the secondary user store configuration file must have the same name as the domain with an
underscore (_) in place of the period. For example, if the domain is wso2.com, name the file as wso2
_com.xml.
One file only contains the definition for one user store domain.

Directing the Root Context to the API Store

WSO2 API Manager includes separate Web applications as the API Publisher and the API Store. The root context of
the API Manager is set to go to the API Publisher by default. For example, assume that the API Manager is hosted
on a domain named with default ports. The URLs of the API Store and API Publisher will be as follows:apis.com

API Store - https://apis.com:9443/store
API Publisher - https://apis.com:9443/publisher

If you open the root context, which is in your browser, it directs to the API Publisher by default.https://apis.com:9443
You can set this to go to the API Store as follows:

Open the bundle / .<AM_HOME>/repository/components/plugins org.wso2.am.styles_1.x.x.jar
Open the file that is inside directory.component.xml META-INF
Change the <context-name> element, which points to publisher by default, to store:

<context>
 <context-id>default-context</context-id>
 <context-name>store</context-name>
 <protocol>http</protocol>
 <description>API Publisher Default Context</description>
 </context>

Restart the server.
Open the default context () again in a browser and note that it directs to the API Store.https://apis.com:9443

Adding Links to Navigate Between the Store and Publisher

By default, there are no links in the UIs of the API Store and API Publisher applications to traverse between the two
apps.

To add a link in API Publisher to API Store:

In file, set the to true and provide<AM_HOME>/repository/conf/api-manager.xml <DisplayURL>
the URL of the Store.

<APIStore>
 <DisplayURL>true</DisplayURL>
 <URL>https://${carbon.local.ip}:${mgt.transport.https.port}/store</URL>
</APIStore>

Tip: If you want to configure the API Publisher and Store to pass proxy server requests, configure a reverse
.proxy server

https://apis.com:9443/store/
https://apis.com:9443/publisher/
https://apis.com:9443
https://apis.com:9443
https://docs.wso2.com/display/AM180/FAQ#FAQ-HowcanIsetupareverseproxyservertopassserverrequests?
https://docs.wso2.com/display/AM180/FAQ#FAQ-HowcanIsetupareverseproxyservertopassserverrequests?

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 237

2.

1.

2.

Note a URL in the API Publisher that points to the API Store. For example,

To add a link in API Store to API Publisher:

In file, set the to true and provide<AM_HOME>/repository/conf/api-manager.xml <DisplayURL>
the URL of the Publisher.

<APIPublisher>
 <DisplayURL>true</DisplayURL>

<URL>https://${carbon.local.ip}:${mgt.transport.https.port}/publisher</URL>
</APIPublisher>

Note a URL in the API Store that points to the API Publisher. For example,

Maintaining Separate Production and Sandbox Gateways

With WSO2 API Manager, you can maintain a production and a sandbox endpoint for a given API. The production
endpoint is the actual location of the API, whereas the sandbox endpoint points to its testing/pre-production
environment.

When you publish an API using the API Publisher, it gets deployed on the API Gateway. By default, there's a single
Gateway instance (deployed either externally or embedded within the publisher), but you can also set up multiple
Gateways:

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 238

Single Gateway to handle both production and sandbox requests
Multiple Gateways to handle production and sandbox requests separately

Single Gateway to handle both production and sandbox requests

This is the default scenario. Because this Gateway instance handles both production and sandbox token traffic, it is
called a hybrid API Gateway. When an API request comes to the API Gateway, it checks whether the requesting
token is of type PRODUCTION or SANDBOX and forwards the request to the appropriate endpoint. The diagram
below depicts this scenario.

Multiple Gateways to handle production and sandbox requests separately

Having a single gateway instance to pass through both types of requests can negatively impact the performance of
the production server. To avoid this, you can set up separate API Gateways. The production API Gateway handles
requests that are made using PRODUCTION type tokens and the sandbox API Gateway handles requests that are
made using SANDBOX type tokens.

The diagram below depicts this using two Gateways:

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 239

In either of the two approaches, if an API Gateway receives an invalid token, it returns an error to the requesting
client saying that the token is invalid.

You configure production and sandbox gateways using the element in the <Environments> <AM_HOME>/reposi
 file as shown in the following example:tory/conf/api-manager.xml

<Environments>
 <Environment type="production">
 <Name>Production and Sandbox</Name>
 <ServerURL>https://localhost:9445/services/</ServerURL>
 <Username>admin</Username>
 <Password>admin</Password>

<GatewayEndpoint>http://localhost:8282,https://localhost:8245</GatewayEndpoint>
 </Environment>

 <Environment type="sandbox">
 <Name>Production and Sandbox</Name>
 <ServerURL>https://localhost:9448/services/</ServerURL>
 <Username>admin</Username>
 <Password>admin</Password>
<GatewayEndpoint>http://localhost:8285,https://localhost:8248</GatewayEndpoint>
 </Environment>
</Environments>

The attribute of the element can take the following values:type <Environment>

: A production type GatewayProduction
: A sandbox type GatewaySandbox

: The Gateway handles both types of tokensHybrid

If you work with Gateways in different geographical locations, configuring multiple environments using the
<APIGateway> element in the <APIM_HOME>/repository/conf/api-manager.xml file is recommended. The diagram
below depicts a sample setup:

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 240

: API Gateways in different geographical regionsFigure

Configuring Transports

A transport is responsible for carrying messages that are in a specific format. WSO2 API Manager supports all the
widely used transports including HTTP/s, JMS, Pass-through and VFS, and domain-specific transports like FIX. All
WSO2 transports are directly or indirectly based on the Apache Axis2 transports framework. This framework
provides two main interfaces that each transport implementation has.

org.apache.axis2.transport.TransportListener: Implementations of this interface specify how incoming
messages are received and processed before handing them over to the Axis2 engine for further processing.
org.apache.axis2.transport.TransportSender: Implementations of this interface specify how a message
can be sent out from the Axis2 engine.

Because each transport has to implement the two interfaces above, each transport generally contains a transport
receiver/listener and a transport sender. You configure, enable, and manage transport listeners and senders
independently to each other. For example, you can enable just the JMS transport sender without having to enable
the JMS transport listener.

For more information, see the following topics in the WSO2 ESB documentation:

Available transports
How to configure transports

Extending the API Manager

https://docs.wso2.com/display/ESB481/ESB+Transports
https://docs.wso2.com/display/ESB481/Configuring+Transports

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 241

hen an API is created, a file with its synapse configuration is added to the API Gateway. You can find it in the <APIM
 folder. It has a set of_HOME>/repository/deployment/server/synapse-configs/default/api

handlers, each of which is executed on the APIs in the same order they appear in the configuration.

The following topics cover different ways in which you can extend the API Manager:
Writing Custom Handlers
Integrating with WSO2 Governance Registry
Adding Mediation Extensions
Adding Workflow Extensions
Adding new Throttling Tiers
Adding a Reverse Proxy Server
Adding a new API Store Theme
Transforming API Message Payload

Writing Custom Handlers

This section introduces handlers and using an example, explains how to write a custom handler:
Introducing Handlers
Writing a custom handler
Engaging the custom handler

Introducing Handlers

W You find the default handlers in any API's Synapse definition as shown below.

<handlers>
 <handler
class="org.wso2.carbon.apimgt.gateway.handlers.security.APIAuthenticationHandler"/>
 <handler
class="org.wso2.carbon.apimgt.gateway.handlers.throttling.APIThrottleHandler">
 <property name="id" value="A"/>
 <property name="policyKey" value="gov:/apimgt/applicationdata/tiers.xml"/>
 </handler>
 <handler class="org.wso2.carbon.apimgt.usage.publisher.APIMgtUsageHandler"/>
 <handler
class="org.wso2.carbon.apimgt.usage.publisher.APIMgtGoogleAnalyticsTrackingHandler"/>
 <handler
class="org.wso2.carbon.apimgt.gateway.handlers.ext.APIManagerExtensionHandler"/>
</handlers>

Let's see what each handler does:

 APIAuthenticationHandler: Validates the OAuth2 bearer token used to invoke the API. It also
determines whether the token is of type or and sets variables asProduction Sandbox MessageContext
appropriate.

 APIThrottleHandler: Throttles requests based on the throttling policy specified by the proppolicyKey
erty. Throttling is applied both at the application level as well as subscription level.

 APIMgtUsageHandler: Publishes events to BAM for collection and analysis of statistics. This handler only
comes to effect if . See for more information.API usage tracking is enabled Publishing API Runtime Statistics

 APIMgtGoogleAnalyticsTrackingHandler: Publishes events to Google Analytics. This handler only
comes into effect if Google analytics tracking is enabled. See for more Integrating with Google Analytics
information.

 APIManagerExtensionHandler: Triggers extension sequences. By default, the extension handler is
listed at last in the handler chain, and therefore is executed last. You cannot change the order in which the
handlers are executed, except the extension handler. To configure the API Gateway to execute extension
handler first, uncomment the section in the <ExtensionHandlerPosition> <APIM_HOME>/repository

 file and provide the value . T/conf/api-manager.xml top his is useful when you want to execute your
 own extensions before our default handlers in situations like doing additional security checks such as

signature verification on access tokens before executing the default security handler.
See .Adding Mediation Extensions

Writing a custom handler

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 242

Let's see how you can write a custom handler and apply it to the API Manager. In this example, we extend the
authentication handler. Make sure your custom handler name is not the same as the name of an existing handler.

WSO2 API Manager provides the OAuth2 bearer token as its default authentication mechanism. The source code of
the implementation is . Similarly, you can extend the API Manager to support any custom authenticationhere
mechanism by writing your own authentication handler class. This custom handler must extend org.apache.syna

class and implement the and methods.pse.rest.AbstractHandler handleRequest() handleResponse()

Given below is an example implementation:

package org.wso2.carbon.test;

import org.apache.synapse.MessageContext;
import org.apache.synapse.core.axis2.Axis2MessageContext;
import org.apache.synapse.rest.AbstractHandler;

import java.util.Map;

public class CustomAPIAuthenticationHandler extends AbstractHandler {

 public boolean handleRequest(MessageContext messageContext) {
 try {
 if (authenticate(messageContext)) {
 return true;
 }
 } catch (APISecurityException e) {
 e.printStackTrace();
 }
 return false;
 }

 public boolean handleResponse(MessageContext messageContext) {
 return true;
 }

 public boolean authenticate(MessageContext synCtx) throws APISecurityException {
 Map headers = getTransportHeaders(synCtx);
 String authHeader = getAuthorizationHeader(headers);
 if (authHeader.startsWith("userName")) {
 return true;
 }
 return false;
 }

 private String getAuthorizationHeader(Map headers) {
 return (String) headers.get("Authorization");
 }

 private Map getTransportHeaders(MessageContext messageContext) {
 return (Map) ((Axis2MessageContext) messageContext).getAxis2MessageContext().

getProperty(org.apache.axis2.context.MessageContext.TRANSPORT_HEADERS);
 }
}

Engaging the custom handler

https://svn.wso2.org/repos/wso2/carbon/platform/branches/4.1.0/components/apimgt/org.wso2.carbon.apimgt.gateway/1.1.3/src/main/java/org/wso2/carbon/apimgt/gateway/handlers/security/APIAuthenticationHandler.java

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 243

1.
2.

You can engage a custom handler to all APIs at once or only to selected APIs.

To engage to all APIs, the recommended approach is to add it to the <APIM_HOME>/repository/resources/a
For example, the following code segment adds the custom file. pi_templates/velocity_template.xml

authentication handler that you wrote earlier to the file while making sure that it skipsvelocity_template.xml
the default implementation:APIAuthenticationHandler

<handler
class="org.wso2.carbon.apimgt.custom.authentication.handler.CustomAPIAuthenticationHan
dler" />
 #foreach($handler in $handlers)
 #if(!($handler.className ==
"org.wso2.carbon.apimgt.gateway.handlers.security.APIAuthenticationHandler"))
 <handler xmlns="http://ws.apache.org/ns/synapse"
class="$handler.className">
 #if($handler.hasProperties())
 #set ($map = $handler.getProperties())
 #foreach($property in $map.entrySet())
 <property name="$!property.key" value="$!property.value"/>
 #end
 #end
 </handler>
 #end
 #end
</handlers>

 Given below is how to engage handlers to a single API, by editing its source view.

Build the class and copy the JAR file to folder.<APIM_HOME>/repository/components/lib
Log in to the management console and select in the menu.Service Bus > Source View Main

Note that when you engage a handler by editing the API's source view, your changes will be overwritten
every time you save the API through the API Publisher.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 244

2.

3.

4.

In the configuration that opens, select an API and navigate to the <Handlers> section. The following line
appears as the first handler. This is the current authentication handler used in the API Manager.

Replace the above line with the handler that you created. It will engage your custom handler to the API
Manager instance. According to this example, it is as follows:

<handler
class="org.wso2.carbon.apimgt.gateway.handlers.security.CustomAPIAuthenticationHa
ndler"/>

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 245

1.
2.

3.

4.

5.

Integrating with WSO2 Governance Registry

WSO2 Governance Registry is a registry-repository for storing and managing metadata related to services and other
artifacts. Services in the Governance Registry are implemented as (RXT files). configurable governance artifacts Us
ually, APIs are created using the API Publisher Web interface. Instead, you can integrate the API Manager with the
Governance Registry to directly create APIs in the API Publisher using the services deployed in the Governance
Registry.

The steps below explain how to configure the two products to expose services in the Governance Registry as APIs.

Follow the steps below to publish services on Governance Registry to the API Manager.

Download both WSO2 Governance Registry (G-Reg) and WSO2 API Manager.
Provide the API Manager credentials in <GREG_HOME>/repository/resources/lifecycles/configu

 file. For example, the following code block defines an element in strations.xml execution production
ate. It provides the API Manager's endpoint, username and password as executor parameters.

<execution forEvent="Publish"
class="org.wso2.carbon.governance.registry.extensions.executors.apistore.ApiStore
Executor">
 <parameter name="apim.endpoint" value="http://localhost:9763/"/>
 <parameter name="apim.username" value="admin"/>
 <parameter name="apim.password" value="admin"/>
 <parameter name="default.tier" value="Unlimited"/>
 <parameter name="throttlingTier"
value="Unlimited,Unlimited,Unlimited,Unlimited,Unlimited"/>
</execution>

R u n t h e G - R e g a n d t h e A P I M a n a g e r .

When running more than one WSO2 products on the same server, change the default port of one product to
avoid port conflicts. You can do this by changing the value of one product in <offset> <PRODUCT_HOME>/r

 file. In this example, we set the port offset value of Governance Registry toepository/conf/carbon.xml
1 as follows: > <Offset>1</Offset

Access the API Manager server using the following URL: . As you changedhttps://<HostName>:9443/carbon
the default port of G-Reg, you can access the server using the following URL: https://<HostName>:<9443+off

.set>/carbon
Log in to the G-Reg management console and create a new service in it and attach the default service

The following steps apply to WSO2 Governance Registry version 4.6.0 or after.
In WSO2 Governance Registry 4.6.0, we do a simple POST to create APIs in the API Publisher. It does
not involve registry mounting.

a.

b.
c.

Note: If you started the G-Reg server at least once before executing step 2, editing the configurat
 file and restarting the server does not apply the configurations. You need to add theions.xml

configurations using the G-Reg management console as follows:

Log in to the G-Reg Management console and select Extensions -> Configure -> Lifecycles
menu.
Click the Edit link associated with . ServiceLifeCycle
Add the configuration given in step 2 above and .Save

Note: If you offset the default API Manager port, you must also change the default API endpoints and
the Thrift port accordingly. See .Changing the Default Ports with Offset

http://wso2.com/products/governance-registry
http://docs.wso2.org/governance-registry/Configurable+Governance+Artifacts+(RXT)
https://192.168.1.2:9443/carbon
https://192.168.1.2:9443/carbon
https://192.168.1.2:9443/carbon

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 246

5.

6.
7.

8.

lifecycle to it. For instructions on how to add a new service and associate a new lifecycle, see http://docs.wso
 in the Governance Registry documentation.2.org/governance-registry/Managing+Services

Promote the service until it gets to the production state.
When it is in the production state, publish it using the button. You should get a confirmation messagePublish
once the API is successfully published.
You have now created an API using a service in the Governance Registry. Open the API Publisher to see
that this service is successfully created as an API.

Adding Mediation Extensions

The API Gateway has a default mediation flow that is executed in each API invocation. You can do additional
custom mediation for the messages in the API Gateway by extending its mediation flow. An extension is provided as
a synapse mediation sequence.

Please do not use the API Manager's management console to create sequences as the functionality is not
supported. You can design all sequences using a tool like WSO2 Developer Studio, and store the fisequence.xml
le in the governance registry. For information, see in the Developer Studio documentation.Creating ESB Artifacts
The registry collection where sequences are stored is customsequences , which is available by default in apimgt
governance registry location. Given below are the registry paths:

Sequence Registry path

In /_system/governance/apimgt/customsequences/in

Out /_system/governance/apimgt/customsequences/out

Fault /_system/governance/apimgt/customsequences/fault

For example, if you have an in sequence file as , you must save it in testInSequence /_system/governance/a
pimgt/customsequences/in/testInSequence.xml.

There are two ways to apply mediation extensions to messages:

 Global Extensions : Apply to all APIs
 Per-API Extensions : Apply only to an intended API

The difference between a global extension and a per-API extension is simply in the name given to the sequence that
you use to create it.

Creating global extensions

Given below is the naming pattern of a global extension sequence.

WSO2AM--Ext--<DIRECTION>

The can be or . To change the default fault sequence, you can either modify the default<DIRECTION> In Out
sequence or write a custom fault sequence and engage it to APIs through the API Publisher. When the direction of
the sequence is , the extension is triggered on the in-flow (request path). Similarly, when the direction of theIn
sequence is , the extension is triggered on the out-flow (response path). Shown below is an example synapseOut
configuration of a global extension sequence.

Global Extension Sequence Example

<sequence xmlns="http://ws.apache.org/ns/synapse" name="WSO2AM--Ext--In">
 <log level="custom">
 <property name="TRACE" value="Global Mediation Extension"/>
 </log>
</sequence>

To test the code, copy it to an XML file (e.g., global_ext.xml) and save the file in the <APIM_HOME>/repository/

http://docs.wso2.org/wiki/display/Governance453/Managing+Services
http://docs.wso2.org/wiki/display/Governance453/Managing+Services
http://docs.wso2.com/developer-studio/Creating+ESB+Artifacts#CreatingESBArtifacts-Workingwithsequences

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 247

1.

2.
3.

 directory. The above sequence prints a logdeployment/server/synapse-configs/default/sequences
message on the console on every API invocation.

Creating per-API extensions

Given below is the naming pattern of a per-API extension sequence.

<API_NAME>:v<VERSION>--<DIRECTION>

Shown below is an example synapse configuration of a per-API extension sequence. It is created for an API named
admin--TwitterSearch with version 1.0.0.

API Extension Sequence Example

<sequence xmlns="http://ws.apache.org/ns/synapse"
name="admin--TwitterSearch:v1.0.0--In">
 <log level="custom">
 <property name="TRACE" value="API Mediation Extension"/>
 </log>
</sequence>

To test the code in super-tenant mode, copy it to an XML file (e.g.,) and save the file intwittersearch_ext.xml
the directory, if<APIM_HOME>/repository/deployment/server/synapse-configs/default/sequences
you are in single-tenant mode. In multi-tenant mode, copy the file to the tenant's synapse sequence folder. For
example, if tenant id is 1, then copy it to <API_Gateway>/repository/tenants/1/synapse-configs/defa

folder. ult/sequences

The above sequence prints a log message on the console whenever the API is invoked.TwitterSearch

Alternatively, you can create the XML file and upload it to the registry using the management console UI.

Open the APIM management console (with admin/admin as the defaulthttps://localhost:9443/carbon
credentials) and select .Resources -> Browse
Navigate to registry location./_system/governance/apimgt/customsequences
Click link to upload the XML file.Add Resource

Selecting predefined APIs from the UI

You can attach pre-defined extension sequences to an API using the API Publisher Web interface, at the time the
API is created. Log in to the API Publisher () and click from the left panel. In the https://localhost:9443/publisher Add

 page that opens, navigate to the section where you find . There, you can select Add New API Manager Sequences
 sequences for the API from the drop-down lists. For example,In/Out/Fault

To populate these drop-down lists, you must add mediation sequences as explained at the beginning.

Invoking the extension sequences

NOTE: The tenant username must be given as in the configuration. For <username>-AT-<domain>
example, if the tenant username is and the domain is , then the name attribute in thetestuser wso2.com
above configuration must be . The @ signtestuser-AT-wso2. com--TwitterSearch:v1.0.0–In
must be given as AT.

https://localhost:9443/carbon
https://10.100.1.71:9443/publisher

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 248

1.
2.

When an API is published, a file with its synapse configuration is created on the API Gateway. This synapse
configuration has a set of handlers as shown in the following example:

API Configuration

<handlers>
 <handler
class="org.wso2.carbon.apimgt.gateway.handlers.security.APIAuthenticationHandler"/>
 <handler class="org.wso2.carbon.apimgt.usage.publisher.APIMgtUsageHandler"/>
 <handler
class="org.wso2.carbon.apimgt.usage.publisher.APIMgtGoogleAnalyticsTrackingHandler"/>
 <handler
class="org.wso2.carbon.apimgt.gateway.handlers.throttling.APIThrottleHandler">
 <property name="id" value="A"/>
 <property name="policyKey" value="gov:/apimgt/applicationdata/tiers.xml"/>
 </handler>
 <handler
class="org.wso2.carbon.apimgt.gateway.handlers.ext.APIManagerExtensionHandler"/>
</handlers>

The handler by the name triggers both global as well as per-API extensionAPIManagerExtensionHandler
sequences. It reads the sequence names and determines what APIs must be invoked. By default, the extension
handler is listed at last in the handler chain, and therefore is executed last. You can configure the API Gateway to
execute extension handlers first. To do that, open file,<APIM_HOME>/repository/conf/api-manager.xml
uncomment the section and provide the value as follows:<ExtensionHandlerPosition> top

<ExtensionHandlerPosition>top</ExtensionHandlerPosition>

This is useful when you want to execute your own extensions before our default handlers. For example, if you want
to have additional security checks such as signature verification on access tokens before executing the default
security handler, you can define an extension and configure the Gateway to execute extension handlers first.

For more information on Handlers, see .API Manager Components

Adding Workflow Extensions

Use workflow extensions to attach a workflow to the following API Store/API Publisher operations:
Adding an Application Creation Workflow
Adding an Application Registration Workflow
Adding an API Subscription Workflow
Adding a User Signup Workflow
Invoking the API Manager from the BPEL Engine
Customizing a Workflow Extension
Configuring Workflows for Tenants
Configuring Workflows in a Cluster
Changing the Default User Role in Workflows

Adding an Application Creation Workflow

This section explains how to attach a custom workflow to the application creation operation in the API Manager.
First, see for information on different types of workflow executors.Workflow Extensions

Configuring the Business Process Server

Download .WSO2 Business Process Server
 Set an offset of 2 to the default BPS port in file. This<BPS_HOME>/repository/conf/carbon.xml

prevents port conflicts that occur when you start more than one WSO2 product on the same server. Also see
.Changing the Default Ports with Offset

https://docs.wso2.com/display/AM180/Key+Concepts#KeyConcepts-APIManagercomponents
https://docs.wso2.com/display/AM170/Adding+Workflow+Extensions
http://wso2.com/products/business-process-server/
https://docs.wso2.com/display/AM170/Changing+the+Default+Ports+with+Offset

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 249

2.

3.

4.

5.

6.

1.

2.

<Offset>2</Offset>

Copy the following from to <APIM_HOME>/business-processes/epr <BPS_HOME>/repository/conf
 folder. If the folder isn't there, please create it./epr <BPS_HOME>/repository/conf/epr
ApplicationService.epr
ApplicationCallbackService.epr

Start the BPS server and log in to its management console (https://<Server Host>:9443+<port
).offset>/carbon

Select the under menu and uploadAdd Processes <APIM_HOME>/business-processes/application
-creation/BPEL/ApplicationApprovalWorkFlowProcess_1.0.0.zip file to BPS. This is the
business process archive file.

 Select Add under the Human Tasks menu and upload <APIM_HOME>/business-processes/applicat
ion-creation/HumanTask/ApplicationsApprovalTask-1.0.0.zip to BPS. This is the human task
archived file.

Engaging the WS Workflow Executor in the API Manager

First, enable the application creation workflow.

Log in to APIM management console () https://<Server Host>:9443/carbon and select Browse unde
 r Resources.

Go to resource, d/_system/governance/apimgt/applicationdata/workflow-extensions.xml is
. able the Simple Workflow Executor and enable WS Workflow Executor Also specify the service endpoint

where the workflow engine is hosted and the credentials required to access the said service via basic
authentication (i.e., username/password based authentication).

If you change the port offset to a value other than 2 or run the API Manager and BPS on different
machines (therefore, want to set the to a different value than), you must dohostname localhost
the following:

Search and replace the value 9765 in all the files (.epr, .wsdl files inside the ZIP archives)
inside folder with the new port <APIM_HOME>/business-processes
Zip the files you unzipped earlier and deploy the newly created zip file in BPS as explained in
the steps below
Search and replace port 9445 in <AM_HOME>/repository/deployment/server/jagger

 fileyapps/admin-dashboard/site/conf/site.json

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 250

2.

3.

4.

5.

6.

<WorkFlowExtensions>
 <!--ApplicationCreation
executor="org.wso2.carbon.apimgt.impl.workflow.ApplicationCreationSimpleWorkflowE
xecutor"/-->
 <ApplicationCreation
executor="org.wso2.carbon.apimgt.impl.workflow.ApplicationCreationWSWorkflowExecu
tor">
 <Property
name="serviceEndpoint">http://localhost:9765/services/ApplicationApprovalWorkFlow
Process/</Property>
 <Property name="username">admin</Property>
 <Property name="password">admin</Property>
 <Property
name="callbackURL">https://localhost:8243/services/WorkflowCallbackService</Prope
rty>
 </ApplicationCreation>
</WorkFlowExtensions>

The application creation WS Workflow Executor is now engaged.
Go to the API Store Web interface, open page and create a new application. My Applications
It invokes the application creation process and creates a Human Task instance that holds the execution of the

 BPEL process until some action is performed on it.
Note the message that appears if the BPEL is invoked correctly, saying that the request is successfully
submitted.
Log in to the workflow-admin app (), list all the tasks forhttps://localhost:9443/workflow-admin
application creation and approve the task. It resumes the BPEL process and completes the application
creation.
Go back to the page on the API Store and see the created application. My Applications

Whenever a user tries to create an application in the API Store, a request is sent to the workflow endpoint. Gi
ven below is a sample:

https://localhost:9443/workflow-admin

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 251

6.

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:wor="http://workflow.subscription.apimgt.carbon.wso2.org">
 <soapenv:Header />
 <soapenv:Body>
 <wor:createApplication
xmlns:wor="http://workflow.application.apimgt.carbon.wso2.org">
 <wor:applicationName>application1</wor:applicationName>
 <wor:applicationTier>Gold</wor:applicationTier>

<wor:applicationCallbackUrl>http://webapp/url</wor:applicationCallbackUrl>
 <wor:applicationDescription>Application 1</wor:applicationDescription>
 <wor:tenantDomain>wso2.com</wor:tenantDomain>
 <wor:userName>user1</wor:userName>

<wor:workflowExternalRef>c0aad878-278c-4439-8d7e-712ee71d3f1c</wor:workflowExtern
alRef>

<wor:callBackURL>https://localhost:8243/services/WorkflowCallbackService</wor:cal
lBackURL>
 </wor:createApplication>
 </soapenv:Body>
</soapenv:Envelope>

Elements of the above configuration are described below:

Element Description

applicationName Name of the application the user creates.

applicationTier Throttling tier of the application.

applicationCallbackUrl When the OAuth2 Authorization Code grant type is applied, this is the
endpoint on which the callback needs to happen after the user is
authenticated. This is an attribute of the actual application registered on
the API Store.

applicationDescription Description of the application

tenantDomain Tenant domain associated with the application (domain of the user
creating the application).

userName username of the user creating the application.

workflowExternalRef The unique reference against which a workflow is tracked. This needs to
be sent back from the workflow engine to the API Manager at the time of
workflow completion.

callBackURL At the time of workflow completion, the workflow-completion request is
sent to this URL by the workflow engine. This property is configured in the
<callBackURL> element in the api-manager.xml.

Adding an Application Registration Workflow

This section explains how to attach a custom workflow to the application registration operation in the API Manager.
First, see Workflow Extensions for information on different types of workflow executors.

https://docs.wso2.com/display/AM170/Adding+Workflow+Extensions

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 252

1.
2.
3.

1.
2.

3.

4.

5.

6.

Introduction to the application registration workflow

 and registration are different workflows. After an application is created, you can subscribe toApplication creation
available APIs, but you get the consumer key/secret and access tokens only after registering the application. There
are two types of registrations that can be done to an application: production and sandbox. You change the default
application registration workflow in situations such as the following:

To issue only sandbox keys when creating production keys is deferred until testing is complete.
To restrict untrusted applications from creating production keys. You allow only the creation of sandbox keys.
To make API subscribers go through an approval process before creating any type of access token.

Configuring the Business Process Server

Download .WSO2 Business Process Server
 Set an offset of 2 to the default BPS port in file. This<BPS_HOME>/repository/conf/carbon.xml

prevents port conflicts that occur when you start more than one WSO2 product on the same server. Also see
.Changing the Default Ports with Offset

<Offset>2</Offset>

Copy the following from to <APIM_HOME>/business-processes/epr <BPS_HOME>/repository/conf
 folder. If the folder isn't there, please create it./epr <BPS_HOME>/repository/conf/epr
RegistrationService.epr
RegistrationCallbackService.epr

Start the BPS server and log in to its management console (https://<Server Host>:9443+<port
).offset>/carbon

Select under menu and uploadAdd Processes t he <APIM_HOME>/business-processes/applicatio
n-registration/BPEL/App file to BPS. ThislicationRegistrationWorkflowProcess_1.0.0.zip
is the business process archive file.

 Select Add under the Human Tasks menu and upload <APIM_HOME>/business-processes/applicat
to BPS. This ision-registration/HumanTaskBPEL/Ap plicationRegistrationTask-1.0.0.zip

the human task archived file.

Engaging the WS Workflow Executor in the API Manager

First, enable the application registration workflow .

If you change the port offset to a value other than 2 or run the API Manager and BPS on different
machines (therefore, want to set the to a different value than), you must dohostname localhost
the following:

Search and replace the value 9765 in all the files (.epr, .wsdl files inside the ZIP archives)
inside folder with the new port. <APIM_HOME>/business-processes
Zip the files you unzipped earlier and deploy the newly created zip file in BPS as explained in
the steps below.
Search and replace port 9445 in <AM_HOME>/repository/deployment/server/jagger

 file.yapps/admin-dashboard/site/conf/site.json

https://docs.wso2.com/display/AM170/Adding+an+Application+Creation+Workflow
http://wso2.com/products/business-process-server/

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 253

1.

2.

3.

4.

 Log in to APIM management console () https://<Server Host>:9443/carbon and select Browse und
 er Resources .

 Go to resource, d/_system/governance/apimgt/applicationdata/workflow-extensions.xml is

:able the Simple Workflow Executor and enable WS Workflow Executor

<WorkFlowExtensions>
 <!--ProductionApplicationRegistration
executor="org.wso2.carbon.apimgt.impl.workflow.ApplicationRegistrationSimpleWorkf
lowExecutor"/-->
 <ProductionApplicationRegistration
executor="org.wso2.carbon.apimgt.impl.workflow.ApplicationRegistrationWSWorkflowE
xecutor">
 <Property
name="serviceEndpoint">http://localhost:9765/services/ApplicationRegistrationWork
FlowProcess/</Property>
 <Property name="username">admin</Property>
 <Property name="password">admin</Property>
 <Property
name="callbackURL">https://localhost:8248/services/WorkflowCallbackService</Prope
rty>
 </ProductionApplicationRegistration>
 <!--SandboxApplicationRegistration
executor="org.wso2.carbon.apimgt.impl.workflow.ApplicationRegistrationSimpleWorkf
lowExecutor"/-->
 <SandboxApplicationRegistration
executor="org.wso2.carbon.apimgt.impl.workflow.ApplicationRegistrationWSWorkflowE
xecutor">
 <Property
name="serviceEndpoint">http://localhost:9765/services/ApplicationRegistrationWork
FlowProcess/</Property>
 <Property name="username">admin</Property>
 <Property name="password">admin</Property>
 <Property
name="callbackURL">https://localhost:8248/services/WorkflowCallbackService</Prope
rty>
 </SandboxApplicationRegistration>
</WorkFlowExtensions>

Go to the API Store Web interface, open page, select an application and click the My Subscriptions Genera
 b u t t o n a s s o c i a t e d w i t h t h e p r o d u c t i o n k e y . t e

It invokes the that is bundled with ApplicationRegistrationWorkFlowProcess.bpel ApplicationR
 and creates a HumanTask instance that holds the executionegistrationWorkflowProcess_1.0.0.zip

 of the BPEL process until some action is performed on it.
Note a message that appears saying that the request is successfully submitted if the BPEL was invoked
c o r r e c t l y . F o r e x a m p l e ,

Note that all workflow process services of the BPS run on port 9765 as you changed its default port
with an offset of 2.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 254

4.

5.

6.

Log in to the Admin Dashboard Web application ()https://<Server Host>:9443/admin-dashboard
and list all the tasks for application registrations. Click to start the Human Task and then change itsStart
state. Once you approve the task, it resumes the BPEL process and completes the registration.
Go back to the page on the API Store and view your application.My Subscriptions

It shows the application access token, consumer key and consumer secret. For example,

After the registration request is approved, keys are generated by invoking the serviAPIKeyMgtSubscriber
ce hosted in Key Manger nodes. Even when the request is approved, key generation can fail if this service
becomes unavailable. To address such failures, you can configure to trigger key generation at a time Key
Manager nodes become available again. Given below is the message used to invoke the BPEL process:

<applicationregistrationworkflowprocessrequest
xmlns:wor="http://workflow.application.apimgt.carbon.wso2.org"
 xmlns="http://workflow.application.apimgt.carbon.wso2.org">
 <applicationname>NewApp5</applicationname>
 <applicationtier>Unlimited</applicationtier>
 <applicationcallbackurl></applicationcallbackurl>
 <applicationdescription></applicationdescription>
 <tenantdomain>carbon.super</tenantdomain>
 <username>admin</username>

<workflowexternalref>4a20749b-a10d-4fa5-819b-4fae5f57ffaf</workflowexternalref>

<callbackurl>https://localhost:8243/services/WorkflowCallbackService</callbackurl
>
 <keytype>PRODUCTION</keytype>
</applicationregistrationworkflowprocessrequest>

Adding an API Subscription Workflow

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 255

1.
2.

3.

4.

5.

