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Executive Summary

Two different services developed within WP3.2 have seemingly com-
plementary features. On the one hand, Virtual Nodes allow one to
replicate a Java-based service for fault-tolerance. On the other hand,
Distributed Servers are designed to make the distribution of a resource
totally transparent to its clients. From a conceptual point of view,
both services are highly complementary: virtual nodes provide fault-
tolerant replication that is mostly transparent to the service developer,
but lacks an access method that makes fault-tolerance transparent to
the clients; distributed servers provide a solution for making the ser-
vice replication transparent to the client.

An important design goal is to keep the architecture of the integrated
Virtual Nodes and Distributed Servers as independent as possible from
the middleware protocol used to access the replicated service. We
therefore propose to encapsulate the middleware functionality on the
server side in a protocol adapter in Virtual Nodes that handles incom-
ing connections according to the communication protocol used by the
middleware layer. The client’s middleware layer remains unmodi-
fied. Distributed Servers can then be used to transparently fail-over
the client’s middleware layer to a different replica on the server side
if the client’s current replica fails.

We further discuss the integration of both services, the difficulties to
be addressed, and the progress of the current work toward an inte-
grated system merging Virtual Nodes and Distributed Servers. The
structural challenges include interfacing the two services written in
different languages and the different uses of membership services be-
tween Distributed Servers and Virtual Nodes. We also discuss the
challenge for Virtual Nodes to recover from faults using Distributed
Servers. Finally, progress on the integration is such that a wide part
of the JNI integration layer has now been implemented and tested.
Virtual Nodes can thus start and steer a Distributed Servers instance.

When this work is available, we plan to promote its use within XtreemOS
so that mission-critical services can run in a fault-tolerant environ-
ment provided by Distributed Servers and Virtual Nodes.
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1 Introduction
Two different services developed within WP3.2 have seemingly complementary
features. On the one hand, Virtual Nodes allow one to replicate a Java-based ser-
vice for fault-tolerance [2]. Replication is transparent to the service programmer,
provided that a few guidelines are respected. Fault-tolerant replication allows the
client-side programmers not to worry about possible failures of the service. How-
ever, this relies on the use of specialized software at the client side, in order to
handle the switch-over from one replica to another in case of a node failure. While
this is acceptable in a closed environment, this characteristic makes virtual nodes
unsuitable for open systems such as Web services, where the client-side software
may use any off-the-shelve implementation of the communication protocol.

On the other hand, Distributed Servers are designed to make the distribution
of a resource totally transparent to its clients [7]. Distributed servers are agnostic
regarding the nature of the distributed resource. They only make sure that a group
of equivalent resources distributed arbitrarily remains perceived by its clients as a
single entity, with a stable IPv6 address. Distributed servers enable the distributed
resource itself to control the mapping between this single virtual IPv6 address and
the actual physical resources.

From a conceptual point of view, both services are highly complementary: vir-
tual nodes provide fault-tolerant replication that is mostly transparent to the ser-
vice developer, but lacks an access method that makes fault-tolerance transparent
to the clients; distributed servers provide a solution for making the service replica-
tion transparent to the client. Although each service has its own utility when used
in isolation, we see that merging both systems would in principle allow one to
build fault-tolerant replicated services where the complexity of replication would
be transparent to both the service developer, and to the client-side application.
Such a system could thus rely on open access protocols such as HTTP/JSON.

Merging these two different services into a single whole is however not a triv-
ial task. First, virtual nodes rely on a Java implementation for simplicity reasons
while distributed servers were developed in C to be able to directly access Linux
kernel primitives. We therefore had to develop Java support for distributed servers.
Second, although both services rely on some membership protocol to give a con-
sistent view of currently available replicas to all parties, the two services have
requirements: virtual nodes need to be conservative before declaring a node as
failed, because the cost of a false positive is potentially very high; on the other
hand, distributed servers should detect node failures much more aggressively to
present a continuously available service to the clients. Finally, the semantic of
failure recovery in virtual nodes and distributed servers is not exactly the same,
which implies that certain corner cases of node failures cannot be recovered trans-
parently to the clients.
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Figure 1: Communication with a Distributed Servers service.

Although we have not yet finished the integration, we believe such a merger
between the two services is possible. Note that this deliverable does not discuss
the internals of virtual nodes or distributed servers separately, since they are al-
ready covered in D3.2.6 [7] and D3.2.9 [2]. We instead focus on the integration
only.

This document is organized as follows: Section 2 provides a brief overview
of the two services. Section 3 discusses the scientific challenges that an inte-
gration creates with directions to address them. Section 4 describes the planned
architecture of the integrated service. Section 5 presents the current status of the
integration, and Section 6 concludes.

