»900n®

YAWL - User Manual

@© 2009 The YAWL Foundation

Contents

1 Introduction

1.1 What is YAWL? o e
1.2 Obtaining the Latest Version of YAWL o
1.3 The YAWL Foundation
1.4 Documentation e e

2 Installation

2.1 Requirements e e
2.2 YAWLAStudy o e
2.3 YAWLA4Enterprise e e e
2.4 YAWLIve e
2.5 Manual Installation Lo

3 Getting Started with YAWL

3.1 Imtroduction e
3.2 Terminology e
3.3 Building a Simple Workflow Example o 0o
3.4 Advanced Workflow Concepts L
3.5 Where To From Here e

4 The Editor

4.1 Launching the YAWL Editor
4.2 The YAWL Editor Workspace e
4.3 Creating Your First Specification
4.4 Changing the Appearance of Your Specification
4.5 Additional Specification Features
4.6 Connections e e e
4.7 Validating and Saving a Specification oL oL oL
4.8 Specification Analysis
4.9 Automated task
4.10 Resource Management (Manual task) L Lo
4.11 Task Timer o o e e

co co o N

11
12
12
14
16
16

23
23
24
25
28
36

CONTENTS

4.12 Custom Forms e 95
4.13 Extended Attributes e 95
How to Manipulate Data in YAWL 99
5.1 Inmtroduction L e 99
5.2 Data Visibility e 99
5.3 Data Transfer e e 100
5.4 Data-related Issues L e e 102
5.5 Mlustrative Examples 104
The Runtime Environment 121
6.1 Resource Service Configuration L L o 122
6.2 Logging On e 123
6.3 Administration e e e e e 123
6.4 Work Queues e e 132
6.5 User Profiles e 137
6.6 Team Queues e 138
6.7 YAWL Worklist iGoogle Gadget 138
The Worklet Service 143
7.1 What is a Custom YAWL Service? 143
7.2 Installation e e 145
7.3 Using the Worklet Selection Service 148
7.4 Using the Worklet Exception Service L o 152
7.5 Worklet Rule Sets and the Rules Editor, 156
7.6 Walkthrough - Using the Worklet Service 172
7.7 Defining New Functions for Rule Node Conditions 190
7.8 Sample Log (generated by Walkthrough C) 194
Other Services 197
8.1 Web Service Invoker Service e 197
8.2 SMS Service e e 198
8.3 Twitter Service e e 199
8.4 Digital Signature Service L L 199
8.5 Email Sender Service e 203

Seeking Help 209

Document Control

Arthur ter Hofstede | version 1.9 September 2008 | Consolidation of previous documents,
conversion to IATEX of some of them,
general cleaning and extensions

(e.g. new chapter on engine).

Arthur ter Hofstede | version 1.99 | October 2008 First version of chapter on resource
perspective.
Michael Adams version 2.0 | July 2009 Major rewrite and addtional sections

to align the manual with v2.0.
Public release version for YAWL 2.0.

Michael Adams version 2.0f | September 2009 | Updates for several minor Editor
enhancements and addition of the
Twitter Service & iGoogle Gadget.

Feedback?

Any feedback regarding this manual is very much appreciated. If you find there is a topic that is missing or
has not been sufficiently well-explained, please send your feedback to yawlmanual@gmail.com. All suggested
improvements will be incorporated into future versions of the manual.

Sources

The first version of this document combined the following documents:

1. A “New Features” document produced by Lachlan Aldred.

2. A “Getting Started with YAWL” document by Lindsay Bradford and Marlon Dumas. This forms the
basis for Chapter 3.

3. A “Editor 2.0 User Manual” document of which first versions were produced by Sean Kneipp and
subsequent versions by Lindsay Bradford, Jessica Prestedge, Marcello La Rosa, and Michael Adams.
This document was copied into Chapter 4.

4. A “Data Manipulation in YAWL” document by Chun Ouyang (with some of the figures on the use of
XML technology in YAWL taken from a presentation by Lachlan Aldred). This forms the basis for
Chapter 5.

5. A “YAWL Engine User Manual” (Beta 8 release) document created by Sean Kneipp with subsequent
additions/updates by Guy Redding, Lachlan Aldred and Michael Adams. This document provided
inspiration for Chapter 6.

CONTENTS

6. A “The Worklet Custom Service for YAWL - Installation and User Manual” document created and
later revised by Michael Adams. Lachlan Aldred merged the installation manual. This document was
copied into Chapter 7.

7. An “Installation Manual” (Engine Beta 8.2 - Editor 1.5) first created by Sean Kneipp and with subse-
quent changes/corrections/extensions by Guy Redding, Lachlan Aldred, Petia Wohed, Michael Adams,
Moe Wynn, and Marcello La Rosa. This forms the basis for Chapter 2. Its introduction forms the basis
for Chapter 1.

Chapter 1

Introduction

This chapter provides a brief background introduction to YAWL and the YAWL Foundation.

1.1 What is YAWL?

Based on a rigourous analysis of existing workflow management systems and workflow languages, a new
workflow language called YAWL (Yet Another Workflow Language) was developed by Wil van der Aalst
(Eindhoven University of Technology, the Netherlands) and Arthur ter Hofstede (Queensland University of
Technology, Australia) in 2002. This language was based on the one hand on Petri nets, a well-established
concurrency theory with a graphical representation, and on the other hand on the well-known Workflow
Patterns (www.workflowpatterns.com). The Workflow Patterns form a generally accepted benchmark for
the suitability of a process specification language. Petri nets can capture quite a few of the identified
control-flow patterns, but they lack support for the multiple instance patterns, the cancellation patterns and
the generalised OR-join. YAWL therefore extends Petri nets with dedicated constructs to deal with these
patterns.

YAWL offers the following distinctive features:

e YAWL offers comprehensive support for the control-flow patterns. It is the most powerful process
specification language for capturing control-flow dependencies.

o The data perspective in YAWL is captured through the use of XML Schema, XPath and XQuery.

o YAWL offers comprehensive support for the resource patterns. It is the most powerful process specifi-
cation language for capturing resourcing requirements.

e YAWL has a proper formal foundation. This makes its specifications unambiguous and automated
verification becomes possible (YAWL offers two distinct approaches to verification, one based on Reset
nets, the other based on transition invariants through the WofYAWL editor plug-in).

e YAWL has been developed independent from any commercial interests. It simply aims to be the most
powerful language for process specification.

« For its expressiveness, YAWL offers relatively few constructs (compare this e.g. to BPMN!).

e YAWL offers unique support for exceptional handling, both those that were and those that were not
anticipated at design time.

e YAWL offers unique support for dynamic workflow through the Worklets approach. Workflows can
thus evolve over time to meet new and changing requirements.

7

www.workflowpatterns.com

8 CHAPTER 1. INTRODUCTION

e YAWL aims to be straightforward to deploy. It offers a number of automatic installers and an intuitive
graphical design environment.

e Through the BPMN2YAWL component, BPMN models can be mapped to the YAWL environment for

execution.

o The Declare component (released through declare.sf.net) provides unique support for specifying
workflows in terms of constraints. This approach can be combined with the Worklet approach thus
providing very powerful flexibility support.

e YAWL’s architecture is Service-oriented and hence one can replace existing components with one’s own
or extend the environment with newly developed components.

e The YAWL environments supports the automated generation of forms. This is particularly useful for
rapid prototyping purposes.

e Tasks in YAWL can be mapped to human participants, Web Services, external applications or to Java
classes.

e Through the C-YAWL approach a theory has been developed for the configuration of YAWL models.
For more information on process configuration visit www.processconfiguration.com.

« Simulation support is offered through a link with the ProM (www.processmining.org) environment.
Through this environment it is also possible to conduct post-execution analysis of YAWL processes
(e.g. in order to identify bottlenecks).

1.2 Obtaining the Latest Version of YAWL

As new versions of the YAWL Engine are released to the public, they will be available for download at the
YAWL Sourceforge website (sourceforge.net/projects/yawl). From this site it is also possible to access
the source code of all components for development purposes.

1.3 The YAWL Foundation

For up-to-the-minute information on any aspect of the YAWL Initiative, visit the YAWL Foundation Home-
page (yawlfoundation.org). The YAWL Foundation is a non-profit organisation that acts as custodian of
all intellectual property (IP) related to YAWL and its support environment.

1.4 Documentation

Apart from this user manual, there is a technical manual on YAWL and a number of case studies. These
studies provide detailed examples that you may wish to consult in order to obtain a deeper understanding
of the application of YAWL.

This manual does not really cover the control-flow concepts of YAWL in detail. One reason for this is that
there are quite a few papers out there that do provide this information. We refer the reader to e.g. [5]
for a justification of the extensions of Petri nets introduced for YAWL on the basis of the original control-
flow patterns. The main paper on YAWL, from a language point of view, is [6]. In this paper you find
a formalisation of the control-flow concepts of YAWL. More recently, a CPN formalisation of newYAWL
(control-flow, data and resource perspectives) was presented in [20]. For a formalisation of the OR-join, a
complex synchronisation concept in YAWL, we refer to [24]. This definition supersedes the definition provided
in [6].

As mentioned above, YAWL extends Petri nets. There are a number of general introductions to Petri nets
in the literature. We refer the interested reader to [14, 12].

declare.sf.net
www.processconfiguration.com
www.processmining.org
sourceforge.net/projects/yawl
yawlfoundation.org

1.4. DOCUMENTATION 9

Wil van der Aalst has written much about the application of Petri nets to workflow, see e.g. [1]. The subclass
of Petri nets introduced by him, Workflow-nets, is a predecessor of YAWL. The textbook that he wrote
together with Kees van Hee is highly recommended reading [4].

A recent textbook on Business Process Management (BPM), which covers the original control-flow patterns
and also YAWL, was written by Mathias Weske [22]. This textbook also covers other approaches, such as the
modelling standard BPMN (note that the BPMN2YAWTL tool can convert these specifications to YAWL).

On the YAWL web site (yawlfoundation.org) it can be seen how the original control-flow patterns can
be realised in YAWL (follow the link on Resources and then click ‘patterns’). For control-flow patterns in
newYAWTL the reader can consult appendix A.1 of Nick Russell’s PhD thesis [20].

If you would like to know more about how verification of YAWL specifications really works, we refer you
to [21] and to [23]. This work forms the theoretical basis of how the verification mechanisms are realised in
the YAWL editor.

In-depth discussion of YAWL’s exception handling framework from a conceptual point of view can be found
in [20, 16] and from an implementation aspect in [7, 8]. The YAWL’s worklet approach to dealing with
on-the-fly changes to workflows has been discussed in [7, 9].

The reader that is interested in declarative specification of workflow is referred to [13]. On the Declare web
site, declare.sf .net, the Declare service for YAWL can be downloaded. Further documentation about this
approach can also be found there.

YAWL has a close link to the Process Mining environment ProM [3], www.processmining.org. This link is
for example exploited in [15] to provide simulation support for YAWL. There exists support for exporting
YAWL logs to ProM which can subsequently be analysed by one of the many mining plug-ins available in
this environment.

Alternative ways of presenting work lists have been addressed in [10]. In this framework users can choose a
map (not just a geographical map, but also e.g. a timeline or a YAWL specification) and work items can be
positioned on this map and be shown in a colour that reflects their level of urgency (a context-specific notion
which can be defined for the user). It is expected that this work becomes part of the YAWL distribution in
the near future.

Finally, a textbook on YAWL, called Modern Business Process Automation: YAWL and its Support Envi-
ronment is to be published by Springer in October 2009.

yawlfoundation.org
declare.sf.net
www.processmining.org

10

CHAPTER 1. INTRODUCTION

Chapter 2

Installation

The YAWL System comprises a number of web services and a java-based Editor. It requires a Serviet
Container to host the web services and a back-end database system for process data storage and archiving.
Individual YAWL components may be installed manually (see Section 2.5), but there are also a number of
automatic YAWL installation packages that install all the required components and allow you to be up and
running with YAWL quickly and easily:

e YAWLA4Study is available for Windows, Linux and Mac OSX platforms. This is the installer to choose
if YAWL is to be used within a single user environment. So, your personal purposes could be to write
a workflow research paper based on YAWL or to prepare your next workflow lecture. Furthermore
YAWL is the right choice if you intend to learn about or to experiment with YAWL. The resulting
pre-configured installation will have full functionality and contains the same YAWL components as
YAWL/Enterprise.

e YAWL4Enterprise is an installer for Windows only. Third-party components like Apache Tomcat
and PostgreSQL are installed as services so that YAWL can be used as a long-running server for
production purposes. Furthermore, the installer allows the configuration of the YAWL environment.
For production purposes on a Windows platform this is the installer to choose. See Section 2.5 for
instructions on how to install for multi-user production environments on other platforms.

e YAWLive is a LiveCD which contains a Linux operating system and a fully pre-configured YAWL
environment. No installation is required, all that needs to be done is to boot the .iso image from a
virtual machine or a previously burned YAWLive CDROM. This is a great way to use YAWL in an
educational setting.

The complete YAWL environment is installed whatever installer is chosen. Further information on the
different installer types can be found on the YAWL project web-page on SourceForge!.

Installing Maintaining YAWL YAWL Purposes
Engine Editor

Fits for all purposes; except

YAWL4Study| Easy Easy long running workflows
YAWLA4Enterprise _ Long running workflows
Sandbox; minimal

VAWLive REREEE =y persistence possible

Figure 2.1: YAWL product comparison

Official and stable versions of the YAWL installation files are found on the YAWL project web-page on
sourceforge? under Download, release package YAWL Complete.

Thttp://downloads.sourceforge.net /yawl/right__yawl_version_for_YOU.pdf
2http://sourceforge.net/projects/yawl/

11

12 CHAPTER 2. INSTALLATION

2.1 Requirements

Pre-requisites depend on the type of installation used.

YAW Live, distributed as an .iso image, is a complete OS and pre-installed YAWL package that will run on
any computer that can load it in a virtual machine (e.g. VirtualBox or VMware). While the image can be
burned to a CD and booted from there, some hardware configurations may experience a freeze during boot
phase.

All other installation types require the Java SE Runtime Environment (JRE), 1.5 or greater (java.sun. com).

YAWL4Study for Linux requires installed xdg-utils (portland.freedesktop.org), which should be sup-
ported by your desktop environment (GNOME and KDE do support xdg-utils), in order to visualise YAWL
Editor menu entries.

YAWL 2.0 has been successfully tested on:
e Windows: XP, Vista, Windows 7 beta, Server;
o Linux: Ubuntu (8.10), sidux, Debian (Etch);
e Mac OSX: Tiger, Leopard.

2.2 YAWL4Study

The release package provides installation files for the operating systems Windows, Linux and Mac OSX. They
have names similar to those shown in Table 2.1.

7 Windows YAWL4Study_windows_2.0.exe
YAWL4Study_linux_2.0.bin
Mac OSX YAWL4Study_osx_2.0.app.zip

& >
£
=
=
o

Table 2.1: YAWL4Study is available for three different operating systems

Preparation YAWL4Study can be installed from an ordinary user account without administration rights
as long as Java version 1.5 or greater is installed on the system.

A% @& To start the installation, simply double-click on the installation file.

A The installation file needs to have read and executable permissions. Those can be assigned by right
clicking the file, selecting Properties and setting the appropriate permissions. Alternatively the following
shell command can be applied:

user@host:/tmp$ chmod 755 YAWL4AStudy_linux_2.0_RCl.bin

Afterwards, start the installation by double-clicking on the downloaded file or by invoking it from the com-
mand line:

user@host:/tmp$./YAWL4AStudy_linux_2.0_RC1l.bin

Installation You will be greeted by a Welcome screen. Pressing Next will take you to the License Agreement
page, shown in figure 2.2. The license agreement contains the Gnu Lesser General Public License (Version
2.1), the Apache License (Version 2.0), the BSD License and Sun’s Binary Code License Agreement. You
need to accept the agreements to continue the installation.

java.sun.com
portland.freedesktop.org

2.2. YAWL4STUDY 13

License Agreement “

Please read the following License Agreement. You must accept the terms of
this agreement before continuing with the installation.
GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999

Copyright (€] 1981, 1898 Free Software Foundation, Inc
51 Franklin Street, Ffth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed

(T

[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence

() l accept the agreement
Do you accept this license? ~
() I do not accept the agreement

Figure 2.2: License Agreement

The next step is to select the installation directory (figure 2.3). The default location is your home directory.
The installer will inform you if you're allowed to install YAWL in the selected folder. In case of Windows or
Linux, folders like C:\ Program Files\ or /usr/local/ are only writeable by users with administrative rights.
Install YAWL into your home directory if you don’t have administrative rights.

YAWL directory “

Please specify the directory where the YAWL environment will be installed.

/home/sclemens/vAwL4Study-2.0-betal l

l = Back H W) Eorward H ogancel]

Figure 2.3: Select Installation Directory

After clicking Neaxt, the installer will look for a valid Java installation. The dialogue box in figure 2.4 will
only appear if Java has been detected on your system.

Please select the Javaltm) Runtime to use

sun 1.6.0 jusr/binfjava i I

Figure 2.4: Select Java Version

A¥ If no Java version greater or equal 1.5 is found and the YAWL4Study for Windows installer is executed,
the supplied Java version will be installed.

A & The installation will stop if no Java version greater or equal 1.5 is found. Install the latest Java version
before executing the YAWL installer. The YAWL installer checks the usual installation paths, like /usr/ or
Jusr/local/. If you installed Java on your system but the YAWL installer is not able to find it, create the
following link:

user@host:$ 1ln -s /path/to/your/java/base/dir /usr/local/java

Keep in mind that you need administration rights to generate the link. Afterwards, start the YAWL instal-
lation again.

14 CHAPTER 2. INSTALLATION

You are now ready to proceed with the installation. When the installation completes, you will see the
Installation Completed page. If you found a problem and could not complete the installation, please post the

problem to the sourceforge forum3.

2.3 YAWL4Enterprise

The release package on the YAWL project web-page on sourceforge? provides an installation file for Windows.
In contrast to YAWL4Study, YAWL4Enterprise allows the configuration of third-party components like the
application servlet container and the database server.

Preparation YAWL4Enterprise should be installed with an administrator account. Installation is started
by simply double-clicking on the installation file.

Installation After being greeted by the Welcome screen and pressing Next, you’ll see the License Agreement
page. The license agreement contains the Gnu Lesser General Public License (Version 2.1), the Apache
License (Version 2.0), the BSD License and Sun’s Binary Code License Agreement. You need to accept
the agreements to continue the installation. In the next step you are given the choice to update YAWL
(but only if the same YAWL version is already installed), to do a standard installation, or to install YAWL
and conduct a comprehensive configuration of its third party components. If it is chosen to update YAWL,
existing configurations are used to update the current YAWL installation.

SI= e

YAWL Installation ﬂ

Choose the type of YWl installation
* Update
Update existing YAWL environment and kesp setting
 Standard

Install YAWL environment with default setting

1 Custom
Lacal{remote installation/configuration of the YAWL enviranment

<Back | [THEEE] concel |

Figure 2.5: Type of YAWL4Enteprise Installation

The next step is to select the installation directory and to choose a Java installation. The dialogue box in
figure 2.6 will only appear if Java greater or equal 1.5 is detected on your system.

4 I¥M Selection ol x|
Please select the Javalim) Fluntime to uss
sun 1.6.0 C:/Program Files/Java/ire1 6.0_07jbinfjava.exe |
oK Cancel

Figure 2.6: Select Java Version

Within the next steps the installation path and port numbers (see figure 2.7) of Apache Tomcat are set. The
default port numbers are fine in most cases, and only need to be changed if those ports are already in use.

The YAWL4Enterprise installer allows to install a supplied version of PostgreSQL or to use an already
installed PostgreSQL or MySQL version (see figure 2.8).

3http://sourceforge.net /forum/forum.php?forum_id=391803
4http://sourceforge.net/projects/yawl/

2.3. YAWL4ENTERPRISE

15

JSIep

Tomcat Configuration ﬂ

Please specify the following Tomeat ports

Hitp port number e
Shutdown port number |8005

< Back. | Next > | Cancel |

Figure 2.7: Set up of Tomcat Ports

=

Database Choice ﬂ

Choose:
- to install the supplied PostgreSQL and to create the ¥AWL database or
- to set up the connection ko an already existing datahass.

B aware that remote databases and an already existing local PostgreSQL database which has nat
been installed via the VAWL installer are not supported. Furthermore, a database which works with
the YAWL Engine Beta 5.2 or lower won't work with YAWL 2,00

Install PostareSQL 6.3 and YAWL DB El

Use existing PoskgresQL
Use existing My3QL LI

< Back | hlext = | Cancel |

Figure 2.8: Specification of Database

If you choose to install PostgreSQL and the YAWL DB, the PostgreSQL installation directory and different
PostgreSQL settings can be specified (see figure 2.9). Again the default settings are suitable in most cases.

JSlelp

Database Settings ﬂ

Use "localhost” or "127,0.0.1" if you refer bo a database which is installed on this machine.,

Hostname

Http port number |5432
Username postares

The password kextboxes are set ko "POStQrESYawL!"

Password W
Retype password lW

< Back | Mext > | Cancel |

Figure 2.9: Specification of PostgreSQL settings

The last installation panel allows specifying whether Apache Tomcat and/or PostgreSQL should run as

services.

16 CHAPTER 2. INSTALLATION

2.4 YAWLive

The release package on the YAWL project web-page on sourceforge® provides an iso image with a complete
operating system and preconfigured YAWL environment. The advantage of using YAWLive is that it can be
used within a virtual machine or booted from a CDROM. No installation is required.

Preparation Booting YAWLive from a CDROM does not work on all computers. Therefore it is recom-
mended to start the YAWLive iso image out of a virtual machine (like VirtualBox). No installation of an
additional operating system into the virtual machine image is necessary. The virtual machine image needs
to boot the YAWLive iso image only. Please read the instructions of your preferred virtual machine to boot
an iso image.

Machine Devices Help

YAWLive

PSL is based on Knoppix, Debian, & GNU Limux Technology.
Press <enter> to begin, F2 and F3 for boot options.

™

QEIP@ Right Ctrl

Figure 2.10: YAWLive Welcome Boot Prompt

Usage of YAWLive After showing a YAWLive Welcome screen and entering Return at the prompt (see
figure 2.10), the YAWLive iso image is booted as shown in figure 2.11.

As soon as the desktop environment appears, you can immediately start using YAWL (see figure 2.12)

2.5 Manual Installation

If you already have Apache Tomcat (version 5.5.26 or greater) and/or PostgreSQL (version 8.1 or greater)
and/or a previous version of YAWL, you may prefer to install specific components only. Alternately, you
may wish to use a different database back-end than PostgreSQL, or a different servlet container than Apache
Tomcat. Manual installation is also required if you want a multi-user, production-level installation on an OS
platform other than Windows. This section details how to install YAWL 2.0 on a component-by-component
basis.

2.5.1 Installing Tomcat

YAWL mainly consists of a number of web services, and so needs a servlet container installed to host them.
We recommend Apache Tomcat be used — it if free, stable and fully tested as a YAWL host over a number
of years.

YAWL requires Tomcat version 5.5.26 or later. The first step is to download the latest Tomcat version from
tomcat.apache.org. The simplest way to install Tomcat in a Windows environment is to use the purpose
built Windows installer provided.

Shttp://sourceforge.net /projects/yawl/

tomcat.apache.org

2.5. MANUAL INSTALLATION 17

Machine Devices Help

Uelcome To

I I
I I
I N
1 1
I I

Built using Knoppix Technology.

PSL comes with ABSOLUTELY NO WARRANTY, to the extent
pernitted by applicable law.

Accessing DSL image at sdeusscdd. ..
515100

srandisk shared memory

INIT: version 2.78-knoppix boot ing
Running Linux Kernel 2.4.31.
Processor 0 is Intel(R) Core(IM)Z CPU 6300 @ 1.86GHz 1853MHz, 64 KB Cache
ACPI Bios found, activating modules: ac battery button fan processor thermal
putoconfiguring devices... “I I one .
Mouse is Generic PS/2 Wheel Mouse at /dev psaux
etc fstab. .. Done.
Netuwork device eth0 detected, DHCP broadcasting for IP.
Running ds1-4.2.

egistering unionfs 1.0.14
INIT: Entering runlevel: S

usr/local/tomcat

susr/locals java
bsu(pam_unix)[3851: session opened for user dsl by (uid=0)

[EIEESR] [@lRight ctrl

Figure 2.11: YAWLive Bootphase

Machine Devices Help

File Edit Miew Go Bookmarks Tools Help
i 5 hitp 7] @ coCL
v AwWLEditor - sramdisk/homesdsl/orde fulfilment.yawl = @ I - J IL’

Specification Net Edit Elements Tools Yiew Help
B8R |« |= 3|3 |2
: & || [IO ordering

M Cases | Users | Org Data | Services | Logout
(Wi
jation
3 Task Ilcon
No lcon _Browse... |
o ¢} Manual

&, Anomated

o i rouing

9. Plugin oS

013 Order Fulfiment process model

o wodity
\Purchade Order Puchass Order

~/| unioact Spec

[Use the palette toolbar to edit the selected net.

oL ||| (&3] |12 AL Esitor - sramdiskshomerssi/ordertulfiment yad < YAWL 2.0 Case Management - Mozilla Firefox 07:55 PM

QHI=

Right Ctrl

Figure 2.12: YAWLive Desktop with Editor and Worklist running

18 CHAPTER 2. INSTALLATION

For installation on Mac OSX, follow the instructions at wiki.apache.org/tomcat/TomcatOnMac0S. Ignore
the first half of the page; start from the heading ‘Updated for 2006’. The steps for starting the firewall and
enabling port-forwarding are not required from a YAWL perspective.

Linux installation is quite straightforward. A simple set of instructions (for ubuntu) can be found at www.
howtogeek.com/howto/linux/installing-tomcat-6-on-ubuntu/

In all cases, an environment variable called “CATALINA_HOME” needs to be added, which points to the
tomcat install path.

Once Tomcat is installed, two small configuration changes are required to files found in the <your_tomcat_dir>
/conf directory:

“w»

1. context.xml: Locate the commented line containing < Manager pathname=“" /> and uncomment it.

2. server.xml: Locate the entry that begins < Connector port=“8080” protocol=“HTTP/1.1” and modify
it so that it looks like this (i.e. the fourth parameter, URIEncoding=“UTF-8”, has been added):

<Connector port="8080" protocol="HTTP/1.1"
connectionTimeout="20000"
redirectPort="8443"
URIEncoding="UTF-8"/>

2.5.2 Installing YAWL Services

Go to the YAWL Engine download page on SourceForge (sourceforge.net/project/showfiles.php?
group_id=114611&package_1d=124238), and download the file YAWL_2.0_Core WebServices.zip, (and op-
tionally the file YAWL_2.0_Optional WebServices.zip). Unzip the contents of the file to <your_tomcat_dir>
Jwebapps directory. When Tomcat is (re)started, it will automatically unpack each war file into its own
directory under webapps (cf. Figure 2.13). There are four core web services:

1. yawl.war: the core workflow engine.

2. resourceService.war: handles the allocation of tasks to resources; contains the default worklist han-
dler; generates dynamic forms; manages codelets; manages organisational data.

3. workletService.war: handles dynamic flexibility and exception handling.
4. yawlWSInvoker.war: allocates tasks to synchronous web services.

The Resource Service is described in detail in Chapter 6. The Worklet Service is described in detail in
Chapter 7. The WS Invoker Service is described in Chapter 8.

There are three optional web services:

1. yawlSMSInvoker.war: allows tasks to be read and modified via SMS Services.

2. digitalSignature.war: authenticates the information provided on a form using a digital signature via
X.509 certificates and private keys.

3. mailSender.war: provides a custom form for a task, from which an email can be sent.

Tip: If a .war file is to be copied into the webapps directory to replace a file of the same name, it is advisable
to first shutdown Tomcat, and delete the unpacked directory for that war, before copying in the new war
file. On restart, the new war’s contents will be unpacked. If the old unpacked directory is not removed, on
restart the new war file will not unpack. If Tomcat is running when the new war is copied to the webapps
directory, it will unpack and replace the old directory, but may run out of resources while doing so, resulting
in an OQutOfMemoryError.

wiki.apache.org/tomcat/TomcatOnMacOS
www.howtogeek.com/howto/linux/installing-tomcat-6-on-ubuntu/
www.howtogeek.com/howto/linux/installing-tomcat-6-on-ubuntu/
sourceforge.net/project/showfiles.php?group_id=114611&package_id=124238
sourceforge.net/project/showfiles.php?group_id=114611&package_id=124238

2.5. MANUAL INSTALLATION 19

_~ [apache-tomcat-5.5.25 *~ in " ~ docs "
[~ apache-tomcat-6.0.18 onf - examples "
[logs = [lib 3 host-manager IS
™ LICENSE [manager ’
[logs = [resourceService "
M NOTICE % resourceService.war
M RELEASE-NOTES [7 rooT >
\ =] RUNNING.txt [7 workletservice >
= [temp = % workletService.war
: [F yawl "
[work % yawlwar
[7 yawlwsinvoker [
% yawlWSInvoker.war
|
v
1l I I il
L € . RALA |

=== ————a—— = =

Figure 2.13: YAWL Core Services deployed in /webapps directory (OSX Example)

2.5.3 Installing PostgreSQL

As a default, YAWL is configured to use PostgreSQL for database support, and this section describes how
to manually install and configure PostgreSQL for YAWL (however, it is easy to configure YAWL for other
database back-ends — see the next section for details).

Download the latest version of PostgreSQL from www.postgresql.org/download/ — there is a one-click
installer for each operating system. The following is a walkthrough for a Windows installation, but it is a
similar process for other platforms. Except where otherwise mentioned, simply accept the default setting for
each setup screen.

For the Service Configuration screen, choose the Install as a Service option (see Figure 2.14). Leave the
account name as ‘postgres’ and enter any password of at least 6 characters. This will be the account the
PostgreSQL service uses to run and allow connections to the database.

i PostereSQL

=10 =]
Service configuration k‘ “!
b —

¥ Install as a service

Service name IPDstgreSQL Databaze Server 83-rcl

Account name Ipostgres

Account domain IHP'Z'ET"'2I331 Q231

Account password |********

Yernify paszword |********

The zervice account iz the account that runz the PostgreSOL databaze server. If you have
not already created an account, the installer can do 2o for pou. Enter an account name and
a pazzword, or leave the password blank to have one auto-generated.

< Back | Meut » I Cancel

Figure 2.14: Choose Install as a Service and enter any password

www.postgresql.org/download/

20

CHAPTER 2. INSTALLATION

On the next screen, Initialise Database Cluster (Figure 2.15), leave all values as they are, but enter ‘yawl’ (no
quotes, all lower case) as the password. This is the user account that YAWL uses to connect to the database.
Leave the settings for all other screens at their defaults and click through to completion.

i PostereSQL

Initialise database cluster

NRY

¥ Initislize database cluster

Part number |543'2
Addreszes [Accept connections on all addreses, not just localhost
Locale II: j

Encoding (Server) |UTF8 | ey [sus

Superuzer name IDDSigrES| Thig iz the internal database usermame, and
not the service account, For secunty reazons,

Ee I******** the pas&wurd zhould HOT be the zame as the
zErvice acoount.

Pazzword [again] I********

=

< Back | Mest » I

Cahcel

Figure 2.15: Keep postgres as the Superuser name, and enter yawl as the password

[Xa)a) pgAdmin IlI
=
FO B %Y | B2
Oblecybponssg {-Properﬁes | Statistics Dependencies Dependents !
v [Servers (1)
% PostgreSQL 8.3 (localhost:5432) Property Yalue
-=| Description PostgresaL 8.3
= Hostname localhost
=/ Port 5432
=| Maintenance database postgres.
= Username postgres
‘= Store password? No
=/ Restore environment? No
=/ Connected? No
) I
sQL pane
— AL
Retrieving Server details... Done. 0.06 secs A
Figure 2.16: The pgAdmin tool, Object Browser panel on the left

Next, run the administration tool pgAdmin®, which was installed along with the postgreSQL installation.

6

www.pgadmin.org

www.pgadmin.org

2.5. MANUAL INSTALLATION 21

In the Object Browser panel on the left (cf. Figure 2.16), double-click on the Postgres server, and, when
prompted, enter ‘yawl’ as the password (you should only be asked for this password the first time you
connect). Then, right-click on Databases (under Postgres) and choose New Database from the popup menu.
In the next dialog, enter ‘yawl” as the database name, leave all other fields as they are, and click OK.

That completes the installation of postgreSQL and the admin tool pgAdmin, and the creation of the YAWL
database. When YAWL is started, it will automatically create the required database tables as part of its
startup process.

2.5.4 Configuring YAWL for other Databases

YAWL uses Hibernate (hibernate.org) as a database framework, which provides a transparency layer
between YAWL and the back-end database used to support it. While YAWL is pre-configured to use Post-
greSQL, it is a relatively simple process to reconfigure for other databases. Besides PostgreSQL, YAWL has
been successfully tested with MySQL, HypersonicSQL, Oracle and Apache Derby (used by YAWL4Study),
but other database platforms are known to work with Hibernate (see www.hibernate.org/80.html for the
complete list) and so should have no trouble working with YAWL too”.

Each YAWL service that communicates with the database (i.e. the Engine, Resource Service and Worklet
Service) has a configuration file called hibernate.properties located in its WEB-INF/classes directory. The
properties file contains a ‘Platforms’ section with default settings for a number of different database platforms
— all except one (PostgreSQL) commented out (see Listing 2.1 for an excerpt of the properties file). To
configure for a different database platform, comment out the currently enabled platform, then uncomment
the platform of choice, ensuring the username and password values match the target database authorisations.

Remember to change the hibernate.properties file for each of the webapps mentioned above.

"Please pass on your experiences using YAWL with database platforms other than those listed on the YAWL SourceForge
forum.

hibernate.org
www.hibernate.org/80.html

22

CHAPTER 2. INSTALLATION

HypersonicSQL

#hibernate

#hibernate.

#hibernate

#hibernate.
#hibernate.

Postgre

hibernate
hibernate.
hibernate
hibernate.
hibernate.

DB2

#hibernate
#hibernate

#hibernate.
#hibernate.
#hibernate.

MySQL

.connection

.dialect org.hibernate.dialect.HSQLDialect

connection
.connection
connection
connection

SQL

.dialect org
.driver_class org.postgresql.Driver
.url jdbc:postgresql:yawl

.username postgres

.password yawl
#hibernate.query.substitutions yes

connection

connection
connection

.driver_class org.hsqldb. jdbcDriver
.username sa

.password

.url jdbc:hsqldb:file:./webapps/yawl/yawl

.hibernate.dialect.PostgreSQLDialect

YN

’Y’, no

.dialect org.hibernate.dialect.DB2Dialect

.connection
connection
connection
connection

.driver_class
.url jdbc:db2
.username db2
.password db2

COM.ibm.db2. jdbc.app.DB2Driver
:test

##hibernate.connection.driver_class org.gjt.mm.mysql.Driver

#hibernate

#hibernate.
#hibernate.

#hibernate

#hibernate.

Oracle

#hibernate
#hibernate

#hibernate.

#hibernate

#hibernate.
#hibernate.

.dialect org.hibernate.dialect.MySQLDialect

connection
connection
.connection
connection

.driver_class com.mysql.jdbc.Driver
.url jdbc:mysql:///yawl

.username root

.password

.dialect org.hibernate.dialect.0Oracle9Dialect
.dialect org.hibernate.dialect.OracleDialect

.connection.
connection.
connection.

connection.

driver_class oracle.jdbc.driver.0OracleDriver
username ora

password ora

url jdbc:oracle:thin:@localhost:1521:test

Listing 2.1: hibernate.properties file (excerpt)

Chapter 3

Getting Started with YAWL

3.1 Introduction

Nowadays, organisations are challenged to continuously improve their efficiency and to respond quickly to
changes in their environment, such as new business opportunities, competition threats, and evolving customer
expectations. It is not surprising then that organisations are paying more attention to capturing, analysing
and improving their work practices in a systematic manner. The methods, techniques and tools to do this
are collectively known as Business Process Management (BPM).

For IT departments, BPM provides an opportunity to align IT systems with business requirements, and to
re-organise existing application infrastructure to better support the day-to-day operations of the organisation.
BPM initiatives often translate into requirements for IT systems. Here is where workflow technology comes
into play. Business process models produced by business experts are taken as a starting point by software
architects to produce a blueprint for a software application that co-ordinates, monitors and controls some or
all of the tasks that make up these business processes. Such software applications are called workflows. An
example of a business process is an order-to-cash process: one that goes from the moment a purchase order
for a product or service is received by an organisation to the moment the customer pays for the products,
including aspects such as invoicing and shipment. After capturing this process from beginning to end, an
organisation may choose to add further details about the people, legacy applications, messages and documents
involved, and to deploy a workflow application to co-ordinate this process.

You can build a workflow application using general-purpose software programming platforms, e.g. as a bunch
of Web applications, Enterprise Java Beans and legacy applications connected together... but this defeats the
purpose of aligning the models produced by business people with the resulting IT systems. This is why one
should consider an alternative approach: to develop workflow applications on top of a dedicated workflow
management system.

Many years ago, workflow was a bit of a dark art, practised by deep-pocketed companies that were able
to afford expensive workflow management systems and highly specialised consultants. Today, workflow
technology is widely available and its benefits and pitfalls are more widely understood. A word of warning
though: while workflow doesn’t have to belong to arcane masters of lore, it’s also not something to trivialise.
If a workflow application is not aligned with the business it’s been deployed in, it can be worse than a manual,
paper-based bureaucracy. It is therefore important that both business and IT stakeholders follow a sound
BPM methodology before attempting to deploy a workflow application.

But assuming you've decided on a workflow solution, it’s time to make a choice. You can still choose to pay for
a workflow system, or you can get one for free. If you’re for the latter, maybe YAWL is for you. YAWL, which
stands for Yet Another Workflow Language, is a fully open-sourced workflow system (or “business process

IThe term business process management system (BPMS) is often used to refer to something similar to a workflow management
system. The difference is that a BPMS supposedly offers richer functionality for analysing business processes, while workflow
systems traditionally focused on the co-ordination of tasks. However, the gap between these two is narrowing, and it is difficult
to differentiate modern workflow management systems and BPMSs.

23

24 CHAPTER 3. GETTING STARTED WITH YAWL

management system” if you prefer). Its tongue-in-cheek name belies the fact that YAWL is rather unique.
It’s based on a very rich workflow definition language, capable of capturing all sorts of flow dependencies
between tasks. It has open interfaces based on Web standards, which enable developers to plug-in existing
applications and to extend and customise the system in many ways. It also provides a graphical editor
with built-in verification functionality, which helps solution architects and developers to capture workflow
models and to automatically detect subtle but potentially nasty errors early-on in the piece. Finally, YAWL
is arguably the most mature open-source workflow management system around. From its beginnings as an
academic prototype, YAWL has evolved into an enterprise-grade workflow engine thanks to contributions
from the YAWL Foundation members, and from the organisations and individuals who have used it. This
demonstrated commitment from its users and community of developers also ensures the continuity of the
system.

If you think YAWL might be for you, you may be wondering how to learn more. This chapter provides a
gentle introduction to the YAWL workflow system. The aim of the chapter is to help people to get YAWL
up and running with a minimum of fuss. The chapter doesn’t cover all possible features and components
of YAWL. Instead, it focuses on some essential aspects that will help you to become familiar enough with
YAWL that you feel comfortable designing and executing at least simple workflows. For more information,
you may refer to other chapters in this manual, the technical manual or the various academic papers and
case studies available in the YAWL Sourceforge web site.2.

3.2 Terminology

Before jumping in and getting our hands dirty with a real workflow example, let’s briefly agree on some basic
terms.

Business Process: A set of interdependent activities that need to be performed in response to a business
event, to achieve a business objective. Typical examples of business processes are “complaint handling”,
“order-to-cash”, or “credit card approval”.

Workflow Application: A software application that co-ordinates the tasks, data and resources that com-
pose a business process, in whole or part. Sometimes the term “workflow” is used as a shorthand for
“workflow application”.

Workflow Specification: (Also known as Workflow Model) A description of a business process to the level
of detail required for its deployment into a workflow engine. A workflow specification defines which
tasks should be performed, under which conditions and in which order, which data, documents and
resources are required in performing each task, etc.

Workflow System: A system that can be used to develop and to run a workflow application. A workflow
system usually includes a process editor to support the design of workflow models, a workflow engine
to support the execution of workflow models, and at least one worklist handler.

Workflow Engine: The runtime component of a workflow system responsible for determining which tasks
need to be performed and when, for maintaining execution logs, and for delegating the performance of
tasks to software applications/services or to a worklist handler.

Case: (Also known as Workflow Instance) A specific instantiation of a workflow model as a result of an
event. For example, an order management workflow is instantiated every time a new order arrives.
Each of these orders leads to a different case.

Task: (Also known as Activity) A description of a unit of work that may need to be performed as part of a
workflow. Workflow models are composed of tasks. Generally, a task may be either manually carried
out by a person or automatically by a software application.

2See https://sourceforge.net/docman/?group_id=114611

https://sourceforge.net/docman/?group_id=114611

3.3. BUILDING A SIMPLE WORKFLOW EXAMPLE 25

Work item: (Also known as Task Instance) A particular instance of a task that needs to be performed as
part of a given workflow instance.

Worklist: A list of work items.

Worklist Handler: (Also known as a Task Management Service) A software component that manages work
items issued by a workflow engine and that assigns, prioritises and presents these work items to human
participants according to policies that may be configured in the workflow model and/or at runtime.

3.3 Building a Simple Workflow Example

Designing a workflow typically begins with a process modelling exercise. A process modelling expert sits
down with a domain expert, and picks their brains on “how things are done”. The knowledge gained on
the sequencing and nature of the work done is then transformed into an executable workflow. Let’s take a
look at an example transcript between a process modelling expert, Processa Maree Experta, and her cousin,
Domainic Experta, who runs the credit application department of a company called Loans-R-Us.

Processa: So, how does a credit application begin?
Domainic: Well, an application arrives in our office. Once we receive it, we validate the claim.
Processa: What happens then?

Domainic: We determine what credit requirements there are for the application, then we seek a credit report
for the applicant.

Processa: So the credit report is requested after the credil requirements are determined?

Domainic: Mostly. Sometimes we request the credit report first. Actually, the order in which we do them
doesn’t really matter.

Processa: Ah, so both tasks could be done at the same time?
Domainic: Yes, I guess they could.
Processa: Then what happens?

Domainic: Once we have both the credit report and credit requirements, we can tell whether we need to
do a large credit approval, or a small approval. Only senior staff here are allowed to approve large credit
applications.

Processa: So, what makes a credit application large?

Domainic: If the application is for $5,000 or more, it’s considered large. Any lesser amount is considered
a small application, and can be done by anybody in our department.

Processa takes this transcript, dumps it on your desk and tells you to implement a workflow to match. What’s
more, she wants you to do it with YAWL3.

In a nutshell, a workflow specification in YAWL describes what work needs to be done, when and by whom.
Each YAWL specification is composed of one or more YAWL nets: exactly one starting net (also known as
the root or parent or top-level net) and zero or more sub-nets. In this tutorial, we’ll keep things simple and
we will only consider the case of a YAWL specification composed of one net (the starting net). A net has two
mandatory elements: an input condition which acts as the starting point (graphically represented like this:

@) and an output condition which signals the end (the C) symbol). Figure 3.1 depicts the YAWL Editor

3This chapter is more an overview of YAWL than an examination of its tool support. The assumed knowledge at this point
is that you have installed and can begin using the YAWL toolset by following the instructions provided in Chapter 2.

26 CHAPTER 3. GETTING STARTED WITH YAWL

with a brand new specification open and with the specification’s starting net visible. Don’t worry too much
at this stage about the various components of the Editor — it is described in detail in Chapter 4

006 YAWLEditor
B[2BBER[E vz Qw 2lc|al [m[#{a=]z]|a] w]w &

BOO

)

Task lcon
No lcon
b {} Manual ® @
> -J‘__’ Automated

> ﬁ Routing
2. Plugin

I @ @ I Left-click on the selected net to create a new atomic task.

Figure 3.1: A New Specification and its Starting Net

It’s time to start modelling the work to be done. Typical workflow specifications in YAWL will make
significant use of atomic tasks. An atomic task (represented in YAWL as a square) models a stand-alone
piece of work that is either manual or automatic, and it’s here that workflow designers starts earning their
money. Just how much work should a single atomic task represent? The answer is not always obvious.

Looking again at Processa’s transcript, we decide that an initial atomic task is needed for receipting and
validating a claim. After that, two additional pieces of work need to be done, but in no particular order.
We'll add an atomic task each for determining credit requirements, and seeking a credit report. The next
step requires that both credit requirements are determined, and that a credit report be ready. We need an
extra task to run only once they are finished which will decide, based on the application amount, whether
we then send the application on for a large or a small approval process. We expect large approvals and small
approvals to have differing work requirements, so we’ll model each type of approval as a separate task.

In all, we’ve identified six distinct pieces of work. Place six atomic tasks onto the starting net and give each
a meaningful label. You should have the skeleton of a workflow that looks something like figure 3.2.

We're now ready to begin describing how the tasks in our starting net are to be ordered in their execution
(known as its control-flow). The transfer of work between two tasks is done through a “flow”. Flows are
depicted within YAWL as unidirectional arrows. For a YAWL specification to be valid, every task must be
tied into a net via flows that can be traced back to the net’s input condition, and which will eventually lead
to the net’s output condition.

We’ll need a flow from the input condition to the Receive and Validate Application task, then two flows from
that task to the tasks Determine Credit Requirements and Obtain Credit Report respectively. From each of
these, a flow must go to the task Choose Approval Process. From this task, we need a flow going to the tasks
Large Credit Approval and Small Credit Approval respectively. From these last two tasks, we need flows to
the final output condition.

By default a YAWL task can only have one incoming flow and one outgoing flow. When we need more
incoming flows to a task, we must unambiguously state how the task should handle its inflows: should it wait
for all of them? Should it wait for only one of them? Or something in the middle? This disambiguation is
done by ‘decorating’ the task with a join. A similar situation holds when a task has multiple outgoing flows.
In this case, we need to decorate the task with a split.

3.3. BUILDING A SIMPLE WORKFLOW EXAMPLE 27

e06 YAWLEditor
 m@BEEE 2= [2]c|a) [m[#]a]=]=]=]]] R,
BOO '

G

Task lcon I:‘

N‘t_z lcon Determine I:‘
> 1'_] Manual Credit Large Credit
» <, Automated Requirements Approval
> H Routing

3 Plugin g

Choose
® [®
Receive and D Process

Validate Obtain

Application Credit Report Small Credit

Approval

I @ @ I Left-click on the selected net to create a new atomic task.

Figure 3.2: Atomic Tasks Added to the Starting Net

Figure 3.3 lists the available joins and splits that can be used on tasks, along with a brief description of the
behaviour to expect from tasks when using them.

Returning to our example, the tasks Receive and Validate Application and Choose Approval Process both
require decoration. The first of these two tasks requires an AND-Split because the subsequent tasks can be
done in parallel. The second task should have an XOR-split decorator to signal that either of the subsequent
tasks should be performed, but not both. With these splits and joins in place, we can now connect the
remaining tasks as depicted in figure 3.4.

We now need to say how information passes from YAWL to its participants (e.g. workers and external
applications) and how information comes back into YAWL once they’re finished. This is done by attaching
a decomposition to each task. Every atomic task that requires work to be performed needs to have a
decomposition. A decomposition may be described as a contract between the task and its ‘environment’,
describing the data that will be assigned and updated when the task is performed and the so-called YAWL
Custom Service (a web service designed for the YAWL environment) that will be responsible for the task’s
execution. Note that the YAWL Engine does not directly perform the work of the task — responsibility is
always deferred to the designated YAWL Service. It is possible to define an atomic task without assigning
it a decomposition: they represent so-called “empty” steps and are generally used to capture a point in the
specification where there is a need to synchronise certain tasks and start a new set of tasks.

In our working example, all tasks except one require a decomposition. It is enough at this stage to simply
create a decomposition per task. To do this, you need to right-click on each task and select the “Set Task
Decomposition” option. For this example, we’ll choose the Default Engine Work-list (actually the worklist
handler built in to the Resource Service) as the “type of decomposition”. This tells YAWL that when the
task is ready to be executed, it should be displayed in the default worklist. Every instance of the task will
then appear in the worklist of human participants so they may receive data relative to the task instance,
work on that data, and finally return work results to YAWL. Another type of decomposition, which we won’t
illustrate in this tutorial, is to associate tasks to a Web Service that can, for example, send notifications to

28 CHAPTER 3. GETTING STARTED WITH YAWL

Name: Symbol: Description:
Split Types:

The XOR-Split is used to trigger only one outgoing flow. It is
best used for automatically choosing between a number of possible

. »>
XOR-Split I:‘Ejp exclusive alternatives once a task completes.
The AND-Split is used to start a number of task instances simul-
> taneously. It can be viewed as a specialisation of the OR-Split,
AND-Split I:@j} where work will be triggered to start on all outgoing flows.

The OR-Split is used to trigger some, but not necessarily all outgo-
ing flows to other tasks. It is best used when we won’t know until
. > _

OR-Split I:@:p run-time exactly what concurrent resultant work can lead from the
completion of a task.

Join Types:

A task with an AND-Join will wait to receive completed work from
L all of its incoming flows before beginning. It is typically used to
AND-Join _q}:‘ synchronise pre-requisite activities that must be completed before
some new piece of work may begin.

Once any work has completed on an incoming flow, a task with an
. XOR-Join will be capable of beginning work. It is typically used
XOR-Join _:@:‘ to allow new work to start so long as one of several different pieces
of earlier work have been completed.

The OR-Join ensures that a task waits until all incoming flows have

- either finished, or will never finish. OR-Joins are “smart”: they
OR-Join :@:‘ will only wait for something if it is necessary to wait. However,
understanding models with OR-joins can be tricky and therefore

OR-joins should be used sparingly.

Figure 3.3: Supported Splits and Joins in YAWL

people via SMS and receive replies from them also via SMS.

The one task in our example that does not need a decomposition is the one labelled Choose Approval Process.
This task does not need any participant interaction because the decision on whether to choose either Large
Credit Approval or Small Credit Approval can be automatically determined with data made available to the
workflow instance.