This section explains how to attach a custom workflow to the API subscription operation in the API Manager. First,
see for information on different types of workflows executors.Workflow Extensions

Attaching a custom workflow to API subscription enables you to add throttling tiers to an API that consumers cannot
choose at the time of subscribing. Only admins can set these tiers to APIs. It also allows you to restrict API
consumers to only subscribe to sandbox, and then go through an approval process to go to the next level of
subscription.

Configuring the Business Process Server

Download .WSO2 Business Process Server
Set an offset of 2 to the default BPS port in file. This<BPS_HOME>/repository/conf/carbon.xml
prevents port conflicts that occur when you start more than one WSO2 product on the same server. Also see

.Changing the Default Ports with Offset

<Offset>2</Offset>

Copy the following file from to <APIM_HOME>/business-processes/epr <BPS_HOME>/repository/c
 folder. If the folder isn't there, please create it.onf/epr <BPS_HOME>/repository/conf/epr

SubscriptionService.epr
SubscriptionCallbackService.epr

Start the BPS server and log in to its management console (https://<Server Host>:9443+<port
).offset>/carbon

Select under the menu and upload the Add Processes <APIM_HOME> /business-processes/subscrip
file to BPS. This istion-creation/BPEL/SubscriptionApprovalWorkFlowProcess_1.0.0.zip

the business process archive file.

Tip: If you change the BPS port offset to a value other than 2 or run the API Manager and BPS
 (therefore, want to set the to a different value than),on different machines hostname localhost

you do the following:

Search and replace the value 9765 in all the files (.epr, .wsdl files inside the ZIP archives)
inside folder with the new port.<APIM_HOME>/business-processes
Zip the files you unzipped earlier and deploy the newly created zip file in BPS as explained in
the steps below.
Search and replace port 9445 in <APIM_HOME>/repository/deployment/server/jagg

 file.eryapps/admin-dashboard/site/conf/site.json

Tip: Did you change the default port of the API Manager rather than the BPS? If so, be sure to
do the following:

Search and replace the value 8243 in all the files (.epr, .wsdl etc.) inside the ZIP archives
inside folder with the new port.<APIM_HOME>/business-processes
Change the port in the following property in the <APIM_HOME>/repository/deployment/
server/synapse-configs/default/proxy-services/workflowcallbackService

 file..xml

<address
uri="https://localhost:9444/store/site/blocks/workflow/workflow-liste
ner/ajax/workflow-listener.jag" format="rest"/>

http://docs.wso2.com/display/AM180/Adding+Workflow+Extensions
http://wso2.com/products/business-process-server/

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 256

5.

6.

1.

2.

3.

4.

5.

6.

Select under the menu and upload Add Human Tasks <APIM_HOME>/business-processes/subscrip
to BPS. This is the humantion-creation/HumanTask/SubscriptionsApprovalTask-1.0.0.zip

task archived file.

Engaging the WS Workflow Executor in the API Manager

First, enable the API subscription workflow.

Log in to APIM admin console () and select under https://<Server Host>:9443/carbon Browse Reso
u r c e s .

Go to resource,/_system/governance/apimgt/applicationdata/workflow-extensions.xml
disable the Simple Workflow Executor and enable WS Workflow Executor. Also specify the service endpoint
where the workflow engine is hosted and the credentials required to access the said service via basic
authentication (i.e., username/password based authentication).

<WorkFlowExtensions>
 <!--SubscriptionCreation
executor="org.wso2.carbon.apimgt.impl.workflow.SubscriptionCreationSimpleWorkflow
Executor"/-->
 <SubscriptionCreation
executor="org.wso2.carbon.apimgt.impl.workflow.SubscriptionCreationWSWorkflowExec
utor">
 <Property
name="serviceEndpoint">http://localhost:9765/services/SubscriptionApprovalWorkFlo
wProcess/</Property>
 <Property name="username">admin</Property>
 <Property name="password">admin</Property>
 <Property
name="callbackURL">https://localhost:8243/services/WorkflowCallbackService</Prope
rty>
 </SubscriptionCreation>
</WorkFlowExtensions>

The application creation WS Workflow Executor is now engaged.
Go to the API Store Web interface and subscribe to an API. It invokes the API subscription process and
creates a Human Task instance that holds the execution of the BPEL until some action is performed on it.
Note the message that appears if the BPEL is invoked correctly, saying that the request is successfully
submitted.
Log in to the Admin Dashboard Web application (),https://<Server Host>:9443/admin-dashboard
list all the tasks for API subscription and approve the task. It resumes the BPEL process and completes the
API subscription.
Go back to the API Store and see that the user is now subscribed to the API.

Whenever a user tries to subscribe to an API, a request of the following format is sent to the workflow

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 257

6.

1.

2.

endpoint:

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"xmlns:wor="http://w
orkflow.subscription.apimgt.carbon.wso2.org">
 <soapenv:Header/>
 <soapenv:Body>
 <wor:createSubscription>
 <wor:apiName>sampleAPI</wor:apiName>
 <wor:apiVersion>1.0.0</wor:apiVersion>
 <wor:apiContext>/sample</wor:apiContext>
 <wor:apiProvider>admin</wor:apiProvider>
 <wor:subscriber>subscriber1</wor:subscriber>
 <wor:applicationName>application1</wor:applicationName>
 <wor:tierName>gold</wor:tierName>
 <wor:workflowExternalRef></wor:workflowExternalRef>
 <wor:callBackURL>?</wor:callBackURL>
 </wor:createSubscription>
 </soapenv:Body>
</soapenv:Envelope>

Elements of the above configuration are described below:

Element Description

apiName Name of the API to which subscription is requested.

apiVersion Version of the API the user subscribes to.

apiContext Context in which the requested API is to be accessed.

apiProvider Provider of the API.

subscriber Name of the user requesting subscription.

applicationName Name of the application through which the user subscribes to the API.

tierName Throttling tiers specified for the application.

workflowExternalRef The unique reference against which a workflow is tracked. This needs to be sent
back from the workflow engine to the API Manager at the time of workflow
completion.

callBackURL The URL to which the Workflow completion request is sent to by the workflow
engine, at the time of workflow completion. This property is configured under the
callBackURL property in the api-manager.xml.

Adding a User Signup Workflow

This section explains how to attach a custom workflow to the application creation operation in the API Manager.
First, see for information on different types of workflow executors.Workflow Extensions

Configuring the Business Process Server

Download .WSO2 Business Process Server

https://docs.wso2.com/display/AM170/Adding+Workflow+Extensions
http://wso2.com/products/business-process-server/

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 258

2.

3.

4.

5.

6.

1.

2.

 Set an offset of 2 to the default BPS port in file. This<BPS_HOME>/repository/conf/carbon.xml
prevents port conflicts that occur when you start more than one WSO2 product on the same server. Also see

.Changing the Default Ports with Offset

<Offset>2</Offset>

Copy the following from to <APIM_HOME>/business-processes/epr <BPS_HOME>/repository/conf
 folder. If the folder isn't there, please create it./epr <BPS_HOME>/repository/conf/epr
UserSignupService.epr
UserSignupProcess.epr

Start the BPS server and log in to its management console (https://<Server Host>:9443+<port
).offset>/carbon

Select the under menu and uploadAdd Processes <APIM_HOME>/business-processes/user-signup
 /BPEL/UserSignupApprovalProcess_1.0.0.zip file to BPS. This is the business process archive file.

 Select Add under the Human Tasks menu and upload <APIM_HOME>/business-processes/user-sig
nup/HumanTask/UserApprovalTask-1.0.0.zip to BPS. This is the human task archived file.

Engaging the WS Workflow Executor in the API Manager

First, enable the user signup workflow.

Log in to APIM management console () https://<Server Host>:9443/carbon and select Browse unde

 r Resources .
Go to resource, d/_system/governance/apimgt/applicationdata/workflow-extensions.xml
isable the Simple Workflow Executor and enable WS Workflow Executor. Also specify the service endpoint
where the workflow engine is hosted and the credentials required to access the said service via basic
authentication (i.e., username/password based authentication).

If you change the port offset to a value other than 2 or run the API Manager and BPS on different
machines (therefore, want to set the to a different value than), you must dohostname localhost
the following:

Search and replace the value 9765 in all the files (.epr, .wsdl files inside the ZIP archives)
inside folder with the new port. <APIM_HOME>/business-processes
Zip the files you unzipped earlier and deploy the newly created zip file in BPS as explained in
the steps below.
Search and replace port 9445 in <AM_HOME>/repository/deployment/server/jagger

 file.yapps/admin-dashboard/site/conf/site.json

https://docs.wso2.com/display/AM170/Changing+the+Default+Ports+with+Offset

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 259

2.

3.

4.

5.

6.

<WorkFlowExtensions>
 <!--UserSignUp
executor="org.wso2.carbon.apimgt.impl.workflow.UserSignUpSimpleWorkflowExecutor"/
-->
 <UserSignUp
executor="org.wso2.carbon.apimgt.impl.workflow.UserSignUpWSWorkflowExecutor">
 <Property
name="serviceEndpoint">http://localhost:9765/services/UserSignupProcess/</Propert
y>
 <Property name="username">admin</Property>
 <Property name="password">admin</Property>
 <Property
name="callbackURL">https://localhost:8243/services/WorkflowCallbackService</Prope
rty>
 </UserSignUp>
</WorkFlowExtensions>

G o t o t h e A P I S t o r e W e b i n t e r f a c e a n d s i g n u p .
It invokes the signup process and creates a Human Task instance that holds the execution of the BPEL until
some action is performed on it.
Note the message that appears if the BPEL is invoked correctly, saying that the request is successfully
submitted.
Log in to the Admin Dashboard Web application ()https://<Server Host>:9443/admin-dashboard
and approve the user signup task. It resumes the BPEL process and completes the signup process.
Go back to the API Store and see that the user is now registered.

Whenever a user tries to sign up to the API Store, a request of the following format is sent to the workflow
endpoint:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:wor="http://workflow.subscription.apimgt.carbon.wso2.org">
 <soapenv:Header />
 <soapenv:Body>
 <wor:registerUser
xmlns:wor="http://workflow.registeruser.apimgt.carbon.wso2.org">
 <wor:userName>sampleuser</wor:userName>
 <wor:tenantDomain>foo.com</wor:tenantDomain>

<wor:workflowExternalRef>c0aad878-278c-4439-8d7e-712ee71d3f1c</wor:workflowExtern
alRef>

<wor:callbackURL>https://localhost:8243/services/WorkflowCallbackService</wor:cal
lBackURL>
 </wor:registerUser>
 </soapenv:Body>
</soapenv:Envelope>

Elements of the above configuration are described below:

Element Description

userName The user name requested by the user

tenantDomain Domain to which the user belongs to

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 260

6.

workflowExternalRef The unique reference against which a workflow is tracked. This needs to be sent
from the workflow engine to the API Manager at the time of workflow completion.

callBackURL The URL to which the workflow completion request is sent by the workflow engine,
at the time of workflow completion. This property is configured under the
"callBackURL" property in the api-manager.xml.

Invoking the API Manager from the BPEL Engine

Once the workflow configurations are finalized at the BPEL, the call-back URL of the APIM, which is originally
configured in the file and sent to the BPEL engine in the<APIM_HOME>/repository/conf/api-manager.xml
outflow will be called to progress the workflow. In APIM, the endpoint is available in both SOAP and REST variants
as follows:

Type URI

SOAP https://localhost:8243/services/WorkflowCallbackService

WSDL Location : http://localhost:8280/services/WorkflowCallbackService?wsdl

REST https://localhost:9443/store/site/blocks/workflow/workflow-listener/ajax/workflow-listener.jag

Both the endpoints are secured via basic authentication. Therefore, when you invoke either endpoint, you need to
include an authorization header with a base64-encoded value of the username and password with the request. E.g.,

 Authorization: Basic <base64 encoded >username:password .

The endpoint expects the following list of parameters:

Parameter Description Mandatory

workflowReference The unique identifier sent to the BPEL against which the workflow is
tracked in API Manager

YES

status The next status to which the workflow needs to be promoted to. YES

description Notes, that may need to be persisted against a particular workflow. NO

A sample curl request for invoking the REST endpoint is as follows:

curl -H "Authorization:Basic YWRtaW46YWRtaW4=" -X POST
http://localhost:9763/store/site/blocks/workflow/workflow-listener/ajax/workflow-liste
ner.jag -d
'workflowReference=b530be39-9174-43b3-acb3-2603a223b094&status=APPROVED&description=DE
SCRIPTION'

A sample SOAP request is given below:

https://localhost:8243/services/WorkflowCallbackService
http://localhost:8280/services/WorkflowCallbackService?wsdl
https://localhost:9443/store/site/blocks/workflow/workflow-listener/ajax/workflow-listener.jag
http://usernamepassword

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 261

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:cal="http://callback.workflow.apimgt.carbon.wso2.org">
 <soapenv:Header/>
 <soapenv:Body>
 <cal:resumeEvent>

<cal:workflowReference>b530be39-9174-43b3-acb3-2603a223b094</cal:workflowReference>
 <cal:status>APPROVED</cal:status>
 <cal:description>DESCRIPTION</cal:description>
 </cal:resumeEvent>
 </soapenv:Body>
</soapenv:Envelope>

Customizing a Workflow Extension

Each workflow executor in the WSO2 API Manager is inherited from the org.wso2.carbon.apimgt.impl.work
 abstract class, which has two abstract methods:flow.WorkflowExecutor

execute: contains the implementation of the workflow execution
complete: contains the implementation of the workflow completion
getWorkflowType: abstract method that returns the type of the workflow as a String
getWorkflowDetails(String workflowStatus): abstract method that returns a list of WorkflowDTO
objects. This method is not used at the moment and it returns null for the time being.

To customize the default workflow extension, you override the and methods with yourexecute() complete()
custom implementation. For example, the following class is a sample implementation of the Subscription Creation
workflow. It returns an email to an address provided through the configuration on each subscription creation:

package org.wso2.sample.workflow;

import java.util.List;
import java.util.Properties;
import javax.mail.Message;
import javax.mail.MessagingException;
import javax.mail.PasswordAuthentication;
import javax.mail.Session;
import javax.mail.Transport;
import javax.mail.internet.InternetAddress;
import javax.mail.internet.MimeMessage;
import org.wso2.carbon.apimgt.api.APIManagementException;
import org.wso2.carbon.apimgt.impl.APIConstants;
import org.wso2.carbon.apimgt.impl.dao.ApiMgtDAO;
import org.wso2.carbon.apimgt.impl.dto.SubscriptionWorkflowDTO;
import org.wso2.carbon.apimgt.impl.dto.WorkflowDTO;
import org.wso2.carbon.apimgt.impl.workflow.WorkflowConstants;
import org.wso2.carbon.apimgt.impl.workflow.WorkflowException;
import org.wso2.carbon.apimgt.impl.workflow.WorkflowExecutor;
import org.wso2.carbon.apimgt.impl.workflow.WorkflowStatus;

public class SubsCreationEmailSender extends WorkflowExecutor {
 private String adminEmail;
 private String emailAddress;
 private String emailPassword;

 @Override

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 262

 public List<WorkflowDTO> getWorkflowDetails(String arg0)
 throws WorkflowException {
 return null;
 }

 @Override
 public String getWorkflowType() {
 return WorkflowConstants.WF_TYPE_AM_SUBSCRIPTION_CREATION;
 }

 @Override
 public void execute(WorkflowDTO workflowDTO) throws WorkflowException{
 SubscriptionWorkflowDTO subsCreationWFDTO =
(SubscriptionWorkflowDTO)workflowDTO;

 Properties props = new Properties();
 props.put("mail.smtp.auth", "true");
 props.put("mail.smtp.starttls.enable", "true");
 props.put("mail.smtp.host", "smtp.gmail.com");
 props.put("mail.smtp.port", "587");

 Session session = Session.getInstance(props,
 new javax.mail.Authenticator() {
 protected PasswordAuthentication getPasswordAuthentication() {
 return new PasswordAuthentication(emailAddress,
 emailPassword);
 }
 });

 try {

 Message message = new MimeMessage(session);
 message.setFrom(new InternetAddress(emailAddress));
 message.setRecipients(Message.RecipientType.TO,
 InternetAddress.parse(adminEmail));
 message.setSubject("Subscription Creation");
 message.setText("Subscription created for API " +
subsCreationWFDTO.getApiName() +
 " using Application " +
subsCreationWFDTO.getApplicationName() +
 " by user " + subsCreationWFDTO.getSubscriber());

 Transport.send(message);
 System.out.println("Sent email to notify subscription creation");
 //Call the execute method of the parent class. This will create a
reference for the
 //workflow execution in the database.
 super.execute(workflowDTO);
 //Set the workflow Status to APPROVED and Immediately complete the
workflow since we
 //are not waiting for an external party to complete this.
 workflowDTO.setStatus(WorkflowStatus.APPROVED);
 complete(workflowDTO);

 } catch (MessagingException e) {
 e.printStackTrace();
 throw new WorkflowException(e.getMessage());
 } catch (Exception e){
 e.printStackTrace();

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 263

 throw new WorkflowException(e.getMessage());
 }
 }

 @Override
 public void complete(WorkflowDTO workflowDTO) throws WorkflowException{
 workflowDTO.setUpdatedTime(System.currentTimeMillis());
 super.complete(workflowDTO);
 ApiMgtDAO apiMgtDAO = new ApiMgtDAO();
 try {
 apiMgtDAO.updateSubscriptionStatus(
 Integer.parseInt(workflowDTO.getWorkflowReference()),
 APIConstants.SubscriptionStatus.UNBLOCKED);
 } catch (APIManagementException e) {
 throw new WorkflowException(
 "Could not complete subscription creation workflow", e);
 }
 }
 public String getAdminEmail() {
 return adminEmail;
 }
 public void setAdminEmail(String adminEmail) {
 this.adminEmail = adminEmail;
 }
 public String getEmailAddress() {
 return emailAddress;
 }
 public void setEmailAddress(String emailAddress) {
 this.emailAddress = emailAddress;
 }
 public String getEmailPassword() {
 return emailPassword;
 }
 public void setEmailPassword(String emailPassword) {

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 264

1.

2.
3.

4.

 this.emailPassword = emailPassword;
 }
}

Note the following regarding the above sample:

The method takes in a object (class) that containsexecute() WorkflowDTO SubscriptionWorkflowDTO
information about the subscription that is being created.
The , and are private String variables with public anadminEmail emailAddress emailPassword getter
d methods. The values for these variables are populated through the server configuration.setter
After sending the email, a call is made to the super class's method in order to create a referenceexecute()
entry in the database. This entry is generally used to look up the workflow when the workflow happens
asynchronously (via a human approval).
The complete() method contains the code to mark the subscription active. Until then, the subscription is in
ON_HOLD state.
In this sample, the method is called immediately to make the subscription active instantly. If thecomplete()
completion of your workflow happens asynchronously, you must not call the method from the complete() e

 method.xecute()
The is thrown to roll back the subscription in case of a failure.WorkflowException

After the implementation of the class is done, follow the steps below to implement the new workflow extension in the
API Manager:

Compile the class and export it as a JAR file. Make sure you have the following JARs in the classpath before
compilation.

<AM_HOME>/repository/components/plugins/org.wso2.carbon.apimgt.impl_1.2.1.j
ar
<AM_HOME>/repository/components/plugins/org.wso2.carbon.apimgt.api_1.2.1.ja
r
javax.mail.jar: see to download the JARhttps://java.net/projects/javamail/pages/Home

After exporting the JAR, copy it to .<AM_HOME>/repository/components/lib
Log in to APIM management console () https://<Server Host>:9443/carbon and select Browse unde

 r R e s o u r c e s .

Go to resource, d/_system/governance/apimgt/applicationdata/workflow-extensions.xml is

. able the Simple Workflow Executor and enable WS Workflow Executor Also specify the service endpoint
where the workflow engine is hosted and the credentials required to access the said service via basic
authentication (i.e., username/password based authentication). For example:

https://java.net/projects/javamail/pages/Home

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 265

4.

<WorkFlowExtensions>
 <!--SubscriptionCreation
executor="org.wso2.carbon.apimgt.impl.workflow.SubscriptionCreationSimpleWorkflow
Executor"/-->
 <SubscriptionCreation
executor="org.wso2.sample.workflow.SubsCreationEmailSender">
 <Property name="adminEmail">to_user@email.com</Property>
 <Property name="emailAddress">from _user@email.com</Property>
 <Property name="emailPassword">from_user_password</Property>
 </SubscriptionCreation>
</WorkFlowExtensions>

Note that the , and properties will be assigned to theadminEmail emailAddress emailPassword
appropriate variables defined in the class through the public methods of those variables.setter

Configuring Workflows for Tenants

Using the API Manager, you can configure custom workflows that get invoked at the event of a user signup,
application creation, registration, subscription etc. You do these configurations in the api-manager.xml as described
in the previous sections.

However, in a multi-tenant API Manager setup, not all tenants have access to the file system and not all tenants
want to use the same workflow that the super admin has configured in the api-manager.xml file. For example,
different departments in an enterprise can act as different tenants using the same API Manager instance and they
can have different workflows. Also, an enterprise can combine WSO2 API Manager and WSO2 Business Process
Server (BPS) to provide API Management As a Service to the clients. In this case, each client is a separate
enterprise represented by a separate tenant. In both cases, the authority to approve business operations
(workflows) resides within a tenant's space.

To allow different tenants to define their own custom workflows without editing configuration files, the API Manager
provides configuration in tenant-specific locations in the registry, which you can access through the UI.

The topics below explain how to deploy a BPEL/human task using WSO2 BPS and how to point them to services
deployed in the tenant spaces in the API Manager.

Deploying a BPEL and a HumanTask for a tenant

Only the users registered in the BPS can deploy BPELs and human tasks in it. Registration adds you to the user
store in the BPS. In this guide, the API Manager and BPS use the same user store and all the users present in the
BPS are visible to the API Manager as well. This is depicted by the diagram below:

If you use the same or similar sample to return an email, you must remove the org.jaggeryjs.hostobj
 file from ects.email_0.9.0.ALPHA4_wso2v1.jar <AM_HOME>/repository/components/plugins

directory. Removing it results in a thrown at server startup, but it does notClassNotFoundException
affect the server's functionality.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 266

1.

2.

3.

: API Manager and BPS share the same user and permission storeFigure

Follow the steps below to deploy a BPEL and a human task for a tenant in the API Manager:

Sharing the user/permission stores with the BPS and API Manager

Create a database for the shared user and permission store as follows:

mysql> create database workflow_ustore;
Query OK, 1 row affected (0.00 sec)

Run the script (the script may vary depending on your database<APIM_HOME>/dbscripts/mysql.sql
type) on the database to create the required tables.
Open the and create a<APIM_HOME>/repository/conf/datasources/master-datasources.xml
datasource pointing to the newly created database. For example,

If you are using WSO2 BPS , please copy the 3.2.0 /repository/components/patche<APIM_HOME>
s/patch0009 folder to the /repository/components/patches<BPS_HOME> folder and restart the
BPS server for the patch to be applied. This patch has a fix to a bug that causes the workflow configurations
to fail in multi-tenant environments.

This patch is built into the BPS version 3.5.0 onwards.

Make sure you copy the database driver (in this case, mysql driver) to the /repository/components/lib
folder before starting each server.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 267

3.

4.
5.

6.

1.

<datasource>
 <name>USTORE</name>
 <description>The datasource used for API Manager database</description>
 <jndiConfig>
 <name>jdbc/ustore</name>
 </jndiConfig>
 <definition type="RDBMS">
 <configuration>

<url>jdbc:mysql://127.0.0.1:3306/workflow_ustore?autoReconnect=true&relaxAuto
Commit=true</url>
 <username>root</username>
 <password>root</password>
 <driverClassName>com.mysql.jdbc.Driver</driverClassName>
 <maxActive>50</maxActive>
 <maxWait>60000</maxWait>
 <testOnBorrow>true</testOnBorrow>
 <validationQuery>SELECT 1</validationQuery>
 <validationInterval>30000</validationInterval>
 </configuration>
 </definition>
</datasource>

Repeat step 2 in the BPS as well.
Point the datasource name in to the new datasource.<APIM_HOME>/repository/conf/user-mgt.xml
(note that the user store is configured using the element).<UserStoreManager>

In the following example, the same JDBC user store (that is shared by both the API Manager and the BPS) is
used as the permission store as well:

<Configuration>
 <AddAdmin>true</AddAdmin>
 <AdminRole>admin</AdminRole>
 <AdminUser>
 <UserName>admin</UserName>
 <Password>admin</Password>
 </AdminUser>
 <EveryOneRoleName>everyone</EveryOneRoleName> <!-- By default users in this
role sees the registry root -->
 <Property name="dataSource">jdbc/ustore</Property>
</Configuration>

Repeat step 4 in the BPS as well.

Sharing the data in the registry with the BPS and API Manager

To deploy BPELs in an API Manager tenant space, the tenant space should be accessible by both the BPS and API
Manager, and certain tenant-specific data such as key stores needs to be shared with both products. Follow the
steps below to create a registry mount to share the data stored in the registry:

If you already have a user store such as the lDAP in your environment, you can point to it from the us
 instead of the user store that we created in step1. file,er-mgt.xml

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 268

1.

2.

3.

4.

Create a separate database for the registry:

mysql> create database workflow_regdb;
Query OK, 1 row affected (0.00 sec)

Run the script (the script may vary depending on your database<APIM_HOME>/dbscripts/mysql.sql
type) on the database to create the required tables.
Create a new datasource in <APIM_HOME>/repository/conf/datasources/master-datasources.

 as done before:xml

<datasource>
 <name>REG_DB</name>
 <description>The datasource used for API Manager database</description>
 <jndiConfig>
 <name>jdbc/regdb</name>
 </jndiConfig>
 <definition type="RDBMS">
 <configuration>

<url>jdbc:mysql://127.0.0.1:3306/workflow_regdb?autoReconnect=true&relaxAutoC
ommit=true</url>
 <username>root</username>
 <password>root</password>
 <driverClassName>com.mysql.jdbc.Driver</driverClassName>
 <maxActive>50</maxActive>
 <maxWait>60000</maxWait>
 <testOnBorrow>true</testOnBorrow>
 <validationQuery>SELECT 1</validationQuery>
 <validationInterval>30000</validationInterval>
 </configuration>
 </definition>
</datasource>

Add the following entries to :<APIM_HOME>/repository/conf/registry.xml

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 269

4.

5.

1.

2.

3.

<dbConfig name="sharedregistry">
 <dataSource>jdbc/regdb</dataSource>
 </dbConfig>

 <remoteInstance url="https://localhost:9443/registry">
 <id>mount</id>
 <dbConfig>sharedregistry</dbConfig>
 <readOnly>false</readOnly>
 <enableCache>true</enableCache>
 <registryRoot>/</registryRoot>
 </remoteInstance>
 <!-- This defines the mount configuration to be used with the remote instance
and the target path for the mount -->
 <mount path="/_system/config" overwrite="true">
 <instanceId>mount</instanceId>
 <targetPath>/_system/nodes</targetPath>
 </mount>
 <mount path="/_system/governance" overwrite="true">
 <instanceId>mount</instanceId>
 <targetPath>/_system/governance</targetPath>
 </mount>

Repeat the above three steps in the BPS as well.

Creating a BPEL

In this section, you create a BPEL that has service endpoints pointing to services hosted in the tenant's space. This
example uses the workflow.Application Creation

Set a port offset of 2 to the BPS using the file. This<BPS_HOME>/repository/conf/carbon.xml
prevents any port conflicts when you start more than one WSO2 products on the same server.
Log in to the API Manager's management console () and create ahttps://localhost:9443/carbon
t enan t us ing the menu .Conf igure -> Mul t i tenancy

https://docs.wso2.com/api-manager/Workflow%3A+Application+Creation
https://localhost:9443/carbon

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 270

3.

4.
5.

6.

7.

8.

9.

Create a copy of the BPEL located in <APIM_HOME>/business-processes/application-creation/
.BPEL

Extract the contents of the new BPEL archive.
Copy and from ApplicationService.epr ApplicationCallbackService.epr <APIM_HOME>/busi

 folder to the folder extracted before. Then, rename the two files as ness-processes/epr ApplicationSe
 and respectively.rvice-Tenant.epr ApplicationCallbackService-Tenant.epr

Open and change the to ApplicationService-Tenant.epr wsa:Address http://localhost:9765
./services/t/<tenant domain>/ApplicationService

Point the file of the extracted folder to the new .epr files provided in the BPEL archive. Fordeploy.xml
example,

<invoke partnerLink="AAPL">
 <service name="applications:ApplicationService" port="ApplicationPort">
 <endpoint xmlns="http://wso2.org/bps/bpel/endpoint/config"
endpointReference="ApplicationService-Tenant.epr"></endpoint>
 </service>
</invoke>

<invoke partnerLink="CBPL">
 <service
name="callback.workflow.apimgt.carbon.wso2.org:WorkflowCallbackService"
port="WorkflowCallbackServiceHttpsSoap11Endpoint">
 <endpoint xmlns="http://wso2.org/bps/bpel/endpoint/config"
endpointReference="ApplicationCallbackService-Tenant.epr"></endpoint>
 </service>
</invoke>

Zip the content and create a BPEL archive in the following format:

ApplicationApprovalWorkFlowProcess_1.0.0-Tenant.zip
 |_ApplicationApprovalWorkFlowProcess.bpel
 |_ApplicationApprovalWorkFlowProcessArtifacts.wsdl
 |_ApplicationCallbackService-Tenant.epr
 |_ApplicationService-Tenant.epr
 |_ApplicationsApprovalTaskService.wsdl
 |_SecuredService-service.xml
 |_WorkflowCallbackService.wsdl
 |_deploy.xml

Log into the BPS as the tenant admin and upload the BPEL.

Creating a human task

Similar to creating a BPEL, create a HumaTask that has service endpoints pointing to services hosted in the tenant's
space.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 271

1.

2.

3.
4.
5.

6.

Create a copy of the HumanTask archive in <APIM_HOME>/business-processes/application-creat
 and extract its contents.ion/HumanTask

Edit the SOAP service port-bindings in . For example,ApplicationApprovalTaskService.wsdl

<wsdl:service name="ApplicationService">
 <wsdl:port name="ApplicationPort" binding="tns:ApplicationSoapBinding">
 <soap:address location="http://localhost:9765/services/t/<tenant
domain>/ApplicationService" />
 </wsdl:port>
 </wsdl:service>
 <wsdl:service name="ApplicationReminderService">
 <wsdl:port name="ApplicationReminderPort"
binding="tns:ApplicationSoapBindingReminder">
 <soap:address location="http://localhost:9765/services/t/<tenant
domain>/ApplicationReminderService" />
 </wsdl:port>
 </wsdl:service>
 <wsdl:service name="ApplicationServiceCB">
 <wsdl:port name="ApplicationPortCB" binding="tns:ApplicationSoapBindingCB">
 <soap:address location="http://localhost:9765/services/t/<tenant
domain>/ApplicationServiceCB" />
 </wsdl:port>
 </wsdl:service>

Create the HumanTask archive by zipping all the extracted files.
Log into the BPS as the tenant admin and upload the HumanTask.
Log into the API Manager's management console as the tenant admin and select menResources > Browse
u.
Go to the in the/_system/governance/apimgt/applicationdata/workflow-extensions.xml
registry and change the as a (e.g., service endpoint tenant-aware service URL http://localhost:976

). Also set the 5/services/t/<tenant_domain>/ApplicationApprovalWorkFlowProcess credenti

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 272

6.

 as the of the file. Forals tenant admin's credentials ApplicationCreationWSWorkflowExecutor
e x a m p l e ,

Testing the workflow

You have now completed configuring the Application Creation workflow for a tenant. Whenever a tenant user logs in
to the tenant store and create an application, the workflow will be invoked. You log in to the Admin Dashboard Web
application () as the tenant admin and browse https://<Server Host>:9443/admin-dashboard Application

 menu to see all approval tasks have been created for newly created applications. Creation

Configuring Workflows in a Cluster

If you are working in a clustered API Manager setup with the API Store, Publisher, Gateway and Key Manager in
separate servers, do the workflow configurations that are discussed in the previous topics in the . InAPI Store node
addition, do the following configurations.

In this guide, you access the Admin Dashboard () Web applicationhttps://<Server Host>:9443/admin-dashboard
using the same node as the API Publisher. This is recommended because workflow management is an
administrative task and is meant to reside within a private network as the Publisher. Typically, the Admin

Be sure to disable the and enable the SimpleWorkflowExecutor ApplicationCreationWSWor
kflowExecutor.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 273

1.

2.

3.

4.

5.

6.

Dashboard from the same user store as the API Manager. Therefore, you can use the Admin Dashboard residing in
the Publisher node instead of having it separately. This eliminates the need for a dedicated workflow management
node. You need a dedicated node if the Admin Dashboard users reside in a separate user store.

If you want to change the user , open the roles that can access the Admin Dashboard <APIM_HOME>/repos
 file that is initory/deployment/server/jaggeryapps/admin-dashboard/site/conf/site.json

the node from where you access the Admin Dashboard (the API Publisher node in this example) and change
its parameter. You can add multiple user roles as a comma-separated list.Allowed Roles
By default, workflow related configuration files have the port of the Business Process Server with an offset of
2. If you set up the BPS with a different port offset, change the workflow server URLs in the site.json file
accordingly.
Point the sub element of the <endpoint> element to the API Store node in the <Address> <APIM_HOME>/r
epository/deployment/server/synapse-configs/default/proxy-services/WorkflowCallb

 file of the API Store node.ackService.xml

<endpoint>
 <address
uri="https://localhost:9443/store/site/blocks/workflow/workflow-listener/ajax/wor
kflow-listener.jag" format="rest"/>
</endpoint>

Add the IP address and the port of the API Store to the element of the .epr file of the workflow<Address>
that you configure. You can find the .epr file by the name of the workflow in the <APIM_HOME>/business-p

 folder.rocesses/epr
Go to the folder and unzip the file that<APIM_HOME>/business-processes/<workflow name>/BPEL
is there by the name of the workflow. For example, <APIM_HOME>/business-processes/user-signup

./BPEL/ UserSignupApprovalProcess_1.0.0.zip
Go inside the unzipped folder and do the following:

Action Example

Open the
ApprovalTask
WSDL file and
point the address
elements of the
server where the
BPEL runs.

In the file:<APIM_HOME>/business-processes/user-signup/BPEL/UserSignupApprovalProcess_1.0.0/ UserApprovalTask.wsdl

<wsdl:service name="UserApprovalService">
 <wsdl:port name="UserApprovalPort" binding="tns:UserApprovalBinding">
 <soap:address location="http://localhost:9783/services/UserApprovalService" />
 </wsdl:port>
 </wsdl:service>
 <wsdl:service name="UserApprovalServiceCB">
 <wsdl:port name="UserApprovalPortCB" binding="tns:UserApprovalBindingCB">
 <soap:address location="http://localhost:9783/services/UserApprovalServiceCB" />
 </wsdl:port>
 </wsdl:service>
</wsdl:service>

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 274

6.

