
Project no. IST-033576

XtreemOS
Integrated Project

BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

Evaluation of Linux Native Isolation Mechanisms for
XtreemOS Flavours

D2.1.6
Due date of deliverable: November 30th, 2008
Actual submission date: January 10th, 2008

Start date of project: June 1st 2006

Type: Deliverable
WP number: WP2.1

Task number: T2.1.10

Responsible institution: INRIA
Editor & and editor’s address: Yvon Jégou

IRISA/INRIA
Campus de Beaulieu

35042 RENNES Cedex
France

Version 1.0 / Last edited by INRIA / Jan 9th, 2009

Project co-funded by the European Commission within the Sixth Framework Programme
Dissemination Level

PU Public
√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Revision history:
Version Date Authors Institution Section affected, comments

0.10 22/10/08 Yvon Jégou INRIA Initial document structure
0.11 22/10/08 Yvon Jégou INRIA Requirement section
0.12 23/10/08 Jérôme Gallard INRIA OpenVZ subsection
0.13 27/10/08 Jérôme Gallard INRIA Virtualization (Type-I, Type-II) section
0.14 28/10/08 Yvon Jégou INRIA Control groups and namespaces
0.15 30/10/08 Yvon Jégou INRIA Section Isolation techniques for XtreemOS
0.16 09/12/08 Jérôme Gallard INRIA Section Isolation in SSI and MD flavours of XtreemOS
0.17 16/12/08 Yvon Jégou INRIA Section Isolation in MD flavours of XtreemOS, Intro-

duction, Conclusion and Executive Summary
0.20 06/01/09 Yvon Jégou INRIA Integrated remarks from internal reviewers
1.00 09/01/09 Yvon Jégou INRIA Final version

Reviewers:
Guillaume Pierre (VUA), Jaka Močnik (XLAB)

Tasks related to this deliverable:
Task No. Task description Partners involved◦

T2.1.10 Evaluation of Linux native isolation mechanisms for all
XtreemOS flavours

INRIA∗, NEC, SAP, TID

◦This task list may not be equivalent to the list of partners contributing as authors to the deliverable
∗Task leader

D2.1.6 IST-033576

Executive Summary
XtreemOS allows users belonging to different administrative domains to share
resources in a secure way through Virtual Organisations. In order to maximize
resource usage, applications executed on behalf of the same or different VOs can
use the same resources simultaneously. But the impact of each application on
each other must be strictly controlled. Each grid application must be isolated in
order to protect it from the execution environment, in order to protect its execution
environment from it and in order to provide a uniform execution environment to
its components across the grid.

The Linux kernel community is currently very active in providing basic mech-
anisms to manage local resources, to improve application sandboxing and to sup-
port virtual machines.

The control group system allows for partitioning the whole process space in
groups associated to resource subsystems (CPU, memory, network, I/O, ...) and
to apply policies to each group (resource limits, ...). These control groups can be
directly exploited by XtreemOS: each grid application is run inside its own control
group. The policies enforced by the application group can be defined from the job
description (min and max on memory, limits on the number of processes, bounds
on network throughput, ...).

Recent Linux kernels also provide means to manage the namespace of lo-
cal application. The PID namespace, for instance, restricts the list of processes
seen by the application to those belonging to its namespace. All processes of a
PID namespace can be checkpointed and restarted on another node with the same
PIDs. A filesystem (or mount) namespace provides a private filesystem tree to the
process running in the namespace. The application can mount its own filesystems
on its own file tree without making this local tree visible to other namespaces.
A network namespace defines new network devices visible only from the names-
pace. It is then possible to apply new IPtable and routing rules to this device.
Restricting network accessibility of grid applications allows an administrative do-
main manager to protect its networking environment. Associating rewriting rules
to the virtual device allows to migrate the application without changing IP ad-
dresses and routes.

Support for hardware virtualization is now present in Linux. Using these
mechanisms, it should be possible to run other operating systems efficiently inside
an XtreemOS virtual machine and getting benefits from XtreemOS features. For
instance, a non-Linux operating system can provide access to XtreemFS through
a virtual device. On the other hand, it is also possible to run XtreemOS inside vir-
tual machines. The dynamic resource management support of XtreemOS allows
to create, start and stop these virtual machines “on the fly”.

XtreemOS proposes three operating systems flavours: the LinuxSSI flavour

1/44 XtreemOS–Integrated Project

IST-033576 D2.1.6

for clusters, the desktop flavour and the mobile flavour. Exploiting the proposed
mechanisms on LinuxSSI necessitates some developments on the Kerrighed ker-
nel: the control group as well as the support for namespaces must be extended
to the whole cluster. Exploiting these mechanisms on mobile devices also faces
some difficulties as their implementation frequently require some support from
the hardware. But the case of mobile devices is not very critical as they are not
powerful enough to allow sharing between users.

XtreemOS–Integrated Project 2/44

Contents

1 Introduction 5

2 Isolation Requirements for XtreemOS 7
2.1 Performance Isolation/Resource Usage Management 7
2.2 Confidentiality/Sandboxing . 8
2.3 Accounting, Monitoring, Logging 8
2.4 Execution Environment . 9
2.5 Application Boundary . 9
2.6 Virtual Machines . 10

3 Isolation Mechanisms in Linux 11
3.1 Virtualization Properties . 11
3.2 Virtualization (Type-I, Type-II) 11

3.2.1 Type-I, Type-II: System-level Virtualization 12
3.2.2 Type-I Virtualization: XEN 12
3.2.3 Type-II Virtualization . 14

3.3 Containers . 16
3.3.1 Process-level Virtualization 16
3.3.2 OpenVZ . 16

3.4 Summary Type-I, Type-II, Containers 18
3.5 Control Groups . 18

3.5.1 Memory Control Group 20
3.5.2 Swap Control Group . 21
3.5.3 CPUSets Control Group 21
3.5.4 Accounting Control Groups 21
3.5.5 Completely Fair Scheduler Control Group 22
3.5.6 Container Freezer Control Group 22
3.5.7 Block I/O Bandwidth Tracking Control Group 24

3.6 Namespaces . 24
3.6.1 Network Namespace . 25
3.6.2 UTS Namespace . 26

3/44

IST-033576 D2.1.6

3.6.3 PID Namespace . 26
3.6.4 IPC Namespace . 27
3.6.5 User Namespace . 27
3.6.6 Mount Namespace . 27
3.6.7 Unshare System Call . 28
3.6.8 Hijack System Call . 29

3.7 libvirt’s LXC (LinuX Container) 29
3.8 Smack . 31

4 Isolation Techniques for XtreemOS 32
4.1 Performance Isolation . 32
4.2 Resource Usage Management . 32
4.3 Confidentiality/Sandboxing . 33
4.4 Accounting . 33
4.5 Execution Environment . 34
4.6 Application Boundary . 34
4.7 Virtual Machines . 35

5 Isolation in LinuxSSI and Mobile Device Flavours of XtreemOS 36
5.1 LinuxSSI . 36

5.1.1 Containers upon Single System Image 36
5.1.2 Single System Image upon Containers 36
5.1.3 Type-I Virtualization upon Single System Image 36
5.1.4 Single System Image upon Type-I Virtualization 37
5.1.5 Type-II Virtualization upon Single System Image 37
5.1.6 Single System Image upon Type-II Virtualization 37
5.1.7 Perspectives . 37

5.2 Mobile Devices . 37

6 Conclusion 39

XtreemOS–Integrated Project 4/44

Chapter 1

Introduction

XtreemOS allows users belonging to different administrative domains to share
resources in a secure way through Virtual Organisations. Each administrative do-
main provides resources to VOs in a scalable way: no need to configure accounts
for VO users in order to let them use the resources.

In order to maximize resource usage, applications executed on behalf of the
same or on behalf of different VOs can use the same resources simultaneously.
But the impact of each application on each other must be strictly controlled.
XtreemOS must guarantee that each application gets its share of the resource
(CPU cycles, memory, disk quota, ...). This is a basic requirement for running in-
teractive applications as well as complex applications spanning multiple resource
nodes. Enforcing limits on resource usage and accounting resource usage is also
necessary. As compute nodes from an administrative domain run applications
from users belonging to other administrative domains, XtreemOS must protect
other applications running on the same node as well as the environment of the
node from malicious actions. During its execution, an application creates various
objects (processes, files, sockets, ...) on a resource node. XtreemOS must keep
track of the owner (user or job) of each object for billing purposes and in order
to clean all objects of the application when it is terminated. In order to enable
seamless execution of applications on the grid, XtreemOS must provide coherent
development and execution environments to VO users. As a computation node
may be shared by different VOs having different software environment require-
ments, XtreemOS must support the provision of different execution environments
to its users.

The implementation of these requirements in XtreemOS necessitates some
support from the Linux kernel in order to control and limit resource usage, protect
applications against each other and provide stable execution environments to VO
users. This document analyses various mechanisms that have been implemented
in recent Linux kernels and evaluates how these new mechanisms can be exploited

5/44

IST-033576 D2.1.6

in order to implement these requirements.
Chapter 2 analyses XtreemOS requirements about resource management, con-

fidentiality, accounting, execution environments as well as application life cycle.
Chapter 3 evaluates various mechanisms of Linux kernel which can be used to
monitor, limit and account resource usage, protect applications, provide an execu-
tion environment to the applications and manage the life cycle of system objects
created by the applications during their execution. Chapter 4 proposes solutions
to the requirements of chapter 2 mainly based on the mechanisms evaluated in
chapter 3. Chapter 5 discusses the possibility to exploit these mechanisms in the
LinuxSSI and mobile device flavours of XtreemOS. Finally, chapter 6 concludes
this evaluation.

