
XenTT: Deterministic Systems Analysis
in Xen

Anton Burtsev, David Johnson, Chung Hwan Kim, Mike Hibler,
Eric Eide, John Regehr

University of Utah

2

• Record execution history of a guest VM
• Recreate it in an instruction-accurate way

3

• Execution replay is a right way to analyze systems
• We need a practical tool!

Deterministic replay

4

Determinism

5

CPU is
deterministic

Execution history

Interrupt,
device I/O

Recording

6

Event log

• Determinism of the execution environment
• Instruction-accurate position of events

Instruction-accurate position of events

7

...
mov
shr
mov
movsl
test

...
jne label

label:

rep

EIP , branch # , ECX} { Position =

• Number of instructions
since boot
• Intel has a hardware

counter
• It’s not accurate

• Hardware instruction counter
• Preempt execution of a system at the same

instruction

• Hardware instruction counter + single-stepping

Determinism in Xen

8

Nondeterministic events

Simple Model

System = memory pages + registers

9

Events = memory updates

(time, device I/O, system calls)

Control flow updates = registers + stack
(interrupts, events)

Some examples

• Instruction emulation (e.g. cpuid, rdtsc, in/out)
• Return the values of the original run

• Hypercalls
• Re-execute to ensure determinism of the hypervisor

• Time
• Shared info page + rdtsc

• Exceptions
• Deterministic, re-execute

• Interrupts
• Force re-execution of the interrupt frame (bounce frame) code

in entry.S
• Shared info updates

• Replay original values
• Memory

• Shadow page tables

10

11

Xen devices

12

Device interposition

13

• Devd ensures determinism of updates to the guest’s
shared ring buffers

Replay touches many parts of Xen

• Device discovery
• Devd implements a concept of a device bus
• Discovers new devices in Xenstore
• Binds new devices with drivers

• Xenstore transactions

• During replay, transactions from replayed guest can’t fail
• They will not be re-executed

• Out-of-order device responses

• Disk and network responses can arrive out-of-order

• Disk logging
• Disk payload is deterministic
• LVM snapshots

• Network logging

• In-kernel logging of the network payload

14

Low-overhead logging

15

Are we sure that executions identical?

• Intel branch store trace facility
• Record all taken branches in a memory buffer

• Compare original and replay runs

16

Analysis Engine and
Virtual Machine Introspection

17

Analysis framework

18

Virtual Machine Introspection (VMI)

19

Performance model

20

• Re-execution approach to performance

• Account for effects of
replay

• Translate performance
between original and
replay runs

Virt cntr = Virt cntrstart + ∆ (Real cntr)

Analysis Examples

21

NFS request
processing path

22

• How much time requests
spend in each subsystem?

• Request tracking
• Address of the kernel

data structure is a
unique identifier

• Join identifiers when
requests move
between subsystems

Execution context tracking

• Execution context
• Context switches

• schedule.switch_tasks

• User/kernel
• System call transitions
• system_call

• Interrupts and exceptions
• do_IRQ
• do_pagefault
• do_* (divide_error, debug, nmi, int3...)

• Make analysis context aware

• Filter probes by context, e.g.

• All pagefaults from the process “foo”

23

Control Flow Integrity (CFI)

24

• Simple CFI model:
• Returns should match calls
• Dynamic calls are “sane”, e.g.

within kernel address space
• Detect ROP attacks, stack smashing,

etc.

sys_sendfile
 do_sendfile
 fget_light
 rw_verify_area
 fget_light
 rw_verify_area
 shmem_file_sendfile
 do_shmem_file_read
 shmem_getpage
 find_lock_page
 radix_tree_lookup
 shmem_recalc_inode
 shmem_swp_alloc
 shmem_swp_entry
 kmap_atomic
 __kmap_atomic
 page_address
 kunmap_atomic
 find_get_page
 radix_tree_lookup
 file_send_actor
 sock_sendpage
 UNKNOWN FUNCTION
 (addr:0x00000000)

