
Project no. IST-033576

XtreemOS
Integrated Project

BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

Specification of application firewall
D3.5.8

Due date of deliverable: 31/05/2008
Actual submission date: 02/06/2008

Start date of project: June 1st 2006

Type: Deliverable
WP number: 3.5

Task number: 3.5.10

Responsible institution: XLAB d.o.o.
Editor & and editor’s address: Jaka Močnik

XLAB d.o.o.
Teslova 30

SI-1000 Ljubljana
Slovenia

Version 1.1 / Last edited by Matej Artač / 02/06/2008

Project co-funded by the European Commission within the Sixth Framework Programme
Dissemination Level

PU Public
√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Revision history:
Version Date Authors Institution Section affected, comments

0.1 23/04/08 Matej Artač XLAB d.o.o. Initial Version
1.0 15/05/08 Jaka Močnik XLAB d.o.o. Final text, ready for internal reviews
1.1 02/06/08 Matej Artač XLAB d.o.o. Text updated with reviwers’ comments

Reviewers:
Julita Corbalan (BSC), Haiyan Yu (ICT)

Tasks related to this deliverable:
Task No. Task description Partners involved◦
T3.5.8 Application Firewall for Highly Available Services XLAB∗, ULM

◦This task list may not be equivalent to the list of partners contributing as authors to the deliverable
∗Task leader

Contents
1 Introduction 4

2 Design of the Application Firewall 5
2.1 Basic Concepts . 5
2.2 Requirements . 5
2.3 Filtering Network Traffic . 6

2.3.1 Matching packets from job processes 6
2.3.2 Matching packets against allowed resources 7

2.4 AFW Filtering Rules . 7
2.5 Description of Communication Resources 8
2.6 Integration with AEM . 8

3 Implementation of the Application Firewall 9
3.1 Implementation . 9
3.2 Installation Requirements . 10

4 Conclusion 11

A Communication Resource Definition 14
A.1 Schema . 14
A.2 JSDL Example . 16
A.3 XACML Example . 17

B AFW Public API 19
B.1 The Rule Class . 19
B.2 The IFirewall Interface . 20

1

List of Figures
1 Path of a packet through the AFW filtering rules. 8
2 Component interactions during a job submission using AFW. . . . 10
3 AEM and AFW on the job execution node. 11
4 Sample contents of /etc/sudoers file. 12

2

Executive Summary
In this document, we present the design and specification of the Application Fire-
wall (AFW) module for Application Execution Manager (AEM) service [2].

The Application Firewall is used to implement controlled access to network
resources (i.e. outgoing network connections) for processes of jobs run via AEM.
It does so by exploiting the netfilter/iptables framework of the Linux kernel [5].

By applying appropriate declarations to the node and VO policies [3], the sys-
tem administrator may limit the ability of the job processes to connect to net-
worked services in order to exercise control over consumed network resources or
prevent malevolent jobs to send out illicit traffic (i.e. spam email, sensitive data,
etc.). The jobs themselves, on the other hand, may specify the desired connectiv-
ity parameters required for their execution in their respective JSDL [4] description
in a manner similar to other required resources. The node selection process will
select execution nodes whose policies permit such connections.

The document is structured as follows: the first section introduces the Appli-
cation Firewall concept and explain the rationale for its introduction in the job
execution framework. Then, a thorough description of its design and implementa-
tion follows. Integration with AEM and security infrastructure is described next.
We conclude with an overview of the current status and required future work.

3

1 Introduction

One kind of the computing resources that need to be allocated, monitored and
provided to jobs based on their requirements are the communication resources
(i.e. the computer network).

Networking capabilities of the jobs submitted to execution nodes by users
must be controlled very strictly, as malevolent or excessive traffic not only hin-
ders the node itself (by reducing the bandwidth available to other applications)
running on the same node, but usually has a significant impact on the networks
the node participates in.

A node sending out excessive amounts of data can hamper the local area net-
work the node is part of, can swamp routers at the edge of this LAN, and can in
some cases even have an adverse impact on the node as a part of the public Internet
as well. As an example of the latter, a job may use multiple nodes to orchestrate a
distributed denial-of-service (DDoS) attack, or send a mass of spam e-mail. In the
best case, this will result in the node or even the whole network being blacklisted
and unable to send even legitimate e-mail, in the worst case, it can result in the
organisation owning the node being held legally responsible.

Based on this reasoning, the ability of jobs submitted to execution nodes to use
communication resources must be strictly controlled by the system administrators
of the Grid, first and foremost by the local node administrator, but by the Virtual
Organization administrator as well. As our work is exclusively concerned with
outgoing network connections, in the context of this document, the term com-
munication resource is used to describe an outgoing network traffic initiated by a
submitted user job.

