

ZABBIX

www.zabbix.comBeyond the Loadable Modules

Beyond the Loadable Modules

Extending a Zabbix Agent for fun and profit

ZABBIX

www.zabbix.comBeyond the Loadable Modules

Agenda

What is the Zabbix Loadable Module ?

The Problem. Why the loadable module is not
for everyone.

The Solution. Next step beyond the Loadable
Module.

How it is implemented ?

What you can do with it ?

The Requirements.

Performance and convenience.

ZABBIX

www.zabbix.comBeyond the Loadable Modules

 Zabbix Loadable Module, is a simple and
elegant way to extend your agent and a
server.
 

 Unlike running an external script, this is a
shared library, which is loaded by Zabbix
component during startup and become a
part of such component, operating inside
it’s address space.

 So, this is not only about running a custom
code from an Agent or the Server, but
doing it with performance in mind.

What is the Zabbix loadable module.

ZABBIX

www.zabbix.comBeyond the Loadable Modules

 At some point, you are realized, that the
performance of the UserParameter isn't
great.

Although, Zabbix Loadable Module and
correct “C” code is very powerful, it is not
for everyone. Because…

 let's face the truth ….

The Problem.

ZABBIX

www.zabbix.comBeyond the Loadable Modules

The Problem.

Most of us nowadays are not “C” developers.
Which is one of the pre-requirement for
developing a Zabbix Loadable Module.

Even if we do know how and can develop using “C”,
oftentimes we do not have a time to develop
and “own” a piece of the “C” code.

Even if we do know “C”, and can afford an
expense to “owning” a “C” code, oftentimes we do
need to develop something fast, using already
existing high-level modules

ZABBIX

www.zabbix.comBeyond the Loadable Modules

Developing you Metrics collection code
using language other than “C”.

The Solution.

Embed this language into the Zabbix Agent
by using Loadable Modules.

ZABBIX

www.zabbix.comBeyond the Loadable Modules

The Requirements.

The solution is to use any RAD(1) language. Try to pick
the one, which do have the following:

(1) RAD stands for “Rapid Application Development”

Rich data types. OOP capabilities is a plus

Embeddable with simple API

Rich library of the modules, which shall allow you
fast implementation of custom metrics acquisition.

It is a accepted in your company by it's lead Architect

ZABBIX

www.zabbix.comBeyond the Loadable Modules

The Requirements.

Language shall be mature, well developed and
documented and you shall have more than a
single developer around who can code in it.

It shall be approved by your local InfoSec team.

It shall be readily available for all hardware and
OS platforms you do need to cover.

For the people not exposed to this particular
language before, it shall be fairly easy to learn

It shall be fast enough for your purposes.

ZABBIX

www.zabbix.comBeyond the Loadable Modules

The Decision.

I chose the Python(1) as my “language of choice”,
because it is matching of all my requirements and
I do have a rich library of classes and functions
which helps me to collect metrics data with ease.

(1) http://www.python.org

ZABBIX

www.zabbix.comBeyond the Loadable Modules

How it is implemented.

 Design decisions and a problems to solve:

How to startup and initialize

How to do the data types conversion

How to route Zabbix “call for the metric” to
the Python module.

How to finalize

ZABBIX

www.zabbix.comBeyond the Loadable Modules

How it is implemented.

 Setup of the development environment:

Or configure and install Python from the
sources. Look at http://www.python.org

Ether install python-devel (or similar)
package provided by your OS vendor

If you can compile any Python extension
module, you are fine.

ZABBIX

www.zabbix.comBeyond the Loadable Modules

How it is implemented.

 Python API you do need to know for the data conversion:

PyLongAsLong(), PyFloat_AsDouble(), PyArg_Parse()
 Converting Python objects into a “C” types

PyString_FromString(…)
 Creating Python string object from “C” char*

PyTuple_SET_ITEM(…)  
Set value in the tuple.

PyTuple_New(…)  
Creating a new tuple. That’s how you pass parameters.

ZABBIX

www.zabbix.comBeyond the Loadable Modules

How it is implemented.

Zabbix API you do need to know for the data conversion:

SET_MSG_RESULT(...)
 Passing a message from “C” module back to Zabbix

SET_UI64_RESULT(…)/SET_DBL_RESULT(…)/SET_STR_RESULT(...)
 Set Unsigned Integer/Double/String as a result

get_rparam(…)  
Returning parameter from AGENT_REQUEST*

ZABBIX

www.zabbix.comBeyond the Loadable Modules

How it is implemented.

Python API you do need to know for Initialization and
Finalization:

Py_Initialize()  
Initialize Python environment

Py_SetProgramName(…)  
Set program name for an embedded Python

Py_Finalize()  
Uninitialize Python environment

Py_IsInitialized()  
Check if Python environment initialized

ZABBIX

www.zabbix.comBeyond the Loadable Modules

How it is implemented.