XtreemOS–Integrated Project 6/44

Chapter 2

Isolation Requirements for
XtreemOS

When an application is submitted to XtreemOS for execution, XtreemOS first se-
lects a set of available resources and then starts the execution on these resources.
In the general case, these resources are not located in the user’s administrative
domain. Moreover, a single resource may simultaneously support the execu-
tion of multiple applications running on behalf of different Virtual Organisations.
XtreemOS must protect the applications from their execution environment, pro-
tect the execution environment (local processes and data, network environment)
from the applications, provide means to protect applications from failures, pro-
vide an acceptable execution environment to the applications and finally control
effective resource usage.

2.1 Performance Isolation/Resource Usage Manage-
ment

Resource nodes are selected in XtreemOS depending on their static characteristics
(number of CPUs, memory size, performance, ...) as well as dynamic values cor-
responding to their current state (CPU load, free memory, networking load, ...).
XtreemOS applications can request that the selected resources provide a minimal
level of internal resource (CPU cycles, memory, disk quotas) during execution.
Respecting minimal performance is important as XtreemOS is not a basic batch
system: applications can be interactive (a minimal responsiveness is expected),
the processes running on a single node can be part of a complex application span-
ning multiple nodes, etc. XtreemOS must be able to guarantee the minimal per-
formance requested by an application and protect the allocated internal resources
from other applications or processes running on the same node.

7/44

IST-033576 D2.1.6

In order to fairly share resources between applications, XtreemOS must pro-
vide resource management at the application level. Standard Unix systems control
resource usage (CPU, memory, ...) at the process level. However, complex appli-
cations are frequently multi-process applications and bounding the whole resource
consumption from the individual process consumption in real time is not a sim-
ple task. As applications can specify maximal bounds for resource usage (total
CPU time, maximum physical or virtual memory, maximum storage space, ...),
XtreemOS must provide some means to control in real time the resource usage of
whole applications. Enforcing resource usage by some application is necessary in
order to guarantee minimal performance for other applications.

2.2 Confidentiality/Sandboxing

Some XtreemOS requirements request that “It must not be possible for parties in
different VOs to recognize that they are sharing resources nor to gain knowledge
of what other parties are doing with those resources”. As computing resources
are nowadays more and more powerful (multi-cores, large memories, ...), sharing
the computation power of these resources between multiple applications is nec-
essary. Providing confidentiality on basic Unix system is difficult: all processes
run inside common namespaces: user namespace, process namespace, filesystem
namespace, network namespace, etc. Ideally, each XtreemOS application should
be allowed to run inside its own exclusive environment as if it were the exclusive
user of the resource node.

Sandboxing techniques can limit the system object space visible by processes
(processes, files, ...) and can provide some means to enforce confidentiality and
to limit the visible objects. But, as XtreemOS allows applications to be run out-
side their owner’s administrative domain, it should also be possible to control the
access rights of the applications to external objects, internet sites, for instance.

2.3 Accounting, Monitoring, Logging

Auditing, logging, accounting mechanisms must be implemented at node level
to provide the information needed by the VO management and security services.
As VO management and security services do not have any knowledge of applica-
tion internals (processes, threads, ...), but only some application reference point
(job ID, security token), this application reference point must be associated to all
processes generated by the application.

XtreemOS–Integrated Project 8/44

D2.1.6 IST-033576

2.4 Execution Environment
XtreemFS provides a uniform filesystem space to users across the resources man-
aged by a VO. User applications can access XtreemFS files in a uniform way in-
dependently of the resources selected for execution. However, the uniform space
provided by XtreemFS cannot hold all files and directories accessed by the appli-
cation. This is especially the case of some program libraries which depend on the
node configuration. Maintaining a uniform operating system configuration across
a large grid is a difficult task: the configuration depends on the resource installa-
tion, synchronising updates on different administration domains is complex, some
administration domains need to provide different configurations for independent
VOs. It is possible to specify execution environment constraints (operating sys-
tem) during resource selection. Although this possibility can provide uniform en-
vironments to users, it does not facilitate the administration of resources shared by
multiple Virtual Organisations. XtreemOS resource nodes must support multiple
compilation and execution environments.

A process identifier (PID), a user identifier (UID), a list of group identifiers
(GID) and, in some cases, extra user identifier (during UID changes) are associ-
ated to each Unix process. An application can retrieve these identifiers and store
them in its local memory. For instance, the application can fork a new process,
store its PID in the memory in order to later send signals to it. Other execution
attributes such as the internet address or the hostname of the resource node, the
port number bound to a socket can also be fetched by the application. These at-
tributes are linked to the resource selected for the execution. The UIDs and GIDs
are allocated dynamically and change for each run. The host name and host in-
ternet address change for each job as a new pool of resources is selected for each
execution. Even worse, these attribute might change during the execution if the
application is migrated or restarted after a checkpoint. XtreemOS must offer some
means to provide stable execution attributes for the applications.

2.5 Application Boundary
A typical XtreemOS application running on a resource node is made of multiple
processes and threads. In order to cleanup, checkpoint, migrate and control re-
source usage of an application, the local operating system must permanently keep
track of all processes/threads of the application. Standard Unix operating systems
manage login sessions in order to globally evaluate local resource usage from lo-
gin to logout. But this session management in Unix does not cover all XtreemOS
needs:

• Resource usage limits are not controlled globally.

9/44 XtreemOS–Integrated Project

IST-033576 D2.1.6

• A process can leave the login session (so that the user can logout while back-
ground processes continue to run). In order to allow scalable management
of users and resources in XtreemOS, the user environment is dynamically
created when the session is started and freed at the end of the session. No
user process should remain active after the session ends.

• It is not possible to create new processes inside an existing session from
outside the session. In XtreemOS, a session is a dynamic execution context
created after negotiation with the resource manager. To each session corre-
spond user credentials, resource usage limits as well as an accounting/mon-
itoring context. It should be possible to launch new processes controlled
by the same credentials inside an active session from outside, the resource
usage of the process being controlled/accounted/monitored on behalf of the
session. Two typical use cases are: a user can login into an existing session
in order to debug/monitor his application; a complex application spanning
multiple resources can remotely create new processes on the allocated re-
source nodes.

2.6 Virtual Machines
Some XtreemOS deliverables specify requirements about virtual machines. For
instance, consider requirement R16 of deliverable D4.2.3 [42].

R16: XtreemOS must support virtual machines (e.g. XEN, VMWare,
OpenVZ/ Virtuozzo). This requirement is actually twofold.

1. XtreemOS should be able to run inside a virtual machine.

2. XtreemOS should be able to run virtual machines (i.e. act as the
host operating system).

The second point is important for business applications with strict
isolation requirements between different VOs. This is especially true
for the case of multiple VOs sharing the same physical hardware. For
such scenarios with strong isolation requirements it must therefore be
possible to execute applications in VMs or virtual containers/com-
partments, and a VO is created across a group of selected VMs/con-
tainers.

XtreemOS–Integrated Project 10/44

Chapter 3

Isolation Mechanisms in Linux

Several kinds of mechanisms exist in Linux to provide Isolation. Containers or
virtual machines are more and more used in this context. After giving general
properties concerning this kind of system, we present the Type-I, Type-II and
container virtualization system.

3.1 Virtualization Properties
A virtualization system could provide several kind of functionality.

Suspend/Restart This functionality allows one to suspend and restart a VM.
This functionality is transparent to applications running inside the VM, although
some network problems have been identified (lost of packets...).

Migration This functionality allows a VM to migrate from one node to another
node in a transparent way for the running application inside the VM. The basic
mechanism consist in suspending the VM, transfering all necessary files to the
destination node, and restarting the VM.

However, this technique implies a period of unavailability of the VM. To solve
this issue, the technique of Live Migration was created [9]. This technique mi-
grates the VM on the fly. More information about this technique is provided in
Section 3.2.2.

3.2 Virtualization (Type-I, Type-II)
In 1973, Goldberg proposed a formal definition of virtualization [21]. This defi-
nition is based on two types: Type-I and Type-II.

11/44

IST-033576 D2.1.6

Figure 3.1: Type-I virtualization Figure 3.2: Type-II virtualization

3.2.1 Type-I, Type-II: System-level Virtualization
This approach aims to provide the virtualization of a complete system: virtual
resources are exposed to a complete OS inside a VM. The system running on the
VM is called guest OS. The guest OS can’t run privileged instructions at the CPU
level. To solve this problem, the VM forwards their requests to a host OS. The
host OS has the right to execute privileged instructions on the CPU. A special
piece of code (the hypervisor) is in charge of forwarding the requests from one
VM to the host OS, and of scheduling multiple VMs on a physical node.