Congratulations, you now have an executable YAWL workflow specification. However, more effort is needed
with respect to data and resourcing to achieve real utility. All YAWL can currently do with this specification
is walk an unspecified user through a default path of the workflow.

3.4 Advanced Workflow Concepts

A specification capable of only walking a user through a path of a workflow is hardly going to win us any
awards in workflow automation. We still have at least two major concerns to address before our specification
becomes useful.

Firstly, we need to decide which participants should perform which tasks. This is discussed in section 3.4.1.
Secondly, we need to figure out what data these participants need from the workflow system, what data they
need to supply the workflow system, and how the workflow system will use data to implement automated
choice between alternatives. Concerns involving workflow data are covered in section 3.4.2.

3.4. ADVANCED WORKFLOW CONCEPTS 29

006 YAWLEditor - /Users/adamsmj/Documents/research/temp/gs2.yawl
DEDOER® Rm| [Blc|al [m[#[u]=][=]=] m]w]][] B[]
e - { () Simple Credit Application |
oG
&
Task lcon

No lcon

> {_y Manual De(t:er:!Lne arge Credit
> 1—:__, Automated re i Approval
> | Routing Requirements

] Plugin ~

Choose
Approval
Process

Receive and
Validate
Application

Obtain Small Credit
Credit Report Approval

I @ @ I Select a number of net elements to manipulate.

Figure 3.4: Multiple Flows Between Tasks

3.4.1 Modelling Resourcing Requirements

It’s time now to add detail to our YAWL specification, describing which participants should be doing particu-
lar pieces of the work specified. We’ll assume that the entire workflow is to be carried out by the “Applications
Department” of Loans-R-Us. All employees within this department are capable of performing the role Credit
Officer, but a subset of these with several years of experience also perform the role Senior Credit Officer.
Anyone with the Credit Officer role is allowed to approve small credit applications. Only those performing
the role Senior Credit Officer are allowed to do the final approval of large credit applications.

We therefore have a modelling requirement where every credit officer is capable of processing a credit appli-
cation right through from its receipt to approval, so long as the application is for a small amount. When it
comes to the step of approval for large credit applications, however, only senior staff are allowed to do this
approval.

We first need to establish an organisation model within a running YAWL system where we identify those
participants from the Applications Department. For each of these, we assign the Credit Officer role. For the
subset of participants recognised as senior, we also assign an extra role of Senior Credit Officer.

To define this organisational model you need to log into the YAWL Resource Service (for now, we’ll use
the generic username admin and password YAWL). Assuming you used one of the automatic installers, this
is simply a matter of starting the engine (choose “Start Engine” from the options shown for the YAWL
program) followed by starting the Resource Service (choose “YAWL Control Centre” from the options shown
for the YAWL program). When you have logged in you can create new roles by choosing the “Org Data
Mgt” form from the menubar, and new participants by choosing the “User Mgt” form from the menubar.
This is illustrated in Figure 3.5 where the role “Senior Credit Officer” is defined and Figure 3.6 where the
participant “Michael Corleone” is defined and assigned that role.

Once we have defined all the required roles and participants, we can specify resourcing requirements for tasks.
Right click with your mouse on a task and choose “Manage Resourcing” from the popup menu (this menu

30 CHAPTER 3. GETTING STARTED WITH YAWL

ene YAWL 2.0: Organisational Data Management =
ﬁ Q L @ ® ﬁ ﬁ E http://localhost: 8080/ resourceService /faces /orgDataMgt.jsp @0‘ | {l Google
www.yawlfoundation.org U
C | Admin Queues | Cases | Users I Org Data I Services | Logout |)
| Roles | Capabilities | Positions | OrgGroups | L =] %

Role Names Description Belongs To

Account Manager Can approve applications for |r1i| j

Carrier Admin Officer amounts exceeding $5000|

Client Liaison

Courier

Finance Officer

Junior Supply Officer Not:

Order Fulfilment Manager s

PO Manager

Senior Finance Officer Save Add

Senior Supply Officer @

Shipment Planner j

Sunnhs Admin Mffinar k! | Reset | | Remove |
Add New

Senior Credit Officer

Done th A

Figure 3.5: Defining a Role

item will be disabled for tasks without decompositions defined). The Resourcing Wizard will begin and you
can choose the interaction strategy for that task. In Figure 3.7 an interaction strategy is chosen where, at
runtime, the system offers a work item to all authorised participants, from where one of these participants
can then choose to perform this work item and later choose to actually start working on it. This strategy
(Offer: System, Allocation: User, Start: User) is a common interaction strategy for tasks to be executed by
participants.

Step 2 of the Resourcing Wizard then allows you to choose who is authorised to execute work items of the
particular task. In Figure 3.8 the “Senior Credit Officer” role is assigned to the task, thus guaranteeing that
at runtime work items of this task are offered only to participants that perform that role.

Resourcing requirements can be quite complex, and the YAWL environment offers comprehensive support
for the vast majority of workflow resource patterns, but for the moment we will simply assign roles to the
various tasks and apply the System-User-User interaction strategy.

3.4.2 Modelling Data Requirements

We now need to specify what data will be passed about during the execution of an instance of this specification.
Specifically, we need to describe what data participants will need in each work item, and what data they
must return to the Engine once the work item is complete. We also need to have a way of moving data
about in the running workflow, including how we can use that data to automatically choose between flows
in a running workflow.

We stated before that task decompositions are used to define how a running workflow interacts with the
external ‘environment’. In fact, all nets of a YAWL specification along with all tasks that require interaction
with the external environment need a decomposition. Decompositions can have a number of parameters (or
variables) defined for them, describing what data must be supplied to a running net or task instance, and
what data that net or task instance will eventually deliver. Each parameter has a name it may be referenced
by, a type dictating valid values it may store, a designation indicating how that data may be used, and a
scope defining the visibility of the parameter.

3.4. ADVANCED WORKFLOW CONCEPTS 31

eoe YAWL 2.0: User Maintenance (=]

LR NI] @OHGCODQI«E @

TR http:/ flocalhost: 8080/ resourceService,/ faces/participantData.jsp

www.yawlfoundation.org

C | Admin Queues | Cases I Users I QOrg Data | Services | Logout |)
Participant: | Corleone, Michael d| Privileges

FirstName: icrag] # Choose Which Work item 1o Start
Last Name: Corleane # Start Work Items Concurrently
pesaie: me ! Administrator ™ Reorder Work tems

Description:

) View All Work Items of Team

) view All Work items of Org Group

Notes:
[} Chain Work Item Execution

) Manage Cases

Roles | Positions | Capabilities Password

Owns: Avallable:

Senior Gredit Officer Confirm:

PO Manager

Account Manager
Carrier Admin Officer
Client Liaison
Courier

Finance Officer |
Junior Supply Officer

Order Fulfilment Managze

PO Manager j
Senior Credit Officer ¥ Reset Remove

lels

v (@ |

Figure 3.6: Defining a Participant

Parameters can belong to one of two scopes, which we’ll name net scope, and task scope. At runtime, every
net and task instance with a decomposition will have data stored as a number of parameters belonging to
it. To get data from a net instance to a task instance it contains, or visa-versa, we require a data transfer.
In YAWL, all data is passed this way — from net-level to task-level when a task instance starts, and from
task-level back to net-level when the task instance completes; data cannot be directly transferred from one
task instance to another.

Valid designations for a task parameter are input, output or both Input & Output. A task parameter with an
input designation is one where we expect data to be delivered from a net-level parameter to that parameter
at run-time. A task parameter with an output designation can have its data output to a containing net-level
parameter once a task instance has completed.

Just like task parameters, net parameters may have input and/or output designations. But in addition to
these two options, net parameters may have a local designation. You can think of a net parameter with a
local designation as a local variable. They are used to store intermediate data during the execution of a
process instance.

Data transfer from a net a task is achieved via inbound mappings. An inbound mapping is a statement that
says how to transfer data from the net’s parameters to a task’s input parameters. Inbound mappings are
evaluated when the task starts. Conversely, once the task is completed, data is moved from the task’s scope
to the net scope by means of outbound mappings. An outbound mapping is a statement that says how to

move data from the task’s output parameters to its containing net’s parameters. XPath expressions* are

4For more advanced workflows, XPath expressions may prove too limiting. Accordingly, YAWL allows developers to also use

32 CHAPTER 3. GETTING STARTED WITH YAWL

eee Manage Resourcing Wizard for Atomic Task "Receive and Validate Application”

Step 1 : Choose Behaviour At Interaction Points

There are three key decision points for managing the resourcing of work items spawned from a task. At each
of these interaction points, you may choose to have the system dynamically make a decision on resourcing
at each point, or alternately, allow a user to manually make each decision. Each interaction point is briefly
described below:

® Offer: The point at which it is decided that a number of participants could undertake the wark item.
® Allocation: The point at which one of the participants offered the work item is nominated to do that
work item.
@ Start: The point at which the participant allocated a work item begins working on it.
Offering a work item for this task to a number of participants is to be done by: () User (*) System

Allocating a work item for this task to one of the offered participants is to be done by: ® User () System

Starting an allocated work item of this task is to be done by:) User () System

< Back [> Next J [Einish J

/)

Figure 3.7: Specifying the Interaction Strategy

666 Manage Resourcing Wizard for Atomic Task "Determine Credit Requirements”

Step 2 : Specify System Behaviour when Offering a Work Item

The offer process involves choosing which participants should be informed of the existence of the work item, one of
whom will eventually do this work. As you have specified the system manage the offer process, you must now choose
who the work item should be offered to. Begin by specifying a set of participants and/or to distribute offers of work to.
You may also specify a net parameter which at runtime will contain a participant's userid or the name of a role.

rParticipants ~Roles ~Met Parameters
Peter Clemenza (pc) r Junior Supply Officer r = N
Stefano Clemenza (sca) Order Fulfilment Manager
Don Vito Corleone (dvc) PO Manager
Fredo Corleone (fc) U Senior Credit Officer
Mama Corleone (mac) Senior Finance Officer
Michael Corleone (mc) Senior Supply Officer
Sonny Corleone (sc) Shipment Planner
Carmine Cuneo (cc) Supply Admin Officer
Don Carmine Cuneo (decc) |a ‘Warehouse Admin Officer A
Johnny Fontaine (jf) i Warehouse Officer Y

[' < Back J [> Next J [Einish J

P

Figure 3.8: Assigning a Role

used to describe inbound and outbound mappings. Accordingly, the parameters of nets and tasks in YAWL

XQuery expressions for data transfer in such cases.

3.4. ADVANCED WORKFLOW CONCEPTS 33

are all encoded as XML documents.

Net Instance

Task Instance Outbound

Mappings

Inbound
Mappings

Output Output

Inp l.l
=
| |

Figure 3.9: Example Data Transfer between a Net and Task

Figure 3.9 depicts example data transfers over the lifetime of a task instance. The task’s decomposition
defines two input parameters and three output parameters. When the task instance starts, values for its
input parameters are populated by executing the input mappings for the task, which are then passed onto
the task’s designated YAWL Service. The default worklist handler is an example of an external service, but
there are many others and advanced users are able to define and add virtually any service they want. The
external service eventually finishes its execution, resulting in values being supplied to the output parameters
of the task instance. The output mappings for this task instance are then executed, resulting in a number of
parameters in the task’s containing net instance being updated with values from the task instance’s output
parameters.

Now we have a basic understanding of data transfer in YAWL, let’s start specifying the data transfer require-
ments of our workflow specification. Since all data are passed as XML documents, all data types are defined
using XML Schema Language — there are over 40 in-built XML Schema data types, and YAWL allows users
to also define their own). For our example, will limit our parameters to be of either XML Schema string or
double simple types. We’ll go through our atomic task decompositions now and add parameters to each task
decomposition first before we add the necessary data transfer mappings for moving data between tasks and
their containing net.

Imagine that we have finished an exercise of determining what data must be passed out of YAWL at the
starting of each task of our specification, and what data must be returned back into the system when each
task completes. We note through the exercise that even though the tasks Large Credit Approval and Small
Credit Approval are done by different parts of the organisation, they have the same data requirements, and
can both use the same decomposition (which we’ll call Credit Approval). We have a resulting parameter
requirement per decomposition as per figure 3.10.

[Decomposition [Param-Name | Type [Designation |
[Receive and Validate Application [ApplicationID [string [output]
Determine Credit Requirements ApP11c§t10nID string input
ApplicationAmount | double output
Obtain Credit Report App}lcatlonID str?ng input
CreditReportRef string output
ApplicationID string input
Credit Approval CreditReportRef string input
ApplicationAmount | double input

Figure 3.10: Parameters Required for Task Decompositions

To give you some idea of how this might look, figure 3.11 is a screenshot of the Editor showing the decom-
position for the task Determine Credit Requirements with an input parameter ApplicationID, and an output
parameter AppplicationAmount. When running our specification, a participant will be offered a work-item

34 CHAPTER 3. GETTING STARTED WITH YAWL

for an instance of this task. They will be given an application identifier, and will work outside of the system,
eventually generating an application amount for that application. Figure 3.12 shows how the default worklist
handler displays an instance of this task for a participant to work with.

o066 YAWLEditor - /Users/adamsmj/Documents/research/temp/gs2.yawl
‘mamEEE = En Plcla M=z W [$[¥ B[]«

@ @ @ , [@ Simple Credit Application]
£
[i]

®) O Update Task Decomposition "Determine Credit Requirements”

,—{-HnnthrcH Extended Attributes |

|, Task Icon
No Icon
> é Manual Task Decomposition Label: (8¢ (R0 VI, 001 65
> {:;'J Automated rTask Decomposition Variables
> H Routing
3 Plugin = Name Type Usage Create...
Receive and ApplicationID string Input Only
Validate ApplicationAmount double Output Only é Update...
Application))
@ Remove...

rYAWL Registered Service Detail
YAWL Service: | Default Engine Worklist & |

rExternal Interaction

“
' [[] Automated (Set Codelet... |

) N

I © © I Select a number of net elements to manipu

[Done J [Qancel J

Figure 3.11: Establishing Parameters on a Task Decomposition

YAWL 2.0 - Edit Work Item

8eo6

*éu@xﬁﬁ @GHUCUDQIG

(w)

www.yawlfoundation.org Leading the World in Process Innovation

Edit Work Item: 2.3

e i i Shin The value ‘5000 dellars' is not valid for field
. ‘ApplicationAmount’. This field requires a value of
ApplicationAmount: | 5000 dollars ouble' type.
ApplicationID: XyZia3

| Cancel | | Save | |Complete|

Done

Figure 3.12: A Determine Credit Requirements work-item shown on a dynamic form

Attaining an application amount may be as trivial as reading the number from the relevant form, or as

3.4. ADVANCED WORKFLOW CONCEPTS 35

involved as considering the business’s current risk exposure, running calculations, and adjusting the figure to
something the insurance company is more willing to accept. The exact nature of the work to be done is left
to the participant and the business rules of the organisation, and only that data relevant to progressing the
workflow needs to be passed back into the system once they are done.

Because we can’t transfer data directly between tasks, we’re also going to need a number of local parameters for
the decomposition of our starting net. Specifically, we’ll need matching ApplicationID and ApplicationAmount
local parameters at the net level, and another called CreditReportRef that will be used by a couple of other
tasks in the workflow.

8eNe Update Parameters for Atomic Task "Determine Credit Requirements”
~Input Parameters
XQuery Task Variable Create...
{/S8imple Credit Application/ApplicationID/text()} ApplicationID
Update...
b
Remove...
Net Variables Task Variables
Mame Type Usage Name Type Usage
hpplicationID string Local ApplicationID string Input Only
ApplicaticnAmcunt double Local ApplicationAmount double Output Only
CreditReportRef string Local
Output Parameters
XQuery Met Variable Create...
{/Determine Credit_ Requirements/Applicationamount/text()} Applicationhmount
Update...
b
Remove...

Done

)
e

Figure 3.13: Data Mappings for Determine Credit Requirements Parameters

With these local net parameters in place, we now need to specify how data is passed between the net
and tasks with XPath expressions. The XPath expressions needed are fairly straightforward. For a task
input parameter, we need the expression to fetch and populate the value of this parameter with that of its
corresponding net parameter. For a task output parameter, the matching net parameter needs an expression
to retrieve the value of the task parameter. Figure 3.13 shows an example of the queries needed for the
Determine Credit Requirements task (note that XPath expressions of this kind are generated with a couple
of mouse clicks in the Editor). A similar exercise can then be conducted for the parameters of the remaining
tasks.

The only thing remaining to do with data in our specification is to deal with the XOR-Split. XOR-splits
need a boolean XPath expression to be associated with each outgoing flow of the split®. These expressions
are evaluated once a task instance completes. Thus, the expressions can only interrogate the state of a net
that a recently completed task has updated. Expressions that evaluate to true indicate that a flow is to be
taken. In the case of an XOR-Split, the flows have an ordered priority specified. The first flow in order whose
XPath expression evaluates to true will be the only flow taken from a completed task.

The only task we need to consider in this regard is Choose approval process. Consulting our transcript again,

5Each XOR-split and OR-split has one flow specified as the default, and is assumed to always have true value, to ensure
that the workflow can continue even when all other flow conditions evaluate to false.

36 CHAPTER 3. GETTING STARTED WITH YAWL

approval amounts of less than $5000 are to be routed to the Small Credit Approval task. Anything more
requires Large Credit Approval to be run. The XPath expressions needed to capture this choice are shown
in Figure 3.14. Once this is specified, we are done. We have a workflow specification that ensures the right
work and data gets routed to the right participants at the right time.

o666 YAWLEditor - /Users/adamsmj/Documents,research/temp/gs2.yawl
% — —
Z I b, - n H] L TR [
‘ mlaB[EE]E] Em| [B]c]al [m[4]u]=][=]2] m]w| €2 B][3][2]a
|:| ﬂ O f @Simple Credit Application]
Task lcon
No lcon
> {} Manual Determine arge Credit
> L, Automated Credit Approval
> ﬁ Routing Requirements
3 Plugin -
Receive and Choose
Validate Approval
Application Process
e8eée Flow detail for Atomic Task "Choose Approval Process" yall Credit
Target Task Predicate Approval
Large Credit Approval number(/Simple Credit Ap...
Small Credit Approwval true() @ Predicate...
e — L
eNne Update Flow Predicate
Net variable: | ApplicationID o XPath Expression
© © |Selectd Skl = H C = -) 2
number (/Simpl di lication/Applicatior nt/ = 5000 "' P
- number (/Simple Credit Application/ApplicationAmount/text()) »= 5 o
€ M
Done Cancel
| P

Figure 3.14: XPath predicates to choose between flows of an XOR-Split task

3.5 Where To From Here

You've now seen how we can construct a workflow specification for YAWL. We’ve used atomic tasks, with
various types of splits and joins, along with resourcing and data requirements to implement a simple credit
application processing workflow specification. But, we have so far only scratched the surface of what can be
achieved with YAWL.

What you haven’t seen yet is how larger workflows can be constructed by binding a number of nets together
with composite tasks. We are also capable of iterating through a number of instances of a single task using
Multiple Instance Task constructs. A single task can also be used to trigger the cancellation of current
work in other parts of the workflow, which might be used for modelling a customer calling and cancelling an
order that is currently being processed. Finally, we haven’t described conditions, which represent the state
a workflow is in after one task is finished but before another starts. Conditions allow us to model two or
more participants competing for the same work, or a user making a decision on things that workflow systems

3.5. WHERE TO FROM HERE 37

cannot not automatically determine. An example of this would be asking a participant to decide on whether
the aesthetics of some partially assembled work are appealing or not, and having the workflow coordinate
further work based on that choice.

What we’ve also glossed over here is how to actually use YAWL’s toolset. We have used version 2.0 of the
Editor and of the Engine for the screenshots in this chapter. The components of YAWL can all be found at
Sourceforge, via the URL http://sourceforge.net/projects/yawl/. Further explanations of the use of
this environment can be found in the remainder of this user manual, while there is also a technical manual
for those that want to develop more complex applications. A number of case studies documenting the use
of YAWL are also available. Mailing lists and forums around the components of YAWL can also be accessed
via this Sourceforge URL. And as mentioned earlier, YAWL is the product of several years of research into
workflow patterns and formal foundations of workflow. This research, along with other informative material
is available via the URL http://yawlfoundation.org/.

http://sourceforge.net/projects/yawl/
http://yawlfoundation.org/

38

CHAPTER 3. GETTING STARTED WITH YAWL

Chapter 4

The Editor

Before a workflow model can be executed it must first be defined. This chapter describes the YAWL Editor
(version 2.0), a tool for creating, editing, validating and analysing workflow specifications. New users are
encouraged to read the chapter sequentially; experienced users may pick-and-choose what they need from
this chapter.

Figure 4.1 illustrates the interactions among some of the major components of the YAWL environment.

YAWL Process Editor

Workflow API calls
specification

YAWL Runtime Environment

T3 Other services
XML over HTTP

Workflow engine

Figure 4.1: The YAWL Components

In this chapter, this icon indicates a hands-on method or instruction.

4.1 Launching the YAWL Editor

The Editor is installed along with the other YAWL System components using any of the installers described in
Chapter 2. It can also be installed manually by downloading the latest version from the YAWL SourceForge
website: http://sourceforge.net/projects/yawl/. Be sure that the version number of the Editor you
are using matches the version of YAWL installed.

The YAWL Editor is distributed as a Java Archive (jar). Double click on the YAWLEditor2.0.jar file to start

39

http://sourceforge.net/projects/yawl/

40

CHAPTER 4. THE EDITOR

the application (where supported). The YAWL Editor can also be started from a command line or Terminal

prompt:

java —jar YAWLEditor2.0.jar

4.2 The YAWL Editor Workspace

The first time you start the YAWL Editor, you will be presented with a blank canvas, and a prompt in the
Status Bar asking you to open or create specification to begin.

Before you create your first specification, let us take a brief tour of the Editor’s workspace and the elements
within (the use of each element is fully described in later sections). The workspace is shown in Figure 4.2.

Specification Net Alignment Cancellation
Maintenance Maintenance Options Sets
Specification | Net Edit Elements Tools Niew Help
(B]s]e|B|e]|g|(]=]|(Elz](2]c|a|fm]#]a]=]s]=]|]u]=|]-2]||=] =] <]
L] Specification
Ul Ol Verification Edit size Zoom
i and Analysis Options Options Options

O e

$ 'Wf-Elements &
3 Task Icon Tools

Mo lcon
o ¢} Manual
o-G# Automated
o E Routing

2 Plugin

|Task icons
Join | Split
Modeling canvas
Hz:

NONE | AND

B m

XOR OR

O[] o

W
Fill:
| Decorations
Notes & Problems panel

Invalid Resource References

An

invalid

resource reference

in Task

'Loss Or Damage Management' of Net 'Loss_Or_Damage_Management' has been removed.

An

invalid

resource reference

in Task

'Process Freight Payment' of Net 'Process_Freight_Payment' has been removed.

fit] »

An

invalid

resource reference

in Task

'Prepare Transportation Quote' of Net 'Carrier_Appointment' has been removed.

An

invalid

resource reference

in Task

'Arrange Delivery Appointment' of Net 'Carrier_Appointment' has been removed.

1

Engine Status

© © I Use the palette toolbar to edit the selected net.

Resource Service Status

Hints & Messages

Figure 4.2: The YAWL Editor Workspace

4.2. THE YAWL EDITOR WORKSPACE 41

4.2.1 The Toolbar

The Menu Toolbar contains eight groups of buttons to assist you in maintaining your YAWL specification.
The menu can be repositioned by dragging the left-hand anchor bar. Each button may be enabled or disabled
at certain times depending on what you are doing in the Editor.

Specification Maintenance

B =l =] [E] =™

This group of buttons provides the standard file options (left to right):

o Create a new specification;

« Open an existing specification file. Specification files will have a .yawl extension (or sometimes a .xml
extension, if they are an ‘engine’ file created with a pre-2.0 Editor version);

« Import a specification file created with a pre-2.0 version of the Editor. These files have a .ywl extension.

o Save the currently loaded specification to file. For newly created specifications, this behaves the same
as Save As;

o Save As a new file name;

o Close the loaded specification. If there are any unsaved changes, you will be prompted to save the file
first before closing.

Specification Verification & Analysis

&
The first of these two buttons allows you to validate your specification against YAWL syntax and semantics,
while the second allows you to analyse your specification for deadlocks and other issues.

Net Maintenance

) [

Each workflow specification consists of one or more nets. You can use these buttons to add a new Net to or
remove an existing Net from your specification.

Edit Options

=
This group of buttons provides the standard Undo and Redo options as well as the option to delete the
currently selected object(s).

42 CHAPTER 4. THE EDITOR

Alignment Options

|J']J|J|_'|_E_-|_-|

These buttons can be used to assist with the alignment of objects within your specification, when multiple
objects have been selected. Left-to-right, they allow you to align selected objects based on:

o top edges;

« centres horizontally;
o bottom edges;

o left sides;

e centres vertically;

o right sides

The first selected object is used as the reference to align the other objects to.

Object Sizes

| w

o i,
To increase or decrease the size of an object or objects within your specification, select the object(s) and
then use these buttons.

Cancellation Sets

==
L o

These buttons allow you to include in and/or exclude elements from the cancellation set of a task.

Zoom Options

e

These buttons allow you to apply zoom functionality to the currently selected net. From left-to-right, reset
the zoom to the actual size, zoom the entire net out, zoom the entire net in, and zoom into the currently
selected net elements.

4.2.2 The Menubar

This section provides a brief overview of the YAWL Menus located along the top of the YAWL Editor. The
majority of menu choices are also available via the menu toolbar.

Specification MNet Edit Elements Tools View Help

Specification

In addition to the Specification Maintenance, Verification and Analysis toolbar items, this menu also contains
these sub-items:

4.2. THE YAWL EDITOR WORKSPACE 43

e Open Recent: show a list of the eight most recent specifications loaded or saved in the Editor, so that
one can be selected to be opened, saving the trouble of navigating to it via the file open dialog. If you
hover the mouse over a listed file for a moment, a tip will appear showing the file’s full path;

o Print: prints the entire loaded specification (graphically);
o Update the Specification Properties: such as specification name, author, description and so on;

o Update Datatype Definitions: where you can define your own data types to be used in the specification.

Net

In addition to the Net Maintenance toolbar items, this menu also contains these sub-items:

o Set Starting Net: for specifications containing several nets, this item allows you to specify which of
them is the starting net (i.e. the net that begins execution of the workflow instance);

o Update Net Detail: shows a dialog where you can set the name of the net, and create/update/remove
net-level variables;

o Export to PNG Image: saves a graphical image of the net to a file;
o Net Background Colour: set the background colour of the selected net;

o Print Net: prints the currently selected net (graphically).

Edit

In addition to the Edit Options toolbar items, this menu also contains sub-items to Cut, Copy and Paste
objects to/from the canvas.

Elements

This menu contains the Alignment Options, Object Sizes and Cancellation Set toolbar item sets. You can
also set the fill colour for all selected tasks and conditions using this menu.

Tools

This menu contains the following items:

o Engine Connection Settings: The Editor must connect to a running Engine to obtain a list of the
available services that a task can be assigned to. This menu item allows you to set the parameters for
a connection to the Engine and to proceed with a connection.

e Resource Service Connection Settings: The Editor must connect to a running Resource Service to
obtain a list of the available resources that task can be allocated to (amongst other things discussed
in later sections). This menu item allows you to set the parameters for a connection to the Resource
Service and to proceed with a connection.

o Configure Specification Analysis: This item will display a dialog where various verification and analysis
techniques may be chosen. If the wofyawl analysis utility is also supplied in the same directory as
the editor, the configuration dialog will allow specification designers to configure and use wofyawl for
additional specification analysis'.

1Only available when installed in a Windows environment.

44 CHAPTER 4. THE EDITOR

View

You can use this menu to toggle:
o Tooltips, which provide useful hints when your mouse is positioned over various items;
o Anti-aliasing of graphical components; and
e Grid on the canvas background — useful for aligning objects visually.

This menu also provides options to set the font size used for element labels, the default background colour
for nets, and the default background colour for elements (i.e. tasks and conditions). Finally, it shows a list
of all the nets of the loaded specification, allowing the selection of one from those available for editing.

Help

The Help Menu provides an “About the Editor” dialog, describing components used in the editor’s construc-
tion, a list of source code contributors, and the version and build date of the Editor in use.

4.2.3 Workflow Elements and Tools

The Workflow Elements and Tools panel contains seven selectable buttons — five YAWL language icons and
two selection tools — that assist with creation, selection and positioning of objects within your specification.
This panel is also accessible by right-clicking on any blank area of the canvas.

Once an element is selected, it is possible to place objects of that type on the canvas by left-clicking the
mouse button.

Atomic Task

]

Select this button to create an Atomic Task, which represents a single task to be performed by a human
participant or an external application.

Composite Task

O

Select this button to create a Composite Task, which is a container for another YAWL (sub) Net - with its
own set of YAWL elements constrained by the same syntax.

Multiple Instance Atomic Task

L

Select this button to create a Multiple Instance Atomic Task, which allows you to run multiple instances of
a task concurrently.

Multiple Instance Composite Tasks

Select this button to create a Multiple Instance Composite Task, which allows you to run multiple instances
of a composite task concurrently.

4.2. THE YAWL EDITOR WORKSPACE 45

Condition

O

Select this button to create a Condition, which is a way to represent state for the Net.

Marquee Selection

T
Lo--4

Select this button to activate the Marquee Selector, which will allow you to select individual or multiple
objects by clicking and dragging the left mouse button. Note: you cannot create flows (arrows between
tasks) while using the Marquee Selector.

Drag Net Window

KX

Select this button to drag the visible window of a net around that net.

4.2.4 Other Components
The Canvas

The Canvas is where elements are placed to create and modify a workflow specification.

Task Icons Panel
This panel shows a set of icons that can be selected and placed on the tasks of your specification to add visual
cues to aid in the understanding of your models by others. The Editor comes with a standard set of icons,

and you may also provide your own icons and access them via this panel. Note that the icons are grouped
for ease-of-use only; you are not limited in how you actually use the icons in your model.

Decorations Panel

The Decorations panel provides a set if decorator types that may be attached to a task. You can select the
type of decorator, what edge it is to be positioned on the task and choose a colour to use for each decoration.

Notes and Problem Panel

This panel consists of two tabs:

e On the Notes pane, you can add freeform text to accompany the selected task or condition;

o The Problems pane will list problems or messages that may occur while you are building your model,
when you validate it or when you analyse it.

Status Bar

The Status Bar consists of three parts:

46 CHAPTER 4. THE EDITOR

e On the left are two icons that indicate whether there are currently valid connections to the Engine and
the Resource Service (required for certain design activities discussed later in this chapter). A connection
will show a green indicator, a disconnection as a red indicator;

o Next there is a status message area that provides useful contextual hints throughout the creation of
your specification;

e On the right is a progress bar, which shows the progress of various events at different times.

4.3 Creating Your First Specification

Overview

This section will lead you through the process of creating a YAWL specification from beginning to end,
through a series of brief lessons following a scenario.

You can either follow all the instructions including the scenario provided, from beginning to end, or skip
straight to the section that you are interested in and follow the instructions.

Look for the student icon next to the instructions for specific details of the scenario.

The Scenario

The scenario that we will be following throughout this section is the workflow of a student who has just
completed their secondary study and is now looking to start their career. The scenario will follow the path of
a student who either enrols in a University to complete their tertiary education, or undertakes private study
that will eventually lead them to getting a job and starting their new career.

4.3.1 Creating Your First Specification

1. Click on the Create a New Specification button, 7 at the top left of the Menu Toolbar, or click on
Specification in the Menu and choose Create Specification. This will create a blank Net called
“New Net 1”7 which will be, by default, the starting net of the workflow. For details on selecting a
starting net, consult Section 4.3.6.

2. Click on Specification in the main Menu and choose Update Specification Properties. A screen
as per Figure 4.3 will appear. Alter the specification’s properties as you feel appropriate.

3. Rename this Net by clicking on the Net Menu and choosing Update Net Detail.

4. Enter the new name of the Net in the “Decomposition Label” field, then click the Done button.

Decomposition Variables will be explained later in Section 4.5.3.

Change the name of the Net in the Decomposition Label, to “My Career”. This Net will be the primary
net for our scenario.

5. You are now ready to start drawing your specification.

4.3.2 Atomic Tasks

1. Click on the “Add an Atomic Task” button, @, in the Workflow Elements Panel, or right click in an
empty area of the canvas, and choose Atomic Task.

4.3. CREATING YOUR FIRST SPECIFICATION

Update Specification Properties

Specification ID :
Specification Name:
Specification Description:

Specification Author:

ManualExample

Manual Example

fAn example specification with properties|

bloggs

47

Version Number: 0.3

I
Specification valid from: g always
[the date of 23/07/2008
® always

Specification valid until: —
() the date of 23/07/2008

Done | Cancel

Figure 4.3: Specification Properties Dialog

. Position your mouse just to the right of the Input Condition (the @ symbol), and click the left mouse

button once to place an Atomic Task.

. Set the decomposition of this task by right clicking on the Atomic Task and choosing Select Task

Decomposition. You should see a dialog as per Figure 4.4.

enn Atomic Task
Set decomposition to: : { Create... |
L
Done Cancel

Figure 4.4: The “Select Task Decomposition” dialog

. Press the Create... button, and in the following Update Task Decomposition dialog, enter the de-

composition’s label.

See Section 4.5.5 for a full explanation of this dialog’s features.

Set the label to “Begin My Career”, and click the Done button.

. Note that by default, a task takes on the label of the decomposition that it is associated with (several

tasks are allowed to share the same decomposition). Once you've created your task, you are free to
relabel the task to whatever you like. This can be done by right-clicking on the task and choosing Set
Label... from the pop-up menu. This will not change the name of the decomposition with which the
task is associated.

. Connect the Input Condition to your Atomic Task, as shown in Figure 4.5, by finding the flow connectors

that appear as small blue boxes as you hover your mouse over the sides of the objects. Hold the left
mouse button down over a flow connector and draw a line by dragging the mouse from the flow connector
on the Input Condition to the one on the Atomic Task (which will appear when the mouse hovers over

48 CHAPTER 4. THE EDITOR

the edges of the task). The editor will only show a connection point if it is valid to draw a flow
connection between the objects. The directed arc (arrow) between two objects is referred to as a flow

®
Begin My
Career

Figure 4.5: An established flow relation
relation, or most often simply a flow — it shows the ‘flow’ of execution from one object in the net to
the next. That’s it! Your Atomic Task is set.

Repeat the process for the following Atomic Tasks in order: Go to University, Get A Job, Career
Started.

Link the ‘Career Started’ task to the Output Condition (the @ symbol), as per Figure 4.6.

@h h-—h-—p_—@

Begin My GCo to Get a Job Career
Career University Started

Figure 4.6: The “My Career” Net

7. Finally check the validity of specification by clicking on the Validate Specification button, , in the
Menu Toolbar or click on Specification in the Menu and choose Validate Specification. If all things
are going to plan, then you should receive a confirmation saying that there were no errors detected.

Task Indicators

Task indicators are mini-icons that appear across the top of a task to provide a visual cue regarding settings
that have been applied to the task. An example of a task with all three available indicators is shown in

Figure 4.7.

Figure 4.7: Task Indicators

The three task indicators (left to right in Figure 4.7) are:

4.3. CREATING YOUR FIRST SPECIFICATION 49

o Timer: This task has had a timer set (see Section 4.11).

o Automated: This task has been set as automated (see Section 4.9). If this automated task also has
a codelet specified, it will be filled green (see Section 4.9.1).

o Cancellation Set: This task has had a cancellation set defined (see Section 4.5.1).

These task indicators are rendered on top of any icons set for the task.

Task Decoration

Decorating a task is the process of adding a split and/or join to the task.

By adding a split decorator to a task, you are specifying that when the task completes, it will be succeeded
by one or more tasks. Here are the possible choices for a task’s split decorator:

o No split: The task has no split decorator, and so will have exactly one outgoing flow;

e AND split: The task may have a number of outgoing flows; when the task completes, it will activate
each and every outgoing flow;

o XOR split: The task may have a number of outgoing flows, each with an associated condition; when
the task completes, it will activate exactly one outgoing flow — the first that has its condition evaluate
to true, or the designated default flow if none of the other flow conditions evaluate to true;

e OR split: The task may have a number of outgoing flows, each with an associated condition; when
the task completes, it will activate each outgoing flow that has its condition evaluate to true, or the
designated default flow if none of the other flows evaluate to true;

By adding a join to a task, you are specifying at what point the task will become available for execution
through the completion of one or more preceding tasks flowing into it (depending on the type of join). Below
are possible choices for a task’s join decorator:

e No join: The task has no join decorator, and so will have exactly one incoming flow;

o AND join: The task will activate only after each and every incoming flow is activated (through the
completion of the task at the other end of each flow);

o XOR join: The task will activate as soon as one incoming flow is activated (through the completion of
the task at the other end of the flow);

e OR join: The task will activate only after each and every incoming flow that can possibly be activated
has activated. Basically this means the completion of each and every task at the other end of a flow
leading into the OR-join that has started or may possibly start at some future time. More on the
OR-join in later sections.

For more detailed information on join and split types, please consult the YAWL technical papers on the YAWL
website.

Creating Splits and Joins

To create a split or join:

1. Select a task. When a single task is selected the Decorator panel will appear with two tabs that allow
you to decorate a task with a split and/or join. You can also choose a fill-colour to help visually
differentiate splits from joins with the expanded colour palette.

50

CHAPTER 4. THE EDITOR

. Choose the required split or join and the orientation (which edge of the task to attach the decoration

to) for the split or join to appear.

In our example, select the “Begin My Career” task and, in the Decorator panel, select an XOR split.
Then set the orientation to eastern edge of the task, as per Figure 4.8.

Create a new Atomic task called “Do Private Study”. This task will represent those students that
choose not to go to University.

Finally, select your “Get A Job” task and decorate it with an XOR. join. Then set the orientation of
the join to the western edge of this task.

. Split and Join decorators allow you to connect several Flow Relations from and to your task respectively.

Create a flow relation from “Begin My Career” to “Do Private Study”, then create another flow relation
from “Do Private Study” to “Get A Job”, as per Figure 4.8.

{(») My Career

®——D g » > @

Begin My Goto Get a Job Career
Career University Started
Do Private
Study

Figure 4.8: XOR Split and Join

4. Don’t forget to check the validity of your specification.

Hint: If you are having trouble with positioning your tasks, the alignment tools are a big help.

When “Begin My Career” has been completed, a choice must be made on which of the two tasks (“Go To
University” or “Do Private Study”) will be followed (XOR Split). How that choice is made will be explained
a little later. “Get a Job” will become available after the completion of the task selected at the point of the
XOR split.

Composite Tasks

1. Composite tasks are placeholders for other sub-nets. That is, you can create another workflow in a

separate Net, which is represented in the first net by the composite task. When a composite task
is activated, control branches to the sub-net; when the sub-net completes, control passes back to the
parent net.

. To create a Composite Task: click on the Composite Task button, @, in the Elements panel or right

click on an empty part of the canvas and choose Composite Task.

We are going to replace our existing “Go to University” Atomic Task with a Composite Task, so click
on the “Go to University Atomic Task” and click the trash bin on the toolbar or press the Delete key
on the keyboard. We will add in the new composite task next.

4.3. CREATING YOUR FIRST SPECIFICATION 51

3. Place your Composite Task in your Net. Tip: use the arrow keys on your keyboard to move/adjust the
task to the desired location.

%‘ Reconnect the Flow Relations from “Begin My Career” to the new Composite Task, and from new
Composite Task to “Get a Job”.

4. Create a new Net by clicking on the Create a New Net button, , on the Menu Toolbar, or click on
the Net Menu and choose Create Net.

5. Choose a name for this Net by clicking on the Net Menu and choosing Update Net Detail.
%‘ We are going to call this new Net “Attend University”.

6. Return to your original Net and right click on your Composite Task and choose Unfold to net....
You will then be given a drop-down list with all the Nets available — choose the Net this task is to
represent and then click Done.

Tip: you can also combine the last three steps by simply right clicking on the newly added composite
task, selecting Unfold to met. .., then clicking the “Create” button in the dialog that appears.

%‘ Choose “Attend University”.
You can now fill out the detail of your new ” Attend University” Net.

Create the following Atomic Tasks in order and then link them with Flow Relations and don’t for-
get to check for validity:

o Enrol

o Do Subjects

o Pass All Subjects
o Get Degree

The resulting nets are shown in Figures 4.9 and 4.10.

{ (») My Career | [J Attend University "

®——> >] » » b@

Begin My Attend Get a Job Career
Career University Started

Da Private
Study

Figure 4.9: Parent net with “Attend University” Composite Task

4.3.3 Multiple Instance Atomic Tasks

Multiple Instance Atomic Tasks (MI Tasks) allow you to run multiple instances of a task concurrently.

To create a Multiple Instance Atomic Task:

52 CHAPTER 4. THE EDITOR

" (®) My Career -~ [[J] Attend University }

)— g aC)
Enrol Do Subjects Pass All Get Degree
Subjects

Figure 4.10: The “Attend University” sub-net

1. Click on the Add Multiple Instance Atomic Task button, , in the Elements panel or right click in
an empty part of the canvas and choose Multiple Atomic Task.

%‘ Go back to the “My Career” Net. We are going to replace our existing “Do Private Study” Atomic
Task with a Multiple Instance Atomic task, so click on the “Do Private Study” Atomic Task and delete
it. We will add in the new Multiple Instance Atomic task next.

2. Place your Multiple Instance Atomic Task in your Net and set the name of this task by right clicking
on the task and choosing Select Task Decomposition.

% Give this task the same decomposition as before by selecting “Do Private Study” from the drop-down
list.

Reconnect the flow relations from “Begin My Career” to “Do Private Study”, and from “Do Private
Study” to “Get A Job”, as per Figure 4.11.

{(®) My Career | [Attend University |

Get aJob Career
Started

Begin My
Career

Do Private
Study

Figure 4.11: Adding a Multiple Atomic Task

3. You will now need to set the parameters of the MI Task, which, being multiple instance, needs a few
more values set than a simple atomic task. Right click on the task and choose Set Instance Detail.
Ensure that you are viewing the “Bounds” tab of the dialog, as per Figure 4.12.

4. Choose the Instance Creation mode. In either mode, the number of task instances created at runtime
for the task will be between the values given for “Minimum Instances” and “Maximum Instances”.
Static mode means the number of task instances started cannot vary once the task is activated. Dy-
namic mode means the same number of task instances (as static mode) are started initially, but new
instances of the task may be started dynamically at runtime (i.e. after task execution has begun), up
to the value entered in “Maximum Instances”.

4.3. CREATING YOUR FIRST SPECIFICATION 53

& OO Multiple Atomic Task "Do Private Study” - Instance Detail

{Bounds | Queries |

Minimum Instances: 5

Maximum Instances: () is infinite

) is equal to 100
Continuation Threshald: () is infinite
® is equal to

Instance Creation: (®) Static
) Dynamic

Done Cancel

Pt
T —

Figure 4.12: Instance Bounds on Multiple Instance Tasks

Set the Instance Creation type to “Static”.

5. Set the Minimum Instances value. This is the minimum number of instances of this task that will be
started when the task is activated.

Set the Minimum Instances to 5.

6. Set the Maximum Instances value. This is the maximum number of instances of this task that can be
created from this task.

Set the Maximum Instances to 100.

7. Set the Continuation Threshold value. The moment all task instances created have completed, or if the
number of instance created exceeds the Continuation Threshold, the number specified for the Continu-
ation Threshold have completed, the multiple instance task itself will be considered complete, and will
trigger relevant outgoing flow relations from this task.

Set the Continuation Threshold to 50.

8. Click Done.

54 CHAPTER 4. THE EDITOR

With the values set in the scenario, it has been specified that the Do Private Study task can have a maximum
of 100 instances created, a minimum of five instances will be created, and once 50 instances (or all those
started if less than 50) have completed, the outgoing flow relation to Get A Job” will trigger.

We will revisit the setting of parameters for multiple instance tasks, in particular the details of the “Queries”
tab of the Multiple Instance Detail dialog, in Section 4.5.9, after the basics of queries have been introduced.

4.3.4 Multiple Instance Composite Tasks

Multiple Instance Composite Tasks allow you to run multiple instances of the sub-net represented by a
multiple composite task, concurrently.

To create a Multiple Composite Task:

1. Click on the Add Multiple Composite Task button, , in the Elements panel or right click in an empty
part of the canvas and choose Multiple Composite Task.

Go to the “My Career” Net. We are going to replace our existing “Do Private Study” Multiple Instance
Task, with a Multiple Composite task, so click on the “Do Private Study” Task and delete it. We will
add in the new Multiple Composite task next.

2. Place your Multiple Composite Task in your Net.
Reconnect the Flow Relations from “Begin My Career” to the new Multiple Composite Task, and from
the new Multiple Composite Task to “Get a Job”.

3. You will now need to set the parameters of the Multiple Composite Task, in the same manner as those
set previously for the Multiple Atomic Task. Right click on the task and choose Set Instance Detail.
Set the Minimum Instances to 5, the Maximum Instances to 100, the Continuation Threshold to 50,

and the Instance Creation type to “Static”.

4. Click Done.

5. Create a new Net by clicking on the Create a new Net button, , on the Menu Toolbar, or click on
Net in the Menu and choose Create Net.

6. Give the new Net a name by clicking on the Net Menu and choosing Update Net Detail.

We are going to call this new Net “Study Privately”.

7. Return to your original Net and right click on your Multiple Composite Task and choose Unfold to
Net. You will then be given a drop-down list with all the Nets Available — choose the Net for this task
to initiate and then click Done.

Choose “Study Privately”.

8. You can now complete your new “Study Privately” Net represented by your Composite Task.

Create the following Atomic Tasks in order and then link them with Flow Relations as per Figure 4.13:
o Read a Book

e Feel Smarter

Don’t forget to validate your specification.

4.3. CREATING YOUR FIRST SPECIFICATION 55

4.3.5 Conditions

Conditions represent states of the workflow and can be located in-between tasks. To create a Condition:

1. Click on the Add a Condition button, @, in the Elements panel or right click on an empty part of the
canvas and choose Condition.

Go to the “Study Privately” Net. We are going to place a loop Condition after the Read a Book atomic
task, to determine whether we gained any knowledge from the book. We will add the new Condition
next.

2. Place your Condition in your Net and set the name by right clicking on the Condition and choosing
Set Label.

Call this Condition “Knowledge Gained?”.

3. Now link to the Condition to the tasks of the net using flow relations.

Select the flow relation between the Read a Book atomic task and the Feel Smarter Atomic Task and
delete it.
Create a flow relation from the “Read A Book” task to the “Knowledge Gained?” condition.

4. Create a flow relation from your condition to a task.

Set the flow relation from the “Knowledge Gained?” condition to “Feel Smarter” atomic task.

5. Create another flow relation from your condition to another task to signify the two possible flows from
the condition.

Before we create our second flow relation from our condition, first create another atomic task and call
it “Look for An Easier Book”.

Add an XOR join decoration to the “Read a Book” task, with the orientation being West.

Finally create the Flow Relation from the “Knowledge Gained?” condition back to the XOR join
of the “Read A Book” atomic task, as per Figure 4.13.

6. Validate your specification.

Validation should fail and report errors as per Figure 4.13. The problem here is that the “Study
Privately” multiple instance composite task needs to have more information specified for it to be valid.

For setting data detail of multiple-instance tasks, please see Section 4.5.9.

7. Remove the “Study Privately” multiple-instance composite task and replace it with an atomic composite
task using the same decomposition, and re-drawing flows from “Begin My Career” and to “Get A Job”
tasks. Your updated net should look like Figure 4.14, and should validate successfully.

The Knowledge Gained? condition in Figure 4.13 shows an example of a Deferred Choice construct. When
the condition is reached during execution of the process, both of its outgoing flows are activated (note that a
condition may have any number of outgoing flows). This results in both the “Look for an Easier Book” and
“Feel Smarter” tasks appearing in the user’s worklist, allowing the user to make a (deferred) choice between
the two. As soon as the user chooses the appropriate task for execution, the other task is immediately
withdrawn and is removed from the worklist.

56 CHAPTER 4. THE EDITOR

806 YAWLEditor - [Users/adamsmj/Documents/research/temp/myCareer.yawl
% = = 0 =T =
(mlamBE[E[S] [¢=] QG [o]c|al [m[#[a]=]=]|=] [m]w]| [[@]=<]<]
EQE ﬂ Q [@ My Career IE‘ Attend University —E} Study Privately }
[
Look for an
(7 Task lcen Easier Book
No leon =
> ﬁe Manual
> %2, Automated
> ﬁ Routing Read a Book Knowledge Feel Smarter
¥ Plugin Gained?

- a

"Notes Export Analysi Rm..lu}

Composite Task:Study Privately 82(id= Study Privately 82) the XQuery for param [null] cannot be egqual to null or the empty string.
The task (id= study Privately 82) claims to assign its output to a net variable named (null). However the containing net does not have such a variable.

I @ @ I Select a number of net elements to manipulate.

Figure 4.13: Validation with unfinished Multiple-Instance Tasks

E—@-M'r&reerﬂ O Attend University [Study Privately !

Begin My Attend Get a Job Career
Career University Started

[]

Study
Privately

Figure 4.14: Making the “Study Privately” task an atomic composite

4.3.6 Changing the Starting Net
At any stage you can change the Starting Net of the specification. To change the Starting Net:
1. Select Net from the Menu.
2. Choose Set Starting Net (Figure 4.15).
3. From the Choose Starting Net window, click on the drop-down list and select a new starting Net.
4. Click Done.

Note that the starting net has an input condition symbol, ®, in its title tab, and in the View menu list. All
sub-nets have a composite task symbol @ in their title tab, and in the View menu list.

Y)

4.4. CHANGING THE APPEARANCE OF YOUR SPECIFICATION 57

800 Choose Starting Net

Execution of the workflow starts in net:

My Career
Study Privately
Daone Cante

Figure 4.15: Changing the Starting Net

4.4 Changing the Appearance of Your Specification

4.4.1 Changing Flow Relations

Bends and Curves

You can control and improve the look of the flows between tasks by adding “bends” in them.
Go to the “Study Privately” Net.