7.

8.

Open the
ProcessArtifacts
WSDL file and
point the address
elements to the API
Store node.

In the <APIM_HOME>/business-processes/user-signup/BPEL/UserSignupApprovalProcess_1.0.0/UserSignupProcessArtifact
file: s.wsdl

<service name="UserSignupProcess">
 <port binding="tns:UserSignupProcessBinding" name="UserSignupProcessPort">
 <soap:address location="http://apim.180.erandi.store.com:80/UserSignupProcess"/>
 </port>
</service>
<service name="UserSignupProcessCallback">
 <port binding="tns:UserSignupProcessCallbackBinding" name="UserSignupProcessPortCallbackPort">
 <soap:address location="http://apim.180.erandi.store.com:80/UserSignupProcessCallback"/>
 </port>
</service>

Open
the CallbackService
WSDL file and
point the address
elements to the
Business Process
Server node.

In the <APIM_HOME>/business-processes/user-signup/BPEL/UserSignupApprovalProcess_1.0.0/WorkflowCallbackService.w
file: sdl

<wsdl:service name="WorkflowCallbackService">
 <wsdl:port name="WorkflowCallbackServiceHttpsSoap11Endpoint"
binding="ns:WorkflowCallbackServiceSoap11Binding">
 <soap:address
location="https://10.100.5.63:8243/services/WorkflowCallbackService.WorkflowCallbackServiceHttpsSoap11Endpoint"/>
 </wsdl:port>
 <wsdl:port name="WorkflowCallbackServiceHttpSoap11Endpoint"
binding="ns:WorkflowCallbackServiceSoap11Binding">
 <soap:address
location="http://10.100.5.63:8280/services/WorkflowCallbackService.WorkflowCallbackServiceHttpSoap11Endpoint"/>
 </wsdl:port>
 <wsdl:port name="WorkflowCallbackServiceHttpsSoap12Endpoint"
binding="ns:WorkflowCallbackServiceSoap12Binding">
 <soap12:address
location="https://10.100.5.63:8243/services/WorkflowCallbackService.WorkflowCallbackServiceHttpsSoap12Endpoint"/>
 </wsdl:port>
 <wsdl:port name="WorkflowCallbackServiceHttpSoap12Endpoint"
binding="ns:WorkflowCallbackServiceSoap12Binding">
 <soap12:address
location="http://10.100.5.63:8280/services/WorkflowCallbackService.WorkflowCallbackServiceHttpSoap12Endpoint"/>
 </wsdl:port>
 <wsdl:port name="WorkflowCallbackServiceHttpsEndpoint" binding="ns:WorkflowCallbackServiceHttpBinding">
 <http:address
location="https://10.100.5.63:8243/services/WorkflowCallbackService.WorkflowCallbackServiceHttpsEndpoint"/>
 </wsdl:port>
 <wsdl:port name="WorkflowCallbackServiceHttpEndpoint" binding="ns:WorkflowCallbackServiceHttpBinding">
 <http:address
location="http://10.100.5.63:8280/services/WorkflowCallbackService.WorkflowCallbackServiceHttpEndpoint"/>
 </wsdl:port>
</wsdl:service>

Go to the folder and unzip the<APIM_HOME>/business-processes/<workflow name>/HumanTask
file that is there by the name of the workflow. For example, <APIM_HOME>/business-processes/user-s

.ignup/HumanTask/ UserApprovalTask-1.0.0.zip
Go inside the unzipped folder and do the following:

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 275

8.

1.
2.

1.
2.

Action Example

If you
changed the
default admin
user, open
the
ApprovalTask
HT file and
apply the
changes
there.

Change the admin instances in <APIM_HOME>/business-processes/user-signup/HumanTask
file./UserApprovalTask-1.0.0/ UserApprovalTask.ht

Open the
ApprovalTask
WSDL file
and point the
two address
elements to
the Business
Process
Server node.

In the <APIM_HOME>/business-processes/user-signup/HumanTask/UserApprovalTask-1
file:.0.0/ UserApprovalTask.wsdl

<wsdl:service name="UserApprovalService">
 <wsdl:port name="UserApprovalPort"
binding="tns:UserApprovalBinding">
 <soap:address
location="http://localhost:9783/services/UserApprovalService" />
 </wsdl:port>
</wsdl:service>
<wsdl:service name="UserApprovalServiceCB">
 <wsdl:port name="UserApprovalPortCB"
binding="tns:UserApprovalBindingCB">
 <soap:address
location="http://localhost:9783/services/UserApprovalServiceCB" />
 </wsdl:port>
</wsdl:service>

Changing the Default User Role in Workflows

The default user role in the workflow configuration files is the admin role. If you change this to something else, you
need to change the following files:

Change the credentials in the .epr files of the <BPS_HOME>/repository/conf/epr folder.
Change the credentials in work-flow configurations in API Manager Registry
(_system/governance/apimgt/applicationdata/workflow-extensions.xml)

3. Point the same database which has the permissions that is used by API Manager to BPS
4 . S h a r e L D A P s i f e x i s t s
5. The credential details in apimanager.xml should be changed

If the default role is changed then the .ht file of the relevant human task should be changed accordingly.
If the default role is changed then the site.json (allowedRoles) of
(<Product_Home>/repository/deployment/server/jaggeryapps/admin-dashboard/site/conf) should be changed.

The current documentation does not provide any information regarding the above details. It would be a help to the
user if the are included in the documentation.

Adding new Throttling Tiers

API Manager admins can add new throttling tiers and define extra properties to throttling tiers using the
management console as discussed below. For a description of throttling tiers, see .API-level throttling

Log in to the API Manager's Management Console and select under menu.Browse Resources
Select the file: ./_system/governance/apimgt/applicationdata/tiers.xml

https://docs.wso2.com/display/AM180/Create+and+Publish+an+API#CreateandPublishanAPI-tier

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 276

2.

3.
4.

In the panel, Contents click link Edit as text and the throttling policy opens.
You can add a new policy configuration by editing the XML code. For example, we have added a new tier
called by including the following XML code block soon after the Platinum <throttle:MediatorThrottl

 e l e m e n t .e A s s e r t i o n >

Tier DisplayName : You can add this attribute to each throttle ID of tiers.xml file in order tooptional
decouple the throttle policy name defined in tiers.xml from the tier name showing in APIPublisher/Store UIs.
That is, a user can add a different throttle display name to appear in APIPublisher/Store UIs without changing
the throttle ID policy name. The configuration below has a displayName as for the throttle value platino pl

. This value is displayed in APIPublisher/Store apps.atinum

 In the configuration below, there's a commented out XML section starting from the XML tag Tier Attributes :
. You can use it to define additional attributes related to each throttling tier<throttle:Attributes>

definition. For example, if the throttling tier has attributes called and Platinum PaymentPlan Availabili
, first uncomment the section and then define the new attributes as follows:ty <throttle:Attributes>

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 277

4.

5.

<wsp:Policy>
 <throttle:ID throttle:type="ROLE"
throttle:displayName="platino">Platinum</throttle:ID>
 <wsp:Policy>
 <throttle:Control>
 <wsp:Policy>
 <throttle:MaximumCount>50</throttle:MaximumCount>
 <throttle:UnitTime>60000</throttle:UnitTime>
 <!--It's possible to define tier level attributes as below for
each tier level.For eg:Payment Plan for a tier-->
 <wsp:Policy>
 <throttle:Attributes>
 <!--throttle:Attribute1>xxxx</throttle:Attribute1-->
 <!--throttle:Attribute2>xxxx</throttle:Attribute2-->
 <throttle:PaymentPlan>monthly</throttle:PaymentPlan>
 <throttle:Availability>FullTime</throttle:Availability>
 </throttle:Attributes>
 </wsp:Policy>
 </wsp:Policy>
 </throttle:Control>
 </wsp:Policy>
</wsp:Policy>

After the edits, click . Your new throttling policy (Platinum) is now successfully saved in theSave Content
 Repository used by WSO2 API Manager. You can view this new throttle tier available for selection when

creating a new API through the API Publisher.

Adding a Reverse Proxy Server

A reverse proxy server retrieves information from a server and sends it to a client as though the information
originated from the sever rather than the reverse proxy server. You can use a reverse proxy server to block access
to selected applications in a server. For example, this is useful when you want to expose the token API in such a
way that the clients can authenticate against OAuth2 using the same port that their API's are on.

The API Manager comes with two Web applications as the Publisher and Store. You can route the requests that
come to them through a proxy server by editing the <AM_HOME>/repository/deployment/server/jaggerya

 file. For example, to use a reverse proxy server for the APIpps/store(/publisher)/site/conf/site.json
Store, edit the <AM_HOME>/repository/deployment/server/jaggeryapps/store/site/conf/site.js

 file with the context and request URL as shown below.on

"context" : "/public/store",
"request_url":"https://localhost/public/store/",

If you set up the reverse proxy server correctly, when you access the URL ,https://localhost/public/store
you will be directed to the API Store.

To do the same for the API Publisher, edit the <AM_HOME>/repository/deployment/server/jaggeryapps/
 file.publisher/site/conf/site.json

Also note that if you want to change all the default API Manager ports, you do so by editing the <APIM_HOME>/rep
ository/conf/tomcat/catalina-server.xml file.

Adding a new API Store Theme

A consists of UI elements such as logos, images, copyrights messages, landing page text, backgroundtheme
colors etc. WSO2 API Store comes with a default theme.

https://localhost/concar-plat/management/api-mgr/store/

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 278

1.

2.

3.

4.

The folder structure of the API Store themes

The default theme of the API Store is called . You find it inside the Fancy <APIM_HOME>/repository/deployme

 folder. If you do not have access to the file system, nt/server/jaggeryapps/store/site/themes/fancy do
. wnload the default theme from here

The easiest way to create a new theme is to copy the files of an existing theme to a folder by the name of your new
theme, and do the modifications you want to the files inside it. All themes have the same folder structure as shown
below:

You can add a new theme as a main theme or a sub theme.

A main theme is saved inside the <APIM_HOME>/repository/deployment/server/jaggeryapps/st
 folderore/site/themes

 is saved inside the A sub theme <APIM_HOME>/repository/deployment/server/jaggeryapps/st
 folder. ore/site/themes/<folder of the main theme>/subthemes

Because a sub theme is saved inside a main theme, it needs to contain only the files that are different from the main
theme. Any file you add inside the sub theme will override the corresponding files in the main theme. The rest of the
files will be inherited from the main theme.

Let's see how to create a new theme and set it to the API Store:
Writing a sub theme of the main theme
Setting the new theme as the default theme
Adding the new theme to the Themes menu

Writing a sub theme of the main theme

Because a main theme already has most of the UIs and the syntax and logic of Jaggery code defined, in a typical
scenario, you do not have to implement a theme from scratch. Rather, you just add in your edits as a sub theme of
the existing main theme as given below:

Download the default main theme , unzip it and rename the folder according to the name of yourfrom here
new theme (e.g., ancient). Let's call this folder the .<THEME_HOME>
To change the logo of the API Store, replace the logo.png file inside the <THEME_HOME>/images folder
with (or anything else of your choice.)this logo
To change the copyrights note in the footer, open the <THEME_HOME>/templates/page/base/templat

 file using a text editor, search for the word "Copyright" and change the text. For example, let's add e.jag
our company name as "copyright", "© Copyright 2011 – 2014 ."My Company
Open the file using a text editor and add the following CSS <THEME_HOME>/css/styles-layout.css
code to the end of the file. Note the code comments to get an idea what each line of code does.

https://docs.wso2.com/download/attachments/43995740/fancy.zip?version=2&modificationDate=1423635806000&api=v2
https://docs.wso2.com/download/attachments/43995740/fancy.zip?version=2&modificationDate=1423635806000&api=v2
https://docs.wso2.com/download/attachments/43995740/fancy.zip?version=2&modificationDate=1423635806000&api=v2
https://docs.wso2.com/download/attachments/43995740/logo.png?version=1&modificationDate=1421835511000&api=v2

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 279

4.

5.

1.

2.

/* Change the color of the header */
.header{
 background:#002EB8;
}
/* Change the font of the menus, headings, labels etc. to Verdana. You give
several fonts here to ensure maximum compatibility, if in case one font fails in
a given browser/OS. Fonts will be applied in the order you list them. */
body,textarea,pre,.navbar-search .search-query{
 font-family: Verdana, Arial, Helvetica, monospace, san-serif;
}
label, input, button, select, textarea{
 font-family: Verdana, Arial, Helvetica, monospace, san-serif;
}
h1,h2,h3,h4,h5{
 font-family: Verdana, Arial, Helvetica, monospace, san-serif;
}
/* To change the background color of the body */
body{
 background:#D6DEF6;
}
/* To change the color of the buttons. Note that changing only the background
color will not have a visual impact if you leave the gradients as they are */
.btn-primary {
 background-color: #800004;
 background-image: linear-gradient(to bottom, #cc0022, #cc0044);
}
/* To change the colour of the menus, navigation elements when they are clicked
*/
.menu-content .navbar .nav > .active > a, .navbar .nav > .active > a:hover,
.navbar .nav > .active > a:focus {
 background:#F0F3FC;
}

As you plan to upload this as a sub theme of the default main theme, delete all the files in your <THEME_HOM
 folder except the ones that you edited. The rest of the files will be automatically applied from the mainE>

theme.

Setting the new theme as the default theme

You can set your new theme as the default theme in two ways:

Saving directly in the file system
Uploading through the Admin Dashboard

Saving directly in the file system

If you have access to the file system, do the following:

Save the folder inside the <THEME_HOME> <APIM_HOME>/repository/deployment/server/jaggery
 folder. This will make your new theme a sub theme ofapps/store/site/themes/fancy/subthemes

fancy.
Open the <APIM_HOME>/repository/deployment/server/jaggeryapps/store/site/conf/site

 file and add the following code to it. It specifies the base theme as , which is overridden by the.json fancy
sub theme .ancient

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 280

2.

3.

1.

2.

3.

4.

"theme" : {
 "base" : "fancy",
 "subtheme" : "ancient"
}

Open the API Store and note the new theme applied to it.

Uploading through the Admin Dashboard

If you do not have access to the file system, you can upload the theme through the Admin Dashboard Web
application as shown below:

Go inside the folder, select all the folders inside it and right click to archive all the selected<THEME_HOME>
files and folders together. Then rename the archive files to ancient.zip.
Log in to WSO2 Admin Dashboard Web application using the URL https://<Server

. Host>:9443/admin-dashboard
For example, if you are a WSO2 Cloud user and want to upload a new theme, log in to the URL api.cloud.wso

 with the user name as email@domain with the @ in the email replaced by a2.com/admin-dashboard
dot (e.g., john.gmail.com@MyCompany).
Click the menu and upload your zip file.Upload Tenant Theme

Open the API Store and note the new theme applied to it.

http://api.cloud.wso2.com/admin-dashboard
http://api.cloud.wso2.com/admin-dashboard

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 281

4.

1.

2.

Adding the new theme to the Themes menu

Once you are done modifying the new theme, add it to the menu in the API Store along with a thumbnailThemes
image as follows:

Open the <APIM_HOME>/repository/deployment/server/jaggeryapps/store/site/themes/fa
file and find the HTML table that defines the themency/templates/user/login/template.jag

thumbnails.
Add a new row under the <table> element with the following code. It adds as thethumb-ancient.png
thumbnail image of our theme. Be sure save the image in the folder....fancy/images

<td>
 <div class="thumbnail <% if(jagg.getUserTheme().base == "fancy" &&
jagg.getUserTheme().subtheme == "ancient") { %>currentTheme<% } %>">
 <a data-theme="fancy" data-subtheme="ancient" class="badge themeLabel"
onclick="applyTheme(this)">
 <img
src="<%=jagg.getAbsoluteUrl(jagg.getThemeFile("images/thumb-ancient.png"))%>" />

<div class="themeName">Ancient</div>

 </div>
</td>

Transforming API Message Payload

When a request comes to the API Manager, it sends the response in the same format of the request. For example,
the API Manager handles JSON to JSON transformations out of the box. If the backend does not accept messages
of the same content type of the request message, it must be transformed to a different format. The API Gateway of
the API Manager handles these transformations using message builders and formatters.

When a message comes in to the API Gateway, the receiving transport selects a based on themessage builder
message's content type. It uses that builder to process the message's raw payload data and convert it into JSON.
Conversely, when sending a message out from the Gateway, a is used to build the outgoingmessage formatter
stream from the message. As with message builders, the message formatter is selected based on the message's
content type.

JSON message builders and formatters
XML representation of JSON payloads
Converting a payload between XML and JSON

Note that if you edit an API's synapse configuration as mentioned in this guide and then go back to the API
Publisher and save the API, your changes will be overwritten. As a result, we do not recommend changing
the API's synapse configuration directly. The recommended way to extend an API's mediation flow is by
engaging / sequences.In Out

https://docs.wso2.com/download/attachments/43995740/thumb-ancient.png?version=1&modificationDate=1421831335000&api=v2

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 282

Also see the following sections in the WSO2 ESB documentation. WSO2 ESB is used to implement the API
Gateway through which API messages are transformed:

Accessing content from JSON payloads
Logging JSON payloads
Constructing and transforming JSON payloads
Troubleshooting, debugging, and logging

JSON message builders and formatters

There are two types of message builders and formatters for JSON. The default builder and formatter keep the JSON
representation intact without converting it to XML. You can access the payload content using the JSON Path or
XPath and convert the payload to XML at any point in the mediation flow.

org.apache.synapse.commons.json.JsonStreamBuilder
org.apache.synapse.commons.json.JsonStreamFormatter

If you want to convert the JSON representation to XML before the mediation flow begins, use the following builder
and formatter instead. Note that some data loss can occur during the JSON -> XML -> JSON conversion process.

org.apache.synapse.commons.json.JsonBuilder
org.apache.synapse.commons.json.JsonFormatter

The builders and formatters are configured respectively in the and sectimessageBuilders messageFormatters
ons of the Axis2 configuration files located in the directory. Both<PRODUCT_HOME>/repository/conf/axis2
types of JSON builders use as the underlying JSON processor.StAXON

The following builders and formatters are also included for compatibility with older API Manager versions:

org.apache.axis2.json.JSONBuilder/JSONMessageFormatter
org.apache.axis2.json.JSONStreamBuilder/JSONStreamFormatter
org.apache.axis2.json.JSONBadgerfishOMBuilder/JSONBadgerfishMessageFormatter

If you want to handle JSON payloads that are sent using a media type other than , you mustapplication/json
register the JSON builder and formatter for that media type in the following two files at minimum (for best results,
register them in all Axis2 configuration files found in the directory):<PRODUCT_HOME>/repository/conf/axis2

< _HOME>/repository/conf/axis2/axis2.xmlPRODUCT
< _HOME>/repository/conf/axis2/axis2_blocking_client.xmlPRODUCT

For example, if the media type is , register the message builder and formatter as follows:text/javascript

<messageBuilder contentType="text/javascript"
 class="org.apache.synapse.commons.json.JsonStreamBuilder"/>

<messageFormatter contentType="text/javascript"
 class="org.apache.synapse.commons.json.JsonStreamFormatter"/>

XML representation of JSON payloads

When building the XML tree, JSON builders attach the converted XML infoset to a special XML element that acts as
the root element of the final XML tree. If the original JSON payload is of type , the special element is object <json

Always use the same type of builder and formatter combination. Mixing different builders and formatters will
cause errors at runtime.

When you modify the builders/formatters in Axis2 configuration, make sure that you have enabled only one
correct message builder/formatter pair for a given media type.

https://docs.wso2.org/display/ESB481/JSON+Support#JSONSupport-AccessingcontentfromJSONpayloads
https://docs.wso2.org/display/ESB481/JSON+Support#JSONSupport-LoggingJSONpayloads
https://docs.wso2.org/display/ESB481/JSON+Support#JSONSupport-ConstructingandtransformingJSONpayloads
https://docs.wso2.org/display/ESB481/JSON+Support#JSONSupport-Troubleshootingdebuggingandlogging
https://github.com/beckchr/staxon

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 283

. If it is an , the special element is . Following are examples of JSON and XMLObject/> array <jsonArray/>
representations of various objects and arrays.

Null objects

JSON:

{"object":null}

XML:

<jsonObject>
 <object></object>
</jsonObject>

Empty objects

JSON:

{"object":{}}

XML:

<jsonObject>
 <object></object>
</jsonObject>

Empty strings

JSON:

{"object":""}

XML:

<jsonObject>
 <object></object>
</jsonObject>

Empty array

JSON:

[]

XML (JsonStreamBuilder):

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 284

<jsonArray></jsonArray>

XML (JsonBuilder):

<jsonArray>
 <?xml-multiple jsonElement?>
</jsonArray>

Named arrays

JSON:

{"array":[1,2]}

XML (JsonStreamBuilder):

<jsonObject>
 <array>1</array>
 <array>2</array>
</jsonObject>

XML (JsonBuilder):

<jsonObject>
 <?xml-multiple array?>
 <array>1</array>
 <array>2</array>
</jsonObject>

JSON:

{"array":[]}

XML (JsonStreamBuilder):

<jsonObject></jsonObject>

XML (JsonBuilder):

<jsonObject>
 <?xml-multiple array?>
</jsonObject>

Anonymous arrays

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 285

JSON:

[1,2]

XML (JsonStreamBuilder):

<jsonArray>
 <jsonElement>1</jsonElement>
 <jsonElement>2</jsonElement>
</jsonArray>

XML (JsonBuilder):

<jsonArray>
 <?xml-multiple jsonElement?>
 <jsonElement>1</jsonElement>
 <jsonElement>2</jsonElement>
</jsonArray>

JSON:

[1, []]

XML (JsonStreamBuilder):

<jsonArray>
 <jsonElement>1</jsonElement>
 <jsonElement>
 <jsonArray></jsonArray>
 </jsonElement>
</jsonArray>

XML (JsonBuilder):

<jsonArray>
 <?xml-multiple jsonElement?>
 <jsonElement>1</jsonElement>
 <jsonElement>
 <jsonArray>
 <?xml-multiple jsonElement?>
 </jsonArray>
 </jsonElement>
</jsonArray>

XML processing instructions (PIs)

Note that the addition of processing instructions to the XML payloads whose JSON representationsxml-multiple
contain arrays. (via StAXON) adds these instructions to the XML payload that it builds during theJsonBuilder
JSON to XML conversion so that during the XML to JSON conversion, can reconstruct the arraysJsonFormatter

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 286

that are present in the original JSON payload. interprets the elements immediately following aJsonFormatter
processing instruction to construct an array.

Special characters

When building XML elements, the ‘$’ character and digits are handled in a special manner when they appear as the
first character of a JSON key. Following are examples of two such occurrences. Note the addition of the _JsonRea

 and prefixes in place of the ‘$’ and digit characters, respectively.der_PS_ _JsonReader_PD_

JSON:

{"$key":1234}

XML:

<jsonObject>
 <_JsonReader_PS_key>1234</_JsonReader_PS_key>
</jsonObject>

JSON:

{"32X32":"image_32x32.png"}

XML:

<jsonObject>
 <_JsonReader_PD_32X32>image_32x32.png</_JsonReader_PD_32X32>
</jsonObject>

Converting a payload between XML and JSON

To convert an XML payload to JSON, set the property to in the axis2 scopemessageType application/json
before sending message to an endpoint. Similarly, to convert a JSON payload to XML, set the propermessageType
ty to or . For example:application/xml text/xml

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 287

<api name="admin--TOJSON" context="/tojson" version="1.0" version-type="url">
 <resource methods="POST GET DELETE OPTIONS PUT" url-mapping="/*">
 <inSequence>
 <property name="POST_TO_URI" value="true" scope="axis2"/>
 <property name="messageType" value="application/json" scope="axis2"/>
 <filter source="$ctx:AM_KEY_TYPE" regex="PRODUCTION">
 <then>
 <send>
 <endpoint name="admin--Test_APIproductionEndpoint_0">
 <http
uri-template="http://localhost:9767/services/StudentService">
 <timeout>
 <duration>30000</duration>
 <responseAction>fault</responseAction>
 </timeout>
 <suspendOnFailure>
 <errorCodes>-1</errorCodes>
 <initialDuration>0</initialDuration>
 <progressionFactor>1.0</progressionFactor>
 <maximumDuration>0</maximumDuration>
 </suspendOnFailure>
 <markForSuspension>
 <errorCodes>-1</errorCodes>
 </markForSuspension>
 </http>
 </endpoint>
 </send>
 </then>
 <else>
 <sequence key="_sandbox_key_error_"/>
 </else>
 </filter>
 </inSequence>
 <outSequence>
 <send/>
 </outSequence>
 </resource>
 <handlers>
 <handler
class="org.wso2.carbon.apimgt.gateway.handlers.security.APIAuthenticationHandler"/>
 <handler
class="org.wso2.carbon.apimgt.gateway.handlers.throttling.APIThrottleHandler">
 <property name="id" value="A"/>
 <property name="policyKey"
value="gov:/apimgt/applicationdata/tiers.xml"/>
 </handler>
 <handler
class="org.wso2.carbon.apimgt.usage.publisher.APIMgtUsageHandler"/>
 <handler
class="org.wso2.carbon.apimgt.usage.publisher.APIMgtGoogleAnalyticsTrackingHandler"/>
 <handler
class="org.wso2.carbon.apimgt.gateway.handlers.ext.APIManagerExtensionHandler"/>
 </handlers>
 </api>

An example command to invoke above API:

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 288

curl -v -X POST -H "Content-Type:application/xml" -H "Authorization: Bearer xxx"
-d@request1.xml "http://10.100.1.110:8280/tojson/1.0"

If the request payload is as follows:

<coordinates>
 <location>
 <name>Bermuda Triangle</name>
 <n>25.0000</n>
 <w>71.0000</w>
 </location>
 <location>
 <name>Eiffel Tower</name>
 <n>48.8582</n>
 <e>2.2945</e>
 </location>
</coordinates>

The response payload will look like this:

{
 "coordinates":{
 "location":[
 {
 "name":"Bermuda Triangle",
 "n":25.0000,
 "w":71.0000
 },
 {
 "name":"Eiffel Tower",
 "n":48.8582,
 "e":2.2945
 }
]
 }
}

Note that we have used the to mark the outgoing payload to be formatted as JSON. For moreProperty mediator
information about the Property Mediator, see the page on WSO2 ESB documentation.Property Mediator

<property name="messageType" value="application/json" scope="axis2"/>

Similarly if the response message needs to be transformed, set the messageType property in the outSequence.

https://docs.wso2.org/display/ESB481/Property+Mediator

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 289

<api name="admin--TOJSON" context="/tojson" version="1.0" version-type="url">
 <resource methods="POST GET DELETE OPTIONS PUT" url-mapping="/*">
 <inSequence>
 <property name="POST_TO_URI" value="true" scope="axis2"/>
 <filter source="$ctx:AM_KEY_TYPE" regex="PRODUCTION">
 <then>
 <send>
 <endpoint name="admin--Test_APIproductionEndpoint_0">
 <http
uri-template="http://localhost:9767/services/StudentService">
 <timeout>
 <duration>30000</duration>
 <responseAction>fault</responseAction>
 </timeout>
 <suspendOnFailure>
 <errorCodes>-1</errorCodes>
 <initialDuration>0</initialDuration>
 <progressionFactor>1.0</progressionFactor>
 <maximumDuration>0</maximumDuration>
 </suspendOnFailure>
 <markForSuspension>
 <errorCodes>-1</errorCodes>
 </markForSuspension>
 </http>
 </endpoint>
 </send>
 </then>
 <else>
 <sequence key="_sandbox_key_error_"/>
 </else>
 </filter>
 </inSequence>
 <outSequence>
 <property name="messageType" value="application/json" scope="axis2"/>
 <send/>
 </outSequence>
 </resource>
 <handlers>
 <handler
class="org.wso2.carbon.apimgt.gateway.handlers.security.APIAuthenticationHandler"/>
 <handler
class="org.wso2.carbon.apimgt.gateway.handlers.throttling.APIThrottleHandler">
 <property name="id" value="A"/>
 <property name="policyKey"
value="gov:/apimgt/applicationdata/tiers.xml"/>
 </handler>
 <handler
class="org.wso2.carbon.apimgt.usage.publisher.APIMgtUsageHandler"/>
 <handler
class="org.wso2.carbon.apimgt.usage.publisher.APIMgtGoogleAnalyticsTrackingHandler"/>
 <handler
class="org.wso2.carbon.apimgt.gateway.handlers.ext.APIManagerExtensionHandler"/>
 </handlers>
 </api>

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 290

Working with Security

This section covers the following topics:
Passing Enduser Attributes to the Backend Using JWT
Encrypting Passwords
Maintaining Logins and passwords
Saving Access Tokens in Separate Tables
Configuring WSO2 Identity Server as the Key Manager
Configuring Transport Level Security
Enabling the Java Security Manager

Passing Enduser Attributes to the Backend Using JWT

JSON Web Token (JWT) is used to represent claims that are transferred between two parties such as the enduser
and the backend.

A claim is an attribute of the user that is mapped to the underlying user store. It is encoded as a JavaScript Object
Notation (JSON) object that is used as the payload of a JSON Web Signature (JWS) structure, or as the plain text of
a JSON Web Encryption (JWE) structure. This enables claims to be digitally signed.

A set of claims is called a dialect (e.g.,). http://wso2.org/claims The general format of a JWT is {token
. The API implementation uses information such as logging, contentinfor}.{claims list}.{signature}

filtering and authentication/authorization that is stored in this token. The token is Base64-encoded and sent to the
 API implementation in a HTTP header variable. heaThe JWT is self-contained and is divided into three parts as the

der, the payload and the signature. For more information on JWT, see http://openid.net/specs/draft-jones-json-web-
 token-07.html#anchor3 .

To authenticate endusers, the API Manager passes attributes of the API invoker to the backend API implementation
using JWT. In most production deployments, service calls go through the API Manager or a proxy service. If you
enable JWT generation in the API Manager, each API request will carry a JWT to the back-end service. When the
request goes through the API manager, the JWT is appended as a transport header to the outgoing message. The
back-end service fetches the JWT and retrieves the required information about the user, application, or token.

An example of a JWT is given below:

{
 "typ":"JWT",
 "alg":"NONE"
 }{
 "iss":"wso2.org/products/am",
 "exp":1345183492181,
 "http://wso2.org/claims/subscriber":"admin",
 "http://wso2.org/claims/applicationname":"app2",
 "http://wso2.org/claims/apicontext":"/placeFinder",
 "http://wso2.org/claims/version":"1.0.0",
 "http://wso2.org/claims/tier":"Silver",
 "http://wso2.org/claims/enduser":"sumedha"
 }

The above token contains,

Token expiration time ("exp")
Subscriber to the API, usually the app developer (" ")http://wso2.org/claims/subscriber
Application through which API invocation is done (" ")http://wso2.org/claims/applicationname
Context of the API (" ")http://wso2.org/claims/apicontext
API version (" ")http://wso2.org/claims/version
Tier/price band for the subscription (" ")http://wso2.org/claims/tier

http://wso2.org/claims
http://openid.net/specs/draft-jones-json-web-token-07.html#anchor3
http://openid.net/specs/draft-jones-json-web-token-07.html#anchor3
http://wso2.org/claims/subscriber
http://wso2.org/claims/applicationname
http://wso2.org/claims/apicontext
http://wso2.org/claims/version
http://wso2.org/claims/tier

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 291

Enduser of the app who's action invoked the API (" ")http://wso2.org/claims/enduser

Let's see how to enable and pass information in the JWT or completely alter the JWT generation logic in the API
Manager:

Configuring JWT
Customize the JWT generation

Configuring JWT

Before passing enduser attributes, you enable and configure the JWT implementation in the <APIM_HOME>/repos

 api-manager.xmlitory/conf/ file. The relevant elements are described below. If you do not configure these

elements, they take their default values.

Element Description

<EnableTokenGeneration> Set this value to to enable JWT. that true Note if you publish APIs before JWT is enabled, you have to republish them.

<SecurityContextHeader/> The name of the HTTP header to which the JWT is attached.

<ClaimsRetrieverImplClass/> By default, the < parameter is commented out in the file. Enable it to add all user claims in theClaimsRetrieverImplClass> api-manager.xml
JWT token:

<ClaimsRetrieverImplClass>org.wso2.carbon.apimgt.impl.token.DefaultClaimsRetriever</ClaimsRetrieverImplClass>

By default, t he following are encoded to the JWT:

subscriber name
application name
API context
API version
authorised resource owner name

In addition, you can also write your own class by extending the interface and org.wso2.carbon.apimgt.impl.token.ClaimsRetriever
implementing the following methods of the interface:

Method Description

void init() throws
APIManagementException;

Used to perform initialization tasks. Is executed once, right before the very first request.

SortedMap<String,String>
getClaims(String
endUserName) throws
APIManagementException;

Returns a sorted map of claims. The key of the map indicates the user attribute name and the value indicates the
corresponding user attribute value. The order in which these keys and values are encoded depends on the
ordering defined by the sorted map.

S t r i n g
getDialectURI(String
endUserName);

The dialect URI to which the attribute names returned by the method are appended to. ForgetClaims()
example,
if the method returns and the retgetClaims { , }email:user1@wso2.com gender:male getDialectURI()
urns , the JWT will contain http://wso2.org/claims “http://wso2.org/claims/gender”:“user1@ws

as part of the body. o2.com”,“http://wso2.org/claims/email”:“male”

The default implementation () returnsorg.wso2.carbon.apimgt.impl.token.DefaultClaimsRetriever
the user's attributes defined under the dialect URI and the JWT will also be encoded http://wso2.org/claims
with the same dialect URI. The order of encoding the user's attributes is the natural order of the attributes. If no
value is specified, no additional claims will be encoded, except the 6 default attributes.

http://wso2.org/claims/enduser
http://email:user1@wso2.com/
http://gendermale/
http://wso2.org/claims
http://wso2.org/claims

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 292

1.

<ConsumerDialectURI/> The dialect URI under which the user's claims are be looked for. Only works with the default value of element defined<ClaimsRetrieverImplClass>
above.

The JWT token contains all claims define in the element. The default value of this element is .<ConsumerDialectURI> http://wso2.org/claims
To get a list of users to be included in the JWT, simply uncomment this element after enabling the JWT. It will include all claims in http://wso2.org/

to the JWT token. claims

 <SignatureAlgorithm/> The signing algorithm used to sign the JWT. The general format of the JWT is . {token infor}.{claims list}.{signature} When NONE is
specified as the algorithm, signing is turned off and the JWT looks as with two strings delimited by a period and a {token infor}.{claims list}

period at the end.

This element can have only two values- the default value, which is SHA256WITHRSA or NONE.