25

• CFI records a trace of
function calls
• sys_sendfile is

the last system call
before control
flow jumps to 0x0

Execution trace

Intrusion backtracking

26

• Track accesses to “/etc/passwd”
• Probe sys_open

• Filter by file name
• Find process ID, branch counter

Intrusion backtracking: pass 1

27

• Process or it’s parent escalated privileges
• Watch write accesses to &task->uid

• Filter by parents of the offending process

Intrusion backtracking: pass 1

28

• Find the syscall inside which privileges are escalated
• Probe sys_* - all system call entry and exit points

• Filter by the offending process ID

Intrusion backtracking: pass 1

29

• Privilege escalation is a CFI violation
• Start CFI analysis from the last system call
• Find %EIP at which CFI is violated, and location of the

shell code (0x0)

Intrusion backtracking: pass 1

30

• Find at which point address 0x0000000 gets mapped
• Probe do_page_fault

More mechanisms

• Execution traces
• BTS trace of all taken branches

• Instruction traces

• Memory (variable) access traces

• Intersect with the execution trace

• See where variables get accessed

31

How much overhead?

32

• 32-bit x86 PV-guests
• xen-unstable near v3.0.4

• We rely on a working shadow page tables

• 1-CPU time-traveling guests
• No SMP replay

• Dom0 and Xen are SMP of course

• Test machine
• 4 cores

• 1Gbps network

• 130 MB/s disks

33

CPU

0

20

40

60

80

100

120

140

Sc
o

re

Xen

XenTT

34

Network throughput

0

20

40

60

80

100

120

140

TCP Send TCP Receive

M
B

/s

Xen

XenTT

XenTT (32MB buffers)

35

Network delay

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

domU to dom0 domU to external host

m
s

Ping

Xen

XenTT

36

Disk I/O

0

20

40

60

80

100

120

140

Serial write Serial read

M
B

/s

Xen

XenTT

37

Raw Compressed (gzip)

Linux boot

Event log 4.3 GB 0.8 GB

Idle overnight (14 hours)

Event log 6.2 GB 1.6 GB

Growth rate 440 MB/hour 114 MB/hour (2.7GB/day)

TCP receive (1.63 GB data stream)

Event log 1.76 GB 342 MB

Payload log 1.79 GB Payload dependent

Disk write (4 GB file)

Event log 1.8 GB 350 MB

Disk read (4 GB file)

Event log 0.59 GB

38

Lessons learnt

39

Scaling development

• Extending Xen with BTS support
• Debug crashes in Xen, and dom0

• Execution comparison tools

• BTS traces to understand what went wrong
• Support for resolving symbols

• Run-time comparison tools

• Compare guest’s state between original and replay runs

• Trace from all parts of your system
• Xen, dom0, domU

• Support performance tracing

• Xentrace messages

40

What we didn’t predict

• I/O delay goes up
• Not sure if Linux has adequate low-latency user-level

processing support

• Maybe need an in-kernel interposition component

• Branch counters are fragile

• Our code works on several server CPUs

• Fails on a laptop with the CPU from the same model/family
line

41

Conclusions

42

Practical replay analysis is feasible

• Performance overheads are reasonable
• Realistic systems

• Realistic workloads

• Minor setup costs (just install Xen)

• Analysis engine is an amazing tool

• And we’re growing it

• We need your help to port it upstream
• Porting effort

• Shadow memory for PV guests

• Support for HVM guests

43

Thank you.

All code is GPLv2 and will be available soon
(available on-request now).

44

Questions: aburtsev@flux.utah.edu

Backup slides

45

Execution environment

46

• CPU
• Virtual hardware

• Memory
• Disk

• Software

System

External Events

Deterministic
Machine

• External I/O

How do we find nondeterministic events?

47

Device interface

48

Reading a local variable

49

bsym_skb = target_lookup_sym(probe->target,

 "netif_poll.skb",

 ".", NULL, flags);

lval_skb = bsymbol_load(bsym_skb, flags);

skb_addr = *(unsigned long*) lval_skb->buf;

Controlled re-execution or replay

• Types of non-deterministic events
• Synchronous

• Hypercalls

• Asynchronous
• Interrupts

• Best effort
• Time updates

• Branch counters
• The biggest problem of this solution

50