On the one hand, communication resources that are made available to jobs
running in a given VO and a given node should therefore be described in the (VO
and node) policies. On the other hand, a submitted job should clearly state the
communication resources it requires for successful execution. The requirements
related to the communication resources are defined in a JSDL document in order
to have the resource matching process select appropriate nodes where required
communication resources could be allocated.

Finally, the service providing local job execution capabilities must take into
account the communication resources required by a submitted job and — if these
requirements are in accordance with the local node policy — allow use of the
required resources to processes belonging to that job.

The next section presents the design of the Application Firewall.

4

2 Design of the Application Firewall
This section describes the design of the Application Firewall. It starts with a
description of the basic concepts used and the requirements for the AFW, and
continues with a detailed design.

2.1 Basic Concepts
A job is a collection of (Linux) processes, including the initial job process created
by AEM executing a submitJob action on behalf of a user and all processes that
this initial process forks.

A communication resource is an outgoing IP network connection, defined by

• destination IP address,

• destination port number, and

• transport level protocol (i.e. TCP, UDP)

2.2 Requirements
The Application Firewall must allow for the following functionality:

1. To prevent any outgoing network connections for all jobs by default, and

2. To allow outgoing network connections on a per-job basis to destinations
specified by the communication resources listed in the job requirements.

It should be explicitly noted that:

• As the process of node selection is performed by the SRDS [1] prior to
actual job submission, nodes whose combined local and VO policies do not
allow connections specified by the required communication resources to be
made will be excluded. Hence, the AFW does not need to perform any
additional checking whether these rules are actually allowed by the node. If
the job was executed on the given node, it is assumed that it may be granted
all the communication resources it lists as required.

• Extracting information from a JSDL on which communication is requested
by a job, and whether the requested communication is allowed (by a VO
or a node policy) must be performed by job execution and resource discov-
ery selection services (AEM, obtaining either VO level or local node level
policies). These services in turn should relay the requested and permissible
communication types to AFW in order to drive its actions,

5

• Keeping track of the processes belonging to a job is not in the scope of AFW
functionality: instead this information should be acquired by job monitoring
services and relayed to AFW as necessary.

2.3 Filtering Network Traffic
AFW will use the Linux netfilter/iptables framework [5] for filtering (allowing or
rejecting) outgoing network traffic. This framework is commonly used for various
packet inspection and transformation purposes such as implementing firewalls and
NAT gateways.

IPTables operate on chains of rules. Each packet in the system is first sent
to the appropriate chain, based on whether it is an incoming packet (destination
is the local system), an outgoing packet (source is the local system), or a packet
being forwarded (neither source nor destination addresses point to the local sys-
tem). The INPUT, OUTPUT and FORWARD built-in rule chains are used for these
packet types, respectively. The packet checking procedure traverses the rules in
the chain until a rule matches the packet (see below), and then the action specified
by the matching rule is executed. The actions are diverse, but most commonly
the action is forwarding the packets to another chain and/or transforming some
data in the packet header. As AFW filters the outgoing network traffic, we will
insert rules in the OUTPUT chain in order to allow or reject the network traffic
originating from the node executing the job.

2.3.1 Matching packets from job processes

Netfilter uses match targets to classify packets which should be rejected or al-
lowed. The owner match extension of match targets are particularly suitable for
our purpose of classifying network packets based on which job they belong to.
The owner extension provides the following match targets:

• --uid-owner userid: matches if the packet was created by a process with the
given effective (numerical) user id.

• --gid-owner groupid: matches if the packet was created by a process with
the given effective (numerical) group id.

• --pid-owner processid: matches if the packet was created by a process with
the given process id.

• --sid-owner sessionid: matches if the packet was created by a process in the
given session group.

6

The first two match targets that allow matching against user or group ID of the
process that sent the packet, are not suitable for our needs, since the same user
(or even the same group) could have multiple jobs executed concurrently with
different communication resource requirements.

The last one that matches against the session ID of the process sending the
packet seems to be the ideal choice: with AEM forking a user process and giving
it a dedicated session ID that are shared by all forked children processes, matching
a packet against the job that sent it is easy. However, any job process (that is not
the session leader, i.e. the initial process) can call the system call setsid(), which
assigns the calling process (logically belonging to a job with the current session
ID) a new session ID, thus allowing it to skip packet filtering by AFW.

The only solution (that does not require providing a dedicated match target for
AFW) is therefore to use the --pid-owner target with one rule for each process
belonging to a given job in order to match all processes in a job.