Right click on the position in the flow where you want to add a bend, which will be denoted by a small
blue square, ——, in the Flow. A popup menu will appear, allowing you to add and remove bends, as well as
change the line style of the flow.

Create a bend somewhere towards the middle of the flow going from the “Knowledge Gained?” condition to
the “Look for an Easier Book” atomic task. Then left click on the bend marker created and drag it out to a
more desirable location. You can add as many bends to a flow as you like.

Repeat the process for the flow between “Look For an Easier Book” and “Read A Book” tasks (see Fig-
ure 4.16).

Relocation
You can reconnect flow relations to other elements of a net, or different points on the same element by se-
lecting the flow, and dragging one of its connecting ends from one net element to another. If a connection is

possible at some other element, connection points will become visible as described earlier. Release the mouse
button to attach the flow to its new home.

Take the current flow relation, and move it from the top of the task to its side, as depicted in Figure 4.16.

Adding Labels

It is also possible to add labels to flows. To do so, double click on a flow. A small text input box will appear
over the flow. Type your desired text, and commit the flow label by pressing the ENTER key. You may then
drag that flow label around to position it as desired.

58 CHAPTER 4. THE EDITOR

(®) My Career = [Attend University — [J| Study Privately }

Look for an no
Easier Book
yes
- —")
Read a Book Knowledge Feel Smarter
Gained?

Figure 4.16: Adding bends to a Flow Relation

Take the two flow relations that have recently had bends added to them. Attach the label yes to the
flow relation going from the “Knowledge Gained?” condition to the “Feel Smarter” atomic task. Attach
the label no to the flow relation going from the “Knowledge Gained?” condition to the “Look for an Easier
Book” atomic task. Drag the labels about to a desired position, much like what’s been done in Figure 4.16.

Note that Figure 4.17 shows flows using two different line styles. The flow running from “Look for an
Easier Book” has been given the “spline” line style in this figure, while the remaining flows are all “orthog-
onal”, resulting in sharp edged bends on flows, such as the one running from the “Knowledge Gained?”
condition to the “Look for an Easier Book” task.

Setting Colours

For nets, the default background colour can be set (i.e. applied to all nets) by choosing Default Net Background
Colour. .. from the View menu. To set the background colour of individual nets, choose Net Background
Colour. .. from the Net menu.

For tasks and conditions, the default fill colour (i.e. for all newly added tasks and conditions) can be set by
choosing Default Element Fill Colour... from the View menu. For individual tasks and conditions, right
click on it then choose Set Fill Colour... from the popup menu. Several selected tasks and/or conditions
can have their fill colour set at the same time by choosing Set Selected Fill Colour... from the Elements
menu.

4.4.2 Editing Objects

You can edit more than one object at a time by using the Marquee Selection tool. See Figure 4.17.

1. Select the Marquee Selection tool, ’j, from the Elements panel.

2. Click on the first object that you want to edit, then hold down the shift key and then click on the other
objects that you want to edit.

3. Alternately, click and drag the Marquee tool to include multiple items in the drag rectangle.

4. Now choose the Edit option from the Menu or continue holding down the shift key and right click on
the mouse button. Below are the edit options:

o Cut, Copy, Delete;
o Align;

4.4. CHANGING THE APPEARANCE OF YOUR SPECIFICATION 59

(®) My Career = [Attend University = [Study Privately }

"Look for an
Easier Book
|} L] |

| |
Read a Book "Knowledge " Feel Smarter

| L | &

Ga|ged?

Figure 4.17: Changing the Size of Multiple Objects

« Size Increase / Decrease to change the appearance of the objects. This can also be done using the
CTRL key plus Up or Down arrow on your keyboard.

Note also, that whenever you have selected a number of net elements, pressing one of the arrow keys will
move the selected elements in the direction of the arrow key, and pressing the CTRL key plus the A key will
select all the elements in the currently selected net.

4.4.3 Changing Font Size
You can change the size of the font used to label tasks and conditions.

1. Change the font size by clicking on the View Menu and choosing the Label Font Size... option.

2. Change the font size to that desired. The specified font size applies to all text drawn on the canvas.

4.4.4 Changing Task Icons

You can add or change the icon that is shown on atomic tasks.

1. Select any single atomic task in your workflow. The palette will expand to include a task icon tree,
depicted in Figure 4.13, where you can an icon from the tree to the task. You are free to assign any
icon. Icons have no runtime effect on the engine, and are provided simply to make specifications more
easily understood by people looking at the specification in the editor.

4.4.5 Using Custom Icons

Workflow designers can plug in and use their own icons for specification design. Icons must be of the PNG
file format, and be a maximum of 24 x 24 pixels to render properly within editor task boundaries.

When the editor starts, it checks the installation folder for the plugin directory:
<editor_installation_path>/YAWLEditorPlugins/TaskIcons

for user-defined icons, and if found adds them into the plugin branch of the task icon tree widget of the
editor’s palette. Sub-directories are supported, and will form new sub-trees of the same name when the
plugin sub-tree is being created. If an icon cannot be found that was previously used for a specification, a
special “broken” icon will render in its place, as depicted in Figure 4.18.

60 CHAPTER 4. THE EDITOR

() — % —m)

Figure 4.18: A task specifying an icon that the editor cannot locate

-

4.5 Additional Specification Features

4.5.1 Cancellation Sets

Cancellation Sets allow you to nominate any number of tasks, conditions and/or flow relations (which, when
they join two tasks directly, contain an implicit condition that is not visible on the net) for cancellation,
upon the completion of a specified task. That is, once a specified task has completed execution in a workflow
instance, all other net elements within that task’s nominated cancellation set (if any) are deactivated.

To create a Cancellation Set for a task:

1. First select the task that will initiate the Cancellation Set.

2. Right-click on the task, then choose View Cancellation Set from the context menu. The task will
be fill with a grey colour to indicate that this is the task that ‘owns’ the cancellation set currently on
view.

Create the “Purchase Book” specification as shown in Figure 4.19. In this example, we are going to
purchase a book by placing an order with three different sellers; as soon as the first seller fills the order,
we want to cancel the other two orders. To achieve this, we create a cancellation set for each “Order”
task that includes the other two “Order” tasks. We will step through creating a cancellation set for
the “Order from Amazon” task — the other two are created in a similar manner.

@ Purchase Book

rder from
Amazon

®— - C
Get Book Order from Pay
Details Booktopia

Order from
Bookfinder

Figure 4.19: The Purchase Book specification

Right-click on “Order from Amazon” and choose View Cancellation Set.

3. Next, choose a task, condition or flow (and thus an implicit condition) to add to the Cancellation Set.
Hold down the shift key to select more than one object for cancellation.

4.5.

ADDITIONAL SPECIFICATION FEATURES 61

Select the “Order from Booktopia” and “Order from Bookfinder” tasks, and the flow relation preceding
each of them.

. Click on the Add Selected Items to Visible Cancellation Set button, , on the Menu Toolbar. Items

will be given a red border to indicate they belong to the cancellation set of the grey-filled task (see
Figure 4.20).

Add the selected tasks and flow relations to the cancellation set.

. Once you have established the cancellation set, you can right-click on the cancellable task and reselect

View Cancellation Set to toggle off the cancellation set view.

(») Purchase Book

rder from
Amazon

> g ~(m)
Get Book Order from Pay
Details Booktopia

Order from
Bookfinder

Figure 4.20: A Cancellation Set specified for the ‘Order from Amazon’ task

Notes about Cancellation Sets:

In the example in Figure 4.20, notice that there is an AND-split decorating the “Get Book Details”
task, but the “Pay” task has an XOR-join. This is because we know that when one of the “Order” tasks
completes, the other two will be cancelled, so only one incoming flow to the “Pay” task will activate.
Since we want the process to complete, we must add the join type that will activate the task when a
single incoming flow activates: the XOR~join. If an AND-join had been used here, it would wait until
all three incoming flows were activated, which in this case is never going to happen, and would result
in the deadlock of the workflow instance.

A Cancellation Set that has been created will remain in the specification, regardless of whether you
have the View Cancellation Set option ticked.

You can create multiple Cancellation Sets in your workflow, by selecting another task and choosing the
View Cancellation Set option. Only one cancellation set may be viewed at any one time.

All flows leading to or from (explicit) conditions are not valid cancellation set members. Neither are
the Input and Output conditions. The editor will ignore them if you select them for inclusion in a
task’s cancellation set.

A task may be included as a member of its own cancellation set.

62 CHAPTER 4. THE EDITOR

o The reason for including preceding flows of a task in a cancellation set is this: If a flow relation connects
two tasks directly, then it is said to contain an implicit condition. If there is a condition object in the
model between two tasks, so that the connection is task - flow - condition - flow - task (for example, the
“Knowledge Gained?” condition in Figure 4.16), it is said to be an ezplicit condition. In either case,
when a task completes, it passes ‘control’ to the condition preceding the next task in the flow. When
the next task is started, it takes ‘control’ from its preceding condition (whether implicit or explicit).
If there is a chance that the tasks in a cancellation set may not have started when the owner task of
the set completes, then cancelling those tasks will have no effect — it is their preceding conditions that
have ‘control’ and so they are the elements that must be cancelled. By including both tasks and their
preceding conditions, we are ensuring that the desired cancellation will occur, regardless of whether the
tasks in the set are currently executing or not.

To remove an element from a task’s Cancellation Set:

1. First, make sure you have the View Cancellation Set option ticked for the task. If it isn’t ticked,
select the task that has the Cancellation Set, right-click, then choose View Cancellation Set.

2. Select the element for removal.

3. Click on the Remove Selected Items from Visible Cancellation Set button, , on the Menu Toolbar.

4.5.2 Data Type Definitions

YAWL uses XML Schema to define data documents that are passed from net to task and back during the
life of a workflow instance. There are over 40 simple XML Schema data types (string, integer, boolean, etc.),
all of which are supported by YAWL.

User-defined data types are also supported, by allowing for the definition of XML Schema complex types,
which are added to a specification and then may be used to define variables based on those types. To define
a new complex type for a specification:

1. Select Update Data Type Definitions from the Specification Menu.
2. Enter your XML Schema Data Type Definition into the dialog box. (See Figure 4.21).

3. If the definition text is green, your new data type is a valid definition and may be used for defining
Net or Task variables in your specification. If the text is red, there is something wrong with your data
type definition, and the data type will not be available. When the text is red, the split-pane will reveal
a table listing parse errors that were collected when determining the validity of the text supplied. An
example of this is shown in Figure 4.22.

Open the Data Type Definitions dialog and type in the XML text that appears in Figure 4.21.

The above example creates a complex data type called “Geek” that has two separate sub-components, “Name”
and “Salary” of type “string” and “double” respectively. Types called ‘Book’ and ‘Booklist’ are created in
the same way. As depicted in Figure 4.23, the new data type “Geek” is available to choose from the list of
available types when creating a task or net variable. Variables with a usage of “Local” can have initial values
specified for them, as depicted in the same figure. As with the data type definition dialog, parse errors will
be listed when the initial value text is red.

4.5.3 Net Decomposition Detail / Net Variables

You can add variables to a net to store information relating to that net that tasks within the net may need
to read or update.

To add a variable to a Net:

4.5. ADDITIONAL SPECIFICATION FEATURES 63

808 Update Data Type Definitions k
% = ; F
7 %R0 PIe efm— editjmeny)
cxg:schema xmlns:xs="http:/ /www.w3.org/2001/XMLSchema >
<xs:complexType name="Geek">
<HS : BEgqUEence>
<xs:element name="Name" type="xXs:string"/>
<xs:element name="Salary" type="xs:double"/>
< /XS : SEqUence>
</xs 1complexType>
<xs:complexType name="Book">
<XS : Sequence>
<xs:element name="Title" type="xs:string"/>
<xs:element name="Autor" type="xs:string"/ >
< /%8 : sequence>
</ X8t compl eXTyDes>
<xs:complexType name="Booklist">
<¥s:sequence maxDoccurs="5"=
<x3:element name="Book" types="Book" />
< /%8 : sequence>
</ X8 compl e TyDe>
</xs: schema>»
&] Tale
- i, W
. : : \-5 litipane
|_ Done J | Cancel J "'*E;‘-"E"-"'“-’
g %

Figure 4.21: Adding the “Geek” complex data type

. Choose Update Net Detail from the Net Menu.

We will be setting up Net variables in the “Attend University” net. Go to the “Attend University Net”
and choose Update Net Detail from the Net Menu.

. An Update Net Decomposition dialog box will appear (see Figure 4.24). Click on the Create button.

This will show an Update Net Variable dialog box (see Figure 4.25).

. Enter the Name of your variable, choose the Type and intended Usage of the variable from those listed,

then click Done, then Done again to close the Net Decomposition dialog.

Enter “StudentNumber” for the name of the variable, leave the type as “string”, and set the Usage type
to “Local”. Leave the initial value blank. Click Done (see Figure 4.25). Create another Net Variable
with the name “SubjectCode” and Type “string”. Leave the Initial Value blank and set the Usage to
“Local” (usage types will be explained a little later). Click Done.

. The Net Variables should now appear in the Update Net Decomposition of Net “Attend University”

64 CHAPTER 4. THE EDITOR

8ene Update Data Type Definitions
% =
Ziue 2e

a5

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:complexType name="GeeX'">
<HS ! SeqUence>
<xs:element name="Wame' type="xs:string'/=>
<¥s:element name="Salary" type="xs:double" />
</ X8 : sequence>
< /%3 :complexTypes

<x3:complexType name="Book'">
<XKE § SequUence>
<xz:element name="Title" type="xXs:string"/>
<xs:element name="hutor" type="Xs:string"/>
< /X3 : sequenca>
</ X3 :complexType>

<xs:complexType name="Booklist">
<XS:Sagquence maxOocurs="5">
<xs:element name="Book" type="Boo' />
< /X3 : sequenca
< /x5 1complexType>

< /%8s :schema>

LR — E iale

- -

Invalid#[1ln: 19 col: 40]# src-resolve: Cannot resolve the name 'Boo’ ... |=

| Done | |; Cancel '|

Figure 4.22: When the data type definition is invalid

dialog box (Figure 4.26).

4.5.4 Task Decomposition

By choosing the Select Task Decomposition. .. option when you right click on a task, you have the ability
to identify which decomposition is attached to the task. A decomposition describes the variables ‘handled’
by the task, and the YAWL Service that will be responsible for performing the work the task represents at
runtime.

Like nets, tasks have decompositions where you can specify variables and a label to associate with the task.
Unlike nets, which cannot share net decompositions, there is a 1:N relationship between task decompositions
(scoped to the entire specification) and their tasks (scoped to nets), meaning that a number of tasks within
a specification may share the same decomposition.

Besides variables and a label, task decompositions also allow the workflow designer to identify which web
service the decomposition should invoke in a running workflow engine, and whether the decomposition will
create manual (i.e. human-actioned) or automated (non-human-actioned) tasks. When two tasks share the
same decomposition, we are saying that the same activity is required in two different places in the workflow

4.5. ADDITIONAL SPECIFICATION FEATURES 65

8eo0o Update Net Variable

,[_"Shnnd'ard'—l Extended Attributes |

MName: testGeek Type: Geek @

Usage: | Local H

Initial Value: [<yame»John Frank</Name>
<Salary>10000.00</Salary>

4 3 Talw

[. Daone | !. Cancel |

Figure 4.23: A “Geek” net variable with a valid initial value

®) O Update Net Decomposition "Attend_University"

Net Decomposition Label:

~MNet Decomposition Variables

Narme Type Usage | Create... |
—_—

Update...

€ &

Remove...

| Done | | Cancel |

P
e —

Figure 4.24: Updating “Attend University” Net Variables

(the two tasks may be named the same or differently, but they will share the same underlying definition of
work).

From the Select Task Decomposition dialog, you can use the drop-down list to select an existing decomposi-
tion, or alternately you can click the Create... button to generate a new one that will become the task’s
decomposition (Figure 4.27).

4.5.5 Task Decomposition Detail / Task Variables
You can add variables to a task to store specific information relating to that task, in a similar way to adding

variables to a net. Task variables have several uses. One use is for transferring information between workflow
users and the workflow engine. A second use is for passing data between web services and/or external code

66 CHAPTER 4. THE EDITOR

80e Update Net Variable

{-—Sﬂndard'—| Extended Attributes |

Name: StudentNumber Type: (string)ﬂ
Usage: Local %
Initial Value:
& B e

[. Done J [Cancel J

Figure 4.25: The Net Variable “Student Number”

M 7 O Update Net Decomposition "Attend_University”

Net Decomposition Label: Attend_University

~Net Decomposition Variables

Mame Type Usage Create... .
string Local _

SubjectCode string Local ﬁ’ Update...]

% [Remove...]

[. Done J [Cancel J

2
" —

Figure 4.26: Updated “Attend University” Net Variables

and/or applications that the running workflow engine invokes and the Net the task resides in.

For example, if your task is called ‘Purchase a Book’, you may want to store the name and/or ISBN of the
book being ordered.

4.5.6 Adding a Variable to a Task

1. First select the task that will require the variable.

We will be setting up variables for the “Enrol” task. Go to the “Attend University” Net and select the
“Enrol” task.

2. Right-click on the task and choose Task Decomposition Detail. ... An Update Task Decomposition

2

3

4.5. ADDITIONAL SPECIFICATION FEATURES 67

| @00 Atomic Task "Get a Job"

Set decomposition to: LGET_ELJDb &1
p—

Feel_Smarter

v Get_a_Job
Pass_All_Subjects
Begin_My_Career
" Read_a_Book
Look_for_an_Easier_Book
Cet_Degree -
v

Career_Started

Figure 4.27: Select Task Decomposition (example ‘Get a Job’ task)

dialog box will appear.

Retrieve the decomposition detail for the “Enrol” task.

3. Click on the Create... button. An Update Task Variable dialog box will appear.

806 Update Task Variable

{ Standard | Extended Attributes |

Name: StudentMumber Type: rstring >+j

Usage: | Input & Output B:

Default Value:

1!
\
ry
v

| Done | | Cancel |

Figure 4.28: Updating the Task Variable

4. Enter the Name of your variable, choose the Type of the variable and its Usage from those listed, click
Done, then Done again to exit the task decomposition detail dialog.

Enter “StudentNumber” for the name of the variable, leave the type as string, and set the Usage to
“Input & Output”. (Figure 4.28). Click Done. Create another variable for the same task, called
“SubjectCode” with type string and usage of “Input & Output”. Click Done.

5. The “Enrol” task now has two variables, “StudentNumber” and “SubjectCode” (Figure 4.29).

68 CHAPTER 4. THE EDITOR

8eNe Update Task Decomposition "Enrol”

E Standard | Extended Attributes 1

Task Decomposition Label: Enrol

~Task Decomposition Variables
Mame Type Usage Create...
Studentiumber string
SubjectCode string Input & Output Update...
&
Remove...

~YAWL Registered Service Detail
YAWL Service: | Default Engine Worklist B

~External Interaction

[] Automated (| Set Codelet...

Done Cancel

Figure 4.29: The Update Task Decomposition dialog for the Enrol task

4.5.7 Task Parameters

A parameter defines how a value is assigned to a variable, and how a value is passed between net-level
and task-level variables and vice-versa. Both Input and Output Parameters can be assigned to any tasks
(depending on their usage type) to allow the passing of state between nets and their tasks, and between tasks
and workflow engine, users and web services.

Parameters are defined using XQuery expressions?. Input Parameters use an XQuery expression to specify a
value (possibly drawing on a number of static and/or net-level variable values) that can be passed to a single
selected task variable. Output parameters use an XQuery expression to specify a value that can be passed
to a single selected net variable.

For example, if a task is called ‘Lookup Book’, then an Input Parameter could pass the name of the book to
a task variable, whereas the Output Parameter of that task may produce the corresponding ISBN for that
book.

To add an Input Parameter:

1. Select the task to add the parameter to.

We will be setting up Input Parameters for the variables that we created in the Adding / Updating
Task Variables section previously. Go to the “Attend University” Net and select the “Enrol” task.

2. Right-click on the task and choose Update Parameters Mappings. ... An Update Parameter dialog

2An examination of the XQuery language is beyond the scope of this chapter; good XQuery learning resources can be found
at www.w3schools.com/xquery/default.asp and www.xquery.com/developers/

www.w3schools.com/xquery/default.asp
www.xquery.com/developers/

4.5. ADDITIONAL SPECIFICATION FEATURES 69

ene Update Parameters for Atomic Task "Enrol"
rInput Parameters
XQuery Task Wariable Create...
R Update...
e
Remove...
~Net Variables Task Variables
Name Type Usage Mame Type Usage
StudentNumber string Local StudentNumber Input & Output
SubjectCode string Local SubjectCode string Input & Output
~Output Parameters
XCQuery Net Wariable Create...
A Update...
v
Remaove...
Done

Figure 4.30: Updating Parameters for a Task

box will appear (Figure 4.30).

Update the Parameters for the “Enrol” task. Notice that the dialog in Figure 4.30 lists both this task’s
variables, and the variables of its containing net.

. In the Input Parameters section, click on Create.... An Update Task Parameter dialog box will

appear. If you have already set up a Task Variable for this task, then the Existing Task Variable option
will be activated and there will be a list of task variables to choose from. Choose a variable from the
list and click on Done, then Done again to close the task parameters dialog.

If you haven’t set up Task Variables, then click on Create... and return to the previous section
dealing with Task Variables (Section 4.5.7).

If you are familiar with XQuery syntax, then you can add an XQuery expression to allow manipulation
of the Input Parameters. “Syntactically well formed” XQueries will be green, and badly formed ones
will be red. Again, red text will be accompanied by a split-pane table, returning the parse errors that
cause the text to be badly formed.

For workflow designer convenience, two XQuery buttons are supplied to automatically generate XQuery
expressions from available net variables.

The add XQuery of element’s content button will return just the content of the XML element for
this variable, which is useful for simple value transfer between two variables of the same XML Schema
type, and is expected will be the button used in most cases.

The other button, add XQuery of entire element, will return the entire XML element of the
selected variable, which is useful for times when you want to create a complex type expression from
individual variable elements. Experience with XMLSchema and XQuery are necessary to understand
the effects this button will have on runtime YAWL engine state.

70

CHAPTER 4. THE EDITOR

Select the “StudentNumber” variable from the list of Existing Task Variables. Select the “Student-
Number” net variable, then click add XQuery of element’s content (Figure 4.31). Click Done.
Create another Task Parameter and map the net “SubjectCode” to the task variable of the same name
using this technique. Click Done and Done again.

8Ne Update Task Parameter "StudentNumber"

{ add ¥Query of element's content)

f
from element of net variable: | StudentNumber Iﬂ

& add XQuery of entire element

~XQuery
<StudentNumber>
{/attend_University/StudentNumber/text()}

< /StudentNumber>

populates the task variable: " StudentNumber |+J (Create...)

Done Cancel

Figure 4.31: Passing a net’s StudentNumber value to a Task variable

To add an Output Parameter:

1.
2.
3.
4.

First select the task to add the parameter to.

We will be setting up Output Parameters for the variables that we created in the Adding / Updating
Task Variables section. Go to the “Attend University” Net and select the “Enrol” task.

Right-click on the task and choose Update Parameters.... An Update Parameters dialog box will
appear (Figure 4.31).

Update the Parameters for the “Enrol” task.

In the Output Parameters section, click on Create.... An Update Net Parameter dialog box will
appear (similar to Figure 4.31).

If you have already set up a Task Variable for this task, then the Existing Task Variable option will
be activated and there will be a list of task variables to choose from. Choose a variable from the list
and click on Done, then Done again to close the task parameters dialog. If you haven’t set up Net

4.5. ADDITIONAL SPECIFICATION FEATURES 71

Variables, then click on Create. .. and return to the previous section (Section 4.5.3).

If you are familiar with XQuery syntax, then you can paste in an XQuery to allow manipulation
of the Output Parameters. “Syntactically well formed” XQueries will be green, and badly formed ones
will be red. For workflow designer convenience, two XQuery buttons are supplied to generate XQuery
expressions from available task variables.

The add XQuery of element’s content button will return just the content of the XML element
for this variable, which is useful for simple state transfer between two variables of the same XML
Schema type, and expected to be the typical button that users will start out with.

The other button, add XQuery of entire element, will return the entire XML element of the
selected variable, which is useful for times when you want to create a complex type expression from
individual variable elements. Experience with XMSchema and XQuery are necessary to understand the
effects this button will have on runtime YAWL engine state.

From the list of task variables, select the “SubjectCode” task variable and click add XQuery of
element’s content. From the list of net variables, select the “SubjectCode” variable. Click Done.
Create another Task Parameter and map the task “StudentNumber” to the net variable of the same
name using this technique. Click Done and Done again.

These Parameters were set up to demonstrate a simple transfer of state from a net to a task and
back to the net. Perhaps the task would allow a user to change the values of one of the variables which
would eventuate in the net’s values changing.

The Update Parameters dialog box should appear as in Figure 4.32.
Notes about parameters:

o For simple assignments, such as those in Figure 4.32, the XQuery expressions for the input parameters
follow the form {/name_of net/name_of_variable/text()} and are mapped to a task variable, while those
for output parameters follow the form {/name_of_task/name_of variable/text()} and are mapped to a
net variable.

o An Input Usage mode means that the variable requires a value to be mapped into it when its task
starts (via an input parameter). An Output Usage mode means that the variable is required to map a
value from it (typically to a net-level variable) when its task completes (via an output parameter). An
Input & Output Usage mode combines both requirements.

e Only Net-level variables may have a Usage mode of Local, which signifies a scope within the net but
not external to it. Thus, sub-nets require net-level variables with modes other than Local to support
data passing to and from their parent nets. A root (or top-level) net with variables of type Input Only
or Input & Output will, when started, request values for those variables from a user via a form, before
the first task in the net is activated. No action is taken for Output modes set for root net variables.

o Input parameters may only be created for variables of mode types Input Only or Input & Output.

o Output parameters may only be created for variables of mode types Output Only or Input & Output.

4.5.8 Flow Detail
When dealing with tasks that have XOR and OR splits, we need some way of defining which flows should
be activated at runtime. This is achieved by associating a boolean XQuery expression with each flow. At

runtime, the flow expressions are evaluated and:

o if the split type is an OR-split, each flow that has an expression that evaluates to true will be executed.

72 CHAPTER 4. THE EDITOR

8ene Update Parameters for Atomic Task "Enrol”
rInput Parameters
XQuery Task Variable Create...
{/Attend University/StudentNumber/text()} StudentNumber
{/nttend University/SubjectCode/text()} SubjectCode & Update...
&
Remove...
~Met Variables Task Variables
MName Type Usage Marme Type Usage
StudentMumber string Local string Input & Output
SubjectCode string Local SubjectCode string Input & Output
rOutput Parameters
XQuery Net Variable Create...
{/Enrol/sStudentNumber/text ()} StudentNumber
{/Enrcl/SubjectCode/text ()} SubjectCode M Update...
&
Remaove...
Done

Figure 4.32: Established task parameters

« if the split type is an XOR-split, the first listed flow that has an expression that evaluates to true will
be executed.

Since it is possible that all flow expressions evaluate to false, XOR and OR splits must nominate a default
flow, which will activate if all of the other flow expressions evaluate to false, to ensure that the workflow does
not deadlock (i.e. is not blocked at that point from proceeding and eventually completing). Default flows are
defined by prioritising the order in which the various flows of a split are evaluated — the one prioritised last
in the order becomes the default flow.

To update the flow detail of a task that has a split, right click on the task and choose Update Flow
Detail.... The “Flow Detail” dialog appears, which list the flows coming out of the split and each flow’s
corresponding Predicate (or flow expression).

The arrowed buttons to the right of the list allow you to reorder the evaluation sequence of the predicates, so
that the default predicate (the one you want to activate when all others fail) can be placed at the bottom of
the list. Carefully ordering the evaluation sequence is especially important when dealing with an XOR-split,
because only the first that evaluates to true will be activated, and any following flows will be ignored.

The currently selected flow in the dialog will be identified by being highlighted green in the Net (Figure 4.33).

To specify a predicate for a particular flow, select the flow from the list and click on Predicate. ... Enter a
predicate as a boolean XQuery expression and choose Done.

4.5. ADDITIONAL SPECIFICATION FEATURES 73

f ® My_Career D Study_Privately DAtrend_Uni\arers.ir\-r]

* Begin My Attend Get a Job Career

Career University Started
| | [] S
enon Flow detail for Atomic Task "Begin My Career"
g ¥
Target Task Predicate
Attend University number(/My_Career/score/text()) > €5
Study Study Privately true() & Predicate...
Privately =7
- The bottom-most flow will be set to 'true()' and used as the default.

 Notes (Begin My Career)
|

Done

q

Figure 4.33: Updating Flow Detail

4.5.9 Multiple Instance Queries

Now that we have an understanding of parameter setting and XQueries, we can revisit, from a data perspec-
tive, parameter setting for the particular requirements of Multiple Instance (MI) Tasks. In general terms, an
MI task receives, as input from a net-level variable mapping, a variable of complex type, typically a list of
some other data type (but more complex constructions are of course supported too), which it then splits into
a number of logically distinct data values, to form the data that is assigned to each task instance. When the
MI task completes, it gathers all the individual pieces of data from the various task instances and reconstructs
the complex type variable so that it can be mapped back to the net-level variable.

To illustrate the operation of MI tasks, with particular emphasis on the data perspective, we will use the
“List Builder” specification shown in Figure 4.34, which begins by compiling an ‘order’ — a list of book titles.
It then creates a number of MI task instances, one for each book title in the list of books. Once all the MI
task instances complete, the updated list is recomposed and shown in the final task.

{ () List_Builder |

>)— ¥ — ~m)
Create Book Verify List Show List
List

Figure 4.34: Example specification with a Multiple Instance Task

To prepare this specification, drag two atomic tasks and one MI task onto the canvas. We first need to define
a complex data type to store the entire book order. Open the Update Data Type Definitions dialog from the
Specification menu, then enter the following two type definitions:

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:complexType name="BookOrder">
<xs:sequence>
<xs:element name="title" type="xs:string" />
<xs:element name="price" type="xs:double" />

74 CHAPTER 4. THE EDITOR

<xs:element name="inStock" type="xs:boolean" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="BookList">
<xs:sequence>
<xs:element maxOccurs="unbounded" name="order" type="BookOrder" />
</xs:sequence>
</xs:complexType>
</xs:schema>

The first defines a complex type called ‘BookOrder’, which is a record with three simple type fields. The
second defines a complex data type called ‘Booklist’, which consists of an array of one or more elements
called ‘order’, of BookOrder type (‘unbounded’ means there is no upper limit on the number of order records
we can include in the book list). Once this is added, we can start populating the data perspective of the
specification:

« Create a net-level variable called MasterList of type BookList and usage Local (Tip: In the Update
Variable dialog ‘Type’ dropdown, user-defined types are listed after all the built-in simple types). Give
the variable this initial value:

<order>
<title>YAWL User Manual</title>
<price>0.00</price>
<inStock>false</inStock>
</order>

When entered correctly, the text will become green to show that it is a valid value to assign to the
Masterlist variable of complex type ‘BookList’, since it defines values for the elements of one BookO-
rder. It is important that an initial value is provided for this variable, because our definition of the
‘BookList’ type specifies that it will contain at least one element (that is, because it doesn’t include a
‘minOccurs=0’ clause). If there was no initial value specified for this type, the specification would fail
schema validation at runtime — in other words, the Engine will reject the specification.

e Add a decomposition to the first atomic task, and call it ‘Create Book List’. Add to the decomposition
a variable called bookList of type BookList and usage Input & Output. Then, open the Update
Parameter Mappings dialog, add an input parameter mapping the net-level Masterlist variable to the
task’s bookList variable, and an output parameter to map it back again (see Figure 4.35). This task
will allow a user to add any number of book orders to the master book list.

e Add a decomposition to the other atomic task, and call it ‘Show List’. Add a variable to the decom-
position similarly to the first task, except that the usage should be Input Only, and so only an input
parameter mapping is required. This task will show the user the results of any data changes done during
the execution of the MI task, thus its variable is input only (meaning that the values are ‘display-only’).

e Add a decomposition to the MI task and call it ‘Verify List’. To the decomposition, add a variable
called book of type BookOrder and usage Input & Output. Note carefully that the task variable
we have added to the decomposition is of BookOrder type — in our data definition we have defined the
BookList type being comprised of a number of BookOrder type elements — so what has been defined in
this decomposition is a mapping of a single BookOrder to each task instance that will be created when
the MI task is executed.

o The mapping of input and output parameters for MI tasks is done a little differently to atomic (single
instance) tasks, and involves a two stage process. Open the Update Parameter Mapping dialog for the
MI task ‘Verify List’ and add the input and output parameter mappings as seen in Figure 4.36. Notice
that the input parameter maps the entire net-level variable ‘MasterList’ to ‘book’, a single task-level
BookOrder variable, while the output parameter maps the contents of the ‘book’ variable, wrapped
in ‘order’ tags, back to the net-level ‘MasterList’. These kinds of mappings would be invalid for a
single-instance task, but here we need to define a mapping that on input takes a net-level list, assigns

4.5. ADDITIONAL SPECIFICATION FEATURES 75

SN Update Parameters for Atomic Task "Create Book List”
~Input Parameters
XQuery Task Variable Create...
{/List_Builder/MasterList/+*} bookList
Update...
e
Remove...
~Met Variables Task Variables
Mame Type Usage Marme Type Usage
MasterList BookList Local bookList BookList Input & Output
~Output Parameters
XQuery Net Variable Create...
{/Create Book List/bookList/*} MasterList
Update...
e 4
Remove...

Done

2
T ——

Figure 4.35: Update Parameter Mapping dialog for task ‘Create Book List’

each member of the list to a task instance, and on output takes each task instance’s variable and maps
it back to the net-level list. The intermediary steps that allows this mapping to occur is done in the
second stage of the mapping process.

o Right click on the ‘Verify List’ MI task and choose Set Instance Detail... from the popup menu. On
the Bounds tab page, set minimum instance to 1, maximum instances to 20, continuation threshold
to 5 and ‘static’ instance creation type. These settings mean that between 1 and 20 task instances
will by started from this MI task at runtime, the MI task will complete when 5 instances complete (or
all complete if less than 5 were started) and new instances may not be dynamically started after task
execution begins.

Now, click the Queries tab page. It is here that we will specify how the BookOrders contained in
the MasterList variable will be ‘split’ into individual task variable instances and how those instance
variables are ‘aggregated’ back into the MasterList on completion. Figure 4.37 shows the Queries tab
page for the ‘Verify List’ MI task. There are six parts to this dialog, four requiring XQueries and two
variable settings:

— Multiple Instance Variable: this specifies the task instance variable that has be defined to
accept a single item from the net-level ‘list’ variable — in our case, the ‘book’ variable.

— Accessor Query: this query defines the source of the data that needs to be split into multiple
task instances, in most cases (as in our example) it is a simple XPath expression specifying the net-
level variable that is being mapped into the MI task, and exactly matches the input parameter set

CHAPTER 4. THE EDITOR

®Ne Update Parameters for Multiple Atomic Task "Verify List"

~Input Parameters
XQuery Task Variable Create...
/List Builder/MasterList book
e Update...
o
Remaove...
~Met Variables Task Variables
Mame Type Usage Mame Type Usage
MasterList BookList Local book BookOrder Input & Output
~Output Parameters
XQuery Met Variable Create...
<order>{/verify list/book/*}</order> MasterList
Update...
v
Remove...

Done

P
T

Figure 4.36: Update Parameter Mapping dialog for MI task ‘Verify List’

for the variable in the Update Parameters dialog. In this case, it is /List Builder/Masterlist —
note that it is the same XQuery expression as the task’s input parameter as shown in Figure 4.36.

— Splitter Query: the splitter is an XQuery expression that is used to take the ‘list’ variable
mapped in and ‘split’ it into a number of ‘child’ elements, one for each member of the list. In
natural language, the query reads “for each element in the accessor variable, return that element”.
In our example, the XQuery is: for $e in /MasterList/* return <book>{$e/*}</book>
The $e part is a query variable — all query variables start with a $ sign followed by one or more
characters ($e is a convention for a loop variable). The return value for each $e in our query would
start and end with ‘order’ tags; since our variable is called ‘book’, we have to replace the ‘order’
tags with ‘book’ tags, so the return value of our XQuery is the contents of the order ({$e/*}),
but surrounded by ‘book’ tags. The final result is a number of ‘book’ values, each corresponding
to one ‘order’ element in MasterList.

— Instance Query: this query defines how the ‘book’ variable within each task instance should be
formatted prior to being mapped back to the net-level MasterList. Like the splitter query above,
we need to replace the surrounding ‘book’ tags with ‘order’ tags, the contents of the element being
the contents of the ‘book’ variable ({/Verify_list/book/*}). Notice also that this query exactly
matches the task’s output parameter in Figure 4.36.

— Aggregate Query: puts all the instance query results into a list (in this case, a list of ‘order’
elements) ready for mapping back to the net-level variable. The aggregate query will look exactly
like this in most cases ($d is used simply to differentiate it from $e in the splitter query, but its

4.5. ADDITIONAL SPECIFICATION FEATURES 77

8 e Multiple Atomic Task "Verify List" - Instance Detail

i Bounds F—Quenes—-}
Multiple Instance Variable: : book |+]

~Accessor Query

fList_Builder/MasterList

~Splitter Query

for %e in /MasterList/* return <book>{%e/*}</book>

rInstance Query

<order>{/Verify list/book/*}</order>

~Aggregate Query

{for %d in /verify list/* return 5d}

Result Net Variable: : MasterList |+]

[. Done J [Cancel J

Figure 4.37: Set Instance Detail dialog, Queries tab for MI task ‘Verify List’

name is unimportant).

— Result Net Variable: this specifies the net-level variable to which the results of the aggregate
query is to be mapped.

When this specification is executed, it will first allow the user to specify a number of book orders, then will
split the details of each into a corresponding number of MI task instances, one for each order. The price and
availability of each order can be updated within its own task instance. When all (or the threshold) of MI
task instances have completed, their data will be aggregated back into the list for display in the third and
final task.

When the instance creation type is set to dynamic, then new instances of the MI task may be created at
runtime after the task execution has begun and split into its instances. There is a button on the default
worklist handler to accommodate this (see Chapter 6), which will be enabled for dynamic MI tasks until such
time as the maximum instances bound has been met.

78 CHAPTER 4. THE EDITOR

4.5.10 Fast-Tracking Data Definition

If all of a task’s input and output parameters will involve a simple mapping to and from net-level variables,
a “fast-track” can be taken to do it all in a few mouse clicks. To achieve this, right-click on an atomic task
that does not yet have a decomposition, and select Decompose to Direct Data Transfer. The dialog in
Figure 4.38 will appear.

8Nne Atomic Task

Select a number of net variables to be used as input to this task. Do the same for output. The
selected net variables will have type-compatible task variables of the same name created for
them, and mappings that will enact a direct data copy between the newly created task variables
and the specified selected net variables.

Decomposition name: Enrol in Subject

~Met Variables for Input ~Net Variables for Qutput
| Name Type . Name Type
E StudentNumber [string E StudentNumber string
[subjectcode string @ subjectcode string
Done Cancel

Figure 4.38: An example of the direct data transfer dialog

All of the available net-level variables for the task’s containing net will be listed in the dialog. Simply check
the boxes for the desired inputs and outputs. This dialog will automatically create a task decomposition and
matching XQueries to directly transfer data from a selected net variable to a task variable of the same name
and back again.

4.5.11 End of Scenario

This is where our scenario ends. The My Career Scenario was designed to outline the basic the functions of
the YAWL Editor and to provide you with a understanding of designing a YAWL workflow specification.

But the functionality of the YAWL Editor does not stop here. If you are after something more challenging,
try adjusting your version of the scenario to expand into more sub-Nets and more complex situations.

4.6 Connections

4.6.1 Connecting to the YAWL Engine

Each atomic task in a YAWL specification must be associated with a ‘service’ that will be responsible for
performing the work of the task. If you do not explicitly specify a service for a task, by default the task
will be assigned to the Resource Service to be displayed in its worklist handler. If you want to associate a
task with a service other than the Resource Service, you can make the appropriate choice from a list in the
task’s decomposition dialog (see the following section). The Editor populates the list of available services by

4.6. CONNECTIONS 79

making a call to a running Engine, which returns the list of services currently registered with it. Therefore,
the Editor must first establish a connection to a running Engine.

On Editor startup, a connection to a running Engine is attempted. If successful, the Engine connection icon
at the left of the status bar will turn green. If unsuccessful (perhaps because the Engine is not running, or
the connection parameters are incorrect) the connection icon will show red. After the Editor has started, an
Engine connection may be performed via the Tools menu.

To establish a connection with a running YAWL Engine:

1. Click the Tools Menu and choose the Engine Connection Settings... item.
2. From the resulting dialog (Figure 4.39), accept the default values or enter the following engine details:

e YAWL Engine URI;
o Administrator’s User Name;

¢ Administrator’s Password.

[HGNS) YAWL Engine Connection Settings

YAWL Engine URI: http://localhost:8080/yawl/ia

User Name: admin =
| Test Connection |

Password: ****

Successfully connected to a running YAWL engine.

Done Cancel

Figure 4.39: Specifying the YAWL Engine connection detail

The YAWL Engine URI value is set by default to a locally installed Engine (http://localhost:8080/
yawl/ia). The User Name and Password are set to the default administrator user (name=*“admin”,
password=“YAWL”).

As a user convenience, a button called Test Connection is supplied, which will attempt to connect to
a running engine with the detail supplied before the user commits to using those details for any further
editor /engine interactions.

4.6.2 Connecting to the Resource Service

To use the organisational data managed by the Resource Service for assigning tasks to Participants or Roles,
a connection between the editor and the Resource Service needs to be established.

Like the Engine connection (above), when the Editor starts a connection to a running Resource Service is
attempted. If successful, the Resource Service connection icon at the left of the status bar will turn green.
If unsuccessful (perhaps because the Service is not running, or the connection parameters are incorrect) the
connection icon will show red. After the Editor has started, a Resource Service connection may be performed
via the Tools menu.

To set the Resource Service connection details:

1. Click on the Tools menu and choose the Resource Service Connection Settings... item.

http://localhost:8080/yawl/ia
http://localhost:8080/yawl/ia

80 CHAPTER 4. THE EDITOR

2. From the resulting dialog (Figure 4.40), accept the default values or enter the following engine details:

e YAWL Engine URI;
e Administrator’s User Name;

¢ Administrator’s Password.

ann Resource Service Connection Settings

Resource Service URI: http://localhost: 8080/ resourceService/ gateway

User Name: admin)
| Test Connection |

Password: ****

Successfully connected to a running resource service.

Done Cancel

Figure 4.40: Specifying the Resource Service connection

The Resource Engine value is set by default to a locally installed Resource Service (http://localhost:
8080/resourceService/gateway). The User Name and Passwords are set to the default administrator user
(name=*“admin”, password=“YAWL”).

4.6.3 Connecting a Decomposition to a registered YAWL Service

You can use task decompositions within your workflow to make a connection to custom YAWL services that
have been registered with a running engine. By associating a task decomposition with a custom service, all
task instances based on that decomposition will be passed to the custom service at runtime for processing —
that is, the custom service is responsible for performing the work of the task instance.

For example, a decomposition may be set up to place an order with an external company. Upon execution of
any task using this decomposition, data could be transmitted via a Web Service invocation to this company.

To have a decomposition invoke custom YAWL service, do the following:

1. Right-click on a task, the choose Task Decomposition Detail.... An Update Task Decomposition
dialog box will appear (see Figure 4.29).

2. In the “YAWL Registered Service Detail” panel, Select the required Web Service from the dropdown
list of those available in the Engine.

3. Click Done to finish.

If the Editor is connected to a valid running YAWL Engine instance, the YAWL Service Dropdown Box will
contain entries for all custom YAWL services the engine has registered. Otherwise, only the Default Worklist
(of the Resource Service) will be available.

When you select a YAWL Service, the Editor will query this running engine for the mandatory input and
output variables required by the service (if any), and will populate the decomposition variables of the selected
task with those variables. Core custom services that are supplied with the engine include one for RPC-Style
Web Service Invocation (WSInvoker Service), and one for supporting flexibility and exception handling for
YAWL processes (Worklet Service). Optional services include an SMS handler, a digital signature service
and a email sender service.

http://localhost:8080/resourceService/gateway
http://localhost:8080/resourceService/gateway

4.7. VALIDATING AND SAVING A SPECIFICATION 81

4.7 Validating and Saving a Specification

At any stage you can validate and/or save your specification to a YAWL Engine file (.yawl).

To validate your specification:

1. Click the Validate button, , on the Menu Toolbar or click Specification on the Menu and choose
Validate Specification. ...

2. If problems are detected, a table listing them will appear at the bottom of the Editor with details of
any inconsistencies that would stop the specification from running in the YAWL Engine. Figure 4.41
show a specification with no validation problems. Figure 4.42 shows an example invalid specification,
where the Validation Problems table shows that the ‘Bad Task’ task has no outgoing flow, and is not
on a path between the input and output conditions.

eoe YAWLEditor - [Users/adamsmj/Documents/research/temp/myCareer.yawl
‘maBEEE Em [2]c]al [m[#[u]=]=]=] m]w] [+ .
Q ﬂ Q [My_Career | [Study_Privately | [J Attend_University |
D@
s

Task Icon Begin My Get a Job Career
No lcon Career University Started
> 1‘_] Manual
b, Automated
> ﬁ Routing
> 3 Plugin Study
Privately

-

"Notes — Specification Validation Problems }

Mo design-time engine validation problems were found in this specificatiecn.

I @ @ I Left-click on the selected net to create a new atomic task.

Figure 4.41: A valid specification

To save your specification to file:

1. Click on the Save button, , on the Menu Toolbar or click Specification on the Menu and choose
Save Specification. ... The ‘Specification File Save Options’ dialog appears (Figure 4.43).

If this is the first time the specification has been saved, and a ‘Specification ID’ has not yet been entered
via the ‘Update Specification Settings’ dialog, a ‘Specification ID’ field will appear in the dialog (all
Specifications must be given a valid ID). The ID can be a combination of alphanumeric characters and
the underscore, but cannot start with a numeric character. Once set, this field will not reappear in
subsequent saves of the specification.

The ‘Version Number’ field provides a version number for the specification. Version numbering al-
lows different versions of the ‘same’ specification to co-exist in the Engine. YAWL specification version

82

CHAPTER 4.

8686

YAWLEditor - [Users/adamsmj/Documents /research/temp/myCareer.yawl
%

THE EDITOR

S5

‘mamEE[E [v[=] GR [olc|al (M[#d]=]aa] mw &< B[]

@ @J %—@-Mv:&reerﬁ O study_Privately = [J] Attend_University]

O3

&
| Task Icon Begin My AFtenq Get a Job

No Icon Career University Started
> ﬁr Manual
b 2, Automated
> H Routing
> Plugin

v Bad Task Study

Privately

- a

i = - = =
Notes —Smﬁcahon—b’alﬁtm—ﬁoﬂems—-}

Atomic Task:Bad Task 228 The outgoing flow number must be > 0

Atomic Task:Bad Task 228 is not on a backward directed path between the input and output conditions.

I @ e I Left-click on the selected net to create a new atomic task.

Figure 4.42: A invalid specification

® 7 7 Specification File Save Options

Specification ID : | InsuranceClaim

0.1

Version Number:
W Verify on save
E Analyse on save

E Auto Increment Minor Version Number
E Create backup

[. Ok J [Cancel J

Figure 4.43: Specification File Save Options dialog

numbers consist of a major part (to the left of the point) representing a major revision, and a minor part
(to the right of the point) representing a minor revision. Version numbers begin at 0.1; you may edit the
version number directly to a higher version number at any time. If the ‘Auto Increment Minor Version
Number’ checkbox is checked, the minor revision will increase by one each time the specification is saved.

The ‘Verify on save’ and ‘Analyse on save’ checkboxes, if checked, will verify and and/or analyse
the specification before it is saved, providing a final check of the specification (note: verification and

4.8. SPECIFICATION ANALYSIS 83

analysis may take some time for large and/or complex models, and analysis in particular should be
unchecked for incremental saves of such models).

The ‘Create backup’ checkbox, if checked, will copy the previous version of the specification file to
a file of the same name, but with a .bak extension. Checking this option is recommended.

Once the dialog is completed, click OK to save the file.

This saved specification file can now be loaded into a running YAWL Engine and executed.

To import a specification file from a pre-2.0 version of the editor (i.e. a .ywl file):

1. Click on the “Import a YWL Specification file” button, , on the Menu Toolbar or click Specification
on the Menu and choose Import from YWL File....

A window will appear asking you specify the YWL file to import.

2. Select the file and choose Open.

The YWL file will be loaded and converted to a YAWL 2.0 version specification. The specification
can now be edited and saved as a 2.0 specification in the usual way.

4.8 Specification Analysis

Verification of specifications for the engine only determines whether the engine will be able to successfully
load and begin execution of the specification. In contrast, the analysis tool can be used to test for deeper
issues in the specification.

The analysis toolbar button, IZ‘, or the matching Analyse Specification menu item under the Specification
menu allows workflow designers to analyse their specifications. A number of potential problems with a work-

flow can be automatically spotted with analysis. Examples include spotting potential deadlock situations,

unnecessary cancellation set members, and unnecessary or-join decorators (at run-time, or-joins require sig-

nificant processing effort, and should be removed or replaced with other join types if they are not actually

needed).

A configuration dialog for specification analysis is available via the Tools menu, Configure Specification
Analysis (see Figure 4.44). Note that many of the options are disabled by default since they are resource
intensive and may take some time to complete for large and/or complex workflows. It is recommended
that analysis of such specifications not be done incrementally, but rather at planned checkpoints during
specification development.

Because analysis make take a long time and is very resource intensive, it may appear that the Editor has
frozen during an analysis (although it is very unlikely that this will actually be the case). To provide some
feedback about the progress of the analysis, a dialog will appear which shows updates and messages (see
Figure 4.45). The dialog includes a checkbox that, when checked, will keep the dialog open after the analysis
completes so that the messages may be noted. This functionality can also be controlled via a setting in the
Configure Specification Analysis dialog (see Figure 4.44).