2 Overview
Before we discuss the technical challenges of integrating Distributed Servers and
Virtual Nodes, we briefly review the important aspects of each service.

2.1 Distributed Server Basics

Distributed Servers are an infrastructure that exploits mobile IPv6 [4] in order to
achieve location transparency on all layers that are above IP [8]. In mobile IPv6
each mobile node has two addresses: a home address and a remote address. A
router in the node’s home network (called the home agent) is responsible for rout-
ing messages destined for the home address to the remote address. Distributed
Servers turn this approach upside-down: multiple nodes share a single mobile
IP home address as seen in Figure 1. One of the nodes registers its physical IP
address with the home agent. All packets addressed to the public home address

XtreemOS–Integrated Project 4/12
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(a) Original Virtual Node architecture (b) Virtual Nodes with client-side trans-
parency

Figure 2: Integrating Virtual Nodes with Distributed Servers.

will then be relayed to this node that we will refer to as contact node. By pre-
tending that the mobile node has changed its location, another node of the group
can take over connections on a per client basis—transparently to the client appli-
cation. The contact node can similarly change its location. Distributed Servers
can recover client connections to failing nodes but do not offer any fault-tolerance
features at the application level. More details on Distributed Servers can be found
in [7].

2.2 Virtual Nodes Basics

Virtual Nodes is a Java-based replication framework for request-response based
services [3]. It comes with support for multiple replication protocols and provides
various configuration options to optimize the overall system performance. For the
remainder of this document we assume the use of active replication protocol. In
this replication protocol, all nodes have the same function and run the same algo-
rithm. All replicas are able to receive client requests. A replica receiving a request
is called the contact replica for that request. The contact replica forwards requests
to all other replicas using total order multicast. This order on messages defines
their execution order. Assuming that the service implementation is deterministic,
the replica state changes in a deterministic way. The reply that results from the
execution of a request is sent back to the contact replica that in turn sends the first
reply back to the client.

Virtual Nodes do not provide location transparency. However, they decouple
the application from the replication framework by allowing plug-in support for
arbitrary middleware systems. Yet, the middleware layer at client-side must cur-
rently be modified as it needs to be linked to the replication logic. Figure 2(a)
shows the four components that encompass virtual nodes and the dependencies
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among them. The service is implemented with client and server applications com-
municating with a generic middleware (MW) component that must be modified to
invoke the Virtual Nodes replication layer below. However, the replication layer
is also generic, and Virtual Nodes can be integrated into different middleware
implementations and thus support different services.

In order to further decouple the user of the service from the replication frame-
work, we propose a system composition like the one shown in Figure 2(b). Here
the client uses only unmodified components and thus can rely on off-the-shelf soft-
ware. The replication layer specific to Virtual Nodes appears only on the server
side implementation. The communication middleware must still be modified to
invoke the replication layer below, but the client and server applications specific
to the service remain unmodified.

3 Challenges and Restrictions
Integrating Virtual Nodes and Distributed Servers presents several challenges, and
imposes a number of restrictions. First, we discuss structural challenges such as
interfacing the two services written in different languages, then the different uses
of membership services between Distributed Servers and Virtual Nodes. Finally,
we discuss the challenge for Virtual Nodes to recover from faults using Distributed
Servers.

3.1 Interfacing Challenges
Virtual Nodes provide transparent replication for Java server applications. The
system semantics of a running system is determined by the service and the Virtual
Nodes framework. These entities should trigger changes to the Distributed Servers
layer that operates on a lower system level. The API to Distributed Servers, called
Gecko, is written in C++ [6, 9]. The Gecko API provides an object-oriented inter-
face to Distributed Servers that provides for client handoff and server management
(for example, changing the contact node), but it is not callable directly from Java.
Further, Gecko is designed primarily for scalable load distribution of clients rather
than fault-tolerance. For example, the Gecko API does not currently support the
recovery of a failed client connection.

To integrate Virtual Nodes and Distributed Servers, we have extended the
Gecko API and ported it to Java using the Java Native Interface (JNI) [5]. JNI
is both necessary and efficient to our purposes. Further, the Java API must be able
to interface efficiently with TCPCP2 [1], which provides an API in the C language
to save and restore the state of a TCP/IP connection, and is essential for recover-
ing connections to failing nodes. Using JNI also allows us to leverage the Gecko
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API directly from Java, eliminating significant reimplementation of Gecko in the
Java language.

Our Java interface to Gecko is focused primarily on fault-tolerance integration
with Virtual Nodes, providing support for client handoff and recovery in the pres-
ence of failures of the contact node and clients’ connections. To this end, there are
two main objects in the Java framework: GeckoFramework, which allows to man-
age the contact node; and GSocket, which manages a client connection including
fail-over of a connection to a backup node.