Based on this general status, Goldberg defines the Type-I (see Figure 3.1),
where the hypervisor is executed directly on the bare hardware (in this manner,
the host OS is installed in a special VM generally called Domain0), and the Type-
II (see Figure 3.2) where the hypervisor is executed on the host OS (in this manner,
the hypervisor is treated by the host OS as a simple process).

Xen [1] is an example of Type-I virtualization system. VMWare Server [40]
or QEMU [2] are examples of Type-II virtualization systems.

3.2.2 Type-I Virtualization: XEN
The Type-I virtualization could be declined in two categories. The first one (the
oldest) is paravirtualization. With paravirtualization, the guest OS code must be
modified in order to execute it on a VM. The second one is full virtualization
where, thanks to the hardware support, no guest OS code modification is neces-
sary. Xen is a virtualization system exploiting paravirtualization (for XEN < 3.0)
and full virtualization (for XEN ≥ 3.0 with the use of hardware virtualization).

In both versions, Xen is composed of domains: one domain0 and several do-
maineU (VMs). The domain0 is a special domain in which the kernel can execute
privileged instructions. When a VM executes a privileged instruction, the request
is forwarded to the domain0. This is done by synchronous or asynchronous calls
(hypercall and event).

Each VM gets its own exclusive part of physical memory. The guest OS has
direct access to hardware page tables, but updates are batched and validated by

XtreemOS–Integrated Project 12/44

D2.1.6 IST-033576

the hypervisor. A domain may be allocated non-contiguous machine pages.
From the CPU point of view, the domain0 is the only one that can perform

privileged instructions. However, the hypervisor (directly installed on the bare
hardware) runs in the most privileged level of the CPU (generally, the level 0).
In addition, traditional guest OSs also need to run on the most privileged level of
instructions (generally, the level 0). This is why, in the case of paravirtualization,
it’s necessary to modify the guest OS to give it the illusion that it is performed on
the highest level of privileged instruction (generally, level 1). With full virtualiza-
tion (use of Xen ≥ 3.0 with the use of hardware virtualization), this problem is
solved. The hypervisor runs in a level -1, whereas the guest OS runs in the level
0.

Xen does not provide hardware emulation. I/O are directly treated with the
bare devices.

(i) Isolation and Security VMs are independent from each other. For instance,
it is possible to reboot one VM without impacting others. In addition a VM is not
visible from other ones.

(ii) Server Consolidation Generally, in a cluster (and even more in a grid!),
the majority of nodes are not used at 100% of their capacity. It should be really
interesting to have mechanisms to balance workload on certain nodes (to use them
at 100% of their capacity) and to turn off others, before turning them on again if
necessary. Server consolidation is supported by Xen.

(iii) Billing and Application Boundary Concerning billing issues, these are on
the roadmap of the Xen development. However, to our knowledge, nothing is
done at the time of this writing.

Concerning the VM boundary, it is possible to specify the size of the memory,
the CPUs to use, etc. These parameters can be modified in real time.

(iv) Configurability and Portability Each VM could have their own guest OS.
However, Xen does not provide CPU emulation, that is, it is not possible to run on
a VM a guest OS or an application not compiled for the physical CPU architecture.
In addition, it is not possible to migrate a VM from one physical architecture to
another.

Live Migration A VM is composed of a disk image file, several configuration
files and a memory file. To transfer a VM from one node to another, we have
to transfer all of these files. However, this could take a lot of time according to
the size of the VM and to the network bandwidth. To solve this, the concept of

13/44 XtreemOS–Integrated Project

IST-033576 D2.1.6

live migration were invented, ie, the migration of a VM from one node to another
without (or with the smallest) interruption time and transparently for all clients
connected to the VM. This implies two main problems: the first one is about the
migration of the VM itself, the second one is about the network connectivity of
the VM.

For instance, Xen is able to do Live Migration [9]. We assume that the disk
image file and all the configuration files are shared on a central repository. In that
case, to do a Live Migration, we only have to transfer the memory from the origi-
nating node to the destination node. To do this, the memory of the VM is copied
to the distant node (during this time, the VM is running). The modified pages of
the memory are continously transfered to the distant node until only frequently
modified pages remain. Then the VM is stopped and the remaining pages are
transferred to the distant node. The problem is if the VM executes an application
which makes lot of change on the memory. In that case, the number of pages to
transfer when the VM is stopped will be important, that is, the interruption time
won’t be negligible.

Concerning the problem of the network connectivity, the VM is migrated with
its own IP. To avoid a loss of connectivity, when the VM is restarted on the distant
node, it sends "false" ARP-Reply packets to signal to other connected machines
(virtual or not) that the VM has been migrated. Otherwise, it is possible to rely
on the switch to detect the migration of the VM. This solution works only when
we migrate a VM on the same network, otherwise, it is necessary to use other
solutions to virtualize the network (VPN, VON, Distributed servers [43]...).

3.2.3 Type-II Virtualization
VMWare Server VMWare Server is a commercial product [40] of Type-II vir-
tualization system type. This product is developed to be executed on x86 CPU
architecture. In addition it can take advantage of the latest hardware virtualization
technologies such as Intel-VT and AMD-Pacifica.

VMWare Server is compatible with a lot of guest and host OSs (Linux and
Windows). Moreover, it provides the Virtual SMP technology, allowing one VM
to have multiple CPUs. VMWare Server is able to do snapshotting, suspend/restart,
and migration of VMs (Live Migration is possible in the commercial version of
VMWare Server).

In addition, VMWare Server defines a Virtual Machine Communication Inter-
face (VMCI) allowing fast communications between VMs, or between VMs and
the host OS on the same node. Without VMCI, VMs communicate with the host
OS using the network layer. Using the network layer adds overhead to the com-
munication. With VMCI communication overhead is minimal and different tasks
that require communication can be optimized.

XtreemOS–Integrated Project 14/44

D2.1.6 IST-033576

Moreover, VMWare Server proposes a VIX API, allowing users to manipulate
their VMs via scripts or programs. The VIX API runs on the Microsoft Windows
and Linux platforms. Client codes can be written in C, Perl and COM.

VMWare Server does not provide emulation of the CPU. In this way, from a
CPU point of view, performances of VMware Server are close to the native ones,
however it is not possible to migrate a VM from one physical architecture to a
different physical architecture.

(i) Isolation and Security Like Xen, VMware VMs are independent from each
other and a VM is not visible from other ones.

(ii) Server Consolidation VMWare Server is able to do server consolidation.

(iii) Billing and Application Boundary Some commercial versions of VMWare
seem to allow billing.

Concerning the boundary, it is possible to limit the use of memory etc.

(iv) Configurability and Portability Each VM could have their own guest OS.
However, VMWare Server does not provide CPU emulation, that is, on a VM, it
is not possible to run a guest OS or an application not compiled for the physical
CPU architecture. In addition, it is not possible to migrate a VM from one physical
architecture to another.

The commercial version of VMWare can provide Live Migration.

QEMU QEMU [2, 3] is a generic and open source machine emulator and virtu-
alizer.

When used as a machine emulator, QEMU can run OSes and programs com-
piled for one machine (e.g. an ARM board) on a different machine (e.g. your
own PC). By using dynamic translation, it achieves good performances. QEMU
supports a lot of host CPUs and can emulate a lot of CPU architectures.

When used as a virtualizer, QEMU achieves near native performances by ex-
ecuting the guest code directly on the host CPU. A host driver called the QEMU
accelerator (also known as KQEMU) is needed in this case. The virtualizer mode
requires that both the host and guest machine use x86 compatible processors (same
as VMWare Server).

(i) Isolation and Security Like VMWare Server, VMs are independent from
each other and a VM is not visible from other ones.

15/44 XtreemOS–Integrated Project

IST-033576 D2.1.6

Figure 3.3: Containers virtualization

(ii) Server Consolidation QEMU is able to do server consolidation.

(iii) Billing and Application Boundary To our knowledge, nothing has be done
concerning billing.

Concerning the boundary, it is possible to limit the use of memory etc.

(iv) Configurability and Portability Each VM can have its own guest OS. In
addition, QEMU provides emulation of the CPU, that is, it is possible to run on
a VM a guest OS or an application not compiled for the physical CPU architec-
ture. In that way, it is possible to migrate a VM from one physical architecture to
another in a transparent way for the guest OS running inside the VM. However,
QEMU does not provide Live Migration.

3.3 Containers

3.3.1 Process-level Virtualization
This technique is not addressed by the Goldberg theory. However, it is used in-
creasingly nowadays. It consists of executing several processes simultaneously
on several containers. In that case, there is no guest OS on the containers: all
containers run the kernel of the host OS and can execute privileged instructions
(see Figure 3.3).

3.3.2 OpenVZ
OpenVZ [33] is a container virtualization system, ie, there is one special kernel
on the host OS that executes privileged instructions of all the containers. This
special kernel is OpenVZ (normal kernel + OpenVZ patch) which runs directly
on the bare hardware. OpenVZ works with the concept of Virtual Environment

XtreemOS–Integrated Project 16/44

D2.1.6 IST-033576

(VE). A VE has its own configuration (IP address, users, specific packages, ...).
In this way, OpenVZ allows to create VEs with different distributions in a easy
manner.

OpenVZ is able to do Live Migration of containers. In addition, OpenVZ pro-
vides container checkpointing and it is highly scalable (for instance, it is possible
to run 120 VEs on top of nodes with 750MB of RAM memory).