If the optional YAWL specification analysis utility wofyawl.exe, is supplied in the same directory as the
Editor, an extra tab entitled WofYAWL Analysis will be enabled in this dialog, allowing more analysis
options than those supplied by default. The utility must be compiled for specific architectures®. The current
version of the Editor needs version 0.4 of the utility.

3WofYAWL is currently only available for Windows environments.

84 CHAPTER 4. THE EDITOR

enn Configure Specification Analysis

f Reset Net Analysis = WofYAWL Analysis |

E Use the reset net analysis algorithm.

1 Use YAWL reduction rules before analysis for optimisation.

[} Use Reset reduction rules befare analysis for optimisation.

] Check for weak soundness property using coverability.

[] Check for unnecessary cancellation regions.

[Check for unnecessary or-joins.

™ Check for or-joins in a cycle.

E Check for soundness property using reachability results from bounded nets.

] Show observations in analysis results.

These tests may overlap in identifying unreachable tasks in the
specification, potential deadlocks and possible unfinished work in
completed workflow cases.

E Keep Analysis progess dialog open when Analysis completes.

Done | | Cancel

Figure 4.44: Configure Specification Analysis dialog

'BRARS]

Analysing Specification: Completed.

Immediate Successors: 29 —~
Immediate Successors: 24

Immediate Successors: 19

Immediate Successors: 14

Immediate Successors: 9

Immediate Successors: 5

Immediate Successors: 2

Reachability Set size: 322 U
Duration: 1450 millisecs B

E Keep open when analysis completes @

Figure 4.45: Configure Specification Analysis dialog

4.8.1 Verification and Analysis Explained

This section provides a brief overview of verification in YAWL. Verification is concerned with the design time
detection of certain undesirable characteristics in process models.

Extensive research has been conducted in the area of workflow verification. One of the pioneers of this work

4.9. AUTOMATED TASK 85

is Wil van der Aalst. He formally defined the notion of soundness as a correctness notion for workflow nets.
This class of Petri nets forms a predecessor of YAWL, which does not support OR-splits/joins, Multiple
Instance Tasks and cancellation regions. Informally speaking a workflow is sound iff [4]:

o The net has the option to complete. That means that from every reachable state the final state, where
there is a single token in the output condition, can be reached.

e The net has proper completion. This means that when the output condition is marked there are no
other tokens anywhere else in the net.

o The net has no dead tasks. These are tasks that cannot be executed in any scenario.

For YAWL, the notion of weak soundness was introduced as it can be theoretically proven that soundness
is not decidable [23]. For a finite state space, we can simply try and check all reachable states, but this is
obviously not possible when this state space is very large or infinite. In those cases, we can check whether
it is possible to reach the final state from the initial state. Hence, does a scenario exist where we reach the
final state?

The richer concepts offered by YAWL also introduce additional correctness notions. For example, an analyst
may have used an OR~join where an XOR~join or an AND-join could have been used. This is not desirable
for computational reasons, but also because it makes the process model harder to understand. Hence, the
YAWL environment will check whether all OR-joins are immutable. Another correctness notion is that of
wrreducible cancellation regions. Here it is checked whether certain conditions or tasks can be removed from a
cancellation region as they will never contain a token or will never be active when the associated cancellation
task executes.

The YAWL editor offers two different approaches to automated verification. One approach [23] is based on
the theory of Reset nets (this is built into the Editor). The other approach [21] uses Petri net theory and
in particular, the concept of transition invariants. For this latter approach the program wofYAWL is to be
used (the executable of this program should be put in the same directory as the Editor under the name
wofyawl0.4.exe). These approaches are different in that there are workflow specifications where one of them
can pick up an error which the other approach cannot.

By choosing “Configure Specification Analysis” under the Tools menu in the Editor one can choose what
type of verification the YAWL editor needs to perform. As some forms of verification may require quite a bit
of time it is important to choose the right approach and generally speaking, it is probably best not to verify
every intermediate version of a specification.

The screen shot shown in Figure 4.45 shows the options one can choose for the analysis based on Reset nets.
This form of analysis supports the use of reduction rules. YAWL reduction rules can be applied to the net
and Reset net reduction rules can be applied to the Reset net that results from the mapping of a YAWL net.
The application of these reduction strategies may significantly reduce the workflow that needs to be analysed,
hence it may significantly reduce the time that verification takes. Note that there is overhead associated with
performing the reductions themselves. Also worth mentioning is that the soundness check is supported for
workflows with a finite state space. The editor caps the state space at a certain number of states and tries
to construct the reachability graph for the workflow. If the upper bound is not exceeded the soundness of
the workflow can be determined with certainty.

The wof YAWL analysis tab-page of the ‘Configure Specification analysis’ dialog is shown in Figure 4.46. The
reader is referred to [21] for a detailed explanation of the concepts behind this approach to verification.

4.9 Automated task

Any atomic task in YAWL that is associated with the Resource Service (i.e. the default association if the task
is not explicitly associated with another service) can have its decomposition defined as manual or automated.
A task with a manual decomposition is a task that is intended to be executed by a human resource, e.g.
a participant in the Resource Service’s organisational model. A task with an automated decomposition is

86 CHAPTER 4. THE EDITOR

Confipure Specification Analysis

[Reset Net Analysis | WofYAWL Analysis |

Use the WofYAWL analysis algorithm.

Structural check for relaxed soundness in a bounded analysis net

Behaviourial check for semi-positive transition invariants in a short-circuited analysis net

These tests may overlap in identifiying unreachable tasks in the
specification, potential deadlocks and possible unfinished work in
completed workflow cases.

Extend cowverability graph of an unbounded analysis net {slow)

| Done H Cancel ‘

Figure 4.46: Verification using wof YAWL

a task that is not offered to any resource but is executed by the system. This type of task can be used
to manipulate the content of net variables, from simple data assignments to complex reports generation.
Alternately it may be associated with a codelet — a discrete piece of code that is executed, optionally using
the input variables of the task, and assigning any results to the chosen output variables of the task.

Both task types are handled by the Resource Service, but the behaviour of an automated task differs as
follows:

« on enablement, it is automatically checked out of the engine (thus having priority over manual tasks in
a deferred choice) and its input parameters are parsed;

» if a codelet has been specified, it will be executed it using the task’s variables as required; then

e it is automatically checked in and its output variables are mapped back to the corresponding net
variables.

A task is designated as manual by default, but can be set as automated by right-clicking on it and selecting the
Task Decomposition Detail dialog, then ticking the Automated checkbox in the External Interaction
section (see Figure 4.29). When the Automated checkbox is checked, the option Manage Resourcing in
the task’s right click menu will be disabled (since human resources are not required for automated tasks).

Data manipulation can be achieved by using the task’s variables and their Input and Output Parameters.
Parameters are generally used to copy the content of a net variable to a task variable and back again. But
parameters may also contain an XQuery expression that uses static values, or the values of other variables,
to copy data between net variables and task variables. Figure 4.47 shows an simple example of copying
from expression, where the literal true is copied onto the net variable PO_timedout after choosing the from
expression radio button. This choice is only available for automated tasks, and any task variables used in
the XQuery expression itself must be declared as Input & Output usage types.

4.9.1 Codelets

Essentially, a codelet is a discrete Java class, managed by the Resource Service, that may be enacted by
an automated task at runtime. When an automated task is enabled during process execution, and it has a

4.9. AUTOMATED TASK 87

8eNnee Update Net Parameter "PO_timedout"
() from element of task variable:) _: add XQuery of element's content
© from expression & add XQuery of entire element
rXQuery
<PO_timedout> l
true E
€) IS |
</PO_timedout:>
'r_
populates the net variable: | PO_timedout B‘ (Create...) |
Done | | Cancel |
e

Figure 4.47: An output parameter set to copy from expression for an automated task

codelet associated with it, the input parameters of the task are passed to the codelet, it is executed, and any
results are passed back to the task via its output parameters.

There are currently three codelets available in the Editor (see the YAWL Technical Manual for directions on
how to add user-defined codelets):

« ExampleCodelet: designed to demonstrate the usage of codelets;

o XQueryEvaluator: accepts an XQuery as an input parameter, evaluates it (using other input parameters
as required by the XQuery), and produces the result to an output parameter.

o ShellExecution: accepts an input parameter containing a command line of an external program, and
runs it, waiting for it to complete and returning the result (if any) via an output parameter.

To associate a codelet with a task decomposition, first mark the decomposition as automated by ticking the
Automated checkbox in the Task Decomposition dialog (see Figure 4.29). When checked, the Set Codelet
button is enabled; clicking that button opens the Set Codelet for Automated Decomposition dialog, listing
the available codelets (Figure 4.48). Note that a valid connection to the Resource Service is required for this
list to be populated with codelets. The dialog lists the available codelets, together with a description of what
each one does and the task variables required to successfully execute it. For example, if ExampleCodelet
is chosen, the automated task requires 3 variables to be created: input parameters ‘a’ and ‘b’, and output
variable ‘¢’ (all of type ‘long’). These parameters must be added to the task in the normal manner — at
runtime, if the required variables are not present, the codelet will be unable to successfully complete (the
task will still complete successfully, however).

The codelet repository has been designed as ‘pluggable’; so that designers and developers can easily add
new codelets to perform various operations, which will immediately be available to process designers via the
dialog above, as long as there is a valid connection to the Resource Service.

88 CHAPTER 4. THE EDITOR

ée&nNnn Set Codelet for Automated Decomposition

Name Description
This codelet is a simple example of codelet constructicon and
usage. It adds two integers. Reguired parameters:
Inputs: a, b (both long types)
Output: ¢ (alsc a leng)
This codelet executes an external program. Required parameters:
Inputs: command (type String, reguired)
ShellExecution eny (attrib=value pairs, optiocnal)
dir (type String, optional)
Output: result (type String)
This cecdelet executes an XQuery. Reguired parameters:
Input: guery (type String, reguired): the XQuery
plus other values used by the XQuery
Output: result (type String)

ExampleCodelet

XQueryEvaluator

OK Cancel

Figure 4.48: The Set Codelet dialog

4.10 Resource Management (Manual task)

Once a connection with the Resource Service has been established, any manual atomic task with a decom-
position (a task is manual by default, and only becomes automated when explicitly checked as automated in
the Task Decomposition Dialog) can be allocated resources via a number of steps, by right-clicking on the
task and selecting Manage Resourcing. This will launch the resource manager wizard. Figure 4.49 shows
the dialog window for Step 1 of the wizard.

Step 1

In Step 1 we can specify the interaction strategy for work items of the selected task. There are three
interaction points: offer, allocation, and start, each of which may be either User or System processed.

If we choose that work items are to be Offered by the User and not by the System, at runtime an Administrator
will need to manually choose the resource(s) to offer the work item to. If System offering is chosen, then
in Steps 2 and 3, we can specify the resources that will automatically be offered work items of the task at
runtime.

If we choose that work items are to be Allocated by the User and not by the System, any participant who has
been offered the work item can manually choose whether to commit to being responsible for the performance
of the work item (i.e. to allocate the work item to themselves). If System allocation is chosen, in Step 4 we
can specify how work items will be allocated to a participant by the System.

If we choose that work items are to be Started by the User and not by the System, then the user will choose
to manually start working on the work item at a time of their choosing. If System starting is chosen, the
work item, once it is allocated to the participant, will be immediately started.

4.10. RESOURCE MANAGEMENT (MANUAL TASK) 89

66 Manage Resourcing Wizard for Atomic Task "Receive and Validate Application”

Step 1 : Choose Behaviour At Interaction Points

There are three key decision points for managing the resourcing of work items spawned from a task. At each
of these interaction points, you may choose to have the system dynamically make a decision on resourcing
at each point, or alternately, allow a user to manually make each decision. Each interaction point is briefly
described below:

@ Offer: The point at which it is decided that a number of participants could undertake the work item.
® Allocation: The point at which one of the participants offered the work item is nominated to do that
work item.
@ Start: The point at which the participant allocated a work item begins working on it.
Offering a work item for this task to a number of participants is to be done by: () User (*) System

Allocating a work item for this task to one of the offered participants is to be done by: @ User O System

Starting an allocated work item of this task is to be done by:) User () System

< Back > Next Finish

Figure 4.49: Step 1 of the resource management wizard

Step 2

In Step 2, shown in Figure 4.50, we can select an initial set of resources (called the distribution set) that will
be offered work items of the selected task at runtime by the System. The distribution set may consist of any
number of participants and/or roles*. These can be picked from the relevant lists in this dialog (multiple
selections are supported).

Additionally, in the Net Parameters panel you may nominate one or more net-level variables that at runtime
will contain a value of the userid of a participant or the name of a role (that is, deferred allocation). For a
variable to appear in the Net Parameters panel, it must be of type ‘string’ and usage ‘Input & Output’ or
‘Input Only’. Note that all net-level variables that are of string type and have one of those usage types will
be listed in the Net Parameters table, and will initially all be set as referring to ‘Data’. For each of those that
will contain resourcing information at runtime, the Refers To value must be changed to either ‘Participant’
or ‘Role’ via the drop down list on each row, depending on the type of resource the value will refer to at
runtime.

Step 3

In Step 3, shown in Figure 4.51, we can filter the set of participants that have been described in Step 2.
Filtering can be done over capabilities and/or over positions and organisational groups. Moreover, from this
dialog it is possible to:

« allow the work items of the selected task to be offered only to participants who are members of the
set specified in Step 2 and have previously completed work items of another task (as specified) in the
current process instance;

4A role is essentially a set of participants.

90 CHAPTER 4. THE EDITOR

1808 Haﬁ@e Res.ourcing Wizard for Atomic Task "A”

Step 2 : Specify System Behaviour when Offering a Work Item

The offer process involves choosing which participants should be informed of the existence of the work item, one of
whom will eventually do this work. As you have specified the system manage the offer process, you must now choose
who the work item should be offered to. Begin by specifying a set of participants and/or to distribute offers of work to.
You may also specify a net parameter which at runtime will contain a participant's userid or the name of a role.

~Participants rRoles rNet Parameters

Kay Adams (ka) Account Manager |__Name Refers to .
Peter Clemenza (pc) Carrier Admin Officer 1""13
Don Vito Corleone (dvec) Client Liaison |
Fredo Corleone (fc) Courier
Michael Corlecne (mc) Finance Officer
Sonny Corleone (sc) Order Fulfilment Manager
Don Carmine Cuneo (dcc) PO Manager |
Tom Hagen (th) N Senior Finance Officer -
Captain McCluskey (cmc) ird Senior Supply Officer ke |
Carln Rizzi (rr) b Shinment Plannear 1

Unselect All Unselect All

|
[<Back | [>Next | [Finish |

v

Figure 4.50: Step 2 of the resource management wizard

o do not allow the work items of the selected task to be offered to participants who are members of the
set specified in Step 2 and have previously completed work items of another task (as specified) in the
current process instance;

o Allow all of the work items of the selected task to be piled to a particular participant, which means
that, if a participant chooses to pile a work item of the task, that participant will be automatically
allocated the work item and all future instances of work items of the task for all future instances of the
process containing the task, until such time as piling is turned off for that task by the participant or an
administrator.

Step 4

In Step 4, shown in Figure 4.52, we can select the allocation mechanism that determines at runtime which
participant, chosen from the members of the distribution set defined earlier, will actually be allocated the
work item. The currently available mechanisms are:

o Round Robin (by time): chooses the participant in the set who has not been allocated a task instance
for the longest time;

o Round Robin (by least frequency): chooses the participant in the set who has been allocated this task
instance the least number of times in the past;

o Round Robin (by experience): chooses the participant in the set who has been allocated this task
instance the most number of times in the past;

o Random Choice: randomly chooses a participant from the set (the default); and

4.11. TASK TIMER 91

8Ne Manage Resourcing Wizard for Atomic Task "Approve"
Step 3 : Specify Distribution Set Filter(s)
rFilters

Tick those filters to be applied to the specified distribution set. Set parameter values for the selected filter as required.

Filter Parameter Value
M Filter bv Oraanisaticnal Data

rRuntime Constraints

] Allow this task to be piled to a single participant.

E Choose participant(s) who completed previous task: (register_name_7 f:jﬁ

E Do not choose participant(s) who completed previous task: { Check2_5 H‘i

[<Back | | >Next | | Finish |

)

Figure 4.51: Step 3 of the resource management wizard

o Shortest Queue: chooses the participant in the set who has the least number of task instance currently
in their work queue.

Step 5

In Step 5, shown in Figure 4.53, we can specify participant-task privileges (privileges that apply only for this
task). For example, we can specify whether participants are allowed to suspend the execution of work items
of the selected task.

More details on resource allocation and authorisation can be found in Chapter 6.

4.11 Task Timer

Any atomic task can be assigned a timer behaviour by right-clicking on it and selecting the Set Task
Timer. ... The dialog in Figure 4.54 will appear.

From this dialog it is possible to set an activation type and an expiry value for the timer. The timer can be
activated either when a task is enabled (i.e. is offered or allocated) or when it starts. These have different
meanings according to the type of task — manual vs. automated.

4.11.1 Activation on enablement

e In the case of a manual task, as soon as the task is enabled, the timer begins and it remains live so
long as the specified expiry time is not reached. During this time frame, the task will follow the normal
resource assignment policy. In other words, it will be offered and can be allocated and started. Once the

92

CHAPTER 4. THE EDITOR

(NSNS Manage Resourcing Wizard for Atomic Task "Approve”

Step 4 : Specify System Behaviour when Allocating a Work Item

The allocation process involves choosing a single participant, from those who are offered a work item, to actually undertake
that work. As you have specified that the system dynamically do this, you must now select the strategy for doing so. Choose
from one of the strategies below.

Choose the runtime allocation strategy: " Random Choice H—i

P
6.4

[<Back | | >Next | | Finish |

Figure 4.52: Step 4 of the resource management wizard

timer expires, the task instance will complete no matter what its current status is (offered, allocated,
started). The possible danger of this behaviour is that a work item might be timed out while being
edited by a user, in which case any modifications the user makes after that time are lost.

In the case of an automated task, the timer works as a delay, i.e. the automatic execution of the task
instance created by an automated task is delayed until the specified expiry time is not reached. Once
the timer expires, the task is immediately executed and completed.

4.11.2 Activation on starting

o In case of a manual task, the timer begins only when the task has started. Therefore, the task will be

first offered, then allocated, and once it is started the timer starts. Again, the timer may expire while
the task is being edited by a user.

o This option is does not apply for an automated task.

4.11.3 Expiry value

The expiry value of the timer specifies for how long the timer will live after being activated. Expiry values
can be expressed in either of two ways:

« Using a specific date and time, which means the timer will expire at the specified moment. To set

a specific date and time, choose the ‘at the time of’ radio button on the Set Timeout Detail dialog
(Figure 4.54) and enter the required values. Care should be taken when setting a specific time value for
timers — if it happens that the specified value is earlier than the moment the task is actually enabled
or started (depending on when it is set to activate), then the YAWL Engine will recognise that the

4.11. TASK TIMER

80l Manage Resourcing Wizard for Atomic Task "Approve”

93

Step 5 : Establish Default User Runtime Privileges for this Task

Can a participant suspend a started work item of this task? @ No () Yes
Can a participant reallocate a work item of this task to another participant, resetting state? ® No () Yes
Can a participant reallocate a work item of this task to another participant, retaining state? ® No () Yes
Can a participant deallocate themselves from a work item of this task?) No () Yes
Can a participant delegate a work item of this task to another participant? @ No () Yes
Can a participant skip a work item of this task?) No ([Yes

((<Back | | > Next | Finish |

B

Figure 4.53: Step 5 of the resource management wizard

@08 Set Timeout Detail for Atomic Task "Approve"

E Task is required to timeout

Timeout: () dynamically via net variable approveTimer

Ak

© at the time of 17/07/2008 7| 107 555 58
() after a duration of
Timer begins: ™ upon work item enablement
O upon work item starting
|- Done 'i | Cancel |
A

Figure 4.54: The timer dialog for an atomic task

timer has already expired and immediately complete the work item before it has a chance to appear on

a worklist.

o Using a Duration value. A Duration is one of the built-in simple XML Schema data types, and is

94 CHAPTER 4. THE EDITOR

used to represent a period of time. When a Duration type is used as a timer expiry value, the timer
will expire exactly when that period of time has passed since the work item was enabled or started
(depending on when it is set to activate). To set a specific duration, choose the ‘after a duration of’
radio button on the Set Timeout Detail dialog (Figure 4.54) and enter the required value. A Duration
value is expressed in the following form:

PnYnMnDTnHnMnS

All values start with P (for Period) followed by a non-negative number of years, months, days, then T
(for time), followed by a non-negative number of hours, minutes and seconds. The seconds value can
have a decimal point and as many digits following the point as required (e.g. to specify fractions of
a second). Any zero value parts can be omitted. Valid examples: P1Y4M3DT23H55M1.5S, P2M3D,
PT10S. Care should be taken when specifying a duration, for example P2M may mean a different
number of days depending on what month it is started in.

In addition to the methods described above, timer parameters may also be set at runtime via a declared
variable of type YTimerType, so that values can be supplied and late-bound to a task’s timer settings. To
use this deferred approach:

1. Create a net-level parameter of type YTimerType.

2. Choose a task, right click on it and choose Set Task Timer... to open the Set Timeout Detail dialog
(Figure 4.54), click the ‘dynamically via net variable’ option and select the net-level parameter created
in Step 1.

3. Map the net-level parameter to another (previous) task in the flow, which will be used to capture the
required values from a user at runtime. Those values will be used to set the timer parameters on the
task selected in Step 2. The values requested are:

o Trigger: when should the timer start? There are two valid trigger values, OnFEnabled and OnEx-
ecuting.

o Expiry: when should the timer expire? This value can be either a date string (for example
12/12/08), which will be interpreted as a specific moment, or as a Duration value, which will be
interpreted as a period of time.

An example of how a variable of YTimerType appears in a dynamic form at runtime can be seen in Figure 4.55.

Edit Work Item: 6.1

Get Timer Expiry
Timer
trigger: FOnExecuting ix|
expiry:
Cancel Save Complete

Figure 4.55: Example of a YTimerType variable rendered on a dynamic form

4.12. CUSTOM FORMS 95

4.12 Custom Forms

When a task is associated with the default worklist handler (i.e. the Resource Service), then at runtime the
data within the task instance may be selected for viewing and/or updating. By default, the Resource Service
uses a built in “dynamic forms” component, which generates appropriate but generic data editing forms
designed for maximum flexibility and that can display data parameters of any type. However, their generic
look and feel may not be appropriate in all cases, for example where an organisation has a standardised set
of forms for their business processes, and would like their web-based forms to match that standard. In such
cases, a Custom Form may be user-defined and associated with a task by specifying a URL to the form. At
runtime for such a task, the Resource Service will package up the task data and send it to the custom form
for display and/or editing (depending on how the form has been defined). On submission of the form by the
user, the data is extracted from the form by the Service and passed back to the task in the same manner as
dynamic forms. Custom forms may be built using any web-based technology, such as JSF, Javascript, .NET,
PHP, or any other browser-based environment that can receive data, use it to populate form fields, update
the data with user inputs, and pass control back to the calling service.

To set a custom form for a task, right click and select Set Custom Form. .., then enter the absolute URI
of the custom form (see Figure 4.56). To remove a custom form association, open the dialog and enter a
blank URI (i.e. remove the URI from the dialog and click OK).

& 7) Set Custom Form URI

Custom Form URI:

http:/ /www.myserver.com/form.jsp

'i Cancel :. (OK }

Figure 4.56: Custom form dialog

See the YAWL technical manual for information regarding the creation and configuration of custom forms.

4.13 Extended Attributes

The Editor offers a means for defining extended attributes to be associated with task decompositions, net
variables and task variables. Currently, the implementation and the semantics of these attributes is left to
the developer.

Extended attributes can be defined in property files, which need to be placed in the folder:
<editor_install_path>/YAWLEditorPlugins/ExtendedAttributeProperties

Attributes referring to net and task variables must be defined in a file named VariableProperties (no exten-
sion), while attributes referring to task decompositions must be defined in a file named DecompositionProp-
erties (no extension). The files are read at the Editor’s next restart.

Attributes can be of type string, boolean, enumeration and XQuery. The following is an example of a property
file that defines the attributes description, help, mode, refresh and skipSchemaValidation (comments are
indicated by a line starting with #).

#Decomposition Attributes
#Wed May 14 17:35:42 AET 2008

96 CHAPTER 4. THE EDITOR

£ Update Task Decomposition” Prepare Roote Goide™

Standard | Extended Attributes
Mame Yalue

description
help a string
mode -
refresh
skipschemaalidation normal

final

pending

Done Cancel

Figure 4.57: The dialog for editing the extended attributes associated to task decompositions

description=xquery

help=string
mode=enumeration{normal,final,pending}
refresh=xquery
skipSchemaValidation=boolean

From the Editor, the user can visualise and edit the list of attributes by selecting the tab Extended At-
tributes from one of the following dialog windows:

« Update Task Decomposition,
« Update Net Variable,

o Update Task Variable.

Figure 4.57 shows the rendered list of attributes for the above property file.
Note that attributes can only be specified through property files and not via the above dialogs.

Editor Troubleshooting

The YAWL Editor is not responding to my mouse clicks and it is beeping every time I click
the mouse.

Check to see if you have any Editor dialogs open. To do so, in Windows hold down the ALT key (for OSX,
hold down the Command key) and press the TAB key until you reach the dialog window, then let go of the

4.13. EXTENDED ATTRIBUTES 97
keys. Close the offending dialog window to reenable use of the YAWL Editor.

I can’t connect two elements with a flow. Why?

The Editor will not allow you to connect one element to another where such a connection is invalid. Typical
examples include:

e Trying to connect a second flow to an undecorated task.

o Trying to point an incoming flow to a split decorator (or an outgoing flow from a join decorator).

See the troubleshooting entry “How do I find out more about elements and principles.....” for more details.

When I validate my Net, I get the following validation message, ‘The net (. . .) may complete
without any generated work. Should all atomic tasks in the net be unlabelled?’

This message appears if none of your atomic tasks are associated with a decomposition. To add a decom-
position to a task (and thus ensure that the engine will get a user to handle the task at this point in the
workflow), right click on the task and choose Select Task Decomposition. ... Choose Create... and in
the following window, “Update Task Decomposition”, and enter the name of your task under Decomposition
Label, then click Done.

My specification won’t validate without any errors and I don’t know what to do.

First, check the logic of your specification and exercise every branch of your workflow for correctness.
If you are sure of your workflow, consult the YAWL website for the proper use of the YAWL elements:
http://yawlfoundation.org.

How do I find out more about the elements and principles of the YAWL workflow specifications?
For more information about the mechanics of the YAWL workflow elements, please consult the YAWL website:

http://yawlfoundation.org.

http://yawlfoundation.org
http://yawlfoundation.org

98

CHAPTER 4. THE EDITOR

Chapter 5

How to Manipulate Data in YAWL

5.1 Introduction

Compared to most of the existing workflow management systems which use a propriety language for dealing
with data, YAWL completely relies on XML-based standards like XPath! and XQuery? for data manipulation.
This document provides some insights into data manipulation in YAWL, in terms of data visibility (defining
data elements), data transfer (passing data between workflow components and exchanging information with
the environment), data related issues such as data-based conditional routing and handling of multiple instance
data. Readers are assumed to have knowledge of YAWL and its supporting tools: the YAWL engine (see
Chapter 6) and the YAWL editor (see Chapter 4).

5.2 Data Visibility

In YAWL, all data are represented as XML documents. Figure 5.1 depicts an example of a YAWL net
specifying a simple trip booking process. The data at the net level are written in an XML document with a
root element named PerformBooking (i.e. the name of the net), while the data at the task level are written
in an XML document for each task.

Next, data elements are stored in variables. There are: net variables for storing data that need to be accessed
and/or updated by tasks in a net, and task variables for storing data that needs to be accessed and/or updated
only within the context of individual execution instances of a task. Note that the task variables of a composite
task are conceptually the net variables of the corresponding subnet.

YAWL applies strong data typing. Data types are defined using XML Schema. The YAWL Editor provides
a list of all 46 XML Schema simple data types for variable definition. These include some basic types such
as boolean, string, double, decimal, long (integer), date (in the format of yyyy-mm-dd) and time (hh:mm:ss).
Based on the above, the users can also supply their own XML Schema to define more complex data types.
Figure 5.2 shows the XML schema of a user-defined data type for element “CustInfo” which consists of both
customer name and target start date for the booking trip process depicted in [6].

Data usage is also part of the variable definition. There are: input and output variables, input only or output
only variables, and local variables. In general, data are written to input variables and read from output
variables. Local data usage is applicable to net variables only. The local (net) variables are used to store
data that can be manipulated only internally within the scope of the corresponding net.

Finally, a net variable may be assigned an initial value at design time. Further details will be given in the
next section on data transfer.

IXML Path Language (XPath) 1.0. W3C Recommendation, 16 November 1999.
2XQuery 1.0: An XML Query Language. W3C Working Draft, 4 April 2005.

99

100

CHAPTER 5. HOW TO MANIPULATE DATA IN YAWL

=PerformBooking=
=custinfol>

=requireCar=true<frequireCar=
zrequireFlight=false<irequireFlight=

=totalPrices=
=/PerformBooking=>

TR

Book
Car

<XML>

Net: 'PerformBooking’

Decide

Figure 5.1: A YAWL net “PerformBooking” and its data representation

<Decide>
<Custinfo>
<CustName>M. Twain</CustName>
<TargetStanD ate>2005-12-07 </T argetStartD ate>
</Custinfo>
<f/Decide>

A

.

Custinfo WantCar

<schema xmlins="http:/Ammn.nG.0rg/2001/XMLSchema">

<element name="Decide">
<complexType>

<sequence®

<element name="Custinfo">

<complexType>
<sequence>
<element name="CustName" type="string"/>

<element name="TargetStatD ate" type="date"/>

<fsequence>
<fcomplexType>

<felement>
<jsequance>

<fecomplexType>
<felement>
<fschema>

[T

WantFlight

. e

WantHotel

Decide

Figure 5.2: XML Schema of a user-defined data type for “CustInfo”

Editor.

5.3 Data Transfer

Note In Chapter 4, Section 4.5.3 to Section 4.5.6 illustrate how to define net and task variables in the YAWL

5.3.1 Internal and External Data Transfers

YAWL supports data passing between variables, which can be considered internal data transfer, and data
interaction between a process and its operating environment (i.e. workflow engine, users and web services),

5.3. DATA TRANSFER 101

which can be considered external data transfer.

Internal data transfer is always conducted between nets and their tasks (which themselves may or may not
be composite) using XQueries®. Note that YAWL does not support direct data passing between tasks. This
is because each task variable is local to the task that the variable belongs to, i.e., it is not accessible by other
tasks. Assume task A and task B in net N. To pass data from task A (e.g. variable Va) to task B (e.g. variable
Vb), an appropriate net variable of N (e.g. Vn) must be available to convey data from Va to Vb. In the YAWL
editor, each task can be assigned an input parameter and/or an output parameter (depending on the specified
‘Usage’ type) which define internal data transfer associated with that task. Input Parameters use an XQuery
to extract the required information from a net variable and pass such information to the corresponding task
variable, while output parameters define data passing in the opposite direction. Considering the process
depicted in Figure 5.1, Figure 5.3 shows an example of passing the customer information from the net level
to the task level (task “Decide”).

<PerformBooking>
<custName>=M. Twain</custN ame>=
<departure>2005-12-07 <fdeparture> I | X 1
<requireCar> RQuery kgl Custinfo WantCar
<requireFlight/> l_lﬂ_\ l
<totalPrices> <Decide> .
</PerformBooking> <Custinfo> Waanllght
<CustName>M. Twain</CustName> |
<Tlrgdsurlmipm-ﬂ-wCITJIMSHMH_'U_
<fCustinfo>
S WantHotel
<wantF light’>
<wantHotel!>
</Decide>

Decide

Figure 5.3: An example of data transfer from net “PerformBooking” to task “Decide”

External data transfer does not apply to any local variable or any variable of a composite task. This is because
the local variables cannot be observed externally, and the variables of composite tasks serve as intermediate
variables for passing data from the higher level to the lower level of a process and vice versa (e.g. between a
net and the tasks in its subnets). When data are required from the external environment at run time, either
a web form will be generated requesting the data from the user or a web service will be invoked that can
provide the required data.

5.3.2 Valid and Invalid Data Transfers

To ensure correct data transfer, YAWL defines a set of transfer rules for variables of different data usage.
Each input variable, except those associated with the top-level net (root net), must have data supplied from
the corresponding net variables (which could be a single net variable or an aggregation of any number of net
variables), via an input parameter definition. An input variable of the top-level net gets data supplied from
the environment (e.g. a user input) once an execution of the net is started; a local variable of the top-level
net may be assigned an initial value at design time (data assignment). Each output variable, except those
associated with composite tasks, requests data from the environment once the corresponding net or task is
executed. An output variable associated with a composite task gets data via the net data in its subnet, using
an output parameter definition. Otherwise, output variables are used to supply task data to corresponding
net level variables (in internal data transfers).

3XQuery 1.0: An XML Query Language. W3C Working Draft, 4 April 2005.

102 CHAPTER 5. HOW TO MANIPULATE DATA IN YAWL

Input and output variables combine usages. No (internal) data transfers are allowed to local variables of
subnets and no (external) data transfers are allowed between local variables and the external environment.

Note In Chapter 4, Section 4.5.7 illustrates how to pass data between variables in the YAWL Editor. Three
things are worth noting:

1. The YAWL Editor enforces correct data transfers between variables in the parameter definition for each
task. For example, it is not possible to define data passing between local variables, or to set more than
one input/output parameter on a single variable associated with a task.

2. In the YAWL editor, by running specification validation, a user can check whether or not required data
transfers are missing. For example, if an input variable (V-in) of a task (T) does not have any data
mapping specified, the validation result will indicate that “there exists an input parameter (V-in) in
(task) T that is not mapped to by this task”.

3. When specifying XQueries in the parameter definitions of a task, the YAWL editor may automatically
generate an engine-compatible XQuery or indicate whether a user-defined XQuery has valid or invalid
syntax (by displaying the query in green or red respectively). The semantics validation of XQueries
is performed at run time by the YAWL engine. A semantic error may result in a Schema Validation
Problem and the execution of the process may fail.

5.4 Data-related Issues

5.4.1 Data-based Conditional Routing

When tasks have XOR or OR splits, which branch to choose is determined by conditional expressions asso-
ciated with flows. These conditions are boolean expressions that involve data within the process. The data
may determine the evaluation results of the conditions and therefore influence the operation of the process.

In YAWL, the branching conditions are specified as XPath* boolean expressions in the flow detail for tasks
with XOR or OR splits. The branches (flows) whose conditions (predicates) evaluate to true will be executed
by the YAWL engine (all true branches for an OR split; the first true branch from an XOR split). Also,
for each task with XOR or OR split, there is always a default flow that will be taken if none of the other
flow predicates evaluate to true. We consider separately below tasks with XOR splits and the tasks with OR
splits.

As an example, Figure 5.4 shows the XPath expression, which is specified at task “Decide”, for choosing the
branch of “Book Car” in the “PerformBooking” process depicted in Figure 5.1.

For a task with XOR split, all (conditional) flows are specified in a list, and their predicates are evaluated
in the same order as they are present in the list. Since an XOR split allows only one flow to be chosen, once
the engine reaches a flow predicate that evaluates to true, the corresponding flow will be chosen and the rest
of the list will be not be evaluated. However, if the engine reaches the bottom of the list, the bottom-most
flow will always be chosen as the default, and it is not necessary to evaluate the predicate associated with
that flow. Therefore, the default flow of a task with XOR split is similar to the concept of an “otherwise”
clause defined in most programming languages.

For a task with an OR split (e.g. the task “Decide” in Figure 5.4), all flows with their predicates are also
present in a list. However, an OR split requires that all flows whose predicates evaluate to true are taken.
Therefore, the engine will evaluate all flow predicates, and only if none of them evaluate to true will the
bottom-most flow be taken as the default (despite the false evaluation result of its predicate).

Note In Chapter 4, Section 4.5.8 illustrates how to specify flow predicates for tasks with XOR or OR splits
in the YAWL Editor. Two things are worth noting;:

4XML Path Language (XPath) 1.0. W3C Recommendation, 16 November 1999.

5.4. DATA-RELATED ISSUES 103

XPath
boolean(/PerformBookingfrequireCar/text() = 'true')

<PerformBooking>

—] :}equireCar:-true-c.'requireCa»
<requireHotel>true<frequireHotel>
<requireFlight>false</requireFlight>

- <fPerformBooking=

Decide

Figure 5.4: XPath expression for choosing the branch of “Book Car” at task “Decide”

1. Only net variables are allowed to be used in specifying flow predicates. This is because the flow
evaluation for a task with XOR or OR split is conducted after completing the execution of the task,
and therefore the task variables are no longer available.

2. Similarly to the XQuery validation, the syntax validation of XPath expressions can be performed in the
YAWL editor. The semantics validation is however a different matter. As YAWL applies only XPath
boolean expressions for specifying flow detail, an XPath boolean expression with invalid semantics may
evaluate to false, and as a result the execution of the process will still continue. In such a case, designers
need to validate their YAWL specification against the desired system behaviour by themselves.

5.4.2 Multiple Instance Data

There are two categories of data associated with multiple instance tasks. One is the task attribute data
which define the mazimum and the minimum number of instances allowed as well as the threshold value.
The other is the multiple instance data which are specific to individual execution instances of tasks within a
single workflow case [18]. Below we describe how to handle multiple instance data in YAWL.

YAWL supports both the designated multiple instance tasks and the isolation of data elements between task
instances. However, the handling of multiple instance data is far from trivial. Data at the higher level
needs to be split over the instances and after completion of the instances aggregated to data elements at
the higher level [2]. A set of four types of XQueries may be used to pass multiple instance data between
different levels. These are: the accessor query for manipulating the overall multiple instance data before the
unique values are split out (to individual execution instances); the splitter query for separating the unique
values from the overall multiple instance data and passing a unique value to each instance; the instance query
for transforming the XML document returned on completion of an instance to a form that is suitable for
aggregation; and the aggregate query for finally generating an overall result and passing the result to the
higher level on completion of the multiple instance task.

In Chapter 4, Section 4.5.9 illustrates how to specify multiple instance data manipulation, e.g., the four types
of XQueries, in the YAWL Editor.

104 CHAPTER 5. HOW TO MANIPULATE DATA IN YAWL

5.5 Illustrative Examples

Below are three illustrative examples which cover the aforementioned data perspective of YAWL. The first
example is a revised version of the “Credit Rating Process” taken from the “Oracle BPEL Process Manager:
Quick Start Guide” (10g Release 2. May 2005). The next two examples are the first two “Make Trip
Processes” that can be found in [2].

5.5.1 Example 1: Credit Rating Process

This is a simple process that provides a credit rating service. When running this process, the client (user)
is asked to provide his/her social security number. The process takes the number and returns credit rating.
There are two situations. If the client’s social security number starts with 0, a fault reporting “Bankruptcy”
will occur. Otherwise, a credit rating (e.g. 560) will be given. From the above, the data associated with this
process are: 1) client’s social security number (ssn), 2) credit rating (560), and 3) fault (“Bankruptcy”).

YAWL Specification

Figure 5.5 shows the YAWL net specifying the above credit rating process. There are three labelled tasks:
ReceiveSSN for requesting a social security number from the client; ReportFault for reporting a “Bankruptcy”
fault; and DecideRating for providing the credit rating 560. There is also an unlabelled task, which has an
XOR join; this is an example of a routing (or empty) task — that is a task without decomposition — and is
used here to ensure the net is ‘sound’.

@ Credit Rating Process

C : DecideRating

FHeceiveSSh

RepaortFault

Figure 5.5: The “CreditRatingProcess” net

Figure 5.6 shows three net variable definitions for the “CreditRatingProcess” net. All are defined as local
variables in order to avoid any data interaction with the external environment at the net level. Also, both
rating and fault are assigned an initial value.

Figure 5.7 shows the parameter definition of task ReceiveSSN. It can be observed that this task has an output
only variable called ssn. This variable requests social security number from the client, and as specified in the
output parameter definition, it then passes the data to net via XQuery “{/ReceivedSSN/ssn/text()}”, which
can be generated automatically by clicking the add XQuery of element’s content button in the Update
Net Parameter dialog.

Figure 5.8 shows the flow definition at task ReceiveSSN. The predicate for the flow leading to task ReportFault
is “starts-with(/CreditRatingProcess/ssn/text(),’0’)”5. It returns true if the string conveyed by variable ssn

Sstarts-with(string, string) is an inbuilt XPath boolean function. It returns true if the first argument string starts with the

5.5. ILLUSTRATIVE EXAMPLES 105

<] Update Net Variable "rating™

[Standard | Extended Attributes |

HName: 'ratmg | Type: |double -

<] Update Net Decomposition “"Credit Rating Process” X i Irl"
Net Decomposition Label: 'Credn Rating Process | Initial Value: |560
Net Decomposition Variables '
[Mame | Type | wuUsage | | Create.. | luuBone, | |oGoncel |
S.Sh | 3tr mq Local | & -
|rating |double| Local | =4 Update... |
|fault |string| Local ¥ T .
1 | Remove... | I Update Net Variable "fault”
[Standard | Extended Attributes |
Done . Cancel Name: 'Taull | Type: |string b4

e

Initial Value: |Bar.kr uptey

Done ”gancel.

| I——

Figure 5.6: Net variable definitions

Update Param far Atomic Task "ReceiveSSH™
[] Update Met Parameter “ssn™
Input Parameters:
1 - i .
= Toskvarabn | e 8 from element of task variable: ssn | v | add XQuery of element’s content
[update.. | © from expeussion A\ add XQuery of entire elemerit
Remove... TLEEE
<sEn>
[/ReceiveSSN/zan text())
Het Varlables Task Variables
Name! Type Llsage | Mame| Type Usage |
ssn string| Local | _‘j ssn__|string| Output Only || =
rating|dowble| Local ||| Ol
fault |string| Local =] |=
Outpat Parameters
1
XGery MetVariable | Create...
{/ReceivessH/asn/texci)} s + e
Update... <lssn=
) —
| | Remove... populates the net variable: | ssn v| Create...
e
Done) _

Figure 5.7: Parameter definition for task Receive SSN

starts with zero. Otherwise, the flow leading to task DecideRating will be taken. Since the flow evaluation is
performed from the top-most flow to bottom-most flow at run time, the bottom-most flow will be used as the
default. The query “/CreditRatingProcess/ssn/text()” can be generated by clicking the XPath Expression
button in the Update Flow Predicate dialog.

Figure 5.9 shows the parameter definition for task ReportFault. The variable fault is used to carry the fault
information (“Bankruptcy”). It is defined as input only because the fault information is only used for client
notification upon execution of the task.

Figure 5.10 shows the parameter definition for task DecideRating. Similarly, the input only variable rating is
defined to convey the credit rating (560) that is only used for client notification upon execution of the task.

Now we have completed the control flow and the data definition of the credit rating process. The specification
will pass the syntax check in the YAWL editor and shows that “No design-time engine validation problems

second argument string, and otherwise returns false.

106 CHAPTER 5. HOW TO MANIPULATE DATA IN YAWL

Flow detail for Atomic Task “Rec

Target Task] Predicate] Netvariable: |$Sn -l KPath Expr ession |
[ReportFault !amt:-vihhh’:x:dit_hlu. i - -
DecideRating true() Prodicate. starts-with(/Credic_Rating_Process/ssn/texc(),'0')
¥

The bottom-most fMow will be used as the defaull.

e .M..;mn'.

Figure 5.8: Flow definition at task Receive SSN

B8 Update Parameters for Atomic Task "ReportFault”

I Update Task Parameter “fault” r>_(!
Input Parameters —
XQuery | Taskvariable Create... o oot oL ot Tariaibe E i - | 244 XQuery i eloment's o
| {/Credit_Rating_Process/...| fault —n - = | A add XQuery of entire o =
=
] KQuery
Remove...
—_— <fault>
{/Credit_Raving_Process/fault/texc()}
Net Variables Task Variables
Name | Type Usage . MName| Type | Usage .
san string Local - fault|string) Input Only | =
rating |double Local I | [
faulet |string Local - |=
Output Parameters
XQuery |_Netvanable | Create...
r av
A Update... <fault>
Remove... populates the task variable: ‘lalit |v‘ | Create...
]
[oone |
Done

Figure 5.9: Parameter definition for task ReportFault

B Update Para]
P B Update Task Parameter "rating”
Input Parameters
XQuery [Taskvariable | Create... - g [y add XQuery of element’s content
| {/Credit Rating Process/... zating | r — —_— M, acd XOuery of entire element
[R XQuery
—— <null=
{/Credic_Rating Process/rating/texc()}
et Variables Task Variables
Name | Type | LUsage 1 Name | Type | Usage |
=sn__|steing| Local |[a] = eating|double| Ourpue Only |[a
zaunq_douhle_ Local | | |
faulr |steing) Local || ES) -
Dutput Parameters
XQuery | Netvariable | | gCreate..
L | v
,A_ Upiate. il
Remove... populates the task variable: Create...
B Done Cancel
e

Figure 5.10: Parameter definition for task Decide Rating

were founded in this specification”. The last step before deployment is to specify the resource details for each
of the manual tasks (i.e. ReceiveSSN, DecideRating, and ReportFault). In Chapter 4, Section 4.10 illustrates
how to allocate resources to a manual task via the resource manager wizard. To keep things simple, we will
choose to not specify any resourcing details for those task; in doing so, each of those tasks will be assigned

the default settings: that offering, allocating, and starting a work item are all to be done by the User (at run
time).

5.5. ILLUSTRATIVE EXAMPLES 107

Finally, we save the “CreditRatingProcess” to file, which can be deployed (uploaded) in the engine and
executed by launching a case.

Examples of Design-time/Run-time Errors

The above YAWL specification is both syntactically and semantically well formed, and can be executed
without any problem in the Engine. Now we will introduce some errors into the above specification to see
what we will encounter via design-time or run-time validation. These errors are considered to be common
when designing (especially large) YAWL specifications.

Error 1: Missing Data Assignment for Input Variable

Assume that we forget to specify the mapping from net variable fault to task variable fault in the input
parameter definition for task ReportFault (see Figure 5.11). This results in two syntax errors after validation
of the “CreatRatingProcess” specification in the Editor, as shown in Figure 5.11.

O YAWI Editor, - W.PSF.HomeWataWYAWL 2.0\ExamplesiCreditRatingProcess.ywl [[=1E3)
if Met Edit Els nts Tools Yiew Help
:
q
sEler
O i
&
[Tasklcon
NU.‘W" ReceiveSSH
o U Manual
o L2 Automnated
o ReportFault
[H Routing
2 Plugin

Notes Specification Validation Problems

|stomic Task:ReportFault_a{id= ReportFault_4) the XQuery for param [fault] cannot he equal to null or the empty string.
The task (id= ReportFault_4) needs to be comnected with the input parameter (fault) of decowposition (YaULSerwiceGateway:ReportFault). |
1

|Use the palette toolbar to edit the selected net. ‘

Figure 5.11: An invalid specification with missing data supply for an input variable

Error 2: XQuery with Invalid Semantics

Assume that we use XQuery “/ReceiveSSN/ssn” but not “/ReceiveSSN/ssn/text()” in the output parameter
definition for task ReceiveSSN (see Figure 5.12). This modified mapping is incorrect because it passes “<ssn>
some social security number </ssn>” from task variable ssn to net variable ssn. However, the mapping has a
valid syntax (because both variables are strings) and thus passes syntax validation in the YAWL Editor. But
at run time, after the user submits his/her social security number (via task ReceiveSSN), an “bad process
definition” error page as shown in Figure 5.12 will appear, indicating a failure has occurred validating the
XQuery. Also, the executed credit rating process is halted.

5.5.2 Example 2: Simple Make Trip Process

This process provides a trip booking service. When running this process, the user is first asked to register
for the trip. The registration information includes: customer name, trip start date, trip end date, whether to
include booking a flight, hotel, and/or car, and customer’s payment account number. After the registration,
the booking tasks may be executed in parallel according to the user’s requirements, and the booking details
are also provided in each executed task. After all the booking tasks complete, the user is then asked to make
payment for the trip, and the process ends.

108

CHAPTER 5. HOW TO MANIPULATE DATA IN YAWL

) YAWL 2.0 Worklist: Java User - Mozilla Firefox

File Edit Wiew History Bookmarks Tools Help

& % ¢

ju} ‘m http: fflocalhost: 8080/ resourceService/faces /userWorkQueues. jsp

[+ »] [Gl]

sy & ifoundation.org

the Workd in |

novation

C I WuerueuesI Edit Profile | Admin Queues| Cases | Users

| Org Data | Senices

Logout |)

&

‘ Offered (0) | Allocated (0) ‘ Started (1) | Suspended (0) ‘
Work items Specification Task
2 ICred\lRatmgPrucess.w\d I ReceiveS5M
Case Status
| 271 | Executing
Croated Ane
BAD PROGESS DEFINITION. Data extraction 00:25
failed schermna validation attask completion.
Task [ReceiveSEN_3] XOuery

[===n={ReceiveSSnissn}=rssn=] Document
[=ReceiveS8N= =ssn=qutl 23=/s5n=
<iReceive55M=] Stherma for Expected
[«xs:5chema

srnlng xe="httpManaas w3, 0rof 2001 M LS chema"

i=] But received [=ssn= =ssn=quil 23=issn=
=Issn=] Validation error message [Error; 4:9;
ove-type.3.1.2: Element 'ssn'is a simple tipe, 50
it rmust have no elernentinformation item
[children].]

WiewlEdit

Suspend

Reallocate si

Reallocate sif

Mewe Instance

Complete

Figure 5.12: An error indicating invalid semantics of an XQuery used in the specification

YAWL Specification

Figure 5.13 shows the YAWL net specifying the above simple make trip process. There are five labelled tasks:
“register” for registering for the trip; “pay” for making payment; and the other three tasks for making the
corresponding bookings. The task “register” has an OR split decorator, and the task “pay” has an OR join

decorator.

(®) Make Trip Process

5}

register

hook flight

book hotel

boak car

Figure 5.13: The simple “Make Trip Process” net

Figure 5.14 shows the data type definitions in this process. There are two new data types: tripRegistra-
tionType comprising information of trip start date (startDate), trip end date (endDate), whether to book
a flight (want_flight), hotel (want_hotel) and/or car (want_car), the customer’s payment account number
(payAccNumber); and dateType comprising information of year, month and day, e.g., both startDate and

5.5. ILLUSTRATIVE EXAMPLES

endDate are of dateType.

