XenTT: Deterministic Systems Analysis
In Xen

Anton Burtseyv, David Johnson, Chung Hwan Kim, Mike Hibler,
Eric Eide, John Regehr

University of Utah
3 3 B  August 27-28, 2012
3 — § - ¥ San Diego, CA, USA



processing memory

armel’ mmy

processes memory access

* Record execution history of a guest VM

* Recreate it in an instruction-accurate way




Guest system

Execution history

Repla |
pry} Execution | o / /
- - Performance T —
model  litetie
J‘ Language binding

Record Analysis algorithm

e Execution replay is a right way to analyze systems

 We need a practical tool!




Deterministic replay



Determinism

CPU is

deterministic ]/O\
®
\ / \ Execution history
Interrupt, - - .
device I/O \ / \ /
@ O




Recording

NN\

e Determinism of the execution environment

* |Instruction-accurate position of events

Event log



Instruction-accurate position of events

label: , _
g e Number of instructions
shr since boot
OV  |ntel has a hardware
rep movs] counter
test * |t's not accurate
jne label

e Hardware instruction counter
* Preempt execution of a system at the same

instruction
* Hardware instruction counter + single-stepping




Determinism in Xen



Nondeterministic events

Simple Model

System = memory pages + registers

\

Events = memory updates
(time, device I/O, system calls)

Control flow updates = registers + stack
(interrupts, events)




Some examples

Instruction emulation (e.g. cpuid, rdtsc, in/out)
e Return the values of the original run
Hypercalls
e Re-execute to ensure determinism of the hypervisor
Time
e Shared info page + rdtsc
Exceptions
* Deterministic, re-execute
Interrupts

* Force re-execution of the interrupt frame (bounce frame) code
in entry.S

Shared info updates
* Replay original values
Memory

* Shadow page tables

10



11



Xen devices

12



Device interposition

Guest Frontend

Backend Devd
(receiver) shared page shared page (sender)
req_prod

req_prod ; q
rsp_prod rsp_pro

req_cons L I B |
' rsp_cons

=
-
-
—
|

Update queue

1

Interposition code |

L

 Devd ensures determinism of updates to the guest’s
shared ring buffers

13



Replay touches many parts of Xen

Device discovery
* Devd implements a concept of a device bus
* Discovers new devices in Xenstore
* Binds new devices with drivers

Xenstore transactions

* During replay, transactions from replayed guest can’t fail
* They will not be re-executed

Out-of-order device responses
e Disk and network responses can arrive out-of-order

Disk logging
e Disk payload is deterministic
* LVM snapshots

Network logging
* In-kernel logging of the network payload

14



Low-overhead logging

|
—|
—
—
—|
|
]
]
]
=K

15



Are we sure that executions identical?

* Intel branch store trace facility

 Record all taken branches in a memory buffer
 Compare original and replay runs

T L0G:
TT_LOG:
T L0G:
TT_LOG:
TT_LOG:
TT_LOG:

TT_LOG:
T L0G:
TT_LOG:
T L0G:

TT NG

ttd process record
ttd_process_record
ttd process record
ttd_process_record
ttd process record
ttd process record

:ttd_process_record
:ttd_process_record
:ttd process record

:ttd_process_record
:ttd_process_record
:ttd process record

:ttd_process_record
:ttd_process_record
:ttd process record

ttd_process_record
ttd process record
ttd_process_record
ttd process record

t++d nraracc rarard

Event:
Event:
Event:
Event:
Event:
Event:

Event:
Event:
Event:
Event:

Fuant .

number:2231
number:2232
number:2233

branch,
branch,
branch,

from:0xcB2430e3, to:0xcH2430de,
from:0xc02430e3, to:0xc62430d0,
from:0xcB2430ea, to:0xcA3515d0,
branch, from:0xce3515d0, to:0xc0356776, number:2234
branch, from:@xc@356780, to:0xcO1013c®, number:2235
hw branch dump, brctr:2235, eip:0xc81013c7
hypercall(13), domain:2, vcpu:@, brctri2235, eip:@xc8l013c7, dat]
hypercall res(12), domain:2, vcpu:0, bretri2235, eip:0xc81013c7,

:branch, from:0xc81013c7, to:@xcP356785, number:2236
:branch, from:@xc@356792, to:0xc01013c@, number:2237
:hw branch dump, brctr:2237, eip:@xc01813c7

hypercall(13), domain:2, vcpu:@, brctri2237, eip:@xc8l013c7, dat]
hypercall res(12), domain:2, vcpu:0, bretri2237, eip:6xcel013c7,

