
An RTP to HTTP Video Gateway

Mathias Johanson

Framkom Research Corporation
Sallarängsbacken 2, S-431 37 Mölndal, Sweden

mathias@framkom.se

Abstract
Multicast audio and video conferences are today commonplace in
certain parts of the Internet. The vast majority of Internet users,
however, are not able to participate in these events because they
either lack multicast network connectivity, are located behind
firewalls, have insufficient network resources available or don't
have access to the proper software tools. In many cases all of
these restrictions apply. This paper presents an effort to extend the
scope of multicast video conferencing by the development of an
Internet video gateway that interconnects multicast networks with
the World Wide Web. The overall design of the gateway software
is outlined and a novel algorithm for rate control of the multicast
video flows is described. Some performance tests that show the
efficacy of the system in terms of resource utilisation and
scalability are presented.

Keywords
Multimedia gateways, Multicast, Video, RTP, HTTP

1. INTRODUCTION
The explosive growth of the Internet has so far mostly been
related to its success in supporting asynchronous applications like
WWW-browsing and file transfers. Within the research
community, however, the Internet has for many years been
successfully utilised in supporting synchronous multimedia
conference sessions, most notably within the Mbone initiative [1].
The Mbone is a virtual network implemented on top of the
Internet that enables multicast packet delivery; a technology
crucial for implementing scalable multipoint communication
systems. Nevertheless, the vast majority of Internet hosts are not
connected to multicast-enabled networks, so inter-operation with
Mbone-type services need some sort of gateway function or
tunnelling mechanism that can forward IP multicast datagrams in
a controlled manner over unicast network connections. Several
software tools have been designed for this purpose, including
mrouted [6] and mTunnel [3], but there are still other difficulties
that need to be overcome to make audio and video conferencing
ubiquitous on the Internet. One difficulty is that the bandwidth
available on many dialup links is too low to sustain the potentially
broadband traffic of audio and video sessions. A solution to this
problem is to employ media transcoding gateways that convert the
transmitted media to a lower bandwidth format suitable for
transmission over low-bandwidth links. One such approach is
presented in [2]. Yet another obstacle is the fact that many
Internet hosts are located behind firewalls. In the general case
firewalls don’t allow UDP-based real time traffic to pass through

and in many cases they also employ techniques like network
address translation that complicate end-to-end real-time
communication. Moreover, the rather sophisticated applications
required for real-time audiovisual communication might not be
available on every computing platform and troublesome
installation and configuration procedures will in any case restrain
the applicability of the services in question.

This paper presents a novel software tool that has been developed
to partially circumvent the aforementioned impediments to extend
the range of synchronous multimedia communication.

2. BACKGROUND AND MOTIVATION
Synchronous collaboration tools like audio and video
conferencing applications are becoming increasingly more
popular on the Internet. Simple synchronous communication tools
like ICQ [4] and IRC [5] have rapidly reached a large number of
users due to their applicability virtually anywhere on the Internet.
This is due to the fact that they rely only on the core protocols of
the Internet (TCP/IP) and require very little network resources to
be useful. Sophisticated multimedia collaboration software on the
other hand require substantially more bandwidth and build largely
on protocols that are not supported everywhere on the Internet (IP
multicast [7], RTP/RTCP [11], UDP [13]). Although these
technologies are expected to reach an increasingly more
widespread deployment, there will always be heterogeneity in
terms of network resources and services. In an effort to extend the
scope of multicast video conferences we have developed an RTP
to HTTP gateway software that makes it possible for an Internet
user to take part of multicast video streams, albeit at potentially
high latency and low frame-rate, with the only prerequisite being
access to the WWW through a standard browser. Figure 1 shows
an example configuration of a network that connects WWW users
to a multicast network.

Figure 1. Typical network configuration using

gateways

Copyright is held by the author/owner.
WWW10, May 1-5, 2001, Hong Kong.
ACM 1-58113-348-0/01/0005.

499

Note that the video gateway presented in this paper only enables
users to receive video streams of multicast conference sessions. It
doesn’t provide any support for transmitting video to conference
sessions.

2.1 Multicast Conferencing Tools
A suite of tools generally referred to as “the Mbone tools” have
been used for some time on the global experimental multicast
network known as the Mbone. The Mbone tools include real-time
audio and video conferencing applications, shared whiteboards,
text chat tools and more. These tools communicate using IP
multicast group addresses and encapsulate real-time data in IP
datagrams as specified by the Real-time Transport Protocol
(RTP) [11], and the associated RTP-profiles for various media
encodings. Basic session management and control as well as
miscellaneous status report functions are handled by the Real
Time Control Protocol, RTCP [11]. In addition, the Session
Announcement Protocol (SAP) [14] and the Session Description
Protocol (SDP) [15] are used to announce the lifetime of
multicast sessions and describe what media format will be used
for each session.