Zabbix API you do need to know for Initialization and
Finalization:

int zbx_module_init()  
Loadable module initialization function. Executed when
module loads. Returns ZBX_MODULE_OK if module
loaded succedsfully, or ZBX_MODULE_FAIL otherwise.
During Startup, we are calling Python function
“main(...)” from module ZBX_startup.py

int zbx_module_uninit()
Loadable Module finalization function. Executed when
Zabbix Agent goes into shutdown. Returns
ZBX_MODULE_OK if module loaded succedsfully, or
ZBX_MODULE_FAIL otherwise. During shutdown, we
are calling Python function “main(...)” from the module
ZBX_finish.py

ZABBIX

www.zabbix.comBeyond the Loadable Modules

How it is implemented.

 Python API you do need to know for proper handling of the
PyObject*:

 Python uses reference-based garbage collector.

Py_DECREF(…)  
Decrease reference count for a Python object

Py_INCREF(…)  
Increase reference count for a Python object

Py_REFCNT(…)  
Return the number of the reference counts

ZABBIX

www.zabbix.comBeyond the Loadable Modules

How it is implemented.

Python API you do need to know for working with
Modules and executing Python “code objects”:

PyObject_GetAttrString(…)  
Lookup an attribute or an object in the Python
module. Returns a reference to the attribute if found.

PyImport_ImportModule(…)  
Importing a Python module. Returns a reference to a
module.

PyEval_CallObject(…)
 Execute a Python “code object”.

ZABBIX

www.zabbix.comBeyond the Loadable Modules

How it is implemented.

Zabbix API call returning list of the supported metrics:

ZBX_METRIC *zbx_module_item_list()
Returns a list of the metric keys

ZABBIX

www.zabbix.comBeyond the Loadable Modules

How it is implemented.

Metrics exported from Python module to Zabbix :

python.ping[]
Returns “1” if module is properly initialized, otherwise
“0”

python.version[]
Returns text representatikon of the version of the
Python interpreter.

py[…]
Pass the call from Zabbix to Python

ZABBIX

www.zabbix.comBeyond the Loadable Modules

How it is implemented.

How to define metrics in Zabbix Loadable Module :

You shall define NULL-terminated array of ZBX_METRIC structures, as
static ZBX_METRIC keys[]

Each metric structure describes a single metric as:  

Name
Name of the metric

Flag
Pass “0” if no parameters required or CF_HAVEPARAMS
if parameters are expected
Function
Reference to a metric function

Test parameters
Test parameters to a metric function

ZABBIX

www.zabbix.comBeyond the Loadable Modules

How it is implemented.

Example:

static ZBX_METRIC keys[] =
{
 {"python.ping", 0, zbx_module_python_ping, NULL},
 {"python.version", 0, zbx_module_python_version, NULL},
 {"py", CF_HAVEPARAMS, zbx_module_python_call_wrap, ""},
 {NULL}
};

ZABBIX

www.zabbix.comBeyond the Loadable Modules

How it is implemented.

Passing call from Zabbix to Python in “C”:

ZABBIX

www.zabbix.comBeyond the Loadable Modules

How it is implemented.

Routing call from Zabbix to Python through ZBX_call/main:

ZABBIX

www.zabbix.comBeyond the Loadable Modules

What you can do with it.

Create metric collection. It could be something as
simple as this:

And after you place this module in pymodules
directory, you can query this metric like this:

ZABBIX

www.zabbix.comBeyond the Loadable Modules

How it is implemented.

Or full-blown Python
application with classes,
objects and everything ...

ZABBIX

www.zabbix.comBeyond the Loadable Modules

How it is implemented.

Previous example will allow you to query the metric, which
returns the number of specific processes which command lines
are matching a user-defined pattern. For example, that how we
can query the number of sshd processes attached to pts pseudo-
terminals.

zabbix_get -s localhost –k py["AF_ps","sshd: (.*)pts/(.*)","sshd"]

ZABBIX

www.zabbix.comBeyond the Loadable Modules

Performance and Convenience

Let's talk about performance:

I my test, I am requesting a series of metrics from a
passive Agent, using zabbix_get

Let's test just the effectiveness of the call. Our metric
will be very simple and return UNIX timestamp

I am setting up the same module, which will be called
from Loadable Module and UserParameters

UserParameter=python.time,/usr/bin/python /usr/local/etc/pymodules/ZBX_time.py

In the same /usr/local/etc/zabbix_agentd.conf

vs

LoadModulePath=/usr/local/etc
LoadModule=python.so

ZABBIX

www.zabbix.comBeyond the Loadable Modules

Performance and Convenience

Required time:

ZABBIX

www.zabbix.comBeyond the Loadable Modules

Performance and Convenience

Seconds per request:

ZABBIX

www.zabbix.comBeyond the Loadable Modules

Performance and Convenience

You are using RAD language to create a
custom Metric collection

You can use any Python features. No
restrictions. But your metric collection code
shall be efficient and quick.
The test shows increase in performance.
Embedded Python which loaded through
Zabbix Loadable Module provides about 5.7
times faster response time while executing
the same code. But your results may vary ...

Your metric collection is as fast, as your host
can compute and efficient your code.

ZABBIX

www.zabbix.comBeyond the Loadable Modules

Conclusion

Author: Vladimir Ulogov
e-mail: vladimir.ulogov@zabbix.com

https://github.com/vulogov/zlm-python

ZABBIX

www.zabbix.comBeyond the Loadable Modules

Conclusion

Q/A ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