2.3.2 Matching packets against allowed resources

Now that packets belonging to a job have been successfully matched, we need
to match their destination addresses against allowed resources: if at least one of
the allowed resources matches the packet, the packet may be sent to the network.
Otherwise it is logged and dropped.

Standard packet field matches are used to this purpose:

• protocol match target (i.e. -p tcp) is used to match the desired transport
protocol (currently TCP and UDP are supported by AFW),

• the destination address (i.e. -d 201.123.123.012) and the destination port
(i.e. -dport 8080) match targets are used to match the destination socket
address.

2.4 AFW Filtering Rules
Based on the above description and decisions, the AFW filtering rules will be
organised as follows:

1. for each job with ID <J>, a new user-defined per-job chain, named xos-job-
<J>, will be created.

2. for each communication resource specified by the job requirements, a new
rule is added to the aforementioned per-job chain, allowing the packet match-
ing the specified protocol, and destination address and port to be sent over
the network. All other packets that are directed to the per-job chain are
dropped.

7

Figure 1: Path of a packet through the AFW filtering rules.

3. for each process with process ID <P> belonging to job with ID <J>, a new
rule will be inserted in the OUTPUT chain, directing packets originating
from process <P> to the per-job chain xos-job-<J>.

Figure 1 shows path of the packet through the iptables chains.

2.5 Description of Communication Resources
The allowed communication resources must be described in policy files stating
capabilities of the node or VO. Communication resources required by a job on
the other hand must be stated in JSDL files containing the job requirements. The
complete schema and examples of appropriate JSDL extension as well as XACML
policy describing communication resources are provided in appendix A. Due to
complex matching requirements (IP matched against netmask, matching of two
port ranges), common matching functions provided by XACML core are not suffi-
cient for port and netmask matching and they have to be provided by the XACML
library.

2.6 Integration with AEM
AFW does not initiate any actions on its own — it must be driven by AEM in
order to respond to the following events, adjusting the filtering rules as required.

8

The following events detected by AEM should result in invoking appropriate
actions by means of the AFW public API.

• start of a new job:

– create the per-job filtering chain, and
– add matching rules to the per-job chain as specified by the required

communication resources listed in the job requirements document (re-
fer to section 2.4).

• creation of a new process in the scope of a job (either the initial job process
or due to fork of one of the existing job processes): add a rule to the OUT-
PUT chain, directing packets originating from the newly created process
(matching is performed on PID basis as explained in section 2.3).

• death of a process belonging to a job: remove the rule for this process’ PID
from the OUTPUT chain. Furthermore, if this is the last process of the job
(i.e. the job ends), remove the per-job chain.

Considering that a job can be executed VO-wide, while the AFW operates
on each resource (node), the above job lifecycle can be interpreted more narrowly.
The start of a new job, from the node’s point of view, occurs whenever a portion of
a job is about to be executed on a local node (e.g., a resumption of a checkpointed
job). Similarly, if the job stops executing on the node, but is still being executed
elsewhere, or a checkpoint request arrives, the Execution Manager should perform
the clean-up, removing the local per-job chain.

The public API of the AFW is presented in appendix B
Interactions in the Grid when a user submits a job are given in figure 2: Job

Manager, VOPS and Resource Manager are global entities, implemented in a dis-
tributed manner, whereas Execution Manager and Application Firewall are local
to the selected resource (i.e. the node where the job executes).

3 Implementation of the Application Firewall

3.1 Implementation
Application Firewall is implemented as a Java library that will be used by AEM
invoking appropriate methods, as described in section 2.6. Its public API is pre-
sented in appendix B.

The iptables kernel subsystem is used to provide the actual packet filtering.
The AFW Java library uses the iptables executable provided on GNU/Linux sys-
tems to change the filtering rules on the system it runs as. As changing filtering

9

Figure 2: Component interactions during a job submission using AFW.

rules requires superuser privileges, the user with whose privileges the Java Vir-
tual Machine containing the AEM runs, should have sudo configured to allow
execution of iptables executable with superuser privileges, without requiring a
password. Therefore, it is strongly advised to run AEM as a dedicated user with
disabled shell login.

Figure 3 shows the implementation of firewalling used by AEM on the node
where a job executes.

3.2 Installation Requirements
Each node where AEM using AFW runs, should have the following software in-
stalled:

• iptables kernel subsystem either built in the kernel statically or in the form
of a loadable module for the running kernel.

• iptables userspace software: the iptables executable is required.

• sudo command.

10

Figure 3: AEM and AFW on the job execution node.