Update Data Type Definitions

<x3:schema xmlns:xs="http:/ mmr. w3, org/2001/XHML3chena>

<xg:conplexType nawe="dateType >

LM 3! FeqUence:
<xz:element name="year” Cype="xsiinteger” >
<xgielenent nane="month"” type="xs:integer” /=
<xs:element name="day’” type="xs:integer” />

< /K81 sequencer

< /g conplexTypes

<xz:conplexType name="tripRegisterType™>

<X I SEQUENCE:
<xgielenent namne="startDate” type="dateType™ =
<xs:element name="endDate™ type="dateType” /=
<x3:element namne="want_flight" type="xs:iboolean”/>
<xz:element name="want hotel” type="xs:boolean” />
<xs:element name="want car” type="xs:boolean”/>
<xz:element name="payicclumber™ type="x:z!s3tring” /=
< /X3 Sequence:

< fx3:conplexTyper

</xaischenas

q Il

T e T T

| Done || Cancel |

Figure 5.14: Updated data type definitions

109

Figure 5.15 shows the net level variable definitions for the process. All are local variables of string type
except that “registrInfo” is an output only variable of tripRegistrationType. Also, the variable “customer”

has an initial value of “Type name of customer” (as a prompt for the customer to enter his/her name).

I Update Net Decomposition "Make Trip Process”

[Lgoen |

Net Decomposition Label: Make Trip Process .
Hame: |customer |
Net Decomposition Variables —
)) Usage: |Local v
MName I Type | Usage) Create... ;
|customer | string | Local | r&- R — Initial Valug: [p1ease type neme ...
|registrInfo |tripRegisterType| Outpuc Only | |_| Update...
|ElightDetails| string | Local e .I—‘.
|hotelDetails | string | Local IXI Remove...
carDetails string Local
o

B2 Update Net Variable “customer”

Standard | Extended Attributes |

e

1 TR D

Done Cancel

Figure 5.15: Net variable definitions

Figure 5.16 shows the parameter definition of task “register” with two task variables. The input & output
variable customer gets the customer’s name, and then passes it to the net. The output only variable registrinfo
requests registration information from the customer, and then passes the data to the corresponding net
variable via the XQuery “{/register /registrInfo/*}”.

Figure 5.17 shows the flow definition at task “register”. The predicate for the flow leading to task “book
flight” is “/Make_Trip_Process/registrInfo/want_flight=*‘true’”. Similarly, the predicate associated with the
flow leading to task “book hotel” or “book car” is to determine whether the variable want_hotel or want_car

110 CHAPTER 5. HOW TO MANIPULATE DATA IN YAWL

B Update Parameters for Atomic Task “register™

Input Parameters
HOuery | Task Variahle
{/Make Trip Process/customer/text()} customer
Update.
[v]
Net Variables Task Variables
MHame Type Llgage | Mame Type Llgage |
CUusStomer string Local - CUSCOMET string Input & Output A|
registrInfo tripFRegisterType| Output Ohly registrInfo|tripRegisterType| Output Ohly
flightDhetails string Local
hotelletails string Local
carDetails string Local B -
Output Parameters
Hduery Metvwariahle
{/register/foustoner/cext()} CUSLOLEL
{/register/registrInfo/*1 regiztrInfa Update...
-

Figure 5.16: Parameter definition for task “register”

has a boolean value of “true” or “false”. Note that this flow definition is defined with an OR split, so that
any number of the flows to booking tasks can be taken.

Flow detail for Atomic Task "register” B Update Flow Predicate rzl
Target Tagk Netvariable: registrinfo IVI XPath Expression
book f£light

book hotel
book car

Predicate
/Make Trip Process/regis... . .
|/Make Trip Process/regis... Predicate... /Make_Trip Process/registrinfo/want flight='true'
|/Make_Trip Process/regis... v' L= -

The bottom-most flow will be used as the default.

L Dane Cancel]

| 'none‘

Figure 5.17: Flow definition at task “register”

Figure 5.18 shows the parameter definition of task “book flight” with four task variables. The three input
only variables get data from the net via appropriate XQueries. Note that both startDate and endDate get
data from the net variable registrinfo. There is one output only variable called flightDetails, which requires
the information from the customer, such as his/her preferable airlines or even an exact flight number. The
parameter definitions of tasks “book hotel” and “book car” are specified in a similar way, except that the
output only variable is hotelDetails or carDetails.

Figure 5.19 shows the parameter definition of task “pay” with five task variables. These are all input only
variables and they get data correspondingly from those net variables with the same names.

5.5.3 Example 3: Make Trip Process with Multiple Instance Composite Tasks

This process provides a booking service for a trip that has several legs. For each leg, the same simple make
trip process in the previous example will be executed. As a result, we obtain a more complex Make Trip

5.5. ILLUSTRATIVE EXAMPLES

Update Parameters for Atomic Task "book flight™

Input Parameters
Hduery TaskVariahle
{/Make Trip Process/customer/text()} CUSCOMEL
I /Make Trip Process/registrInfo/starthate/*} atartDate
{/Make Trip Process/registrInfosendDate/*} endbate
Met Variables Task Variabhles
Mame Type Usage - Mame Type Usage -
CUSCOmer string Local - CUSCOMEL string Input Only |
registrInfo tripRegisterType| Output Only startDate dateType Input Only
flighthetails string Local endbate dateType Input Only
hotelletails string Local | flightDetails| string Output Only
carDetails string Local - -
Output Parameters
Hauery | MetVariahle
{/book flight/flightDetails/text()} |flightDetails

Figure 5.18: Parameter definition for task “book flight”

Update Parameters for Atomic Task “pay”™

Input Parameters
Hluery Task Variahle
{/Make Trip Process/customer/text()} CUSCOLEL
{/Make Trip Process/flightDetails/text()} flightDetails
{/Make Trip Process/hotelletails/texti)} hotelletails @
{/Make Trip Process/carDetails/text()} carlDetails
{/Make Trip Frocess/registrInfo/pavdcclunber/te... | payicclunber
Het Variabhles Task Variables
Mame Type Lsage | Mame Tvpe Usage L
CusSLCOmEr string Local | CUStOmer string| Input Only A|
regiztrInfo tripRegisterType| Output Only flightDetails|string| Input Only
flightDetails String Local hotelletails |string| Input Only
hotelDetails StEing Local carDetails string| Input Only
carDetails string Local paviacclunber |string| Input Only
- -
Output Parameters
HKQuery | MetVariable

Figure 5.19: Parameter definition for task “pay”

111

process by involving a multiple instance composite task for execution of the simple make trip process for each
leg. Also, the customer is provided with a subtotal of the payment for each leg, and the subtotals for all the

112 CHAPTER 5. HOW TO MANIPULATE DATA IN YAWL

legs in the trip will be calculated into a total payment at the end of the process.

YAWL Specification

Figure 5.20 shows the YAWL net specifying the above make trip process. There are two nets: the root net
called “make trip” and the subnet specifying details for the composite task “do itinerary segment”, which is
basically the simple “make trip” net in the previous example.

@ make trip

) >
register do itinerary pay
segment

D do itinerary segment

book fli
®— - C
register book hotel prepare pay
itinerary
book car

Figure 5.20: The “make trip” net with a multiple instance composite task “do itinerary segment” and the
corresponding subnet

Figure 5.21 lists the data type definitions in the “make trip” net. There are five new (user-defined) data
types. The itineraryType contains a list of itinerary segments of itinerarySegType, which each comprises
information of departure location, destination, startDate, endDate, flightDetails, hotelDetail, carDetails, and
subtotal. The legsType is a set of legs of legType, which provides the information of departure location and
destination. Finally, the serviceType specifies whether to book a flight, hotel and/or car (as alternative to
the previous example, we group these needs together this time).

Figure 5.22 shows the net variable definitions for the “make trip” net. There are three new variables, itinerary,
legs, and subTotals, as compared to the previous simple “Make Trip Process” net in Section 5.5.2.

Figure 5.23 shows the parameter definition of task “register”. There are three task variables, customer, legs,
and payAccNumber, with appropriate input or output parameter definition.

Figure 5.24 shows the parameter definition of task “pay”. There are four variables which are all input only
variables. Note the input parameter definition of the mapping from variable subTotal to variable total. The
XQuery function sum() calculates a total sum of subTotals from each itinerary segment.

Figure 5.25 shows the parameter definition of the multiple instance composite task “do itinerary segment”.
There are nine task variables, which are also the net variables of the subnet of this task. All except startDate,

5.5. ILLUSTRATIVE EXAMPLES

Update Data Type Definitions

113

<xz:achena xuwlns:xs="http: /w3, org /2001 /XML 3chena™ -

Zxz:conplexType nane="itineraryType’>
<M1 FRUENCE>
<xgielement name="itineraryieguent” type="itineraryiegType” minlccours="1" maxlccours="unbounded” -
< /MS SR qUeNC RS

<fusrconplexTypes

Zxz:conplexType nane="itineraryiegType™>
LK FIFEeqUENCER
<x3:element name="departure_location”™ type="xz:string” >
LHzrelement name="destination” type="xz:string”se
<xs:element name="startDate™ type="xs:date" />
<x3:element namne="endlate” Cype="xs:date” />
Zxz:element name="flightletails" tCype="Xsz:string” />
<xsielement name="hotelDetails" type="xsz:string”/ =
<xsrelement name="carDetails" type="x3:string” />
LHzielement name="subTotal™ type="xz:double™ />
/%3 sequences

</usiconplexTypel-

<xz:complexType name="legsType' -
M3 SeqUenCex
LHzrelement name="leg"” type="legType” minfccurs="1" maxlccurs="unbounded” /=
/%3 sequences

</usiconplexTypel-

<xz:complexType name="legType™s-
M3 SeqUenCex
<xs:element name="departure_location” type="x3:string”/x
Z¥z:element name="destination” type="xsz:string”/>
/MBI SR UeNC e

< g conplexTypes

<uz:conplexType name="serviceType ™=
<X S1SEeqUencer
<xz:element name="want flight"™ type="xs:boolean™/»
<xsielement name="want hotel’™ type="xs:iboolean" />
<x3:element name="want car” type="x3:boolean” />
Lfusrsequences

<fusiconplexTypes

< /®st achena’

q] Il

e T T T T T T T T e T e T e T e T e T e e T e e T T T T T e e e e e e T R R e

[»

| Done || Cancel |

Figure 5.21: Updated data type definition for the “make trip” net

114 CHAPTER 5. HOW TO MANIPULATE DATA IN YAWL

B Update Net Decomposition “make t

Met Decomposition Label: |make trip

Met Decomposition Variables

Mame Type Usage
Ccustomer string Local
itinerary itineraryType| Output Only
legs legsType futput Only Create...
startDate date Output Only
- Update...
endbate string futput Only
flightDetails string Local
hotelletails string Local Remove...
carbetails string Local
payicclunber string Output Only
subTotal double futput Only

Figure 5.22: Net variable definitions for the “make trip” net

pdate Parameters for Atomic Task "register™

Input Parameters

Hluery | Task Variahle

I/make trip/oustomertext(]} | CUSTOmEL
Create...
Net Variables Task Variabhles
Mame Type Usage o Mame Tvpe Usage -

CluSLOner string Local & CUSTOMeY string |[Input & Output| |
itinerary itineraryType| Output Only legs legsType| Output Only
legs legsType Dutput Only payacclumber | string futput Only
starthate date Output Only
endDate string Dutput Only
flightDetails sString Local
hotellhetails String Local
carDetails string Local
paviccunber string output Only
subTotal double Tutput Only || =
Output Parameters

Huery Met Wariahle

{/register/ocustoner,/textc()} CUStOmEer
I/register/legqs/*] legs
{/register /pavhcclunber ftext() } payicclunber

Figure 5.23: Parameter definition for task “register”

5.5. ILLUSTRATIVE EXAMPLES 115

Update Parameters for Atomic Task “pay*

Input Parameters
HAuery TaszkWariahle
I/make trip/customer/text()} customer
{/make Cripfitinerary/*} itinerary
{sun | /make trip/itinerary/itinerary@eoment/subTotal)} total
[/make trip/pavicclumber ftext(]} pavicclunber
& Remaove...
Net Variables Task Variables
Mame Tvpe Lzange - MHame Tvpe Lzange -
CUSTOLEL string Local a~ CUSTOMEYL string Input Only a~
itinerary itineraryType| Output Only itinerary itineraryType Input Only
legs legsType Output Only total douhle Input Only
starthate date Output Only payiccliunber string Input Only
endlbate string Output Only
flightDetails string Local
hotellbetails string Local
carDetails string Local
payvhcclunher string Output Only |
subTotal double futput Only ||+ Bl
Ontput Parameters
Houery | Met Variahle
&

Figure 5.24: Parameter definition for task “pay”

endDate, and serviceRequired are input & output variables conveying data between root net and the subnet.
The variable service Required contains information only used within the subnet, and is therefore defined as a
local variable. The startDate and endDate variables are output variables reporting the user input back to the
corresponding net variables. Also, the input parameter definition for variable leg and the output parameter
definition for variable itinerary are both determined by the task instance queries (see below).

116 CHAPTER 5. HOW TO MANIPULATE DATA IN YAWL

B Update Parameters for Multiple Composite Task “do itinerary segment™

Input Parameters

HCUery Task Variable
{/make trip/ocustomer/text()} CUSTOMET

{/make trip/flightDetails/ text(]} flightDetails
{/make trip/hotelletails/texti)} hotelletails -
{/make trip/carDetails/text()} carletails I:‘ Update

{mamber (/nake trip/subTotal/text())} subTotal
/make tripflegs leqg Remove
Net Variables Task Variables
Mame Tvpe Jsage - Mame Type Usage -
custoner string Local =] custoner string Input & Output| a|
itinerary itineraryType| Output Only leg legType Input & Output
legs legsType Jutput Only startlate date futput Only
startDate date Output Only endbate date Output Only
endbate string Output Only flightDetails String Input & Output
flightDetails string Local hotelletails string Input & Output
hotelletails string Local carbetails string Input & Output
carDetails string Local subTotal double Input & Output
pavicclumber string Output Only | serviceRequired |serviceType Local |
subTotal double Output Only || «| hd
Output Parameters
HAuery MetWariable
<itineraryiecment> {/do itinerary segment/leg/departu... itinerary

A D
v

Figure 5.25: Parameter definition of task “do itinerary segment”

Figure 5.26 shows the instance details for task “do itinerary segment”. The left tab window titled Bounds
is for specifying the task attribute data, i.e. the maximum and minimum number of instances allowed and
the threshold value. The right tab window titled Queries is for defining the multiple instance data specific
to individual execution instances of task “do itinerary segment” for each leg within one itinerary (i.e. a single
process instance). There are four queries. Firstly, an accessor query manipulates the overall data carried by
root net variable legs before the data is split out to each individual leg. This query determines the input
parameter definition for variable leg. Secondly, a splitter query separates the unique values from the overall
data carried by variable legs, and passes a unique value to variable leg associated with each instance. The
data returned on completion of an instance is an XML document. Thirdly, an instance query transforms
such an XML document to a form that is suitable for aggregation of data to the higher level, i.e. the root net
“make trip”. This query determines the output parameter definition for root net variable itinerary. Finally,
an aggregate Query generates an overall result and passes the data to variable itinerary on completion of all
instances of task “do itinerary segment” within a single itinerary.

5.5. ILLUSTRATIVE EXAMPLES 117

Multiple Composite Task "do, - Instance Detail

Bounds | Queries

Minimuminstances: 1 |
Maximum Instances: © is infinite
(® is equal to 10
Continuation Threshold:) is infinite
@ is equal to 10
Instance Creation: (® Static
) Dynamic

Multiple Composite Task “do itinerary segmer nstance Detail

Bounds | Queries

Multiple Instance Variable: leg | - ‘

Accessor Query

fmake_trip/legs

Splitter Query

for §d in flegs/% return §d

Instance Query

<itinerarySeguent:>{/do_itinerary segment/leg/departure_location}
{/do_itinerary segment/leg/destination}
{/do_itinerary segment/starrDatel
{/do_itinerary segment/endDate}
{/do_itinerary seqments/f£lightDetails}
{/do_itinerary segment/hotelDetails}
{/do_itinerary segment/carDetails)
{/do_itinerary segment/subTotal}

</itineraryiements
-

HEN

Aggregate Query

{for $d in /fdo_itinerary segment/itineraryfSegment return §d}

Result Net Variahle: "rlinerary | - ‘

Figure 5.26: Instance details for task “do itinerary segment”

118 CHAPTER 5. HOW TO MANIPULATE DATA IN YAWL

The subnet of task “do itinerary segment” specifies the simple “make trip” process that is similar to the one
in Section 5.5.2. Thus, we do not go into every detail, but provide the parameter definitions for tasks “register
itinerary”, “book flight” and “prepare pay” in Figure 5.27 to Figure 5.29, respectively. The parameters for
the other two tasks “book hotel” and “book car” are defined in a similar way to those of task “book flight”.

Update Parameters for Atomic Task “register itinerary™ E‘

Input Parameters

KOuery | Task Variable

{/do_itinerary_segment/customer/text()} | customer
{/do_itinerary seqment/leq/+}) | leg Create.

Net Variahles Task Variables
Mame Type Usage MName Type Usage
customer string | Input & Output|[«| customer string Input Only |[~]
leg legType |Input & Cutput leg legType Input Only
startDate date Dutpur Only startDate date futpur Only
endbate date Dutput Only endDate date Dutput Only
flightDetails string |Input & Output, serviceRequired|serviceType| Output Only
hotelDetails string |Input s Output
carDetails string |Input s Output
subTotal double |Input & Output,
serviceRequired |serviceType Local - -
Output Parameters
HQuery Met Variahle

{/register_itinerary/starthate/text()} starthate

{/register_itinerary/endDate/text()} endDate

{/register itinerary/serviceRemquired,/*} serviceRequired

Figure 5.27: Parameter definition for task “register itinerary”

pdate Parameters for Ato Task "book flig|
Input Parameters
KQuery Task Variahle
{/do_itinerary seguent/customer/text(]} CUSTOMEL
{/do_itinerary segment/leg/*} leg Create...

{/do_itinerary_semment/startDate/text()} startDate I:I

{/do_itinerary_segment,/endDate/text.(]} endDate Update...
Net Vfariables Task Variables

Mame Type Usage - Mame Type Usage |
customer string |Input & Output| = customer string | Input Only |a]
leg legType |Input & Output leg legType| Input Only
startDate date Dutput Only startDate date Input Only
endDate date Dutput Only endDate date Input Only
flightDetails string Input & Output flightletails| string Jutput Only
hotelDetails string Input & Output
carDetails string Input & Output
subTotal double Input & Output
serviceRequired |serviceType Local | -
Output Parameters
HQuery \ Metvariahle
{/book_flight/flightDetails/text (]} |flightDetails

Figure 5.28: Parameter definition for task “book flight”

5.5. ILLUSTRATIVE EXAMPLES 119

Update Parameters for Atomic Task “prepare pay™

Input Parameters

HAuery TaskVariahle
{/do itinerary seguent/customer/text()} customer
{/do itinerary segment/flightDetails/text()} flighthetails
I/do itinerary seguent/hotelletails/textc(]} hotelletails
{/do_itinerary segment/carDetails/text()} carDetails
Net Variables Task Variahles
Mame Type Llsage Mame Type Lsage
CUStOmer string Input & Output E CUStOLEr string| Input Only E
leg legType Input & Output flightDetails |string| Input Only
starthate date Cutput Only hotelletails |string| Input Only
endDate date Output Only carDetails string| Input Only
flightletails string Input & Output subTotal double| Output Only
hotelDetails string Input & Jutput
carlletails string Input & Output
subTotal double Input & Output|| | |
serviceRequired |serviceType Local - Il
Output Parameters
HiQuery MHetYariahle
{number (/prepare pay/subTotal/text())} subTotal

Figure 5.29: Parameter definition for task “prepare pay”

& Note Since the variable subTotal is of double type, the XQuery function number() is used to extract data
from the variable.

120 CHAPTER 5. HOW TO MANIPULATE DATA IN YAWL

Chapter 6

The Runtime Environment

This chapter provides an overview of the runtime environment from a user perspective.

When a YAWL workflow specification has been completed in the Editor it can be saved to a file, the contents
of which are in an XML format that can be interpreted by the YAWL Engine. The specification file contains
descriptions of each of the three perspectives of a process: control-flow (task sequences, splits, joins etc.); data
(variables, parameters, predicates etc.); and resourcing (participants, roles, allocators, filters etc.). However,
the Engine is responsible only for the control-flow and data perspectives — it essentially ignores the descriptors
for resourcing contained in a specification file, instead passing responsibility for the resource perspective to
a dedicated custom service. In the core YAWL environment, a custom service, called the Resource Service,
is supplied to provides comprehensive support for the resource perspective.

The resource perspective of Business Process Management (BPM) is concerned with the way work is dis-
tributed to resources. It is here that the link between the process model and the organisational model is
formalised. This is a very important perspective in BPM and one that has not had as much attention as the
control-flow perspective. In fact the state-of-the-art in BPM environments typically lacks sufficient support
for the resource perspective (consult the Workflow Patterns Home Page at www.workflowpatterns.com for
more details).

The realisation of the resource perspective in YAWL 2.0 is based on the analysis work reported in a technical
report on new YAWL [19] and Nick Russell’s PhD thesis [20]!. This work formed the basis basis for the design
and implementation of the resource perspective in YAWL 2.0.

The Resource Service is a large custom service that contains a number of components, primarily a Resource
Manager that is responsible for the allocation of tasks to human users (referred to as ‘participants’); a Work-
list that comprise a series of web forms that provide a user interface to processes and process management;
Administration Tools that comprise a series of web forms to administer the Engine, processes and organisa-
tional data; a Dynamic Forms Generator, which creates web forms on-the-fly for the presentation of work
item data to participants so they can be performed and completed; and a Codelet Coordinator that manages
the execution of codelets for automated tasks.

ASIDE: The Resource Service provides functionality to support the identified resource patterns [17] and
associated activities. However, as a custom service, it is completely removed from the operation of the Engine.
This means that developers are free to develop other custom services that communicate directly with the
Engine (and thus bypassing the Resource Service), although support for the resource perspective would also
be lost. Alternately, the Resource Service provides a number of interfaces expose the full functionality of the
service, which developers may exploit to ‘override’ service components. For example, other types of worklist
services may be developed that leverage the resource management capabilities of the Resource Service but
present work to users in different or novel ways; external organisational data sources may be used in place
of the default internal data model supported by the Resource Service; Custom Forms may be defined to

1For a discussion of how the workflow resource patterns have been realised in newYAWL, see appendix A.3 starting on page
373 of [20].

121

www.workflowpatterns.com

122 CHAPTER 6. THE RUNTIME ENVIRONMENT

display work item data, rather than using the default, dynamically generated forms; and so on. Also, the
Resource Service is extendible in many ways, for example developers may add new allocation strategies,
filters, constraints, codelets etc. at any time, which immediately become available for use in the service and
the Editor. For more information, please consult the YAWL Technical Manual.

Since the Resource Service provides the default set of tools for user interaction with the YAWL system,
this chapter describes the runtime environment by describing the use of the service. Configuration and
Administration functionality is described first, followed by the various user interactions.

6.1 Resource Service Configuration

The Resource Service has a number of configuration parameters that may be set in the service’s web.zml file,
which is located in the folder \webapps\resourceService\ WEB-INF\. Below is the list of available parameters
that are specific to the Resource Service, what they are used for and what values may be assigned to them.

» EnablePersistence: When set to true (default), allows the service to persist (backup) current work
queue data to a database, so that in the event of the Engine being restarted, the ‘work-in-progress’ can
be restored. There is rarely any need to disable persistence, and in any case this setting should match
the ‘EnablePersistence’ settings of the Engine and the Worklet Service.

e OrgDataSource: While the Resource Service offers an internal organisational database by default,
it also supports organisational data being used that is stored in existing, external data sources. This
is especially beneficial for sites that want to use org data already stored in HR Systems and so on.
External data sources may be ‘mapped’ to YAWL by implementing a java class to take care of the
necessary mappings (see the technical manual for details). This parameter allows for the specification
of that mapping class name. The default setting is ‘Hibernatelmpl’, the internal Resource Service
mapping class.

e OrgDataRefreshRate: This parameter provides for the setting of a regular time interval to refresh
the organisational data caches in the Resource Service. This is particularly important when the org
data is sourced externally, and that external source is ‘live’ (regularly updated through other systems).
If an external data source is not being used, then the parameter’s value should be left at —1 (the
default, interpreted as ‘never refresh’), since the internal data sources are only ever updated through
the web forms of the Resource Service. The parameter value specifies the number of minutes to wait
between refreshes.

o LogOffers: By default, all resourcing events (offer, allocation, start, reallocate, etc.) are written to
a process log. If there are large numbers of participants in the organisational model, or work items
are typically offered to a large number of potential participants, the logging of all offers may incur
some processing overheads for little return (e.g. there may be instances where a work item is offered
to several hundred participants — the members of that set can always be derived from design time
resourcing parameter settings in any case). By setting this parameter to ‘false’, no offer events will be
logged; logging of all other events will still occur.

e DropTaskPilingOnLogoff: A participant who has been granted the authority to ‘pile’ a certain task,
may then explicitly and manually choose to do so, which means they will receive all instances of that
task, across all current and future instances of the process that contains the task. When this parameter
is set to true, piling of tasks for a participant will cease when the affected participant logs out. When
this parameter is set to false (the default), piling of tasks for a participant will continue, whether the
participant is logged on or not, until it is explicitly ceased by the affected user or an administrator. This
setting is ignored (i.e. treated as ‘true’) if persistence is not enabled. This parameter applies globally
to all piled task participants.

o GenerateRandomOrgData: This parameter allows you to quickly fill the organisational data base
with randomly generated data (participants, roles, positions, capabilities and org groups), which is

6.2. LOGGING ON 123

especially useful for testing purposes, or to examine the capabilities of YAWL without first having to
manually populate the org database with real (or dummy) data. A parameter value of between 1 and
100 will generate that number of randomised participants (with associated membership of roles etc.);
a value greater than 100 is treated as 100. A value of —1 (the default) turns off random org data
generation. If you do make use of this feature, don’t forget to reset the value to —1 after the generation
is done.

« EnableVisualizer: When set to true, an extra button will appear on user work queues to show work
items via the Visualizer applet (assumes the visualizer is available). The default setting is false.

o InterfaceX_BackEnd: This parameter is commented out by default. When the commenting is re-
moved, the extensions to the work queues required for the Worklet Service are enabled.

6.2 Logging On
To log on to YAWL:

1. Start the YAWL engine by choosing the option “Start Engine” from the YAWL program menu;

2. Start the Resource Service either by choosing “YAWL Control Centre” or by pointing your browser at
http://localhost:8080/resourceService.

3. Login with an existing userid and password. First time logon (i.e. where there are no participants
defined in the organisational database) should use the generic userid “admin” and password “YAWL”.

Note that a participant with administration privileges will have available the full menu of buttons, as shown
in Figure 6.1; ordinary participants and participants with some extra privileges will see a subset of those
buttons when they log on. The “admin” userid is a ‘special’ logon, which can be used for administrative
tasks only — because it is not a formal participant (i.e. it is not a logon associated with a unique person), it
has no access to an individual work queue, so the menu options for ‘Work Queues’, ‘Team Queues’ and ‘Edit
Profile’ are not available for the “admin” logon.

6.3 Administration

A workflow administrator can load new workflow specifications, can start cases for them, can register or
remove custom services, and add and manage participants, roles, positions and organisational groupings. In
this section we will explore how these functions are achieved.

6.3.1 Case Management

To upload a new workflow specification, first click Case Mgt in the top menu, which displays in the screen
shown in Figure 6.1. Upload the specification by browsing to the particular file and clicking the Upload File
button in the Upload Specification panel. Only files with a .yawl or .xml extension can be uploaded.

When a specification is uploaded, it is validated against the YAWL specification schema for validity. If there
is a problem with the upload, an appropriate error message is displayed at the bottom of the screen.

Cases can be launched for a specification by selecting it from the list of loaded specifications, then clicking
the Launch Case button in the Loaded Specifications panel. If the specification has input parameters a form
will appear asking for values for these parameters to be provided.

Note that trying to upload a specification that has already been uploaded (i.e. same specification id and
version) is not possible and will result in an error message to this effect being displayed. It is possible to have
different versions of the same specification loaded at any one time (e.g. if a specification has been updated,

http://localhost:8080/resourceService

124 CHAPTER 6. THE RUNTIME ENVIRONMENT

O'Y‘;‘“A.,___ L0

-

www.yawlfoundation.org Leading the World in Process Innovation

C | Work Queues Edit Profile |Admin Queuesl Cases I Users | Org Data | Services | Logout |)

Upload Specification

Loaded Specifications

Name Version Description

_custiormtest.ywl 0.3 No description has been given.

CompletingStudent_Lodgement 0.5 Lodgement form

MakeTripProcessWithMICtasks.ywl 0.4 No description has been given.

ar

Launch Case | | Unload Spec

Running Cases %

53: MakeTripProcessWithMICtasks.ywl (0.4)
54: _custiormtest.ywl (0.3)

Figure 6.1: Case Management

but there are still cases running against the older version), but new cases may only be launched for the latest
version uploaded.

To unload a specification from the Engine, simply select it and click the Unload Spec button in the Loaded
Specifications panel. Note that an attempt to unload a specification will fail if there are any cases still
executing against it.

Finally, the Running Cases panel show a list of all the cases currently executing in the Engine, in the form
“case number: specification name (version)”. While the list is refreshed whenever the page is loaded, you
may also refresh the list contents by clicking on the refresh icon located at the top right of the Running
Cases panel. A case can be cancelled at any time by selecting it from the list of running cases and clicking
the Cancel Case button.

6.3.2 Admin Queues

An administrator can view all of the various work items that are currently active and their status in the
Admin Queues Screen (see Figure 6.2). There are two Admin queues, each of which can be selected by
clicking on the appropriate tab: Worklisted, which lists all the work items on participants’ work queues, and
Unoffered, which lists the active work items that do not currently reside on any participant’s queues. From
the Unoffered queue, an administrator can assign unoffered work items to the offered, allocated or started
work lists of selected participant(s) via the buttons Offer, Allocate and Start respectively.

From the Worklisted queue, an administrator can change the participant and/or the status of the work item
through the Reoffer, Reallocate and Restart buttons. Reverting to a previous state is allowed using these

6.3. ADMINISTRATION 125

www.yawlfoundation.org Leading the World in Process innovation

OO

(| Work Queues Edit Profile | Team Queues IMmin uueuesl Cases | Users | Org Data | Services Logout |)
| Unoffered (2) | Worklisted (1) | C -

Work ltems Specification Task

40.3:CA_15 | Emergency | Assess affected area

41:Assess_affected area 3
Case Status
— [e
Created Age E Directly to me
| Jut21, 2008 18:43:10 | 0:21:53:05

e

Figure 6.2: Administration Queues

buttons:

o If the current resource status is Offered, the work item may be Reoffered to one or more participants.

o If the current resource status is Allocated, the work item may be Reoffered to one or more participants,
or Reallocated to a single participant.

o If the current resource status is Started, the work item may be Reoffered to one or more participants,
Reallocated to a single participant, or Restarted to a single participant.

While the queues are refreshed whenever the page is loaded, you may also refresh the queue contents by
clicking on the refresh icon located at the top right of the work queues panel.

If the Directly to me checkbox is unchecked, when one of these buttons is clicked, a list of all participants
will be displayed, from which selections can be made. If the checkbox is checked, the action triggered by the
button click will occur as if the currently logged on participant had selected themselves from the list (thus
bypassing the list display). The Directly to me checkbox is available only to participants with administrator
privileges, but the to the generic “admin” userid (since “admin” is not a participant, it cannot have work
items assigned to it).

The Resource Service maintains a local cache of active work items. On rare occasions, this cache may become
out-of-synch with the list of active work items maintained by the Engine (for example, where another custom
service has modified the status of a work item). The Synchronise icon (to the left of the refresh icon) allows
administrators to re-synchronise the local cache with that of the Engine. The results of any changes brought
about by re-synchronisation can be noted in the Tomcat log files. There are some system overheads involved
with re-synchronisation, and it is rarely necessary, so may occasionally be of some benefit to long-running
instances.

o) 6

Figure 6.3: Admin Queue Tool Buttons: Synch (left), Refresh (right)

126 CHAPTER 6. THE RUNTIME ENVIRONMENT

6.3.3 Service Management

www.yawlfoundation.org

° Y ‘ A . " w L' O Leading the World in Process Innovation

C | Work Queues Edit Profile | Admin Queues | Cases | Users | Org Data I Services I Logout |)

Registered Services

Name Service URI Description

DigitalSignature http:/flocalhost:B080/DigitalSignature/ib - Digital Signature Service

yawlWSInvoker http:/flocalhost:8080/yawIWSInvoker! WS Invoker

Remove

Add Service

URI:

Description:

Figure 6.4: Service Management

The Service Management Screen can be used to add to to remove registered services. In the screen shot of
Figure 6.4, two services are already registered, the Digital Signature Service and the Web Service Invoker
Service.

A new service can be added by providing a Name, a URI and a Description. While the URI is validated by
contacting it and waiting for an appropriate response, care should be taken that the URI provided exactly
matches that of the specified service. By using the Editor, when connected to the Resource Service (see
Section 4.6.2), such services can then be assigned to tasks (see Section 4.6.3).

To deregister a service from the Engine, select it in the list, then click the Remove button.

6.3.4 Managing Organisational Data

Roles, capabilities, positions and organisational groupings can be defined through the Org Data Mgt Screen,
see Figure 6.5:

« Role: Generally, a role is a duty or set of duties that are performed by one or more participants. For
example, bank teller, police constable, credit officer, auditor, properties manager and junior programmer
are all examples of roles that may be carried out by one or more participants within an organisation.
There may be several participants performing the same role (for example, a bank may have a number of
tellers), so a typical role in an organisational model may contain a number of participants. Conversely,
a certain participant may perform multiple roles. Further, a role may belong to a larger, more general
role (for example, the roles junior teller and senior teller may both belong to a more general role called
‘teller’). A role may be included in the distribution set for a task at design time, meaning that all of the
participants performing that role (or any of its sub-roles) are to be considered as potential recipients
of a work item created from the task at runtime.

6.3. ADMINISTRATION 127

www.yawlfoundation.org L J Leading the World in Process Innovation

(|Woerueues Edit Profile |Team0ueue5 |AdminQueues| Cases | Users. I Org Data I Services Logout |)

| Roles | Capabilities | Positions | OrgGroups | i L8 ‘ﬁég

Role Names Description Belongs To

Account Manager | mil |
Carrier Admin Officer
Client Liaison
Courier

Finance Oificer
Junior Supply Officer

Order Fulfilment Manager oty
PO Manager

Senior Credit Officer |
Senior Finance Officer
Senior Supply Officer

Shinmant Plannar

el
)
g
e
3
3

Figure 6.5: Organisational Data Management

« Capability: A capability is some desired skill or ability that a participant may possess. For example,
first aid skills, health and safety training, a forklift license or a second language may all be considered
as capabilities that a participant may possess that may be useful to an organisation. There may be
several participants within an organisation possessing the same capability, and a certain participant
may possess a number of capabilities. A capability (or capabilities) may be included in a filter defined
at design time that is run over the distribution set for a task at runtime, so that only those participants
within the distribution set that possess the specified capability or capabilities are potential recipients
of a work item created from the task.

« Position: A position typically refers to a unique job within an organisation for the purposes of defining
lines-of-reporting within the organisational model. Examples might include CEO or Bank Manager, or
may be internal job codes (such as ‘TEL0123’). A position may report to zero or one other positions
(for example, bank teller ‘TEL0123’ may report to the Bank Manager), and may belong to zero or one
Org Groups (see below). Like capabilities, a position (or positions) may be included in a filter defined
at design time that is run over the distribution set for a task at runtime. Positions are also used at
runtime to enable resource patterns such as delegation, reallocation and viewing of team work queues
(see Section 6.4 for more details).

e Org Group: An organisational group (org group) is a functional grouping of positions. Common
examples might include Marketing, Sales, Human Resources and so on, but may be any grouping
relevant to an organisation. In the YAWL model, each position may belong to zero or one org groups.
Further, like roles, an org group may belong to a larger, more general org group (for example, the groups
Marketing and Sales may each belong to the more general Production group). Org groups are often
also based on location. Like positions, org groups may be included in a filter defined at design time
that is run over the distribution set for a task at runtime.

While the descriptions of the various entities in the YAWL model above discuss the typical uses of each, it
should be clear that they represent, at the most basic level, merely various ways to group participants. The
main point of distinction between them is that only roles can be used to populate a distribution set in the
Editor, the other three may be used to perform filtering over the set.

The Org Data Screen contains four tab-pages, one for each of org entities listed above. The methods used to
maintain the data for each entity is similar on each of these four pages:

o To Add a new entity, click the New button, which will display an ‘Add New’ input field (see Figure 6.6

128

CHAPTER 6. THE RUNTIME ENVIRONMENT

www.yawlfoundation.org

C | Work Queues Edit Profile | Team Queues |Admm Queues | Cases | Users I Org Data I Services

| Roles | Capabilities | Positions | OrgGroups | L= ﬁn}g

Role Names Description Belongs To

Account Manager may perform the duties of fnil ix|

Carrier Admin Officer making coffee for thelr .

Client Lialson superiors

Courier

Finance Officer

Junior Supply Officer Notes

Order Fulfilment Manager °

PO Manager Al members of this role must

Senior Credit Officer first undertake a 12-week | Save | | Add |
Senior Finance Officer training course in Beverage

Senior Supply Officer ﬂ Preparation and Management

Shinmant Plannar kL | Reset | | Remove |
Add New

Junior Coffee Maker

Figure 6.6: Adding a New Role

for an example on the Role tab-page). Enter a name for the entity, and optionally a description and
note, choose the entity it belongs to and/or reports to as required (see below), then click the Add
button. You may cancel the addition at any time by clicking the Reset button instead of the Add
button.

o To Modify an entity, select it from the list, then add or change its description, note, belongs to and/or
reports to, then click the Save button.

« To Delete an entity, select it from the list and click the Remove button.

With regards to the belongs to and reports to relations:

« A role may belong to another role — you may set this relation using the Belongs To dropdown on the
Roles tab-page. This allows a hierarchy of roles to be created, so that when a task is assigned to a role
in the Editor, and that role has other roles belonging to it, those roles are also implicitly included (by
inheritance). You will not be allowed to have a role belong it itself, either directly or as part of a cycle
back to itself, for example if role A belongs to role B which in turn belongs to role C, you will not be
allowed to have role C' belonging to role A (or B).

e An org group can belong to another org group, similarly to a role. You may also set an Group Type
for an org group via a dropdown; select the type of group from the list then click the Save button.

o A position may report to another position, allowing a lines-of-reporting hierarchy of positions to be
created. Again, this is done in a similar fashion to setting a role belongs to hierarchy, and the same
cyclical constraints apply. A position may also belong to an Org Group, which can be chosen via the
Org Group dropdown on the Positions tab-page (Figure 6.7).

To enable easy backup and recovery of organisational data, two tool buttons are provided on the top right
of the tab panel. They may be seen in detail in Figure 6.8.

The button on the left is the Import Org Data from File button, and the button in the centre is the Ezport
Org Data to File button (the third button refreshes the form in a similar way to the refresh button on other
pages, as mentioned previously). To export your current set of org data, click on the Ezport button — a file
called “YAWLOrgDataBackup.ybkp’ will be created and downloaded via your browser. The file will contain
your entire org database in XML format (passwords are encrypted).

6.3. ADMINISTRATION 129

O OL=,

www.yawlfoundation.org Leadling the World in Process innovation

(| Work Queues Edit Profile | Team Queues | Admin Queues | Cases | Users I Org Data I Services Logout |)
| Roles | Capabilities | Positions | OrgGroups | SRE=N)
Position Titles Description Reports To
Assistant head of OD | Head of CD |
CD clerk
CEO
FD clerk Org Group
Head of CD I Carrier Department |
Head of FD Notes
Head of OD
Head of SD
Head of warehouse Save New
0D clerk 2
8D clerk j
Warahniies laric 3 | Resst ‘ | Remove |

Figure 6.7: The Positions tab-page

dLH =
Figure 6.8: Org Data Form Tool Buttons

At any time, backed up org data can be re-imported by clicking on the Import button. You will be prompted
for the file to import, via an Import File panel that will appear on the bottom of the form. Browse to the
file, then click the Import button. Existing data is not removed — importing data will append new data and
update existing data. A message describing the effects of the import will be displayed on completion.

6.3.5 Managing Users

Though the User Mgt Screen (see Figure 6.9), an administrator can add participants and change details and
privileges for existing participants.

The User Mgt Screen consists of four panels: top-left shows the participant’s personal details (name, password,
userid and so on); top-right allows the setting of user privileges (see below); bottom-left allows the assigning
of the participant to various roles, positions and capabilities; and bottom-right is where the participant’s
password can be reset. There are many similarities between the User Mgt and Org Data Mgt Screens
regarding the addition, modification and removal of items:

« To View an existing participant’s details, select the participant’s name from the Participant dropdowm
list.

e To Add a new participant, click the New button, which will disable the dropdown and activate all
other fields. For a new participant, entries for first name, last name, userid and password (new and
confirm) are required. Userids must begin with a character and may contain the letters, digits and
underscores. Passwords must be at least 4 characters in length. The description, note and administrator
fields are optional, as are privilege settings (by default all are unselected) and role/position/capability
memberships. When you have finished adding participant information, click the Add button. You may
cancel the addition at any time by clicking the Reset button instead of the Add button.

130 CHAPTER 6. THE RUNTIME ENVIRONMENT

www.yawlfoundation.org . . Leading the World in Process innovation

C | Work Queues Edit Profile | Team Queues |Admin Queu&cl Cases I Users I Org Data | Services Logout |)

Participant: | Corleone, Don Vito | Privileges

[} Choose Which Work Item to Start

FirstName: "o ving

Last Name: Corleone ! Start Work ltems Concurrently
Eserit dve ™ Administrator ! Reorder Work ltems
Description:

) View All Work ltems of Team

[View All Work items of Org Group

MNotes:
[} Chain Work Item Execution

E Manage Cases

Roles ‘ Positions | Capabilities Password

Owns: Available:

Carrier Admin Officer Confirm:
Client Liaison
Courier

Finance Officer
Junior Coffee Maker |
Junior Supply Officer

Order Fulfilment Manage@

PO Manager :‘
Senior Credit Officer & Reset Remove

Order Fulfilment Manage

s

Figure 6.9: User Management

o To Modify a participant, select them from the list, then add or change the desired fields, then click
the Save button.

o To Delete an participant, select them from the list and click the Remove button.

User Privileges

Primarily, each participant may be designated a ‘user’ (the default) or an ‘administrator’. To grant admin-
istrator privileges for a participant, select the participant from the dropdown list, tick the Administrator
checkbox, then click the Save button. Administrator privilege overrides all other user privileges. Partici-
pant’s without administrator privileges may be granted specific privileges by selecting the participant from
the dropdown list, then ticking the desired privileges, then clicking the Save button. The privileges that may
be assigned to participants on an individual basis are:

e Choose Which Work Item to Start: When granted, this privilege allows a participant to choose
any work item listed on their allocated queue to start. When denied (the default) only the first listed
work item may be chosen. Work items are listed in order of age, with the oldest work item at the top
of the list.

o Start Work Items Concurrently: When granted, this privilege allows a participant to have a
number of work items executing concurrently on their started queue (or, more accurately, may choose
to start additional work items from their allocated queue while other previously started work items
have not yet completed). When denied (the default), a work item on the participant’s allocated queue
may not be started while there is a previously started work item on their start queue (i.e. one that has
not yet completed).

6.3. ADMINISTRATION 131

o Reorder Work Items: When granted, the participant may choose a work item to start from anywhere
in the list of allocated work items. When denied, only the first listed work item may be chosen. In the
YAWL environment, there is essentially no difference between this privilege and Choose Which Work
Item to Start.

e View All Work Items of Team: When granted, this privilege gives a participant access to the Team
Queues form, and displays on that form a consolidated list of all work items on all work queues of all
participants subordinate to the participant who has been granted the privilege (that is, participants
holding positions that report to a position held by the granted participant, either directly or through
a hierarchy of positions). When denied (the default), the Team Queues form is not available to the
participant.

o View All Work Items of Org Group: When granted, this privilege gives a participant access to the
Team Queues form, and displays on that form a consolidated list of all work items on all work queues
of all participants in the same Org Group as the granted participant. When denied (the default), the
Team Queues form is not available to the participant.

e Chain Work Item Execution: When granted, this privilege allows a participant to chain work items
for a case. When denied (the default), the participant may not chain cases (see Section 6.4 for details
regarding the chaining of tasks).

o Manage Cases: When granted, this privilege gives a participant access to the Case Mgt form, pro-
viding the ability to load process specifications, and start and cancel case instances. When denied (the
default), the Case Mgt form is not available to the participant.

A participant with default user privileges (i.e. all unselected) have access to their own work queues, and may
view/edit their own profile. A participant with Manage Cases privilege can also access the Case Mgt screen.
A vparticipant with View All Work Items of Team or View All Work Items of Org Group privilege can also
access the Team Queues screen. All other screens can only be accessed by participants with administrator
access.

6.3.6 Task Privileges

Task privileges (or, more precisely, User-Task privileges), unlike the User privileges described above, are set
at design time via the Editor (see Chapter 4, Section 4.10) on an individual task basis. The relevant wizard
panel is re-shown in Figure 6.10, and a description of each task privilege is included here for completeness.

Broadly speaking, task privileges grant or deny the ability to affect in various ways how work items are
resourced after initial distribution has completed. There are seven task privileges:

e Can Suspend: When granted, allows a participant to suspend the execution of a work item after it
has been started.

o Can Reallocate Stateless: When granted, allows a participant to transfer responsibility for the
execution of a work item from themselves to another participant, with the data parameters of the work
item reset to the values held when the work item was first started.

o Can Reallocate Stateful: When granted, allows a participant to transfer responsibility for the
execution of a work item from themselves to another participant, with the data parameters of the work
item having their current values maintained.

e Can Deallocate: When granted, allows a participant to reject or rollback the allocation of a work
item to their allocated queue. The work item is redistributed using the original resourcing specification,
but with the participant removed from the distribution set.

o Can Delegate: When granted, allows a participant to delegate the responsibility for the execution of
a work item to a subordinate member of their work team, as defined by the organisational model.

132 CHAPTER 6. THE RUNTIME ENVIRONMENT

80l Manage Resourcing Wizard for Atomic Task "Approve”

Step 5 : Establish Default User Runtime Privileges for this Task

Can a participant suspend a started work item of this task? @ No () Yes

Can a participant reallocate a work item of this task to another participant, resetting state? ® No () Yes
Can a participant reallocate a work item of this task to another participant, retaining state? ® No () Yes
Can a participant deallocate themselves from a work item of this task?) No () Yes

Can a participant delegate a work item of this task to another participant? @ No () Yes

Can a participant skip a work item of this task?) No ([Yes

((<Back | | > Next | Finish |

e
e i

Figure 6.10: Step 5 of the resource management wizard

e Can Skip: When granted, allows a participant to have the execution of a work item skipped — that is,
immediately completed without performing its work.

e« Can Pile: When granted, allows a participant to demand that all future instances of work items
derived from this task, in all future instances of the specification of which the task is a member, are
immediately directly routed to the participant and started.

All task privileges are denied by default, and so must be set explicitly for each task as required.

6.4 Work Queues

Work items have an associated life cycle and when interacting with the Resource Service it is important to
understand the various stages that a work item can go through. An overview (not complete, but sufficient
for our purposes) of the life-cycle of a work item is shown in Figure 6.11. The labels of the arcs correspond
to the names of buttons that users of the Resource Service can click on to effect the state change.

Each participant has access to their own work queues, which are collectively known as a worklist — a graphical
representation of their work queues via a series of web forms. Each worklist consists of four work queues:
Offered, Allocated, Started and Suspended. Depending on a participant’s privileges, there are a number of
actions that can be performed on a work item in each queue. Some are concerned with processing the work
item, while others provide for changes to the work item’s resourcing.

The layout of each work queue is similar (see for example Figure 6.12). On the left is a list of the work
items currently held in that queue. In the centre are some fields that describe the currently selected work
item. On the right are a set of buttons representing the actions that may or may not be taken (depending on
privileges) on that queue for the currently selected work item. Each work queue may be selected by clicking
on the appropriate tab.

6.4. WORK QUEUES 133
Suspended

Unsuspend

Accept & Start

Deallocate Realfocate

Failed
Allocated
X
Complete Completed
——

Figure 6.11: Part of the Life-cycle of a Work Item

6.4.1 The Offered Queue

The Offered queue lists the work items that have been offered to a participant. FEach work item in an
offered queue may have potentially been offered to a number of participants, which means there is no implied
obligation to accept the offer, rather it is understood that the participant is one of a group, any one of who
may choose to perform the work item.

www.yawlfoundation.org

Leading the World in Process Innovation

C Ifﬂcrk Queuesé I Edit Profile | Team Queues |)\dmir‘| Queues | Cases | Users | Org Data | Services | Logout |)
‘ Offered (2) ‘ Allocated (0) ‘ Started (3) ‘ Suspended (0) ‘ %
Work ltems Specification Task Accept Offer
52.1:Create_Purchase_Order_104 | Order Fulfilmentywl | Create Purchase Order
54:Create_Book_List_4 Accept & Start
e
| 52.1 | Enabled
Created Age
| Jul:23, 2009 15:22:11 | 0:00:01:14
3
&

Figure 6.12: The Offered Work Queue

A participant may take the following actions on a work item in an offered queue:

o Accept Offer: By accepting an offer, a participant takes responsibility for the execution of the work
item. The work item is moved from the offered queue and, if the start interaction is user-initiated,
placed on the participant’s allocated queue, or if the start interaction is system-initiated, the work item
is immediately started and placed on the participant’s started queue. This action removes the work
item from the offered queues of all other participants that had been previously offered the work item.

o Accept & Start: This action works similarly to Accept Offer, except that if the work item’s start

134 CHAPTER 6. THE RUNTIME ENVIRONMENT

interaction is user-initiated, the work item will instead be immediately started and placed on the partic-
ipant’s started queue. Effectively, this concatenates two user actions into one, simply as a convenience
for the user.