2.2 Video on the WWW
Except for experimental systems within the research community,
the first large-scale use of live video on the WWW was so-called
web-cameras. A web-camera is a device that is attached to a web-
server that transmits live video images to a WWW-browser using
HTTP. Although HTTP was originally designed for strictly
asynchronous applications, extensions have been developed to
enable web-servers to send continuous media streams to the client
browser. This is known as “push”-technologies or HTTP
streaming. Another class of applications that has emerged on the
WWW is media on demand servers that transmit pre-recorded
media clips to the client browser using HTTP-streaming or some
other streaming protocol.

2.3 Packet Video Gateways
The concept of active media processing within multicast networks
as a solution to the network heterogeneity problem was pioneered
by Turletti and Bolot in [16] and by Pasquale et al. in [17]. Amir
et al. elaborate on these ideas in [2] with the presentation of an
application level video gateway that performs transcoding
between JPEG and H.261 RTP streams. A classification of active
networking applications is given in [18], wherein a distinction is
made between transport gateways that bridge networks with
different characteristics and applications services that perform
active processing of the transmitted data, such as transcoding of
video streams between different encodings. In [19] Ooi et al.
present an architecture for a programmable media gateway that
can be remotely configured to perform user-defined processing of
media streams.

3. WEBSMILE: OVERALL
ARCHITECTURE
WebSmile is a software component that is installed on an ordinary
web-server that is connected to a multicast capable network. The
software gives users access to multicast RTP video streams
through the web-server using HTTP streaming.

3.1 Client Side
Two different techniques are used to enable the client browser to
display the video that is streamed over HTTP; an experimental
MIME-extension [20] for displaying moving images and a Java
applet. The MIME extension, known as multipart/x-mixed-
replace, makes it possible to display sequences of JPEG or GIF
images in an HTML page. Since it is not supported in all
browsers, this technique is complemented with a Java video
player applet that is downloaded from the WebSmile server.

Figure 2: Conceptual model of the WebSmile

server architecture

3.2 Server Side
The WebSmile gateway is implemented as a server program
executed on a web server through the common gateway interface
(CGI) [21]. The program performs three separate functions
depending on the parameters with which it is invoked:

• Monitor a multicast session and report back information
about the video sources that are identified.

• Join a session and return an HTML-page with video
displays.

• Start forwarding video over HTTP.

The first function is performed by joining the multicast address
and port specified and listening to RTCP source description
(SDES) advertisements. The members of the session are identified
by a canonical name in the format user@host.domain and
optionally by more verbose information like a real name, address,
phone number, etc. This information is reported back to the
browser that originated the CGI-request as an HTML-form with a
checkbutton associated with each identified session member. The
user then indicates which video sources are to be monitored by
checking the appropriate checkbuttons and posting the form back
to the server. This invokes WebSmile in the second mode as
described above to join the session and return the video display
HTML page. This page contains a Java applet to display the video
in case the browser has been identified (through CGI environment
variables) as non-capable of displaying multipart/x-mixed-replace
content. The third mode of WebSmile is invoked when the
references in the video HTML-page to the HTTP-streamed video

500

are resolved. This is either an image hyperlink looking something
like

<IMG SRC="http://server:port/cgi-bin/websmile?-s+1234+-
a+224.2.2.2+-p+5566">

(where 1234 is the source id of the video to be monitored,
224.2.2.2 is the multicast address and 5566 is the UDP port
number) or an applet connecting explicitly to the web server with
the same CGI parameters. In both cases the video streamed over
HTTP conforms to the multipart MIME specification with a
content type of image/jpeg for each multipart entity.

3.3 Transcoding
In case the multicast video is not JPEG over RTP as specified by
RFC2435 [12] the gateway needs to transcode the video into
JPEG. Currently no transcoding support is implemented in
WebSmile so only JPEG-compressed video will be forwarded.
However, specialised transcoding gateways are available,
including [2], that can be used in combination with WebSmile to
support other formats.

