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®Outline

• µ-Xen Goals
• Architecture and implementation
• Evolutionary path
• Use case: Bromium end-point security
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®The µ-Xen Client Hypervisor

• Derived from the Xen code base
• Designed to address client hypervisor deployment 

challenges
• Designed to achieve a high-degree of security 

assurance
• No requirement to support legacy s/w or h/w
• Optimized to support  micro-virtualization
• Evolution to a new class of hypervisor
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®Evolution to a new class of hypervisor

• Start with a self-contained type-2
– Host kernel module containing µ-Xen blob
– Well-defined interface to/from the host

• Memory allocation, Schedule VCPUs, Timers, Events

• Similar to hXen project
– Windows, OS X; easily portable
– µ-Xen drives VT hardware, leaves IO and other 

hardware to host OS
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®µ-Xen streamlines Xen code base

• x64 only
• No support for systems that are not VTx/EPT or 

AMDV/NPT capable
• No support for PV MMU guests
• Significant code size reductions
• No compat code
• Separate build target 
• Future: slim down instruction emulator
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®µ-Xen virtual IO

• µ-Xen demultiplexes IORecs and events to 
multiple host processes per VM
– Able to have separate video, audio, disk, net etc processes
– Helps scheduling latency, enables better exploitation 

mitigation lock-down

• Use just the relevant parts of QEMU
• User-space PV backend drivers
• Post-boot virtual IO device revocation
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®Support for large numbers of similar VMs

• Support for VM fork 
– Simple extension of Populate on Demand code

• Tree of templates/VMs supported
• PV driver support for re-sharing free pages 
• IO tracking to re-share swapped and re-read 

pages
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®Evolution to a new class of hypervisor

• Goal: host is responsible for resource 
allocation, but can not interfere with the 
privacy or integrity of the hypervisor or other 
guests, e.g.:
– Hypervisor asks host for memory, receives it, then 

removes host access to it
– Host may perform IO on behalf of hypervisor and 

guests, but must be privacy and integrity protected
– Host may deny service, crash; IO tamper detectable
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®De-privilege host into a VT container

• Remove host access to hypervisor and guest memory in 
EPT tables
– h/w devices passed through to host, VTd protected

• Device models can only access Granted memory
– Require PV network and disk as no virtual DMA
– Guest IO buffers encrypted/authenticated before grant copy/map

• Save/restore, dom builder must first have guest memory 
encrypted/authenticated by hypervisor
– Hypervisor paging requires similar treatment
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®Further Enhanced Security

• Migrate certain host h/w devices to 
ownership by hypervisor or privileged 
guest(s), replace with virtual device 
– E.g. Keyboard controller to avoid key logging
– Possibly WiFi/NIC too

• Measured launch of hypervisor
– TXT/TPM to establish DRoT
– Remote attestation of hypervisor configuration
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Task-based  Micro-virtualization



!

The Challenge



 Poor Isolation leads to Vulnerability
 Multi-tenancy of code (& data) from a huge set of trust sources

 Code & Data are executed in the context of a few, weakly organized 
and poorly isolated “bins” representing levels of trust - e.g. UID, GID, 
PID 

 Overloaded, complex specs & buggy implementations of porous 
interfaces

 Thus malware can:
 Access data and documents in the same “bin”

 Subvert other good code that is placed into the same “bin”

 Use another bug in an App or OS to elevate its privilege

What Went Wrong?



    

    Black-listing: Detection is not protection 
 Doesn’t protect users from zero day attacks

 Unable to detect targeted & advanced malware

Why Legacy Security Solutions Fail

    
    White-listing: Restriction is not protection

Users want to be productive
Attackers can compromise trusted applications and web sites



Bromium Confidential 

The Challenge

How do we plan for the unknown threat? 

What do we do about human mistakes?
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   Next generation endpoint security 
A pragmatic approach to trusted computing

   Based on hardware based isolation and not detection
Contain risky activity from corporate data and network
Block zero day and polymorphic threats

Provides isolation & trust through hardware virtualization

The Micro-Virtualization Approach



Micro-Virtualization

Hypervisor

Hardware Virtualization 
(VT-x)

Lightweight, fast, 
hidden, with an 
unchanged native UX

Virtualizes vulnerable 
tasks within a single 

Windows desktop

TXT & TPM based 
hardware root of trust 

 Small code base for
maximum security

I/O Virtualization (VT-d)



KernelOS LibsApps

Windows and IT 
provisioned 

apps are trusted
Microvisor

Each vulnerable 
task is instantly 

isolated in a micro-
VM, invisible to the 

user

The Microvisor 
isolates vulnerable 

tasks from Windows, 
each other & key 
system resources

Micro-VMs have 
“least privilege” 
access to fles, 

networks & devices, 
and execute CoW



 Demo



Key Threat Vectors Are Isolated

Web Browsing
External Documents 

E-mail Attachments
USB files



®Conclusions

• µ-Xen is targeted at client systems
• Combines ease of deployment with useful 

security properties
• Enables task-based micro-virtualization, 

allowing mandatory access control to be 
retrofitted to commodity client OSes
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• We’re hiring!     Please email ian@bromium.com

mailto:ian@bromium.com
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