Customize the JWT generation

The JWT that is generated by default (see example) has predefined attributes that are passed to theabove
backend. These include basic application-specific details, subscription details, and user information that are defined
in the JWT generation class that comes with the API Manager by the name org.wso2.carbon.apimgt.impl.to

If you want to pass additional attributes to the backend with the JWT or completely change. ken.JWTGenerator
the default JWT generation logic, do the following:

Write your own custom JWT implementation class by extending the default . A typical classJWTGenerator
example of is given below. implementing your own claim generator It implements the populateCustomClai

 ms() method to generate some custom claims and adds them to the JWT.

http://wso2.org/claims
http://wso2.org/claims
http://wso2.org/claims

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 293

1.

2.
3.

import org.wso2.carbon.apimgt.impl.APIConstants;
import org.wso2.carbon.apimgt.impl.dto.APIKeyValidationInfoDTO;
import org.wso2.carbon.apimgt.impl.token.JWTGenerator;
import org.wso2.carbon.apimgt.api.*;

import java.util.Map;

public class CustomTokenGenerator extends JWTGenerator {

 public Map populateStandardClaims(APIKeyValidationInfoDTO
keyValidationInfoDTO, String apiContext, String version)
 throws APIManagementException {
 Map claims = super.populateStandardClaims(keyValidationInfoDTO,
apiContext, version);
 boolean isApplicationToken =

keyValidationInfoDTO.getUserType().equalsIgnoreCase(APIConstants.ACCESS_TOKEN_USE
R_TYPE_APPLICATION) ? true : false;
 String dialect = getDialectURI();
 if (claims.get(dialect + "/enduser") != null) {
 if (isApplicationToken) {
 claims.put(dialect + "/enduser", "null");
 claims.put(dialect + "/enduserTenantId", "null");
 } else {
 String enduser = claims.get(dialect + "/enduser");
 if (enduser.endsWith("@carbon.super")) {
 enduser = enduser.replace("@carbon.super", "");
 claims.put(dialect + "/enduser", enduser);
 }
 }
 }

 return claims;

 }

 public Map populateCustomClaims(APIKeyValidationInfoDTO keyValidationInfoDTO,
String apiContext, String version, String accessToken)
 throws APIManagementException {
 Long time = System.currentTimeMillis();
 String text = "This is custom JWT";
 Map map = new HashMap();
 map.put("current_timestamp", time.toString());
 map.put("messge" , text);
 return map;
 }
}

Build your class and add the JAR file to directory.<APIM_HOME>/repository/components/lib

Add your class in the <TokenGeneratorImpl> element of the <APIM api-mana_HOME>/repository/conf/

 ger.xml file.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 294

3.

4.
5.

1.

2.

<APIConsumerAuthentication>

<TokenGeneratorImpl>org.wso2.carbon.test.CustomTokenGenerator</TokenGeneratorImpl
>

</APIConsumerAuthentication>

Set the element to in the file. <EnableTokenGeneration> true api-manager.xml
Restart the server.

Encrypting Passwords

Encrypting passwords provides better security and less vulnerability to security attacks than saving passwords in
plain text. It is recommended in a production setup. WSO2 API Manager provides a secure vault implementation
that encrypts passwords, stores them in the registry, maps them to aliases and uses the alias instead of the actual
passwords in configuration files. At runtime, the API Manager looks up aliases and decrypts the passwords. The
secure vault is unable to encrypt the passwords of registry resources at the moment.

The steps below explain how to encrypt passwords in different contexts:
Encrypting passwords in configuration files
Encrypting secure endpoint passwords

Encrypting passwords in configuration files

Shutdown the server if it is already running and open <APIM_HOME>/repository/conf/security/ciph
 file. It contains all the aliases to different server components.er-tool.properties

Note that the file has several aliases already defined as the alias name and the value where the value is <fi
le name>//<xpath to the property value to be secured>, <true if the XML element

. Uncomment the entries you want to encrypt.starts with a capital letter>

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 295

2.

3.

4.

5.

transports.https.keystorePass=mgt-transports.xml//transports/transport[@name='htt
ps']/parameter[@name='keystorePass'],false
Carbon.Security.KeyStore.Password=carbon.xml//Server/Security/KeyStore/Password,t
rue
Carbon.Security.KeyStore.KeyPassword=carbon.xml//Server/Security/KeyStore/KeyPass
word,true
Carbon.Security.TrustStore.Password=carbon.xml//Server/Security/TrustStore/Passwo
rd,true
UserManager.AdminUser.Password=user-mgt.xml//UserManager/Realm/Configuration/Admi
nUser/Password,true
Datasources.WSO2_CARBON_DB.Configuration.Password=master-datasources.xml//datasou
rces-configuration/datasources/datasource[name='WSO2_CARBON_DB']/definition[@type
='RDBMS']/configuration/password,false
#Datasource.WSO2AM_DB.configuration.password=master-datasources.xml//datasources-
configuration/datasources/datasource[name='WSO2AM_DB']/definition[@type='RDBMS']/
configuration/password,false
#Datasource.WSO2AM_STATS_DB.configuration.password=master-datasources.xml//dataso
urces-configuration/datasources/datasource[name='WSO2AM_STATS_DB']/definition[@ty
pe='RDBMS']/configuration/password,false
#UserStoreManager.Property.ConnectionPassword=user-mgt.xml//UserManager/Realm/Use
rStoreManager/Property[@name='ConnectionPassword'],true
#UserStoreManager.Property.password=user-mgt.xml//UserManager/Realm/UserStoreMana
ger/Property[@name='password'],true
#AuthManager.Password=api-manager.xml//APIManager/AuthManager/Password,true

...

Open file, which maps the<APIM_HOME>/repository/conf/security/cipher-text.properties
default alias to their plain text passwords in square brackets. Uncomment the ones you want.

Carbon.Security.KeyStore.Password=[wso2carbon]

If you are on Linux or a Unix-based operating system, run the cipher tool available . here
If you are on Windows, get the cipher tool from the folder. Due to a known issue in the<APIM_HOME>/bin
1.8.0 release on Linux, we provide the .sh file separately. This script reads the aliases, encrypts their
plain-text passwords, and stores them in the secure vault. If you are using the default primary keystore, give

as its password when prompted. wso2carbon

On Windows: ciphertool.bat -Dconfigure
On Linux: sh ciphertool.sh -Dconfigure

Note that the configuration files are automatically updated with the relevant password alias after running the
cipher tool. For example, as the property is uncommented inCarbon.Security.KeyStore.Password
this example, after you run the cipher tool, the plain-text password in <APIM_HOME>/repository/conf/c

Tip: By default, the primary keystore, which is <APIM_HOME>/repository/resources/securit
 is used as the secure vault. If you want to use another keystore or a customy/wso2carbon.jks

callback class to handle decryption, modify the <APIM_HOME>/repository/conf/security/se
i file as described incret-conf.properties WSO2 Carbon Secure Vault n the WSO2 Carbon

documentation.

https://docs.wso2.com/download/attachments/41747153/ciphertool.sh?version=1&modificationDate=1423230134000&api=v2
http://docs.wso2.org/carbon/WSO2+Carbon+Secure+Vault

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 296

5.

1.

2.

 file will be replaced by the alias as follows.arbon.xml

<KeyStore>
...
 <!-- Keystore password-->
 <Password
svns:secretAlias="Carbon.Security.KeyStore.Password">password</Password>
...
</KeyStore>

Encrypting secure endpoint passwords

When creating an API using the API Publisher, you specify the endpoint of its backend implementation in the Imple
 tab. If you select the endpoint as secured, you are prompted to give credentials in plain-text.ment

The steps below show how to secure the endpoint's password that is given in plain-text in the UI.

Shut down the server if it is already running and set the element in <EnableSecureVault> <APIM_HOME
 to . By default, the system stores passwords in>/repository/conf/api-manager.xml true

configuration files in plain text because this values is set to .false
Define synapse property in the synapse.properties file as follows: synapse.xpath.func.extensions=or

Tip: As you encrypted the primary keystore's password in this example, you are prompted to enter
the primary keystore password every time you start the server.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 297

2.

3.

1.

a.

b.
c.

g.wso2.carbon.mediation.security.vault.xpath.SecureVaultLookupXPathFunctionProvi
der.
Run the cipher tool available in . If you are<APIM_HOME>/bin If on windows, the file is .ciphertool.bat
using the default keystore, give as the primary keystore password when prompted. wso2carbon

sh ciphertool.sh -Dconfigure

Maintaining Logins and passwords

Changing the super admin password

See How do I change the default admin password and what files should I edit after changing it?

Recovering a password

See How can I recover the admin password used to log in to the management console?

Setting up primary and secondary logins

In a standalone deployment of the API Manager instance, users of the API Store can have a secondary login name
in addition to the primary login name. This gives the user flexibility to provide either an email or a user name to log
in. You can configure the API Store to treat both login names as belonging to a single user. Users can invoke APIs
with the same Accestoken without having to create a new one for the secondary login.

You can configure this capability using the steps below.

Configure user login under the element in fil<OAuth> <APIM_HOME>/repository/conf/identity.xml
e.

Mention your primary and secondary login names. Set the attribute of the primary login to primary tr
 and the attribute of the secondary login to .ue primary false

Primary login doesn't have a . Leave this field empty.ClaimUri
 Provide the correct value for the secondary loginClaimUri

An example is given below:

Tip: See for information on configuring cipher at the Tomcat level.Configuring Transport Level Security

Do you have any special characters in passwords?

If you specify passwords inside XML files, take care when giving special characters in the user names and
passwords. According to XML specification (), some special characters canhttp://www.w3.org/TR/xml/
disrupt the configuration. For example, the ampersand character (&) must not appear in the literal form in
XML files. It can cause a Java Null Pointer exception. You must wrap it with CDATA (http://www.w3schools.

) as shown below or remove the character:com/xml/xml_cdata.asp

<Password>
 <![CDATA[xnvYh?@VHAkc?qZ%Jv855&A4a,%M8B@h]]>
</Password>

https://docs.wso2.com/display/AM180/FAQ#FAQ-HowdoIchangethedefaultadminpasswordandwhatfilesshouldIeditafterchangingit?
https://docs.wso2.com/display/AM180/FAQ#FAQ-HowcanIrecovertheadminpasswordusedtologintothemanagementconsole?
http://www.w3.org/TR/xml/
http://www.w3schools.com/xml/xml_cdata.asp
http://www.w3schools.com/xml/xml_cdata.asp

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 298

.Configuring Secondary User Stores

1.

2.

<OAuth>

 <LoginConfig>
 <UserIdLogin primary="true">
 <ClaimUri></ClaimUri>
 </UserIdLogin>
 <EmailLogin primary="false">
 <ClaimUri>http://wso2.org/claims/emailaddress</ClaimUri>
 </EmailLogin>
 </LoginConfig>
</OAuth>

In the API Store of a distributed setup, the element in the serverURL <APIM_HOME>/repository/conf/
 file should point to the key manager instance's service endpoint. This allows users toapi-manager.xml

connect to the key manager's user store to perform any operations related to API Store such as login, access
token generation etc. For example,

<AuthManager>
 <!--Server URL of the Authentication service -->
 <ServerURL>https://localhost:9444/services/</ServerURL>

 <!-- Admin username for the Authentication manager. -->
 <Username>admin</Username>

 <!-- Admin password for the Authentication manager.-->
 <Password>admin</Password>
</AuthManager>

Saving Access Tokens in Separate Tables

You can configure the API Manager instances to store access tokens in different tables according to their user store
domains. This is referred to as and it ensures better security when there are multiple useruser token partitioning
stores configured in the system. To configure user stores other than the default one, see

The following topics explain how to enable user token partitioning:
Enabling assertions
Storing keys in different tables

Enabling assertions

You use assertions to embed parameters into tokens and generate a strong access token. You can also use these
parameters later for other processing. At the moment, the API Manager only supports UserName as an assertion.

By default, assertions are set to in . To enable it, setfalse <APIM_HOME>/repository/conf/identity.xml
the element to . You can add a user name to an access token when generating the key, and<UserName> true
verify it by encoding the retrieved access token with Base64.

Tip: In a distributed setup, the API Store's user store needs to point to the key manager user store.

Tip: Be sure to keep the secondary login name unique to each user.

Tip: Did you change the super admin user's password? See

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 299

1.

2.

3.

<APIM_HOME>/repository/conf/identity.xml

<EnableAssertions>
 <UserName>true</UserName>
</EnableAssertions>

Storing keys in different tables

If the assertion is enabled, set the element in <UserName> <EnableAccessTokenPartitioning> <APIM
 file to true. It determines whether you want to store the keys_HOME>/repository/conf/identity.xml

in different tables or not.

<EnableAccessTokenPartitioning>true</EnableAccessTokenPartitioning>

Set the user store domain names and mappings to new table names. For example,

if userId = where 'foo.com' is the user store domain name, then a ' 'foo.com/admin mapping:domain
combo can be defined as 'A:foo.com'
'A' is the mapping for the table that stores tokens relevant to users coming from 'foo.com' user store

In this case, the actual table name is . We use a mapping simply to preventIDN_OAUTH2_ACCESS_TOKEN_A
any issues caused by lengthy table names when lengthy domain names are used. You must manually create
the tables you are going to use to store the access tokens in each user store (i.e., manually create the tables

 and according to the following definedIDN_OAUTH2_ACCESS_TOKEN_A IDN_OAUTH2_ACCESS_TOKEN_B
domain mapping). This table structure is similar to the table defined in theIDN_OAUTH2_ACCESS_TOKEN
api-manager dbscript, which is inside the directory. <APIM_HOME>/dbscripts/apimgt

You can provide multiple mappings separated by commas as follows. Note that the domain names need to be
specified in upper case.

<AccessTokenPartitioningDomains>A:FOO.COM,
B:BAR.COM</AccessTokenPartitioningDomains>

According to the information given above, change the <OAuth> element in the <APIM_HOME>/repository

/conf/identity.xml file as shown in the following example:

http://foo.com/admin
http://mappingdomain

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 300

3.

1.

2.

<APIM_HOME>/repository/conf/identity.xml

<!-- Assertions can be used to embed parameters into access token.-->
<EnableAssertions>
 <UserName>true</UserName>
</EnableAssertions>

<!-- This should be set to true when using multiple user stores and keys should
saved into different tables according to the user store. By default all the
application keys are saved in to the same table. UserName Assertion should be
'true' to use this.-->
<AccessTokenPartitioning>
 <EnableAccessTokenPartitioning>true</EnableAccessTokenPartitioning>
 <!-- user store domain names and mappings to new table names. eg: if you
provide 'A:foo.com', foo.com should be the user store domain
 name and 'A' represent the relavant mapping of token storing table, i.e.
tokens relevant to the users comming from foo.com user store
 will be added to a table called IDN_OAUTH2_ACCESS_TOKEN_A. -->
 <AccessTokenPartitioningDomains>A:foo.com,
B:bar.com</AccessTokenPartitioningDomains>
</AccessTokenPartitioning>

Configuring WSO2 Identity Server as the Key Manager

If your production environment already has an instance of WSO2 Identity Server, you can use it as the Key Manager
rather than setting up an additional WSO2 API Manager instance to work as the Key Manager. If you set up the
Identity Server, you can get the added advantage of being able to use authentication/authorization features specific
to the Identity Server.

For setup instructions, see the .Clustering Guide

Configuring Transport Level Security

The transport level security protocol of the Tomcat server is configured in the <PRODUCT_HOME>/repository/co
 file. Note that the attribute is set to TLS (nf/tomcat/catalina-server.xml sslProtocol Transport Layer

) by default.Security

See the following topics for configuration:
Disabling SSL version 3
Disabling the weak ciphers

Disabling SSL version 3

Follow the steps below to disable SSL 3.0 support.

Make a backup of the file and<PRODUCT_HOME>/repository/conf/tomcat/catalina-server.xml
stop the server.
Find the connector configuration that is corresponding to TLS (usually, this connector has the port set to 9443
and the as TLS).sslProtocol

If you are using JDK 1.6, remove the attribute from the configuration andsslProtocol="TLS"

It is necessary to disable SSL version 3 in WSO2 products because of a bug () in the SSLPoodle Attack
version 3 protocol that could expose critical data encrypted between clients and servers. The Poodle Attack
makes the system vulnerable by telling the client that the server does not support the more secure TLS
protocol. This forces the server to connect via SSL 3.0. You can mitigate the effect of this bug by disabling
SSL version 3 protocol in your server.

https://docs.wso2.org/display/CLUSTER420/Configuring+WSO2+Identity+Server+as+the+Key+Manager
https://www.openssl.org/%7Ebodo/ssl-poodle.pdf

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 301

2.

3.

1.
2.

3.

replace it with as shown below.sslEnabledProtocols="TLSv1"

<Connector protocol="org.apache.coyote.http11.Http11NioProtocol"
 port="9443"
 bindOnInit="false"
 sslEnabledProtocols="TLSv1"

 If you are using JDK 1.7, remove the attribute from the above configurationsslProtocol="TLS"
and replace it with as shown below.sslEnabledProtocols="TLSv1,TLSv1.1,TLSv1.2"

<Connector protocol="org.apache.coyote.http11.Http11NioProtocol"
 port="9443"
 bindOnInit="false"
 sslEnabledProtocols="TLSv1,TLSv1.1,TLSv1.2"

Start the server.

To test if SSL version 3 is disabled:

Download from .TestSSLServer.jar here
Execute the following command to test the transport:

java -jar TestSSLServer.jar localhost 9443

The output of the command before and after disabling SSL version 3 is shown below.

Before SSL version 3 is disabled:

Supported versions: SSLv3 TLSv1.0
Deflate compression: no
Supported cipher suites (ORDER IS NOT SIGNIFICANT):
 SSLv3
 RSA_EXPORT_WITH_RC4_40_MD5
 RSA_WITH_RC4_128_MD5
 RSA_WITH_RC4_128_SHA
 RSA_EXPORT_WITH_DES40_CBC_SHA
 RSA_WITH_DES_CBC_SHA
 RSA_WITH_3DES_EDE_CBC_SHA
 DHE_RSA_EXPORT_WITH_DES40_CBC_SHA
 DHE_RSA_WITH_DES_CBC_SHA
 DHE_RSA_WITH_3DES_EDE_CBC_SHA
 RSA_WITH_AES_128_CBC_SHA
 DHE_RSA_WITH_AES_128_CBC_SHA
 RSA_WITH_AES_256_CBC_SHA
 DHE_RSA_WITH_AES_256_CBC_SHA
 (TLSv1.0: idem)

After SSL version 3 is disabled:

http://www.bolet.org/TestSSLServer/TestSSLServer.jar

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 302

3.

1.

2.

3.

1.

Supported versions: TLSv1.0
Deflate compression: no
Supported cipher suites (ORDER IS NOT SIGNIFICANT):
 TLSv1.0
 RSA_EXPORT_WITH_RC4_40_MD5
 RSA_WITH_RC4_128_MD5
 RSA_WITH_RC4_128_SHA
 RSA_EXPORT_WITH_DES40_CBC_SHA
 RSA_WITH_DES_CBC_SHA
 RSA_WITH_3DES_EDE_CBC_SHA
 DHE_RSA_EXPORT_WITH_DES40_CBC_SHA
 DHE_RSA_WITH_DES_CBC_SHA
 DHE_RSA_WITH_3DES_EDE_CBC_SHA
 RSA_WITH_AES_128_CBC_SHA
 DHE_RSA_WITH_AES_128_CBC_SHA
 RSA_WITH_AES_256_CBC_SHA
 DHE_RSA_WITH_AES_256_CBC_SHA

Disabling the weak ciphers

A cipher is an algorithm for performing encryption or decryption. When the is set to TLS, only thesslProtocol
TLS and default ciphers are enabled. However, the strength of the ciphers will not be considered when they are
enabled. Therefore, to disable the weak ciphers, you enter only the ciphers that you want the server to support in a
comma-separated list in the attribute. Also, if you do not add this cipher attribute or keep it blank, all SSLciphers
ciphers by JSSE will be supported by your server. This will enable the weak ciphers.

Make a backup of the file and<PRODUCT_HOME>/repository/conf/tomcat/catalina-server.xml
stop the server (same as for).disabling SSL version 3
Add the attribute to the existing configuration in the file by adding the listcipher catalina-server.xml
of ciphers that you want your server to support as follows: .ciphers="<cipher-name>,<cipher-name>"

ciphers="SSL_RSA_WITH_RC4_128_MD5,SSL_RSA_WITH_RC4_128_SHA,TLS_RSA_WITH_AES_128_C
BC_SHA,

TLS_DHE_RSA_WITH_AES_128_CBC_SHA,TLS_DHE_DSS_WITH_AES_128_CBC_SHA,SSL_RSA_WITH_3D
ES_EDE_CBC_SHA,
 SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA,SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA"

Start the server.

Changing the pass-through transport configs

If you have enabled the pass-through transport, do the following:

The TLSv1 protocol used in the file can sometimes create the followingcatalina-server.xml
security alert when the client is run:

BEAST status: vulnerable

However, it is still recommended to use the TLSv1 protocol as it is possible to overcome this
vulnerability from the client side.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 303

1.
2.

3.
4.

1.
2.

3.

Stop the server.
Open the the file and add the following under <PRODUCT_HOME>/repository/conf/axis2/axis2.xml
< t r a n s p o r t R e c e i v e r n a m e = " h t t p s "

 element:class="org.apache.synapse.transport.passthru.PassThroughHttpSSLListener">
If you are using JDK 1.6, add the parameter given below:

<transportReceiver name="passthru-https"
class="org.wso2.carbon.transport.passthru.PassThroughHttpSSLListener">
 <parameter name="HttpsProtocols">TLSv1</parameter>

</transportReceiver>

If you are using JDK 1.7, add the parameter given below:

<transportReceiver name="passthru-https"
class="org.wso2.carbon.transport.passthru.PassThroughHttpSSLListener">
 <parameter name="HttpsProtocols">TLSv1,TLSv1.1,TLSv1.2</parameter>

</transportReceiver>

Start the server.
Test the pass-through transport using the following command with the corresponding port:

$ java -jar TestSSLServer.jar localhost 8243

Enabling the Java Security Manager

The Java Security Manager is used to define various security policies that prevent untrusted code from manipulating
 ctivates the Java permissions that are inyour system. Enabling the Java Security Manager for WSO2 products a

the file. You modify this file to change the Java security<PRODUCT_HOME>/repository/conf/sec.policy

permissions as required.

The steps below show how to enable the Java Security Manager for WSO2 products.

Before you begin, ensure that you have Java 1.6 installed.

Download the WSO2 product to any location (e.g., folder).<HOME>/user/<product-pack>
To sign the JARs in your product, you need a key. Generate it using the command as follows:keytool

keytool -genkey -alias signFiles -keyalg RSA -keystore signkeystore.jks -validity
3650 -dname "CN=Sanjeewa,OU=Engineering, O=WSO2, L=Colombo, ST=Western,
C=LK"Enter keystore password:

Re-enter new password:
Enter key password for
(RETURN if same as keystore password)

The default keystore of the WSO2 products is , which is in the wso2carbon.jks <PRODUCT_HOME>/repos
 folder. It is used for signing JARs.itory/resources/security

Import the public key certificate that you created earlier to . The sample belowsignFiles wso2carbon.jks
shows the security policy file referring the signer certificate from the file:wso2carbon.jks

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 304

3.

4.

$ keytool -export -keystore signkeystore.jks -alias signFiles -file sign-cert.cer

$ keytool -import -alias signFiles -file sign-cert.cer -keystore
repository/resources/security/wso2carbon.jks
 Enter keystore password:
 Owner: CN=Sanjeewa, OU=Engineering, O=WSO2, L=Colombo, ST=Western, C=LK
 Issuer: CN=Sanjeewa, OU=Engineering, O=WSO2, L=Colombo, ST=Western, C=LK
 Serial number: 5486f3b0
 Valid from: Tue Dec 09 18:35:52 IST 2014 until: Fri Dec 06 18:35:52 IST 2024
 Certificate fingerprints:
 MD5: 54:13:FD:06:6F:C9:A6:BC:EE:DF:73:A9:88:CC:02:EC
 SHA1: AE:37:2A:9E:66:86:12:68:28:88:12:A0:85:50:B1:D1:21:BD:49:52
 Signature algorithm name: SHA1withRSA
 Version: 3
 Trust this certificate? [no]: yes
 Certificate was added to keystore

Prepare the scripts to sign the JARs and grant them the required permission. For example, the signJar.sh
script given below can be used to sign each JAR file separately or you can use the script,signJars.sh
which runs a loop to read all JARs and sign them.

signJar.sh script

 #!/bin/bash
 set -e
 jarfile=$1
 keystore_file="signkeystore.jks"
 keystore_keyalias='signFiles'
 keystore_storepass='wso2123'
 keystore_keypass='wso2123'
 signjar="$JAVA_HOME/bin/jarsigner -sigalg MD5withRSA -digestalg SHA1
-keystore $keystore_file -storepass $keystore_storepass -keypass
$keystore_keypass"
 verifyjar="$JAVA_HOME/bin/jarsigner -keystore $keystore_file -verify"
 echo "Signing $jarfile"
 $signjar $jarfile $keystore_keyalias
 echo "Verifying $jarfile"
 $verifyjar $jarfile
 # Check whether the verification is successful.
 if [$? -eq 1]
 then
 echo "Verification failed for $jarfile"
 fi

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 305

4.

5.

6.
7.

8.

signJars.sh script

#!/bin/bash
 if [[! -d $1]]; then
 echo "Please specify a target directory"
 exit 1
 fi
 for jarfile in `find . -type f -iname *.jar`
 do
 ./signJar.sh $jarfile
 done

Execute the following commands to sign the JARs in your product:

./signJars.sh /HOME/user/<product-pack>

Open the startup script in the folder. For Linux, it is . <PRODUCT_HOME>/bin wso2server.sh
Add the following system properties to the startup script and save the file:

-Djava.security.manager=org.wso2.carbon.bootstrap.CarbonSecurityManager \
-Djava.security.policy=$CARBON_HOME/repository/conf/sec.policy \
-Drestricted.packages=sun.,com.sun.xml.internal.ws.,com.sun.xml.internal.bind.,co
m.sun.imageio.,org.wso2.carbon. \
-Ddenied.system.properties=javax.net.ssl.trustStore,javax.net.ssl.trustStorePassw
ord,denied.system.properties \

Create a file with the required security policies in the fsec.policy <PRODUCT_HOME>/repository/conf
older and start the server. Starting the server makes the Java permissions defined in the file tosec.policy
take effect.

An example of a file is given below. It includes mostly WSO2 Carbon-level permissions.sec.policy

Every time you add an external JAR to the WSO2 product, sign them manually using the above
instructions for the Java Security Manager to be effective. You add external JARs to the server when
extending the product, applying patches etc.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 306

grant {
 // Allow socket connections for any host
 permission java.net.SocketPermission "*:1-65535", "connect,resolve";

 // Allow to read all properties. Use -Ddenied.system.properties in wso2server.sh
to restrict properties
 permission java.util.PropertyPermission "*", "read";

 permission java.lang.RuntimePermission "getClassLoader";

 // CarbonContext APIs require this permission
 permission java.lang.management.ManagementPermission "control";

 // Required by any component reading XMLs. For example:
org.wso2.carbon.databridge.agent.thrift:4.2.1.
 permission java.lang.RuntimePermission
"accessClassInPackage.com.sun.xml.internal.bind.v2.runtime.reflect";

 // Required by org.wso2.carbon.ndatasource.core:4.2.0. This is only necessary
after adding above permission.
 permission java.lang.RuntimePermission
"accessClassInPackage.com.sun.xml.internal.bind";
};

Working with Statistics

The following topics describe how to monitor API invocations and how to collect and summarize statistics in order to
monetize API usage.

Publishing API Runtime Statistics
Integrating with Google Analytics
Viewing API Statistics

Publishing API Runtime Statistics

You can set up (is used here) to collect and analyze runtimeWSO2 Business Activity Monitor version 2.5.0
statistics from the API Manager. To publish data from the API Manager to BAM, the Thrift protocol is used.
Information processed in BAM is stored in a database from which the API Publisher retrieves information before
displaying in the corresponding UI screens.

By default, is configured toorg.wso2.carbon.apimgt.usage.publisher.APIMgtUsageDataPublisher
push data events to WSO2 BAM. If you use a product other than WSO2 BAM to collect and analyze runtime
statistics, you extending Find the write a new data publishing agent by APIMgtUsageDataPublisher. API

When writing a new data publishingtemplates inside . <APIM_HOME>/repository/resources/api_templates
agent, make sure the data publishing logic you implement has a minimal impact to API invocation.

Prerequisites
Configure WSO2 API Manager
Configure WSO2 BAM
Troubleshoot common issues
Change the statistics database

Prerequisites

Info: The datasource and database names used in this guide are just examples. They may vary depending
on your configurations.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 307

1.

JDK 1.6.* or 1.7

BAM analyticsCygwin (: Required . WSO2)http://www.cygwin.com only if you are using Windows
framework depends on Apache Hadoop, which requires Cygwin in order to run on Windows. Install at least
the basic and security related Cygwin packages. After Cygwinnet (OpenSSH,tcp_wrapper packages)
installation, update the PATH variable with and restart BAM.C:/cygwin/bin

Configure WSO2 API Manager

Do the following changes in file:<APIM_HOME>/repository/conf/api-manager.xml
Enable API usage tracking by setting the element to .<APIUsageTracking> true
Because you will apply an offset to the default BAM port later in this guide, you need to apply the same
offset to the default Thrift port. To do that, change the port value to 7614 in the <ThriftPort> element of
this file. The API Manager will then push the data to BAM through port 7614, using the Thrift protocol.
Uncomments and set the data source used for getting BAM statistics in element.<DataSourceName>
Set <BAMServerURL> to tcp://<BAM host IP>:7614/ where <BAM host IP> is the machine IP address.
Do not use localhost unless you're in a disconnected mode.

<APIUsageTracking>
 <!-- Enable/Disable the API usage tracker. -->
 <Enabled>true</Enabled>

<PublisherClass>org.wso2.carbon.apimgt.usage.publisher.APIMgtUsageDataBridgeDataP
ublisher</PublisherClass>
 <ThriftPort>7614</ThriftPort>
 <BAMServerURL>tcp://<BAM host IP>:7614/</BAMServerURL>
 <BAMUsername>admin</BAMUsername>
 <BAMPassword>admin</BAMPassword>
 <!-- JNDI name of the data source to be used for getting BAM statistics. This
data source should
 be defined in the master-datasources.xml file in conf/datasources
directory. -->
 <DataSourceName>jdbc/WSO2AM_STATS_DB</DataSourceName>
</APIUsageTracking>

If you install in JDK Program Files in the Windows environment, avoid the space by using
hen specifying environment variables for JAVA_HOME and PATH. Else, the serverPROGRA~1 w

throws an exception.

<BAMServerURL> refers to the endpoint to which events will be published from the API
Gateway. This endpoint is also known as the event receiver. You can define multiple event
receiver groups, each with one or more receivers. A receiver group is defined within curly
braces and receiver URLs are delimited by commas.

For example, <BAMServerURL>{ , }tcp://localhost:7612/ tcp://localhost:7613/
. ,{ , }</BAMServerURL>tcp://localhost:7712/ tcp://localhost:7713/ This

example has two receiver groups defined with two receivers in each group. When a request
passes through the API Gateway, an event will be published to one selected receiver in each
group.

Tip: You can give a comma-separated list of URLs as the to manage failover. If<BAMServerURL>
the BAM server in the first URL fails, the request will be routed to the second one.

Tip: If so, Are you working with an API Manager cluster?

http://www.cygwin.com/

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 308

1.

2.

3.

1.
2.

Specify the datasource definition under the element in the <datasource> <APIM_HOME>/repository/co

 file. The tables are created automatically when the Hivenf/datasources/master-datasources.xml

script runs. You just need to create the schema. The example below connects to a MySQL instance:

<datasource>
 <name>WSO2AM_STATS_DB</name>
 <description>The datasource used for getting statistics to API
Manager</description>
 <jndiConfig>
 <name>jdbc/WSO2AM_STATS_DB</name>
 </jndiConfig>
 <definition type="RDBMS">
 <configuration>

<url>jdbc:mysql://localhost:3306/stats_db?autoReconnect=true&</url>
 <username>db_username</username>
 <password>db_password</password>
 <driverClassName>com.mysql.jdbc.Driver</driverClassName>
 <maxActive>50</maxActive>
 <maxWait>60000</maxWait>
 <testOnBorrow>true</testOnBorrow>
 <validationQuery>SELECT 1</validationQuery>
 <validationInterval>30000</validationInterval>
 </configuration>
 </definition>
 </datasource>

Save the database driver JAR inside both and <AM_HOME>/repository/components/lib <BAM_HOME>
 folders./repository/components/lib

Next, prepare BAM to collect and analyze statistics from the API Manager.

Configure WSO2 BAM

Download WSO2 BAM 2.5.0 from location: .http://wso2.com/products/business-activity-monitor
Apply an offset of 3 to the default BAM port by editing the f<BAM_HOME>/repository/conf/carbon.xml
ile.

<Offset>3</Offset>

Configure the element as given above in all API Gateway nodes<APIUsageTracking>
Configure the following sub elements under the element in the API<APIUsageTracking>
Publisher and Store nodes:

<DataSourceName>jdbc/WSO2AM_STATS_DB</DataSourceName>

If you use , enable the indestination-based usage tracking <APIUsageTracking> element
the Publisher node and connect to a running BAM instance. This is because the API Manager
uses a separate BAM mediator to do destination based usage tracking.

The database is not available in direWSO2AM_STATS_DB <BAM_HOME>/repository/database
ctory at this point. It is created only after BAM starts up.

http://wso2.com/products/business-activity-monitor

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 309

2.

3.

4.

5.

6.

1.

2.

3.

This increments all ports used by the server by 3, which means the BAM server will run on port 9446. Port
offset is used to increment the default port by a given value. It avoids possible port conflicts when multiple
WSO2 products run in same host.
Do the following changes in fil<BAM_HOME>/repository/conf/datasources/bam_datasources.xml
e:

Copy/paste definition from the API Manager's file.WSO2AM_STATS_DB master-datasources.xml
You edited it in step 2. is used to fetch analytical data from the database.WSO2AM_STATS_DB
Uncomment the hostName element in <BAM_HOME>/repository/conf/data-bridge/data-bri

 file and give the IP address instead of localhost. You can get the IP from the dge-config.xml <API
 file's, elemeM_HOME>/repository/conf/api-manager.xml <BAMServerURL><BAM host IP>

nt.