OpenVZ provides several properties like: (i) isolation and security, (ii) server
consolidation, (iii) accounting and boundary, (iv) Configurability and portability
of the virtual environment.

(i) Isolation and Security VEs are independent from each other, for instance,
it is possible to reboot one VE without impacting others. In addition processes of
one container are not visible from other ones. However, the same kernel is used to
execute privileged instructions of all containers. In this manner, a malicious user
could hijack the system to take its control.

(ii) Server Consolidation With OpenVZ, it is possible to consolidate servers by
migrating VEs (in order to reduce the power consumption. for instance).

In addition it is possible to dynamically reallocate resources to a VE. For ex-
ample, it is possible to dynamically add more memory to a VE.

(iii) Billing and Application Boundary The resource management provided by
OpenVZ is composed of three elements: (i) disk quotas, (ii) fair CPU scheduler,
(iii) user beancounters. This approach gives more dynamicity and flexibility in
the management of resources.

• Disk quotas: they are defined for each VE by the administrator of the host
OS (quotas are adjustable in real time).

• Fair CPU scheduler: it allows the administrator of the system to specify a
percentage of time of the processor to each VE.

• User beancounters: it is a set of counters, boundaries and guarantees at-
tributed to a VE. There are approximately 20 parameters available to con-
figure a VE. This ensures that no VE can take all resources to the detriment
of other ones.

(iv) Configurability and Portability of the Virtual Environment According
to the type of users and usage (developers, testers, host providers, students, ...) it is
often necessary to deploy on a same physical hardware several Linux distributions.
This operation can be very expensive in term of time, and very tiresome. OpenVZ

17/44 XtreemOS–Integrated Project

IST-033576 D2.1.6

gives an element of solution to this issue by allowing users to deploy several VEs
on a same node. A VE can be created in 60 seconds, and it is easy to clone a VE
with a negligible degradation of performances.

Concerning application portability, it is not necessary to modify them before
their execution on a VE, however, it is not possible to migrate one container from
a physical architecture to another.

3.4 Summary Type-I, Type-II, Containers

Prop. / Virt. Sys.1 XEN > 3.0 VMWare Server QEMU OpenVZ
Isolation & Security YES2 YES YES 0.5 YES3

Server Consolidation YES YES YES YES
Accounting & Boundary -4 - - YES
Conf. & Port. of App.5 0.5 YES 0.5 YES YES 0.5 YES

Live Migration YES NO6 NO YES

3.5 Control Groups

This description has been extracted from LWN article [13] and Linux kernel doc-
umentation [30].

Control Groups (cgroup) provide a mechanism for aggregating/partitioning
sets of tasks, and all their future children, into hierarchical groups with specialized
behaviour.

• A cgroup associates a set of tasks with a set of parameters for one or more
subsystems.

• A subsystem is a module that makes use of the task grouping facilities pro-
vided by cgroups to treat groups of tasks in particular ways. A subsys-
tem is typically a "resource controller" that schedules a resource or applies
per-cgroup limits, but it may be anything that wants to act on a group of
processes, e.g. a virtualization subsystem.

2Properties / Virtualization System
3YES: the virtualization system provides the given property
40.5 YES: the virtualization system does not provide completely the given property
5-: Not known
6Configurability and portability of applications
7NO: the virtualization system does not provide the given property

XtreemOS–Integrated Project 18/44

D2.1.6 IST-033576

• A hierarchy is a set of cgroups arranged in a tree, such that every task in the
system is in exactly one of the cgroups in the hierarchy, and a set of subsys-
tems; each subsystem has system-specific state attached to each cgroup in
the hierarchy. Each hierarchy has an instance of the cgroup virtual filesys-
tem associated with it.

At any time there may be multiple active hierarchies of task cgroups. Each hi-
erarchy is a partition of all tasks in the system. A cgroup hierarchy filesystem
can be mounted for browsing and manipulation from user space. For instance, the
following command mounts the cpuacct and cpuset subsystems, creates two
subgroups and forks a new shell inside each subgroup.

(1) mkdir /xos-groups
(2) mount -t cgroup -o cpuacct,cpuset none /xos-groups/
(3) mkdir /xos-groups/app1
(4) mkdir /xos-groups/app2
(5) echo 0 > /xos-groups/app1/cpuset.cpus
(6) echo 1 > /xos-groups/app2/cpuset.cpus
(7) echo 0 > /xos-groups/app1/cpuset.mems
(8) echo 0 > /xos-groups/app2/cpuset.mems
(9) xterm &
(10) echo $! > /xos-groups/app1/tasks
(11) xterm &
(12) echo $! > /xos-groups/app2/tasks

Instruction (2) mounts subsystems cpuacct for cpu accounting and cpuset
for cpu scheduling on directory /xos-groups. This root control group contains
all system processes. Instructions (3) and (4) create two new subgroups in
the hierarchy, initialised in (5-8). The new task created in (9) is moved to
subgroup app1 in (10). The task created in (11) is moved to subgroup app2
in (12). CPU allocation for these tasks is controlled by their attached subgroup:
CPU 0 for app1 and CPU 1 for app2. Effective CPU usage of each subgroup
can be obtained from file cpuacct.usage of each subgroup.

cat app1/cpuacct.usage
22740167

User level code may create and destroy cgroups by name in an instance of the
cgroup virtual file system, specify and query to which cgroup a task is assigned,
and list the task pids assigned to a cgroup. Those creations and assignments only
affect the hierarchy associated with that instance of the cgroup file system.

The main purpose of control groups is to provide a generic framework where
several "resource controllers" can plug in and manage different resources of the

19/44 XtreemOS–Integrated Project

IST-033576 D2.1.6

system used by whole process groups. Typical examples of resources which can
be managed at group level (whole applications) are memory, CPU, I/O. Cgroups
also offers a unified user interface, based on a virtual filesystem where adminis-
trators can assign arbitrary resource constraints to a group of chosen tasks. For
example, Cpusets and Group Scheduling have been merged in 2.6.24. The first
one allows to bind CPU and Memory nodes to the arbitrarily chosen group of
tasks and the second one allows to bind a CPU allocation policy to the cgroup.

The following control groups have been developed so far: memory resource
controller, swap subsystem, fair scheduler, CPUsets, accounting, container freezer
and block I/O bandwidth tracker.

3.5.1 Memory Control Group
This description has been extracted from LWN article [11] and Linux kernel com-
munity page [28].

The memory resource controller in 2.6.25 is a cgroups-based feature. The
memory resource controller isolates the memory behavior of a group of tasks from
the rest of the system. It can be used to:

• Isolate an application or a group of applications. Memory hungry applica-
tions can be isolated and limited to a smaller amount of memory.

• Create a cgroup with limited amount of memory. This can be used as a good
alternative to booting with mem=XXXX.

• Control the amount of memory that virtualization solutions want to assign
to a virtual machine instance.

• Allow a CD/DVD burner to limit the amount of memory used by the rest
of the system to ensure that burning does not fail due to lack of available
memory.

Configuration, like all cgroups, is done by mounting the cgroup filesys-
tem with the "-o memory" option, creating a randomly-named directory (the
cgroup), adding tasks to the cgroup by ’cat’ting its PID to the ’task’ file inside
the cgroup directory. The behaviour of each memory control group is controlled
using the following files inside the cgroup directory:

memory.limit_in_bytes,

memory.usage_in_bytes (memory statistic for the cgroup),

memory.stats (more statistics: RSS, caches, inactive/active pages),

XtreemOS–Integrated Project 20/44

D2.1.6 IST-033576

memory.failcnt (number of times that the cgroup exceeded the limit),

memory.mem_control_type (type of memory pages managed by the con-
trol group).

Out of memory conditions (OOM) are also handled in a per-cgroup manner:
when the tasks in the cgroup surpass the limits, OOM will be called to kill a task
between all the tasks involved in that specific cgroup.

3.5.2 Swap Control Group
This description has been extracted from Linux container mailing-list [32].

Even when memory usage is limited by a cgroup memory subsystem or iso-
lated using CPUSet, swap space is still shared by all processes. If one application
or process uses all the swap space, it can affect other applications.

The swap subsystem cgroup adds swap space management (limit, charge) to
the memory subsystem.

3.5.3 CPUSets Control Group
This description has been extracted from Linux kernel documentation [15].

Cpusets provide a mechanism for assigning a set of CPUs and Memory Nodes
to a set of tasks. A CPUSet constrains the CPU and Memory placement of tasks to
only the resources within a task’s current CPUSet. They form a nested hierarchy
visible in a cgroup virtual file system.

Requests by a task, using the sched_setaffinity(2) system call to in-
clude CPUs in its CPU affinity mask, and using the mbind(2) and set_mem-
policy(2) system calls to include Memory Nodes in its memory policy, are
both filtered through that task’s cpuset, filtering out any CPUs or Memory Nodes
not in that cpuset. The scheduler will not schedule a task on a CPU that is not
allowed in its cpus_allowed vector, and the kernel page allocator will not allo-
cate a page on a node that is not allowed in the requesting tasks mems_allowed
vector.

