
INTRODUCTION IBM MQ – MONITORING BASICS IBM MQ – QUEUE MONITORING IMPROVEMENTS END REMARKS

Monitoring Payment Queues

Łukasz Lipski
IT Infrastructure Specialist, Nordea IT Polska

INTRODUCTION IBM MQ – MONITORING BASICS IBM MQ – QUEUE MONITORING IMPROVEMENTS END REMARKS

NORDEA IT POLAND

I HQ in Gdynia, Poland, with 300 employees

I supporting the banking systems in Latvia, Lithuania
and Estonia

I providing IT services for our Nordic colleagues
in Nordea Bank AB

INTRODUCTION IBM MQ – MONITORING BASICS IBM MQ – QUEUE MONITORING IMPROVEMENTS END REMARKS

ZABBIX @ NORDEA

I currently 2.4.5

I 350 monitored hosts, 40k items,
20k triggers and nvps below 1k

I Oracle as the database backend (11.2)

I primary monitoring system among others
(Oracle EM, SCOM, Dynatrace, ...)

I key systems: core banking, card traffic, e-banking

INTRODUCTION IBM MQ – MONITORING BASICS IBM MQ – QUEUE MONITORING IMPROVEMENTS END REMARKS

MONITORING PAYMENT QUEUES

I short talk

I focusing on one product, partially applicable to others

I “the most you can do with the least effort”

INTRODUCTION IBM MQ – MONITORING BASICS IBM MQ – QUEUE MONITORING IMPROVEMENTS END REMARKS

IBM MQ – INTRODUCTION

I IBM’s messaging solution since 1992

I the name: MQM, MQSeries, Websphere MQ,
IBM MQ since 2014

I the product: largely the same for the last 20 (sic!) years

I quite popular, quite reliable, a bit strange

INTRODUCTION IBM MQ – MONITORING BASICS IBM MQ – QUEUE MONITORING IMPROVEMENTS END REMARKS

BASIC STUFF

I MQ filesystem space
(usually /var/mqm)

I global error reports
(.FDC files under /var/mqm/errors)

I Queue Manager status
and local QM error reports

I status of the listener process (runmqlsr)

I channel status

INTRODUCTION IBM MQ – MONITORING BASICS IBM MQ – QUEUE MONITORING IMPROVEMENTS END REMARKS

BASIC STUFF – CONT.

Queue Manager status
dspmq

echo "ping qmgr" | runmqsc QMNAME

Listener status
ps -ef | grep runmqlsr

echo "display lsstatus()" | runmqsc QMNAME

Channel status
echo "display chstatus()" | runmqsc QMNAME

INTRODUCTION IBM MQ – MONITORING BASICS IBM MQ – QUEUE MONITORING IMPROVEMENTS END REMARKS

QUEUE MONITORING – BASIC METRICS

Number of messages on queue: current depth
echo "display ql(QUEUE.NAME) curdepth" | runmqsc QMNAME

Queue capacity: max depth
echo "display ql(QUEUE.NAME) maxdepth" | runmqsc QMNAME

Combined, they give us another key health check – queue % fill.

INTRODUCTION IBM MQ – MONITORING BASICS IBM MQ – QUEUE MONITORING IMPROVEMENTS END REMARKS

MESSAGE FLOW

First attempt at a trigger expression:
{queue_curdepth_itemkey.min(#20)} > 0

This is probably going to be insufficient.

INTRODUCTION IBM MQ – MONITORING BASICS IBM MQ – QUEUE MONITORING IMPROVEMENTS END REMARKS

MESSAGE FLOW

First attempt at a trigger expression:
{queue_curdepth_itemkey.min(#20)} > 0

This is probably going to be insufficient.

INTRODUCTION IBM MQ – MONITORING BASICS IBM MQ – QUEUE MONITORING IMPROVEMENTS END REMARKS

MESSAGE FLOW

First attempt at a trigger expression:
{queue_curdepth_itemkey.min(#20)} > 0

This is probably going to be insufficient.

INTRODUCTION IBM MQ – MONITORING BASICS IBM MQ – QUEUE MONITORING IMPROVEMENTS END REMARKS

MESSAGE FLOW, CONTINUED

To look for the drops over a period of time, we need
to add a coupled calculated item, with the following formula:
last(queue_depth, #1) - last(queue_depth, #2)

INTRODUCTION IBM MQ – MONITORING BASICS IBM MQ – QUEUE MONITORING IMPROVEMENTS END REMARKS

MESSAGE FLOW, CONTINUED

To look for the drops over a period of time, we need
to add a coupled calculated item, with the following formula:
last(queue_depth, #1) - last(queue_depth, #2)

INTRODUCTION IBM MQ – MONITORING BASICS IBM MQ – QUEUE MONITORING IMPROVEMENTS END REMARKS

MESSAGE FLOW – FINAL

Now, we can examine if the queue is being unloaded,
with this revised trigger expression:
{queue_depth.min(#20)} > 0 and {queue_depth_change.min(#20)} >= 0