:branch, from:0xc01013c7, to:0xc©356797, number:2238
:branch, from:@xc@3567b3, to:0xc01013c@, number:2239
:hw branch dump, brctr:2239, eip:@xc01813c7

hypercall(13), domain:2, vcpu:@, brctri2239, eip:8xc81013c7, dat]
hyperecall res(12), demain:2, vcpu:8, bretr:2239, eip:6xc81013c7,

:branch, from:0xc81013c7, to:0xcH3567b8, number:2246
:branch, from:@xc@3567c9, to:0xc0101220, number:2241
:hw branch dump, brctr:2241, eip:6xce161227

hypercall(13), domain:2, vcpu:@, brctri2241, eip:8xc8101227, dat]
copy to user(11), domain:2, vcpu:8, bretr:2241, eip:@xce101227,
hypercall res(12), domain:2, vcpu:@, brctri2241, eip:6xc8101227,

number

number:2243
number: 2244
number: 2245

numhar. 1316

from:0xc0101227, to:0xcO3567ce,
from:0xc83567d0, to:0xcP35682f,
from:0xc@356835, to:0xc03564cH,
from:0xcB3564e0, to:0xcP35683a,

fram.AvrARAAIS  ta-AvrAISRTAD

branch,
branch,
branch,
branch,

hranrh

TT LOG:
TT_LOG:
TT LOG:
TT_LOG:
TT LOG:
:ttd process record

ttd process record
ttd_process_record
ttd process record
ttd_process_record
ttd process record

Event:branch,
Event:branch,
Event:branch,
Event:branch,
Event:branch,
Event:hw branch dump, brctr:2235,
suppress hypercall result
ranch, from:0xff1823b9, to:8xcH1013c7,

from:0xc82430e3, to:@xcH243ede,
from:0xc02430e3, to:0xcH2430d0,
from:0xcB2430ea, to:@xcH3515d0,
from:0xc03515d0, to:0xcB356770,
from:0xc@356780, to:0xcAlO13cO,

eip:0xc8le13c7

number:2231
number: 2232
number:2233
number:2234
number: 2235

number: 22

TT_LOG:ttd process_record Event:branch, from:0xc81613c7, to:0xc0356785, number:2236
TT_LOG:ttd_process_record Event:branch, from:0xc@356792, to:0xc01013c@, number:2237
TT L0G:ttd process record Event:hw branch dump, brctr:2237, eip:@xc81@13c7

suppress hypercall result
ranch, from:exff1823b9, to:08xcel013c7,

number: 22

TT_LOG:ttd process_record Event:branch, from:0xc@1013c7, to:0xc8356797, number:2238
TT_LOG:ttd process_record Event:branch, from:@xc83567b3, to:0xc01013c@, number:2239
TT L0G:ttd process record Event:hw branch dump, brctr:2239, eip:@xc81013c7

suppress hypercall result
ranch, from:exff1823b9, to:8xcH10813c7,

number: 22

TT_LOG:ttd_process_record Event:branch, from:0xc81813c7, to:@xc3567b8, number:2248
TT_LOG:ttd process_record Event:branch, from:0xc83567¢9, to:0xc0101220,

TT LOG:ttd process record Event:

TT_LOG:ttd process_record Event:
TT LOG:ttd process record Event:branch,
TT_LOG:ttd process_record Event:branch,
TT LOG:ttd process record Event:branch,

TT InG-++d nrarace rarard Fuant-hranch

SUppress copy use
suppress hypercall result
ranch, from:0xffl823b9, to:0xc0101227,

from:0xc0101227, to:@xcO3567ce,
from:0xc83567d0, to:@xcP35682f,
from:0xc@356835, to:@xc03564cE,
from:0xcB3564e0, to:@xcP35683a,

Fram.AvrNAREA22  ta-AvrAIRRTAD

branch,

number:2241

hw branch dump, brctr:2241, eip:0xc8101227

number: 2242
number:2243
number: 2244
number: 2245

numhar. 3716

16



Analysis Engine and
Virtual Machine Introspection



Analysis framework

Performance
Model

Hardware W
Performance ‘
Counters (

|

Analysis Algorithm dwdebug

elfutils
Language Binding
/ £
Performance Model VVMI Interface
= 4

Execution history

Execution
replay

Xenaccess

18



Virtual Machine Introspection (VMI)