 <thriftDataReceiver>
 <hostName>localhost</hostName>
 <port>7611</port>
 <securePort>7711</securePort>
</thriftDataReceiver>

Copy the file to directory <APIM_HOME>/statistics/API_Manager_Analytics.tbox <BAM_HOME>/r
. epository/deployment/server/bam-toolbox

If this folder is not in the BAM installation directory by default, create it. The toolbox describes the information
collected, how to analyze the data, as well as the location of the database where the analyzed data is stored.
Open file and change the port to <BAM_HOME>/repository/conf/etc/hector-config.xml localhost:9

. You must add the other nodes too when configuring a clustered setup.163

<Nodes>localhost:9163</Nodes>

Restart BAM server by running .<BAM_HOME>/bin/wso2server.[sh/bat]

Troubleshoot common issues

Given below is how to do troubleshoot some common issues users come across:

Do you get an out of memory issue?
See the for recommendations to tune the server for optimal performance.performance tuning guide
Do you get an exception as Cassandra?unable to connect to server
Check if you changed the Cassandra port according to the port offset applied to the default BAM port. See St

 under configuring BAM section.ep 3
Do you get a on the BAM console? connection refused exception
This happens when you execute Hive scripts prior to changing the default port. Add the following line at the
beginning of the Hive scripts and rerun: You can find drop table <hive_cassandra_table_name>;
the Hive scripts deployed with the toolbox file, which is inside <BAM_HOME>/repository/deployment/se

 folder. For information, see in WSO2 BAM documentation.rver/bam-toolbox Editing an Analytic Script

Change the statistics database

If you are using the or older, replace the port of BAM 2.4.1 WSO2BAM_CASSANDRA_DATASOUR
CE in URL (: /EVENT_KSjdbc:cassandra://localhost 9163). Note that localhost is used
here; not the machine IP. Cassandra is bound by default on localhost, unless you change the
data-bridge/data-bridge-config.xml file.

This step is not needed if you are using WSO2 BAM 2.5.0.

http://localhost:9163
http://localhost:9163
http://docs.wso2.org/business-activity-monitor/Adding+and+Editing+Analytic+Scripts#AddingandEditingAnalyticScripts-Editingananalyticscript

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 310

After configuring WSO2 BAM to render and produce statistics of APIs hosted and managed in the API Manager, you
can view them through various statistical dashboards in the API Publisher, depending on your permission levels. For
information, see .Viewing API Statistics

1.
2.
3.

4.

1.

2.

3.

To use a different database than the default H2 for statistical publishing, you must change the properties of the
datasource element, and additionally delete some metadata tables created by previous executions of the Hive script,
if there are any.

To delete the metadata tables,

Log in to BAM management console and select in menu.Add Analytics
Go to the Script Editor in the window that opens.
Execute the following script.

drop TABLE APIRequestData;
drop TABLE APIRequestSummaryData;
drop TABLE APIVersionUsageSummaryData;
drop TABLE APIResourcePathUsageSummaryData;
drop TABLE APIResponseData;
drop TABLE APIResponseSummaryData;
drop TABLE APIFaultData;
drop TABLE APIFaultSummaryData;
drop TABLE APIDestinationData;
drop TABLE APIDestinationDataSummaryData;

If there are previous executions of the Hive scripts, manually execute them again by going to Main >
 in the management console of BAM. Alternatively, you can wait until the periodical executionAnalytics > List

time occurs.

u can configure the API Manager to track runtime statistics of API invocations through Google Analytics (http://www.
). Google Analytics is a service that allows you to track visits to a website and generategoogle.com/analytics

detailed statistics on them.

This guide explains how to setup API Manager in order to feed runtime statistics to Google analytics for
summarization and display.

Setup a Google Analytics account if not subscribed already and receive a Tracking ID, which is of the format
"UA-XXXXXXXX-X". A Tracking ID is issued at the time an account is created with Google Analytics.
Log in to the API Manager management console () using admin/adminhttps://localhost:9443/carbon
credentials and go to menu.Main -> Resources -> Browse

Navigate to /_system/governance/apimgt/statistics/ga-config.xml file.

http://www.google.com/analytics
http://www.google.com/analytics

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 311

3.

4.

5.

6.

7.

Change the <Enabled> element to , set your tracking ID in <TrackingID> element and .true Save

API Manager is now integrated with Google Analytics. A user who has subscribed to a published API through
the API Store should see an icon as after logging into their Google Analytics account. Click on Real-Time
this icon and select .Overview
Invoke the above API using the embedded (or any third-part rest client such as cURL).WSO2 REST Client

Real-time statistics

This is one invocation of the API. Accordingly, Google Analytics graphs and statistics will be displayed at
runtime. This example displays the per second graph and 1 user as active.PageViews

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 312

7.

Report statistics

Google analytics reporting statistics take more than 24 hours from the time of invocation to populate. Shown
below is a sample Dashboard with populated statistics.

There are widgets with statistics related to Audience, Traffic, Page Content, Visit Duration etc. You can add
any widget of your preference to dashboard.

Viewing API Statistics

API statistics are provided in both API Publisher and API Store Web applications. Apart from the number of
subscriptions per API, all other statistical dashboards require that an instance of WSO2 Business Activity Monitor
(version 2.3.0 or above) is installed. For instructions to set up BAM, see . OncePublishing API Runtime Statistics
BAM is set up, follow the instructions below to view statistics through the API Publisher.

First, trigger some activities via the API Gateway by invoking a few APIs.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 313

The sections below explain how to access the statistical dashboards:
API Publisher statistics
API Store statistics

API Publisher statistics

Log in to the API Publisher. If you have API creator and publisher privileges, the statistical menus that you see
change as described below:

If you have permission as , the menu will be visible in the left panel of the APIpublisher All Statistics
Publisher.

If you have permission to create APIs, in addition to the menu, you also see the meAll Statistics Statistics
nu in the left panel of the API Publisher. The latter shows stats specific to the APIs created by you.

Anyone who can create and/or publish APIs can view API-level usage and subscription statistics by clicking
on a selected API and referring to its and tabs. Versions Users

The graphs you see in the API Manager statistical dashboards before setting up the BAM are just samples.
They are not based on real runtime statistics of your server.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 314

Several examples of usage and performance statistics are given below:

Number of subscriptions per API (across all versions of an API)

Number of API calls being made per API (across all versions of an API)

The subscribers who did the last 10 API invocations and the APIs/versions they invoked

If you want to see destination-based usage tracking, you must first enable it. See API Usage by
Destination.

https://docs.wso2.com/display/APIMShared/View+API+Statistics

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 315

1.

Usage of an API and from which resource path (per API version)

Number of times a user has accessed an API

The number of API invocations that failed to reach the endpoint per API per user
In a faulty API invocation, the message is mediated though the sequence. By default, the APIfault
Manager considers an API invocation to be faulty when the backend service is unavailable.

API Usage by Destination
An overview of the requests that leave the API Gateway to destination endpoints. It's particularly useful when
the same API can reach different destinations such as load-balanced endpoints. This graph is not enabled by

 default. You must do it manually as follows:
Enable usage tracking in the file:<APIM_HOME>/repository/conf/api-manager.xml

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 316

Several examples of usage and performance statistics are given below:

1.

2.

<APIUsageTracking>
 <Enabled>true</Enabled>
</APIUsageTracking>

When creating the API, enable the graph from the tab of the API Publisher UI:Implement

API Store statistics

Log in to the API Store. You can self subscribe to the store. Next, click the Statistics menu.

API usage per application

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 317

Users who make the most API invocations, per application

API usage from resource path, per application

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 318

Number of faulty API invocations, per application
In a faulty API invocation, the message is mediated though the sequence. By default, the APIfault
Manager considers an API invocation to be faulty when the backend service is unavailable.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 319

1.
2.

Samples
The WSO2 API Manager comes with a set of working samples that demonstrate some of its basic features and
capabilities. The following topics provide information on executing these samples and evaluating their results.

Setting up the Samples
Deploying and Testing YouTube API
Generating Billing Data
Invoking APIs using a Web App Deployed in WSO2 AS
Deploying and Testing a Wikipedia API

Setting up the Samples

The API Manager binary distribution comes with a number of samples to demonstrate API Manager's basic
functionality. These samples are located in folder. Inside this directory, there are sub<APIM_HOME>/samples
directories for each sample. Each sub directory contains the relevant configurations, scripts and instructions
required to run the a sample. Each sample contains an script, which drives the API Manager via aAPIPopulator
REST API.

The sections below describe the generic setup instructions and prerequisites to run API Manager samples:
Prerequisites
Setting up samples

Prerequisites

Java Development Kit/JRE version 1.6.* or 1.7.*
Apache Ant 1.6.x or later
An HTTP client tool such as cURL () http://curl.haxx.se
A JavaScript compatible web browser
An active Internet connection

Setting up samples

Download and install the API Manager according to the instructions given in .Getting Started
Before installing samples, you must configure libraries. Go to directory using a command<APIM_HOME>/bin
prompt (on Windows) or text Linux console (on Linux) and type command. This step populates masterant
data required for the API Manager to start up. For example, on Windows:

Executing these steps only once is enough to try multiple samples in a single API Manager installation.

http://curl.haxx.se
https://docs.wso2.com/display/AM140/Getting+Started

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 320

Samples Setup

.Running the API Manager

2.

3.

4.

5.

6.

Start the API Manager by executing (on Windows) or <APIM_HOME>/bin/wso2server.bat <APIM_HOME
 (on Linux). For more information, see This step also>/bin/wso2server.sh

populates more master data required for the server to start up.
Next, shut down the API Manager.

Run the command inside directory. An output similar to followingant <APIM_HOME>/samples/Data
appears:

It executes the , which creates two user accounts as and UserPopulator.sql provider1 subscriber1.
You can use them to log in to the API Publisher and API Store respectively.
Start the API Manager again and log in to the API Publisher usi()http://localhost:9763/publisher
ng username/password as provider1/provider1. Similarly, log in to the API Store (https://localhost:94

 using username/password as subscriber1/subscriber1.)43/store

Next, proceed to executing the samples as described from the next section onwards.

Deploying and Testing YouTube API

Introduction
Prerequisites
Building the Sample
Executing the Sample

Introduction

This sample demonstrates how to subscribe to a published API and consume its functionality using the API Store
Web application. The API used here provides YouTube feeds.

Prerequisites

1. Execute the steps in . When you are done, you will have the API Manager started and the relevant
scripts run to create user accounts for API Publisher and API Store.
Building the Sample

It is a must to shut down the server before executing step 5 below.

https://docs.wso2.com/display/AM140/Running+the+Product
http://localhost:9763/publisher/
https://localhost:9443/store
https://localhost:9443/store

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 321

1. First, we need to add an API in the API Publisher and publish it to the API Store. To do that, simply run the
APIPopulator.sh (for Linux) or APIPopulator.bat (for Windows) files from folder,
<AM_HOME>/samples/YoutubeFeeds.

2. The script will add an API to the API Publisher in Published state. This API can then be consumed by any user
signed in to the API Store.

Executing the Sample

Subscribing to the API

1. Log in to the () with credentials subscriber1/subscriber1.API Store https://localhost:9443/store

2. Click the tab at the top of the page and select the YoutubeFeeds API.APIs

3. Next, subscribe to this API. Simply select the default application and throttling tier as .Gold

4. You will be asked to navigate to tab.My Subscriptions

5. Next, you can generate a key to the application. This key allows you to invoke APIs subscribed under a given
application. Click on the option to obtain an Application key. For example,Generate

Invoking the API

6. Once you have obtained a key, you can invoke the API using a REST client of your choice. In this example, we
use cURL ().http://curl.haxx.se

7. Copy and paste following into a new console window and execute it.

curl -H "Authorization :Bearer 9nEQnijLZ0Gi0gZ6a3pZICktVUca"
http://localhost:8280/youtube/1.0.0/most_popular

where, access token = . Replace this value with the access token you9nEQnijLZ0Gi0gZ6a3pZICktVUca
generated through the API Store in step 5 above.

https://localhost:9443/store
http://curl.haxx.se/

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 322

Installation Prerequisites.

1.

The access token is passed in the Authorization header as a value of "Bearer". The Authorization header of the
message is prefixed by the string "Bearer". This is because, WSO2 API Manager enforces OAuth security on all the
published APIs. Any consumer that talks to the API Manager should send their credential (application key) as per
the OAuth bearer token profile. If you don't send an application key or send a wrong key, you will receive a 401
Unauthorized response in return.

8. You should be able to see results from YouTube on your console. For example,

<?xml version='1.0' encoding='UTF-8'?>
<feed xmlns='http://www.w3.org/2005/Atom' xmlns:app='http://purl.org/atom/app#'
xmlns:media='http://search.yahoo.com/mrss/'
xmlns:openSearch='http://a9.com/-/spec/opensearchrss/1.0/'
xmlns:gd='http://schemas.google.com/g/2005'
xmlns:yt='http://gdata.youtube.com/schemas/2007'>
<id>http://gdata.youtube.com/feeds/api/standardfeeds/most_popular</id>
<updated>2012-07-26T04:51:52.363-07:00</updated>
<category scheme='http://schemas.google.com/g/2005#kind'
term='http://gdata.youtube.com/schemas/2007#video'/>
<title type='text'>Most Popular</title>
<logo>http://www.youtube.com/img/pic_youtubelogo_123x63.gif</logo>
<link rel='alternate' type='text/html' href='http://www.youtube.com/browse?s=bzb'/>...

9. Access various other feeds in the YouTube API by changing the last segment of the invoked URL. For example,

curl -H "Authorization :Bearer 9nEQnijLZ0Gi0gZ6a3pZICktVUca"
http://localhost:8280/youtube/1.0.0/top_rated
curl -H "Authorization :Bearer 9nEQnijLZ0Gi0gZ6a3pZICktVUca"
http://localhost:8280/youtube/1.0.0/most_shared
curl -H "Authorization :Bearer 9nEQnijLZ0Gi0gZ6a3pZICktVUca"
http://localhost:8280/youtube/1.0.0/most_viewed

Replace with the access token you generated through the API Store in step 59nEQnijLZ0Gi0gZ6a3pZICktVUca
above.

Generating Billing Data

Introduction
Prerequisites
Building and running the sample

Introduction

This sample demonstrates how to setup WSO2 Business Activity Monitor (BAM) to collect and summarize runtime
statistics from the WSO2 API Manager and generate bills for API consumers on usage.

Prerequisites

Java Development Kit/JRE version 1.6.* or 1.7.*. Also see
Download and install using the instructions given in BAM Installation Guide: WSO2 BAM 2.4.1 or later docs.

.wso2.org/business-activity-monitor/Getting+Started

Building and running the sample

Configuring BAM

Open file where <BAM_HOME> is the BAM binary<BAM_HOME>/repository/conf/carbon.xml
distribution folder that was downloaded as a prerequisite above. Change the carbon.xml file's port offset to 1.

http://docs.wso2.org/business-activity-monitor/Getting+Started
http://docs.wso2.org/business-activity-monitor/Getting+Started

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 323

Default Ports of WSO2 Products

1.

2.

3.

4.

This is done to avoid any port conflicts of running two WSO2 Carbon instances in the same machine.

<Offset>1</Offset>
Copy the in folder to API_Manager_Analytics.tbox <APIM_HOME>/samples/Billing <BAM_HOME>/

 folder. Create the directory, if it doesn'trepository/deployment/server/bam-toolbox bam-toolbox
exist already.

The API Manager Analytic Toolbox : A toolbox is an installable archive, with a .tbox extension. It contains
necessary artifacts that models a complete usecase, from collecting data, analyzing through defined Hive
scripts to summarizing data through gadgets, Jaggery scripts and other dashboard components.
Connect the datasource to the database where the analytical data is stored using the <BAM_HOME>/reposi

 file as follows.tory/conf/datasources/master-datasources.xml In the example, WSO2AM_STATS_
 is the datasource used to fetch the analytical data stored in an H2 database.DB If you want to use a different

database, see .Changing the statistics database

<datasource>
 <name>WSO2AM_STATS_DB</name>
 <description>The datasource used for getting statistics to API
Manager</description>
 <jndiConfig>
 <name>jdbc/WSO2AM_STATS_DB</name>
 </jndiConfig>
 <definition type="RDBMS">
 <configuration>
 <!-- JDBC URL to query the database -->

<url>jdbc:h2:repository/database/APIMGTSTATS_DB;AUTO_SERVER=TRUE</url>
 <username>wso2carbon</username>
 <password>wso2carbon</password>
 <driverClassName>org.h2.Driver</driverClassName>
 <maxActive>50</maxActive>
 <maxWait>60000</maxWait>
 <testOnBorrow>true</testOnBorrow>
 <validationQuery>SELECT 1</validationQuery>
 <validationInterval>30000</validationInterval>
 </configuration>
 </definition>
</datasource>

Because you changed the default BAM port in step 2 above, you must change the Cassandra port given in
JDBC connection url in the following datasource configuration found in bam-datasources.xml file. (In WSO2
BAM 2.4.0, this is done in). Since the port offset is 1, the Cassandra port mustmaster-datasources.xml
b e 9 1 6 1 .

For a list of default ports used by WSO2 products, see .

If you have to the API_Manager_Analytics.tbox folder before, then<BAM_HOME>/statistics
you have to uninstall it first and install the new toolbox through the BAM Admin Console. Else, the
Hive script used to summarize data on a monthly basis will not get executed.

http://docs.wso2.org/wiki/display/AM150/Default+Ports+of+WSO2+Products

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 324

4.

5.

6.

1.

2.

<datasource>
 <name>WSO2BAM_CASSANDRA_DATASOURCE</name>
 <description>The datasource used for Cassandra data</description>
 <definition type="RDBMS">
 <configuration>
 <url>jdbc:cassandra://localhost:9161/EVENT_KS</url>
 <username>admin</username>
 <password>admin</password>
 </configuration>
 </definition>
</datasource>

Add the Cassandra port in the element of the <Nodes> <BAM_HOME>/repository/conf/etc/hector-c
 file.onfig.xml

Start WSO2 BAM server by running (on Windows) and (on Linux)wso2server.bat wso2server.sh

Configuring API Manager

To enable API statistics collection, configure the following properties in <APIM_HOME>/repository/conf/
 file. Ensure that name is the same as JNDI config name inapi-manager.xml <DataSourceName>

master-datasources.xml file in BAM.

<!-- Enable/Disable the API usage tracker. -->
<Enabled>true</Enabled>

<!-- JNDI name of the data source to be used for getting BAM statistics.This data
source should
 be defined in the master-datasources.xml file in conf/datasources directory. -->
<DataSourceName>jdbc/WSO2AM_STATS_DB</DataSourceName>

<!-- Enable/Disable Usage metering and billing for api usage -->
<EnableBillingAndUsage>true</EnableBillingAndUsage>

Configure the data source definition in <APIM_HOME>/repository/conf/datasources/master-datas
 file.ources.xml

Note: Replace < in the configuration below with the path to the actual BAM distribution locationBAM_HOME>
and the JNDI names must match the ones defined earlier in API Manager.

If you run the Hive scripts before changing the default Cassandra port according to the BAM port
offset, you keep getting an exception. To overcome this, add the following line at the beginning of the
Hive script and rerun.
drop table <hive_cassandra_table_name>;

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 325

Monetization in the menu bar at the top of the page

2.

3.

<datasource>
 <name>WSO2AM_STATS_DB</name>
 <description>The datasource used for getting statistics to API
Manager</description>
 <jndiConfig>
 <!-- This jndi name should be same as the DataSourceName defined in
api-manager.xml -->
 <name>jdbc/WSO2AM_STATS_DB</name>
 </jndiConfig>
 <definition type="RDBMS">
 <configuration>
 <!-- JDBC URL to query the database -->

<url>jdbc:h2:<BAM_HOME>/repository/database/APIMGTSTATS_DB;AUTO_SERVER=TRUE</url>
 <username>wso2carbon</username>
 <password>wso2carbon</password>
 <driverClassName>org.h2.Driver</driverClassName>
 <maxActive>50</maxActive>
 <maxWait>60000</maxWait>
 <testOnBorrow>true</testOnBorrow>
 <validationQuery>SELECT 1</validationQuery>
 <validationInterval>30000</validationInterval>
 </configuration>
 </definition>
</datasource>

Copy file into <APIM_HOME>/samples/Billing/billing-conf.xml <APIM_HOME>/repository/con
 folder.f

Viewing billing information

Once the above configurations are done, log in to API Store Web application (https://<YourHostName>:9443/
). You will see the menu items required for API .store

Invoking APIs using a Web App Deployed in WSO2 AS

Introduction
Prerequisites
Building the sample
Executing the sample

Introduction

This sample demonstrates a pizza ordering scenario with backend services deployed in WSO2 Application Server
(AS) to which we create APIs in WSO2 API Manager. Then, we invoke those APIs using a Web application
deployed in WSO2 AS.

Prerequisites

Download and install WSO2 Application Server. For instructions, see .Installation
As you run the Application Server on the same server as the API Manager, increment the default port of the
Application Server to avoid port conflicts. To do this, go to a<AS_HOME>/repository/conf/carbon.xml

 nd change <Offset>2</Offset>.
Building the sample

If you are a new user, there will not be any billing information at the beginning.

http://docs.wso2.org/application-server/Getting+Started

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 326

1.

2.

3.

1.

2.

3.

4.
5.

6.

Go to in command shell and run <APIM_HOME>/samples/PizzaShack/pizza-shack-api mvn clean

 to build the sample.install

Go to in command shell and run <APIM_HOME>/samples/PizzaShack/pizza-shack-web mvn clean
.install

See step 7 below .if you are rebuilding the sample

Executing the sample

Log in to the API Publisher () and create the following APIs.https://localhost:9443/publisher

Delivery API

 API Name= pizzaShack
 Context = /pizzashack/delivery
 Version = 1.0.0
 Production Endpoint
URL=http://localhost:9765/pizzashack-api-1.0.0/api/delivery
 API Resources =Keep the default values

 Order API

 API Name= pizzashack-order
 Context = /pizzashack/order
 Version = 1.0.0
 Production Endpoint
URL=http://localhost:9765/pizzashack-api-1.0.0/api/order
 API Resources =Keep the default values

 Menu API

 API Name= pizzashack-menu
 Context = /pizzashack/menu
 Version = 1.0.0
 Production Endpoint
URL=http://localhost:9765/pizzashack-api-1.0.0/api/menu
 API Resources =Keep the default values

Navigate to the tab of each API and promote them to state. This will push the APIsLifecycles PUBLISHED
to the Gateway and they will be available for subscription in the API Store.
Log in to the API Store () and click on each API created earlier. Next, subscribe tohttps://localhost:9443/store
each of them using the default application.
After subscription, a message appears. Choose .Go to My Subscriptions
The page opens. Create a production key by clicking the button associated with it.Subscriptions Generate
You also have the option to increase the default token validity period, which is 1 hour.
You get the access token, a consumer key and a consumer secret. Replace the consumer key and secret
pair in <APIM_HOME>/samples/PizzaShack/pizza-shack-web/src/main/webapp/WEB-INF/web.

 with the newly generated ones. For example,xml

<context-param>
 <param-name>consumerKey</param-name>
 <param-value>szsHscDYLeKUcwA1GhPARQlflusa</param-value>
</context-param>
<context-param>
 <param-name>consumerSecret</param-name>
 <param-value>wJEfRDE3JeFnGMuwVNseNzsXM1sa</param-value>
</context-param>

https://localhost:9443/publisher
https://localhost:9443/store

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 327

.Samples Setup

6.

7.

8.

9.

10.

11.

1.

2.

3.
4.

5.
6.

7.

8.

You now have three APIs subscribed under an application and an access token to the application. Next, we
deploy a Web application in the Application Server and use it to invoke the APIs.
Rebuild the sample.

Start WSO2 AS () and log into its management console. For instructions, see https://localhost:9445/console A
(If the AS documentation link doesn't load, please clear your browser cache and retry). S documentation

Deploy the following into the Application Server.

<APIM_HOME>/samples/PizzaShack/pizza-shack-web/target/pizzashack.war
<APIM_HOME>/samples/PizzaShack/pizza-shack-api/target/pizzashack-api-1.0.0.
war

After deploying, access the application using . It opens thehttp://localhost:9765/pizzashack
application in a Web browser.
You can use this application to order pizza. Internally, the APIs get invoked when you use the application.

Deploying and Testing a Wikipedia API

Introduction
Building the Sample
Executing the Sample

Introduction

This sample demonstrates how to subscribe to a published API and consume its functionality using the API Store
Web application. We use the Wikipedia API here.

Building the Sample

Execute the steps in When you are done, you will have the API Manager started and the relevant
scripts run to create user accounts for API Publisher and API Store.

Executing the Sample

If you haven't done so already, start the API Manager and log in to the API Publisher(http://localhost:
 using credentials provider1/provider1.)9763/publisher

There are no APIs created yet. To create one and publish it to the API Store, run the following:
On Linux: <APIM_HOME>/samples/WikipediaAPI/APIPopulator.sh
On Windows: <APIM_HOME>/samples/WikipediaAPI/APIPopulator.bat

Refresh the API Publisher to see the Wikipedia API created.
You can now access Wikipedia through this newly-deployed API. Log in to the API Store (http://localho

 using credentials subscriber1/subscriber1.)st:9763/store
Select the tab at the top of the page, and create a new application. Provide any name you like.Applications
Select the tab at the top of the page, select the API and subscribe to it using theAPIs WikipediaAPI
newly-created application.
Go to the tab and select your application. Click the button associated with theMy Subscriptions Generate
production system to obtain an application access token.

a.

b.
c.

If you are rebuilding , execute the following steps:this sample

Remove the following module from file: <APIM_HOME>/samples/PizzaShack/pom.xml <m
odule>pre-processor</module>.
Delete the file from PizzaShack.zip <APIM_HOME>/samples/PizzaShack.
Go to in command shell and run <APIM_HOME>/samples/PizzaShack mvn clean
install.

The scripts used for this sample do not work in Windows. Support for Windows will be added in an
upcoming release.

https://localhost:9444/console
http://docs.wso2.org/application-server/Getting+Started
http://docs.wso2.org/application-server/Getting+Started
http://localhost:9765/pizzashack
http://localhost:9763/publisher/
http://localhost:9763/publisher/
http://localhost:9763/store
http://localhost:9763/store

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 328

8.

9.

You are now ready to invoke the API. Copy and paste following into a new console and execute it. Be sure to
replace the string '9nEQnijLZ0Gi0gZ6a3pZICktVUca' with the application access token you obtained earlier.

curl -H "Authorization :Bearer 9nEQnijLZ0Gi0gZ6a3pZICktVUca"
"http://localhost:8280/wikipedia/1.0.0?format=json&action=query&titles=MainPage&p
rop=revisions&rvprop=content"

You must see the JSON result from the Wikipedia API on you console. For example,

{"query":{"pages":{"5982813":{"pageid":5982813,"ns":0,"title":"MainPage","revisio
ns":[{"contentformat":"text/x-wiki","contentmodel":"wikitext", "*":"#Redirect
[[Main Page]]\n\n{{Redr|mod|rcc}}"}]}}}}...

See for more information about the Wikipedia API. You can tryhttp://www.mediawiki.org/wiki/API:Main_page
out various API actions and features similar to step 9.

http://www.mediawiki.org/wiki/API:Main_page

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 329

Published APIs
The following topics discuss the APIs exposed from the API Publisher and API Store Web applications using which
you can create and manage APIs. You can consume APIs directly through their UIs or an external REST client like
cURL or the . The Token APIs exposed in API Manager are also described here.WSO2 REST client

Publisher APIs
Store APIs
Token API
WSO2 Admin Services

Publisher APIs

Publisher APIs provide the following REST resources.
[] [] [] [] [] [] [] [] [Login Logout Add API Update API Get All APIs Get an API Remove an API Copy an API Che

] [] [] [] [ck Older Version Change API Status Add/Update an API Document Remove an API Document Get all
] [] []Throttling Tiers Check if API Exists Validate Roles

Login

Description Log in to API Publisher web application.

URI http://localhost:9763/publisher/site/blocks/user/login/ajax/login .jag

URI
Parameters

action=login&username=xxx&password=xxx

HTTP
Methods

POST

Example curl -X POST -c cookies -dhttp://localhost:9763/publisher/site/blocks/user/login/ajax/login.jag
'action=login&username=admin&password=admin'

Logout

Description Log out from API Publisher web application.

URI http://localhost:9763/publisher/site/blocks/user/login/ajax/login .jag

URI
Parameters

?action=logout

HTTP Methods GET

Example curl -b cookies http://localhost:9763/publisher/site/blocks/user/login/ajax/login.jag?action=logou
t

Add API

Description Add a new API.

URI http://localhost:9763/publisher/site/blocks/item-add/ajax/add.jag

URI
Parameters

Given below are the parameters that you can pass with an Add-API call. Mandatory ones are marked with a *.

Note: When you access any API other than the login and logout APIs through an external REST client such
as cURL, first invoke the login API to ensure that user is authenticated. When the login API is invoked, the
system stores the generated session cookie in a file, which we use in the next API invocations.

The responses is a JSON message.

http://localhost:9763/publisher/site/blocks/user/login/ajax/login
http://localhost:9763/publisher/site/blocks/user/login/ajax/login.jag
http://localhost:9763/publisher/site/blocks/user/login/ajax/login.jag
http://localhost:9763/publisher/site/blocks/user/login/ajax/login
http://localhost:9763/publisher/site/blocks/user/login/ajax/login.jag
http://localhost:9763/publisher/site/blocks/user/login/ajax/login.jag?action=logout
http://localhost:9763/publisher/site/blocks/user/login/ajax/login.jag?action=logout
http://localhost:9763/publisher/site/blocks/item-add/ajax/add.jag

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 330

Parameter
name

Syntax

Action* action=addAPI

Name* name=xxx

Context* context=/xxx

Version* version=x.x.x

API visibility visibility=<public|private|restricted>

The default is public. If you select restricted , mention to which roles as follows: .visibility=restricted&roles=role1,role2,role3

 You can read more about API visibility from here .

Thumbnail
image

thumbUrl<URL>

To add a thumbnail image, create a file object of that thumbnail and pass it with the thumbUrl parameter. See sample in this method.getMultipartEntity()

Description description=xxx

Tags tags=x,y,z

Resources* resourceCount=0&resourceMethod-0=GET&resourceMethodAuthType-0=Application&resourceMethodThrottlingTier-0=Unlimited

Endpoints* This example adds an HTTP production endpoint: endpoint_config={"production_endpoints":{"url":"<URL>","config": {"format":"leave-as- is","optimize":"leave-as-i
 s"," actionSelect":"fault"," actionDuration":60000} },"endpoint_type":"http"}

To give advanced endpoint configurations, add the JSON implementation inside "config:{}." If you don't have any advanced configurations, set it to null as ."config":null

You add sandbox endpoints in the same way. The only difference is that instead of , you give .production_endpoints sandbox_endpoints

If you want to add other types of endpoints like the Address and WSDL, follow the examples below:

For address endpoints:
endpoint_config={"production_endpoints":{"url":"http://service.endpoint.com","config":null},"endpoint_type":"address"}

: For WSDL endpoints
endpoint_config={"production_endpoints":{"url":"http://service.endpoint.com?WSDL","config":null},"wsdlendpointService":"EchoService",
"wsdlendpointPort":"EchoServiceSoapPort","wsdlendpointServiceSandbox":"","wsdlendpointPortSandbox":"","endpoint_type":"wsdl"}

: For failover endpoints
endpoint_config={"production_endpoints":{"url":"http://service.endpoint.com","config":null}, "production_failovers":{"url":"http://failover1.endpo
int.com","config":null}, {"url":"http://failover2.endpoint.com","config":null}],"sandbox_failovers":[],"endpoint_type":"failover"}

: For load balanced endpoints
endpoint_config" {"production_endpoints":[{"url":"http://service.endpoint1.com","config":null},{"url":"http://service.endpoint2.com","config":null
}], "algoCombo":"org.apache.synapse.endpoints.algorithms.RoundRobin","failOver":"True", "algoClassName":"org.apache.synapse.endpoints.algorithms.R
oundRobin", "sessionManagement":"simpleClientSession","sessionTimeOut":30,"endpoint_type":"load_balance"}

Endpoint
security
scheme

endpointType=<secured|nonsecured>

The default is non-secured but if you select 'secured', you must pass the credentials as follows: endpointType=secured&epUsername=<your username>& epPassword=<the password>

WSDL and
WADL

wsdl=xxx&wadl=xxx

https://docs.wso2.com/display/AM180/Key+Concepts#KeyConcepts-APIvisibility
https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/components/apimgt/org.wso2.carbon.apimgt.impl/1.2.2/src/main/java/org/wso2/carbon/apimgt/impl/publishers/WSO2APIPublisher.java
http://service.endpoint.com/
http://service.endpoint.com/?WSDL
http://service.endpoint.com/
http://failover1.endpoint.com/
http://failover1.endpoint.com/
http://failover2.endpoint.com/
http://service.endpoint1.com/
http://service.endpoint2.com/

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 331

Make default
version

To mark this version of the API as the from a group of versions, give .default version default_version_checked=default_version

The option means that you make this version the default in a group of different versions of the API. A default API can be invoked without specifying the version number in the URL. For Default Version
example, if you mark http://host:port/youtube/ 2.0 as the default version when the API has 1.0 and 3.0 versions as well, requests made to get automatically routed to version 2.0. http://host:port/youtube/

If you mark any version of an API as the default, you get two API URLs in its page in the API Store. One URL is with the version and the other is without. You can invoke a default version usingOverview
both URLs.

If you mark an unpublished API as the default, the previous default, published API will still be used as the default until the new default API is published (or prototyped).

Tier
Availability*

tiersCollection=<Gold,Silver,Bronze,Unlimited>

Transports http_checked=http&https_checked=https

Both are selected by default. If you want to set only the HTTP , leave the parameter empty as .transport https_checked http_checked=http&https_checked=&

Sequences If you want to engage a custom sequence to the API, give . explains how to create sequences and add them to the inSequence=<sequence name>&outSequence=<sequence name> This tutorial
registry.

Response
caching

responseCache=<enabled|disabled>

 It is disabled by default but if you enable it, pass the response cache timeout as follows: responseCache=enabled& cacheTimeout=300

See for more information.Configuring Caching

Subscriptions By default, subscription is allowed to the current tenant only.

Add the argument to to this API by all tenants. To enable subscription to selected tenants, use subscriptions=all_tenants enable subscriptions subscriptions=specific_tennats&tenant
. For example, .s=<tenant name> &subscriptions=all_tenants

See for more information.API visibility and subscription

Business
information

Add a section like this: bizOwner=<name>&bizOwnerMail=<e-mail address>&techOwner=<name>&techOwnerMail=<e-mail address>

HTTP
Methods

POST

Example curl -X POST -b cookies -d "action=addAPI&name=PhoneVerification&context=/phoneverify&version=1.0.0&visibility=public&thumbUrl=&description=Verify ahttp://localhost:9763/publisher/site/blocks/item-add/ajax/add.jag
phone number&tags=phone,mobile,multimedia&endpointType=nonsecured&wsdl=&wadl=&tiersCollection=Gold,Bronze&http_checked=http&https_checked=https resourceCount=0&resourceMethod-0=GET&resourceMet&
hodAuthType-0=Application&resourceMethodThrottlingTier-0=Unlimited&uriTemplate-0=/*&default_version_checked=default_version&bizOwner=xx&bizOwnerMail= &techOwner=xx&techOwnerMail=xx@ee.com ggg@ww.c

" -d'endpoint_config={"production_endpoints":{"url":" "}';om http://ws.cdyne.com/phoneverify/phoneverify.asmx","config":null},"endpoint_type":"http

Update API

Description Update an existing API.