4. RATE CONTROL
Since the bandwidth available for users connected through HTTP
is, in most situations, expected to be less than the bandwidth used
for the multicast sessions, rate control must be applied to the
video traffic forwarded by WebSmile. This is performed by
adapting the frame rate of the outbound video to the available
bandwidth of each HTTP connection. The WebSmile gateway
accomplishes this by writing video image data on the TCP socket
of each HTTP connection until the socket buffer is filled. Images
arriving on the multicast network while a socket is blocked (due
to a full buffer) will not be sent to the corresponding client. When
the socket is unblocked, forwarding of images is resumed. This
modus operandi is simple to implement and will result in each
client receiving video at a frame rate determined by TCP’s flow
control.

Considering the fact that the frame rate sustainable over the HTTP
connections might be substantially less than the frame rate of the
video being multicast, it would be desirable if the gateway could
control the multicast video flow being received so that it conforms
to the target bandwidth of the rate-controlled video. Otherwise
network resources will be wasted on the multicast data path
between the sender and the gateway, since many of the video
frames simply will be dropped by the gateway.

4.1 Layered Multicast
An elegant solution to multicast flow control is to subdivide the
data stream into a hierarchy of cumulative layers each of which is
transmitted to a unique multicast address. Thus, each individual
receiver can control the bandwidth of the data stream being
received by subscribing to an appropriate number of multicast
groups. The quality of the reconstructed data depends on how
many layers are available in the decoding process. The flow
control problem is thereby reduced to finding a way for the
receivers to determine the optimal number of layers to subscribe
to. Unfortunately, this is not so easy to do in the general case.
Several approaches have been suggested [8, 9, 10]. In the present
case, however, given our assumption that the bandwidth
bottlenecks are the HTTP connections rather than the multicast
backbone, we can use information about the bandwidth

constraints of the HTTP connections as input to the multicast flow
control algorithm. Since HTTP is transported over TCP we can
actually let the flow control algorithm of TCP drive the decision
algorithm for subscribing to multicast layers. What we need is a
way to measure the bandwidth that TCP allocates for the HTTP
connections. We also need a layered representation of the video
signals to be transmitted. The easiest way to achieve a layered
video encoding is to distribute the individual video frames
temporally over the group of layers. Thus, subscribing to an
increased number of layers will result in a higher frame rate of the
decoded video. The temporal layering is simplified if only intra-
frame compression is used, as is the case with the JPEG encoding
used in WebSmile.

4.2 The TCP-Driven Multicast Flow Control
Algorithm
Since one WebSmile gateway can support many HTTP-connected
clients with video from the same session, the client with the
fastest connection determines how many multicast layers must be
subscribed to, in order to support the desired frame rate for each
client. That is, if a gateway is serving n clients with TCP
connections of bandwidth Bi, i=1..n, respectively, with video
distributed uniformly across L distinct layers with an aggregate
bandwidth of Btot, then the number of multicast layers the gateway
should subscribe to, LGW, is given by

 (1)

Note that the value we get must be rounded up since only integral
layers can be received. To determine the effective bandwidth of
the HTTP connections WebSmile measures the time each socket
write operation consumes and calculates the mean sending time
for each transmitted image. Since a blocking socket interface is
used, the sending time for an individual image will sometimes be
very short (in case of an empty output socket buffer) and
sometimes disproportionately long, but on the average a good
estimation of the actual throughput is achieved.

If the expression in (1) was to be used directly by WebSmile in
the multicast flow control algorithm, the total bandwidth of the
video stream (Btot) must be known. However, this parameter may
change during the session, so it would be better if an equivalent
expression not including Btot could be derived. Furthermore, since
the parameter being measured is the average socket send time for
an image, it would be easier if that parameter could be used
directly instead of calculating the bandwidth.

Now, if we let t denote the average time to send an image on the
HTTP socket connected to receiver k, where Bk=max(Bi), then the
average frame size of the video, J, will be given by

Observing that the average frame size can also be written as

,

where f is the frame rate of the video, we note that the fraction in
(1) can be written as

501

. (2)

Substituting (2) in (1) gives the simple formula

, (3)

where L and f are constants. Thus the optimal number of layers to
subscribe to can be determined by measuring only the
transmission time for the video frames, providing we have an a
priori knowledge of the number of layers used and the frame rate
of the video. (Strictly speaking, the frame rate could be
experimentally learned by receiving one layer and multiplying the
observed frame rate with the total number of layers, L.)

The algorithm is continually monitoring the average image
transmission time to compute the optimal subscription level and
thus dynamically adapts to bandwidth fluctuations on the HTTP
connections in response to TCP’s flow control.