User level code may create and destroy cpusets by name in the cgroup virtual
file system, manage the attributes and permissions of these cpusets and which
CPUs and Memory Nodes are assigned to each cpuset, specify and query to which
cpuset a task is assigned to, and list the task pids assigned to a cpuset.

3.5.4 Accounting Control Groups
This description has been extracted from Linux kernel documentation [8] for
cpuacct and [7] for cgroupstats.

21/44 XtreemOS–Integrated Project

IST-033576 D2.1.6

The cpuacct control group allows to count the CPU cycles consumed by
group of processes. The cgroupstats control group extends the taskstats sys-
tems to record resource usage and statistics from groups of tasks. Using cgroup-
stats, it is possible to get the CPU usage (user, system), the number of ma-
jor/minor page faults, the memory (physical and virtual) usage as well as I/O
statistics about a group of processes in real time.

3.5.5 Completely Fair Scheduler Control Group

This description has been extracted from Linux kernel documentation [6].
The CFS Linux scheduler can be configured (at kernel compile-time) to di-

vide CPU time fairly among arbitrary groups of tasks managed by the control
group system. The ratio of cpu cycles allocated to a task group is defined in file
cpu.shares of the cgroup directory. Here is an example from [6] showing how
CPU bandwidth can be shared between two applications.

mkdir /dev/cpuctl
mount -t cgroup -ocpu none /dev/cpuctl
cd /dev/cpuctl

mkdir multimedia # create "multimedia" group of tasks
mkdir browser # create "browser" group of tasks

#Configure the multimedia group to receive twice the
CPU bandwidth that of browser group

echo 2048 > multimedia/cpu.shares
echo 1024 > browser/cpu.shares

firefox & # Launch firefox and move it to
"browser" group
echo <firefox_pid> > browser/tasks

#Launch gmplayer (or your favourite movie player)
echo <movie_player_pid> > multimedia/tasks

3.5.6 Container Freezer Control Group

This description has been extracted from Linux container mailing-list [26] and
LWN article [27]. The swsusp modules is described in LWN article [41].

XtreemOS–Integrated Project 22/44

D2.1.6 IST-033576

The freezer subsystem in the container filesystem defines a cgroup file named
freezer.state. Reading freezer.state will return the current state of
the cgroup. Writing "FROZEN" to the state file will freeze all tasks in the cgroup.
Subsequently writing "RUNNING" will unfreeze the tasks in the cgroup.

The cgroup freezer is useful for batch job management systems that start and
stop sets of tasks in order to schedule the resources of a machine according to the
wishes of a system administrator. This sort of program is often used in HPC clus-
ters to schedule access to the cluster as a whole. The cgroup freezer uses cgroups
to describe the set of tasks to be started/stopped by the batch job management
system. It also provides a means to start and stop the tasks composing the job.

The cgroup freezer can also be useful for checkpointing groups of tasks. The
freezer allows the checkpoint code to obtain a consistent image of the tasks by
attempting to force the tasks in a cgroup into a quiescent state. Once the tasks
are quiescent another task can walk /proc or invoke a kernel interface to gather
information about the quiesced tasks. Checkpointed tasks can be restarted later
should a recoverable error occur. This also allows the checkpointed tasks to be
migrated between nodes in a cluster by copying the gathered information to an-
other node and restarting the tasks there.

Example of usage:

mkdir /containers/freezer
mount -t cgroup -ofreezer freezer /containers/freezer
mkdir /containers/freezer/0
echo $some_pid > /containers/freezer/0/tasks

to get status of the freezer subsystem :

cat /containers/freezer/0/freezer.state
RUNNING

to freeze all tasks in the container :

echo FROZEN > /containers/freezer/0/freezer.state
cat /containers/freezer/0/freezer.state
FREEZING
cat /containers/freezer/0/freezer.state
FROZEN

to unfreeze all tasks in the container :

echo RUNNING > /containers/freezer/0/freezer.state
cat /containers/freezer/0/freezer.state
RUNNING

23/44 XtreemOS–Integrated Project

IST-033576 D2.1.6

to kill all tasks in the container :

echo 9 > /containers/freezer/0/signal.kill

The container freezer cgroup subsystem utilizes the swsusp freezer to freeze a
group of tasks [41].

3.5.7 Block I/O Bandwidth Tracking Control Group

Different block I/O bandwidth tracking and management systems have been pro-
posed for Linux, for instance: dm-ioband (v1.7.0) described in LWN article [37],
2-Layer CFQ described in Linux kernel mailing-list [38] and io-throttle (v11) dis-
cussed in mailing-list [34].

Bio-cgroup is an I/O tracking mechanism, implemented in the cgroup memory
subsystem [36]. With this mechanism, it is able to determine to which cgroup
eachI/O belongs to, even when the I/O is one of delayed-write requests issued
from a kernel thread such as pdflush.

Dm-ioband is an I/O bandwidth controller implemented as a device-mapper
driver, which gives specified bandwidth to each job running on the same block
device [37]. A job is defined as a group of processes with the same PID or PGRP
or UID or a virtual machine such as KVM or Xen. A job can also be a cgroup
managed by the bio-cgroup system.

3.6 Namespaces

A Unix process runs inside a set of namespaces: file namespace (file system tree),
process namespace (PIDs of the active processes), user namespace (user/group
UID), tty namespace, device namespace, networking namespace (network inter-
faces with associated routing tables), IPC and shared segments namespace, etc.
These namespaces are common and shared by all processes on traditional sys-
tems.

In order to increase security, facilitate application management, and imple-
ment application checkpoint/restart/migration, recent Unix operating system (BSD,
Linux, Solaris, etc.) have introduced means to manage namespaces at the appli-
cation level. The current Linux kernel (2.6.24) manages six different namespaces
at task level: UTS (the system names), PID, USER (UIDs), NS (mount), IPC and
NET (network). Other namespaces, such as device and/or PTY namespace might
be integrated in the future.

XtreemOS–Integrated Project 24/44

D2.1.6 IST-033576

3.6.1 Network Namespace
This description has been extracted from LWN articles [5] and [12] and from
Sourceforge documentation [31].

A network namespace is a private set of network resources assigned to one
or several processes. These have their own set of network devices, IP addresses,
routes, sockets etc. Other processes outside of the namespace cannot access these
network resources, nor even know they exist. That allows:

• virtualization : processes inside the network namespaces do not know any-
thing about the network resources outside the namespace and use the re-
sources without conflicting with other network namespaces.

– For examples: several network namespaces can have eth0 and lo
network devices.

– several apache servers listening on *:80 can be launched into different
network namespaces.

• isolation : processes cannot access the network resources that are outside
the namespace.

– For examples: a process cannot sniff traffic related to another network
namespace.

– a process cannot shutdown an interface belonging to another network
namespace.

The virtualization/isolation allows to implement different interesting features:

• security : a server can be run into a network namespace which ensures, if the
server is hacked, that the rest of network system will not be compromised;

• resource management : resource management acting at the network device
can be easily implemented because network resources can be assigned to a
specific set of processes;

• traffic control : control is more flexible because it can be set by network
devices and obviously by network namespaces;

• consolidation : a powerful host can aggregate several servers in differ-
ent network namespaces without impacting the servers’ network configu-
rations;

• mobility : it is easy to find and checkpoint network resources because they
are by namespace. The virtualization allows to move IP across the network
and avoid conflicts at restart;

25/44 XtreemOS–Integrated Project

IST-033576 D2.1.6

Network interfaces made up of real hardware normally remain in the root
namespace. Communication with other namespaces is made possible by way of
a "virtual Ethernet" device. A virtual device can be thought of as a wire into a
restricted namespace; it presents one device within that namespace and one in the
parent (normally root) namespace. Packets written to one end show up at the other.
With the addition of a few routing rules in the root namespace, packets meeting
the right criteria can be directed to (and from) specific namespaces.

When the CLONE_NEWNET flag is set in the clone syscall, the process child
is created inside a new network namespace. Setting this flag in the unshare
syscall allows to create a new network namespace for the calling process. All the
process children inherit the network namespace from their parent.

3.6.2 UTS Namespace
This description has been extracted from LWN article [22] and sourceforge docu-
mentation [39].

Instead of using the global system_utsname containing hostname, do-
mainname etc, a process can request it’s copy of the uts structure info to be
cloned. The data is be copied from the original, but any further changes will not
be seen by processes which are not it’s children, and vice versa. The utsname
information includes a system’s hostname. Allowing this to be unshared means
that processes in virtual servers can be associated with different hostnames. It also
means that a job being migrated can take its hostname with it if needed.

3.6.3 PID Namespace
This description has been extracted from LWN article [18].

The PID namespace allows for creating sets of tasks, with each such set look-
ing like a standalone machine with respect to process IDs. In other words, tasks
in different namespaces can have the same IDs.

This feature is the major prerequisite for the migration of containers between
hosts; having a namespace, one may move it to another host while keeping the
PID values – and this is a requirement since a task is not expected to change its
PID. Without this feature, the migration will very likely fail, as processes with
the same IDs can exist on the destination node, which will cause conflicts when
addressing tasks by their IDs.

PID namespaces are hierarchical; once a new PID namespace is created, all
the tasks in the current PID namespace will see the tasks (i.e. will be able to
address them with their PIDs) in this new namespace. However, tasks from the
new namespace will not see the ones from the current. This means that now each
task has more than one PID – one for each namespace.