Furthermore, sudo should be configured in such a manner that the user run-
ning the Java Virtual Machine containing the AEM can run iptables executable
with superuser privileges without having to enter the password. The latter can be
accomplished by the sample /etc/sudoers sudo configuration file (assuming that
the user aem is the one running the Java VM) presented in figure 4:

4 Conclusion
In the distributed job execution of the user-provided jobs and processes, the pro-
cesses may need to communicate with remote processes. To do that, they imple-
ment their own protocols that use TCP or UDP for initiating transfers, sending or
receiving data. Considering these channels are vital for the operation of the Grid
infrastructure and is often required by the owners of the hosting nodes, the com-
munication can easily be seen as a resource very much akin to the processing time
and the data storage. Further, the unchecked network traffic can provide malicious
software an easy way to hinder or prevent normal operation of the system.

In this document we have provided the design and specification of the Appli-
cation Firewall (AFW). The AFW is a module that provides a means to enforce the
node-level or VO-level policies related to the network traffic. It uses /it iptables
kernel framework to set up the chains of rules, which filter the network traffic. The
filtering occurs on the process level and can thus provide each process its custom

11

/etc/sudoers

Defaults env_reset

Host alias specification

User alias specification

Cmnd alias specification
Cmnd_Alias AEM=/sbin/iptables

User privilege specification
aem ALL=NOPASSWD: AEM

Figure 4: Sample contents of /etc/sudoers file.

set of rules for denying or granting traffic. The parameters of the traffic include
the source/target address, the port number and the protocol.

When integrated with the AEM, the AFW can provide the network filtering
for each job separately. AEM will use the AFW to set up the rule chain specific
for a job once this job starts on the node. It will notify AFW with the information
on the processes spawned by the job’s processes in order to have AFW include the
new processes into the rule chain. By default the network traffic is disabled for the
job’s processes. They are then enabled or disabled according to the requirements
specified by the job’s JSDL document. It is up to AEM or other services to ensure
the rules in JSDL conform with those of the local or VO-level policies.

With this document, the design of the AFW is complete and ready for integra-
tion with the rest of the XtreemOS services. We will test the module extensively
and provide the reports of its performance or any modifications in the future work-
package deliverables.

12

References
[1] XtreemOS Consortium. D3.2.4 - Design and specification of a prototype ser-

vice discovery system, December 2007.

[2] XtreemOS Consortium. D3.3.3 - Basic services for application submission,
control and checkpointing, D3.3.4 - Basic service for resource selection, allo-
cation and monitoring, December 2007.

[3] XtreemOS Consortium. D3.5.4 - Second draft specification of XtreemOS se-
curity services, December 2007.

[4] JSDL specification, 2005.

[5] The Linux netfilter/iptables project homepage, 2008.

13

A Communication Resource Definition
In this appendix the schema for JSDL extension for communication resources, and
an example of a JSDL declaration of job requirements and XACML declaration
of node policy are presented.

A.1 Schema
Line breaks are sometimes added in order to improve readability.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"
xmlns:tns="http://xtreemos.org/schemas/jsdl/net/200805"
targetNamespace="http://xtreemos.org/schemas/jsdl/net/200805"
elementFormDefault="qualified"
attributeFormDefault="qualified">

<xsd:complexType name="Network">

<xsd:sequence>

<xsd:element name="Netmask">
<xsd:simpleType>

<xsd:restriction base="xsd:string">
<xsd:pattern

value="[0-9]{1,3}.[0-9]{1,3}.[0-9]{1,3}.
[0-9]{1,3}(/[0-9]{1,3})?"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>

<xsd:element name="Ports">
<xsd:simpleType>

<xsd:restriction base="xsd:string">
<xsd:pattern

value="[0-9]{1,5}(-[0-9]{1,5})?
(,[0-9]{1,5}(-[0-9]{1,5})?)*"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>

14

<xsd:element name="Proto">
<xsd:simpleType>

<xsd:restriction base="xsd:string">
<xsd:enumeration value="UDP"/>
<xsd:enumeration value="TCP"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

<xsd:element name="Network" type="tns:Network"/>

</xsd:schema>

15

A.2 JSDL Example
An example of JSDL document fragment stating requirements for connection to
any host in the address range 201.123.123.1 – 201.123.123.255, to any port in the
range 1000 – 2000, or 60000 or 65000, with TCP protocol.

<jsdl:Resources>
<network:Network

xmlns:net="http://xtreemos.org/schemas/jsdl/net/200805">
<net:Netmask>201.123.123.0/24</net:Netmask>
<net:Ports>1000-2000,60000,65000</net:Ports>
<net:Proto>TCP</net:Proto>

</net:Network>
</jsdl:Resources>

16

A.3 XACML Example
An example of XACML document fragment stating that the policy allows jobs to
connect to any host in the address range 201.123.123.1 – 201.123.123.255, to any
port in the range 1000 – 2000, or 60000 or 65000 with TCP or UDP protocol.
Some attribute values have been abbreviated (using “. . . ”) in order to improve
readability.