Note that the parameter t in (3) was defined to be the average
transmission time for an image on the TCP socket with the fastest
connection. This implies that the gateway must keep track of
which TCP connection has the lowest average sending time
(highest throughput) at any time and use that value as input to the
flow control algorithm. However, in the actual implementation of
WebSmile, each HTTP-connected user is served by a separate
process. Running the flow control algorithm independently in all
processes using (3), with t being the average image sending time
for the process’ own TCP connection, will in effect lead to an
allocation of multicast addresses where the set of addresses
allocated by the process with the fastest TCP connection will be a
superset of the sets of addresses allocated by the other processes.
The total allocation of multicast addresses on the gateway is
hence determined by the process with the fastest TCP connection.
Thus, the desired behaviour is achieved without the processes
having to synchronize their operation (or even be aware of the
other processes’ existence.)

Finally, note that the bandwidths Bi and Btot used in (1) in the
deduction of (3) represent the actual throughput of image data,
excluding transport protocol overhead. Thus, the difference in
protocol overhead between HTTP/TCP and RTP/UDP doesn’t
impact the flow control algorithm, although it affects the overall
bandwidth consumption. The transport protocol overheads are
estimated in section 5.1.

5. Performance
To measure how well the flow control algorithm allocates
bandwidth on the multicast network in relation to the throughput
on the HTTP/TCP-connection, a test environment was set up with
the configuration shown in Figure 3.

The line speed of the dialup connection was configurable so that
different network access technologies could be emulated (in terms
of bandwidth). The connection was configured at a number of
different speeds ranging from 30 kbps to 2 Mbps and the resultant
bandwidths allocated by WebSmile on the HTTP/TCP-connection
and on the multicast connection were measured. The video was
transmitted at 25 frames per second in 10 distinct temporal layers.
The image resolution was 192 by 144 pixels, which after JPEG
compression resulted in a total bitrate of about 650 kbps, or about
65 kbps per layer. In Figure 4 the multicast bandwidth is plotted
against the HTTP/TCP bandwidth.

It is clear that the bandwidth allocated on the multicast network
depends linearly on the bandwidth available to the TCP
connection, as expected. It can also be noted that on the average a
slightly higher bandwidth is allocated on the multicast network
compared to the TCP bandwidth. (The dotted line in Figure 4
delineates an identical allocation of bandwidth.) This is due to the
fact that bandwidth is allocated at a much coarser scale on the
multicast network, the granularity being the bandwidth of one
layer compared to TCP’s byte-level congestion window
adjustments. On average the over-allocation of bandwidth on the
multicast network is one half of the layer bitrate, which, in the
present case, is about 30 kbps.

5.1 Transport Protocol Overhead
The bandwidth measurements presented in Figure 4 include the
overhead imposed by the transport protocols. To investigate what
influence the difference in protocol overhead between HTTP/TCP
and RTP/UDP transport has on the bandwidth allocation we
roughly estimate the overheads.

For the HTTP/TCP transport the overhead for each packet is 20
bytes for the IP-header and 20 bytes for the TCP header.
Furthermore, each image is encapsulated by an application-
specific MIME multipart boundary identifier. Also a content-type
and content-length MIME-field is added for each image. The
WebSmile implementation adds 65 bytes of MIME-information
for each image. The total overhead depends on the data segment
size chosen by the TCP implementation, the fragmentation
occurring on the end-to-end network connection and the average
size of the images transmitted. Assuming a packet size of 576
octets including IP and TCP header (the default packet size in
TCP), no additional fragmentation and an average image size of

Figure 4: Multicast bandwidth allocation in relation
to HTTP/TCP bandwidth

Figure 3: Network configuration used for
performance tests

502

3.5 Kb, a total overhead of 8.76% is obtained. Note that this
estimation requires that the TCP sender always has enough data in
the output socket buffer to transmit a full-sized packet.

The RTP/UDP overhead consists of the 20 byte IP-header, 8 bytes
for the UDP header, 12 bytes for the RTP header and 8 bytes for
the JPEG/RTP profile header, giving a total of 48 bytes per
packet. The same packet size and fragmentation situation as in the
TCP case gives an overhead of 8.33%. However, on average, the
last datagram of an image will be only half of the maximum
datagram size. With a 3.5 Kb average image size this increases
the overhead to 9.31%.

Note that in the estimations above the overhead of retransmissions
in the TCP protocol isn’t included and neither is the overhead due
to periodic RTCP packet transmissions in the RTP case.
Nevertheless, this rough estimation indicates that the overhead is
approximately the same for both transports and accounts for about
9 percent of the total bandwidth, both for HTTP/TCP and the
RTP/UDP.

