PVH: PV Guest in HVM container

Mukesh Rathor
Oracle Corporation

August 2012

Xen Summit NA 2012

HVM: Hardware Virtual Machine

- Provides protected environment
- Guest kernel can run in any ring
- VMEXITs transfers control to xen

Why Need for PVH

- 64bit runs in ring 3 because of no segmentation
- System calls are slow as they are bounced from xen to guest and back

PVH: Salient Features

- Runs in ring 0
- Uses the PV entry point, thus skipping BIOS emulations by qemu
 - Boots faster
- Uses event channel, so no APIC emulation
- Native Page tables (HAP required)
- Native IDT

PVH: Salient Features (contd.)

- Uses lot of HVM code paths, thus reducing the xen specific PV code in linux
- Is a PV guest tho, and xen_hvm_domain() would be false.
- PV guest from xen perspective also.
 Thus, is hvm domain() will be false.

Design Details

- The guest is populated with pfns instead of mfns
- HAP is setup during guest creation for pfn -> mfn mappings
- Kernel CS/DS are setup for ring 0
- IO space is mapped 1:1 in the HAP.

Performance data (LMBENCH): (First set on PV dom0, second on PVH dom0)

```
Processor, Processes - times in microseconds - smaller is better
                       Mhz null null open slct sig sig fork exec sh
Host
                    OS
                            call I/O stat clos TCP inst hndl proc proc proc
         Linux 3.5.0-m 2631 0.13 0.23 1.83 3.84 3.02 0.24 3.29 170. 512. 1680
PVH
         Linux 3.5.0-m 2631 1.08 1.20 3.56 7.24 4.10 1.10 3.52 565. 1392 3634
PV
         Linux 3.5.0-m 2631 0.13 0.22 1.61 2.77 3.09 0.24 3.74 129. 394. 1399
HVM
         Linux 3.5.0-m 2631 0.13 0.23 1.87 3.97 3.02 0.24 3.29 158. 492. 1632
PVH
         Linux 3.5.0-m 2631 0.71 0.93 3.27 6.15 3.82 0.87 3.00 566. 1322 3369
PV
         Linux 3.5.0-m 2631 0.13 0.22 1.60 2.78 3.09 0.24 3.77 125. 394. 1395
HVM
```

Performance data (LMBENCH): (First set on PV dom0, second on PVH dom0)

```
Context switching - times in microseconds - smaller is better
                    OS 2p/0K 2p/16K 2p/64K 8p/16K 8p/64K 16p/16K 16p/64K
Host.
                         ctxsw ctxsw ctxsw ctxsw
         Linux 3.5.0-m 4.2700 4.8200 5.2400 5.5700 7.2200 6.13000 7.37000
PVH
         Linux 3.5.0-m 5.9500 6.0500 5.4900 6.6400 7.6900 7.10000 7.69000
PV
         Linux 3.5.0-m 1.6900 1.7500 2.1300 2.3500 3.8200 2.92000 3.89000
HVM
         Linux 3.5.0-m 3.5200 3.7200 4.1400 4.6800 6.2500 5.29000 6.32000
PVH
         Linux 3.5.0-m 4.9600 5.1400 4.7900 5.7400 7.1500 6.18000 7.16000
PV
         Linux 3.5.0-m 1.8800 1.9200 2.2700 2.4100 3.8500 2.94000 3.89000
HVM
```

Performance data (LMBENCH): (First set on PV dom0, second on PVH dom0)

File & VM system latencies in microseconds - smaller is better

Host	os	OK File	10K File Create Delete	-	Prot	Page	100fd selct
				пасепсу		raurt	
PVH	Linux 3.5.0-m			7814.0	0.275	1.05700	1.375
PV	Linux 3.5.0-m			30.5K	1.181	3.72670	2.350
HVM	Linux 3.5.0-m			7277.0	0.173	0.86030	1.454
PVH	Linux 3.5.0-m			7532.0	0.309	1.05870	1.373
PV	Linux 3.5.0-m			27.5K	1.048	3.38740	2.107
HVM	Linux 3.5.0-m			7512.0	0.205	0.88430	1.456

Not Done Yet

- Performance fine tuning
 - Goal is to have PVH perform no worse than PV or HVM.
 - Many optimizations, like delivering interrupt directly to dom0, schedular change for PVH VMCS affinity, etc..
- FIXME/TBD in the code for certain features (vcpu placement, event channel EOI map, etc..)

Not Done Yet (Contd.)

- HVM cacheatter, mtrr, tsc, etc.. not sure if I got them right. Need to study and investigate more. Phase II.
- FPU usage might be incomplete.

The End