XtreemOS–Integrated Project 26/44

D2.1.6 IST-033576

To create a new namespace, one should just call the clone(2) system call
with the CLONE_NEWPID flag set. After this, it is useful to change the root
directory and mount a new procfs instance in the /proc to make the common
utilities like ps work. Note that since the parent knows the PID of its child, it may
wait() in the usual way for it to exit.

The process created by the clone system call with the CLONE_NEWPID flag
set gets PID 1 inside the new namespace and behaves as the init process of
classical Unix systems: orphan processes of the namespace are reparented on this
process. If this process is killed, all processes of the namespace are killed and the
namespace is freed.

3.6.4 IPC Namespace

This description has been extracted from LWN article [29].
This patch set allows to create a new copy of the current IPC namespace and to

manage a private set of IPC objects (sem, shm, msg) inside this new IPC names-
pace. Basically, it is another building block of containers functionality.

3.6.5 User Namespace

This description has been extracted extracted from LWN article [20] and from
Linux container mailing-list [23].

The user namespace allows for creating sets of tasks, with each such set look-
ing like a standalone machine with respect to user IDs. Users in different names-
paces can have the same UIDs. Independent user namespaces allow the imple-
mentation of containers (each container manages its users independently) and of
checkpoint/restart/migrate (processes must be restarted with the same UIDs).

3.6.6 Mount Namespace

This section is based on the sharedsubtree document in LWN article [10] and on
IBM’s resource for developers article [24].

In traditional Linux systems, all processes run in the same filesystem tree.
Using mount namespace, it is possible to associate a mount tree to a group of
processes, a single application for instance. This possibility increases security
and confidentiality (an application does not see the file system tree of other ap-
plications), allows building different filesystem trees for different execution en-
vironments (each Virtual Organisation can define its own filesystem tree across
different physical organisations), and in some cases, can provide the capability to
manage its own mount tree to an application (user-space mounting).

27/44 XtreemOS–Integrated Project

IST-033576 D2.1.6

A process can be forked in a new namespace (initially a clone of it parent’s
namespace) using the CLONE_NEWNS flag. A process can also request to clone
its current namespace using the unshare system call. It is also possible to clone
a mount using the mount -bind command. Cloned mount namespaces are not
completely independent: the result on a mount request inside some namespace on
other namespaces depend on the status of the mount point. The new mount sys-
tem call manages shared, slave, private and unbindable mount points.

• mount -make-shared mount-point: mount-point is shared. A
shared mount can be replicated to as many mountpoints and all the replicas
continue to be exactly same: mount/umount requests from the parent are
propagated to the child and vice-versa.

• mount -make-slave mount-point: mount-point is slave. A
slave mount is like a shared mount except that mount and umount events
only propagate towards it. All slave mounts have a master mount which is
shared. mount/umount requests from the shared/master are propagated
to slaves, but slave mounts are not propagated

• mount -make-private mount-point: mount-point is private.
A private mount does not forward or receive propagation. This is the default
behaviour.

• mount -make-unbindable mount-point: mount-point is un-
bindable.

Each of these options has a recursive version which is applied to the whole subtree.
It is possible to automatically provide a new mount namespace to users at login

time using the pam_namespace module [16].
Another extension to the Linux mount system allows to make parts of filesys-

tems read-only in some namespaces using read-only bind mounts (see [25]).

3.6.7 Unshare System Call

System call unshare(2) allows a process to disassociate parts of its execution
context that are currently being shared with other processes. Part of the execution
context, such as the namespace, is implicitly shared when a new process is created
using fork(2) or vfork(2), while other parts, such as virtual memory, may
be shared by explicit request when creating a process using clone(2).

The main use of unshare() is to allow a process to control its shared exe-
cution context without creating a new process.

XtreemOS–Integrated Project 28/44

D2.1.6 IST-033576

The flags argument is a bit mask that specifies which parts of the execution
context should be unshared. This argument is specified by ORing together zero or
more of the following constants:

CLONE_FILES Reverse the effect of the clone(2) CLONE_FILES flag. Un-
share the file descriptor table, so that the calling process no longer shares its
file descriptors with any other process.

CLONE_FS Reverse the effect of the clone(2) CLONE_FS flag. Unshare file
system attributes, so that the calling process no longer shares its root direc-
tory, current directory, or umask attributes with any other process.

CLONE_NEWNS This flag has the same effect as the clone(2) CLONE_NEWNS
flag. Unshare the namespace, so that the calling process has a private copy
of its namespace which is not shared with any other process. Specifying
this flag automatically implies CLONE_FS as well.

CLONE_VM If CLONE_VM is set, the virtual memory of the caller is disassociated
from the shared virtual memory.

Note that the current implementation of unshare does not support cloning
the PID namespace (no CLONE_NEWPID flag).

3.6.8 Hijack System Call
This description has been extracted from LWN article [14].

The proposed hijack() system call is an extension to clone() that causes
the new process to share resources with a specified third process rather than with
the parent. Its main reason for existence is to make it easy to enter different
namespaces.

3.7 libvirt’s LXC (LinuX Container)
This description has been extracted from web page [4].

Library libvirt provides a stable API for managing virtualization hosts and
their guests. It started with a Xen driver, and over time has evolved to add support
for QEMU, KVM, OpenVZ and recently a driver called "LXC" (short for "LinuX
Containers"). The key is that no matter what hypervisor is being used, there is a
consistent set of APIs, and standardized configuration format for userspace man-
agement applications in the host (and remote secure RPC to the host).

The LXC driver is the result of a combined effort from a number of people in
the libvirt community.

29/44 XtreemOS–Integrated Project

IST-033576 D2.1.6

Overall, libvirt wants to be the defacto standard, open source management
API for all virtualization platforms and native Linux virtualization capabilities
are a strong focus. The LXC driver is attempting to provide a general purpose
management solution for two container virtualization use cases:

• Application workload isolation,

• Virtual private servers.

The first use case provides the ability to run an application in primary host
OS with partial restrictions on its resource / service access. It still runs with the
same root directory as the host OS, but its filesystem namespace may have some
additional private mount points present. It may have a private network namespace
to restrict its connectivity, and it ultimately has restrictions on its resource usage
(eg memory, CPU time, CPU affinity, I/O bandwidth).

The second use case provides a completely virtualized operating system in the
container (running the host kernel of course), akin to the capabilities of OpenVZ
/ Linux-VServer. The container has a totally private root filesystem, private net-
working namespace, whatever other namespace isolation the kernel provides, and
again resource restrictions. Some people like to think of this as ’a better chroot
than chroot’.

In terms of technical implementation, at its core is direct usage of the new
clone() flags. By default all containers get created with CLONE_NEWPID,
CLONE_NEWNS, CLONE_NEWUTS, CLONE_NEWUSER, and CLONE_NEWIPC.
If private network config was requested they also get CLONE_NEWNET.

The workload isolation case, after creating the container, just adds a number
of filesystem mounts in the containers private FS namespace. The VPS case, do a
pivot_root() onto the new root directory, and then add any extra filesystem
mounts the container config requested.

The stdin/out/err of the process leader in the container is bound to the
slave end of a Pseudo TTY, libvirt owning the master end so it can provide
a virtual text console into the guest container. Once the basic container setup is
complete, libvirt exec the so called ’init’ process. Things are thus setup
such that when the ’init’ process exits, the container is terminated / cleaned up.

On the host side, the libvirt LXC driver creates what is called a ’control-
ler’ process for each container. This is done with a small binary /usr/libex-
ec/libvirt_lxc. This is the process which owns the master end of the
Pseudo-TTY, along with a second Pseudo-TTY pair. When the host admin wants
to interact with the container, they use the command ’virsh console CONTA-
INER-NAME’. The LXC controller process takes care of forwarding I/O between
the two slave PTYs, one slave opened by virsh console, the other being the con-
tainers’ stdin/out/err. If the controller is killed, then the container also dies.

XtreemOS–Integrated Project 30/44

D2.1.6 IST-033576

Basically one can think of the libvirt_lxc controller as serving the equivalent
purpose to the ’qemu’ command for full machine virtualization - it provides the
interface between host and guest, in this case just the container setup, and access
to text console - perhaps more in the future.

For networking, libvirt provides two core concepts:

• Shared physical device. A bridge containing one of the physical network
interfaces on the host, along with one or more of the guest vnet interfaces.
So the container appears as if its directly on the LAN;

• Virtual network. A bridge containing only guest vnet interfaces, and NO
physical device from the host. IPtables and forwarding provide routed (+
optionally NATed) connectivity to the LAN for guests.

The latter use case is particularly useful for machines without a permanent wired
ethernet - eg laptops, using wifi, as it lets guests talk to each other even when
there’s no active host network. Both of these network setups are fully supported
in the LXC driver in presence of a suitably new host kernel.

3.8 Smack
This section has been extracted from LWN articles [17] and [35].

Smack implements mandatory access control (MAC) using labels attached to
tasks and data containers, including files, SVIPC, and other tasks. Smack is a
kernel based scheme that requires an absolute minimum of application support
and a very small amount of configuration data.

Smack attaches labels to tasks and system objects. The default rule is that a
task can access an object only if they have the same smack label. This default rule
provides a simple compartmentalization of processes and objects.