URI http://localhost:9763/publisher/site/blocks/item-add/ajax/add.jag

URI
Parameters

Update API: Parameters are same as in Add API except that taction= and you can only update the following parameters: visibility, updateAPI humb
description, wsdl, wadl, tier,Url, tags, endpointType, http_checked, https_checked, endpoint_config (can change the endpoint URL etc,)

tiersCollection and can also add new resources. See example below.

HTTP
Methods

POST

http://hostport/
https://docs.wso2.com/display/AM180/Key+Concepts#KeyConcepts-APIvisibilityandsubscription
http://localhost:9763/publisher/site/blocks/item-add/ajax/add.jag
http://localhost:9763/publisher/site/blocks/item-add/ajax/add.jag

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 332

Example Update API : curl -X POST -b cookies -d "action= &name=PhoneVerificathttp://localhost:9763/publisher/site/blocks/item-add/ajax/add.jag updateAPI
ion&provider=admin&version=1.0.0&visibi l i ty=public&description=Youtube Live
Feeds&endpointType=nonsecured&http_checked=http&https_checked=https&&wsdl=&tags=youtube,gdata,multimedia&tier=Silver&thumbUrl=http://

Silverwww.10bigideas.com.au/www/573/files/pf-thumbnail-youtube_logo.jpg&context=/youtube&tiersCollection=Gold, &resourceCount=0&resourceM
" ethod-0=GET&resourceMethodAuthType-0=Application&resourceMethodThrottlingTier-0=Unlimited&uriTemplate-0=/*

-d'endpoint_config={"production_endpoints":{"url":" "}';http://gdata.youtube.com/feeds/api/standardfeeds","config":null},"endpoint_type":"http

Get All APIs

Description Lists all the created APIs.

URI http://localhost:9763/publisher/site/blocks/listing/ajax/item-list.jag

URI
Parameters

?action=getAllAPIs

HTTP Methods GET

Example curl -b cookies http://localhost:9763/publisher/site/blocks/listing/ajax/item-list .jag ?action=getAl
lAPIs

Get an API

Description Get details of a specific API.

URI http://localhost:9763/publisher/site/blocks/listing/ajax/item-list.jag

URI
Parameters

action=getAPI&name=xxx&version=xxx&provider=xxx

HTTP
Methods

POST

Example curl -X POST -b cookies -dhttp://localhost:9763/publisher/site/blocks/listing/ajax/item-list.jag
"action=getAPI&name=PhoneVerification&version=1.0.0&provider=admin"

Remove an API

Description Remove an API.

URI http://localhost:9763/publisher/site/blocks/item-add/ajax/remove.jag

URI
Parameters

action=removeAPI&name=xxx&version=xxx&provider=xxx

HTTP
Methods

POST

Example curl -X POST -b cookies -dhttp://localhost:9763/publisher/site/blocks/item-add/ajax/remove.jag
"action=removeAPI&name=PhoneVerification&version=1.0.0&provider=admin"

Copy an API

Description Copy an API to a newer version.

URI ew.jag http://localhost:9763/publisher/site/blocks/overview/ajax/overvi

URI
Parameters

action=createNewAPI&provider=xxx&apiName=xxx&version=xxx&newVersion=xxx

http://localhost:9763/publisher/site/blocks/item-add/ajax/add.jag
http://localhost:9763/publisher/site/blocks/listing/ajax/item-list.jag
http://localhost:9763/publisher/site/blocks/listing/ajax/item-list.jag
http://localhost:9763/publisher/site/blocks/listing/ajax/item-list.jag
http://localhost:9763/publisher/site/blocks/listing/ajax/itemlist.jag
http://localhost:9763/publisher/site/blocks/listing/ajax/item-list.jag?action=getAllAPIs
http://localhost:9763/publisher/site/blocks/listing/ajax/item-list.jag?action=getAllAPIs
http://localhost:9763/publisher/site/blocks/listing/ajax/item-list.jag
http://localhost:9763/publisher/site/blocks/listing/ajax/item-list.jag
http://localhost:9763/publisher/site/blocks/listing/ajax/item-list.jag
http://localhost:9763/publisher/site/blocks/item-add/ajax/remove.jag
http://localhost:9763/publisher/site/blocks/item-add/ajax/remove.jag
http://localhost:9763/publisher/site/blocks/overview/ajax/overview.jag

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 333

HTTP
Methods

POST

Example curl -X POST -b cookies -dhttp://localhost:9763/publisher/site/blocks/overview/ajax/overview.jag
"action=createNewAPI&provider=admin&apiName=PhoneVerification&version=1.0.0&newVersion=2.0.0&isDefaultVersion=default_version"

Check Older Version

Description Does older version of API exist.

URI .jag http://localhost:9763/publisher/site/blocks/life-cycles/ajax/life-cycles

URI
Parameters

?action=isAPIOlderVersionExist&provider=xxx&name=xxx&version=xxx

HTTP
Methods

POST

Example curl -X POST -b cookies http:publisher/site/blocks/life-cycles/ajax/life-cycles.jag?action=isAPIOlderVersionExist&provider=admin&name=Phone
Verification&version=1.0.0

Change API Status

Description Change the API's status.

URI .jag http://localhost:9763/publisher/site/blocks/life-cycles/ajax/life-cycles

URI
Parameters

action=updateStatus&name=xxx&version=1.0.0&provider=apiCreateName&status=PUBLISHED&publishToGateway=true&requireResubscription=true

HTTP
Methods

POST

Example curl -X POST -b cookies ' ' -dhttp://localhost:9763/publisher/site/blocks/life-cycles/ajax/life-cycles.jag
'action=updateStatus&name=PhoneVerification&version=1.0.0&provider=admin&status=PUBLISHED&publishToGateway=true&requireResubscription=true'

Add/Update an API Document

Description Add a new API document.

URI docs.jaghttp://localhost:9763/publisher/site/blocks/documentation/ajax/

URI
Parameters

:A d d D o c u m e n t
action=addDocumentation&provider=xxx&apiName=xxx&version=xxx&docName=xxx&docType=xxx&sourceType=xxx&docUrl=xxx&summary=xxx&docLocation=xxx&docVisibility=owner_only/private

Note that docVisibility is applicable only if you have enabled it. See .API documentation visibility

:U p d a t e D o c u m e n t
action=addDocumentation&mode=Update&provider=xxx&apiName=xxx&version=xxx&docName=xxx&docType=xxx&sourceType=xxx&docUrl=xxx&summary=xxx&docLocation=xxx

HTTP
Methods

POST

Example : curl -X POST -b cookies -dAdd Document http://localhost:9763/publisher/site/blocks/documentation/ajax/docs.jag
"action=addDocumentation&provider=admin&apiName=PhoneVerification&version=1.0.0&docName=testDoc&docType=how to&sourceType=inline&docUrl=&summary=testing&docLocation="

: action=addDocumentation& &provider=admin&apiName=PhonUpdate Document curl -X POST -b cookies -d "http://localhost:9763/publisher/site/blocks/documentation/ajax/docs.jag mode=Update
eVerification&version=1.0.0&docName=testDoc&docType= &sourceType= &docUrl=&summary=new summary&docLocation="how to inline

Remove an API Document

http://localhost:9763/publisher/site/blocks/overview/ajax/overview.jag
http://localhost:9763/publisher/site/blocks/life-cycles/ajax/life-cycles.jag
http://httppublisher
http://httppublisher
http://localhost:9763/publisher/site/blocks/life-cycles/ajax/life-cycles.jag
http://localhost:9763/publisher/site/blocks/life-cycles/ajax/life-cycles.jag
http://localhost:9763/publisher/site/blocks/documentation/ajax/docs.jag
https://docs.wso2.com/display/AM180/Key+Concepts#KeyConcepts-APIdocumentationvisibility
http://localhost:9763/publisher/site/blocks/documentation/ajax/docs.jag
http://localhost:9763/publisher/site/blocks/documentation/ajax/docs.jag

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 334

Description Remove an API document.

URI docs.jaghttp://localhost:9763/publisher/site/blocks/documentation/ajax/

URI
Parameters

action=removeDocumentation&provider=xxx&apiName=xxx&version=xxx&docName=xxx&docType=xxx

HTTP
Methods

POST

Example curl -X POST -b cookies -dhttp://localhost:9763/publisher/site/blocks/documentation/ajax/docs.jag
'action=removeDocumentation&provider=admin&apiName=PhoneVerification&version=1.0.0&docName=testDoc&docType=How
To'

Get all Throttling Tiers

Description Get the throttling tiers that can be applied to APIs

URI http://localhost:9763 /publisher/site/blocks/item-add/ajax/add.jag?

URI
Parameters

action=getTiers

HTTP Methods GET

Example curl -b cookies http://localhost:9763/publisher/site/blocks/item-add/ajax/add.jag? action=getTier
s

Check if API Exists

Description Check if an API by a given name exists in the API Publisher

URI http://localhost:9763/publisher/site/blocks/item-add/ajax/add.jag

URI
Parameters

action=isAPINameExist&apiName=<name of the API>

HTTP
Methods

GET

Example curl -b cookies "http://localhost:9763/publisher/site/blocks/item-add/ajax/add.jag?action=isAPINameExist&apiName=
"PhoneVerification

Validate Roles

Description Check if the user logged in user is any one in a given list of users

URI http://localhost:9763/publisher/site/blocks/item-add/ajax/add.jag

URI
Parameters

action=validateRoles&roles=<list of roles>

HTTP
Methods

GET

Example curl -b cookies "http://localhost:9763/publisher/site/blocks/item-add/ajax/add.jag?action=validateRo
"les&roles=admin

Store APIs

http://localhost:9763/publisher/site/blocks/documentation/ajax/docs.jag
http://localhost:9763/publisher/site/blocks/documentation/ajax/docs.jag
http://localhost:9763/publisher/site/blocks/documentation/ajax/docs.jag
http://localhost:9763/publisher/site/blocks/item-add/ajax/add.jag
http://localhost:9763/publisher/site/blocks/item-add/ajax/add.jag?action=isAPINameExist&apiName=echoservice
http://localhost:9763/publisher/site/blocks/item-add/ajax/add.jag?action=isAPINameExist&apiName=echoservice
http://localhost:9763/publisher/site/blocks/item-add/ajax/add.jag?action=isAPINameExist&apiName=echoservice
http://localhost:9763/publisher/site/blocks/item-add/ajax/add.jag?action=validateRoles&roles=admin
http://localhost:9763/publisher/site/blocks/item-add/ajax/add.jag?action=validateRoles&roles=admin
http://localhost:9763/publisher/site/blocks/item-add/ajax/add.jag?action=validateRoles&roles=admin

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 335

Store APIs provide the following REST resources.
[] [] [] [] [] [Login Logout User Signup Get all Paginated Published APIs Get Published APIs by Application Add

] [] [] [] [an Application Update an Application Get Applications Remove an Application Generate an Application
] [] [] [] [] [Key Add a Subscription List Subscriptions Remove a Subscription Get all Documentation Add an API

]Comment

Login

Description Log in to API Store.

URI http://localhost:9763/store/site/blocks/user/login/ajax/login.jag

URI
Parameters

action=login&username=xxx&password=xxx

HTTP
Methods

POST

Example curl -X POST -c cookies -dhttp://localhost:9763/store/site/blocks/user/login/ajax/login.jag
'action=login&username=admin&password=admin'

Logout

Description Log out from API Store.

URI http://localhost:9763/store/site/blocks/user/login/ajax/login.jag?action=logout

URI Parameters ?action=logout

HTTP Methods GET

Example curl -b cookies http://localhost:9763/store/site/blocks/user/login/ajax/login.jag?action=logout

User Signup

Description Add a new API Consumer.

URI http://localhost:9763/store/site/blocks/user/sign-up/ajax/user-add.jag

URI
Parameters

action=addUser&username=xxx&password=xxx&allFieldsValues=firstname|lastname|email

HTTP
Methods

POST

Example curl -X POST -b cookies -dhttp://localhost:9763/store/site/blocks/user/sign-up/ajax/user-add.jag
“action=addUser&username=user1&password=test123&allFieldsValues=firstname|lastname|email”

Get all Paginated Published APIs

Description Get a list of all published APIs in paginated form so that browsing is easier.

URI http://localhost:9763/store/site/blocks/api/listing/ajax/list.jag

Note: When you access any API other than the login and logout APIs through an external REST client such
as cURL, first invoke the login API to ensure that user is authenticated. When the login API is invoked, the
system stores the generated session cookie in a file, which we use in the next API invocations.

The responses is a JSON message.

http://localhost:9763/store/site/blocks/user/login/ajax/login.jag
http://localhost:9763/store/site/blocks/user/login/ajax/login.jag
http://localhost:9763/publisher/site/blocks/user/login/ajax/login.jag?action=logout
http://localhost:9763/publisher/site/blocks/user/login/ajax/login.jag?action=logout
http://localhost:9763/store/site/blocks/user/sign-up/ajax/user-add.jag
http://localhost:9763/store/site/blocks/user/sign-up/ajax/user-add.jag
http://localhost:9763/store/site/blocks/api/listing/ajax/list.jag

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 336

URI
Parameters

action= , tenant, start, endgetAllPaginatedPublishedAPIs

The and parameters determine the range of APIs you want to retrieve. For example, ifstart end
start=1 and end=10, the first 10 APIs that appear in the API Store will be returned. that both 0Note
and 1 represent the first API in the store, so start=0 and start=1 both specify that you want to start
with the first API.

HTTP
Methods

GET

Example To get the first 100 APIs in the API Store:

curl -b cookies "http://localhost:9763/store/site/blocks/api/listing/ajax/list.jag?action=getAllPaginated
"PublishedAPIs&tenant=carbon.super&start=1&end=100

Get Published APIs by Application

Description Get a list of published APIs filtered by the subscribed Application. Login API needs be called prior
to calling this API.

URI http://localhost:9763/store/site/blocks/subscription/subscription-list/ajax/subscription-list.jag

URI
Parameters

action=getSubscriptionByApplication&app=App1

HTTP
Methods

GET

Example curl -b cookies 'http://localhost:9763/store/site/blocks/subscription/subscription-list/ajax/subscription
'-list.jag?action=getSubscriptionByApplication&app=DefaultApplication

Add an Application

Description Add a new application.

URI http://localhost:9763/store/site/blocks/application/application-add/ajax/application-add.jag

URI
Parameters

action=addApplication&application=xxx&tier=xxx&description=xxx&callbackUrl

HTTP
Methods

POST

Example curl -X POST -b cookies http://localhost:9763/store/site/blocks/application/application-add/ajax/appl
 - di c a t i o n - a d d . j a g

'action=addApplication&application=NewApp1&tier=Unlimited&description=&callbackUrl='

Update an Application

Description Update an existing application.

URI http://localhost:9763/store/site/blocks/application/application-update/ajax/application-update.jag

URI
Parameters

action=updateApplication&applicationOld=xxx&applicationNew=xxx&callbackUrlNew=xxx&descriptionNew=xxx&tier=xxx

Please note that the API is now deprecated. You can get the same functionalitygetAllPublishedAPIs
from .getAllPaginatedPublishedAPIs

http://localhost:9763/store/site/blocks/api/listing/ajax/list.jag
http://localhost:9763/store/site/blocks/application/application-list/ajax/application-list.jag
http://localhost:9763/store/site/blocks/application/application-list/ajax/application-list.jag
http://localhost:9763/store/site/blocks/application/application-list/ajax/application-list.jag
http://localhost:9763/store/site/blocks/api/listing/ajax/list.jag?action=getAllPublishedAPIs
http://localhost:9763/store/site/blocks/application/application-add/ajax/application-add.jag
http://localhost:9763/store/site/blocks/application/application-add/ajax/application-add.jag
http://localhost:9763/store/site/blocks/application/application-add/ajax/application-add.jag
http://localhost:9763/store/site/blocks/application/application-update/ajax/application-update.jag

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 337

HTTP
Methods

POST

Example curl -X POST -b cookies -dhttp://localhost:9763/store/site/blocks/application/application-update/ajax/application-update.jag
'action=updateApplication&applicationOld=NewApp1&applicationNew=NewApp2&tier=Unlimited&descriptionNew=&callbackUrlNew'

Get Applications

Description Get list of applications.

URI http://localhost:9763/store/site/blocks/application/application-list/ajax/application-list.jag

URI
Parameters

?action=getApplications

HTTP
Methods

GET

Example curl -b cookies http://localhost:9763/store/site/blocks/application/application-list/ajax/application-list
?action=getApplications.jag

Remove an Application

Description Remove an existing application.

URI http://localhost:9763/store/site/blocks/application/application-remove/ajax/application-remove.jag

URI
Parameters

action=removeApplication&application=xxx

HTTP
Methods

POST

Example curl -X POST -b cookies http://localhost:9763/store/site/blocks/application/application-remove/ajax/
 -d "action=removeApplication&application=NewApp2"application-remove.jag

Generate an Application Key

Description Generate the key and secret values for a new application.

URI -add/ajax/subscription-add.jaghttp://localhost:9763/store/site/blocks/subscription/subscription

URI
Parameters

action=generateApplicationKey&application=<app_name>&keytype=<PRODUCTION|SANDBOX>
&callbackUrl=<URL>&authorizedDomains=<The domains from which requests are allowed to the
APIs>&validityTime=<time duration in seconds>

HTTP
Methods

POST

Example curl -X POST -b cookies -add/ajax/suhttp://localhost:9763/store/site/blocks/subscription/subscription
bscription-add.jag -d 'action=generateApplicationKey&application=NewApp1&keytype=PROD&callb
ackUrl=&authorizedDomains=ALL&validityTime=360000'

Add a Subscription

Description Add a new API subscription.

URI -add/ajax/subscription-add.jaghttp://localhost:9763/store/site/blocks/subscription/subscription

http://localhost:9763/store/site/blocks/application/application-update/ajax/application-update.jag
http://localhost:9763/store/site/blocks/application/application-list/ajax/application-list.jag
http://localhost:9763/store/site/blocks/application/application-list/ajax/application-list.jag
http://localhost:9763/store/site/blocks/application/application-list/ajax/application-list.jag
http://localhost:9763/store/site/blocks/application/application-remove/ajax/application-remove.jag
http://localhost:9763/store/site/blocks/application/application-remove/ajax/application-remove.jag
http://localhost:9763/store/site/blocks/application/application-remove/ajax/application-remove.jag
http://localhost:9763/store/site/blocks/application/application-remove/ajax/application-remove.jag
http://localhost:9763/store/site/blocks/subscription/subscription-add/ajax/subscription-add.jag
http://localhost:9763/store/site/blocks/subscription/subscription-add/ajax/subscription-add.jag
http://localhost:9763/store/site/blocks/subscription/subscription-add/ajax/subscription-add.jag
http://localhost:9763/store/site/blocks/subscription/subscription-add/ajax/subscription-add.jag

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 338

URI
Parameters

To add a subscription by application ID: action= &name=xxx&version=xxx&provider=xxx&tier=xxx&addSubscription applicati
=xxxonId

To add a subscription by application name: action= &name=xxx&version=xxx&provider=xxx&tier=xxx&addAPISubscription a
=xxxpplicationName

HTTP
Methods

POST

Example curl -X POST -b cookies -d http://localhost:9763/store/site/blocks/subscription/subscription-add/ajax/subscription-add.jag
'action=addSubscription&name=TestAPI&version=1.0.0&provider=admin&tier=Gold&applicationId=1'
curl -X POST -b cookies -dhttp://localhost:9763/store/site/blocks/subscription/subscription-add/ajax/subscription-add.jag
'action=addAPISubscription&name=TestAPI&version=1.0.0&provider=admin&tier=Gold&applicationName=DefaultApplication'

List Subscriptions

Description List all API subscriptions.

URI -list/ajax/subscription-list.jaghttp://localhost:9763/store/site/blocks/subscription/subscription

URI
Parameters

action=getAllSubscriptions

HTTP
Methods

GET

Example curl -b cookies http://localhost:9763/store/site/blocks/subscription/subscription-list/ajax/subscription
?action=getAllSubscriptions-list.jag

Remove a Subscription

Description Remove an API subscription.

URI -remove/ajax/subscription-remove.jaghttp://localhost:9763/store/site/blocks/subscription/subscription

URI
Parameters

action=removeSubscription&name=xxx&version=xxx&provider=xxx&applicationId=xxx

HTTP
Methods

POST

Example curl -X POST -b cookies http://localhost:9763/store/site/blocks/subscription/subscription-remove/ajax/s
 -dubscription-remove.jag

'action=removeSubscription&name=PhoneVerification&version=1.0.0&provider=admin&applicationId=1'

Get all Documentation

Description Get all documents create for a given API

URI http://localhost:9763/store/site/blocks/api/listing/ajax/list.jag

URI
Parameters

action=getAllDocumentationOfApi&name=<API Name>&version=x.x.x&provider=<Name of the API provider>"

HTTP
Methods

GET

Example curl -b cookies "http://localhost:9763/store/site/blocks/api/listing/ajax/list.jag?action=getAllDocumentationOfApi&name=PhoneVerific
ation&version=1.0.0&provider=admin"

Add an API Comment

http://localhost:9763/store/site/blocks/subscription/subscription-add/ajax/subscription-add.jag
http://localhost:9763/store/site/blocks/subscription/subscription-add/ajax/subscription-add.jag
http://localhost:9763/store/site/blocks/subscription/subscription-add/ajax/subscription-add.jag
http://localhost:9763/store/site/blocks/subscription/subscription-list/ajax/subscription-list.jag
http://localhost:9763/store/site/blocks/subscription/subscription-list/ajax/subscription-list.jag
http://localhost:9763/store/site/blocks/subscription/subscription-list/ajax/subscription-list.jag
http://localhost:9763/store/site/blocks/subscription/subscription-list/ajax/subscription-list.jag
http://localhost:9763/store/site/blocks/subscription/subscription-remove/ajax/subscription-remove.jag
http://localhost:9763/store/site/blocks/subscription/subscription-remove/ajax/subscription-remove.jag
http://localhost:9763/store/site/blocks/subscription/subscription-remove/ajax/subscription-remove.jag
http://localhost:9763/store/site/blocks/subscription/subscription-remove/ajax/subscription-remove.jag
http://localhost:9763/store/site/blocks/subscription/subscription-list/ajax/subscription-list.jag
http://localhost:9763/store/site/blocks/subscription/subscription-list/ajax/subscription-list.jag

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 339

1.

2.

Description Add a comment for an API.

URI http://localhost:9763/store/site/blocks/comment/comment-add/ajax/comment-add.jag

URI
Parameters

action=addComment&name=xxx&version=xxx&provider=xxx&comment=xxx

HTTP
Methods

POST

Example curl -X POST -b cookies -dhttp://ore/site/blocks/comment/comment-add/ajax/comment-add.jag
'action=addComment&name=PhoneVerification&version=1.0.0&provider=admin&comment=test
comment'

Token API

Users need access tokens to invoke APIs subscribed under an application. Access tokens are passed in the HTTP
header when invoking APIs. The API Manager provides a T to generate and renew useroken API that you can use
and application access tokens. The response of the Token API is a JSON message. You extract the token from the
JSON and pass it with an HTTP Authorization header to access the API.

Let's take a look at how to generate/renew access tokens and authorize them. WSO2 API Manager supports the
four most common and you can also define additional types such as SAML. authorization grant types

Generating access tokens with user credentials (password grant type)
Generating access tokens with authorization code (authorization code grant type)
Exchanging SAML2 bearer tokens with OAuth2 (SAML extension grant type)
Renewing access tokens
Revoking access tokens
Configuring the token expiration time

Generating access tokens with user credentials (password grant type)

You can obtain an access token by providing the resource owner's username and password as an authorization
grant. combination.It requires the base64 encoded string of the consumer-key:consumer-secret You need to
meet the following prerequisites before using the Token API to generate a token.

Prerequisites

A valid user account in the API Store. You can self sign up if it is .enabled by an admin
A valid consumer key and consumer secret pair. Initially, these keys must be generated through the
management console You can find more details inby clicking the link on page.Generate My Subscriptions I

 .nvoke an API using the Integrated REST Client
A running API Gateway instance (typically an API Manager instance should be running). For instructions on
API Gateway, see . Components
If you have multiple Carbon servers (such as API Manager and WSO2 Application Server) running on the
same computer, you must to avoid port conflicts. Setting the port offset causes APIchange the port offset
Manager to run on a different port from the default.
If the Key Manager is running on a different server from the API Gateway instance, change the host and port
of the endpoints of the default APIs that are in <APIM_HOME>/repository/deployment/server/synap

 to the correct address of the Key Manager.se-configs/default/api

Invoking the Token API to generate tokens

Combine the consumer key and consumer secret keys in the format andconsumer-key:consumer-secret
encode the combined string using base64. Encoding to base64 can be done using the URL: http://base64enc

 .ode.org
Here's an example consumer key and secret combination : wU62DjlyDBnq87GlBwplfqvmAbAa:ksdSdoe
fDDP7wpaElfqvmjDue.
Access the Token API by using a REST client such as the or Curl, with the following WSO2 REST Client

http://localhost:9763/store/site/blocks/comment/comment-add/ajax/comment-add.jag
http://ore/site/blocks/comment/comment-add/ajax/comment-add.jag
http://tools.ietf.org/html/rfc6749#section-1.3
https://docs.wso2.com/display/AM180/Customizing+the+API+Store#CustomizingtheAPIStore-Enablingselfsign-up
https://docs.wso2.com/display/AM180/Key+Concepts#KeyConcepts-APIManagercomponents
http://base64encode.org
http://base64encode.org

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 340

2.

parameters.
Assuming that both the client and the API Gateway are run on the same server, the token API url is htt
ps://localhost:8243/token
payload - "grant_type=password&username=<username>&password=<password>&scope=<

. Replace the and values as appropriate. <scope> is optional,scope>" <username> <password>
you can leave it off if necessary
headers - Authorization: Basic <base64 encoded string>, Content-Type:

. Replace the asapplication/x-www-form-urlencoded <base64 encoded string>
appropriate.

For example, use the following cURL command to access the Token API. It generates two tokens as an
access token and a refresh token. You can use the refresh token at the time a . token is renewed

curl -k -d "grant_type=password&username=<username>&password=<password>" -H
"Authorization: Basic
SVpzSWk2SERiQjVlOFZLZFpBblVpX2ZaM2Y4YTpHbTBiSjZvV1Y4ZkM1T1FMTGxDNmpzbEFDVzhh,
Content-Type: application/x-www-form-urlencoded" https://localhost:8243/token

CuRL command with Scopes

curl -k -d
"grant_type=password&username=<username>&password=<password>&scope=<scope1>
<scope2>" -H "Authorization: Basic
SVpzSWk2SERiQjVlOFZLZFpBblVpX2ZaM2Y4YTpHbTBiSjZvV1Y4ZkM1T1FMTGxDNmpzbEFDVzhh,
Content-Type: application/x-www-form-urlencoded" https://localhost:8243/token

Instead of using the Token API, you can generate access tokens from the API Store UI. See Invoke an API using
 for information.the Integrated REST Client

Generating access tokens with authorization code (authorization code grant type)

Tip: If you define a for an API's resource, the API can only be accessed through a token thatscope
is issued for the scope of the said resource. For example, if you define a scope named 'update' and
issue one token for the scopes 'read' and 'update', the token is allowed to access the resource.
However, if you issue the token for the scope named 'read', the request to the API will be blocked.

The Token API endpoint is specified in <APIM_HOME>/repository/deployment/server/syna
 file. When running the server on a different portpse-configs/default/api/_TokenAPI_.xml

from the default (i.e., 9443), or if your Key Manager is running on a different machine from your API
Gateway, you must update the endpoint inside the file as described in the _TokenAPI_.xml prerequ

.isites

User access tokens have a fixed expiration time, which is set to 60 minutes by default. Before deploying
the API manager to users, extend the default expiration time by editing the <AccessTokenDefaultVal

 tag in .idityPeriod> <PRODUCT_HOME>/repository/conf/identity.xml

When a user access token expires, the user can try regenerating the token as explained in the Renew
 section.user tokens

https://localhost:8243/login
https://localhost:8243/login

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 341

Instead of requesting authorization directly from the resource owner (resource owner's credentials), in this grant
type, the client directs the resource owner to an authorization server. The authorization server works as
an intermediary between the client and resource owner to issues an authorization code, authenticate the resource
owner and obtain authorization. As this is a redirection-based flow, the client must be capable of interacting with the
resource owner's user-agent (typically a Web browser) and receiving incoming requests (via redirection) from the
authorization server.

The client initiates the flow by directing the resource owner's user-agent to the authorization endpoint (you can use
the endpoint for the authorization code grant type of OAuth 2.0). It includes the client identifier,/authorize
response_type, requested scope, and a redirection URI to which the authorization server sends the user-agent back
after granting access. The authorization server authenticates the resource owner (via the user-agent) and
establishes whether the resource owner granted or denied the client's access request. Assuming the resource
owner grants access, the authorization server then redirects the user-agent back to the client using the redirection
URI provided earlier. The redirection URI includes an authorization code.

The client then requests an access token from the authorization server's endpoint by including the/token
authorization code received in the previous step. When making the request, the client authenticates with the
authorization server. It then includes the redirection URI used to obtain the authorization code for verification. The
authorization server authenticates the client, validates the authorization code, and ensures that the redirection URI
matches the URI used to redirect the client from the /authorize endpoint in the previous response. If valid, the
authorization server responds back with an access token and, optionally, a refresh token.

Invoking the Token API to generate tokens

Assuming that both the client and the API Gateway are run on the same server, the Authorization API URL is https
.://localhost:8243/authorize

query component: response_type=code&client_id=<consumer_key>&scope=PRODUCTION&red
irect_uri=<application_callback_url>
headers: Content-Type: application/x-www-form-urlencoded

For example, the client directs the user-agent to make the following HTTP request using TLS.

GET
/authorize?response_type=code&client_id=wU62DjlyDBnq87GlBwplfqvmAbAa&scope=PRODUCTION&
redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb
HTTP/1.1
Host: server.example.com
Content-Type:
application/x-www-form-urlencoded

The authorization server redirects the user-agent by sending the following HTTP response:

HTTP/1.1 302 Found
Location:
https://client.example.com/cb?code=SplxlOBeZQQYbYS6WxSbIA

Now the client makes the following HTTP request using TLS to the /token endpoint.

https://localhost:8243/authorize
https://localhost:8243/authorize

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 342

POST /token HTTP/1.1
Host: server.example.com
Authorization: Basic
SVpzSWk2SERiQjVlOFZLZFpBblVpX2ZaM2Y4YTpHbTBiSjZvV1Y4ZkM1T1FMTGxDNmpzbEFDVzhh
Content-Type:
application/x-www-form-urlencoded
grant_type=authorization_code&code=SplxlOBeZQQYbYS6WxSbIA&redirect_uri=https%3A%2F%2Fc
lient%2Eexample%2Ecom%2Fcb

The /token endpoint responds in the same way like in password grant type.

Note that if you are using a separate server for authentication (e.g., a distributed API Manager setup or an instance
of WSO2 Identity Server as the authentication server), be sure to give the full URL of the authentication server in <A

 file. The defaultPIM_HOME>/repository/conf/security/application-authenticators.xml
configuration has a relative path, which works in a standalone API Manager setup:

<Authenticators>
 <Authenticator name="BasicAuthenticator" disabled="false" factor="1">
 <Status value="10" loginPage="/authenticationendpoint/login.do" />
 </Authenticator>
</Authenticators>

Exchanging SAML2 bearer tokens with OAuth2 (SAML extension grant type)

SAML 2.0 is an -based It uses containing to pass information about anLXM .protocol security tokens assertions
end-user between a SAML authority and a SAML consumer. A SAML authority is an (IDP) and a identity provider

is a (SP).SAML consumer service provider

Enterprise applications use SAML2 to engage a third-party identity provider to grant access to systems that are only
authenticated against the enterprise application. These enterprise applications might need to consume
OAuth-protected resources through APIs, after validating them against an OAuth2.0 authentication server. However,
an enterprise application that already has a working SAML2.0 based SSO infrastructure between itself and the IDP
prefers to use the existing trust relationship, even if the OAuth authorization server is entirely different from the IDP.
The SAML2 Bearer Assertion Profile for OAuth2.0 leverages this existing trust relationship. It presents the SAML2.0
token to the authorization server and exchanges it to an OAuth2.0 access token.

WSO2 API Manager provides SAML2 Bearer Assertion Profile Support with the OAuth 2.0 feature. WSO2 Identity
 or any other SAML2 Identity provider can act as an identity service provider for theServer version 4.5.0 onwards)(

systems enabled with SSO. WSO2 API Manager acts as the OAuth authorization server. This way, an enterprise
application can exchange the SAML2.0 bearer token that it retrieves when authenticating against an IDP (e.g.,
WSO2 Identity Server) with an OAuth2.0 access token from an OAuth authorization server (e.g., WSO2 API
Manager). It can then use the OAuth2 token in API invocations.

The diagram below depicts this scenario:

http://en.wikipedia.org/wiki/Communications_protocol
http://en.wikipedia.org/wiki/Software_token
http://en.wikipedia.org/wiki/Security_Assertion_Markup_Language
http://en.wikipedia.org/wiki/Identity_provider
http://en.wikipedia.org/wiki/Service_provider

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 343

The scenarios of the above diagram are explained below:

: User initiates login call to an enterprise applicationScenario [1] .

:Scenario [2]

As the application is a SAML SP, it redirects the user to the SAML2.0 IDP to log in.
The user provides credentials at the IDP and is redirected back to the SP with a SAML2.0 token signed by
the IDP.
The SP verifies the token and logs the user to the application.
The SAML 2.0 token is stored in the user's session by the SP.

:Scenario [3]

The enterprise application (SP) wants to access an OAuth2 protected API resource through WSO2 API
Manager.
The application makes a request to the API Manager to exchange the SAML2 bearer token for an OAuth2.0
access token.
The API Manager validates the assertion and returns the access token.

: User does API invocations through the API Manager by setting it as an Authorization header Scenario [4] with the
returned OAuth2 access token.

Before you configure the token do the following:exchange,

Register to a valid user account in the API Store.
Get a valid consumer key and consumer secret. Initially, these keys must be generated through the
management console by clicking the link on page. For more information, seeGenerate My Subscriptions In

 .voke an API using the Integrated REST Client
Set up a running API Gateway instance.
If you have multiple WSO2 servers (such as WSO2 API Manager and WSO2 Application Server) running on
the same machine, change the port offset and update the token API's endpoint accordingly. Additionally, if the
key manager is on a different server from the API Gateway, update the token API endpoint to use the correct
host and port. For more information, see in the previous section.this prerequisite

Configuring the token exchange

We use WSO2 Identity Server 5.0.0 as the IDP to get a SAML token and the API Manager as the OAuth server.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 344

1.

2.

