
Xen on
ARM Cortex A15

Stefano Stabellini

Why?

Why?

Quad-core
1.4 GHz
Cortex-A9

smartphones:
getting smarter

ARM Servers
coming to market

4GB RAM, 4 cores per node
3 x 6 x 4 x 4 = 288 cores

single node virtualization -
manageability -

Challenges

Another PVOPs infrastructure for ARM in
Linux?

How would the Linux Community react?

ARMv7 virtualization
extensions to the rescue!

"The ARM Architecture virtualization extension
and Large Physical Address Extension (LPAE)
enable the efficient implementation of virtual
machine hypervisors for ARM architecture
compliant processors."

● exploit the hardware as much as possible

● one type of guest
○ no PVOPs
○ use PV interfaces for IO

● Rearchitected for the modern age:
○ no QEMU
○ no compat code
○ no shadow pagetables

Design goals

One type of guest to rule
them all

One type of guest
Like PV guests do it:
● support booting from a supplied kernel
● no emulated devices
● use PV interfaces for IO

no need for QEMU

Like HVM guests do it:
● no PV MMU calls: exploit HW nested paging
● same entry point on native and on Xen
● use Device Tree to discover Xen presence
● no unnecessary devices in the Device Tree
● simple device emulation can be done in Xen

no need for QEMU

One type of guest

Exploit the hardware
Exploit the hardware virtualization extensions
support as much as possible:

● hypervisor mode
● MMU: second stage translation

○ no PV MMU calls: no need for PVOPs
○ no shadow pagetables: -10721 lines of code!!

● hypercall: HVC
● generic timer

General Interrupt Controller
an interrupt controller with virtualization support
● use the GIC to inject hardware interrupts into

dom0
● use the GIC to inject event notifications into

any guest domains with Xen support
○ use PPI 31
○ advertise the IRQ via Device Tree

● No special Xen entry point
● No Xen platform PCI device

The hypercall calling
convention
the hypercall interface:
● hvc instruction
● hypervisor specific imm 0xEA1
● hypercall arguments passed on registers

a 64 bit "ready" ABI
● a single hypercall ABI for 32 bit guests and

64 bit guests

no compat code in Xen
○ 2600 lines of code lighter

a 64 bit "ready" ABI
make unsigned long and pointers 8

bytes sized and 8 bytes aligned
everywhere

a 64 bit "ready" ABI

Xen

Guest
8 bytes unsigned long
8 bytes aligned

8 bytes pointer
8 bytes aligned

HVC | r0 | r1 | r2 | r3 | r4 | ... | r12

a 64 bit "ready" ABI

Xen

Guest

HVC | r0 | r1 | r2 | r3 | r4 | ... | r12

8 bytes unsigned long
8 bytes aligned

8 bytes pointer
8 bytes aligned

32 bit register

XEN_GUEST_HANDLE_PARAM XEN_GUEST_HANDLE

a 64 bit "ready" ABI
make unsigned long and pointers 8

bytes sized and 8 bytes aligned
everywhere

Collateral damage: a 1547 lines patch to

s/XEN_GUEST_HANDLE/XEN_GUEST_HANDLE_PARAM/

Device Tree
Use Device Tree to describe the virtual platform

hypervisor {
compatible = "xen,xen", "xen,xen-4.2";
reg = <0xb0000000 0x20000>;
interrupts = <1 15 0xf08>;

};

Device Tree
Use Device Tree to describe the virtual platform

hypervisor {
compatible = "xen,xen", "xen,xen-4.2";
reg = <0xb0000000 0x20000>;
interrupts = <1 15 0xf08>;

};

event notifications IRQ

Grant table
memory area

version of the Xen ABI

● exploit the hardware as much as possible

● one type of guest
○ no PVOPs
○ use PV interfaces for IO

● Rearchitected for the modern age:
○ no QEMU
○ no compat code
○ no shadow pagetables

Design goals:
did we meet them?

● exploit the hardware as much as possible

● one type of guest
○ no PVOPs
○ use PV interfaces for IO

● Rearchitected for the modern age:
○ no QEMU
○ no compat code
○ no shadow pagetables

Design goals:
did we meet them?

64 bit ready ABI

nested paging in HW

no device emulation, use DT to describe the HW

nested paging in HW, same entry point as native

no device emulation, use DT to describe the HW

Status of the Project
● Xen and Dom0 booting

● VM creation and destruction

● PV console, disk and network working

● Xen ARM patches mostly upstream

● Linux Xen ARM patches v3 sent to LKML

Open Questions: ACPI
"Modern PCs are horrible. ACPI is a complete design disaster in
every way. But we're kind of stuck with it."
Linus Torvalds

● ACPI? Really??

● What about Device Tree?

● Do we need an ACPI parser in Xen?
drivers/acpi: 110418 lines of code!
Equivalent to 38% of the Xen (x86 and ARM) code base!!

Open Questions: UEFI
"EFI is this other [...] brain-damage (the first one being ACPI). "
Linus Torvalds

● Xen as Portable Executable

● Grub2 on ARM: multiboot2?

● UEFI runtime services
○ PVOPS? Trap and emulate?

Open Questions:
Client Devices
● lack of a reference architecture
● UEFI Secure Boot
● Windows 8