3.2 Recovering from Faults
Although Distributed Servers are designed primarily for building a location trans-
parent scalable service, the ability to handoff a client connection can help a server
replica recover a client connection from another failed server. A handoff requires
creating a new socket to the client at the receiving server side, which can be kept
updated with the current state of the connection to the client. In case of failure, the
socket can be bound to the client by Distributed Servers. To this end we have cre-
ated recoverable sockets in Java [7]. Recovery at the application level is handled
by Virtual Nodes.

Virtual Nodes provide fault recovery at the application level using replica-
tion [2]. Although Distributed Servers can transparently recover a connection to
the client, any data sent by the client and acknowledged by the failed server is
unrecoverable unless it has already been stored at a replica. There thus exists a
tradeoff between acknowledging data to the client quickly to improve latency ob-
served by the client and acknowledging data slowly enough to replicate that data
at other server replicas. Deciding this tradeoff belongs to the application level.
Currently, our integration efforts acknowledge data quickly, and recover transpar-
ently only from failures that occur between consecutive client requests. In the
case of a server node failure while processing a request, a backup server node can
recover the connection but lacks sufficient information about the request to restart
it transparently. In this case a proper exception reply can be sent to the client
(instead of letting the dangling connection reach a timeout value if we would not
recover the connection). We assume that on receipt of an exception, the request
can be quickly retried by the client.

3.3 Membership Views
As shown in Figure 3, the system has two different membership services. This is
due to the contradicting goals of high availability and performant operation. On
the one hand, the service should be reachable by clients as much as possible. This
implies that the contact node should be available at any time to parse and forward
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client requests. In case of a suspected failure of the contact node, another node
should quickly overtake the contact node responsibility. In other terms, from the
point of view of Distributed Servers, continuous availability requirements promote
the use of aggressive, false-positive-prone membership management. On the other
hand, creating new service-level replicas is expensive, as normal operation has
to be suspended and the replica state has to be transferred to the new replica.
In consequence, Virtual Nodes prefer to minimize the number of false positives
in the case of detecting failed replicas, and therefore use a more conservative
membership mechanism.

To satisfy both requirements we use two failure detectors, one for each layer of
the system. The membership component in Distributed Servers only cares about
the availability of the contact node. All other nodes should monitor the contact
node aggressively so that its failure will be detected quickly with little downtime.
As soon as the current contact node is suspected to have failed, it is replaced
within the Distributed Servers infrastructure. It is not necessary to notify the Vir-
tual Nodes layer about this operation. Assuming the use of active replication, all
nodes of the Virtual Nodes are symmetric so any one of them is eligible to re-
ceive requests. The benefit of only changing the contact node is that this strategy
is resilient to false positives. If the former contact node was suspected by mis-
take, existing client connections will not be affected. Clients that have already
connected to the former contact node will keep those connections. Only newly
opened connections will reach the new contact node.

While changing the contact node is a lightweight operation, we want to avoid
false positives when deciding about replica failures. Thus, the failure detector of
the Virtual Nodes framework is conservative using long timeouts. Once it has
decided that a node has failed, it informs the connection manager that starts mov-
ing connections of the failed node to other replicas. In addition it also calls the
Distributed Servers layer to remove the failed node from its membership list.

4 Expected Architecture

An important design goal is to keep the architecture of the integrated Virtual
Nodes and Distributed Servers as independent as possible from the middleware
protocol used to access the replicated service. We therefore propose to encap-
sulate the middleware functionality on the server side in a protocol adapter that
handles incoming connections according to the communication protocol used by
the middleware layer. After a single message is received, the protocol adapter
encapsulates it in a middleware-independent message used by the inter-replica
communication protocol. The client’s middleware layer remains unmodified.

XtreemOS–Integrated Project 8/12
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Figure 3: Integrated Virtual Nodes and Distributed Servers architecture.

Figure 3 is an overview of the architecture at server-side and the interactions
between the individual components. Entities that are new compared to the stand-
alone version of Virtual Nodes are marked with **; those that have to be modified
are marked with *. We discuss the new components and the changes to the new
components in the next section.

4.1 Virtual Nodes Configuration

Virtual nodes support a wide variety of configuration options. We think that in the
integrated system only active replication should be used. Symmetry is a critical
issue for such a system, as it allows for switching the contact node fast, which
in turn is crucial for the system’s availability as we discuss in Section 3. In an
asymmetric replication scheme such as passive replication, switching the contact
node would require also switching the primary replica, as only the primary replica
may receive and process requests.