Log in to the API Manager's management console (https://localhost:9443/carbon) using admin/admin
credentials and select Add under menu in the menu. Identity Providers Main

Provide the following values to configure the IDP:
Under Basic Information

Identity Provider Name: Enter a unique name for IDP
: Identity Provider Public Certificate Export the public certificate of WSO2 IS and import it

h e r e .
Alternatively, you can create a self-signed certificate and then export it as a .cer file using the
following commands:

keytool -genkey -alias wookie -keyalg RSA -keystore wookieKeystore.jks
-keysize 4096
keytool -v -export -file keystore1.cer -keystore keystore1.jks -alias
keystore1

Alias: Give the name of the alias if the Identity Provider identifies this token endpoint by an
alias. E.g., https://localhost:9443/oauth2/token

Under Federated Authenticators -> SAML2 Web SSO Configuration
: trueEnable SAML2 Web SSO

Identity Provider Entity Id: The SAML2 issuer name specified when generating the assertion
token, which contains the unique identifier of the IDP. You give this name when configuring
the SP.

: Service Provider Entity Id Issuer name given when configuring the SP
: Enter the IDP's SAML2 Web SSO URL value. E.g., ifSSO URL https://localhost:9444/samlsso/

you have offset the default port, which is 9443.

https://localhost:9443/carbon
https://localhost:9443/oauth2/token
https://localhost:9444/samlsso/

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 345

2.

3.

4.

Log in to the management console of the Identity Server and select Add under menu inService Providers
t h e m e n u .M a i n

Choose to edit the service provider that you just registered and select .SAML2 Web SSO Configuration

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 346

4.

5.

Provide the following values to configure the SP:
Issuer: Give any name
Assertion Consumer URL: The URL to which the IDP sends the SAML response. E.g., https://localho
st:9443/store/jagg/jaggery_acs.jag
Enable Response Signing: true
Enable Assertion Signing: true
Enable Audience Restriction: true

: URL of the token API. E.g., Audience https://localhost:9443/oauth2/token

https://localhost:9443/store/jagg/jaggery_acs.jag
https://localhost:9443/store/jagg/jaggery_acs.jag
https://localhost:9443/oauth2/token

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 347

5.

6.

7.

 Let's see how to get a signed SAML2 token (encoded assertion value) when authenticating against a SAML2
IDP. With the authentication request, you pass attributes such as the SAML2 issuer name, token endpoint
and the restricted audience. In this guide, we use a command-line client program to create the SAML2
assertion.
Get the SAML token using the client JAR. An example command is given below. TestSP is the name of the
issuer.

java -jar SAML2AssertionCreator.jar TestSP admin
https://localhost:9443/oauth2/token
https://localhost:9443/oauth2/token/home/dinusha/nothing/WSO2/API-Manager/saml-oa
uth/wso2is-5.0.0/rhbepository/resources/security/wso2carbon.jks wso2carbon
wso2carbon wso2carbon

Get the OAuth Access token. An example command is given below.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 348

7.

1.

2.

curl -k -d
"grant_type=urn:ietf:params:oauth:grant-type:saml2-bearer&assertion=<ASSERTION_PR
OVIDED_BY_CLIENT>&scope=PRODUCTION" -H "Authorization: Basic <Base63 encoded
consumer key:consumer secret>, Content-Type:
application/x-www-form-urlencoded"https://localhost:9443/oauth2/token

Invoking Token API to generate tokens

Follow the steps below to invoke the token API to generate access tokens from SAML2 assertions.

Combine the consumer key and consumer secret keys as . Encode the consumer-key:consumer-secret
combined string using base64 (Here's an example consumer key and secret). http://base64encode.org
combination: .wU62DjlyDBnq87GlBwplfqvmAbAa:ksdSdoefDDP7wpaElfqvmjDue
Access the token API using a REST client such as the or Curl. The parameters are WSO2 REST Client
explained below:

Assuming that both the client and the API Gateway run on the same server, the Token API URL is http
s://localhost:8243/token.
C r e a t e a S A M L 2 A s s e r t i o n .
You can use the command line client program from . Extract the ZIP file, change directory into thehere
extracted folder and execute the following command in the command line. You will get
SAML2 Assertion XML String and base64-URL Encoded Assertion XML String. Use base64-URL
Encoded Assertion XML String as SAML2_Encoded Assertion_Token.

java -jar SAML2AssertionCreator.jar <Identity_Provider_Entity_Id> admin
https://localhost:9443/oauth2/token https://localhost:9443/oauth2/token
<Identity_Provider_JKS_file> <Identity_Provider_JKS_password>
<Identity_Provider_certificate_alias>

The arguments are as follows:
The saml:Issuer (a unique identifier of the identity provider) value
The saml:Subject -> saml:NameId value
The value of saml:Subject -> saml:SubjectConfirmation ->
saml:SubjectConfirmationData.Recipient
The fourth argument can take multiple values separated by commas. They are added to the
saml:AudienceRestriction element of the token. Each value is added as a saml:Audience
element within saml:AudienceRestriction.
Pointer to the Java Key Store (JKS) file to be used for credentials
The JKS password
The alias of the public certificate
The password of the private key that is used for signing

payload - "grant_type=urn:ietf:params:oauth:grant-type:saml2-bearer&assertion=
. Replace the <SAML2_Encoded_Assertion_Token> &scope=PRODUCTION" <SAML2_Encoded_

 value as appropriate.>Assertion_Token
headers - Authorization :Basic <base64 encoded >,consumer-key:consumer-secret

. Replace the Content-Type: application/x-www-form-urlencoded <base64 encoded co
 as appropriate.>nsumer-key:consumer-secret

For example, the following Curl command is used to access the Token API. It generates an access token and
a refresh token. You can use the refresh token at the time a . token is renewed

http://base64encode.org/
http://wU62DjlyDBnq87GlBwplfqvmAbAaksdSdoefDDP7wpaElfqvmjDue
https://localhost:8243/login
https://localhost:8243/login
https://svn.wso2.org/repos/wso2/people/johann/SAML2-OAuth/wso2is-4.1.1-alpha13-2-patched/wso2is-4.1.1.zip

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 349

2.

curl -k -d
"grant_type=urn:ietf:params:oauth:grant-type:saml2-bearer&assertion=<SAML2_Encode
d_Assertion_Token>&scope=PRODUCTION" -H "Authorization: Basic
SVpzSWk2SERiQjVlOFZLZFpBblVpX2ZaM2Y4YTpHbTBiSjZvV1Y4ZkM1T1FMTGxDNmpzbEFDVzhh,
Content-Type: application/x-www-form-urlencoded" https://localhost:8243/token

Renewing access tokens

After an access token is generated, sometimes you might have to renew the old token due to expiration or security
concerns. You can renew an access token using a refresh token, by issuing a REST call to the Token API with the
following parameters.

Assuming that both the client and the API Gateway are run on the same server, the Token API URL is https://
localhost:8243/token.
payload - ."grant_type=refresh_token&refresh_token=<retoken>&scope=PRODUCTION"
Replace the value with the refresh token generated in the .<retoken> previous section
headers - Authorization :Basic <base64 encoded string>, Content-Type:

. Replace as appropriate. application/x-www-form-urlencoded <base64 encoded string>

For example, the following cURL command can be used to access the Token API.

curl -k -d "grant_type=refresh_token&refresh_token=<retoken>&scope=PRODUCTION" -H
"Authorization: Basic
SVpzSWk2SERiQjVlOFZLZFpBblVpX2ZaM2Y4YTpHbTBiSjZvV1Y4ZkM1T1FMTGxDNmpzbEFDVzhh,
Content-Type: application/x-www-form-urlencoded" https://localhost:8243/token

The above REST message grants you a renewed access token along with a refresh token, which you can use the
next time you renew the access token. A refresh token can be used only once. At the moment, a refresh token never
expires, but we will provide a way to configure an expiration time in a future release.

Revoking access tokens

After issuing an access token, a user or an admin can revoke it in case of theft or a security violation. You can do
this by calling Revoke API using a utility like cURL. The .Revoke API's endpoint URL is http://localhost:8280/revoke

Parameters required to invoke this API are as follows:

The token to be revoked
Consumer key and consumer secret key. Must be encoded using Base64 algorithm

For example, curl -k -d "token=<ACCESS_TOKEN_TO_BE_REVOKED>" -H "Authorization: Basic
Base64Encoded(Consumer secret)" .key:consumer http://localhost:8280/revoke

Configuring the token expiration time

Configuring the token expiration time

The Token API endpoint is specified in <APIM_HOME>/repository/deployment/server/syna
 file. When running the server on a different portpse-configs/default/api/_TokenAPI_.xml

from the default (i.e., 9443), or if your Key Manager is running on a different server from your API
Gateway, you must update the endpoint inside the file as described ._TokenAPI_.xml here

When the API Gateway cache is enabled (it is enabled by default), even after revoking a token, it might still be available in the cache to
consumers until the cache expires in approximately 15 minutes. You can clear the cache manually by restarting the server.

https://localhost:8243/login
https://localhost:8243/login
http://localhost:8280/revoke
http://keyconsumer
http://localhost:8280/revoke

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 350

1.

2.
3.

4.
5.
6.

7.

User access tokens have a fixed expiration time, which is set to 60 minutes by default. Before deploying the API
Manager to users, extend the default expiration time by editing the el<AccessTokenDefaultValidityPeriod>
ement in .<PRODUCT_HOME>/repository/conf/identity.xml

Also take the into account when configuring the expiration time. The time stamp skew is used totime stamp skew
manage small time gaps in the system clocks of different servers. For example, let's say you have two Key
Managers and you generate a token from the first one and authenticate with the other. If the second server's clock
runs 300 seconds ahead, you can configure a 300s time stamp skew in the first server. When the first Key Manager
generates a token (e.g., with the default life span, which is 3600 seconds), the time stamp skew is deducted from
the token's life span. The new life span is 3300 seconds and the first server calls the second server after 3200
seconds.

You configure the time stamp skew using the element in <TimestampSkew> <PRODUCT_HOME>/repository/co
. nf/identity.xml

Ideally, the time stamp skew should not be larger than the token's life span. Also, note that when the API Gateway
cache is enabled (it is enabled by default), even after a token expires, it will still be available in the cache for
consumers until the cache expires in approximately 15 minutes.

WSO2 Admin Services

WSO2 products are managed internally using SOAP Web services known as . WSO2 productsadmin services
come with a management console UI, which communicates with these admin services to facilitate administration
capabilities through the UI.

A service in WSO2 products is defined by the following components:

Service component: provides the actual service
UI component: provides the Web user interface to the service
Service stub: provides the interface to invoke the service generated from the service WSDL

There can be instances where you want to call back-end Web services directly. For example, in test automation, to
minimize the overhead of having to change automation scripts whenever a UI change happens, developers prefer to
call the underlying services in scripts. The topics below explain how to discover and invoke these services from your
applications.

Discovering the admin services

By default, the WSDLs of admin services are hidden from consumers. Given below is how to discover them.

Set the element to false in the <HideAdminServiceWSDLs> <PRODUCT_HOME>/repository/conf/car
 file.bon.xml

Restart the server.
Start the WSO2 product with the option, such as -DosgiConsole sh

 in Linux.<PRODUCT_HOME>/bin/wso2server.sh -DosgiConsole
When the server is started, hit the enter/return key several times to get the OSGI shell in the console.
In the OSGI shell, type: osgi> listAdminServices
The list of admin services of your product are listed. For example:

To see the service contract of an admin service, select the admin service's URL and then paste it in your

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 351

7.

8.

1.
2.

b r o w s e r w i t h a t t h e e n d . F o r e x a m p l e :? w s d l
https://localhost:9443/services/UserAdmin?wsdl

Note that the admin service's URL appears as follows in the list you discovered in step 6:

AuthenticationAdmin, AuthenticationAdmin, https://<host
IP>:8243/services/AuthenticationAdmin

Invoking an admin service

Admin services are secured using common types of security protocols such as HTTP basic authentication,
WS-Security username token, and session based authentication to prevent anonymous invocations. For example,
the Web service is secured with the HTTP basic authentication. To invoke a service, you do theUserAdmin
following:

Authenticate yourself and get the session cookie.
Generate the client stubs to access the back-end Web services.

Authenticate the user

The example code below authenticates the user and gets the session cookie:

In products like WSO2 ESB and WSO2 API Manager, the port is 8243 (assuming 0 port offset).
However, you should be accessing the Admin Services via the management console port, which is
9443 when there is no port offset.

To generate the stubs, you can write your own client program using the Axis2 client API or use an existing
tool like (4.5.1 or later) or wsdl2java.SoapUI

The wsdl2java tool, which comes with WSO2 products by default hides all the complexity and presents you
with a proxy to the back-end service. The stub generation happens during the project build process within
the Maven POM files. It uses the Maven ant run plug-in to execute the wsdl2java tool.

You can also use the Java client program given to invoke admin services. All dependency JAR fileshere
that you need to run this client are found in the directory./lib

http://www.soapui.org/
https://svn.wso2.org/repos/wso2/people/asela/user-mgt/remote-user-api/4.2.X/

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 352

import org.apache.axis2.AxisFault;
 import org.apache.axis2.transport.http.HTTPConstants;
 import org.wso2.carbon.authenticator.stub.AuthenticationAdminStub;
 import org.wso2.carbon.authenticator.stub.LoginAuthenticationExceptionException;
 import org.wso2.carbon.authenticator.stub.LogoutAuthenticationExceptionException;
 import org.apache.axis2.context.ServiceContext;
 import java.rmi.RemoteException;

 public class LoginAdminServiceClient {
 private final String serviceName = "AuthenticationAdmin";
 private AuthenticationAdminStub authenticationAdminStub;
 private String endPoint;

 public LoginAdminServiceClient(String backEndUrl) throws AxisFault {
 this.endPoint = backEndUrl + "/services/" + serviceName;
 authenticationAdminStub = new AuthenticationAdminStub(endPoint);
 }

 public String authenticate(String userName, String password) throws
RemoteException,
 LoginAuthenticationExceptionException {

 String sessionCookie = null;

 if (authenticationAdminStub.login(userName, password, "localhost")) {
 System.out.println("Login Successful");

 ServiceContext serviceContext = authenticationAdminStub.
 _getServiceClient().getLastOperationContext().getServiceContext();
 sessionCookie = (String)
serviceContext.getProperty(HTTPConstants.COOKIE_STRING);
 System.out.println(sessionCookie);
 }

 return sessionCookie;
 }

 public void logOut() throws RemoteException,
LogoutAuthenticationExceptionException {
 authenticationAdminStub.logout();
 }
 }

Generate the client stubs

After authenticating the user, give the retrieved admin cookie with the service endpoint URL as shown in the sample below. The service
management service name is ServiceAdmin. You can find its URL (e.g.,) in the https://localhost:9443/services/ServiceAdmin serv

 file in the folder in the respective bundle that you find in .ice.xml META-INF <PRODUCT_HOME>/repository/components/plugins

To resolve dependency issues, if any, add the following dependency JARs location to the class path: <PRO
.DUCT_HOME>/repository/components/plugins

The the class requires AuthenticationAdminStub org.apache.axis2.context.ConfigurationC
 as a parameter. You can give a null value there.ontext

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 353

import org.apache.axis2.AxisFault;
 import org.apache.axis2.client.Options;
 import org.apache.axis2.client.ServiceClient;
 import org.wso2.carbon.service.mgt.stub.ServiceAdminStub;
 import org.wso2.carbon.service.mgt.stub.types.carbon.ServiceMetaDataWrapper;
 import java.rmi.RemoteException;

 public class ServiceAdminClient {
 private final String serviceName = "ServiceAdmin";
 private ServiceAdminStub serviceAdminStub;
 private String endPoint;

 public ServiceAdminClient(String backEndUrl, String sessionCookie) throws AxisFault
{
 this.endPoint = backEndUrl + "/services/" + serviceName;
 serviceAdminStub = new ServiceAdminStub(endPoint);
 //Authenticate Your stub from sessionCooke
 ServiceClient serviceClient;
 Options option;

 serviceClient = serviceAdminStub._getServiceClient();
 option = serviceClient.getOptions();
 option.setManageSession(true);
 option.setProperty(org.apache.axis2.transport.http.HTTPConstants.COOKIE_STRING,
sessionCookie);
 }

 public void deleteService(String[] serviceGroup) throws RemoteException {
 serviceAdminStub.deleteServiceGroups(serviceGroup);

 }

 public ServiceMetaDataWrapper listServices() throws RemoteException {
 return serviceAdminStub.listServices("ALL", "*", 0);
 }
 }

The following sample code lists the back-end Web services:

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 354

import org.wso2.carbon.authenticator.stub.LoginAuthenticationExceptionException;
 import org.wso2.carbon.authenticator.stub.LogoutAuthenticationExceptionException;
 import org.wso2.carbon.service.mgt.stub.types.carbon.ServiceMetaData;
 import org.wso2.carbon.service.mgt.stub.types.carbon.ServiceMetaDataWrapper;

 import java.rmi.RemoteException;

 public class ListServices {
 public static void main(String[] args)
 throws RemoteException, LoginAuthenticationExceptionException,
 LogoutAuthenticationExceptionException {
 System.setProperty("javax.net.ssl.trustStore",
"$ESB_HOME/repository/resources/security/wso2carbon.jks");
 System.setProperty("javax.net.ssl.trustStorePassword", "wso2carbon");
 System.setProperty("javax.net.ssl.trustStoreType", "JKS");
 String backEndUrl = "https://localhost:9443";

 LoginAdminServiceClient login = new LoginAdminServiceClient(backEndUrl);
 String session = login.authenticate("admin", "admin");
 ServiceAdminClient serviceAdminClient = new ServiceAdminClient(backEndUrl,
session);
 ServiceMetaDataWrapper serviceList = serviceAdminClient.listServices();
 System.out.println("Service Names:");
 for (ServiceMetaData serviceData : serviceList.getServices()) {
 System.out.println(serviceData.getName());
 }

 login.logOut();
 }
 }

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 355

1.

2.

3.

4.

5.

a.

b.

6.

a.
b.

7.

a.
b.

8.

a.
b.

Admin Guide
The following topics explore various product deployment scenarios and other topics useful for system
administrators.

Migrating the API Manager
Deploying and Clustering the API Manager
Tuning Performance

Migrating the API Manager

If you have multiple instances of the WSO2 API Manager and want to move your data and deployment artifacts from
one instance to another (such as moving from development to test or production), follow the steps below.

Get a data dump from all the tables in the apimgt schema and dump them to the schema in the new
environment.
Open file and provide<APIM_HOME>/repository/conf/datasources/master-datasources.xml
the datasource configurations for the following databases in the new environment.

User Store
Registry database
API Manager Databases

Edit the registry configurations in the and the user<APIM_HOME>/repository/config/registry.xml
database in the file.<APIM_HOME>/repository/conf/user-mgt.xml
Move all your synapse configurations by copying and replacing <APIM_HOME>/repository/deployment

 directory to the same directory in the new environment./server/synapse-config/default

Migrate tenants

If you have added to your API Manager instance, follow the steps below to migrate tenantmultiple tenants
configurations:

Copy the contents from directory to the same directory in the<APIM_HOME>/repository/tenants
new environment.
Execute the following steps for all tenants in your system.

Migrate external stores

If you have configured under the element in external stores <ExternalAPIStores> <APIM_HOME>/repo
 file, follow the steps below:sitory/conf/api-manager.xml

Log in to APIM management console and click the menu.Resources -> Browse
Load resourc/_system/governance/apimgt/externalstores/external-api-stores.xml
e in the registry browser UI, configure your external stores there and save.

Migrate Google analytics

If you have configured under element in Google Analytics <GoogleAnalyticsTracking> <APIM_HOME>
 file, follow the steps below:/repository/conf/api-manager.xml

Log in to APIM management console and go to menu.Resources -> Browse
Load resource in the registry/_system/governance/apimgt/statistics/ga-config.xml
browser UI, configure the Google analytics and save.

Migrate workflows

If you have configured under element in Workflows <WorkFlowExtensions> <APIM_HOME>/repositor
 file, follow the steps below:y/conf/api-manager.xml

Log in to APIM management console and go to menu.Resources -> Browse
Load resour/_system/governance/apimgt/applicationdata/workflow-extensions.xml
ce in the registry browser UI, configure your workflows and save.

If you changed the default URLs in and files, do not replaceAuthorizeAPI.xml TokenAPI.xml
them when copying. They are application-specific APIs.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 356

1.

Deploying and Clustering the API Manager

You can install multiple instances of WSO2 products in a cluster to ensure proper load balancing. When one
instance becomes unavailable or is experiencing high traffic, another instance handles the requests.

For information on clustering, see .Clustering WSO2 API Manager
For information on deployment patterns, see .Deployment Patterns of WSO2 API Manager

Tuning Performance

This section describes some recommended performance tuning configurations to optimize the API Manager. It
assumes that you have set up the API Manager on Unix/Linux, which is recommended for a production deployment.
We also recommend for most production systems. Out of all components of an APIa distributed API Manager setup
Manager distributed setup, the API Gateway is the most critical, because it handles all inbound calls to APIs.
Therefore, we recommend you to have at least a 2-node cluster of API Gateways in a distributed setup.

OS-level settings
JVM-level settings
APIM-level settings

OS-level settings

To optimize network and OS performance, configure the following settings in /etc/sysctl.conf file of Linux.
These settings specify a larger port range, a more effective TCP connection timeout value, and a number of
other important parameters at the OS-level.

Upgrading from a Previous Release
See in the following situations:Upgrading from the Previous Release

The new environment you are migrating to has a different database version. In this case, you must
upgrade the older database.
You want to upgrade from a previous API Manager release to a new one.

Important:
Performance tuning requires you to modify important system files, which affect all programs running
on the server. We recommend you to familiarize yourself with these files using Unix/Linux
documentation before editing them.
The values we discuss here are general recommendations. They might not be the optimal values for
the specific hardware configurations in your environment. We recommend you to carry out load tests
on your environment to tune the API Manager accordingly.

It is not recommended to use when working with networknet.ipv4.tcp_tw_recycle = 1
address translation (NAT), such as if you are deploying products in EC2 or any other environment
configured with NAT.

http://docs.wso2.org/display/CLUSTER420/Clustering+API+Manager
https://docs.wso2.com/display/CLUSTER420/API+Manager+Clustering+Deployment+Patterns
https://docs.wso2.com/display/CLUSTER420/API+Manager+Clustering+Deployment+Patterns

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 357

1.

2.

3.

net.ipv4.tcp_fin_timeout = 30
fs.file-max = 2097152
net.ipv4.tcp_tw_recycle = 1
net.ipv4.tcp_tw_reuse = 1
net.core.rmem_default = 524288
net.core.wmem_default = 524288
net.core.rmem_max = 67108864
net.core.wmem_max = 67108864
net.ipv4.tcp_rmem = 4096 87380 16777216
net.ipv4.tcp_wmem = 4096 65536 16777216
net.ipv4.ip_local_port_range = 1024 65535

To alter the number of allowed open files for system users, configure the following settings in
/etc/security/limits.conf file of Linux (be sure to include the leading * character).

* soft nofile 4096
* hard nofile 65535

Optimal values for these parameters depend on the environment.
To alter the maximum number of processes your user is allowed to run at a given time, configure the
following settings in file of Linux (be sure to include the leading */etc/security/limits.conf
character). Each carbon server instance you run would require upto 1024 threads (with default thread pool
configuration). Therefore, you need to increase the nproc value by 1024 per each carbon server (both hard
and soft).

* soft nproc 20000
* hard nproc 20000

JVM-level settings

If one or more worker nodes in a clustered deployment require access to the management console, increase the
entity expansion limit as follows in the file (for Windows) or the <APIM_HOME>/bin/wso2server.bat <APIM_HOM

 file (for Linux/Solaris). The default entity expansion limit is 64000.E>/bin/wso2server.sh

-DentityExpansionLimit=10000

APIM-level settings

Improvement
Area

Performance Recommendations

API Gateway
nodes

Increase memory allocated by modifying with the following setting:/bin/wso2server. sh

-Xms2048m -Xmx2048m -XX:MaxPermSize=1024m

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 358

NHTTP
transport of
API Gateway

Recommended values for file are given<AM_HOME>/repository/conf/nhttp.properties
below. that the commented out values in this file are the default values that will be applied ifNote
you do not change anything.

Property descriptions:

snd_t_core Transport sender worker pool's initial thread count

snd_t_max Transport sender worker pool's maximum thread count

snd_io_threads Sender-side IO workers, which is recommended to be equal to the number of
CPU cores. I/O reactors usually employ a small number of dispatch threads
(often as few as one) to dispatch I/O event notifications to a greater number
(often as many as several thousands) of I/O sessions or connections.
Generally, one dispatch thread is maintained per CPU core.

snd_alive_sec Sender-side keep-alive seconds

snd_qlen Sender queue length, which is infinite by default

Recommended values:

HTTP Sender thread pool parameters

snd_t_core=200
snd_t_max=250
snd_alive_sec=5
snd_qlen=-1
snd_io_threads=16

HTTP Listener thread pool parameters

lst_t_core=200
lst_t_max=250
lst_alive_sec=5
lst_qlen=-1
lst_io_threads=16

#timeout parameters

http.socket.timeout.receiver: Recommended socket timeout for listener is 120000
http.socket.timeout.sender: Recommended socket timeout for sender is 120000

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 359

PassThrough
transport of
API Gateway

Recommended values for file<AM_HOME>/repository/conf/passthru-http.properties
are given below. that the commented out values in this file are the default values that will beNote
applied if you do not change anything.

Property descriptions

worker_thread_keepalive_sec Defines the keep-alive time for extra threads in the worker
pool

worker_pool_queue_length Defines the length of the queue that is used to hold runnable
tasks to be executed by the worker pool

io_threads_per_reactor Defines the number of IO dispatcher threads used per
reactor

http.max.connection.per.host.port Defines the maximum number of connections per host port

worker_pool_queue_length Determines the length of the queue used by the
PassThrough transport thread pool to store pending jobs.

 Recommended values

worker_thread_keepalive_sec: Default value is 60s. This should be less than the socket
timeout.
worker_pool_queue_length: Set to -1 to use an unbounded queue. If a bound queue is used
and the queue gets filled to its capacity, any further attempts to submit jobs will fail, causing
some messages to be dropped by Synapse. The thread pool starts queuing jobs when all the
existing threads are busy and the pool has reached the maximum number of threads. So, the
recommended queue length is -1.
io_threads_per_reactor: Value is based on the number of processor cores in the system.
(Runtime.getRuntime().availableProcessors())
http.max.connection.per.host.port : Default value is 32767, which works for most systems but
you can tune it based on your operating system (for example, Linux supports 65K connections).
worker_pool_size_core: 400
worker_pool_size_max: 500
io_buffer_size: 16384
http. . : 60000socket timeout
snd_t_core: 200
snd_t_max: 250
snd_io_threads: 16
lst_t_core: 200
lst_t_max: 250
lst_io_threads: 16

Make the number of threads equal to the number of processor cores.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 360

Time-out
configurations

The API Gateway routes the requests from your client to an appropriate endpoint. The most
common reason for your client getting a timeout is when the Gateway's timeout is larger than
client's timeout values. You can resolve this by either increasing the timeout on the client's side or
by decreasing it on the API Gateway's side.

Here are few parameters, in addition to the timeout parameters discussed in the previous
.sections

synapse.global_timeout_interval Defines the maximum time that a callback is waiting in the
Gateway for a response from the backend. If no response is
received within this time, the Gateway drops the message and
clears out the callback. This is a global level parameter that
affects all the endpoints configured in Gateway.

Global timeout is defined in the <APIM_HOMe>/repository
 file. Recommended value is/conf/synapse.properties

120000.

Endpoint-level timeout You can define timeouts per endpoint for different backend
services, along with the action to be taken in case of a
timeout.

The example below sets the endpoint to 30 seconds and
executes the fault handler in case of a timeout.

<timeout>
 <duration>10000</duration>
 <responseAction>fault</responseAction>
</timeout>

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 361

Key
management
nodes

Set the following in file:<APIM_HOME>/repository/conf/axis2/axis2_client.xml

<parameter name="defaultMaxConnPerHost">1000</parameter>
<parameter name="maxTotalConnections">30000</parameter>

Set the MySQL maximum connections:

mysql> show variables like "max_connections";
 max_connections was 151
 set to global max_connections = 250;

Set the open files limit to 200000 by editing the file:/etc/sysctl.conf

sudo sysctl -p

Set the following in <APIM_HOME>/repository/conf/tomcat/ file.catalina-server.xml

maxThreads="750"
minSpareThreads="150"
disableUploadTimeout="false"
enableLookups="false"
connectionUploadTimeout="120000"
maxKeepAliveRequests="600"
acceptCount="600"

Set the following connection pool elements in <APIM_HOME>/repository/conf/datasources
 file:/master-datasources.xml

<maxActive>50</maxActive>
<maxWait>60000</maxWait>
<testOnBorrow>true</testOnBorrow>
<validationQuery>SELECT 1</validationQuery>
<validationInterval>30000</validationInterval>

Note that you set the element to and provide a validation query (e.g., in<testOnBorrow> true
Oracle,), which is run to refresh any stale connections in the connectionSELECT 1 FROM DUAL
pool. Set a suitable value for the element, which defaults to 30000<validationInterval>
milliseconds. It determines the time period after which the next iteration of the validation query will
be run on a particular connection. It avoids excess validations and ensures better performance.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 362

Reference Guide
The following topics provide reference information for working with WSO2 API Manager:

Product Profiles
Default Product Ports
Changing the Default Ports with Offset
Error Handling
WSO2 Patch Application Process

Product Profiles

When a WSO2 product starts, it starts all features and related artifacts bundled with it. Multi-profile support allows
you to run the product on a selected profile so that only features specific to that profile along with common features
start up with the server. This enables better resource utilization.

Given below are the different profiles available in WSO2 API Manager.

Profile Command Option with Profile
Name

Description

Gateway
manager

-Dprofile=gateway-manager Used when the API Gateway acts as a manager node in a
cluster. This profile starts frontend/UI features such as login as
well as backend services that allow the product instance to
communicate with other nodes in the cluster.

Gateway
worker

-Dprofile=gateway-worker Used when API Gateway acts as a worker node in a cluster. This
profile only starts the backend features for data processing and
communicating with the manager node.

Key
Manager

-Dprofile=api-key-manager Starts only the features relevant to the Key Manager component
of API Manager.

API
Publisher

-Dprofile=api-publisher Starts only the front end/backend features relevant to the API
Publisher Web interface.

API
Store

-Dprofile=api-store Starts only the front end/backend features relevant to the API
Store Web interface.

Execute the following commands to start a product on any profile:

OS Command

Windows <PRODUCT_HOME>/bin/wso2server.bat -Dprofile=<preferred-profile> --run

Linux/Solaris sh < PRODUCT _HOME>/bin/wso2server.sh -Dprofile=<preferred-profile>

How multi-profiling works

Starting a product on a preferred profile starts only a subset of features bundled in the product. In order to identify
what feature bundles apply to which profile, each product maintains a set of files in bundles.info < _HOMPRODUCT
E>/repository/components/ /configuration/org.eclipse.equinox.simpleconfi<profile-name>

. The files contain references to the actual bundles. Note that directoriesgurator bundles.info <profile-nam
 in the directory path refers to the name of the profile. For example, when there's a product profile namede>

webapp, references to all the feature bundles required for webapp profile to function are in a filebundles.info

Note that the WSO2 products platform currently doesn't block/allow Web applications depending on profiles.
Starting a product on a preferred profile only the relevant OSGI bundles. As a result, even ifblocks/allows
you start the server on a profile such as the api-store for example, you will still be able to access the API
Publisher Web application.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 363

saved in <PRODUCT_HOME>/repository/components/ /configuration/org.eclipse.equinox.swebapp
 directory.impleconfigurator

Note that when you start the server without using a preferred profile, the server refers to < _HOME>/reposPRODUCT
itory/components/ /configuration/org.eclipse.equinox.simpleconfigurator/default bundles

 file by default. This file contains references to all bundles in .info < _HOME>/repository/componentsPRODUCT
all components/bundles of a product are saved. directory, which is where /plugins

Default Product Ports

This page describes the default ports that are used for each WSO2 product when the is 0. port offset

Common ports
Product-specific ports

Common ports

The following ports are common to all WSO2 products that provide the given feature. Some features are bundled in
the WSO2 Carbon platform itself and therefore are available in all WSO2 products by default.

Management console ports

WSO2 products that provide a management console use the following servlet transport ports:

9443 - HTTPS servlet transport (the default URL of the management console is)https://localhost:9443/carbon
9763 - HTTP servlet transport

LDAP server ports

Provided by default in the WSO2 Carbon platform.

10389 - Used in WSO2 products that provide an embedded LDAP server

KDC ports

8000 - Used to expose the Kerberos key distribution center server

JMX monitoring ports

WSO2 Carbon platform uses TCP ports to monitor a running Carbon instance using a JMX client such as JConsole.
By default, JMX is enabled in all products. You can disable it using <PRODUCT_HOME>/repository/conf/etc/j

 file.mx.xml

11111 - RMIRegistry port. Used to monitor Carbon remotely
9999 - RMIServer port. Used along with the RMIRegistry port when Carbon is monitored from a JMX client
that is behind a firewall

Clustering ports

To cluster any running Carbon instance, either one of the following ports must be opened.

45564 - Opened if the membership scheme is multicast
4000 - Opened if the membership scheme is wka

Random ports

Certain ports are randomly opened during server startup. This is due to specific properties and configurations that
become effective when the product is started. Note that the IDs of these random ports will change every time the

Note that it is recommended to disable the HTTP transport in an API Manager production setup. Using the B
 token over HTTP is a violation of the earer OAuth specification and can lead to security vulnerabilities.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 364

server is started.

A random TCP port will open at server startup because of the prope-Dcom.sun.management.jmxremote
rty set in the server startup script. This property is used for the JMX monitoring facility in JVM.
A random UDP port is opened at server startup due to the log4j appender (), which isSyslogAppender
configured in the file.<PRODUCT_HOME>/repository/conf/log4j.properties

Product-specific ports

Some products open additional ports.

API Manager | | | | | | | BAM BPS Complex Event Processor Elastic Load Balancer ESB Identity Server Message
 | | Broker Storage Server Enterprise Mobility Manager

API Manager

10397 - Thrift client and server ports
8280, 8243 - NIO/PT transport ports
7711 - Thrift SSL port for secure transport, where the client is authenticated to BAM/CEP: stat pub

BAM

9160 - Cassandra port using which Thrift listens to clients
7711 - Thrift SSL port for secure transport, where the client is authenticated to BAM
7611 - Thrift TCP port to receive events from clients to BAM
21000 - Hive Thrift server starts on this port

BPS

2199 - RMI registry port (datasources provider port)

Complex Event Processor

9160 - Cassandra port on which Thrift listens to clients
7711 - Thrift SSL port for secure transport, where the client is authenticated to CEP
7611 - Thrift TCP port to receive events from clients to CEP
11224 - Thrift TCP port for HA management of CEP

Elastic Load Balancer

8280, 8243 - NIO/PT transport ports

ESB

Non-blocking HTTP/S transport ports: Used to accept message mediation requests. If you want to send a request to
an API or a proxy service for example, you must use these ports. ESB_HOME}/repository/conf/axis2/axis2.xml file.