6. Future Work
The applet used for displaying live video in the client WWW-
browser will be extended with functionality to playback audio as
well, so that the system can be used as both an audio and video
gateway. Furthermore, the integration of media transcoding
support into the WebSmile system will be studied in more detail.

7. Summary
In this paper the development of a novel Internet video gateway
has been presented. The system, known as WebSmile, enables
Internet users that normally would be unable to participate in
multicast video conferences to partake using only a standard web
browser. The need for a system like this is motivated by the fact
that many Internet users will continually be unable to utilise many
of the advanced technologies needed for multicast conferencing
due to resource unavailability, security concerns and other
shortcomings. The design and implementation of WebSmile as an
application level gateway co-located with a WWW server was
discussed in section 3.

In section 4 a novel TCP-driven flow control algorithm for
layered multicast video was introduced. The algorithm
implemented in the video gateway works by adapting the rate of
the multicast video flows to the bandwidth allocated by the
HTTP/TCP connections to the receiving clients. A layered video
encoding transmitted to a set of multicast addresses was suggested
to enable the receiver-oriented multicast flow control. The
performance of the flow control algorithm was measured in a test
network configuration, and the results show that the multicast
bandwidth allocated by the gateway closely match the TCP
connection bandwidth. The transport protocol overheads for
JPEG-video over HTTP and RTP, respectively, were estimated
and found to be approximately the same.

References
1. H. Eriksson, “Mbone: The multicast backbone,”

Communications of the ACM 37, 1994.

2. E. Amir, S. McCanne, H. Zhang, “An application level video
gateway,” ACM Multimedia ’95, November 1995.

3. P. Parnes, K. Synnes, D. Schefström, “Lightweight
application level multicast tunneling using mTunnel,” Journal
of Computer Communication, 1998.

4. http://www.icq.com - “The ICQ Internet chat service”.

5. J. Oikarinen, D. Reed, “Internet Relay Chat (IRC) protocol,”
RFC1459, May 1993.

6. B. Fenner. “The multicast router daemon - mrouted,”
ftp://ftp.parc.xerox.com/pub/net-research/ipmulti.

7. S. E. Deering, “Multicast routing in a datagram internetwork,”
PhD thesis, Stanford University, December 1991.

8. S. McCanne, V. Jacobson, M. Vetterli, “Receiver-driven
layered multicast,” Proceedings of ACM SIGCOMM ’96,
October 1996.

9. L. Vicisano, L. Rizzo, J. Crowcroft, “TCP-like congestion
control for layered multicast data transfer,” Proceedings of
IEEE Infocom ’98, San Francisco, CA, March 1998.

10. L. Wu, R. Sharma, and B. Smith. “ThinStreams: An
architecture for multicasting layered video,” Proceedings of
NOSSDAV ’97, May 1997.

11. H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, “RTP:
A transport protocol for real-time applications,” RFC1889,
January 1996.

12. L. Berc, W. Fenner, R. Frederick, S. McCanne, P. Stewart,
“RTP payload format for JPEG-compressed video,”
RFC2435, October 1998.

13. J. Postel, “User Datagram Protocol (UDP),” RFC 768, August
1980.

14. M. Handley, “SAP: Session Announcement Protocol,”
Internet draft, IETF Multiparty Multimedia Session Control
Working Group, 1997.

15. M. Handley, V. Jacobsen, “SDP: Session Description
Protocol,” RFC2327, April 1998.

16. T. Turletti, J. Bolot, “Issues with multicast video distribution
in heterogeneous packet networks,” Proceedings of Packet
Video Workshop, Portland Oregon, September 1994.

17. J. Pasquale, G. Polyzos, E. Anderson, V. Kompella, “Filter
propagation in dissemination trees: Trading off bandwidth
and processing in continuous media networks,” Proceedings
of NOSSDAV ’98, pp. 269-278, October 1993.

18. D. Tennenhouse, J. Smith, W. Sincoskie, D. Wetherall, G.
Minden, “A survey of active network research,” IEEE
Communications Magazine, pp. 80-86, January 1997.

19. W. Ooi, R. van Renesse, B. Smith, “Design and
implementation of programmable media gateways,”
Proceedings of NOSSDAV 2000, June 2000.

20. N. Borenstein, N. Freed, “MIME (Multipurpose Internet Mail
Extensions) Part one: Mechanisms for specifying and
describing the format of Internet message bodies,” RFC1521,
September 1993.

21. K. Coar, D. Robinson, “The WWW Common Gateway
Interface version 1.1,” Internet draft, June 1999.

503

