
1

Porting Xen Paravirtualization to
MIPS Architecture

Yonghong Song

Broadcom

2

MotivationMotivationMotivationMotivation

• Broadcom XLPBroadcom XLPBroadcom XLPBroadcom XLP
– 8 cores, 4 threads each core8 cores, 4 threads each core8 cores, 4 threads each core8 cores, 4 threads each core
– OutOutOutOut----OfOfOfOf----Order Order Order Order
– L1D, L1I, L2 each core, shared L3L1D, L1I, L2 each core, shared L3L1D, L1I, L2 each core, shared L3L1D, L1I, L2 each core, shared L3
– Accelerators: NET, SEC, RAID, DMA, COMP, etc.Accelerators: NET, SEC, RAID, DMA, COMP, etc.Accelerators: NET, SEC, RAID, DMA, COMP, etc.Accelerators: NET, SEC, RAID, DMA, COMP, etc.
– SOCs: USB, PCIE, FLASH, I2C, etc.SOCs: USB, PCIE, FLASH, I2C, etc.SOCs: USB, PCIE, FLASH, I2C, etc.SOCs: USB, PCIE, FLASH, I2C, etc.

• Need for a software enabled virtualization solutionNeed for a software enabled virtualization solutionNeed for a software enabled virtualization solutionNeed for a software enabled virtualization solution
• XenXenXenXen ported and provided as a solutionported and provided as a solutionported and provided as a solutionported and provided as a solution

3

General Xen Usage Model

Hardware (CPU, Memory, Disk, Net/PCI, etc)

Xen Hypervisor

Xen dom0

(Mgmt App)

Xen domU

(Guest OS)

Xen domU

(Guest OS)

launch Create, monitor, destroy

4

Hybrid Control/Data Plane Model

Shared Memory

Bare Metal Linux

NET

Control Plane Data Plane Data Plane

5

Proposed Model in Xen

Shared Memory

Xen

NET

Dom0

Control Plane

DomU

Data Plane

DomU

Data Plane

6

OutlineOutlineOutlineOutline

• CPU CPU CPU CPU Virtualization (mips64r2 only)Virtualization (mips64r2 only)Virtualization (mips64r2 only)Virtualization (mips64r2 only)
• Memory virtualizationMemory virtualizationMemory virtualizationMemory virtualization
• Instruction emulationInstruction emulationInstruction emulationInstruction emulation
• Exception handlingException handlingException handlingException handling
• Event Channel and Timer InterruptEvent Channel and Timer InterruptEvent Channel and Timer InterruptEvent Channel and Timer Interrupt

• Preliminary Benchmarking ResultsPreliminary Benchmarking ResultsPreliminary Benchmarking ResultsPreliminary Benchmarking Results
• Summary and Future Summary and Future Summary and Future Summary and Future WorkWorkWorkWork

7

Change of Privilege Levels

LLinux

User apps

Bare Metal Mode

LXen

User apps

Virtualization Mode

Linux

: user ring : supervisor ring : kernel ring

8

Address Spaces

user space

(0 – 2^40)

guest kernel virtual space

(0x4000 0000 0000 0000 -)
GVA

GPA

MA machine memory

guest 0 phys addr guest N phys addr

Kernel code + data | shared pages with xen | … | kernel page table | free pages

0x0 Size allocated to each guest

Xen in unmapped space

9

Page Table Management

GVA

MAGPA

guest page table P2M table

new guest page table

GVA

MA

10

Page Table Layout

pgd

VA pf PMD page

pmd

VA pf PTE page

pte

PA

Bare Metel Linux

pgd: page global directory

pmd: page middle directory

pte: page table entry

11

Page Table Layout

pgd

xkphys (MA of PMD page)

pmd

xkphys(MA of PTE page)

pte

MA address

PV Linux

xkphys: 64-bit kernel physical space (unmapped)

xkphys: avoid TLB refill during page table walk

Hardware page walker is used

12

Instruction Emulation

• Privileged instructions in guests get trapped and emulated

• XEN trap handlers decipher the instruction and emulate
appropriately

• A few instructions cause hardware state to change, while
others change the shadow state