¢ Chain: This action will chain all the eligible work items of the case of which the work item is a member
to this participant. Chaining means that, when a participant chooses to enact it, each remaining work
item for the case is routed to the participant and immediately started, but only if the participant is a
member of the distribution set for the work item. Chaining is effectively a short-circuiting of a resource
specification for a task, where the participant chooses to automatically and immediately allocate and
start any work item offered to him/her within the chosen case. Chaining of work items for a case
continues until the case completes, or the participant turns off chaining via the View Profile form. A
participant must have the “Chain Work Item Execution” user privilege to enable chaining.

6.4.2 The Allocated Queue

The Allocated queue lists the work items that have been allocated to a participant. Unlike an offer, a work
item on an allocated queue means that it has been allocated to that participant alone, and comes with the
understanding that the participant will at some time start the work item and perform its work.

www.yawlfoundation.org - /- Leading the World in Process Innovation

(IWorkt.‘lueuesI Edit Profile |Team Queues |;\dmin Queuesl Cases | Users | Org Data | Services | Logout |)
‘ Offered (0) ‘ Allocated (1) ‘ Started (4) ‘ Suspended (0) ‘ %
Work Items Specification Task Start
54:Create_Book_List 4 | ListBuilder | Create Book List
cae
| 54 | Enabled
i =
| Jul:23, 2009 15:23:17 | 0:00:07:22
3
&

Figure 6.13: The Allocated Work Queue
A participant may take the following actions on a work item in an allocated queue:

o Start: The work item is started (i.e. begins executing), and moved to the participant’s started queue.

e Deallocate: This action provides an authorised participant with a means of rejecting a work item
that has been allocated to them. The work item is removed from the participant’s allocated queue, the
participant is removed from the original distribution set and the work item is redistributed as per the
resourcing specification for the task. A participant must have the task privilege “Can Deallocate” to
enable deallocation.

o Delegate: This action allows a participant to delegate responsibility for a work-item to another par-
ticipant. The receiving participant must be subordinate to the delegating participant by Position. The
work item is moved from the allocated queue of the delegator to the allocated queue of the receiver.

6.4. WORK QUEUES 135

A participant must have the task privilege “Can Delegate” and have subordinate staff to successfully
deallocate a work item.

o Skip: This action skips the execution of the work item — that is, the work item is immediately started
and then completed, allowing the process to continue according to its subsequent control-flow. A
participant must have the task privilege “Can Skip” to enable the skipping of a work item.

e Pile: When a work item is piled, the work item is immediately started and placed in the participant’s
started queue. Furthermore, each and every future instance of the work item across all cases of the
same specification is automatically allocated to the participant and started, completely ignoring any
resourcing specification for the task from which the work item is created. To put it another way, by
piling a work item, a participant is entering into a contract with the Resource Service, asking that this
work item, and all future occurrences of such work items created from the same task description as the
original work item was created from, be immediately allocated and started to him/her. Piling of such
work items continues until the participant turns off piling for the task via the View Profile form, or the
participant logs out (if so configured). A participant must have the “Can Pile’ task privilege to enable
piling.

6.4.3 The Started Queue

The Started queue lists the work items that have been started by or for a participant. Each work item on a
started queue has begun execution in a system sense, but may or may not have had any actual work begun
for it by the participant—such work is performed by the participant viewing, editing and finally completing
the work item.

www.yawlfoundation.org / Leadling the World in Process Innovation

C IWcrk Queues I Edit Profile | Team Queues |Admin Queues | Cases | Users | Org Data | Services | Logout |)
‘ Offered (0) ‘ Allocated (1) ‘ Started (4) ‘ Suspended (0) ‘ &y
Work Items Specification Task View/Edit
49.1:Create_Book_List_4 | Order Fulfilmentywl | Create Purchase Order
50.1:Assess_afiected_area 3
52.1.1:Create_Purchase_Order_104
53.1:Assess_affected_area 3
Case Status Aeallocate s/l
| 52.1.1 | Executing
Reallocate s/f
Created
— o
| Jul:23, 2009 15:22:11 | 0:00:15:19
4
R4

Figure 6.14: The Started Work Queue

A participant may take the following actions on a work item in an started queue:

o View/Edit: This action will display the data parameters and their current values for the selected
work item, either on a dynamically generated form (see Figure 6.15) or, if specified, a custom form,
allowing the participant to view and/or edit the form’s values. Any modified values are stored so that
this action can be repeated for a particular work item a number of times before completion, allowing

136 CHAPTER 6. THE RUNTIME ENVIRONMENT

Edit Work Item: 53.1 register

register

customer: Please type name ...

legs
leg - [+]

departure_location: I
destination: I

leg L-f+]

departure_location: I
destination: I

payAccNumber:

‘ Cancel ‘ | Save ‘ ‘Compleie‘

Figure 6.15: An Example of a Dynamically Generated Form

the work item to be processed by the participant in a progressive manner, if required. This action is
disabled if the work item has no data parameters to display or gather values for.

o Suspend: This action suspends the selected work item. The work item is removed from the started
queue and placed on the participant’s suspended queue. A participant must have the task privilege
“Can Suspend” to successfully suspend a work item.

e Reallocate Stateless: This action allows a participant to reallocate a work item to another par-
ticipant. The receiving participant must be subordinate to the reallocating participant by Position.
The work item’s data values are reset to the values that existed when the work item was first started
(i.e. stateless reallocation), and it is moved from the started queue of the reallocator to the started
queue of the receiver. A participant must have the task privilege “Can Reallocate Stateless” and have
subordinate staff to successfully reallocate a work item.

o Reallocate Stateful: Similar to “Reallocate Stateless”, except that any modified data values are main-
tained when the work item is reallocated. A participant must have the task privilege “Can Reallocate
Stateful” and have subordinate staff to successfully reallocate a work item.

e New Instance: This action allows for the creation of a new instance of the selected work item; it
is enabled only for a work item of a multiple instance atomic task that allows dynamic creation of
additional work item instances.

e« Complete: Completes the selected work item. The work item is posted back to the engine, which
then progresses the case according to its control-flow. This action is initially disabled if the work item
contains mandatory editable data variables (as in Figure 6.14), and becomes enabled after the first
view/edit of the work item.

6.4.4 The Suspended Queue

The Suspended queue lists executing work items that have been suspended via the Suspend button on the
Started queue. Note that suspended work items must have already been started and not yet completed, and
so this queue may be seen as an extension of the started queue. This queue contains one action, Unsuspend,
which resumes the work item, removing it from the suspended queue and returning it to the started queue.

6.5. USER PROFILES 137

www.yawlfoundation.org g Leading the World in Process Innovation

C IWoerueueﬁl Edit Profile |TaamQuauas |MmInQuauaﬁ| Cases | Users | Org Data | Services | Logout |)
| Offered (0) | Allocated (1) | Started (1) | Suspenced (3 ‘)
Work Items Specification Task Unsuspend
gg} Create_Book_List_4 | Emergency | Assess affected area
52.1.1:Create_Purchase_Order_104
Case Status
| 50.1 | Suspended

Created Age
|

| Jul:23, 2009 12:37:27 0:03:18:03

e

Figure 6.16: The Suspended Work Queue

6.5 User Profiles

www.yawlfoundation.org ¢ Leading the World in Process innovation
C | Work Queues I Edh Profile : I Team Queues |Rdm|n Queues | Cases | Users | Org Data | Services Logout |)
Name: W Piled Tasks

Emergency::Assess_affected_area 3

UserlD: |m
Roles: | Supply Admin Officer ~|
Positions: | Assistanthead of OD +|

Capabilities: [Vaster's in SCLM Zl

el

Y A — Chained Cases
Change Password 49::ListBuilder
New:
: 4
Confirm: E‘

Figure 6.17: The Edit Profile Screen
The Edit Profile screen consists of four panels (Figure 6.17):

o A Personal Information panel, where a participant can see their name, userid, lists of their roles,
positions and capabilities, and whether he/she has administrator privileges. All of this information is
read-only.

138 CHAPTER 6. THE RUNTIME ENVIRONMENT

o A Change Password panel, where the participant may change their password. Passwords must be at
least 4 characters in length, and the ‘New’ and ‘Confirm’ entries must match.

o A Piled Tasks panel, where all of the tasks that are currently piled to the participant are listed. The
participant may choose to cease the piling of a task to them by selecting it from the list and clicking
the ‘Unpile’ button.

o A Chained Cases panel, where all of the cases currently chained to the participant are listed. The
participant may choose to cease the chaining of a case to them by selecting it from the list and clicking
the ‘Unchain’ button.

6.6 Team Queues

www.yawlfoundation.org

C | Work Queues Edit Profile I‘i’eam Oueues; I ‘Admin Queues | Cases | Users | Org Data | Services Logout |)
)
Work ltems Specification Task
51:Create_Book_List 4 | ListBuilder | Create Book List
Case Status ® Team
| 51 | Enabled O OrgGroup
Created Age
| Jurzs, 2009 13:27:13 | 0:00:06:53
Assigned To (1) Resource State
ﬁ‘ [Van Arsdale, Billy] Offered

Figure 6.18: The Team Queues Screen

The Team Queues screen shows groups of active work items in a single list. There are two types of groupings
possible:

e A participant who has been granted the user privilege ‘View All Work Items of Team’ may view a list
of all the active work items that appear on the work queues of all the participants who are subordinate
to them by Position. For example, in Figure 6.18 the participant listed holds the position ‘CD clerk’,
which reports to the position of the currently logged on participant, ‘Head of CD’.

o A participant who has been granted the user privilege ‘View All Work Items of Org Group’ may view a
list of all the active work items that appear on the work queues of all the participants that are members
of the same Org Group as the logged on participant.

All of the information displayed on this screen is read-only. A participant who has been granted both
privileges may switch between views using the radio buttons to the right of the form; if they have been
granted one of the two privileges, the other choice is disabled.

6.7 YAWL Worklist iGoogle Gadget

A simplified version of the YAWL worklist is offered as an iGoogle Gadget, so that users can see the workitems
currently in their work queues as a ‘live feed’, along with the information in the other gadgets they may have

6.7. YAWL WORKLIST IGOOGLE GADGET 139

enabled on their iGoogle page.

6.7.1 Setting up the Worklist Gadget

The first step in setting up the gadget is to create a personal iGoogle page. To do so, browse to Google, then
click the iGoogle link in the top right corner of the page. If you have not yet done so, you will be asked to
create an account.

When you have your iGoogle page loaded, click on the Add Stuff link on the right of the page header. You
will see a page with a list of popular gadgets to choose for your page (you must be connected to the internet
to access an iGoogle gadget). To load the “YAWL Worklist’ gadget:

1.

Click the Add feed or gadget link on the bottom of the list of links on the left frame of the page (under
‘Sort By’ and ‘Narrow by Category’ link lists).

. In the input box that appears (Figure 6.19) enter the URL: http://www.yawlfoundation.org/gadgets/

ig¥Worklist.xml

. Click the Add button.

Click OK on the warning dialog that appears.

&) Add feed or gadget T —

Ti
Type or paste the URL below: A
ce
wyawlfoundation.org fgadgets .fig"rWl:urinsk.:-:ml | Add | ip
Information for Eeed owners - Developers h

Figure 6.19: Adding the Worklist Gadget to an iGoogle Page

When you go back to the iGoogle home page, the YAWL Worklist should appear (Figure 6.20), but before
it can be used, some settings must be entered for it:

UserID (required): A valid YAWL user account id;

Password (required): The password for the nominated YAWL account. Note that the password
is retained as plain text, so please ensure you log out of iGoogle before anyone else uses the same
computer.

YAWL Base URI (required): The URI of the Tomcat container running the YAWL Resource Service
that will recognise the userid and password entered. The YAWL URI may be local (on the current
computer) or remote (accessible via the internet).

Name (optional): Any text entered here will display on the titlebar of the gadget, after the ‘YAWL
Worklist:’ title.

Alt Tab Names (optional): By default, the names shown in the worklist’s tabs for each queue are
‘Offered’, ‘Allocated’, ‘Started’ and ‘Suspended’. Choosing the Alt Tab Names option will instead show
them as ‘Available’, ‘Assigned’, ‘In Progress’ and ‘Suspended’.

Show Suspended (optional): If this option is unselected the ‘Suspended’ queue will be hidden. Note
that, due to the width limits of iGoogle gadgets, when the ‘Suspended’ queue is shown, the number of
work items in each queue cannot be displayed wth the tab title.

http://www.yawlfoundation.org/gadgets/igYWorklist.xml
http://www.yawlfoundation.org/gadgets/igYWorklist.xml

140 CHAPTER 6. THE RUNTIME ENVIRONMENT

YAWL Worklist:

UserlD
Password [JEILE
VATINEERTERE=IN hitp://localhost: 8080/
Name

Alt Tab Names &
Show Suspended Il

Save

Figure 6.20: The Worklist Gadget’s Settings dialog

Click the Save button to save your settings. If they are valid, you will see a worklist something like the one
in Figure 6.21. You can modify these settings at any time by clicking on the dropdown menu on the top-right
of the gadget’s titlebar (the small button with the dropdown arrow) and choosing Edit Settings.

YAWL Worklist:]

Available (1) = Assigned (0) In Progress (2)

362 Triane

Figure 6.21: The Worklist Gadget

6.7.2 Using the Worklist Gadget

Fach queue shows the work items available to the user specified as hyperlinks. When you click on a work
item link in any queue, the data form for the work item will display on a new tab or window (depending on
browser settings). That is, when a work item link is clicked:

o If the work item is on the Offered (Available) queue, it is immediately allocated to you and started,
then its form is displayed;

o If the work item is on the Allocated (Assigned) queue, it is immediately started, then its form is
displayed;

6.7. YAWL WORKLIST IGOOGLE GADGET 141

o If the work item is on the Started (In Progress) queue, its form is displayed;
o If the work item is on the Suspended queue, it is immediately unsuspended, then its form is displayed.
Just as it is for the default worklist handler of the Resource Service, if the work item was associated with a

custom form at design time, then the custom form will display; if not, then a dynamically generated form
will appear. You do not have to be logged on to YAWL before you click on a work item link in the gadget.

238 coogle &

2] iGoogle X ‘E YAWL 2.0: RSS Form Handler =

ﬂ http:/ flocalhost: 8080/ resourceService /faces jdynForm.jsp

www.yawlfoundation.org

Work Item successfully processed. Please click the button below
to close this window/tab.

Dane o #

Figure 6.22: The Worklist Gadget’s Post-Form-Display Message

When you leave the form (whether by a Cancel, Save or Complete action) a message will appear on the page
informing of the success or otherwise of the action taken (Figure 6.22). Note that your current logon status
is unaffected by actions you take on the gadget — if you were already logged on to YAWL in another tab or
window, that session will remain active after the action completes; if you were not already logged on, you
will automatically be logged on to enable the processing of the work item, then logged out again when the
processing completes. Close this page to return to the iGoogle tab/window, and refresh the iGoogle page to
show any newly available work items or queue changes caused by your actioning of the work item.

142 CHAPTER 6. THE RUNTIME ENVIRONMENT

Chapter 7

The Worklet Service

This chapter contains instructions for installing and using the Worklet Dynamic Process Selection & Exception
Handling Custom Service for YAWL.

Each section describes one part in the process of setting up and using the Worklet Service. It is probably
best to work through the manual from start to finish the first time it is read. This manual focuses on the
practical use of the Worklet Service. For those interested, a more technical description of the inner operations
of worklets and the rule sets that support them can be found in the technical manual. A more concise version
of the worklets approach can be found in [9], while a more concise version of the exlets approach can be found
in [8]. The ultimate reference on worklets and exlets is Michael Adams’ PhD thesis [7]. All these publications
can be downloaded from www.yawlfoundation.org.

All of the example specifications, rule sets, and so on referred to in this manual can be found in the “worklet
repository” distributed with the service as part of the YAWL 2.0 release.

This icon indicates a hands-on method or instruction.

7.1 What is a Custom YAWL Service?

An important point of extensibility of the YAWL system is its support for interconnecting external appli-
cations and services with the workflow execution engine using a service-oriented approach. This enables
running workflow instances and external applications to interact with each other in order to delegate work,
to signal the creation of process instances and workitems, or to notify a certain event or a change of status
of existing workitems.

Custom YAWL services are external applications that interact with the YAWL engine through XML/HTTP
messages via certain endpoints, some located on the YAWL engine side and others on the service side.
Custom YAWL services are registered with the YAWL engine by specifying their location, in the form of
a “base URL”. Once registered, a custom service may send and receive XML messages to and from the
engine. More specifically, Custom YAWL services are able to check-out and check-in workitems from the
YAWL engine. They receive a message when an item is enabled, and therefore can be checked out. When
the Custom YAWL service is finished with the item it can check it back in, in which case the engine will set
the work item to be completed, and proceed with the execution.

7.1.1 What is the YAWL Worklet Service?
The Worklet Dynamic Process Selection & Exception Handling Service for YAWL comprises two distinct but

complementary services: a Selection Service, which enables dynamic flexibility for YAWL process instances;
and an Exception Handling Service, which provides facilities to handle both expected and unexpected process

143

www.yawlfoundation.org

144 CHAPTER 7. THE WORKLET SERVICE

exceptions (i.e. events and occurrences that may happen during the life of a process instance that are not
explicitly modelled within the process) at runtime. A brief introduction to each Service follows.

7.1.2 The Selection Service

The Worklet Dynamic Process Selection Service (or Selection Service) enables flexibility by providing a
process designer with the ability to substitute a workitem in a YAWL process at runtime with a dynamically
selected “worklet” - a discrete YAWL process that acts as a sub-net for the workitem and so handles one
specific task in a larger, composite process activity. The worklet is dynamically selected and invoked and may
be created at any time, unlike a static sub-process that must be defined at the same time as, and remains a
static part of, the main process model.

An extensible repertoire (or catalogue) of worklets is maintained by the Service. Each time the Service is
invoked for a workitem, a choice is made from the repertoire based on the contextual data values within the
workitem, using an extensible set of rules to determine the most appropriate substitution.

The workitem is checked out of the YAWL engine, and then the selected worklet is launched as a separate
case. The data inputs of the original workitem are mapped to the inputs of the worklet. When the worklet
has completed, its output data is mapped back to the original workitem, which is then checked back into
the engine, allowing the original process to continue. Worklets can be substituted for atomic tasks and
multiple-instance atomic tasks. In the case of multiple-instance tasks, a worklet is launched for each child
workitem. Because each child workitem may contain different data, the worklets that substitute for them are
individually selected, and so may all be different.

The repertoire of worklets can be added to at any time, as can the rules base used for the selection process.
Thus the service provides for dynamic ad-hoc change and process evolution, without having to resort to
off-system intervention and/or system downtime, or modification of the original process specification.

7.1.3 The Exception Service

During every instance of a workflow process, certain things happen “off-plan”. That is, it doesn’t matter how
much detail has been built into the process model, certain events occur during execution that affect the work
being carried out, but were not defined as part of the process model. Typically, these events are handled
“off-system” so that processing may continue. In some cases, the process model will be modified to capture
this unforeseen event, which involves an organisational cost (downtime, remodelling, testing and so on).

The Worklet Dynamic Exception Handling Service (or Exception Service) provides the ability to handle these
events in a number of ways and have the process continue unhindered. Additionally, once an unexpected
exception is handled a certain way, that method automatically becomes an implicit part of the process
specification for all future instances of the process, which provides for continuous evolution of the process
but avoiding the need to modify the original process definition.

The Exception Service uses the same repertoire of worklets and dynamic rules approach as the Selection
Service. The difference is that, while the Selection Service is invoked for certain tasks in a YAWL process,
the Exception Service, when enabled, is invoked for every case and task executed by the YAWL engine, and
will detect and handle up to ten different kinds of process exception. As part of the handling process, a
process designer may choose from various actions (such as cancelling, suspending, restarting and so on) and
apply them at a workitem, case and/or specification level.

The Exception Service is extremely flexible and multi-faceted, and allows a designer to provide tailor-made
solutions to runtime process exceptions, as described in the following pages.

7.2. INSTALLATION 145
7.2 Installation

7.2.1 Worklet Installation Package

The Worklet Service is distributed as a standard component of the YAWL environment, and so is included
in each of the various installer packages, and the YAWL2.0_CoreWebServices.zip file used for manual
installations. Specifically, the service is contained in the file workletService.war - this is the worklet
web application component. When unpacked, workletService.war also contains the worklet repository, a
required set of directories where worklets and rules files are stored, logs are written to and so on, and a
number of sample worklets and rule sets (including all those discussed in this manual) are located.

The structure of the repository is shown in Figure 7.1.

=) reposibory
) logs
) rules
I rulesEditor
) selected
) worklets

Figure 7.1: Worklet Repository Folder Structure

o The logs folder is where the Service writes certain log files during its operation. In particular, the
eventLog.csv file logs the key events of the service (when database persistence is disabled). All are
plain text files.

e The rules folder contains the sets of rules used during the selection and exception handling processes.
Rules files have an XML format. Each YAWL specification that uses the service will have a correspond-
ing rules file of the same name, except with an extension of zrs (XML rule set).

o The rulesEditor folder contains a tool that is used to manage and modify rule sets (see Section 7.5.2
for a complete description of the Rules Editor).

e The selected folder contains a set of files, in XML format, that are essentially log files that capture
the results of each selection process (either via the Selection Service, or through the selection of a
compensating worklet via the Exception Service). These files have an zws extension (XML Worklet
Selection). These files are used by the Rules Editor to enable the addition of new rules for a specification.

e The worklets folder contains the worklet specification files. These files are YAWL specifications that
are run as required by the service.

Several of the folders contain examples.

7.2.2 Configuring the Worklet Service

Manual Installs Only: The workletService.war file should be located in the webapps directory of your
Tomcat installation (if necessary, refer to Chapter 2, Section 2.5 for more information). Then, the file needs
to be extracted to its own directory under webapps. The easiest way to achieve this is to simply start Tomcat
- it will automatically extract, install and start the Worklet Service.

Once the service is fully extracted and installed, there are a couple of minor configuration tasks to complete.

146 CHAPTER 7. THE WORKLET SERVICE

Open the Worklet Service’s web.zml file (in folder \webapps\workletService\ WEB-INF\) in any text editor.

By default, the worklet repository is located within the service’s own file structures. However, you may
change the location of the repository if you wish. Locate the parameter named Repository, and change its
param-value to the path where you have relocated the worklet repository. The value should include the folder
‘repository’ and end with a slash, as shown in Figure 7.2!.

<context-param>
<param-name>Repository</param-name>
<param-value>${catalina.base}\webapps\workletService\repository\</param-value>
<description>
The path where the worklet repository is installed.
</description>
</context-param>

<context-param>
<param-name>EnablePersistence</param-name>
<param-value>false</param-value>
<description>
’true’ to enable persistence and logging
’false’ to disable
</description>
</context-param>

Figure 7.2: The Worklet Service’s web.zml file (detail)

If you have enabled database persistence for the YAWL Engine (if necessary, see Chapter 2, Section 2.5 for
details about enabling persistence for the YAWL Engine), then persistence should also be enabled for the
Worklet Service (so that case data for running processes can be persisted across Tomcat sessions). To enable
persistence, change the param-value to true for the EnablePersistence parameter.

Save and close web.zml. Worklet Service configuration is now complete. However, by default the Selection
Service is enabled within the YAWL Engine, but the Exception Service is not. If you wish to enable the
Exception Service, proceed to Step 3 below.

Enabling the Worklet Exception Service

When YAWL 2.0 is installed, the Exception Service is configured as disabled in the YAWL Engine. To enable
the Exception Service, a parameter has to be set in the YAWL Engine’s web.zml file.

Open the engine’s web.zml file (in folder \webapps\yawl\ WEB-INF\). Locate the parameter named Enable-
ExceptionService; to enable the Exception Service, change the param-value to true (see Figure 7.3). Save
and close web.zml.

The Exception Service uses extensions (or ‘hooks’) in the YAWL default worklist handler (a component of
the Resource Service) to provide methods for interacting with the Worklet Service, so if you have enabled
the service in the Engine as above, you also need to enable the extensions in the Resource Service.

To do so, locate and open the Resource Service’s web.zml file (in folder \webapps\resourceService\ WEB-
INR\).

Locate the context parameter named InterfaceX_BackEnd. By default, the entire parameter block is com-
mented out. To enable the Exception Service extensions to the worklist, simply remove the comment tags
(the “<!-” and “~>" surrounding the context-param block — see Figure 7.4 below). Save and close web.zml.

1${catalina.base} is an environment variable pointing to the path of your Tomcat installation.

7.2. INSTALLATION 147
<!-- PARAMS FOR EXCEPTION SERVICE -->

<context-param>
<param-name>EnableExceptionService</param-name>
<param-value>true</param-value>
<description>
Set this value to ’true’ to enable monitoring by an
Exception Service (specified by the URI param below).
Set it to ’false’ to disable the Exception Service.
</description>
</context-param>

Figure 7.3: The YAWL Engine’s web.zml file (detail)

<!-- This param, when available, enables the worklet exception
service add-ins to the worklist. If the exception service
is enabled in the engine, then this param should also be
made available. If it is disabled in the engine, the
entire param should be commented out. -->
<I--
<context-param>
<param-name>InterfaceX_BackEnd</param-name>
<param-value>http://localhost:8080/workletService</param-value>
<description>
The URL location of the worklet exception service.
</description>
</context-param>
-=>

Figure 7.4: The Resource Service’s web.zml file (detail)

The Exception Service is now fully enabled and operational. For information on how the Exception Service
works and how to use it, see Sections 7.3 and 7.6.

Installing the Rules Editor

The Worklet Rules Editor allows you to browse the rule sets of specifications, add new rules to existing rule
sets, and add complete, new rules trees to rule sets. It is a .NET based application, so has the following
requirements:

o Operating System: Windows OSs 98SE or better

e The Microsoft .NET framework (any version). If you don’t have the framework installed, it can be
downloaded for free from Microsoft: http://www.microsoft.com/downloads.

The Rules Editor tool is found in the rulesFEditor folder of the worklet repository. It can be executed directly
from there - no further installation is required.

For more details on the Rules Editor and how to use it, refer to Section 7.5.2.

http://www.microsoft.com/downloads

148 CHAPTER 7. THE WORKLET SERVICE

-,

‘;:l. Worklet Rules Editor <Browse > : Casualty_Treatment E]
File Rule Options Help

J[w|9| H[Q =e

Rule Type: |Selectil:un j Task Mame: |1;2at j
ROR Tree Cornerstone Caze
- D Fule Fatientl D' = 2375493 -~
= Eule 1 Sex=M
0 D” e DiastalicBP = 35
Hie Height = 1.65
Fiule 2 HeartFate = 80
Rule 3 SystolicBP =140
Fule 4 'E'racturanla; falze
= ge =
File 5 Weight = 72
D Rule 3 Fever = falze
Fazh = falze
Wialind = true
MHame = Ben Dover il
Selected Mode

Mode [D: 2 FParent Mode ID: |1

Conditiar: |'W'u:-unu:| = tiue

Concluzion: |1, select Treafwound

Description: |basic warklet for a wound

Figure 7.5: The Worklet Rules Editor

7.3 Using the Worklet Selection Service

Fundamentally, a worklet is nothing more than a workflow specification that has been designed to perform
one part of larger or ‘parent’ specification. However, it differs from a decomposition or sub-net in that it
is dynamically assigned to perform a particular task at runtime, while sub-nets are statically assigned at
design time. Also, worklets can be added to the repertoire at any time during the life of a specification, even
while instances are running. So, rather than being forced to define all possible “branches” in a specification
when it is first defined, the Worklet Service allows you to define a much simpler specification that will evolve
dynamically as more worklets are added to the repertoire for a particular task as different contexts arise.

The first thing you need to do to make use of the service is to create a number of YAWL specifications - one
which will act as the top-level (or manager or parent) specification, and one or more worklets which will be
dynamically substituted for particular top-level tasks at runtime.

The YAWL Editor is used to create both top-level and worklet specifications. A knowledge of creating and

7.3. USING THE WORKLET SELECTION SERVICE 149

editing YAWL specifications, and the definition of data variables and parameters for tasks and specifications,
is assumed. For more information on how to use the YAWL Editor, see Chapter 4.

Before opening the YAWL Editor, make sure that the Worklet Service is correctly installed and that Tomcat
is running (see Section 7.2 of this chapter and/or Chapter 2 for more information).

First, a top-level specification needs to be defined.

7.3.1 Top-level or Parent Specifications

To define a top-level specification, open the YAWL Editor, and create a process specification in the usual
manner. Choose one or more tasks in the specification that you want to have replaced with a worklet at
runtime. Each of those tasks needs to be associated via the YAWL Editor with the Worklet Service.

For example, Figure 7.6 shows a simple specification for a Casualty Treatment process. In this process, we
want the Treat task to be substituted at runtime with the appropriate worklet based on the patient data
collected in the Admit and Triage tasks. That is, depending on each patient’s actual physical data and
reported symptoms, we would like to run the worklet that best handles the patient’s condition.

Worklets may be associated with an atomic task, or a multiple-instance atomic task. Any number of worklets
can be associated with (i.e. comprise the repertoire of) an individual task, and any number of tasks in a
particular specification can be associated with the Worklet Service.

[(») Casualty_Treatment]

S o @

Admit Triage Treat Discharge

Figure 7.6: Example Top-level Specification

Here, we want to associate the Treat task with the Worklet Service. To do so, right click on the task, then
select Task Decomposition Detail from the popup menu. The Update Task Decomposition dialog is shown
(Figure 7.7). This dialog shows the variables defined for the task - each one of these maps to a net-level
variable, so that in this example all of the data collected from a patient in the first two tasks are made
available to this task. The result is that all of the relevant current case data for this process instance can
be used by the Worklet Service to enable a contextual decision to be made. Note that it is not necessary
to map all available case data to a worklet enabled task, only that data required by the Service to make an
appropriate decision. How this data is used will be discussed later in this manual.

The list of task variables in Figure 7.7 also show that most variables are defined as ‘Input Only’ - this is
because those values will not be changed by any of the worklets that may be executed for this task; they
will only be used in the selection process. The last three variables are defined as ‘Input & Output’, so that
the worklet can “return”, or map back to these variables, data values that are captured during the worklets
execution.

The dialog has a section at the bottom called YAWL Registered Service Detail. It is here that the task is
associated with the Worklet Service by choosing the Worklet Service from the list of available services. Note
that list of services will only be seen if the Engine is currently running and it has services installed.

Select the Worklet Service from the list. That’s all that is required to make the top-level specification
worklet-enabled. Next, we need to create one or more worklet specifications to execute as substitutes for the
worklet-enabled task.

150 CHAPTER 7. THE WORKLET SERVICE

,! Standard = Extended Attributes |

Task Decomposition Label: | Treat

~Task Decomposition Variables
Name | Type |Usage |
Sex String Input Only
DiastolicBF long Input Only
Hotes string Input & Output
Helght double Input Only
HeartRate long Input Only
Fharmacy string Input & Cutput AN
SystolicBP long Input Only —
Fracture boolean Input Only
Lge long Input Only M
Treatment string Input & Output
Welght double Input Only
Fever boolean Input Only
Rash boolean Input Only
Wound boolean Input Only
AhdominalFain boolean Input Only
Hame string Input Only
~YAWL Registered Service Detail
YAWLS... | v Default Engine Worklist
Web Service Invoker Service
Worklet Dynamic Process Selection and Exception Service
[Automated [Set Codelet...

E—Btmt—a (Cancel)
%. &

Figure 7.7: Associating a task with the Worklet Service

7.3.2 Worklet Specifications

When the Casualty Treatment top-level specification is executed, the YAWL Engine will notify the Worklet
Service when the worklet-enabled Treat task becomes enabled. The Worklet Service will then examine the
data in the task and use it to determine which worklet to execute as a substitute for the task. Any or all
of the data in the task may also be mapped to the selected worklet case as input data. Once the worklet
instance has completed, any or all of the available output data of the worklet case may be mapped back to
the Treat task to become its output data, and the top-level process will continue.

A worklet specification is a standard YAWL process specification, and as such is created in the YAWL Editor
in the usual manner. Each of the data variables that are required to be passed from the parent task to the

7.3. USING THE WORKLET SELECTION SERVICE 151

worklet specification need to be defined as net-level variables in the worklet specification.

Figure 7.8 shows a simple example worklet to be substituted for the Treat top-level task when a patient
complains of a fever.

[(») TreatFever]

®——>——r4>®

Test_Fever Treat_Fever

Figure 7.8: The TreatFever Worklet

In itself, there is nothing special about the TreatFever specification. Even though it will be considered by
the Worklet Service as a member of the worklet repertoire and may thus be considered a “worklet”, it is
a standard YAWL specification and as such may be executed directly by the YAWL engine without any
reference to the Worklet Service.

As mentioned previously, those data values that are required to be mapped from the parent task to the
worklet need to be defined as net-level variables in the worklet specification. Figure 7.9 shows the net-level
variables for the TreatFever task.

Net Decomposition Label: ITreatFever

Met Decomposition Variables

Mame | Type | Usage | Create...
Fever boolean Input Only N

Hotes string Input & Output Update...
Pharmacy string Input & Output LY

Name string Input Only Remove...
Treatment string Input & Output

E Done 3 [Cancel)

Figure 7.9: Net-level Variables for the TreatFever Specification

Note the following:

o Only a sub-set of the variables defined in the parent Treat task (see Figure 7.7) are defined here. It is
only necessary to map from the parent task those variables that contain values to be displayed to the
user, and/or those variables that the user will supply values for to be passed back to the parent task
when the worklet completes.

o The definition of variables is not restricted to those defined in the parent task. Any additional variables
required for the operation of the worklet may also be defined here.

152 CHAPTER 7. THE WORKLET SERVICE

e Only those variables that have been defined with an identical name and data type to variables in the
parent task and with a Usage of ‘Input Only’ or ‘Input & Output’ will have data passed into them
from the parent task when the worklet is launched.

e Only those variables that have been defined with an identical name and data type to variables in the
parent task and with a Usage of ‘Output Only’ or ‘Input & Output’ will pass their data values back to
the parent task when the worklet completes.

In Figure 7.9, it can be seen that the values for the PatientID, Name and Fever variables will be used by the
TreatFever worklet as display-only values; the Notes, Pharmacy and Treatment variables will receive values
during the execution of the worklet and will map those values back to the top-level Treat task when the
worklet completes.

The association of tasks with the Worklet Service is not restricted to top-level specifications. Worklet
specifications also may contain tasks that are associated with the Worklet Service and so may have worklets
substituted for them, so that a hierarchy of executing worklets may sometimes exist. It is also possible to
recursively define worklet substitutions - that is, a worklet may contain a task that, while certain conditions
hold true, is substituted by another instance of the same worklet specification that contains the task.

Any number of worklets can be created for a particular task. For the Casualty Treatment example, there are
(initially) five worklets in the repertoire for the Treat task, one for each of the five primary conditions that
a patient may present with in the Triage task: Fever, Rash, Fracture, Wound and Abdominal Pain. Which
worklet is chosen for the Treat task depends on which of the five is given a value of True in the Triage task.

How the Worklet Service uses case data to determine the appropriate worklet to execute is described in
Section 7.5.2.

7.4 Using the Worklet Exception Service

In the previous Section, we saw how the Worklet Service adds dynamic flexibility to a usually static YAWL
specification by substituting tasks with contextually chosen worklets at runtime. The Worklet Exception
Service leverages off the worklet framework to also provide support for the myriad exceptions that may occur
during the execution of any process instance.

Every process instance, no matter how rigidly structured, will experience some kind of exception during its
execution. While the word ‘exception’ conjures up ideas of errors or problems occurring within the executing
process instance, the meaning in terms of workflow processes is much broader: exceptions are merely events
or occurrences that, for one reason or another, were not defined in the process model. It may be that these
events are known to occur in a small number of cases, but not enough to warrant their inclusion in the
process model; or they may be things that were never expected to occur (or may be never even imagined
could occur). In any case, when they do happen, if they are not part of the process model, they must either
be handled “off-line” before the process continues (and the way they are handled is rarely recorded) or in
some instances the entire process must be aborted.

Alternately, an attempt might be made to include every possible twist and turn into the process model so
that when such events occur, there is a branch in the process to take care of it. This approach may lead
to very complex models where much of the original business logic is obscured, and doesn’t avoid the same
problems when the next unexpected exception occurs.

The Exception Service addresses these problems by allowing you to define exception handling processes (that
may include worklets as compensation handlers) for parent workflow instances when certain events occur.
Rules are defined in much the same way as for the Selection Service, but with added features that enable you
to pause, resume, cancel or restart the task, case, or all cases of a specification, that triggered the exception.

Because the service allows you to define exception handlers for all exception events, and even to add new
handlers at runtime, all exception events are able to be captured “on-system”, so that the handlers are
available to all future occurrences of a particular event for the same context. And, since the handlers are
worklets, the original parent process model only needs to contain the actual business logic for the process,

7.4. USING THE WORKLET EXCEPTION SERVICE 153

while the repertoire of handlers grows as new exceptions arise or different ways of handling exceptions are
formulated.

IMPORTANT: While the Selection Service is linked explicitly to tasks as defined in the YAWL Editor,
and thus available whenever a worklet-enabled task is executed, the Exception Service is either enabled or
disabled (on or off); when it is enabled, it manages exception handling for all process instances executed
by the engine - explicitly linking a task or process to the service is not required. Also, the Selection and
Exception Services can be used in combination within particular case instances to achieve dynamic flexibility
and exception handling simultaneously.

7.4.1 Exception Types

This section introduces the ten different types of exception that have been identified, eight of which are
supported by this version of the Worklet Service. Some are related, while others are more distinct. Later
sections will show examples of each of these.

When the Exception Service is enabled, it is notified whenever any of these exception types occur for every
process instance executed by the YAWL Engine (by various means). The Exception Service maintains a set
of rules (described in detail in Section 7.5.2) that are used to determine which exception handling process,
if any, to invoke. If there are no rules defined for a certain exception type for a specification, the exception
event is simply ignored by the service. Thus you only need to define rules for those exception events that
you actually want to handle for a particular specification.

Constraint Types

Constraints are rules which are applied to a workitem or case immediately before or after execution of that
workitem or case begins. Thus, there are four types of constraint exception:

o CasePreConstraint - case-level pre-constraint rules are checked when each case (i.e. instance) begins
execution;

o ItemPreConstraint - item-level pre-constraint rules are checked when each workitem in a case be-
comes enabled (i.e. ready to be checked out);

o ItemPostConstraint - item-level post-constraint rules are checked when each workitem moves to a
completed status; and

o CasePostConstraint - case-level post constraint rules are checked when a case completes.

The Exception Service receives notification from the YAWL Engine when each of these events occur, then
checks the rule set for the case to determine, firstly, if there are any rules of that type defined for the case,
and if so, if any of the rules evaluate to true using the contextual data of the case or workitem. If the rule
set finds a matching rule for the exception type and data, an exception process is invoked.

Note that for each of the constraint events, an exception process is invoked for a rule when that rules
condition evaluates to true. So, for example, if the condition of an ltemPreConstraint rule for a Triage
task was “Privatelnsurance=false”, and that value of that attribute in the workitem was also false, then the
exception process for that rule would be invoked.

Externally Triggered Types

Externally triggered exceptions occur, not through the case’s data values, but because something has hap-
pened outside of the process execution that has an affect on the continuing execution of the process. Thus,
these events are triggered by a user; depending on the actual event, a particular handler will be invoked.
There are two types of external exceptions, CaseExternalTrigger (for case-level events) and ItemEx-
ternalTrigger (for item-level events). See later in this section for examples of each and how they are
invoked.

154 CHAPTER 7. THE WORKLET SERVICE

TimeOut

A timeout event occurs when a workitem has an associated timer (or is linked to the deprecated Time
Service) and the deadline set for that workitem is reached. In this case, the Engine notifies the Worklet
Service of the timeout event, and passes to the service a reference to itself and each of the other workitems
that were running in parallel with the timed-out item. Therefore, timeout rules may be defined for each of
the workitems affected by the timeout (including the actual time-expired workitem itself).

ResourceUnavailable

This event occurs when an attempt has been made to allocate a workitem to a resource and the Resource
Service reports that the resource is unavailable to accept the allocation.

ItemAbort
An TtemAbort event occurs when a workitem being handled by an external program (as opposed to a human

user) reports that the program has aborted before completion. This event is not supported by this version
of Exception Service.

ConstraintViolation

This event occurs when a data constraint has been violated for a workitem during execution (as opposed to
pre or post execution). This event is not currently supported by the Exception Service.

7.4.2 Exception Handling Primitives

For any exception event that occurs, a handling process may be invoked. Each handling process, called an

exlet, contains a number of steps, or primitives, in sequence, and is defined graphically using the Worklet
Rules Editor (see Section 7.5.2). Each of the handling primitives is introduced below.

| | Suspend WorklItem - suspends (or pauses) execution of a workitem, until it is continued, restarted,
cancelled, failed or completed, or its parent case is cancelled or completed.

” Suspend Case - suspends all “live” workitems in the current case instance (a live workitem has a
status of fired, enabled or executing), effectively suspending execution of the case.

| Suspend All Cases - suspends all “live” workitems in all of the currently executing instances of the
specification in which the workitem is defined, effectively suspending all running cases of the specification.

’ Continue Workitem - un-suspends (or continues) execution of the previously suspended workitem.

[—

} Continue Case - un-suspends execution of all previously suspended workitems for the case, effectively
continuing case execution.

| Continue All Cases - un-suspends execution of all previously suspended workitems for all cases of
the specification in which the workitem is defined or of which the case is an instance, effectively continuing
all running cases of the specification.

[. . : o
Remove Workitem - removes (or cancels) the workitem; execution ends, and the workitem is marked
with a status of cancelled. No further execution occurs on the process path that contains the workitem.

7.4. USING THE WORKLET EXCEPTION SERVICE 155

—_—

Remove Case - removes (cancels) the case. Case execution ends.

| Remove All Cases - removes (cancels) all case instances for the specification in which the workitem
is defined, or of which the case is an instance.

“ Restart Workitem - rewinds workitem execution back to start. Resets the workitems data values to
those it had when it began execution.

>} Force Complete WorkItem - completes a “live” workitem. Execution of the workitem ends, and the
workitem is marked with a status of ForcedComplete, which is regarded as a successful completion, rather
than a cancellation or failure. Execution proceeds to the next workitem on the process path.

[|

} Force Fail Workitem - fails a “live” workitem. Execution of the workitem ends, and the workitem
is marked with a status of Failed, which is regarded as an unsuccessful completion, but not a cancellation -
execution proceeds to the next workitem on the process path.

€| Compensate - run a compensatory process (i.e. a worklet). Depending on previous primitives, the
worklet may execute simultaneously to the parent case, or execute while the parent is suspended (or even
removed).

The primitives “Suspend All Cases”, “Continue All Cases” and “Remove All Cases” may be edited so that
their action is restricted to ancestor cases only. Ancestor cases are those in a hierarchy of worklets back to
the parent case (that is, where a case invokes a worklet which invokes another worklet and so on).

An example of a definition of an exception handing process in the Rules Editor is below:

‘;h. Worklet Rules Editor: =<Mew Conclusion > E]@

I .” ml » m : < 0

Save | Align | LClear Cancel

A

Figure 7.10: Example Handler Process in the Rules Editor

When invoked, this handler will suspend the current case, then run a compensating worklet, then continue
execution of the case.

In the same manner as the Selection Service, the Exception Service also supports data mapping from a case
to a compensatory worklet and back again. For example, if a certain variable has a value that prevents a case
instance from continuing, a worklet can be run as a compensation, during which a new value can be assigned
to the variable and that new value mapped back to the parent case, so that it may continue execution.

The full capabilities of the Exception Service are better described in the walkthroughs in Section 7.6. But
before we consider the walkthroughs, we must first look at exactly how the rule sets are formed and how

156 CHAPTER 7. THE WORKLET SERVICE

they operate, and how to use the Worklet Rules Editor to manage rule sets for specifications. These topics
are discussed in the next section.

7.5 Worklet Rule Sets and the Rules Editor

This section describes the structure and operation of worklet rule sets. A tool has been designed to manage
the creation and modification of rule sets for specifications, called the Worklet Rules Editor. The structure
and operation of rule sets is best described by using the Rules Editor to display and manipulate them. So a
description of how to use the Rules Editor is interspersed in this section with the description of the rule sets
themselves.

Again, the Worklet Selection and Exception Services work in very similar ways, but with some necessary
differences. In this section, the discussion of rule sets applies to both services, except where indicated.

7.5.1 Worklet Rule Sets

Any YAWL specification may have an associated rule set. The rule set for each specification is stored as
XML data in a disk file that has the same name as the specification, but with an “.xrs” extension (XML
Rule Set). All rule set files are stored in the rules folder of the worklet repository. For example, the
file Casualty_Treatment.zrs contains the worklet rule set for the Casualty_Treatment.yawl YAWL process
specification. Figure 7.11 shows an excerpt from that file.

A rule set for a specification consists of a collection of rule trees. Each rule tree represents a set of modified
Ripple-Down Rules (RDR), which maintains a rule node hierarchy in a binary-tree structure. When a rule
tree is queried, it is traversed from the root node of the tree along the branches, each node having its condition
evaluated along the way. If a node’s condition evaluates to True, and it has a true child, then that child
nodes condition is also evaluated. If a nodes condition evaluates to False, and there is a false child, then that
child nodes condition is evaluated. When a terminal node is reached (i.e. a node without any child nodes)
if its condition evaluates to True, then that conclusion is returned as the result of the tree traversal; if it
evaluates to Fualse, then the last node in the traversal that evaluated to True is returned as the result. The
root node (Rule 0) of the tree is always a default node with a default True condition and conclusion, and so
can only have a true branch.

Effectively, each rule node on the true branch of its parent node is an exception rule to the more general one
of its parent (that is, a refinement of the parent rule), while each rule node on the false branch of its parent
node is an “else” rule to its parent (or an alternate to the parent rule). For example, see the selection rule
tree for the Casualty Treatment specification (Figure 7.12). The condition part is the rule that is evaluated,
and the conclusion is the name of the worklet selected by that rule if the condition evaluates to true. For
example, if the condition “fever = true” evaluates to true, then the TreatFever worklet is selected (via node
1); if it is false, then the next false node is tested (node 2). If node 2 is also false, then node 3 is tested. If
node 3 evaluates to true, then the TreatAbPain worklet is selected, except if the condition in its next true
node (node 7) also evaluates to true, in which case the TreatLabour worklet is selected.

One worklet rule set file is associated with each specification, and may contain up to eleven sets of rule trees
(or tree sets), one for selection rules and one for each of the ten exception types. Three of the eleven relate
to case-level exceptions (i.e. CasePreConstraint, CasePostConstraint and CaseExternalTrigger) and so each
of these will have only one rule tree in the tree set. The other eight tree sets relate to the workitem-level
(seven exception types plus selection), and so may have one rule tree for each workitem in the specification
- that is, the tree sets for these eight rule types may consist of a number of rule trees.

It is not necessary to define rules for all eleven types for each specification. You only need to define rules for
those types that you want to handle - any exception types that arent defined in the rule set file are simply
ignored. So, for example, if you are only interested in capturing pre and post constraints at the workitem
level, then only the ItemPreConstraint and ItemPostConstraint tree sets need to be defined (i.e. rules defined
within those tree sets). In this example, any Timeout exception events that occur during the execution of
the specification would be ignored by the Exception Service. Of course, rules for a Timeout event could be

7.5. WORKLET RULE SETS AND THE RULES EDITOR 157

</ruleNodex
</ prex
<foazes
</oonstraintss
<selection>
<task name="Treat":-
<rulelode>
<idx0<fid>
<parent>-1</parent>
<trueChildr1</trueChilds>
<falseChildr-1</falseChilds
<oondition>True</conditions
<oonclusionynull</conclusions
<COEnEersStoner </COrnerstone
<descriptionyroot lewvel default node</descriptions
</ruleNodex
<rulelode>
<idrle/ids
<parent>0</parent>
<trueChild-S</trusecChilds
<falseChildri</falseChilds
<oonditionsxFewver = true</conditions
<oonclusion>
{_13}
<actionrselect</action>
<target>TreatFever«</targets
</ 1=
</oonclusions
<COFrnerstonex

Figure 7.11: Excerpt of Rule Set file Casualty_Treatment.xrs

added later if required (as could any of the other types not yet defined in the rule set).

Referring back to Figure 7.11, notice that the file specifies a Selection rule tree for the Treat task. The second
ruleNode contains a condition “Fever = True” and a conclusion of “TreatFever”. Thus, when the condition
“Fever = True” evaluates to true, the worklet TreatFever is chosen as a substitute for the Treat task. Notice
also that each rule node (except the first) has a parent, and may have two child nodes, a true child and a
false child.

To summarise the hierarchy of a rule set (from the bottom up):

o Rule Node: contains the details (condition, conclusion, id, parent and so on) of one discrete ripple-
down rule.

e Rule Tree: consists of a number of rule nodes in a binary tree structure.

o Tree Set: a set of one or more rule trees. Each tree set is specific to a particular rule type (timeout,
selection, etc.). The tree set of a case-level exception rule type will contain exactly one tree. The tree
set of an item-level rule type will contain one rule tree for each task of the specification that has rules
defined for it (not all tasks in the specification need to have a rule tree defined).

o Rule Set: a set of one or more tree sets representing the entire set of rules defined for a specification.
Each rule set is specific to a particular specification. A rule set will contain one or more tree sets - one

158 CHAPTER 7. THE WORKLET SERVICE

r"-d___-"",
“ _~=1 wcondition

tue ol Tmme

default

™

T® conclusion b
- -

Fever = True

LR

TreatfF ever

: - -

Condition not satisfied Wound = Tree Condition satistied

Treatiound

'

AbdomiralPain = Twe

TreatdbPain

B @

Fractume = Tiue

Fregnrart = Tiue

TreatFracture Treatlabour
Fash = Tiue
TreatRazh I

HegitRate == {20

TreatHighHeartR ate

Figure 7.12: Example Rule Tree (Casualty Treatment spec)

for each rule type for which rules have been defined.