31/44 XtreemOS–Integrated Project

Chapter 4

Isolation Techniques for XtreemOS

4.1 Performance Isolation
In order to guarantee acceptable performance for an application, each subsystem
manager (memory, network, disk, ...) of the resource must provide some means to
guarantee that the application gets a minimal share of the subsystem. Performance
isolation seems straightforward using virtual machines as the major components
of the physical resource have been partitionned between virtual machines: disk
space, memory, physical devices. However, some resources such as bandwidth
(I/O, network, CPU) are shared between the virtual machines and must be con-
trolled.

On the other hand, control groups allow a partition of the process space and the
management of subsystem resource usage by each partition. However, in general,
the control groups currently implemented in Linux do not provide any means to
guarantee that a group receives a minimal part of the resource. The memory con-
trol group, for instance, tracks the memory usage and manages an upper bound of
memory usage. But there is no lower bound management. Low watermark man-
agement (stopping page reclaim from the group when memory usage is lower than
this watermark) seems to be planned in the future. It is still possible to protect the
memory allocated to some application through a global management the memory
control groups. Another possibility is to combine the memory control groups with
CPUSet: CPUSet allows to assign memory nodes to control groups.

4.2 Resource Usage Management
Effective resource usage accounting is a major requirement in XtreemOS. Control
groups allow to track resource usage for each subsystem: CPU cycles, memory,
I/O bandwidth, etc. In order to track resource usage during an XtreemOS session

32/44

D2.1.6 IST-033576

(corresponding to one job), all processes attached to the session must be attached
to the session control groups.

Tracking resource usage with virtual machines is a bit different. We need to
consider two different cases: the case where the user can install his own operating
system in the virtual machine and the case where an existing XtreemOS virtual
machine runs a user application. In the first case, it is not possible to rely on the
virtual machine for resource usage management: resource usage must be evalu-
ated by the hypervisor (memory, disk space allocated to the virtual machine; CPU
and I/O bandwidth consumed by the virtual machine). In the second case, it is
possible to combine hypervisor resource evaluation and virtual operating system
computation.

4.3 Confidentiality/Sandboxing

Running applications inside different PID namespaces ensures full isolation be-
tween application processes: processes of one application have no knowledge of
other application processes. Running applications inside different mount names-
paces provide isolation of application data. Using mandatory access control (SELi-
nux or Smack), it is possible to limit the actions of user applications upon their
execution context and to provide some level of sandboxing. It is also possible
to run applications inside private network namespaces. Each network namespace
has its own routing and filtering rules and can limit the internet visibility of appli-
cations (application firewalling).

Running applications inside different virtual machines ensures confidentiality
and enables sandboxing.

4.4 Accounting

Linux natively provides support for accounting resource usage (CPU, swap, mem-
ory, I/O) at task level using the taskstat system. Using cgroupstats con-
trol group, accounting can be extended to groups of processes. Resource usage
can be monitored in real time.

Virtual machines partition some physical resources (memory, disk partition)
and time-share other resources such as network bandwidth and CPU cycles. In
order to provide accurate accounting, it is necessary to combine effective resource
usage accounted by the virtual operating system and resource usage measured by
the hypervisor.

33/44 XtreemOS–Integrated Project

IST-033576 D2.1.6

4.5 Execution Environment
The most natural way to provide uniform execution environments is through vir-
tualization: a VO can configure a virtual machine model and deploy it on each
administration domain. If a virtual machine runs a single application, it is even
possible to always provide the same UID/GIDs to a user. It might even be possi-
ble to always provide the same host name and IP address as long as no external
service is exported by the application.

A similar environment can also be provided through namespace management:
each VO provides its own environment (file tree) and the applications are rooted
on the VO’s tree. It should be possible to run each application inside its own
namespace (mount, PID, UID, IPC and NET) in order to provide a uniform envi-
ronment.

4.6 Application Boundary
XtreemOS must track application boundaries (containing all system objects cre-
ated on behalf of the application) in order to implement accounting, checkpointing
and cleanup. Virtual machines provide a simple way to locate application objects.
It is even possible to run accounting on the whole virtual machine, to checkpoint
it and to shutdown the virtual machine when the application terminates. A sim-
ilar result can be obtained if each application runs inside its own namespaces
(container): all objects of the application namespaces belong to the application.
For instance it is possible to fork each application on a resource node inside a
new PID namespace. The PID namespace isolates the application from other pro-
cesses running on the same node. The initial process become the parent of all
processes created by the application and ensures that no more process is running
when the application is terminated. The termination of this initial process corre-
sponds to the termination of the application. Killing the initial process kills the
whole application.

Both solutions lock the application objects inside their respective namespaces:
these objects have no way to escape from their namespaces. On the other hand,
there is no simple means to inject (create) new objects from outside. For instance
giving users the possibility to log in their application context using xos-ssh can
be tricky in both cases. If a virtual machine has a routable IP address, it can be
configured to run an xos-sshd daemon. In the other case, it is necessary to
install some kind of proxy/tunnel on the node hypervisor. When the application is
jailed inside private namespaces, running an xos-sshd daemon inside the net-
work namespace is also possible as long as it is possible to associate a routable
IP address to each network namespace. If no routable IP address can be used, it

XtreemOS–Integrated Project 34/44

D2.1.6 IST-033576

should be possible to run a shared xos-sshd on the host and to use the experi-
mental hijack() (see section 3.6.8) system call in order to fork a user process
inside the application namespace.

4.7 Virtual Machines
XtreemOS can be run inside virtual machines. The main restriction is that, in
order to export services (core and resource nodes), these virtual machines must
have routable IP addresses.

An XtreemOS node should have the capability to run virtual machines using
standard Linux virtualization support (VMWare, KVM, ...). Predefined virtual
machines can be used to run application submitted by users in a well defined
environment (see above). It should also be possible to allow users to submit their
own virtual machine for execution on the grid.

35/44 XtreemOS–Integrated Project

Chapter 5

Isolation in LinuxSSI and Mobile
Device Flavours of XtreemOS

5.1 LinuxSSI

In this section, we present a systematic analysis of the combination of SSI and
virtualization technologies [19].

5.1.1 Containers upon Single System Image

With this architecture, the SSI abstracts the distributed aspect of the resources.
Based on this "simplified" and "unified" view of the distributed system, global
resources can be dynamically and transparently assigned to containers in order to
fit applications needs at best. In other terms, containers could dispose of more
resources than is available on one node.

5.1.2 Single System Image upon Containers

This architecture is not realistic because no individual kernel can run in a con-
tainer, only user-level applications can be hosted.

5.1.3 Type-I Virtualization upon Single System Image

This approach enables the implementation of a "global Type-I hypervisor’, includ-
ing SSI features into the hypervisor. Such a global hypervisor can transparently
and globally manage resources (creation of an SMP illusion) and typically the
resources allocated to VMs are not restricted to the local resources.

36/44

D2.1.6 IST-033576

5.1.4 Single System Image upon Type-I Virtualization
In this case, a hypervisor is deployed on all cluster nodes and the SSI is executed
in different VMs; each VM being potentially hosted by different hypervisors.

5.1.5 Type-II Virtualization upon Single System Image
The SSI globally manages all the distributed resources; the Type-II virtualization
hypervisor can therefore allocate distributed resources to VMs on demand in a
transparent manner.

5.1.6 Single System Image upon Type-II Virtualization
As for Type-I, each node runs VMs, and the SSI is deployed upon them.

5.1.7 Perspectives
Currently, namespaces, containers, cgroups, ... are not managed by LinuxSSI
(Kerrighed). The problem is not simple to solve. The Kerlabs company considers
to work on it during the next year (2009). They will study the possibility to (i)
integrate all namespaces into Kerrighed and/or to (ii) put Kerrighed on a container.
The case (i) was studied in the Section 5.1.1 and the conclusion is Kerrighed could
make containers taking advantage of cluster resources. The case (ii) was studied
in the Section 5.1.2 and the conclusion is it is not realistic. However, like the case
studied in the Section 5.1.4 and the Section 5.1.6, this kind of solution could allow
a user to share parts of its resources (via Kerrighed) with others. In this manner,
it is possible for a user to specify resource limitation for him and for others.

All these perspectives need to be studied. This is why it is not currently possi-
ble to define a clear roadmap.

5.2 Mobile Devices
As long as they are not shared between users and they are used as pure client
nodes in XtreemOS, mobile devices do not need to provide any form of isolation:
only one user is logged in at any time. The mobile device has not been allocated to
some Grid user by XtreemOS, so we find no need for accounting in this scenario.

Needs for some form of isolation appear when the mobile device offers ser-
vices to grid users. Resource usage enforcement (and accounting) is necessary for
predefined services. User isolation as in the standard XtreemOS flavour becomes
necessary if the device runs user-defined codes (application).

37/44 XtreemOS–Integrated Project

IST-033576 D2.1.6

Mobile devices have limited capabilities. A Linux kernel compiled with sup-
port for control groups and various namespaces might need more CPU cycles and
memory. The processors used in some mobile devices provide minimal protection
of the hardware (registers, memory), which may prevent isolation of user pro-
cesses. Running virtual machines is even more problematic as these processors
do not have any support for hardware virtualization.