Analysis Algorithm,

| . II. r

VMI Interface

int $0x3 (Oxcc)

target

dwdebug

elfutils

CULb/adu <sys_open>:
c0167ad0: 55
c0167adl: e5
cUlb/ad3: ec
c0167ad6: 45
c0167ad9: 04
c0167ae0: 44 Oc
c0l67ae4: 45
c0l67ae7: 44 08
c0167aeb: 45
c0l67aee: 44 04
c0l67af2: a9 ff ff
c01l67af7:

c0167af8:

kernel "heap"

frffffds: 03
ffffffdc; ac
el =65~a7"2
ffffffed: ad
ffffffes: 65
ffffffec: 78
fHFffffo: ef
RARRARLE ff
FFfffffs8: 76
FFFFFFfc: 29 3

===

Xenaccess

Xen

push
mov
sub
mov

0
9c ff ff ff movl

mov
mov
mov
mov
mov
call
leave
ret

d8fffffc:
d8fffff8:
d8fffff4:
d8fFffffe™
abrtrftfec:
d8ffffe8:

d8ffffed:
d8ffffel:
d8ffffdc:
d8ffffds:

kthread stacks

> sym = lookup(sys_open)

e probe = probe(sym)
o handler(probe)

¥ load(sym2)
' writereg(eax, 1)

libxe

%ebp

%esp,%ebp

$0x10, %esp

0x10L%ebp) ,%eax

50 e .

zed ¥ JCPU exception
%eax , brogwesp

0x8(%ebp) ,%eax

%eax,0x4 (%esp)

c01679a0 <do_sys_¢pen>

%l R
%ecx
%edx
%ebx
%esp
%ebp
%esi
%edi
%eip
%eflags

19



Performance model

 Account for effects of
replay

* Translate performance
between original and
(EVAT IS

-—=f) Hardware performance counters

- Virtual performance counters

* Re-execution approach to performance

[ Virt cntr = Virt cntr_ . + A (Real cntr) }

20



Analysis Examples



NFS request
processing path

Netfront
receive

netif_poll.ttd_skb_dequeue

netif_receive_skb

= * How much time requests
R spend in each subsystem?

t¢p_data_queue

&skb

IP/TCP
receive

skb_copy_datagram_iovec

Rl skb_cpby_datagram_iovec _ = :
z s 5 * Request tracking
0o 2 * Address of the kernel
< -
3 2 data structure is a
. unique identifier
5 e Join identifiers when

requests move
between subsystems

&bh
+——>

&bio
<+«

id
4+—>

22




Execution context tracking

e Execution context
e Context switches
« schedule.switch_tasks
e User/kernel

e System call transitions
« system_call

* Interrupts and exceptions
« do_IRQ
« do_pagefault

« do_* (divide_error, debug, nmi, int3...

* Make analysis context aware
* Filter probes by context, e.g.
* All pagefaults from the process “foo”

23



Control Flow Integrity (CFl)

Disassemble
— . <
the entry point

l

Static
disassemble
fails?

l

Run until
next probe

Yes Single-step
— . .
until next entry point

e Simple CFl moco

el:

e Returns should match calls

* Dynamic calls are “sane”, e.g.
within kernel address space

* Detect ROP attacks, stack smashing,

etc.

24



Execution trace

sys_sendfile
do_sendfile
fget_light
rw_veri ﬁ_area
fget_1j% t
rw_verity_area
shmem_file_sendfile
do_shmem_file_read
shmem_getpage
find_lock_page
radix_tree_lookup
shmem_recalc_inode
shmem_swp_al loc
shmem_swp_entry
kmap_atomic
__kmap_atomic
page_address
kunmap_atomic
find_get_page
radix_tree_lookup
file_send_actor
sock_sendpage
UNKNOWN FUNCTION
(addr:0x00000000)

* CFl records a trace of
function calls
e sys_sendfileis
the last system call
before control
flow jumps to 0x0

25



Intrusion backtracking

write /etc/passwd

( )
O @,

* Track accesses to “/etc/passwd”
* Probe sys open
* Filter by file name

* Find process ID, branch counter -



Intrusion backtracking: pass 1

raise current
pid privilege

o -

O C / \
')

t

- write /etc/passwd

—
)

* Process or it’s parent escalated privileges
* Watch write accesses to &task->uid
* Filter by parents of the offending process