4.2 Distributed Servers Configuration

The Distributed Servers framework should be configured so that all of the replicas
of Virtual Nodes are available for both handoffs of clients (to support recovery
of the client connections after a replica failure) and for taking over as contact
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node (to replace a failed contact node). As discussed in Section 3.3, Distributed
Servers can be configured to change the contact node aggressively to maintain
high availability of the contact node without negative impact on the Virtual Nodes
framework.

4.3 Runtime Behavior
During normal operation there are a few differences to the standard Virtual Nodes
operation. When a request is received, the protocol adapter takes a snapshot of
the associated socket. This snapshot is appended to the request message that is
relayed to other replicas and allows replicas to take over the client connection
should the contact node fail. When a replica receives such a request, it extracts
the socket snapshot from the message and passes the snapshot, the request, and the
id of the contact replica to a connection manager. The connection manager can
thus maintain a mapping between socket snapshots, the requests received through
that socket, and the contact replica. There are no changes to the way requests
are processed compared to normal Virtual Nodes operation. The connection man-
ager is also responsible for bringing up the Gecko framework at system startup to
initialize and manage Distributed Servers.

When a replica failure is detected by the Virtual Nodes membership man-
ager, the connection manager checks whether there are socket snapshots where
the failed replica is the contact. If so, the connection manager must choose a
new contact replica for the corresponding requests. As the connection manager is
not integrated with Distributed Servers, it cannot chose the current contact node.
Furthermore, even if the manager could retrieve the information from Distributed
Servers, the decision of which node should be the contact node is not determin-
istic. Different replicas may request the information at different points in their
execution with different results. However, view changes due to changes in group
membership directly influence the rank a replica has in the group. Thus, within
one view there is always exactly one oldest replica, and its identity is known
to the membership manager. Hence, the connection manager replaces the failed
replica’s information with the oldest replica obtained from the membership man-
ager, assigning the oldest replica as the new contact replica.

After assigning a new contact replica, the connection manager then forwards
any requests for the failed contact replica to the replica protocol pretending that it
was sent by the new contact replica. The new contact replica ignores duplicate re-
quests as the replication protocol supports at-most-once semantics of invocations.
A reply is also sent to the new contact replica if it is available.

The new contact replica reactivates the sockets from the snapshots that it re-
ceives, takes over the corresponding connection, and waits for replies from the
other replicas to come in. Once the first reply has arrived from other replicas, the
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new contact replica can construct the message that is to be sent to the client. Acti-
vating the socket returns the number of bytes that have been sent and received by
the failed replica since the time the snapshot was taken. The new replica can thus
detect whether a reply has already been sent or partially sent. For deterministic
services all replies are identical so the new contact replica can send any remaining
bytes of the reply back to the client.

Finally, to avoid stale snapshots in the connection manager, we require that a
replica broadcasts a message as soon as the client acknowledges receiving its re-
ply. This message might either contain the information that the socket was closed
or a new snapshot. It also triggers the removal of the respective entry in the cache
used by the replication protocol for enabling at most once semantics.

5 Current Status and Open Issues
A wide part of the JNI integration layer has now been implemented and tested.
Virtual Nodes can thus start and steer a Distributed Servers instance. We have
all mechanisms available to serialize a socket, copy it to another machine, and
reactivate it there. The connection manager has been fully implemented, but is
not yet integrated in the Virtual Nodes framework. The same holds for the mem-
bership service of Distributed Servers. Consequently, the interaction between the
Distributed Servers and Virtual Nodes membership layers has not been tackled so
far. Furthermore, the system lacks a fully functional protocol adapter. An adaptor
for SOAP/JSON is in progress.

There exist currently two versions of Virtual Nodes: one for stand-alone usage
and a stripped-down version to be used with Distributed Servers. In the long run,
a seamless integration of the extended functionality in Virtual Nodes is critical in
order to avoid maintaining two code bases.

Finally, the current approach does not support clients that multiplex sockets.
For now we assume a client cannot send two concurrent requests over the same
connection. It is unclear whether this is a critical issue though. The relevance
for such protocols for the domain we target should be subject to further investiga-
tions.

6 Conclusion
Although Virtual Nodes and Distributed Servers were originally designed as two
independent technologies, we found a great interest in combining them together
to build transparently-replicated highly available Grid services. Such integration
is however far from trivial. First, the two services were originally written in dif-
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ferent languages. Second, and more importantly, the two layers have seemingly
conflicting goals regarding the way to handle group membership.

We showed how an integrated system could be constructed, and made signif-
icant progress toward its implementation. When this work is available, we plan
to promote its use within XtreemOS so that mission-critical services can run in a
fault-tolerant environment provided by Distributed Servers and Virtual Nodes.
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