• Shadow state is maintained per virtual cpu of domains

tlbs

caches

Privileged Insns

tlbp

tlbr
cop0 regs

Bookkeeping for

Exception prop

Shadow states

Guest

Xen

mfc0
mtc0
ei/di
eret
…

13

Hypercalls

• The service API between guests and xen

• Analogous to system calls between userspace and linux

• Used when a particular service is requested or the overhead
of trap and emulate is high

• Implemented using the “syscall” instruction

• Sample uses: vcpu creation, request cache flush, etc

userspace

linux

xen

syscall

hypercall

14

Exception Handling

• Exceptions triggered by guests handled by xen
– Hypercalls

– Address error exception

– Privileged instruction traps

• Exceptions triggered by userspace bounced into guests
– Guests register callbacks for exception entry points such as general

exception vector etc

– Xen maintains shadow state to return to userspace after the
propagated exception is handled

– Interrupts injected into guests while the bounced exception is
handled, retaining regular linux semantics

15

A syscall example

Applications

Guest Kernel

Xen
Shadow

architecture
state

1. syscall insn

2. control
transfers
xen

3. xen syscall
handler

4. xen bounces
syscall to guest

5. guest syscall
handling

6. xen executes
Eret handler

7. xen restores
Original state,
Does final eret

8. app resumes
after syscall

e
r
e
t

priv
insn
trap

eret

16

Event Channels

• Events: asynchronous notifications to domains (akin to
signals in Unix)

• Event channels: abstract duplex communication channels
(akin to sockets): <dom1, port1; dom2, port2>

• Interrupts are mapped to events
– Intradomain & interdomain events (e.g., domU console)

– Virtual IRQ (e.g., timer interrupts)

– Physical IRQ (e.g., passthrough device interrupts)

• Delivered through a callback function

17

Time Management

• Time keeping in xen
– Maintaining system time – Using XLP-specific internal global 64bit

free running counter

– Requesting timer interrupts: done by maintaining per-cpu timer list
and programming the count/compare registers

• Guest OS
– Xen clocksource: a hardware abstraction for a free running counter to

maintain system time
– Maintained through timestamps written by xen on a shared page

– Xen clockevent: an interface to request timer interrupts
– Done using the hypercall to program a single shot timer in xen

18

Timer Interrupt Illustration

Applications

Guest Kernel

Xen

1. timer
interrupt

occurs

2. control
transfers
to xen

3. xen interrupt
handler
executes

4. xen sets
event pending
for the guest

5. xen injects
event into
guest

6. guest executes
event handler

7. guest
does eret

8. xen exectues
eret handler

9. xen restores
original state,
does final eret

19

Performance Optimization

• Expose certain shadow states for guest OS to avoid
excessive exception start/end cost

• When guest executes “wait” insn, xen tries to “wait” also to
avoid burning cpu resources

20

Preliminary Benchmarking Result

• XLP832: 8 cores, 4 threads each core, 1.0GHZ
– Only 1 core, 4 threads used for measuring time

• Intel Core 2: 2 cores, 1 thread per core, 2.4GHZ
– Not using hardware virtualization extensions

• CPU/Memory intensive benchmarks like dhrystone, eembc,
coremark, etc.
– 0 – 5% slowdown for dom0 compared to bare metal linux, for both x86

and XLP

• Hackbench (a lot of system calls)
– 2X slowdown for dom0 compared to bare metal linux, for both x86

and XLP

• No noticeable performance difference between dom0 and
domU on XLP

21

Summary and Future Work

• A MIPS port of xen paravirtualization has implemented
– MMU, exception/interrupt handling, etc.

– Comparable performance to x86 for bare metal vs. xen

• Currently, our implementation uses xen 3.4.0 for xen
hypervisor, 4.0.0 for xen tools, linux 2.6.32 for PV linux, so
we need to
– Update to latest versions of Xen

– Submit patches upstream

• More work on I/O paravirtualization

• Ongoing collaboration with MIPS Technologies

Thank You