27



Intrusion backtracking: pass 1

raise current
pid privilege

Q (s

N/ 1

- write /etc/passwd
last system call
O O

* Find the syscall inside which privileges are escalated
* Probe sys * - all system call entry and exit points
* Filter by the offending process ID

28



Intrusion backtracking: pass 1
raise current
pid privilege
|

/\/ t

T - write /etc/passwd
last system call

* Privilege escalation is a CFl violation
e Start CFl analysis from the last system call
* Find %EIP at which CFl is violated, and location of the

shell code (0x0) 29




Intrusion backtracking: pass 1

raise current

pid privilege
mmap pnwlege \0
escalation code at 0x0 / \ / T

/ \ / T - write /etc/passwd
last system call

* Find at which point address 0x0000000 gets mapped
 Probe do_page fault

kernel jumps to 0x0

30



More mechanisms

e Execution traces
e BTS trace of all taken branches
* |nstruction traces

* Memory (variable) access traces
* |ntersect with the execution trace
e See where variables get accessed

31



How much overhead?

32



32-bit x86 PV-guests
xen-unstable near v3.0.4

* We rely on a working shadow page tables
1-CPU time-traveling guests

* No SMP replay
e DomO and Xen are SMP of course

Test machine
* 4 cores

* 1Gbps network
e 130 MB/s disks

33



Score

140

120

100

CPU

B Xen

34



MB/s

140

120

100

80

60

40

20

Network throughput

TCP Send

TCP Receive

B Xen
m XenTT
H XenTT (32MB buffers)

35



0.16

Network delay

0.14

0.12

0.1

€ 0.08

0.06

0.04

0.02 -+

domU to domO

Ping

domU to external host

B Xen

36



MB/s

140

120

100

80

60

40

20

Disk 1/0O

Serial write

Serial read

B Xen
m XenTT

37



Linux boot

Event log 4.3 GB

Idle overnight (14 hours)

Event log 6.2 GB
Growth rate 440 MB/hour
TCP receive (1.63 GB data stream)
Event log 1.76 GB
Payload log 1.79 GB
Disk write (4 GB file)

Event log

Disk read (4 GB file)

Event log

Compressed (gzip)

1.6 GB
114 MB/hour (2.7GB/day)

342 MB
Payload dependent




Lessons learnt

39



Scaling development

Extending Xen with BTS support
* Debug crashes in Xen, and domO

Execution comparison tools
e BTS traces to understand what went wrong
e Support for resolving symbols

Run-time comparison tools
 Compare guest’s state between original and replay runs

Trace from all parts of your system
e Xen,domO, domU

Support performance tracing
e Xentrace Mmessages

40



What we didn’t predict
* |/O delay goes up

* Not sure if Linux has adequate low-latency user-level
processing support

 Maybe need an in-kernel interposition component

* Branch counters are fragile
e Qur code works on several server CPUs

 Fails on a laptop with the CPU from the same model/family
line

41



Conclusions

42



Practical replay analysis is feasible

e Performance overheads are reasonable

* Realistic systems
e Realistic workloads
* Minor setup costs (just install Xen)

* Analysis engine is an amazing tool
 And we’re growing it

* We need your help to port it upstream
* Porting effort
 Shadow memory for PV guests
e Support for HVM guests

43



Thank you.

All code is GPLv2 and will be available soon
(available on-request now).

Questions: aburtsev@flux.utah.edu

44



Backup slides

45



Execution environment

-

N

CPU

Virtual hardware
* Memory
 Disk
Software

External Events

External I/O

46



How do we find nondeterministic events?

Guest's writes

Write()r_J are OK
Guest

write()

Xen —? T—)

l [

Create alist  Unprotect pages  Reprotect pages Catch a pagefault

of protected pages on exitto guest ~ On exitto Xen if Xen tries to
modify Guest's

- .

47



Backend
(receiver)

req_cons

Device interface

Shared page
req_prod
rsp_prod

Unconsumed
requests

T o o S I

Unconsumed
responses

Frontend
(sender)

rsp_cons




bsym_skb

Tval_skb

skb_addr

Reading a local variable

target_lookup_sym(probe->target,
"netif_poll.skb",
"M, NULL, flags);

bsymbol_Tload(bsym_skb, flags);

“(unsigned long*) lval_skb->buf;

49



Controlled re-execution or replay

* Types of non-deterministic events
* Synchronous
* Hypercalls

* Asynchronous
* Interrupts

e Best effort
e Time updates

* Branch counters
* The biggest problem of this solution

50