8243 - Passthrough or NIO HTTPS transport
8280 - Passthrough or NIO HTTP transport

Identity Server

8000 - KDCServerPort. Port which KDC (Kerberos Key Distribution Center) server runs
10500 - ThriftEntitlementReceivePort

If you change the default API Manager ports with a port offset, most of its ports will be changed
automatically according to the offset except a few exceptions described in the APIM Manager

.documentation

https://docs.wso2.org/api-manager/Changing+the+Default+Ports+with+Offset
https://docs.wso2.org/api-manager/Changing+the+Default+Ports+with+Offset

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 365

Message Broker

Message Broker uses the following JMS ports to communicate with external clients over the JMS transport.

5672 - Port for listening for messages on TCP when the AMQP transport is used.
8672 - Port for listening for messages on TCP/SSL when the AMQP Transport is used.
1883 - Port for listening for messages on TCP when the MQTT transport is used.
8833 - Port for listening for messages on TCP/SSL when the MQTT Transport is used.
7611 - The port for Apache Thrift Server.

Storage Server

Cassandra:

7000 - For Inter node communication within cluster nodes
7001 - For inter node communication within cluster nodes vis SSL
9160 - For Thrift client connections
7199 - For JMX

HDFS:

54310 - Port used to connect to the default file system.
54311 - Port used by the MapRed job tracker
50470 - Name node secure HTTP server port
50475 - Data node secure HTTP server port
50010 - Data node server port for data transferring
50075 - Data node HTTP server port
50020 - Data node IPC server port

Enterprise Mobility Manager

The following ports need to be opened for Android and iOS devices, so that it can connect GCM (Google Cloud
Message) and APNS (Apple Push Notification Service) and enroll to WSO2 EMM.

A n d r o i d :
The ports to open are 5228, 5229 and 5230. GCM typically only uses 5228, but it sometimes uses 5229 and 5230.
GCM does not provide specific IPs, so it is recommended to allow the firewall to accept outgoing connections to all

 IP addresses contained in the IP blocks listed in Google's ASN of 15169.

iOS:

5223 - TCP port used by devices to communicate to APNs servers
2195 - TCP port used to send notifications to APNs
2196 - TCP port used by the APNs feedback service
443 - TCP port used as a fallback on Wifi only when devices are unable to communicate to APNs on port
5223
The APNs servers use load balancing. The devices will not always connect to the same public IP address for

17.0.0.0/8notifications. The entire address block is assigned to Apple, so it is best to allow this range in the
 firewall settings.

API Manager:

10397 - Thrift client and server ports
8280, 8243 - NIO/PT transport ports

The following WSO2 API Manager ports are only applicable to WSO2 EMM 1.1.0 onwards.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 366

When the API Gateway receives API invocation calls, it
contacts the API Key Manager service for verification (given that is not enabled at the Gateway level).caching

Changing the Default Ports with Offset
When you run multiple WSO2 products/clusters or multiple instances of the same product on the same server or virtual machines (VMs), you
must change their default ports with an offset value to avoid port conflicts. An offset defines the number by which all ports in the runtime (e.g.,
HTTP/S ports) will be increased. For example, if the default HTTP port is 9763 and the offset is 1, the effective HTTP port will change to 9764. For
each additional WSO2 product instance, you set the port offset to a unique value. The offset of the default ports is considered to be 0.

There are two ways to set an offset to a port:

Pass the port offset to the server during startup. The following command starts the server with the default port
incremented by 3:./wso2server.sh -DportOffset=3
Set the Ports section of . E.g., <PRODUCT_HOME>/repository/conf/carbon.xml <Offset>3</Offset
>

Usually, when you offset the server's port, it automatically changes all ports it uses. However, there are few
exceptions in the API Manager where you have to manually adjust some ports.

Changing the Thrift client and server ports

The port offset specified earlier in carbon.xml does not affect the ports of the Thrift client and server because Thrift
is run as a separate server within WSO2 servers. Therefore, you must change the Thrift ports separately using <Thf

 and elements in the irtClientPort> <ThriftServerPort> <APIM_HOME>/repository/conf/api-manag
 file. For example, the following configuration sets an offset of 2 to the default Thrift port, which is 10397:er.xml

<!--
 Configurations related to enable thrift support for key-management related
communication.
 If you want to switch back to Web Service Client, change the value of
"KeyValidatorClientType" to "WSClient".
 In a distributed environment;
 -If you are at the Gateway node, you need to point "ThriftClientPort" value to
the "ThriftServerPort" value given at KeyManager node.
 -If you need to start two API Manager instances in the same machine, you need
to give different ports to "ThriftServerPort" value in two nodes.
 -ThriftServerHost - Allows to configure a hostname for the thrift server. It
uses the carbon hostname by default.
 -->

 <KeyValidatorClientType>ThriftClient</KeyValidatorClientType>
 <ThriftClientPort>10399</ThriftClientPort>
 <ThriftClientConnectionTimeOut>10000</ThriftClientConnectionTimeOut>
 <ThriftServerPort>10399</ThriftServerPort>
 <!--ThriftServerHost>localhost</ThriftServerHost-->
 <EnableThriftServer>true</EnableThriftServer>

When you run multiple instances of the API Manager in distributed mode, the Gateway and Key Manager (used for
validation and authentication) can run on two different JVMs.Communication between API Gateway and Key

nager happens in either of the following ways:

Through a Web service call
Through a Thrift call

The default communication mode is using Thrift. Assume that the Gateway port is offset by 2, Key Manager port by
5 and the default Thrift port is 10397. If the Thrift ports are changed by the offsets of Gateway and Key Manager, the
Thrift client port (Gateway) will now be 10399 while the Thrift server port (Key Manager) will change to 10402. This
causes communication between the Gateway and Key Manager to fail because the Thrift client and server ports are
different.

http://docs.wso2.org/wiki/display/AM150/Configuring+API+Gateway+Caching

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 367

To fix this, you must change the Thrift client and server ports of Gateway and Key Manager to the same value. In
this case, the difference between the two offsets is 3, so you can either increase the default Thrift client port by 3 or
else reduce the Thrift server port by 3.

Changing the offset of the Workflow Callback Service

The API Manager has a service that listens to workflow callbacks. This service configuration is in <AM_HOME>/repo
sitory/deployment/server/synapse-configs/default/proxy-services/WorkflowCallbackServi

. Change the port value of the element. For example,ce.xml <address uri>

<address
uri="https://localhost:9445/store/site/blocks/workflow/workflow-listener/ajax/workflow
-listener.jag" format="rest"/>

For a list of all default ports opened in WSO2 API Manager, see .Default Product Ports

Error Handling

When errors/exception occur in the system, the API Manager throws XML-based error responses by default. To
change the format of the error response that is sent to the client, you change the auth failure handler in the <AM_HO
ME>/repository/deployment/server/synapse-configs/default/sequences/_auth_failure_hand

 file. Given below is the default configuration:ler.xml

<sequence name="auth_failure_handler"> <property name="error_message_type"
value="application/xml"/> <sequence key="build"/> </sequence>

If you change to something like , the error response will be sent in JSONapplication/xml applicatoin/json
format.

Given below are some error codes and their meanings.

API handlers error codes

Error
code

Error Message Description

900900 Unclassified Authentication
Failure

An unspecified error has occurred

900901 Invalid Credentials Invalid Authentication information provided

900902 Missing Credentials No authentication information provided

900903 Access Token Expired Access Token has expired. .Renew the access token

900904 Access Token Inactive Access token has become inactive. .Generate new access token

900905 Incorrect Access Token
Type is provided

The access token type used is not supported when invoking the API. The
supported access token types are Application Accesses Token and User
Accesses Token. .See Access Tokens

900906 No matching resource
found in the API for the
given request

A resource with the name in the request can not be found in the API.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 368

1.

900907 The requested API is
temporarily blocked

The status of the API has been changed to an inaccessible/unavailable
state.

900908 Resource forbidden The user invoking the API has not been granted access to the required
resource.

900909 The subscription to the API
is inactive

Happens when the API user is blocked.

900910 The access token does not
allow you to access the
requested resource

Can not access the required resource with the provided access token.
Check the valid resources that can be accessed with this token.

900800 Message throttled out The maximum number of requests that can be made to the API within a
designated time period is reached and the API is throttled for the user.

700700

API blocked This API has been blocked temporarily. Please try again later or contact
the system administrators.

Sequences error codes

Error code Description

900901 Production/sandbox key offered to the API with no production/sandbox endpoint

403 No matching resource found in the API for the given request

In addition to the above error codes, we have engaged Synapse-level error codes to the default fault sequence and
custom fault sequences (e.g.,_token_fault_.xml) of the API Manager. For information, see in WSO2Error Handling
ESB documentation.

WSO2 Patch Application Process

You apply patches to WSO2 products either as individual patches or through a service pack. A service pack is
recommended when the number of patches increase. The following sections explain the WSO2 patch application
process:

Applying service packs to the Kernel
Applying individual patches to the Kernel
Verifying the patch application
Overview of the patch application process

Applying service packs to the product

Carbon 4.2.0 Kernel supports service packs. A service pack is a collection of patches in a single pack. It contains
two elements:

The directory: lib contains all the JARs relevant to the service pack.
The text file: contains the list of JARs in the service pack.servicepack_patches.txt

Follow the steps below to apply service packs to your product.

Copy the service pack file to the director<PRODUCT_HOME>/repository/components/servicepacks/

Before you begin

You can download all WSO2 Carbon Kernel patches from .here
Before you apply a patch, check its README.txt file for any configuration changes required.

https://docs.wso2.org/enterprise-service-bus/Error+Handling
http://maven.wso2.org/nexus/content/groups/wso2-public/org/wso2/carbon/WSO2-CARBON-PATCH-4.2.0/

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 369

1.

2.
a.

b.

c.

1.
2.

y. For example, the image below shows how a new service pack named is added to thisservicepack001
directory.

Start your product. The following steps will be executed:
Before applying any patches, the process first creates a backup folder named patch0000 inside the <
PRODUCT_HOME>/repository/components/patches/ directory, which will contain the original
content of the <PRODUCT_HOME>/repository/components/plugins/ directory. This step
enables you to revert back to the previous state if something goes wrong during operations.
The latest service pack in the dire<PRODUCT_HOME>/repository/components/servicepacks/

 will be applied. That is, the patches in the service pack will be applied to the ctory <PRODUCT_HOME>/
repository/components/plugins/ directory.
In addition to the service pack, if there are added to the individual patches <PRODUCT_HOME>/repos
itory/components/patches/ directory, those will also be incrementally applied to the plugins di
rectory.

Applying individual patches to the product

You can apply each patch individually to your system as explained below. Alternatively, you can apply patches
 as explained above.through service packs

Copy the patches to the <PRODUCT_HOME>/repository/components/patches/ directory.
Start the Carbon server. The patches will then be incrementally applied to the plugins directory.

Verifying the patch application

The metadata file available in the service pack will maintain a list of the applied patches by
service pack. Therefore, the metadata file information will be compared against the <PRODUCT
_HOME>/repository/components/patches/ directory, and only the patches that were
not applied by the service pack will be incrementally applied to the plugins directory.

Before applying any patches, the process first creates a backup folder named patch0000 inside the
<PRODUCT_HOME>/repository/components/patches/ directory, which will contain the original
content of the <PRODUCT_HOME>/repository/components/plugins/ directory. This step
enables you to revert back to the previous state if something goes wrong during operations.

Prior to Carbon 4.2.0, users were expected to apply patches by starting the server with wso2server.sh
ou do not have to issue a special command to trigger the patch application-DapplyPatches. Now, y

process. It starts automatically if there are changes in either the <PRODUCT_HOME>/repository/compo
nents/servicepacks/ directory or the <PRODUCT_HOME>/repository/components/patches/ dire
ctory. It verifies all the latest JARs in the and directories against the JARs in the servicepacks patches

 directory by comparing MD5s of JARs.plugins

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 370

After the patch application process is completed, the patch verification process ensures that the latest service pack
and other existing patches are correctly applied to the <PRODUCT_HOME>/repository/components/plugins/
folder.

All patch related logs are recorded in the <PRODUCT_HOME>/repository/logs/patches.log file.
The <PRODUCT_HOME>/repository/components/patches/.metadata/prePatchedJARs.txt meta
file contains the list of patched JARs and the md5 values.
A list of all the applied service packs and patches are in the <PRODUCT_HOME>/repository/components
/default/configuration/prePatched.txt file.

Overview of the patch application process

The diagram below shows how the patch application process is implemented when you start the server.

Do not change the data in the <PRODUCT_HOME>/repository/components/default/configu
 file. The patch application process gets the pre-patched list from this fileration/prePatched.txt

and compares the list with the patches available in the and directories. Ifservicepack patches
you change the data in this file, you will get a startup error when applying patches.

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 371

FAQ
About WSO2 API Manager
What is WSO2 API Manager?
What is the open source license of the API
Manager?
How do I download and get started quickly?
Is there commercial support available for
WSO2 API Manager?
What are the default ports opened in the API
Manager?
What are the technologies used underneath
WSO2 API Manager?
Can I get involved in APIM development
activities?
Does the API Manager use Thrift and where
can I find information about it?
Installation
What are the minimum requirements to run
WSO2 API Manager?
What Java versions are supported by the API
Manager?
How do I deploy a third-party library into the
API Manager?
Do you provide automated installation scripts
based on Puppet or similar solutions?
Is it possible to connect the API Manager
directly to an LDAP or Active Directory where
the corporate identities are stored?
Can I extend the management console UI to
add custom UIs?
I don't want some of the features that come
with WSO2 API Manager. Can I remove
them?
How can I change the memory allocation for
the API Manager?
Clustering and deployment
Where can I look up details of different
deployment patterns and clustering
configurations of the API Manager?
What is the recommended way to manage
multiple artifacts in a product cluster?
Is it recommended to run multiple WSO2
products on a single server?
Can I install features of other WSO2 products
to the API Manager?
How can I set up a reverse proxy server to
pass server requests?
Functionality

I cannot see all the APIs that I published on the API Store. Why is this?
When editing an API's resource's parameters, how can I add multiple options to
the parameter Response Content Type?
I edited the resource parameter Response Content Type of a published API. But the changes are not
reflected in the API Store after saving. What should I do?
I have set up the API Manager with WSO2 BAM to collect and analyze runtime statistics. But, the 'API
Usage by Destination' graph shows no data. Why is this?

Authentication and security

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 372

How can I manage authentication centrally in a clustered environment?
How can I manage the API permissions/visibility?
How can I add security policies (UT, XACML etc.) for the services?
How can I disable self signup capability to the API Store? I want to engage my own approval
mechanism.
Is there a way to lock a user's account after a certain number of failed login attempts to the API Store?
How do I change the default admin password and what files should I edit after changing it?
How can I recover the admin password used to log in to the management console?
Can I give special characters in the passwords that appear in the configuration files?

Troubleshooting
Why do I get the following warning:
org.wso2.carbon.server.admin.module.handler.AuthenticationHandler - Illegal access attempt while
trying to authenticate APIKeyValidationService?
I hit the DentityExpansionLimit and it gives an error as
{org.wso2.carbon.apimgt.hostobjects.APIStoreHostObject} - Error while getting Recently Added APIs
Information. What is the cause of this?
I get a Hostname verfiication failed exception when trying to send requests to a secured endpoint.
What should I do?
When I add new users or roles, I get an error message as 'Entered user name is not conforming to
policy'. What should I do?
The access token I generated from the My Subscriptions page does not work but I can invoke the API
via the Token API. What can I do?
When I call a REST API, I find that a lot of temporary files are created in my server and they are not
cleared. This takes up a lot of space. What should I do?

General questions
Can I implement an API facade with the API Manager?
How can I write automated test scripts for the API Manager?

About WSO2 API Manager

What is WSO2 API Manager?

WSO2 API Manager is a complete solution for creating, publishing and managing all aspects of an API and its life
cycle. See .About API Manager

What is the open source license of the API Manager?

Apache Software License Version 2.0

How do I download and get started quickly?

Go to to download the binary or source distributions. See .http://wso2.com/products/api-manager Getting Started

Is there commercial support available for WSO2 API Manager?

It is completely supported from evaluation to production. See .WSO2 Support

What are the default ports opened in the API Manager?

See .Default Ports of WSO2 Products

What are the technologies used underneath WSO2 API Manager?

The API Manager is built on top of , an OSGi based components framework for SOA. See WSO2 Carbon component
.s

Can I get involved in APIM development activities?

Not only are you allowed, but also encouraged. You can start by subscribing to and dev@wso2.org architecture@ws
 mailing lists. Feel free to provide ideas, feedback and help make our code better. For more information ono2.org

https://docs.wso2.com/display/AM150/About+API+Manager
http://www.apache.org/licenses/LICENSE-2.0
http://wso2.com/products/api-manager/
https://docs.wso2.com/display/AM150/Getting+Started
http://wso2.com/support/
https://docs.wso2.com/display/AM150/Default+Ports+of+WSO2+Products
http://wso2.com/products/carbon
https://docs.wso2.com/display/AM180/Key+Concepts#KeyConcepts-APIManagercomponents
https://docs.wso2.com/display/AM180/Key+Concepts#KeyConcepts-APIManagercomponents

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 373

contacts, mailing lists and forums, see .Getting Support

Does the API Manager use Thrift and where can I find information about it?

That the default communication protocol of Key Manager is Thrift. See http://thrift.apache.org/static/files/thrift-20070
 for information on Thrift.401.pdf

Installation

What are the minimum requirements to run WSO2 API Manager?

Minimum requirement is Oracle Java SE Development Kit (JDK). See .Installation Prerequisites

What Java versions are supported by the API Manager?

See .Installation Prerequisites

How do I deploy a third-party library into the API Manager?

Copy any third-party JARs to directory and restart the server.<APIM_HOME>/repository/components/lib

Do you provide automated installation scripts based on Puppet or similar solutions?

Yes. For information, .contact us

Is it possible to connect the API Manager directly to an LDAP or Active Directory where the corporate identities are
stored?

Yes. You can configure the API Manager with multiple user stores. See . Configuring User Stores

Can I extend the management console UI to add custom UIs?

Yes, you can extend the management console easily by(default URL is) https://localhost:9443/carbon
writing a custom UI component and simply deploying the OSGi bundle.

I don't want some of the features that come with WSO2 API Manager. Can I remove them?

Yes, you can do this using the menu under the Features Configure menu of the management console (default URL
is).https://localhost:9443/carbon

How can I change the memory allocation for the API Manager?

The memory allocation settings are in file <APIM_HOME>/bin/wso2server.sh .

Clustering and deployment

Where can I look up details of different deployment patterns and clustering configurations of the API Manager?

See .WSO2 clustering and deployment guide

What is the recommended way to manage multiple artifacts in a product cluster?

For artifact governance and lifecycle management, we recommend you to use a shared WSO2 Governance
 instance.Registry

Is it recommended to run multiple WSO2 products on a single server?

This is not recommend in a production environment involving multiple transactions. If you want to start several
WSO2 products on a single server, you must change their default ports to avoid port conflicts. See Changing the

.Default Ports with Offset

https://docs.wso2.com/display/AM150/Getting+Support
http://thrift.apache.org/static/files/thrift-20070401.pdf
http://thrift.apache.org/static/files/thrift-20070401.pdf
https://docs.wso2.com/display/AM150/Getting+Support
https://localhost:9443/carbon
https://localhost:9443/carbon
http://docs.wso2.org/cluster
http://wso2.com/products/governance-registry
http://wso2.com/products/governance-registry
https://docs.wso2.com/display/AM150/Changing+the+Default+Ports+with+Offset
https://docs.wso2.com/display/AM150/Changing+the+Default+Ports+with+Offset

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 374

Can I install features of other WSO2 products to the API Manager?

Yes, you can do this using the management console. The API Manager already has features of WSO2 Identity
Server, WSO2 Governance Registry, WSO2 ESB etc. embedded in it. However, if you require more features of a
certain product, it is recommended to use a separate instance of it rather than instal its features to the API Manager.

How can I set up a reverse proxy server to pass server requests?

See .Adding a Reverse Proxy Server

Functionality

I cannot see all the APIs that I published on the API Store. Why is this?

If you have multiple versions of an API published, only the latest version is shown in the API Store. To display
multiple versions, set the <DisplayMultipleVersions> element to in true <APIM_HOME>/repository/conf
/api-manager.xml file.

When editing an API's resource's parameters, how can I add multiple options to the parameter Response Content Type
?

You cannot do this using the UI. Instead, edit the Swagger definition of the API as content_type:
["text/xml","text/plain"] for example.

I edited the resource parameter Response Content Type of a published API. But the changes are not reflected in the API
Store after saving. What should I do?

If you edited the using the UI, please open the API's Swagger definition, do your changesResponse Content Type
and save. Then the changes should be reflected back in the API Store. This will be fixed in a future release.

I have set up the API Manager with WSO2 BAM to collect and analyze runtime statistics. But, the 'API Usage by
Destination' graph shows no data. Why is this?

To populate this graph, you must enable destination-based usage tracking manually. See onViewing API Statistics
how to do that.

Authentication and security

How can I manage authentication centrally in a clustered environment?

You can enable centralized authentication using a WSO2 Identity Server based security and identity gateway
, which (Single Sign On) across all the servers.solution enables SSO

How can I manage the API permissions/visibility?

To set visibility of the API only to selected user roles in the server, see .API Visibility

How can I add security policies (UT, XACML etc.) for the services?

This should be done in the backend services in the Application Server or WSO2 ESB.

How can I disable self signup capability to the API Store? I want to engage my own approval mechanism.

To disable the self signup capability, open the APIM management console and click the menResources -> Browse
u. The registry opens. Navigate to /_system/governance/apimgt/applicationdata/sign-up-config.x

and set element to false. To engage your own signup process, see ml <SelfSignUp><Enabled> Adding a User
.Signup Workflow

http://wso2.com/solutions/security-and-identity-gateway/centralized-authentication/
http://wso2.com/solutions/security-and-identity-gateway/centralized-authentication/
http://docs.wso2.org/identity-server/Configuring+Single+Sign-On+Across+Different+Carbon+Servers
https://docs.wso2.com/display/AM150/API+Visibility

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 375

Is there a way to lock a user's account after a certain number of failed login attempts to the API Store?

If your identity provider is WSO2 Identity Server, this facility comes out of the box. If not, install the identity-mgt
feature to the API Manager and configure it. For information, see page in the Identity ServerAccount Lock/Unlock
documentation.

How do I change the default admin password and what files should I edit after changing it?

To change the default admin password, log in to the management console with admin/admin credentials and use the
"Change my password" option. After changing the password, change the following elements in <APIM_HOME>/rep

 file:ository/conf/api-manager.xml

<AuthManager>
 <Username>admin</Username>
 <Password>newpassword</Password>
</AuthManager>

<APIGateway>
 <Username>admin</Username>
 <Password>newpassword</Password>
</APIGateway>

<APIKeyManager>
 <Username>admin</Username>
 <Password>newpassword</Password>
</APIKeyManager>

How can I recover the admin password used to log in to the management console?

Use script.<APIM_HOME>/bin/chpasswd.sh

Can I give special characters in the passwords that appear in the configuration files?

If the config file is in XML, take care when giving special characters in the user names and passwords. According to
XML specification (), some special characters can disrupt the configuration. For example,http://www.w3.org/TR/xml/
the ampersand character (&) must not appear in the literal form in XML files. It can cause a Java Null Pointer
exception. You must wrap it with CDATA () as shown below or removehttp://www.w3schools.com/xml/xml_cdata.asp
the character:

<Password>
 <![CDATA[xnvYh?@VHAkc?qZ%Jv855&A4a,%M8B@h]]>
</Password>

Troubleshooting

Why do I get the following warning: org.wso2.carbon.server.admin.module.handler.AuthenticationHandler - Illegal
access attempt while trying to authenticate APIKeyValidationService?

Did you change the default admin password? If so, you need to change the credentials stored in the <APIKe
 element of the file of the APIyManager> <APIM_HOME>/repository/conf/api-manager.xml

Gateway node/s.
Have you set the priority of the handler higher than that of the SAML2SSOAuthenticator BasicAuthenti

 handler in the authenticators.xml file? If so, the handler tries to managecator SAML2SSOAuthenticator
the basic authentication requests as well. Set a lower priority to the than the SAML2SSOAuthenticator Bas

 handler as follows:icAuthenticator

https://docs.wso2.com/pages/viewpage.action?pageId=34612027
http://www.w3.org/TR/xml/
http://www.w3schools.com/xml/xml_cdata.asp

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 376

<Authenticator name="SAML2SSOAuthenticator" disabled="false">
 <Priority>0</Priority>
 <Config>
 <Parameter name="LoginPage">/carbon/admin/login.jsp</Parameter>
 <Parameter name="ServiceProviderID">carbonServer</Parameter>
 <Parameter
name="IdentityProviderSSOServiceURL">https://localhost:9444/samlsso</Parameter>
 <Parameter
name="NameIDPolicyFormat">urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified</
Parameter>
 <Parameter name="ISAuthnReqSigned">false</Parameter>
 <!-<Parameter
name="AssetionConsumerServiceURL">https://localhost:9443/acs</Parameter>->
 </Config>
</Authenticator>

I hit the and it gives an error as {org.wso2.carbon.apimgt.hostobjects.APIStoreHostObject} -DentityExpansionLimit
Error while getting Recently Added APIs Information. What is the cause of this?

This error occurs in JDK 1.7.0_45 and is fixed in JDK 1.7.0_51 onwards. See for details of the bug.here

In JDK 1.7.0_45, all XML readers share the same and . When theXMLSecurityManager XMLLimitAnalyzer
total count of all readers hits the entity expansion limit, which is 64000 by default, the XMLLimitanalyzer's total
counter is accumulated and the cannot create more readers. If you still want to use update 45XMLInputFactory
of the JDK, try restarting the server with a higher value assigned to the DentityExpansionLimit.

I get a exception when trying to send requests to a secured endpoint. What should I Hostname verfiication failed
do?

Set the element to in <parameter name="HostnameVerifier"> AllowAll <APIM_HOME>/repository/con
 file's HTTPS transport sender configuration. For example,f/axis2/axis2.xml <parameter

.name="HostnameVerifier">AllowAll</parameter>

This parameter verifies the hostname of the certificate of a server when the API Manager acts as a client and does
.outbound service calls

When I add new users or roles, I get an error message as ' . What shouldEntered user name is not conforming to policy'
I do?

This is because your user name or password length or any other parameter is not conforming to the configurRegEx
ations of the user store. See .Managing Users and Roles

The access token I generated from the page does not work but I can invoke the API via the Token API.My Subscriptions
What can I do?

Are you trying to invoke an API that is protected by OAuth scopes? If so, the tokens generated from the My
 page do not work. You must use the .Subscriptions Token API

When I call a REST API, I find that a lot of temporary files are created in my server and they are not cleared. This takes
up a lot of space. What should I do?

There might be multiple configuration context objects created per each API invocation. Please check whether your
client is creating a configuration context object per each API invocation. Also, configure a HouseKeeping task in the

 file to clear the temporary folders. For example.<APIM_HOME>/repository/conf/carbon.xml

http://bugs.java.com/view_bug.do?bug_id=8029404

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 377

<HouseKeeping>
 <AutoStart>true</AutoStart>

 <!-- The interval in *minutes*, between house-keeping runs -->
 <Interval>10</Interval>

 <!-- The maximum time in *minutes*, temp files are allowed to live in the
system. Files/directories which were modified more than
 "MaxTempFileLifetime" minutes ago will be removed by the house-keeping task
-->
 <MaxTempFileLifetime>30</MaxTempFileLifetime>
</HouseKeeping>

General questions

Can I implement an API facade with the API Manager?

You can use the API Manager and WSO2 ESB to implement an . WSO2API facade architecture pattern
recommends this architecture if you are performing heavy mediation in your setup. For implementation details of an
API facade, see .implementing an API facade with WSO2 API management platform

As the API Manager does not have the ESB's GUI to perform mediation functions, you need to use the XML-based
source view for configuration. Alternatively, you can create the necessary mediation sequences using the GUI of the
ESB, and copy them from the ESB to the API Manager.

Also see in WSO2 ESB documentation for more information on REST to SOAP conversion.the following use cases

How can I write automated test scripts for the API Manager?

Use WSO2 Test Automation Framework (TAF) as explained in .Writing a Test Case for API Manager

http://wso2.com/blogs/architecture/2013/05/a-pragmatic-approach-to-the-api-faade-pattern
http://wso2.com/blogs/architecture/2013/05/implementing-an-api-faade-with-the-wso2-api-management-platform
http://docs.wso2.org/enterprise-service-bus/Configuring+Specific+Use+Cases
https://docs.wso2.org/display/TA430/Writing+a+Test+Case+for+API+Manager

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 378

Getting Support
In addition to this documentation, there are several ways to get help as you work on WSO2 products.

Explore learning resources: For tutorials, articles, whitepapers, webinars, and other learning
resources, look in the menu on the . In products that have a visual userResources WSO2 website
interface, click the Help link in the top right-hand corner to get help with your current task.

Try our support options: WSO2 offers a variety of development and production support
programs, ranging from web-based support during normal business hours to premium 24x7 phone
support. For support information, see .http://wso2.com/support/

Ask questions in the user forums at . Ensure that you tag your questionhttp://stackoverflow.com
with appropriate keywords such as and the product name so that our team can easily findWSO2
your questions and provide answers. If you can't find an answer on the user forum, you can email
the WSO2 development team directly using the relevant mailing lists described at http://wso2.org/

.mail

Report issues, submit enhancement requests, track and comment on issues using our public
, and contribute samples, patches, and tips & tricks (see the bug-tracking system WSO2 Contributor

).License Agreement

http://www.wso2.com
http://wso2.com/support
http://stackoverflow.com/questions/tagged/wso2
http://wso2.org/mail
http://wso2.org/mail
https://wso2.org/jira/secure/Dashboard.jspa
https://wso2.org/jira/secure/Dashboard.jspa
http://wso2.com/files/wso2-cla.pdf
http://wso2.com/files/wso2-cla.pdf

WSO2 API Manager, version 1.8.0, WSO2 Inc.

Copyright © WSO2 Inc. 2005-2014 379

Site Map
Use this site map to quickly find the topic you're looking for by searching for a title on this page using your browser's
search feature. You an also use the search box in the upper right corner of this window to search for a word or
phrase in all the pages in this documentation.

	WSO2 API Manager Documentation
	About API Manager
	Introducing the API Manager
	About this Release

	Getting Started
	Quick Start Guide
	Downloading the Product
	Installation Prerequisites
	Installing the Product
	Installing on Linux or OS X
	Installing on Solaris
	Installing on Windows
	Installing as a Linux Service
	Installing as a Windows Service

	Building from Source
	Running the Product
	Upgrading from the Previous Release
	Get Involved
	WSO2 GitHub Repositories

	User Guide
	Key Concepts
	API Developer Tutorials
	Create and Publish an API
	Edit an API from the Source Code
	Add API Documentation
	Add API Documentation In-line, using a URL or a File
	Add Apache Solr-Based Indexing

	Manage the API Lifecycle
	Create a new API Version
	Deploy and Test as a Prototype
	Publish the new Version and Deprecate the old

	Publish to multiple external API stores
	Engage a new Throttling Policy
	Block Subscription to an API
	Enforce Throttling and Resource Access Policies

	Application Developer Tutorials
	Subscribe to an API
	Invoke an API using the Integrated API Console
	Invoke an API using the Integrated REST Client
	Use the Community Features
	Invoke an API using a SOAP Client

	Configuring the API Manager
	Customizing the API Store
	Configuring Multiple Tenants
	Multi Tenant Architecture
	Managing Tenants
	Tenant-Aware Load Balancing using WSO2 ELB

	Adding Internationalization and Localization
	Configuring Single Sign-on with SAML2
	Changing the Default Transport
	Configuring Caching
	Working with Databases
	Setting up the Physical Database
	Setting up IBM DB2
	Setting up Derby
	Setting up Embedded Derby
	Setting up Remote Derby

	Setting up H2
	Setting up Embedded H2
	Setting up Remote H2

	Setting up IBM Informix
	Setting up Microsoft SQL
	Setting up MySQL
	Setting up MySQL Cluster
	Setting up OpenEdge
	Setting up Oracle
	Setting up Oracle RAC
	Setting up PostgreSQL

	Managing Datasources
	Adding Datasources
	Configuring an RDBMS Datasource
	Configuring the Datasource Provider
	Configuring a JNDI Datasource
	Configuring the Datasource Connection Pool Parameters

	Configuring a Custom Datasource

	Managing Users and Roles
	Adding User Roles
	Adding Users

	Configuring User Stores
	Realm Configuration
	Changing the RDBMS
	Configuring Primary User Stores
	Properties of Primary User Stores

	Configuring Secondary User Stores

	Directing the Root Context to the API Store
	Adding Links to Navigate Between the Store and Publisher
	Maintaining Separate Production and Sandbox Gateways
	Configuring Transports

	Extending the API Manager
	Writing Custom Handlers
	Integrating with WSO2 Governance Registry
	Adding Mediation Extensions
	Adding Workflow Extensions
	Adding an Application Creation Workflow
	Adding an Application Registration Workflow
	Adding an API Subscription Workflow
	Adding a User Signup Workflow
	Invoking the API Manager from the BPEL Engine
	Customizing a Workflow Extension
	Configuring Workflows for Tenants
	Configuring Workflows in a Cluster
	Changing the Default User Role in Workflows

	Adding new Throttling Tiers
	Adding a Reverse Proxy Server
	Adding a new API Store Theme
	Transforming API Message Payload

	Working with Security
	Passing Enduser Attributes to the Backend Using JWT
	Encrypting Passwords
	Maintaining Logins and passwords
	Saving Access Tokens in Separate Tables
	Configuring WSO2 Identity Server as the Key Manager
	Configuring Transport Level Security
	Enabling the Java Security Manager

	Working with Statistics
	Publishing API Runtime Statistics
	Integrating with Google Analytics
	Viewing API Statistics

	Samples
	Setting up the Samples
	Deploying and Testing YouTube API
	Generating Billing Data
	Invoking APIs using a Web App Deployed in WSO2 AS
	Deploying and Testing a Wikipedia API

	Published APIs
	Publisher APIs
	Store APIs
	Token API
	WSO2 Admin Services

	Admin Guide
	Migrating the API Manager
	Deploying and Clustering the API Manager
	Tuning Performance

	Reference Guide
	Product Profiles
	Default Product Ports
	Changing the Default Ports with Offset
	Error Handling
	WSO2 Patch Application Process

	FAQ
	Getting Support
	Site Map