Of course, to maintain a rule set of any complexity by directly editing the XML in a rule set file would be
daunting, to say the least. To make things much easier, a Rules Editor tool has been developed, and can
be found in the rulesEditor folder of the worklet repository. It can be run directly from there - no further
installation is required (depending on the requirements below).

7.5.2 The Rules Editor

The Worklet Rules Editor allows for the addition of new rules to existing rule sets of specifications, and the
creation of new rule sets. It is a .NET based application, so has the following requirements:

7.5. WORKLET RULE SETS AND THE RULES EDITOR

o Operating System: Windows 98SE or later.

159

o The Microsoft .NET framework (any version). If you dont have the framework installed, it can be

downloaded free from Microsoft.

When the Rules Editor is run for the first time, the following dialog shown in Figure 7.13 is displayed.

Rules Editor First Time Configure

L
\l‘) Welcome to the Worklet Rules Editor. Please enter the file paths to the resources listed in the nesxt dialog.

Figure 7.13: Rules Editor First Time Use Message

Clicking OK shows the Configuration dialog (Figure 7.14), where the paths to resources the Rules Editor
uses are to be specified. Some default paths are shown, but can be modified directly or by using the browse

buttons where available. he following paths must be specified:

e Worklet Service URI: the URI to the Worklet Service. The default URI assumes it is installed
locally. If it is remote to the computer running the Rules Editor, then that URI should be entered,

ensuring it ends with “/workletService”.

o Worklet Repository: the path where the worklet repository was installed. The default path shown
assumes the Rules Editor was started from the rulesEditor folder of the repository. If it was started
from another location, specify the actual path to the repository by editing the path or browsing to the

correct location.

« Specification Paths: the path or paths to locations on the local computer where YAWL specification
files may be found. The rules editor will search each of the paths provided for specifications for which

rule sets may be created. Multiple paths can be provided, separated by semicolons ;’

« YAWL Editor: the path and filename for the YAWL Editor.

!

‘;:l. Configure Paths

Wwiarklet Service LRI |htt|:|: Alocalbiost 3080 AwarkletS ervice

Wwiarklet Repasitory: |E:"~Wu:urklets"~repnsitnry

Specification Paths: ||::"«._I,Iaw"'\5pecs;D:"-.bin

L L

L Editor: |C:hypawilheditorsAhwLE ditor! 4. jar

k. | Cancel

Figure 7.14: The Rules Editor Configuration Dialog

160 CHAPTER 7. THE WORKLET SERVICE

Some checks will take place to make sure the paths are valid and you will be asked to correct any that are
not. Once the configuration is complete, the main screen will appear. This screen allows you to view each
node of each rule tree defined for a particular specification. From this screen you can also add new rules to
the current rule set, create new tree sets for an existing rule set, and create entirely new rule sets for new
specifications.

7.5.3 Browsing an Existing Rule Set

To load a rule set into the Rules Editor, click on the File menu, then select Open..., or click on the Open
toolbar button. The File Open Dialog will open with the rules folder of the repository selected. Select the
file you wish to open, and then click OK.

Figure 7.15 shows the main screen with the rule set for the Casualty Treatment specification loaded. On this
screen, you may browse through each node of a rule tree set and view the various parts of each node. The
main features of the screen are explained below.

';ﬁ Worklet Rules Editor <Browse > : Casualty_Treatment g |
Ele Rule Options Help
Toolbar —» B @ -.ajlq @lel
Rule Type: |5 alaction = Task Name: [T eat = | Current
c [_I J - Task Name
urrent
Rule Type RDR Tree 7 Comerstone Case
-] Ruke0 PatientiD = 3457687 ~
= Sex=M [l
& a“h; et DiastalicBP = 80
Height =1.8 9
Fiule 2 Hee?lthIate =72 c N°def‘
. Fule 3 SystolicBP = 120 < Eiasne
Tree View > H:I: 1 Ff;f:e (ks 5 Case Data
i Age =21
Hule 5 Weight = 85
. Rule 9 Fever = tue
Rash = false
Wound = falze -
Mame = Buster Leag []
Selected Node
MNade ID: 1 Parent Node ID: |0
Condition: [Fever = e
Selected Conclusion: 1. select TreatFever
Node's
Details
Description: |hasic worklet for a fever

Figure 7.15: Rules Editor Main Screen

The Toolbar

The toolbar buttons replicate the functions available from the main menu see Figure 7.16.

7.5. WORKLET RULE SETS AND THE RULES EDITOR 161

e iy
L8]]| |e
New Tree Close Tree About Box
or Rule Set Rules File Viewer
Open Rules Add New Config
File Rule Node Form

Figure 7.16: Toolbar

e New Tree or Rule Set: If there is no rules file currently open in the Editor, this button displays
the New Rule form to allow the creation of an entirely new rule set file for a specification (i.e. one that
does not yet have a rule set file defined). If there is a rules file currently open in the Editor, displays
the New Rule form to allow the addition of new tree sets to the opened rule set file (for rule types that
have not yet been defined for that specification). See the Creating a New Rule Set and/or Tree Set
section below for more details.

o Open Rules File: Opens an existing rules file for browsing and/or editing. The title bar shows the
name of the specification associated with the currently loaded rule set.

o Close Rules File: Closes the currently opened rules file. Only one rules file may be open at any one
time.

e Add New Rule Node: Displays the Add Rule form to allow the addition of a new rule node to an
existing tree to refine a worklet selection. See the section below on the Adding a New Rule for more
details.

o Tree Viewer: Displays the Tree Viewer form, which provides the ability to view large trees in full-
screen mode.

o Config Form: Displays the configuration form discussed above.

o About Box: Displays some information about the rules editor (version number, date and so on).

Other Features

e Current Rule Type: This drop-down list displays each rule type that has a tree set defined in the
opened rules file. Selecting a rule type from the list displays in the Tree View an associated rules tree
from the tree set. Works in conjunction with the Task Name drop-down list.

e Current Task Name: This drop-down list displays the name of each task that has a rules tree
associated with it for the rule type selected in the Rule Type list. Selecting a task name will display
the rules tree for that task in the Tree View. This drop-down list is disabled for case level rules types.

e Tree View: This area displays the currently selected rules tree in a graphical tree structure. Selecting a
node in the tree will display the details of that node in the Selected Node and Cornerstone Case panels.
Nodes are colour coded for easier identification:

— Blue nodes represent the root node of the tree

- nodes are true (exception) nodes (i.e. they are on a true branch from their parent node)

— Red nodes are false (else) nodes (i.e. they are on a false branch from their parent node)

o Selected Node: Displays the details of the node currently selected in the Tree View.

162 CHAPTER 7. THE WORKLET SERVICE

o Cornerstone Case: displays the complete set of case data that, in effect, caused the creation of the
currently selected rule (see Adding a new rule below for more details). In Figure 7.15, the Cornerstone
Case data shows that, amongst other things, the variable Fever had a value of true, while the variables
Rash, Wound and Fracture each have value of false.

7.5.4 Adding a New Rule

There are occasions when the worklet returned for a particular case, while the correct choice based on the
current rule set, is an inappropriate choice for the case. For example, if a patient in a Casualty Treatment
case presents with a rash and a heart rate of 190, while the current rule set correctly returns the TreatRash
worklet, it may be desirable to treat the racing heart rate before the rash is attended to. In such a case, as
the Worklet Service begins execution of an instance of the TreatRash process, it is obvious that a new rule
needs to be added to the rule set so that cases that have such data (both now and in the future) will be
handled correctly.

To add a new rule to a particular tree of a rule set, it is first necessary to open the rule set in the Rules
Editor (as described above). Then, click Rules on the top menu, then Add..., or click the Add Rule toolbar
button, to open the (initially blank) Add Rule form.

Notice that the name of the opened rule set is shown in the title bar of the form, and the rule type and task
name that are currently selected on the main form have been transferred to the Add Rule form. Thus, to
add a new rule to a rule tree, that rule tree must first be selected on the main Rules Editor form before the
Add Rule form is opened.

Every time the Worklet Service selects a worklet to execute for a specification instance, a log file is created
that contains certain descriptive data about the worklet selection process. These files are stored in the selected
folder of the worklet repository. The data stored in these files are again in XML format, and the files are
named according to the following format:

CaselD_SpecificationID_Rule Type_ WorkltemID.zws

For example: 12_CasualtyTreatment_Selection_Treat.zws (xws for Xml Worklet Selection). The identifiers in
each part of the filename refer to the parent specification instance, not the worklet case instance. Also, the
WorklItemID identifier will not appear for case-level rule types.

So, to add a new rule after an inappropriate worklet choice, the particular selected log file for the case that
was the catalyst for the rule addition must be located and loaded into the Rules Editor.

From the Add Rule screen, click the Open... button to load the selection information from the relevant
selected log file. The File Open dialog that displays will open in the selected folder of the repository. Select
the appropriate file for the case in question then click OK. Note that the selected file chosen must be for
an instance of the specification that matches the specification rule set loaded on the main screen (in other
words, you cant attempt to add a new rule to a rule set that has no relation to the zws file opened here). If
the specifications dont match, an error message will display.

Figure 7.17 shows the Add Rule form with the selected file 12_Casualty Treatment_Selection_Treat.xws loaded.
The Cornerstone Case panel shows the case data that existed for the creation of the original rule that resulted
in the selection. The Current Case panel shows the case data for the current case - that is, the case that is
the catalyst for the addition of the new rule.

The New Rule Node panel is where the details of the new rule may be added. Notice that the ids of the
parent node and the new node are shown as read only - the Rules Editor takes care of where in the rule tree
the new rule node is to be placed, and whether it is to be added as a true child or false child node.

IMPORTANT: Since we have the case data for the original rule, and the case data for the new rule, to
define a condition for the new rule it is only necessary to determine what it is about the current case that
makes it require the new rule to be added. That is, it is only where the case data items differ that distinguish

7.5. WORKLET RULE SETS AND THE RULES EDITOR 163

one case from the other, and further, only a subset of that differing data is relevant to the reason why the
original selection was inappropriate.

For example, there are many data items that differ between the two case data sets shown in Figure 7.17,
such as PatientID, Name, Sex, Blood Pressure readings, Height, Weight and Age. However, the only differing
data item of relevance here is HeartRate - that is the only data item that, in this case, makes the selection
of the TreatRash worklet inappropriate.

‘;h. Add New Rule: 12_CasualtyTreatment_Selection_Treat E]

Rule Type: |Se|eu:tiu:-n T ask Marne: |Treat
Cornerstone Caze Current Caze
FatientlD = 3457637 . PatientlD = 93769067 |
Sex ="M Sex=F
DiastolicBP = 80 DiastolicBP = 110
Height = 1.8 Height = 1.57
HeartR ate = 72 HeartR ate =190 Cancel
SystolicBP =120 SystolicBP =165
Fracture = falze Fracture = falze
Age = 21 #ge = BB
Weight = 85 Weight = 107
Fewver = tre Fewver = falze
Fazh =falze Fazh = true
Wiound = falze Wiound = falze
Mame = Buster Legg bl Mame = Gammy Ticker |
Mew Rule Mode
Mode ID: 10 Parent Mode ID: |3
Condition: |
Concluzion:
e
Description:

Figure 7.17: Add New Rule Form

Clicking on the line “HeartRate = 190” in the Current Case panel copies that line to the Condition input in
the New Rule Node panel. Thus, a condition for the new rule has been easily created, based on the differing
data attribute and value that has caused the original worklet selection to be invalid for this case.

Note that it is not necessary to define the rule as “Rash = True & HeartRate = 190”, as might first be
expected, since this new rule will be added to the true branch of the TreatRash node. By doing so, it will
only be evaluated if the condition of its parent, “Rash = True”, first evaluates to True. Therefore, any rule
nodes added to the true branch of a parent become exception rules of the parent. In other words, this
particular tree traversal can be interpreted as: “if Rash is True then return TreatRash except if HeartRate

is also 190 then return ???” (where 7?? = whatever worklet we decide to return for this rule - see more
below).

Now, the new rule is fine if, in future cases, a patients heart rate will be exactly 190, but what if it is 191,

164 CHAPTER 7. THE WORKLET SERVICE

or 189, or 2507 Clearly, the rule needs to be amended to capture all cases where the heart rate exceeds a
certain limit; say 175. While selecting data items from the Current Case panel is fast and easy, it is often
the case that the condition needs to be further modified to correctly define the relevant rule. The Condition
input allows direct editing of the condition.

Conditions are expressed as strings of operands and operators of any complexity, and sub-expressions may
be parenthesised. The supported operators are shown in Figure 7.18.

Precedence | Operators Type
1 oy
Arithmetic

2 $ —
’% - > < -a

= >z <= Comparison
4 & Logical AND

' Logical OR

! Logical NOT

Figure 7.18: Operators Supported

All conditions must finally evaluate to a Boolean value (i.e. true or false).

TIP: In addition to conditions expressed in the above mentioned format, conditional expressions may also
take the form of XQuery expressions that evaluate to a boolean value.

To make the condition for the new rule more appropriate, the condition “HeartRate = 190” should be edited
to read “HeartRate > 175”.

After defining a condition for the new rule, the name of the worklet to be executed when this condition
evaluates to true must be entered in the read-only Conclusion field of the New Rule Node panel (refer
Figure 7.17). To select or create an appropriate worklet, click the New... button.

What happens next depends on whether the rule type for the tree you are adding the new rule to is of
Selection type, or one of the exception types. Adding a conclusion for a Selection rule is explained below.
Refer to the Creating a New Rule Set and/or Tree Set section below for details on adding a conclusion for
the exception types.

7.5.5 Adding a Conclusion - Selection Rule Type

For a Selection rule tree, when the New.. button is clicked, a dialog is displayed that comprises a drop-
down list containing the names of all the worklets in the worklets folder of the worklet repository (refer
Figure 7.19). An appropriate worklet for this rule may be chosen from the list, or, if none of the existing
worklets are suitable, a new worklet specification may be created.

Clicking the New... button on this dialog will open the YAWL Editor so that a new worklet specification
can be created. When defining the new worklet, bear in mind that to pass data from the original work item
to the worklet, the names and data types of the variables to be passed must match those of the work item
and be created as net-level variables in the worklet specification. Also, all new worklets must be saved to the
worklets folder of the repository so that the Worklet Service can access it.

TIP: You may choose more than one worklet in this dialog simultaneously by holding down the Ctrl or Alt
keys while clicking the mouse (in the usual Windows way). If you choose several worklets, when this rule is
invoked for a process at runtime all of the worklets chosen will be launched concurrently and the process will
continue only after all the worklets launched have completed.

7.5. WORKLET RULE SETS AND THE RULES EDITOR

";i. Choose Worklet

Wwiarklet:

BobFive

BobFaur

BobOne

BobThree

BobTwo

Bobeern

Cancelrder
CancelShow
CancelTest

Cazualty Treatment
Cazualy Treatment w1
ChangeT oLargeffenue
ChangeT okdidvenue
ChangeT oSmallvenue
PALINT et
OrganiseConcert

Hew. ..

Caricel

Figure 7.19: The Choose Worklet dialog

165

When the new worklet is saved and the YAWL Editor is closed, the name of the newly created worklet will
be displayed and selected in the worklet drop-down list. Click the OK button to confirm the selection and
close the dialog. Figure 7.20 shows the New Rule Node panel after the definition of the example new rule

has been completed. A value in the Description field is optional, but recommended.

MHew Rule Node

MHode [D:
Conditiar:

Conclusian:

Description:

Figure 7.20: The New Rule Node Panel after a New Rule has been Defined

10 Farent Mode 10 |8

|HeartHate » 175

1. zelect TreatHighHeartR ate

Mew...

Thiz worklet iz uzed to treat patients with wvery high heart rates

Once all the fields for the new rule are complete and valid, click the Save button to add the new rule to the

rule tree.

7.5.6 Dynamic Replacement of an Executing Worklet

Remember that the creation of this new rule was triggered by the selection and execution of a worklet that
was deemed an inappropriate choice for the current case. So, when a new rule is added, you are given the

166 CHAPTER 7. THE WORKLET SERVICE

choice of replacing the executing (inappropriate) worklet instance with an instance of the worklet defined in
the new rule.

After the Save button is clicked, a message similar to the Figure 7.21 is shown, providing the option to
replace the executing worklet, using the new rule. The message also lists the specification and case ids of the
original work item, and the name and case id of the running worklet instance.

Replace running worklet?

€ . Dovyouwish ta immediately replace the running worklet case for warkitem *12.3:3_Treat’ using the new rule?
2
Workitem Spec ID: Casualky_Treatment
Workitern Case ID: 12,3
Weorkikern Task ID: Treat
Running Worklet: TreatFewver
Worklet Case IDy 13

Figure 7.21: Message Dialog Offering to Replace the Running Worklet

If the Yes button is clicked, then in addition to adding the new rule to the rule set, the Rules Editor will
contact the Worklet Service and request the change. For this process to succeed, the following must apply:

o Tomcat is currently running and the Worklet Service is correctly installed;
o The Service URI specified in the Rules Editor configuration dialog is valid; and

o The worklet originally chosen is currently running.

A message dialog will be shown soon after with the results of the replacement process sent from the Worklet
Service back to the Rules Editor, similar to Figure 7.22.

If the No button is clicked, then the new rule is simply added to the rule set.
Result of replace request E'

Canceling running worklet case with case id 5 for workiter, . done,
Launching new replacement worklet case based on revised ruleset. . .done.
The warklet '‘TreatHighHeartR.ate' has been launched for warkitem '4,3:3_Treat’ and has case id: &

\i) Locating workikem '4.3:3_Treat' in the set of currently handled workitems. . .Ffound,

Figure 7.22: Result of Replace Request Dialog

Figure 7.23 shows the main Rules Editor screen with the new rule added in the correct place in the tree,
with the current case data becoming the Cornerstone Case for the new rule.

7.5.7 Creating a New Rule Set and/or Tree Set

As mentioned previously, it is not necessary to create tree sets for all of the rule types, nor a rule tree for
an item-level rule type encompassing every task in a specification. So, most typically, rule sets will have

7.5. WORKLET RULE SETS AND THE RULES EDITOR 167

':l. Worklet Rules Editor =Browse > : Casualty_Treatment E]
File Rule Options Help

J|w|g| H[Q =e

Rule Tope: |Sele-:til:un j Task Mame: | 1;2at j
ROR Tree Cornerstone Caze
= D Fule Patientl D' = 93753067 -~
= File 1 Sex=F
0 e g DiastolicBP = 110
g He Height = 1.57
Rule 10 HeartR ate = 130
Rule 2 SystolicBP = 165
Fule 3 'E'racturlnaa; falze
ge =
Fiule 4 Weight = 107
= Flule 5 Fever = falze
D Fule 9 Fazh = true
Wiolnd = falze
Mame = Gammy Ticker bl
Selected Mode

Mode [D: 10 Parent Hode ID: |8

Conditior: |HeartRate » 175

Conclusion: |1, zelect TreatHighHeartR ate

Descrphion: | This warklet iz used to beat patients with very high heart rates

Figure 7.23: Main Screen after Addition of New Rule

rules defined for a few rule types, with some tasks left undefined (remember that any events that don’t have
associated rules for that type of event are simply ignored).

It follows that there will be occasions where you will want to add a new tree set to a rule set for a previously
undefined rule type, or add a new tree for a previously undefined task to an existing tree set. Also, when a
new specification has been created, a corresponding base rule set will also need to be created (if you want to
handle selections and exceptions for the new specification).

For each of these situations, the Rules Editor provides a New Rule form, which allows the definition of new
rule trees (with any number of rule nodes) for existing tree sets (where there is a task of the specification
that has not yet had a tree defined for it within the tree set); the definition of new tree sets for specifications
that have not yet had a tree set defined for a particular rule type; and entirely new rule sets for specifications
that have not yet had a rule set created for them.

The use of the New Rule form varies slightly depending on whether it is working with a new rule set or an
existing rule set. This section will describe the features of the New Rule form for adding a new rule set, and

168 CHAPTER 7. THE WORKLET SERVICE

describe how the process differs for existing rule sets as necessary.
To create a new rule set, click the File menu then select New..., or click the New Rule toolbar button. To
add a new rule set, make sure there is no rule set file currently open in the Editor. If you are creating a new

rule set, a dialog will display asking for the path and file name of the specification for which the rule set is
being created (Figure 7.24).

ox Specification Location g O

Fleaze zelect or enter the path to the specification file that the new rule zet will dezcnbe:

Specification File: C:vwork letshrepositontawaorkletsh T reatFever =mil I

k. Cancel

Figure 7.24: The Specification Location Dialog

";i Worklet Rules Editor: Create Hew Rule Set g =]
i Process [dentifiers Mew Rule Mode
Specification Mame: ITreatFever Mode [D: I‘l Parent Mode 10: ID
. Conditior;
Rule Type: IEaseF’reEnnstraint j I
Conclugion:
Task Mame: ITest_Fever LI
~RDR Tree Hew
= Ruled o
@ Mew True Rule Descriphon:

— Cormerstone Caze Data

Attribute: I

W alue: I

Add - |

— Effective Compasite Rule

Ql Save & Cloze Ldd Tree Add Bule Cancel

Figure 7.25: The Create New Rule Set Screen

Figure 7.25 shows the Create New Rule Set form. The form allows you create a rule set, one rule tree at a

7.5. WORKLET RULE SETS AND THE RULES EDITOR 169

time (for the selected specification, rule type and task name). On this form:

o The Process Identifiers panel is where the names of the specification, rule type and task name for the
new tree are defined. The Specification Name input is read-only - for new rule sets it is the specification
chosen via the Specification Location dialog (Figure 7.24); for existing rule sets it is the specification
for the rule set currently loaded into the Rules Editor. The Rule Type drop-down list contains all of
the available rule types (i.e. all the rule types for which no or incomplete tree sets exist). For new rule
sets, all rule types are available. The Task Name drop-down list contains all the available tasks for the
selected rule type (i.e. tasks for which no tree exists in the tree set for this rule type). The Task Name
list is disabled for case-level rule types.

e The New Rule Node panel is identical to the panel on the Add New Rule form. Here a condition and
optional description can be entered, and the conclusion for the new rule created or selected from the
list (depending on the rule type - see below).

e The Cornerstone Case Data panel allows a set of cornerstone data for the new rule to be defined.
Add a variable name to the Attribute input, and give it a value in the Value input, then click the Add
button to add it to the set of Cornerstone Case data. Usual naming rules apply to the data attributes:
the attribute name must begin with an alpha character or underscore and contain no spaces or special
characters.

e The Effective Composite Rule panel displays a properly indented text equivalent of the composite
condition comprising the conditions of the selected node and all ancestor nodes back to the root node
- in other words, the entire composite condition that must evaluate to true for the conclusion of the
selected node to be returned.

e The RDR Tree panel dynamically displays graphically the new rule tree as it is being created.

New rule nodes can be added wherever there is a node on the tree that does not have a child node on both
its true and false branches (except the root node which can have a true branch only). To identify possible
locations to add a rule node, special ‘potential nodes can be seen in the RDR Tree panel, called “New True
Node” or “New False Node”. These potential nodes are coloured yellow for easy identification.

To add a new rule, select the yellow new rule node where you would like the rule to be added. When you
select a new rule node, the various inputs for the new rule become enabled. Refer to the Adding a New Rule
section above for details of the types of operands and operators you can add as the condition of the new rule.

To add a conclusion to the new rule, click the New... button. If the currently selected rule type is Selection,
a worklet can be added as a conclusion in the way described in the Adding a New Rule section. If it is one
of the exception rule types, the New... button will display the graphical Draw Conclusion dialog, allowing
you to build a sequence of tasks (or primitives) in an exception handling process (explained in detail below).
When the conclusion sequence has been defined and the dialog closed, a text-based version of it will display
in the Conclusion panel.

Once the new rule node has a valid condition and conclusion, and optionally some cornerstone data and a
description, click the Add Rule button to add the rule to the tree. The new node will be displayed at the
selected position on the tree with the relevant coloured node icon indicating whether it is a true or false node
of its parent. New potential node add-points will also be displayed. See Figure 7.26 for an example of a
newly created tree that has several nodes added.

Repeat the add rule procedure for however many rule nodes you wish to add by clicking on the appropriate
yellow node (note that when you click on a node other than yellow, its stored details are displayed in the
various form inputs).

TIPS:

o If the number of nodes starts to get a little confusing, you can check which node is the parent of the
selected node by looking at its id in the Selected Node panel.

170 CHAPTER 7. THE WORKLET SERVICE

--[] Rulez

D Mew True Rule
-] Fule3

D Mew True Rule
-l Fuled

-] Pule5
D Mew True Rule

D Mew Falze Rule

Mew Falze Rule
[:l Mew Falze Rule

Figure 7.26: Creating a New Rule Tree

o If you start to add details for a new node then change your mind about adding it, simply click on any
other node (rather than clicking on the Add Rule button) - doing that will immediately discard any
input data values. Don’t click Cancel - that closes the entire form without saving anything (see below).

When you are done adding nodes, click the Add Tree button to add the tree you have just created to the
tree set selected (via the selected Rule Type and Task Name lists).

IMPORTANT: Once you have added the newly created tree to the selected tree set using the Add Tree
button, you will no longer be able to add nodes to the tree via the New Rule Set form. This is to protect the
integrity of the rule set. Since each subsequent rule will be added because of an exceptional case or where
the selected worklet does not fit the context of a case, the preferred method is to create the base rule set
and then add rules as they become necessary via the Add Rule form as described earlier. In this way, added
rules are based on real case data and so are guaranteed to be valid. In a similar vein, there is no option
to modify or delete a rule node within a tree once the tree has been added to the rule set, since to allow it
would destroy the integrity of the rule set, because the validity of child rule nodes depend on the conditions
of their parents.

When a tree is added to the tree set:

o If it is a case-level tree, the rule type that the tree represents will be removed from the Rule Type list.
That is, the rule type now has a tree defined for it and so is no longer available for selection on the
New Rule form.

o If it is an item-level tree, the task name that the tree represents will be removed from the Task Name
list. That is, the task now has a rule tree defined for it (for the selected rule type) and so is no longer
available.

o If it is an item-level tree, and all tasks now have trees defined for them for the selected rule type (i.e.
this was the final task of the specification for which a tree has been defined), the rule type that the tree
represents will be removed from the Rule Type list.

This approach ensures that rule trees can only be added where there are currently no trees defined for the
selected specification.

Once the tree is added, the form resets to allow the addition of another new tree as required, by repeating
the process above for a new rule type (or rule type/task name for item-level trees).

7.5. WORKLET RULE SETS AND THE RULES EDITOR 171

After you have completed adding trees, click the Save € Close button to save all the additions to the rule
set file. The Rules Editor will return to the main form where the additional trees will immediately be able
to be browsed.

IMPORTANT: No additions will be actually saved until the Save & Close button is clicked - this is to
allow you the option to discard all additions, if you wish, by clicking the Cancel button. That is, cancelling
returns to the main Editor form and discards ALL additions for the session; Save & Close returns to the
main form and saves all additions.

7.5.8 Drawing a Conclusion Sequence

As mentioned in the Adding a New Rule section, adding a conclusion to a Selection rule is simply a matter
of choosing a worklet from the list or creating a new worklet in the YAWL editor. However, when adding a
conclusion for a rule type other than Selection (i.e. an exception rule type), an exception handling sequence
needs to be defined that will manage the handling process invoked by the rule. The earlier section on the
Exception Service detailed the various actions that make up the available set of exception handling ‘primitives
or tasks that may be sequenced to form an entire handling process.

The Draw Conclusion dialog makes the process of defining an exception handling sequence easier by allowing
you to create the sequence graphically. Simply select the appropriate primitive from the toolbox on the left,
and then click on the drawing canvas to place the selected primitive. Figure 7.27 shows an example of the
Draw Conclusion dialog.

Toolbox Canvas

‘;i Worklet Rules Editor: <New Conclusion> E]@

B

» L] L)) w

Primitives

—t | [*==)=)

sm\\ [Br] cea | coca /
[N\ /

Select Arc Start End
Tool Tool Node Node

Figure 7.27: The Draw Conclusion Dialog

Use the Arc Tool to define the sequence order. First, select the Arc Tool in the toolbox, then click and hold
on the first node, drag the mouse pointer until it is over the next node in the sequence, then release the
mouse. For a conclusion to be valid (and thus allowed to be saved) there must be a direct, unbroken path
from the start node to the end node (the start and end nodes are always displayed on the canvas). Also,
the conclusion will be considered invalid if there are any nodes on the canvas that are not attached to the
sequence when Save is attempted.

172 CHAPTER 7. THE WORKLET SERVICE

Use the Select Tool to move placed primitives around the canvas. First, select the Select Tool in the toolbox,
then click and drag a primitive to a new location.

The Align button will immediately align the nodes horizontally and equidistantly between the start and end
nodes (as in Figure 7.27).

The Clear button will remove all added nodes to allow a restart of the drawing process.

The Cancel button discards all work and returns to the previous form.

The Save button will save the conclusion and return to the previous form (as long as the sequence is valid).
To delete a primitive from the canvas, right click on the primitive and select Delete from the popup menu.

The Compensate primitive will, when invoked at runtime, execute a worklet as a compensation process as
part of the handling process. To specify which worklet to run for this sequence, right click on the Compensate
primitive and select Define Worklet from the popup menu. The Choose Worklet dialog will appear (identically
to the Selection conclusion process) allowing the selection of an existing worklet or the definition of a new
worklet to run as a compensatory process. Select the appropriate worklet to add it to the compensatory
primitive. Note that a sequence will be considered invalid if it contains a Compensate primitive for which a
worklet has not yet been defined.

The primitives SuspendAllCases, RemoveAllCases and ContinueAllCases may be limited to ancestor cases
only by right-clicking on primitives of those kinds and selecting Ancestor Cases Only from the popup menu.
Ancestor hierarchies occur where a worklet is invoked for a case, which in turn invokes a worklet, and so on.
When a primitive is limited to ancestor cases, it applies the primitives action to all cases in the hierarchy
from the current case back to the original parent case, rather than all running cases of the specification.

IMPORTANT: No validation is done for the defined sequence, besides that described above. It is up to
the designer of the sequence to ensure it makes sense (for example, that it doesnt try to continue a case it
has previously removed).

When a valid sequence is saved, you will be returned to the previous form (i.e. either the Add Rule or
New Rule form depending on where you are in the Editor). The conclusion will be displayed textually as a
sequential list of tasks (Figure 7.28, for example).

Concluzian: [1 suzpend workitemn

2 run worklet SendReminder
3. continue warkitem

Figure 7.28: A Conclusion Sequence shown as Text (detail)

7.6 Walkthrough - Using the Worklet Service

The worklet repository that comes with the Worklet Service release contains a number of example specifi-
cations with worklet-enabled tasks, each with an associated rule set and a number of associated worklets.
This section will step through the execution of several of these examples. The first two examples feature
the Selection Service; the remainder the Exception Service. Knowledge of how to use the YAWL system is
assumed. Before we begin, make sure the Worklet Service is correctly installed and operational, and then log
into the YAWL system.

7.6. WALKTHROUGH - USING THE WORKLET SERVICE 173

A. Selection: Worklet-Enabled Atomic Task Example

The Casualty Treatment specification used in the previous sections of this manual is an example of a speci-
fication that contains an atomic task (called Treat) that is worklet selection-enabled. We’ll run a complete
instance of the example specification to see how worklet selection operates.

Log on to YAWL with a user that has administrator or ‘can manage cases’ privileges. Navigate to the Case
Mgt page and upload the Casualty Treatment specification from the worklets folder of the worklet repository.
Then, launch a Casualty Treatment case from the same page.

The case begins by requesting a patient id and name - just enter some data into each field then click Submit
(Figure 7.29).

Starting an Instance of:
Casualty_Treatment

Casualty Treatment

PatientlD: 123456

Name: [lva Payne]|
Cancel Start

Figure 7.29: Launching a Casualty Treatment Case (detail)

Go to the Work Queues page, and the first task in the case (Admit) will be listed as an offered workitem.
Make a note of the case number. Accept & Start the Admit workitem.

The Admit workitem simulates an admission to the Casualty department of a hospital, where various initial
checks are made of the patient. You'll see that, in addition to the patient name and id specified when the
case started, there are a number of fields containing some medical data about the patient. Each field has
some default data (to save time), but you may edit any fields as you wish (Figure 7.30). When done, click
the Complete button.

Go back to the Work Queues page and start the next workitem, Triage. The Triage task simulates that part
of the process where a medical practitioner asks a patient to nominate their symptoms. You’ll see that the
patient’s name and id have again been displayed for identification purposes, in addition to five fields which
approximate the medical problem. One field should be set to True, the others to False.

Lets assume the patient has a fever. Set the Fever field to True, the rest to False, and then click the Complete
button (Figure 7.31).

There is nothing special about the first two tasks in the process; they are standard YAWL tasks and operate
as expected. However, the next task, Treat, has been associated (using the YAWL Editor) with the Worklet
Service. The Treat task simulates that part of the process that follows the collection of patient data and
actually treats the patient’s problem.

Of course, there are many medical problems a patient may present with, and so there are just as many
treatments, and some treatment methods are vastly different to others. In a typical workflow process, this
is the part of the process where things could get very complicated, particularly if we tried to build every
possible treatment as a conditional branch into the process model.

The Worklet Service greatly simplifies this problem, by providing an extensible repertoire of discrete workflow

174 CHAPTER 7. THE WORKLET SERVICE

Edit Work Item: 1.1

Admit
Weight: | 85|
DiastolicBP: |80
Sex: M
Height: [1.8
HeartRate: |72
SystolicBP: [120
Age: |21
PatientiD: | 123456
Name: | Iva Payne
Cancel Save Complete

Figure 7.30: Editing the Admit Workitem (detail)

processes (worklets) which, in this example, each handle the treatment of a particular medical problem. By
examining the case data collected in the earlier tasks, the Worklet Service can launch, as a separate case, the
particular treatment process for each case.

This method allows for a simple expression of the task in the ‘parent’ process (i.e. a single atomic Treat task
signifies the treatment of a patient, whatever the eventual treatment process may be) as well as the ability to
add to the repertoire of worklets at any time as new treatments become available, without having to modify
the original process.

When the Triage workitem is submitted, the next task in the process, Treat, becomes enabled. Because it is
worklet-enabled, the Worklet Service is notified. The Service checks to see if there is a set of rules associated
with this workitem, and if so the service checks out the workitem.

When this occurs, the YAWL Engine marks the workitem as executing (externally to the Engine) and waits for
the workitem to be checked back in. In the meantime, the Worklet Service uploads the relevant specification
for the worklet chosen as a substitute for the workitem and launches a new case for the specification. When
the worklet case completes, the Worklet Service is notified of the cases completion, and the service then
checks the original workitem back into the Engine, allowing the original process to continue.

We have completed editing the Triage workitem and clicked the Complete button. Go to the Work Queues
page. Instead of seeing the next workitem listed (i.e. Treat), we see that Test Fever, the first workitem in
the TreatFever process, is listed in its place (Figure 7.32). The TreatFever process has been chosen by the
Worklet Service to replace the Treat workitem based on the data passed to the service.

Note that the case id for the Test Fever workitem is different to the case id of the parent process. Worklets

7.6. WALKTHROUGH - USING THE WORKLET SERVICE 175

Edit Work ltem: 1.2

Triage

Fever:

Rash: []

Wound: []

AbdominalPain: []

Fracture: []

PatientiD: | 123456

Name: | Iva Payne

Cancel Save Complete

Figure 7.31: Editing the Triage Workitem (detail)

Offered (1) | Allocated (0) | Started (0) | Suspended (0) ‘ ‘ffwg
Work Items Specification Task Accept Offer
2:3_Test_Fever | TreatFever | Test Fever
Accept & Start

co

[2 | Enabled

Created Age

| Jul:02, 2008 13:04:10 | 0:00:00:04

Figure 7.32: New Case Launched by the Worklet Service

run as completely different cases to the parent process, but the Worklet Service keeps track of which worklets
are running for which parent cases. Go to the Case Mgt page to see that a Casualty Treatment case is still
running, and that the TreatFever specification has been loaded and it also has a case running (Figure 7.33).

Go back to the Work Queues page and start the Test Fever workitem. The Test Fever workitem has mapped
the patient name and id values, and the particular symptom - fever - from the Treat workitem checked out
by the Worklet Service. In addition, it has a Notes field where a medical practitioner can enter observations

176 CHAPTER 7. THE WORKLET SERVICE

about the patient’s condition (Figure 7.34). Enter some information into the Notes field, and then complete
it.

Loaded Specifications

A simple medical treatment process designed to test and
Casualty_Treatment 0.1 demonstrate the Worklet Dynamic Process Selection Service
within the YAWL engine.
TreatFever 0.1 Worklet to treat a fever
Launch Case Unload Spec
Running Cases %

1: Casualty_Treatment (0.1)
2: TreatFever (0.1)

Cancel Case

Figure 7.33: TreatFever Specification Uploaded and Launched

Start the next workitem, Treat Fever, and then edit it. This workitem has two additional fields, Treatment
and Pharmacy, where details about how to treat the condition can be entered (Figure 7.35). Enter some
data here, and then complete it.

When the Treat Fever workitem is submitted, the worklet case is completed. The Worklet Service maps
the output data from the worklet case to the matching variables of the original Treat workitem, then checks
that workitem back in, effectively completing it and allowing the next workitem in the Casualty Treatment
process, Discharge, to execute.

Go to the Work Queues page, and you’ll see that the Discharge workitem is available (Figure 7.36). Edit it
to see that the data collected by the TreatFever worklet has been mapped back to this workitem. Submit it
to complete the case.

B. Selection: Worklet-Enabled Multiple Instance Atomic Task Example

This walkthrough takes the List Maker example from the YAWL Editor User Manual and worklet-enables
the Verify List task to show how multiple instance atomic tasks are handled by the Worklet Selection Service.

7.6. WALKTHROUGH - USING THE WORKLET SERVICE 177

Edit Work Item: 2.1

il |t LCozpioe)

Figure 7.34: Test Fever Workitem (detail)

Edit Work Item: 2.2

bitten by spider

Figure 7.35: Treat Fever Workitem (detail)

The specification is called wListMaker. The only change made to the original List Maker specification was
to associate the Verify List task with the Worklet Service using the YAWL Editor. Figure 7.37 shows the
specification.

Go to the Case Mgt page and upload the wListMaker specification from the worklets folder of the worklet
repository. Then, launch an instance of wListMaker.

When the case begins, enter three values for the Bob variable, as shown in Figure 7.38 - you will have to
click the add (+) button twice to get three input fields. Make sure you enter the values “one”, “two” and
“three” (without the quotes and in any order). Complete the form.

178 CHAPTER 7. THE WORKLET SERVICE

Edit Work ltem: 1.4

Discharge
Motes: bitten by spider
PatientiD: | 123456
Pharmacy: | aspirin - twice a day
Name: | va Payne
Treatment: | anti-venene
Cancel Save Complete

Figure 7.36: Discharge Workitem with Data Mapped from TreatFever Worklet

@ List_Maker]

L e

Create_list_items WVerify_list Show_list

Figure 7.37: The wListMaker Specification

Start and edit the Create List Items workitem. Since the values have already been entered there is no more
to do here, so click the Complete button to continue.

The next task is Verify List, which has been associated with the Worklet Service. Since this task is a multiple-
instance atomic task, three child workitem instances of the task are created, one for each of the Bob values
entered previously. The Worklet Service will determine that it is a multiple instance atomic task and will
treat each child workitem instance separately, and will launch the appropriate worklet for each based on the
data contained in each. Since the data in each child instance is different in this example, the Worklet Service
starts three different worklets, called BobOne, BobTwo and BobThree. Each of these worklets contains only
one task.

Go to the Work Queues page. There are three workitems listed, each one the first workitem of a separate
case (see Figure 7.39).

Go to the Case Mgt page to see that the BobOne, BobTwo and BobThree specifications have been uploaded
and launched by the Worklet Service as separate cases (Figure 7.40 - note the case numbers).

Go back to the Work Queues page and check out all three workitems. Edit each of the Get_Bob workitems,
and modify the values as you wish - for this walkthrough, we’ll change the values to “one - five”, “two - six”

7.6. WALKTHROUGH - USING THE WORKLET SERVICE 179

Starting an Instance of: wListMaker

List Maker
MasterList

| - | +
bob: ane

| - | +
bob: two

| - | +
bob: threg|

Cancel Start

Figure 7.38: Start of wListMaker Case with Three ‘Bob’ Values Entered (detail)

Offered (3) ‘ Allocated (0) ‘ Started (0) | Suspended (0) ‘ %

Work Items Specification Task Accept Offer
4:2_Get_Bob_One | BobOne [Get Bob One
5§:2_Get_Bob_Three Accept & Start
B6:2_Get_Bob_Two

Case Status Chain

| 4 | Enabled

Created Age

[Jul:02, 2009 13:14:32 [0:00:00:01

Figure 7.39: Workitems from each of the three Launched Worklet Cases

and “three - seven” respectively.

As you edit and complete each Get_Bob workitem, the corresponding Verify List workitem from the parent
instance is automatically checked in to the Engine by the Worklet Service. Since the Bob worklets contains
only one task, editing and completing this workitem also completes the worklet case.

180 CHAPTER 7. THE WORKLET SERVICE

Loaded Specifications

BobOne 0.1 Worklet to enact when bob is one

BobThree 0.1 Waorklet to enact when bob is three

BobTwo 0.1 Worklet to enact when bob is two

wlistMaker 0.1 A process to demonstrate how worklets handle a multiple task

Launch Case Unload Spec

Running Cases %

3: wlistMaker (0.1)
4: BobOne (0.1)

5: BobThree (0.1)
6: BobTwo (0.1)

Cancel Case

Figure 7.40: ‘Bob’ Specifications Loaded and Launched by the Worklet Service

After the third workitem has been edited and completed, and so the third Verify List workitem is checked
back into the Engine by the Worklet Service, the Engine determines that all the child items of the Verify
List workitem has completed and so the original process continues to its final workitem, Show List.

Start and edit the Show List workitem to show the changes made in each of the Get_Bob worklets have been
mapped back to the original case (Figure 7.41).

C. Exception: Constraints Example

This walkthrough uses a specification called OrganiseConcert to demonstrate a few features of the Worklet
Exception Service. The OrganiseConcert specification is a very simple process modelling the planning and
execution of a rock concert. Figure 7.42 shows the specification as it appears in the YAWL Editor.

First, ensure the Exception Service is enabled (see Section 7.1.3 for details). Navigate to the YAWL Case
Mgt page and upload the OrganiseConcert specification from the worklets folder of the worklet repository.
Then, launch an OrganiseConcert case.

As soon as the Engine launches the case, it notifies the Exception Service via a PreCaseConstraint event. If
the rule set for OrganiseConcert contains a rule tree for pre-case constraints, that tree will be queried using
the initial case data to determine whether there are any pre-constraints not met by the case. In this example,

7.6. WALKTHROUGH - USING THE WORKLET SERVICE 181

Edit Work Item: 3.5

Show list
UserList
L-]+]
bob: one - fivel
-1+
bob: three - seven
L-]+]
bob: two - six
Cancel Save Complete

Figure 7.41: The Show List Workitem Showing the Changes to the Data Values

f (») OrganiseConcert }

®——D——P——P45®

BookStadium SellTickets DoShow

Figure 7.42: The OrganiseConcert Specification

there are no pre-case constraint rules defined, so the notification is simply ignored.

Tip: To follow what is happening, watch the log output in the Tomcat command window (or the contents of
the log file catalina.out in Tomcat’s logs folder - both the exception and selection services log all interactions
between themselves and the Engine to the Tomcat window and to a log file (found in the logs folder of your
Tomcat installation). See Appendix 7.8 of this manual for a sample log output for this walkthrough.

Pre-case constraints can be used, amongst other things, to ensure case data is valid or within certain ranges
before the case proceeds; can be used to run compensatory worklets to correct any invalid data; or may even
be used to cancel the case as soon as it starts (in certain circumstances). As a trivial example of the last
point, launch an instance of the Casualty Treatment specification discussed in Walkthrough A, and enter
“smith” for the patient name when the case starts. The Casualty Treatment rule set contains a pre-case

182 CHAPTER 7. THE WORKLET SERVICE

constraint rule to cancel the case if the patient’s name is “smith” (presumably smith is a hypochondriac!).
This also serves as an example of exception rules and selection rules being defined within the same rule set.

Directly following the pre-case event, the Engine notifies the Service of a PreltemConstraint for the first
workitem in the case (in this case, Book Stadium). The pre-item constraint event occurs immediately the
workitem becomes enabled (i.e. ready to be checked out or executed). Like pre-case constraint rules, pre-item
rules can be used to ensure workitems have valid data before they are executed. The entire set of case data
is made available to the Exception Service - thus the values of any case variables may be queried in the
ripple-down rules for any exception type rule. While there are pre-item constraint rule trees defined in the
rule set, there are none for the Book Stadium task, so this event is also ignored by the service.

The Book Stadium workitem may be started in the normal fashion. This workitem captures the seating
capacity, cost and location of the proposed rock concert. These may be changed to any valid values, but for
the purposes of this example, just accept the default values as given (Figure 7.43).

Edit Work Item: 8.1

BookStadium
VenueCost: | 100000.00
Seating: | 25000
VenueName: ANZ Stadium
Cancel Save Complete

Figure 7.43: The Book Stadium Workitem (detail)

When the workitem is submitted, a PostltemConstraint event is generated for it by the Engine. There are no
post-item constraint rules for this workitem, so again the event is just ignored. Then, a pre-item constraint
notification is received for the next workitem (Sell Tickets). This workitem records the number of tickets
sold, and the price of each ticket. Enter a price of $100 per ticket, and 12600 as the number of tickets sold,
and then complete the workitem (Figure 7.44).

Notice that the entered number of tickets sold (12600) is slightly more than 50% of the venue’s seating
capacity (25000). The next workitem, Do Show, does have a pre-item constraint rule tree, and so when it
becomes enabled, the rule tree is queried. The effective composite rule for Do Shows pre-item tree (as viewed
in the Rules Editor), is:

In other words, when Do Show is enabled and the value of the case data attribute “TicketsSold” is less than
75% of the seating capacity of the venue, we would like to suspend the workitem, run the compensatory worklet
ChangeToMidVenue, and then, once the worklet has completed, continue (or unsuspend) the workitem.
Following the logic of the ripple-down rule, if the tickets sold are also less than 50% of the capacity, then
we want instead to suspend the workitem, run the ChangeToSmallVenue worklet, and then unsuspend the
workitem. Finally, if there has been less than 20% of the tickets sold, we want instead to suspend the entire
case, run a worklet to cancel the show, and then remove (i.e. cancel) the case.

In this example, the first rule’s condition evaluates to true, for a “Tickets Sold” value of 12600 and a seating
capacity of 25000, so the child rule node on the true branch of the parent is tested. Since this child node’s
condition evaluates to false for the case data, the rule evaluation is complete and the last true node returns
its conclusion.

7.6. WALKTHROUGH - USING THE WORKLET SERVICE 183

Edit Work Item: 8.2

SellTickets
TicketCost: | 100
TicketsSold: | 12600
Cancel Save Complete

Figure 7.44: The Sell Tickets Workitem (detail)

Effective Compozite Rule

if TicketzSold < [Seating * 0.75] then sugpend warkitem; run worklet ChangeT obidvenue; continue workitem
except if TicketzSald < [Seating ® 0.5] then suzpend workiter; win worklet ChangeT oSmallfenue; continue workitem
except if TicketsSaold < [Seating * 0.2] then suzpend case; run worklet CancelShow; remove case

Figure 7.45: Effective Composite Rule for Do Shows Pre-Item Constraint Tree

The result of all this can be seen in the Work Queues screen of the worklist. The Do Show workitem is
marked as “Suspended” and thus is unable to be selected for starting; while the Change ToMidVenue worklet
has been launched and its first workitem, Cancel Stadium, is enabled and may be started.

By viewing the log file, you will see that the ChangeToMidVenue worklet is being treated by the Exception
Service as just another case, and so receives notifications from the Engine for pre-case and pre-item constraint
events also.

Start Cancel Stadium, accept the default values, and complete. Notice that the worklet has mapped the
data attributes and values from the parent case. Next, start the Book Ent Centre workitem - by default, it
contains the data values mapped from the parent case. Since we are moving the concert to a smaller venue,
change the values to match those in Figure 7.46, then complete the workitem.

The third workitem in the worklet, Tell Punters, is designed for the marketing department to advise fans
and existing ticket holders of the change in venue.

Start the workitem. Notice that the values here are read-only (since this item is meant to be a notification
only, the person assigned does not need to change any values). This is the last workitem in the worklet, so
when that is completed, the engine completes the case and notifies the Exception Service of the completion,
at which time the service completes the third and final part of the exception handling process, i.e. continuing
or unsuspending the Do Show workitem so that the parent case can continue.

Back at the Work Queues page, the Do Show workitem is now shown as enabled and thus is able to be
started. Check it out now and notice that the data values entered in the worklet’s Book Ent Centre workitem
have been mapped back to the parent case.

D. Exception: External Trigger Example

It has been stated that every case instance involves some deviation from the standard process model. Some-
times, events occur completely removed from the actual process model itself, but affect the way the process

184 CHAPTER 7. THE WORKLET SERVICE

Edit Work Item: 9.2

Book Ent Centre
VenueCost: 50000.00
Seating: 15000
VenueName: [Ent Centre)]
Cancel Save Complete

Figure 7.46: The Book Ent Centre Workitem (detail)

instance proceeds. Typically, these kinds of events are handled “off-system” so there is no record of them, or
the way they were handled, kept for future executions of the process specification.

The Worklet Exception Service allows for such events to be handled on-system by providing a means for
exceptions to be raised by users externally to the process itself. The Organise Concert specification will
again be used to illustrate how external triggers work.

Go to the Case Mgt page and launch another instance of the Organise Concert specification. Execute and
submit the first workitem.

If the Worklet Exception Service has been correctly enabled in the Resource Service, two extra buttons will
appear on the Case Mgt page: Raise Exception and Reject Worklet?. To raise a case-level external exception,
go to the Case Mgt screen, and select the Organise Concert case from the list of running cases, then click
the Raise Exception button (Figure 7.47).

