InfiniBand Device Virtualization in Xen

Dror Goldenberg (gdror@mellanox.co.il)
January 19, 2006

The IO Bottleneck

The IO Bottleneck (Virtualization)

InfiniBand Key Benefits

- Take InfiniBand Characteristics to the Virtualized Environment
 - Unmatchable I/O
 - Low Latency (<2.5us application to application)
 - High Bandwidth (>2600MB/s bidirectional bandwidth)
 - CPU Offloads
 - Transport offload
 - RDMA
 - Kernel (and Hypervisor) bypass
 - Fabric Consolidation
 - IPC, Network, Storage, Backup, Management
- Mature SW Stack
 - OpenIB stack is part of the Linux kernel

InfiniBand Key Benefits (Cont'd)

- Channel Based I/O
 - Cross-channel isolation
 - Cross-channel protection
 - Native device sharing
- Hypervisor and Virtualization Stack Offloads
 - Saves data copies
 - Reduces context switching
 - Virtual switching
- Existing HW Fully Supports
 Virtualization
 - The most cost-effective path for single-node virtual servers
 - SW-transparent scale-out

Goals

- Leverage high-performance IO in VMM
 - VM-transparent Hypervisor offload
- Direct access to IO from guest VM
 - Full Hypervisor bypass
 - Match native InfiniBand performance on virtual machine
- Enable InfiniBand unaware guests
- Multiple solutions: performance vs. HW awareness tradeoff
 - Partial InfiniBand performance gain DomU is HW independent
 - Full InfiniBand performance gain DomU is HW dependent
 - Different customers need different solutions

Plan

- Solution I: Enable IB in Xen Environment
 - Networking IPolB through standard net front/back
 - Block Storage SRP/iSER through standard block front/back
- Solution II (1st Part): Native IB Networking and Storage in DomU
 - IB Front/Back infrastructure
 - Networking IPolB in Dom U over IB access layer
 - Storage SRP/iSER in Dom U over IB access layer
- Solution II (2nd Part): Full Native IB Support in DomU
 - SDP
 - File storage (NFS/RDMA)
 - Userland access layer
 - MPI
- Solutions can operate concurrently

OpenIB Linux Stack Architecture

Solution I: Infrastructure

Solution I: Summary

Benefits

- Xen machine can connect to InfiniBand infrastructure
- Utilize InfiniBand high performance on network/storage
 - Can be further improved using Solution II
- Hardware independent Dom U
 - Can enable running legacy OS guest that has no IB support

Challenges

- IPolB MAC address is 20B; alternatives to packet demultiplexing (Dom 0):
 - use multiple QPs in Dom0 and assign one QP per DomU
 - use 20B MAC address all the way netfront/back/bridge
 - use IP based demultiplexing at Dom 0
- Multicast requires explicit registration to groups
- No issues expected with storage

Solution II (1st Part): Summary

Benefits

- Bring native IB to the guest kernel
- Improve network/storage performance
 - Expect close to native performance
 - Reduction in context switch, packet copy, etc.
- Enable InfiniBand HW independent Dom U

Challenges

- IPolB uses physical unregistered addresses
 - Patch kernel to use pre-registered networking data buffers
 - Register entire DomU physical address
 - Need to exclude PTE/Balloon pages
 - Separate send and receive pinning method
 - Send use read-only registered memory can also be used for PTEs
 - Receive use special allocator that registers buffers for DMA write
 - Use HCA paging on demand
- SRP uses physical addresses
 - Batch registration
 - Use paging on demand
- Interrupt forwarding to DomU

Solution II (2nd Part): Summary

Benefits

- Bring native IB to the guest
- Improve network performance SDP
- Enable middleware running in DomU e.g. MPI