XtreemOS–Integrated Project 38/44

Chapter 6

Conclusion

Recent developments in the Linux kernel have introduced various mechanisms
to support secure and controlled sharing of computation platforms in the context
of grid and cloud computing. Control groups allow to account, limit and pro-
tect various subsystem (CPU, memory, disk, network) usage by group of tasks.
It is possible, in XtreemOS, to run each user application inside its own control
group. This solution allows to limit the impact of the whole application on its en-
vironment and to bill for resource usage. The support for namespace management
recently introduced in Linux allows to manage the view of user applications on
their environment. Running user applications inside their own private namespace
provides confidentiality and security (user application don’t see other application
processes or files) and eases the implementation of checkpointing and application
migration for load balancing. The use of namespaces also helps in the imple-
mentation of stable development and execution environments. For instance, a
resource can support a filesystem tree per VO and run each application inside the
filesystem namespace provided by the VO in charge of its execution. Finally, the
requirements concerning resource management, security, and execution environ-
ments can be fulfilled using virtual machines. It is possible to run XtreemOS on
the raw hardware and to run user applications inside virtual machines provided by
virtual organisations. This solution provides full isolation of the applications. The
virtual machines do not need to be XtreemOS-based but can still provide access
to XtreemOS features such as XtreemFS through virtual devices. On the order
hand a virtualization platform (not based on XtreemOS) can run XtreemOS inside
virtual machines. This solution also fulfills the initial requirements.

These solution based mainly on Linux kernel mechanisms may necessitate
some hardware support, mainly for virtualization, and may require more proces-
sor and memory resources. This may limit their use on mobile device flavours
of XtreemOS. But, as long as mobile devices are not in charge of executing user-
defined applications, the need for isolation is not critical. These new mechanisms

39/44

IST-033576 D2.1.6

recently introduced in the Linux kernel have not yet been ported to the LinuxSSI
flavour of XtreemOS: no system-wide management of control groups and names-
paces. Basing XtreemOS isolation mechanisms on control groups and private
namespaces implies some development of LinuxSSI.

XtreemOS–Integrated Project 40/44

Bibliography

[1] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the Art of
Virtualization. In Proceedings of the ACM Symposium on Operating Systems
Principles, SOSP’03, October 2003. Available at http://citeseer.
ist.psu.edu/dragovic03xen.html.

[2] Fabrice Bellard. QEMU, a Fast and Portable Dynamic Translator. Technical
report, USENIX Association, 2005.

[3] Fabrice Bellard. QEMU: Open Source Processor Emulator, 2008. Available
at http://http://bellard.org/qemu/.

[4] Daniel P. Berrange. An introduction to libvirt’s LXC (LinuX Container)
support, 2008. Available at https://lists.linux-foundation.
org/pipermail/containers/2008-September/013237.
html.

[5] Eric W. Biederman. An introduction and A path for merging network
namespace work, 2007. Available at http://lwn.net/Articles/
219597/.

[6] The CFS scheduler, 2008. Available at http://www.mjmwired.net/
kernel/Documentation/scheduler/sched-design-CFS.
txt.

[7] Control Groupstats, 2008. Available at http://www.mjmwired.net/
kernel/Documentation/accounting/cgroupstats.txt.

[8] Ken Chen. Cpuacct Cgroup, 2008. Available at http://lkml.org/
lkml/2008/12/3/635.

[9] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric
Jul, Christian Limpach, Ian Pratt, and Andrew Warfield. Live Migra-
tion of Virtual Machines. In Proceedings of the 2nd ACM/USENIX

41/44

IST-033576 D2.1.6

Symposium on Networked Systems Design and Implementation, 2005.
Available at http://www.cl.cam.ac.uk/netos/papers/
2005-migration-nsdi-pre.pdf.

[10] Jonathan Corbet. Documentation/sharedsubtree.txt, 2005. Available at
http://lwn.net/Articles/159092/.

[11] Jonathan Corbet. Controlling memory use in containers, 2007. Available at
http://lwn.net/Articles/243795/.

[12] Jonathan Corbet. Network namespaces, 2007. Available at http://lwn.
net/Articles/219794/.

[13] Jonathan Corbet. Process containers, 2007. Available at http://lwn.
net/Articles/236038/.

[14] Jonathan Corbet. System call updates: indirect(), timerfd(), and hijack(),
2007. Available at http://lwn.net/Articles/260172/.

[15] CPUSETS, 2008. Available at http://www.mjmwired.net/
kernel/Documentation/cpusets.txt.

[16] Janak Desai, Chad Sellers, and Steve Grubb. pam_namespace - setup a
private namespace. Available at http://www.kernel.org/pub/
linux/libs/pam/Linux-PAM-html/sag-pam_namespace.
html.

[17] Jake Edge. Smack for simplified access control, 2007. Available at http:
//lwn.net/Articles/244531/.

[18] Pavel Emelyanov and Kir Kolyshkin. PID namespaces in the 2.6.24 kernel,
2007. Available at http://lwn.net/Articles/259217/.

[19] Jérôme Gallard, Geoffroy Vallée, Adrien Lebre, Christine Morin, Pascal
Gallard, and Stephen L. Scott. Complementarity between virtualization and
single system image technologies. In VHPC 2008, 3rd Workshop on Virtu-
alization in High-Performance Cluster and Grid Computing, Las Palmas de
Gran Canaria, Canary Island, Spain, 2008. Held in conjunction with Euro-
par 2008, Springer LNCS.

[20] Cedric Le Goater. User namespaces: add unshare, 2008. Available at
http://lwn.net/Articles/237662/.

XtreemOS–Integrated Project 42/44

D2.1.6 IST-033576

[21] Robert P. Goldberg. Architecture of Virtual Machines. In Proceedings of the
Workshop on Virtual Computer Systems, pages 74–112, Cambridge, MA,
USA, March 26-27, 1973.

[22] Serge E. Hallyn. uts namespaces: Introduction, 2006. Available at http:
//lwn.net/Articles/179345/.

[23] Serge E. Hallyn. User namespaces: introduction, 2008. Avail-
able at https://lists.linux-foundation.org/pipermail/
containers/2008-August/012675.html.

[24] Serge E. Hallyn and Ram Pai. Applying mount namespaces, 2007. Available
at http://www.ibm.com/developerworks/linux/library/
l-mount-namespaces.html.

[25] Dave Hansen. Read-only bind mounts, 2007. Available at http://lwn.
net/Articles/250206/.

[26] Matt Helsley. Container Freezer v6: Reuse Suspend Freezer, 2008. Avail-
able at https://lists.linux-foundation.org/pipermail/
containers/2008-August/012376.html, justifications at
http://linux.derkeiler.com/Mailing-Lists/Kernel/
2008-08/msg06889.html.

[27] Matt Helsley. Container Freezer v6: Reuse Suspend Freezer, 2008. Avail-
able at http://lwn.net/Articles/293642/.

[28] Linux 2.6.25, 2008. Available at http://kernelnewbies.org/
Linux_2_6_25.

[29] Kirill Korotaev. IPC namespace, 2006. Available at http://lwn.net/
Articles/187274/.

[30] Paul Menage. Linux documentation: Control Groups, 2008. Avail-
able at http://www.mjmwired.net/kernel/Documentation/
cgroups.txt.

[31] Linux Containers - Network Namespace. Available at http://lxc.
sourceforge.net/network.php.

[32] Daisuke Nishimura. cgroup swap subsystem, 2008. Available at
https://lists.linux-foundation.org/pipermail/
containers/2008-March/010216.html.

43/44 XtreemOS–Integrated Project

IST-033576 D2.1.6

[33] OpenVZ. OpenVZ welcome page, 2007. Available at
http://wiki.openvz.org/Main_Page.

[34] Andrea Righi. io-throttle controller documentation, 2008. Avail-
able at http://www.uwsg.indiana.edu/hypermail/linux/
kernel/0805.3/0091.html.

[35] Casey Schaufler. Smack: Simplified Mandatory Access Control Kernel,
2007. Available at http://lwn.net/Articles/252378/.

[36] Ryo Tsuruta. bio-cgroup: Introduction, 2008. Available at http://lwn.
net/Articles/299731/.

[37] Ryo Tsuruta. I/O bandwidth controller and BIO tracking, 2008. Available
at http://lwn.net/Articles/300191/.

[38] Satoshi Uchida. Yet another I/O bandwidth controlling subsys-
tem for CGroups based on CFQ, 2008. Available at http:
//linux.derkeiler.com/Mailing-Lists/Kernel/
2008-04/msg00146.html.

[39] Linux Containers - Utsname Namespace. Available at http://lxc.
sourceforge.net/utsname.php.

[40] VMware. VMware Welcome Page, 2007. Available at
http://www.vmware.com.

[41] Rafael J. Wysocki. swsusp: freeze user space processes first, 2006. Available
at http://lwn.net/Articles/170717/.

[42] XtreemOS Consortium. Application References, Requirements, Use Cases
and Experiments. Deliverable D.4.2.3, July 2007.

[43] XtreemOS Consortium. Reproducible Evaluation of Distributed Servers.
Deliverable D.3.2.6, November 2008.

XtreemOS–Integrated Project 44/44