<Rule RuleId="PermitTraffic" Effect="Permit">
<Description>

Rule for permitting TCP and UDP traffic to
port range 1000-2000, 60000, 65000 for
201.123.123.0/24.

</Description>
<Target>

<Subjects>
<AnySubject/>

</Subjects>
<Resources>

<AnyResource/>
</Resources>
<Actions>

<Action>
<ActionMatch MatchId="...:string-equal">

<AttributeValue DataType="...#string">
action:AEM:SubmitJob

</AttributeValue>
<ActionAttributeDesignator

AttributeId="...:action-id"
DataType="...#string"/>

</ActionMatch>
</Action>

</Actions>
</Target>
<Condition FunctionId="...:and">

<Apply FunctionId="...:and">
<Apply FunctionId="...:netmask-match">

<AttributeValue DataType="...#string">
123.456.789.0/24

</AttributeValue>

17

<Apply FunctionId="...:string-one-and-only">
<ResourceAttributeDesignator

AttributeId="resource:jsdl:network:netmask"
DataType="...#string"/>

</Apply>
</Apply>
<Apply FunctionId="...:protocols-match">

<AttributeValue DataType="...#string">
TCP,UDP

</AttributeValue>
<Apply FunctionId="...:string-one-and-only">

<ResourceAttributeDesignator
AttributeId="resource:jsdl:network:proto"
DataType="...#string"/>

</Apply>
</Apply>

</Apply>
<Apply FunctionId="...:ports-match">

<AttributeValue DataType="...#string">
1000-2000,60000,65000

</AttributeValue>
<Apply FunctionId="...:string-one-and-only">

<ResourceAttributeDesignator
AttributeId="resource:jsdl:network:ports"
DataType="...#string"/>

</Apply>
</Apply>

</Condition>
</Rule>

18

B AFW Public API
This appendix presents the public API of the Application Firewall Java library.

B.1 The Rule Class

package eu.xtreemos.xosd.afw;

public class Rule {

enum Protocol {
TCP,
UDP

};

enum Policy {
ACCEPT,
REJECT,
DROP

};

public Rule(Protocol proto, String dstAddress,
String dstPortRange, Policy policy);

public Protocol getProto();

public String getDstAddress();

public String getDstPortRange();

public Policy getPolicy();

}

19

B.2 The IFirewall Interface

package eu.xtreemos.xosd.afw;

/**
* IFirewall is an interface for application firewall used to
* prevent outgoing network traffic to jobs run via AEM.
*
* Various implementations of this interface provide different
* firewalling backends to actually perform firewalling.
* Netfilter/iptables implementation is currently the only
* planned one.
*
* @author jaka@xlab.si
*/
public interface IFirewall {

/**
* Sets up firewall rules for the job processes. Called
* when a job is started.
*
* @param jobId id of the new job.
* @param rules a set of rules to be applied for the new
* job. Can be an array of size 0, if only the default
* policy should be used.
* @param default policy, applied to packets, if no rules
* match. Use DROP if no outgoing traffic should be allowed.
*
* @throws FirewallException if firewall rules for the
* given jobId already exist, or an error occured.
*/
public void setUpJobFirewall(String jobId, Rule[] rules,

Rule.Policy defaultPolicy) throws FirewallException;

/**
* Removes firewall rules for the job processes. Called
* when a job finishes.
*
* @param jobId the id of the job that finished.
*

20

* @throws FirewallException if no firewall rules for
* the given jobId exist, or an error occured.
*/
public void discardJobFirewall(String jobId)

throws FirewallException;

/**
* Adds a rule that matches packets from the process with
* PID pid against the job firewall rules. Called when a
* new process of a job is created.
*
* @param jobId the id of the job.
* @param pid PID of the new process belonging to that
* job.
*
* @throws FirewallException if this PID was already a part
* of the job, or an error occured.
*/
public void addJobProcess(String jobId, String pid)

throws FirewallException;

/**
* Removes a rule that matches packets from the process
* with PID pid against the job firewall rules. Called
* when a process of a job ends.
*
* @param jobId the id of the job.
* @param pid PID of the job process that ended.
*
* @throws IllegalStateException if this PID was not a part
* of the job, or an error occured.
*/
public void removeJobProcess(String jobId, String pid)

throws FirewallException;

}

21

