
®

®

µ-Xen

Ian Pratt
SVP, Products
Bromium Inc.

1

®Outline

• µ-Xen Goals
• Architecture and implementation
• Evolutionary path
• Use case: Bromium end-point security

2

®The µ-Xen Client Hypervisor

• Derived from the Xen code base
• Designed to address client hypervisor deployment

challenges
• Designed to achieve a high-degree of security

assurance
• No requirement to support legacy s/w or h/w
• Optimized to support micro-virtualization
• Evolution to a new class of hypervisor

3

®Evolution to a new class of hypervisor

• Start with a self-contained type-2
– Host kernel module containing µ-Xen blob
– Well-defined interface to/from the host

• Memory allocation, Schedule VCPUs, Timers, Events

• Similar to hXen project
– Windows, OS X; easily portable
– µ-Xen drives VT hardware, leaves IO and other

hardware to host OS
4

®µ-Xen streamlines Xen code base

• x64 only
• No support for systems that are not VTx/EPT or

AMDV/NPT capable
• No support for PV MMU guests
• Significant code size reductions
• No compat code
• Separate build target
• Future: slim down instruction emulator

5

®µ-Xen virtual IO

• µ-Xen demultiplexes IORecs and events to
multiple host processes per VM
– Able to have separate video, audio, disk, net etc processes
– Helps scheduling latency, enables better exploitation

mitigation lock-down

• Use just the relevant parts of QEMU
• User-space PV backend drivers
• Post-boot virtual IO device revocation

6

®Support for large numbers of similar VMs

• Support for VM fork
– Simple extension of Populate on Demand code

• Tree of templates/VMs supported
• PV driver support for re-sharing free pages
• IO tracking to re-share swapped and re-read

pages

7

®Evolution to a new class of hypervisor

• Goal: host is responsible for resource
allocation, but can not interfere with the
privacy or integrity of the hypervisor or other
guests, e.g.:
– Hypervisor asks host for memory, receives it, then

removes host access to it
– Host may perform IO on behalf of hypervisor and

guests, but must be privacy and integrity protected
– Host may deny service, crash; IO tamper detectable

8

®De-privilege host into a VT container

• Remove host access to hypervisor and guest memory in
EPT tables
– h/w devices passed through to host, VTd protected

• Device models can only access Granted memory
– Require PV network and disk as no virtual DMA
– Guest IO buffers encrypted/authenticated before grant copy/map

• Save/restore, dom builder must first have guest memory
encrypted/authenticated by hypervisor
– Hypervisor paging requires similar treatment

9

®Further Enhanced Security

• Migrate certain host h/w devices to
ownership by hypervisor or privileged
guest(s), replace with virtual device
– E.g. Keyboard controller to avoid key logging
– Possibly WiFi/NIC too

• Measured launch of hypervisor
– TXT/TPM to establish DRoT
– Remote attestation of hypervisor configuration

10

Task-based Micro-virtualization

!

The Challenge

 Poor Isolation leads to Vulnerability
 Multi-tenancy of code (& data) from a huge set of trust sources

 Code & Data are executed in the context of a few, weakly organized
and poorly isolated “bins” representing levels of trust - e.g. UID, GID,
PID

 Overloaded, complex specs & buggy implementations of porous
interfaces

 Thus malware can:
 Access data and documents in the same “bin”

 Subvert other good code that is placed into the same “bin”

 Use another bug in an App or OS to elevate its privilege

What Went Wrong?

 Black-listing: Detection is not protection
 Doesn’t protect users from zero day attacks

 Unable to detect targeted & advanced malware

Why Legacy Security Solutions Fail

 White-listing: Restriction is not protection

Users want to be productive
Attackers can compromise trusted applications and web sites

Bromium Confidential

The Challenge

How do we plan for the unknown threat?

What do we do about human mistakes?

Bromium Confidential 15

 Next generation endpoint security
A pragmatic approach to trusted computing

 Based on hardware based isolation and not detection
Contain risky activity from corporate data and network
Block zero day and polymorphic threats

Provides isolation & trust through hardware virtualization

The Micro-Virtualization Approach

Micro-Virtualization

Hypervisor

Hardware Virtualization
(VT-x)

Lightweight, fast,
hidden, with an
unchanged native UX

Virtualizes vulnerable
tasks within a single

Windows desktop

TXT & TPM based
hardware root of trust

 Small code base for
maximum security

I/O Virtualization (VT-d)

KernelOS LibsApps

Windows and IT
provisioned

apps are trusted
Microvisor

Each vulnerable
task is instantly

isolated in a micro-
VM, invisible to the

user

The Microvisor
isolates vulnerable

tasks from Windows,
each other & key
system resources

Micro-VMs have
“least privilege”
access to fles,

networks & devices,
and execute CoW

 Demo

Key Threat Vectors Are Isolated

Web Browsing
External Documents

E-mail Attachments
USB files

®Conclusions

• µ-Xen is targeted at client systems
• Combines ease of deployment with useful

security properties
• Enables task-based micro-virtualization,

allowing mandatory access control to be
retrofitted to commodity client OSes

21

• We’re hiring! Please email ian@bromium.com

mailto:ian@bromium.com

	页 1
	Outline
	The µ-Xen Client Hypervisor
	Evolution to a new class of hypervisor
	µ-Xen streamlines Xen code base
	µ-Xen virtual IO
	Support for large numbers of similar VMs
	Evolution to a new class of hypervisor
	De-privilege host into a VT container
	Further Enhanced Security
	页 11
	页 12
	What Went Wrong?
	Why Legacy Security Solutions Fail
	The Challenge
	页 16
	Micro-Virtualization
	页 18
	页 19
	页 20
	Conclusions