INTRODUCTION IBM MQ – MONITORING BASICS IBM MQ – QUEUE MONITORING IMPROVEMENTS END REMARKS

MESSAGE FLOW – FINAL

Now, we can examine if the queue is being unloaded,
with this revised trigger expression:
{queue_depth.min(#20)} > 0 and {queue_depth_change.min(#20)} >= 0

INTRODUCTION IBM MQ – MONITORING BASICS IBM MQ – QUEUE MONITORING IMPROVEMENTS END REMARKS

LOADABLE MODULES

I Support for loadable modules introduced in 2.2 (2013)

I Very easy to wrap around existing C code

I Very easy to get started (src/modules/dummy)

I Noticeable performance gains

INTRODUCTION IBM MQ – MONITORING BASICS IBM MQ – QUEUE MONITORING IMPROVEMENTS END REMARKS

...EXISTING C CODE

Look at the IBM provided samples, in this case, amqsailq.c.
/* bag for inquiry */
mqCreateBag(MQCBO_ADMIN_BAG, &adminBag, &cc, &r);
/* bag for the response */
mqCreateBag(MQCBO_ADMIN_BAG, &responseBag, &cc, &r);

/* create the inquiry by putting request items in the bag */
mqAddString(adminBag, MQCA_Q_NAME, MQBL_NULL_TERMINATED, queue, &cc, &r);
mqAddInteger(adminBag, MQIA_Q_TYPE, MQQT_LOCAL, &cc, &r);
mqAddInquiry(adminBag, MQIA_CURRENT_Q_DEPTH, &cc, &r);

/* execute the inquiry */
mqExecute(

/* needed params omitted here */
);
if (reason == MQRC_CMD_SERVER_NOT_AVAILABLE) {

MQDISC(&hConn, &cc, &r);
exit(98);

}
/* when mqExecute was successful */
if (compCode == MQCC_OK) {

mqInquireBag(responseBag, MQHA_BAG_HANDLE, 0, &qAttrsBag, &cc, &r);
mqInquireInteger(qAttrsBag, MQIA_CURRENT_Q_DEPTH, MQIND_NONE, &qDepth, &cc, &r);
printf("%d\n", qDepth);

}

INTRODUCTION IBM MQ – MONITORING BASICS IBM MQ – QUEUE MONITORING IMPROVEMENTS END REMARKS

VERY EASY TO WRAP AROUND...

Look at the samples: zabbix−2.2.10/src/modules/dummy− orig/.
In our case, you need to add around 40 lines of code.

static ZBX_METRIC keys[] = {
{"mq.q.curdepth", CF_HAVEPARAMS, mq_q_curdepth, "ECHO"},
{NULL}

};

int mq_q_curdepth(AGENT_REQUEST *request, AGENT_RESULT *result) {
char *param;

if (request->nparam != 1) {
SET_MSG_RESULT(result, strdup("You must give the queue name as parameter"));
return SYSINFO_RET_FAIL;

}
param = get_rparam(request, 0);

// code that sets gathered_value goes here
SET_UI64_RESULT(result, gathered_value);
return SYSINFO_RET_OK;

}

INTRODUCTION IBM MQ – MONITORING BASICS IBM MQ – QUEUE MONITORING IMPROVEMENTS END REMARKS

PERFORMANCE GAINS

A simple shell script that gathers queue depth:
echo "DIS QL($1) CURDEPTH" | runmqsc | grep "[C]URDEPTH(" | grep -o ’[0-9]\+’

The same thing can be (quite easily) done in C.

No surprises. Wrapping it in a module is even more effective.

INTRODUCTION IBM MQ – MONITORING BASICS IBM MQ – QUEUE MONITORING IMPROVEMENTS END REMARKS

PERFORMANCE GAINS

A simple shell script that gathers queue depth:
echo "DIS QL($1) CURDEPTH" | runmqsc | grep "[C]URDEPTH(" | grep -o ’[0-9]\+’

The same thing can be (quite easily) done in C.

No surprises. Wrapping it in a module is even more effective.

INTRODUCTION IBM MQ – MONITORING BASICS IBM MQ – QUEUE MONITORING IMPROVEMENTS END REMARKS

SHARE

All the code that I’ve discussed here is uploaded
to Zabbix Share – hope some of it proves useful.

https://share.zabbix.com/cat-app/queue-managers/ibm-mq-agent-module

Keep in mind that it’s written as a proof of concept,
for the purposes of this talk.

You should at least add additional error checking
after each MQI call (see the MQCONN call for an example).

INTRODUCTION IBM MQ – MONITORING BASICS IBM MQ – QUEUE MONITORING IMPROVEMENTS END REMARKS

Any questions?

INTRODUCTION IBM MQ – MONITORING BASICS IBM MQ – QUEUE MONITORING IMPROVEMENTS END REMARKS

Thank you!

	Introduction
	IBM MQ – monitoring basics
	IBM MQ – queue monitoring
	Improvements
	End remarks