The Raise Case Level Exception screen is now displayed. This screen is a member of a set of Worklet Service
add-in screens for the worklist. Before this screen is displayed, the Exception Service retrieves from the rule
set for the selected case the list of existing external exception triggers (if any) for the cases specification. See
Figure 7.48 for the list of case-level external triggers defined for the Organise Concert specification.

This list contains all of the external triggers either conceived when the specification was first designed or
added later as new kinds of exceptional events occurred and were added to the rule set. Notice that at the
bottom of the list, the option to add a New External Exception is provided - that option is explained in
detail in Walkthrough F.

For this example, lets assume the band has requested some refreshments for backstage. Select that exception
trigger and submit the form. When that exception is selected, the conclusion for that trigger’s rule is invoked
by the service as an exception handling process for the current case. Go to the Work Queues form where it
can be seen that the parent case has been suspended and the first workitem of the compensatory worklet,
Organise Refreshments, has been enabled (Figure 7.49).

Organise Refreshments informs the staff member responsible to buy a certain number of bags of M & Ms
(first workitem), then to remove all the candies except those of a specified colour, before delivering them to
the venue (mapped in from the parent case). Once the worklet has completed, the parent case is continued.

Item-level external exceptions can be raised from the Work Queue page by selecting the relevant workitem

2If the two buttons don’t appear, the exception service has not been correctly enabled for the Resource Service; review the
installation section at the beginning of this chapter for details on how to enable the service.

7.6. WALKTHROUGH - USING THE WORKLET SERVICE 185

Loaded Specifications
ChangeToMidVenue 0.1 Action taken if ticket sales less than expected
OrganiseConcert 0.1 Example used to test workletService Exception Handling
Launch Case Unload Spec
Running Cases %
8: OrganiseConcert (0.1)
9: ChangeToMidVenue (0.1)
Cancel Case Raise Exception Reject Worklet Worklet Admin

Figure 7.47: Case Mgt Screen, OrganiseConcert case running

from the list, then clicking the Raise Ezception button at the top-right toolbar (the green ‘forked arrow’
within the tabbed area — see Figure 7.49). You will be taken to the Raise Item Level Exception screen where
the procedure is identical to that described for case-level exceptions, except that the item-level external
exception triggers, if any, will be displayed.

External exceptions can be raised at any time during the execution of a case - the way they are handled may
depend on how far the process has progressed (via the defining of appropriate rule tree or trees).

E. Exception: Timeout Example

When a workitem has an associated timer that times out (expires), the Engine notifies the Exception Service
and informs it of all the workitems running in parallel with the timed out item. Thus, rule trees can be
defined to handle timeout events for all affected workitems (including the timed out item itself).

The specification TimeoutTest3 gives an simple example of how a timeout exception may be handled (Fig-
ure 7.50). Upload the specification via the Case Mgt screen, and then launch the case.

The first workitem, Fill Order, simulates a basic purchase order for a bike. Check out the Fill Order workitem,
accept the default values, and submit it. Once the order has been filled, the process waits for payment to
be received for the order, before it is archived. The Receive Payment task has an associated timer, and so
waits for some specified time to receive payment. For the purposes of this example, the wait time is set to 5
seconds (Figure 7.51).

186

ene Worklet Service : Raise Case-Level External Exception

CHAPTER 7. THE WORKLET SERVICE

s N asE

Q http://localhest:8080 fworkletService /caseException?caselD=22

www.yawlfoundation.org

Select the type of exception that has occurred:

() Support Act Breakup
Singer Tired and Emaotional
) Guitarist Refused Visa

) Band Broken Up

O

Ticket Sales Better than Expected
() Band Reguests Backstage Refreshments

() New External Exception...

Raise Case-Level Exception

Case ID Specification ID

22 OrganiseConcert

C)I
@"| JJ- Coogle Qi(@

the World in Process Innovation

YAWL is distributed under the LGPL 3
Done th 7
Figure 7.48: Raise Case-Level Exception Screen (Organise Concert example)
Offered (2) | Allocated (0) | Started (0) | Suspended (0) ‘ b ®
Work Items Specification Task Accept Offer
22:BookStadium_5 | OrganiseConcert [BookStadium
23:Buy_M_and_Ms_5 Accept & Start
e s
[22 [Suspended
Created Age
[Jul:10, 2009 12:51:04 [0:00:03:21
i
i

Figure 7.49: Available Work Items after External Exception Raised

While the deadline is reached, the Engine notifies the Exception Service of the timeout event. The timeout
tree set is queried for the Receive Payment workitem. There is a tree defined for the Receive Payment task

with a single rule (see Figure 7.52).
Notice the rules condition: isNotCompleted(this):

e isNotCompleted is an example of a defined function that may be used as (or as part of) conditional

expressions in rule nodes.

7.6. WALKTHROUGH - USING THE WORKLET SERVICE 187

{ @ Timer Example }

»— - A
Fill Order Receive Archive
Payment

Figure 7.50: The Timeout Test 3 Specification

8ene Set Timer Detail for Atomic Task "Receive Payment"

E Task is required to timeout

Timeout: () dynamically via net variable :
- i 10/07/2009 m 13 (3 oo (3 39 (3

% after a duration of PT5S
e =

- e

Timer begins: () upon work item enablement
%) upon work item starting

Done Cancel

A
T —

Figure 7.51: The Set Timer Detail dialog for the Receive Payment task

o this is a special variable created by the Worklet Service that refers to the workitem that the rule is
defined for and contains, amongst other things, all of the workitem’s data attributes and values.

Tip: The Worklet Service provides developers with an easily extendible class where functions can be defined
and then used in conditions. See Appendix 7.7 for more information about defining functions.

In this case, the condition tests if the workitem Receive_Payment has not yet completed (i.e. if it has a status
of Fired, Enabled, Executing or Suspended). If it hasn’t completed (thus payment for the order has not yet
been received) then the conclusion will be executed as an exception handling process, including the launching
of the worklet SendReminder.

The SendReminder worklet consists of two tasks: Send Request, and timer-enabled Receive Reply — again,
for the purposes of the example, this task waits for 5 seconds before timing out. When the task times out,
the Exception Service is notified. There is a single timeout rule for the Receive Reply task - its condition is
again isNotCompleted(this) but this time, the rules conclusion looks like this:

File Cancellation is the first task of the Cancel Order worklet. What we now have is a hierarchy of worklets:
case (TimeoutTest3) is suspended pending completion of worklet case (Send Reminder) which itself is sus-
pended pending completion of worklet case (Cancel Order). Worklets can invoke child worklets to any depth.
Notice the third part of the handling process: “remove ancestorCases”. Ancestor Cases are all cases from

188 CHAPTER 7. THE WORKLET SERVICE

‘;i. Worklet Rules Editor <Browse = : TimeoutTest3 E]
File Rule Options Help

J[w|9| H[Q| = e

Flule Type: |Timel:lut ﬂ Task Mame: [peceive Papment ﬂ
ROR Tree Cornerstone Caze
=] Puled Cost = 200
B Bule 1 Paid = Falze
Selected Hode

Hode D 1 Parent Mode ID: (0

Condtion: [isMotCompletedithis]

Conclusion: |1, suzpend warkitem

2. run worklet SendR eminder
3. complete warkiterm

Description:

Mo payment received after timeout

Figure 7.52: Rules Editor Showing Single Timeout Rule for Receive_Payment Task

Condition: |i3NntEnmpIeted[thi3]

Concluzion: |1, suspend case

2. un worklet CancelQrder
3. remove ancestorCases

Figure 7.53: Rule detail for Receive Reply

the current worklet case back up the hierarchy to the original parent case that began the exception chain
(as opposed to “allCases” which refers to all currently executing cases of the same specification as the case

which generates the exception). So, when the Cancel Order worklet completes, the Send Reminder case and
the original parent Timeout Test 8 are both cancelled by the Exception Service.

7.6. WALKTHROUGH - USING THE WORKLET SERVICE 189

F. Rejecting a Worklet and/or Raising a New External Exception

The processes involved in rejecting a worklet (launched either as a result of the Selection or the Exception
Service) and raising a new external exception (that is, an external exception which has not yet been defined
- formally an unexpected exception) are virtually identical and so are discussed together in this section.

When the Worklet Service launches a worklet, it selects the most appropriate one based on the current case
context and the current rule set for the parent case. As discussed previously in this chapter, there may be
occasions where the selected worklet does not best handle the current case’s context (perhaps because of a
new business rule or a more efficient method of achieving the goal of a task being found). In any event, a
worker may choose to reject the worklet that was selected.

IMPORTANT: The rejection of a selected worklet is a legitimate and expected occurrence. Each rejection
allows for the addition of a new exception rule (or a rule on the true branch of its parent) thus creating a
‘learning’ system where all events are handled online. When the new rule is added as a result of the rejection,
it will return the correct worklet for every subsequent case that has a similar context. Thus, rejecting a
worklet actually refines the rule set for a specification.

To reject a selected worklet, go to the Case Mgt screen and select in the list of running cases the worklet
you wish to reject. Then, click the Reject Worklet button (see Figure 7.47). You will be redirected to the
Reject Worklet Selection screen, another Worklet Service add-in screen (Figure 7.54). This screen displays
the Specification and Case ID for the selected worklet. Enter a proposed title (or name) for the new worklet
and an explanation of reason for the rejection (in plain text), and then submit the form.

en0e Worklet Service : Reject Worklet Selection =
ﬁ @ 3 @ ® ﬁ ﬁ E http:/ (localhost:8080 /workletService /rejectWorklet?caselD=34 6} 3 | 0 Coogle % @
Leading the World in Process Innovation|
www.vawlfoundation.org
Reject Worklet Selection
Case ID Specification ID
34 TreatWound

Please complete each of the fields below:

Proposed Title:

Reason for

Rejection:
(Cancel){ Submit

YAWL is distributed under the LGPL

Done th Y

Figure 7.54: Reject Worklet Selection Screen

To raise an unexpected exception at the case-level, follow a similar process at the Case Mgt screen, but instead
click the Raise Exception button. On the Raise Case-Level Exception screen (discussed in Walkthrough D),
select New External Fxzception from the list and submit the form. You will be redirected to the Define New
Case Level Exception screen. Enter a proposed title, a description of the scenario (what has happened to
cause the exception) and a (optionally) a proposal or description of how the new worklet will handle the
exception (in plain text), and then submit the form. See Figure 7.55 for an example using the Organise
Concert specification. Raising an item-level exception is identical, except that the Raise Exception button is
clicked on the Work Queue screen, rather than the Case Mgt screen.

The information entered on the form is sent to a Worklet Service Administrator, who will action the rejection

190 CHAPTER 7. THE WORKLET SERVICE

or new exception by adding a new rule to the rule set and (optionally) having the Rules Editor notify the
service to reselect the new worklet using the updated rule set (see Section 7.5.2 on the Rules Editor for more
detail). The process requires a user with administrator privileges to action the rejection request, rather than
allow all users access to update rule sets.

Note: Rejecting a worklet selection or raising a new unexpected exception will automatically suspend the
parent case until such time as the rejection or unexpected exception is actioned by an administrator.

en06e Worklet Service : Define New External Exception for Case (&)
@5 3 @ b4 ﬁ o B} http://localhost: 8080 /workletService /newCaseException?caselD=35 G_}ﬂ' | U Coogle & @

Leading the World in Process Innovation

www.yawlfoundation.org

Define New Case-Level Exception

Case ID Specification ID
35 OrganiseConcert
Please complete each of the fields below:
Proposed Title: Eguipment Lost in Transit
Scenario: [We were expecting to receive all of the band's equipment after the

end of the Japan leg of the tour, but it hasn't arrived and the
shipper has not yet located it. We will have to hire eguipment for
the Brisbane and Sydney concerts (at this stage).

Process Description: [Work out what's needed - get a couple of guotes - hire the equipment
- get it delivered to the Brisbane venue.|

(cancel “Submit)

YAWL is distributed under the LGPL

5 |48 |

Figure 7.55: Example of a New Case-Level Exception Definition

Back at the Case Mgt form, if the exception service is enabled, you will notice an extra button in the
Running Cases panel called Worklet Admin (for example Figure 7.47). This button allows administrators
to view the current list of outstanding worklet rejections and requests for new exception handlers. It also
allows administrators to view the details of each outstanding rejection and exception request and to mark it
as completed (removing them from the list) after it has been actioned (Figure 7.56).

7.7 Defining New Functions for Rule Node Conditions

In Section 7.5, we saw how rule conditions could be defined using a combination of arithmetic operators
and operands consisting of data attributes and values found in workitems and at the case level of process
instances. In Walkthrough D, an example of a defined function was given (isNotCompleted), using the special
variable this.

The Worklet Service provides a discrete class that enables developers to extend the availability of such defined
functions. That is, a developer may define new functions that can then be used as (or as part of composite)
conditional expressions in rule nodes. That class is called RdrConditionFunctions - the source code for the
class can be found in the au.edu.qut.yawl. worklet.support package. Currently, this class contains a small
number of examples to give developers an indication of the kinds of things you can do with the class and
how to create your own functions.

7.7. DEFINING NEW FUNCTIONS FOR RULE NODE CONDITIONS 191

ene Worklet Service : Administration Tasks (=]
LY R B hitp://localhost:8080 /workletService/wsAdminTasks7sH=3774572081313148935 [GEE | J} Google & @

R O0n

Worklet Service Administration Tasks

www.yawlfoundation.org Leading the World in Process Innovation

Title ‘ Case ID ‘ Task Type

~

Equipment Lost in Transit 35 New Case-Level External Exception

(V’lew Delails) (Ccmpleted)

YAWL is distributed under the LGPL

Figure 7.56: Administration Tasks Screen (detail)

The class code is split into four sections:

o Header;
o Execute Method;
o Function Definitions; and

o Implementation.
To successfully add a function, these rules must be followed:

1. Create the function (i.e. a normal Java method definition) and add it to the ‘function definitions’ section
of the code. Ensure the function:
o is declared with the access modifier keywords private static; and

o returns a value of String type.
2. Add the function’s name added to the array of ‘_functionNames’ in the header section of the code.

3. Add a mapping for the function in the ‘execute’ method, using the examples as a guide.

Once the function is added, it can be used in any rule’s conditional expression.

Let’s use the max function as a simple example walkthrough (to be read in conjunction with the source code
for the class). The first thing to do is define the actual function in the function definition section. The entire
function is shown in Figure 7.57.

Notice that the function has been declared as private static and returns a String value. Next, the name of
the function, maz, has to be added as a String value to the _functionNames array in the header section of
the code, see Figure 7.58.

Finally, we need to map the function name to the execute method, which acts as the interface between
the class’s functions and the Worklet Service. The execute method receives as arguments the name of the
function to execute, and a HashMap containing the functions parameters (all are passed as String values).

192 CHAPTER 7. THE WORKLET SERVICE

public static String max(int %, int y) {
if (x »= y) return String.valueOf (x) ;

else return String.wvalueOf (y) ;

Figure 7.57: Max function

public static final String[] _functionNames = { "max",
uminu’
"igNotCompleted",

"today"}

Figure 7.58: Adding the name

else if (name.equalsIgnoreCase("max")) {

int x = getArgAsInt (args, "x");

int y = getArglAsInt (args, "y");

return max(x, v);

Figure 7.59: Execute method for the max function

The execute method is essentially an if ... else if block, the sub-blocks of which call the actual functions
defined. The section of the execute method for the max function is shown in Figure 7.59.

The first line checks to see if the name of the function passed to the execute method is “max”. If it is, the
parameters passed with the function (as String values in the HashMap “args”) are converted to integer values
and finally the max function is called - its return value is passed back from the execute method to the calling
Worklet Service.

The getArgsAsInt method called in the snippet above is defined in the Implementation section of the class’s
code. It is here that you can create private methods that carry out the external work of the any functions
defined, as required.

The definition of isNotCompleted is slightly different, since the parameter passed is the special variable this.
The this variable is essentially a WorkltemRecord that contains descriptors of the workitem the rule is testing,
enabling developers to write methods that test the values in the variable and act on those values accordingly.
If it is for a case-level rule, this contains the case data for the instance invoking the rule. Both versions of
this are passed as a string-ified JDOM Element format. See the YAWL source code for more details of the
WorkItemRecord class, if required.

What the execute methods sub-block for the isNotCompleted function looks like is shown in Figure 7.60.

The block gets this variable as a String from the “args” HashMap and then calls the actual isNotCompleted
method (see Figure 7.61).

7.7. DEFINING NEW FUNCTIONS FOR RULE NODE CONDITIONS 193

if (name.equalsIgnoreCase ("isNotCompleted")) {
String taskInfo = (String) args.get("this");

return isNotCompleted(taskInfo);

Figure 7.60: Execute method’s sub-block for isNotCompleted function

public static String isNotCompleted(String itemInfo) |
Element eltem = JDOMConversionTools.stringToElement (itemInfo) ;
String status = eltem.getChildText ("status") ;

return String.valueOf (! isFinishedStatus(status));

Figure 7.61: Calling the actual isNotCompleted method

Notice again that the function has been declared as private static and returns a String value. The first line
of the function converts the String passed into the function to a JDOM Element, and then extracts from
that Element a value for “status” (being one of the data attributes contained in the this variable). It then
calls another method, defined in the Implementation section, called isFinishedStatus (see Figure 7.62).

private static boolean isFinishedStatus(String status) {
return status.eguals (WorkItemRecord.statusComplete) ||
status.equals (WorkItemRecord.statusForcedComplete) ||

status.equals (WorkItemRecord.statusFailed) ;

Figure 7.62: Definition of method isFinishedStatus

All methods defined in the Implementation section must also be declared as private static methods - however,
they can have any return type, so long as the value returned from the ezecute method back to the Worklet
Service has been converted to a String value.

Of course, you are not restricted to querying the this variable as a WorkltemRecord - it is passed simply
as a JDOM Element that has been converted to a String and so can be queried via a number of different
methods.

The objective of the RdrConditionFunctions class is to allow developers to easily extend the capabilities of
the Worklet Service by providing the means to test for other things in the conditional expressions of rule
nodes other than the process instance’s data attributes and values. It is envisaged that the class’s functions
can be extended into areas such as process mining, querying resource logs and external data sets.

194 CHAPTER 7. THE WORKLET SERVICE

7.8 Sample Log (generated by Walkthrough C)

In the following every line started with the date, which has been omitted for readabilty reasons. Similary,
“ExceptionService” has been abbreviated to “ES” and “WorkletService” to “WS”.
12:16:31,875 [INFO] ES - HANDLE CHECK CASE CONSTRAINT EVENT
12:16:31,984 [INFO | ES - Checking constraints for start of case 20
(of specification: OrganiseConcert)

12:16:32,093 [INFO | E - No pre-case constraints defined for spec: OrganiseConcert
12:16:32,109 [INFO | E - HANDLE CHECK WORKITEM CONSTRAINT EVENT
12:16:32,156 [INFO | E - Checking pre-constraints for workitem: 20:BookStadium_5
12:16:32,281 [INFO | E - No pre-task constraints defined for task: BookStadium
12:28:17,968 [INFO | E - HANDLE CHECK WORKITEM CONSTRAINT EVENT
12:28:18,000 [INFO | E ;- Checking pre-constraints for workitem: 20:SellTickets_3
12:28:18,015 [INFO | E .- No pre-task constraints defined for task: SellTickets
12:28:18,078 [INFO | E - HANDLE CHECK WORKITEM CONSTRAINT EVENT
12:28:18,093 [INFO | E - Checking post-constraints for workitem: 20.1:BookStadium_5
12:28:18,093 [INFO | E - No post-task constraints defined for task: BookStadium
12:56:08,000 [INFO | E - HANDLE CHECK WORKITEM CONSTRAINT EVENT
12:56:08,015 [INFO | E .- Checking pre-constraints for workitem: 20:DoShow_4
12:56:08,140 [INFO | E - Workitem 20:DoShow_4 failed pre-task constraints
12:56:08,140 [DEBUG] ES - Invoking exception handling process for item: 20:DoShow_4
12:56:08,156 [DEBUG]| E - Exception process step 1. Action = suspend, Target = workitem
12:56:08,171 [DEBUG] E - Successful work item suspend: 20:DoShow_4
12:56:08,203 [DEBUG] E - Exception process step 2. Action = compensate,

Target = ChangeToMidVenue
12:56:08,343 [DEBUG|] WS :- Worklet specification ‘ChangeToMidVenue’

is already loaded in Engine
12:56:08,546 [DEBUG] WS :- Launched case for worklet ChangeToMidVenue with ID: 21
12:56:08,578 [INFO | ES - HANDLE CHECK WORKITEM CONSTRAINT EVENT
12:56:08,593 [INFO] - Checking post-constraints for workitem: 20.2:SellTickets_3
12:56:08,593 [INFO | ES - No post-task constraints defined for task: SellTickets
12:56:08,593 [INFO] - HANDLE CHECK CASE CONSTRAINT EVENT
12:56:08,593 [INFO] - Checking constraints for start of case 21

(of specification: ChangeToMidVenue)
12:56:08,609 [INFO - No pre-case constraints defined for spec: ChangeToMidVenue
12:56:08,609 [INFO - HANDLE CHECK WORKITEM CONSTRAINT EVENT
12:56:08,640 [INFO - Checking pre-constraints for workitem: 21:CancelStadium_3
12:56:08,656 [INFO - No pre-task constraints defined fortask: CancelStadium
13:02:48,171 [INFO - HANDLE CHECK WORKITEM CONSTRAINT EVENT
13:02:48,187 [INFO - Checking pre-constraints for workitem: 21:Book_Ent_Centre_5
13:02:48,234 [INFO - No pre-task constraints defined for task: Book_Ent_Centre

[]
[]
[]
[]
[]
NFo.
13:02:48,250 [INFO]ES - HANDLE CHECK WORKITEM CONSTRAINT EVENT
[]
[]
[]
[]
[]
[]
[]

13:02:48,265 [INFO - Checking post-constraints for workitem: 21.1:CancelStadium_3
13:02:48,265 [INFO - No post-task constraints defined for task: CancelStadium
13:10:10,468 [INFO - HANDLE CHECK WORKITEM CONSTRAINT EVENT
13:10:10,484 [INFO - Checking pre-constraints for workitem: 21:Tell_ Punters_4
13:10:10,500 [INFO - No pre-task constraints defined for task: Tell_Punters
13:10:10,500 [INFO - HANDLE CHECK WORKITEM CONSTRAINT EVENT
13:10:10,515 [INFO - Checking post-constraints for workitem:

21.2:Book_Ent_Centre_5
13:10:10,515 [INFO] ES - No post-task constraints defined for task: Book_Ent_Centre

7.8. SAMPLE LOG (GENERATED BY WALKTHROUGH C)

13:13:59,281
13:13:59,281
13:13:59,281
13:13:59,296
13:13:59,437

13:13:59,468
13:13:59,515
13:13:59,531
13:13:59,531
13:13:59,546
13:13:59,750
13:13:59,875
13:13:59,953
13:14:00,046
13:14:00,046
13:14:00,156
13:14:00,171

[INFO | E
DEEKHES
[INFO | E
DEEXHES
[DEBUG] ES

DEEKHES
[INFO | E
[INFO | E
[INFO | E
[INFO | E
[INFO | E
DEEKHES
[INFO | E
[INFO | E
[INFO | E
[INFO | E
[INFO | E

195

HANDLE CHECK CASE CONSTRAINT EVENT
Checking constraints for end of case 21

No post-case constraints defined for spec: ChangeToMidVenue
Worklet ran as exception handler for case: 20

Exception process step 3.

Action = continue, Target = workitem

Successful work item unsuspend: 20:DoShow _4

HANDLE CHECK WORKITEM CONSTRAINT EVENT
Checking post-constraints fo workitem: 21.3:Tell_ Punters_4
No post-task constraints defined fortask: Tell Punters
Exception monitoring complete for case 21

HANDLE CHECK CASE CONSTRAINT EVENT
Checking constraints for end of case 20

No post-case constraints defined for spec: OrganiseConcert
HANDLE CHECK WORKITEM CONSTRAINT EVENT
Checking post-constraints for workitem: 20.3:DoShow_4
No post-task constraints defined for task: DoShow
Exception monitoring complete for case 20

196 CHAPTER 7. THE WORKLET SERVICE

Chapter 8

Other Services

Because of the open design of the YAWL interfaces, it is possible to design a YAWL Custom Service to
perform the work of a task instance using a wide variety of techniques to meet particular needs. Previous
chapters have described the Resource and Worklet Services, which, while quite complex, are examples of
the sorts of things that can be achieved using Custom Services. This chapter briefly describes a few other
custom services, their varied purposes and their use. Please consult the YAWL Technical Manual for detailed
information on the development of YAWL Custom Services.

8.1 Web Service Invoker Service

The Web Service Invoker Service (WSInvoker) provides a mediation layer between the Engine and external
SOAP web services. In this way, a task can be associated to an operation of a SOAP web service at design-
time, and at runtime task instances are routed to the specified SOAP web service through the WSInvoker.
Without this layer, a Custom Service would have to be developed between each and every SOAP web service
and the Engine on an individual web service basis.

A task is associated with WSInvoker by opening the Task’s Decomposition dialog in the Editor and choosing
the WSInvoker from the list of available services (Figure 8.1. The service will supply to the task three variable
definitions which will require supplied values when the service is invoked at runtime:

e YawlWSInvoker WSDLLocation: specifies the URI of the WSDL file describing the web service to
invoked;

o YawlWSInvokerPortName: specifies the port binding that the web service listens on for interaction
with external clients and protocols; and

e YawlWSInvokerOperationName: specifies the name of the operation to be executed within the
web service.

In addition, any data values that are required for the web service’s operation must also be specified within
the task decomposition; these are passed to the specified web service when it is invoked. The WSInvoker
Service then waits until the external service responds, then returns a mapping of the resultant data to the
task instance’s output data parameters. Note that when a task is registered with the Invoker Service at design
time, the Editor automatically populates the task’s input parameters with the required data attributes above.

At present, the WS-Invoker Service supports only SOAP over HTTP and request-response and one-way
interactions (out-in and out-only message exchange patterns).

197

198 CHAPTER 8. OTHER SERVICES

806 Update Task Decomposition

{Standard | Extended Attributes |

Task Decomposition Label: CallWs

~Task Decomposition Variables

Name Type Usage Create...
YawlWsInvokerWsDLLocation anyURI Input Only
YawlWSInvokerFortName HCHame Input Only & Update...
YawlWsInvokerOperationName MNCHame Input Only @

— Remove...
~YAWL Registered Service Detail
YAWL Service: = Web Service Invoker Service e ']

~External Interaction

_ | Automated (Set Codelet...

Done Cancel

e
R R ——

Figure 8.1: Task Decomposition Dialog for WSInvoker-associated task

8.2 SMS Service

The SMS service can use any third-party SMS Gateway web service to send and receive SMS messages and
pass the data into and out of the YAWL Engine. In this way, participants can view, update and complete
task instances via mobile phones and other SMS capable devices. The service is pre-configured in its web.xml
file with four values — a userid and password for an SMS account known to the specified SMS Gateway
web service, and its send and receive URI’s. These values will be particular to each SMS Gateway service
provider.

Like the WSInvoker Service, when a task is associated with SMS Service by opening the Task’s Decomposition
dialog in the Editor and choosing the SMS Service from the list of available services (Figure 8.2), the service
will supply three variables required for the successful operation of the service:

¢ SMSMessage: The message text to send to the mobile device;
e SMSPhoneNumber: The phone number of the mobile device to call; and

« SMSReplyMessage: The message text that is returned from the mobile device.

When invoked at runtime, the SMS Service will logon to the SMS Gateway provider using the userid and
password supplied via the web.xml file, then if successful will pass the SMSMessage and SMSPhoneNumber
values to to the service’s ‘Send” URI. The SMS Gateway provider will send the text message to the mobile
device identified by the phone number. It will then wait for a reply message from the device, which it will pass
back through the SMSReplyMessage variable which can then be mapped back to a corresponding net-level
variable in the process for display in a subsequent task.

8.3. TWITTER SERVICE 199

806 Update Task Decomposition

{Stmdmd | Extended Attributes |

Task Decomposition Label: | SendTxt

~Task Decomposition Variables

Narme Type Usage | Create...
SMSMessage string Input Only -
SMSFhoneNumber string Input Only ‘@ | Update... |
SMSReplyMessage string output Only w2 e

(o

| Remove... |
———————ee

~YAWL Registered Service Detail
YAWL Service: | SMS Service 3

~External Interaction

| Automated [Set Codelet...

Done | | Cancel

P
T ———

Figure 8.2: Task Decomposition Dialog for SMS Service-associated task

8.3 Twitter Service

The Twitter Service is a simple service that provides for the posting of status updates (i.e. ‘tweets’) to
Twitter.

When a task is associated with Twitter Service in the Editor’s Task Decomposition dialog, the service will
supply four required variables:

o status: The message text to send to Twitter;
o userid: A valid Twitter user account name;
« password: The password for the nominated Twitter account; and

e result: A response message received from Twitter that indicates the success or failure of the status
update.

When invoked at runtime, the Twitter Service will connect to Twitter, through its API using the specified
userid and password, post the status update (if connection was successful) and put Twitter’s response text
in the result variable.

8.4 Digital Signature Service

The purpose of the digital signature is not to hide the data on the form (captured as an XML ComplexType)
but to ensure the authenticity of the information. This custom service is composed of two functions, the first

200 CHAPTER 8. OTHER SERVICES

one is to sign the XML form and the second one is to check the validity of the signature created by the first
one.

8.4.1 Signing a Document
1. The Document is hashed with a hashing algorithm to encrypt it and to reduce its volume.

2. The Private Key is extracted from inside the key store certificate ‘p12’. To do this, we need the
publisher’s password which is only known by him/her.

3. Combine the private key, the Document fingerprint and the X.509 certificate to create the digital
signature using ‘PKCS#7’ encryption.

4. The fingerprint and the private key are used to calculate the signature itself and the X.509 certificate
gives the publisher details.

SHA1
Hash-Calculation

Deocument

Figure 8.3: An overview of the production of a digital signature

A digest-SHA1 of the document is included in the signature. Since the Document has a unique fingerprint,
the digital signature only applies to this document.

The pl2 certificate is protected by a password and is only used to sign the document. The public certificate
X.509 contains the information about the signer and the public key that can be used to check the validity of
the signature. It is public because anybody should be able to access the content of the signature to verify it.
But without the private key it cant be reproduced.

8.4.2 Verification of the Digital Signature
1. Calculate the document fingerprint with the same algorithm than the signer used.

2. To verify the Digital Signature you need first to extract the certificate X.509. The certificate X.509
contains all the information needed to identify a user. It is not encrypted and can be seen freely. We
use the public key contained in this certificate to decrypt the signature using the same algorithm.

3. If the signature matches the digest message of the document then the signature is considered valid.

Anybody can verify the signature since the public key is contained in the X.509 certificate. It is hard to
reproduce this signature as the private key is only contained in the certificate PKCS#12 and it needs the
owners password to be extracted. Also if the signature is slightly modified the digest function won’t match
the signature anymore.

8.4. DIGITAL SIGNATURE SERVICE 201

¢ Document
FingerPrint

¢ Valid signature

Figure 8.4: An overview of the verification of a digital signature

8.4.3 Interaction between a YAWL custom form and the service

Before you can use the digital signature function, the user will need to create a digital certificate. These
certificates are provided by a CA (certificate authority), for example Thawte Consulting for X.509 certificates.
It is advisable to use a certificate provided by a trusted third party like CA but you can also create your own
certificates using some open source tools.

8.4.4 Creating a New Certificate

New certificates can be easily created using Key tool IUI, which can be downloaded from: www.softpedia.
com/get/Security/Security-Related/KeyTool-IUI.shtml.

The first step is to create an empty Key Store PKCS12 locked with your password. Save the empty key store
in a chosen location (Figure 8.5).

Then use this key Store to generate the key pair and the X.509 certificate by filling in the owner information
(Figure 8.6).

When the key pair is created you can review the certificate information produced (Figure 8.7).

When the key pair is ready you can export the certificate via Export — Private Key’s first signing certificate
file — as simple certificate file (Figure 8.8).

8.4.5 Using the Digital Signature Service

First please make sure that you have copied the DigitalSignature.war in your tomcat/webapps folder. In the
simplest case of using the Digital signature service you will need at least three tasks (Figure 8.9).

The first task ‘Fulfil Document’ is a user task that can contain any complex type of document (i.e. a variable)
you want to be signed. You can define your complex type in the ‘Update Data Type Definition’ dialog of the
Editor, as the example in Figure 8.10:

The second task ‘Sign Document’ redirects the user to a custom form which is located inside the ‘DigitalSig-
nature.war’ deployment. We use a custom form to directly deal with the user instead of a standard custom
service because private data like the key store password needs to be hidden from YAWL as the data is passed
from one task to another as a net variable, which is accessible by any other task. You can define the Custom
Form URI for the task by right-clicking on the task in the Editor, choosing ‘Set Custom Form’ from the
menu, and then entering the URI of the form in the dialog shown (Figure 8.11).

You also have to define the task data that will be used by the custom form. In this example, their names
should be ‘Document’ and ‘Signature: Note that usage type of the ‘Signature’ is Input & Output.

You may also have to change the paths in the ‘upload.jsp’ file: where the default values are ‘localhost’, they

www.softpedia.com/get/Security/Security-Related/KeyTool-IUI.shtml
www.softpedia.com/get/Security/Security-Related/KeyTool-IUI.shtml

202 CHAPTER 8. OTHER SERVICES

1. The Yawl Worklist redirects the user to 2. The User uses a Custom form to give e
the custom form of the Digital signature the Public certificate, the key store and \
Service the password to open the key store.

> OO (= /] USER

Key Store,

Public Certificate,
“ R Password
Document ['//

Signed fingerprint

“ Digital Signature

P12 Certificate ([Pawcour]] 4. The custom form ends the task
and redirects the user back to the
Worklist ltems.

Password

x509 Certificate | Parcourir

submat Clear

|

Key Store,
Public
Certificate,
Password,
Document

Signed

Digital Signature Service

3. The Web Service computes the Digital
fingerprint and returns it to the Custom

may have to be changed to the actual address where the service runs (if it is not running locally):

String Path = "http://localhost:8080/DigitalSignature/files/";

String redirectURL = "http://localhost:8080/resourceService/" +
"faces/userWorkQueues. jsp?workitem=" +
wir.toXML();

The last task is the custom service part; it has to be specified in the “YAWL Registered Service Details’ panel
of the Task Decomposition dialog (Figure 8.13).

The Signature will be checked with the certificate loaded in the jsp page and it will provide the document
which has been signed. Note that the ‘Document’ variable is an “anyType” type, to be able to check back
any complex type you may have signed.

8.5. EMAIL SENDER SERVICE

% s [owin e
|
MBS Y
a
B s
¥ £ v nn " o e s
[l voecams
=2 G
[e
= o
2
= 3 B i s iy ey
= v
L Y e g e e
3 Dot g el iy 'y iy
il i -
P -
T
ol
& il e =] I [
=
T
aeocd rnvenn W@ [
-
Illi F L]

Figure 8.5: Creating an Empty Keystore

oy ol |-

B e e

L SR

[NN

G w e N
(s gemEm s

O piraaliin i’ ol r

—
—

8 Fsyg
[
[

Figure 8.6: Generating the Key Pair

8.5 Email Sender Service

The Email Sender Service allows users to send simple emails from within the workflow process instance.

203

204 CHAPTER 8. OTHER SERVICES

—— BECH & 406 CEATFLATE diH —
oETar
Cuilg Chjesiigrly
Alkrin's
ol Chjosianiy
‘FErire]
fasm ngrdaia Lh TEF (¥
“imid F e il 1 7 il S00ah 170
“iniid Uniiecirrascha: 17 juilied 3071 1729

A DD 22 P e e A B Y D
ARSI CEBIIDED 387 SEFE RS N QR DO B BF B

Loraiad My Laagss mo
== EHO L CENTIFECATE NN —

|
ERjET.

Figure 8.7: The Created Certificate

g T T
L mnred iy
[} Pt i
[recniesd o il s
F T Pometa amas e g aoeks wha o= ot
Y =1 1ovts o vgrg mmiw s

W T i J =]

Figure 8.8: Exporting the Certificate

8.5. EMAIL SENDER SERVICE 205

oo - @)
Fulfil Sign Verify
Document Document Signature

Figure 8.9: Example YAWL Process

808 Update Data Type Definitions
4 mm [3]e

<xs:schema xmlns:xs="http:/ www.w3.org/2001/¥MLSchema">

PSR

<xs:complexType name="Document":>
<X8:segquence>
<xs:element name="FamilyMame" type="xs:string"/>
<xs:element name="GivenName" type="xs:string"/>
<xs:element name="Address]' type="xs:string"/>
</%8: segquence>
</x8 :complexType>

< /%8 :schema>

B Valr]

- F

[Done J [Qancel J

Figure 8.10: Data Definition for ‘Document’ type

® 7 7 Set Custom Form URI

Custom Form URI:
»://localhost:8080/ digitalSignature/Si |

(L‘ancel) “

Figure 8.11: Custom Form dialog in YAWL Editor

8.5.1 How to use the Service

First please make sure that you have the ‘mailSender.war’ file deployed in your tomcat/webapps folder. The
Mail Sender Service uses a YAWL custom form for sending a simple mail notification. You just need one
task and set the custom form of that task to call the Mail Sender jsp file. First create a net that will use the

206 CHAPTER 8. OTHER SERVICES

® 7 ©® Update Task Decomposition “Sign Document”

—[Standard | Extended Attributes 1—

Task Decomposition Label: Sign Document

~Task Decomposition Variables

Marme Type Usage Create...
Signatm:eInput & Output
Document Document Input Only Update...
&
Remove...

~YAWL Registered Service Detail
YAWL Service: =

~External Interaction

[] Automated (Set Codelet...

Done Cancel

7
Y i

Figure 8.12: Task variables for the ‘Sign Document’ task

Mail Sender Service (Figure 8.14).

Note that you don’t need to create a variable to use the Mail Sender but the task that uses it will need at
least one variable defined so that the YAWL worklist’s view/edit button will not be available and you will
not be able to access the Custom form menu.

Second define the Custom form for the task, by right-clicking on the task and selection ‘Set Custom Form’
from the menu. The address of the custom form is: http://localhost:8080/mailSender/WebMail. jsp
(remember to replace ‘localhost’ with the specific hostname when the service is not installed locally).

When invoked at runtime, the custom form will look like the example in Figure 8.15.

You can see that the form in Figure 8.15 contains two parts. The first is to set the SMTP parameters to
send email:

1. You need to chose in the dropdown list which SMTP you would like to use to send emails.

2. You also need to enter login and password to connect to the SMTP server.

To add another SMTP server, you have to edit WebMail.jsp and add an option=value pair to the dropdown
list of servers:

<select name="SMTP" onChange="messageValue()">
<option value="smtp.qut.edu.au">QUT - WebMail</option>
<option value="smtp.gmail.com">Gmail</option>

http://localhost:8080/mailSender/WebMail.jsp

8.5. EMAIL SENDER SERVICE 207

e Update Task Decomposition "Verify Signature”

{Stamfmd | Extended Attributes |

Task Decomposition Label: Verify Signature

~Task Decomposition Variables
Name Type Usage | Create... |
Signature string Input Only -
CheckSignature string Output Only é | Update... |
Document anyType output Only a0 S—
Hame string Output Only] | Remove... |
e ———

~YAWL Registered Service Detail
YAWL Service: : Digital Signature Service

:1':

~External Interaction

| Automated [Set Codelet...

| Done | | Cancel |

P
T —

Figure 8.13: Task variables and service details for the ‘Verify Signature’ task

[() MailSender Example !

B— @

MailSender

Figure 8.14: Example Mail Sender Process

<option value="smtp.mail.yahoo.com">Yahoo</option>
<option value="New.SMTP">Name in the dropdown list</option>
</select>

The second part of the form is for entering the details of the email. In the field ‘Send To’ enter the email
address to send the mail to. The ‘Alias’ will be the name appearing on the receiver’s mailbox. Then you can
add the subject of the mail and the content. You can also attach a file, if desired.

The service will then attempt to send the email using the smtp server details provided in the form.

208 CHAPTER 8. OTHER SERVICES

Figure 8.15: Example Mail Sender Custom Form

Chapter 9

Seeking Help

Manuals, like the software they describe, can never be considered to be complete. It is quite possible that
you run into an issue for which the documentation is lacking, or find a problem with the YAWL environment
that constitutes a bug. Alternately, you may discover a new idea on how to enhance the system. Here we
briefly address the questions of how and where to seek help.

For queries about the YAWL software, we recommend that people use the help and discussion forums at
the YAWL sourceforge site (http://sourceforge.net/projects/yawl). In posting a question, request or
comment, please help us as much as possible in answering you by explicitly stating which versions of various
software components you are using, providing the specification that is causing a problem, listing messages
produced in the console window and/or log files, providing a backup of the database, and so on.

The YAWL Issues Tracker (code.google.com/p/yawl) can be used for reporting bugs or proposing enhance-
ments. As attachments can be easily provided, this is the preferred method for reporting bugs or requesting
enhancements. Again, please provide as much relevant information as possible. Also, before reporting an
issue, carefully search the list to ensure that the issue has not already been reported.

Any feedback regarding this manual is most welcome and may be sent to yawlmanual@gmail.com.

We encourage forum posts, bug reports and enhancement requests. Providing these centrally means that
others can learn from the answers provided and, hopefully, people are inspired to respond to other people’s
requests. In this way we can manage progress on YAWL more efficiently.

209

http://sourceforge.net/projects/yawl
code.google.com/p/yawl

210 CHAPTER 9. SEEKING HELP

Bibliography

[1]

2]

W.M.P. van der Aalst. The application of Petri nets to workflow management. Journal of Circuits,
Systems and Computers, 8(1):21-66, 1998.

W.M.P. van der Aalst, L. Aldred, M. Dumas, and A.H.M. ter Hofstede. Design and implementation of
the YAWL system. In A. Persson and J. Stirna, editors, Proceedings of the 16th International Conference
on Advanced Information Systems Engineering (CAiSE 04), pages 142159, Riga, Latvia, 2004. Springer
Verlag.

W.M.P. van der Aalst, B.F. van Dongen, C.W. Giinther, R.S. Mans, A.K. Alves de Medeiros, A. Rozinat,
V. Rubin, M. Song, H.M.W. Verbeek, and A.J.M.M. Weijters. ProM 4.0: Comprehensive Support for
Real Process Analysis. In J. Kleijn and A. Yakovlev, editors, Application and Theory of Petri Nets
and Other Models of Concurrency (ICATPN 2007), volume 4546 of Lecture Notes in Computer Science,
pages 484-494. Springer, 2007.

W.M.P van der Aalst and K.M. van Hee. Workflow Management: Models, Methods and Systems. MIT
Press, Cambridge, MA, USA, 2002.

W.M.P. van der Aalst and A.H.M. ter Hofstede. Workflow Patterns: On the Expressive Power of
(Petri-net-based) Workflow Languages. In Kurt Jensen, editor, Proceedings of the Fourth International
Workshop on Practical Use of Coloured Petri Nets and the CPN Tools, volume 560 of DAIMI, pages
1-20, Aarhus, Denmark, August 2002. University of Aarhus.

W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet another workflow language. Information
Systems, 30(4):245-275, 2005.

Michael Adams. Facilitating Dynamic Flexibility and Exception Handling for Workflows. PhD The-
sis, Queensland University of Technology, Brisbane, Australia, 2007. Available through http://www.
yawl-system.com.

Michael Adams, Arthur H.M. ter Hofstede, Wil M.P. van der Aalst, and David Edmond. Dynamic,
Extensible and Context-Aware Exception Handling for Workflows. In Robert Meersman and Zahir
Tari, editors, On the Move to Meaningful Internet Systems 2007: CooplS, DOA, ODBASE, GADA,
and IS, OTM Confederated International Conferences CooplS, DOA, ODBASE, GADA, and IS 2007,
Vilamoura, Portugal, November 25-30, 2007, Proceedings, Part I, volume 4803 of Lecture Notes in
Computer Science, pages 95-112. Springer, 2007.

Michael Adams, Arthur H.M. ter Hofstede, David Edmond, and W.M.P. van der Aalst. Worklets:
A service-oriented implementation of dynamic flexibility in workflows. In R. Meersman and Z. Tari
et. al., editors, Proceedings of the 14th International Conference on Cooperative Information Systems
(CoopIS’06), volume 4275 of Lecture Notes in Computer Science, pages 291-308, Montpellier, France,
November 2006. Springer-Verlag.

M. de Leoni, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Visual Support for Work Assignment in
Process-Aware Information Systems. In M. Dumas, M. Reichert, and M.-C. Shan, editors, BPM 2008,
volume 5240 of Lecture Notes in Computer Science. Springer, 2008.

211

http://www.yawl-system.com
http://www.yawl-system.com

212

[11]

[12]

[13]

[18]

BIBLIOGRAPHY

A H.M. ter Hofstede, W.M.P van der Aalst, M. Adams, and N. Russell, editors. Modern Business Process
Automation: YAWL and its Support Environment. Springer, 2010.

T. Murata. Petri nets: Properties, Analysis and Applications. Proceedings of the IEEFE, 77(4):541-580,
1989.

M. Pesic, H. Schonenberg, and W.M.P. van der Aalst. DECLARE: Full Support for Loosely-Structured
Processes. In M. Spies and M.B. Blake, editors, Proceedings of the Eleventh IEEE International Enter-
prise Distributed Object Computing Conference (EDOC 2007), pages 287-298. IEEE Computer Society,
2007.

J.L. Peterson. Petri net theory and the modeling of systems. Prentice-Hall, Englewood Cliffs, USA, 1981.

A. Rozinat, M. Wynn, W.M.P. van der Aalst, A.H.M. ter Hofstede, and C. Fidge. Workflow Simulation
for Operational Decision Support Using Design, Historic and State Information. In M. Dumas, M. Re-
ichert, and M.-C. Shan, editors, BPM 2008, volume 5240 of Lecture Notes in Computer Science, pages
196-211. Springer, 2008.

N. Russell, W.M.P van der Aalst, and A.H.M. ter Hofstede. Workflow exception patterns. In E. Dubois
and K. Pohl, editors, Proceedings of the 18th International Conference on Advanced Information Systems
Engineering (CAiSE’06), volume 4001 of Lecture Notes in Computer Science, pages 288-302, Luxem-
bourg, Luxembourg, 2006. Springer.

N. Russell, W.M.P. van der Aalst, A.H.M. ter Hofstede, and D. Edmond. Workflow resource patterns:
Identification, representation and tool support. In O. Pastor and J. Falcao e Cunha, editors, Proceedings
of the 17th Conference on Advanced Information Systems Engineering (CAiSE’05), volume 3520 of
Lecture Notes in Computer Science, pages 216-232, Porto, Portugal, 2005. Springer.

N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Workflow data patterns:
Identification, representation and tool support. In L. Delcambre, C. Kop, H.C. Mayr, J. Mylopoulos,
and O. Pastor, editors, Proceedings of the 24th International Conference on Conceptual Modeling (ER
2005), volume 3716 of Lecture Notes in Computer Science, pages 353-368, Klagenfurt, Austria, 2005.
Springer.

N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P van der Aalst. newYAWL: achieving com-
prehensive patterns support in workflow for the control-flow, data and resource perspectives. Technical
Report BPM-07-05, BPM Center, 2007. http://www.BPMcenter.org.

N.C. Russell. Foundations of Process-Aware Information Systems. PhD Thesis, Queensland University
of Technology, Brisbane, Australia, 2007. Available through http://www.yawl-system.com.

H.M.W. Verbeek, Wil M.P. van der Aalst, and Arthur H.M. ter Hofstede. Verifying Workflows with Can-
cellation Regions and OR-joins: An Approach Based on Relaxed Soundness and Invariants. Computer
Journal, 50(3):294-314, 2007.

M. Weske. Business Process Management: Concepts, Languages, Architectures . Springer, 2007.

Moe Thandar Wynn. Semantics, Verification, and Implementation of Workflows with Cancellation
Regions and OR-joins. PhD Thesis, Queensland University of Technology, Brisbane, Australia, 2006.
Available through http://wuw.yawl-system. com.

M.T. Wynn, D. Edmond, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Achieving a general, formal
and decidable approach to the OR~join in workflow using Reset nets. In G. Ciardo and P. Darondeau,
editors, Proceedings of the 26th International Conference on Application and Theory of Petri nets and
Other Models of Concurrency (Petri Nets 2005), volume 3536 of Lecture Notes in Computer Science,
pages 423-443, Miami, USA, 2005. Springer-Verlag.

http://www.BPMcenter.org
http://www.yawl-system.com
http://www.yawl-system.com

	Introduction
	What is YAWL?
	Obtaining the Latest Version of YAWL
	The YAWL Foundation
	Documentation

	Installation
	Requirements
	YAWL4Study
	YAWL4Enterprise
	YAWLive
	Manual Installation

	Getting Started with YAWL
	Introduction
	Terminology
	Building a Simple Workflow Example
	Advanced Workflow Concepts
	Where To From Here

	The Editor
	Launching the YAWL Editor
	The YAWL Editor Workspace
	Creating Your First Specification
	Changing the Appearance of Your Specification
	Additional Specification Features
	Connections
	Validating and Saving a Specification
	Specification Analysis
	Automated task
	Resource Management (Manual task)
	Task Timer
	Custom Forms
	Extended Attributes

	How to Manipulate Data in YAWL
	Introduction
	Data Visibility
	Data Transfer
	Data-related Issues
	Illustrative Examples

	The Runtime Environment
	Resource Service Configuration
	Logging On
	Administration
	Work Queues
	User Profiles
	Team Queues
	YAWL Worklist iGoogle Gadget

	The Worklet Service
	What is a Custom YAWL Service?
	Installation
	Using the Worklet Selection Service
	Using the Worklet Exception Service
	Worklet Rule Sets and the Rules Editor
	Walkthrough - Using the Worklet Service
	Defining New Functions for Rule Node Conditions
	Sample Log (generated by Walkthrough C)

	Other Services
	Web Service Invoker Service
	SMS Service
	Twitter Service
	Digital Signature Service
	Email Sender Service

	Seeking Help

