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NORDEA IT POLAND

I HQ in Gdynia, Poland, with 300 employees

I supporting the banking systems in Latvia, Lithuania
and Estonia

I providing IT services for our Nordic colleagues
in Nordea Bank AB
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ZABBIX @ NORDEA

I currently 2.4.5

I 350 monitored hosts, 40k items,
20k triggers and nvps below 1k

I Oracle as the database backend (11.2)

I primary monitoring system among others
(Oracle EM, SCOM, Dynatrace, ...)

I key systems: core banking, card traffic, e-banking



INTRODUCTION IBM MQ – MONITORING BASICS IBM MQ – QUEUE MONITORING IMPROVEMENTS END REMARKS

MONITORING PAYMENT QUEUES

I short talk

I focusing on one product, partially applicable to others

I “the most you can do with the least effort”



INTRODUCTION IBM MQ – MONITORING BASICS IBM MQ – QUEUE MONITORING IMPROVEMENTS END REMARKS

IBM MQ – INTRODUCTION

I IBM’s messaging solution since 1992

I the name: MQM, MQSeries, Websphere MQ,
IBM MQ since 2014

I the product: largely the same for the last 20 (sic!) years

I quite popular, quite reliable, a bit strange
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BASIC STUFF

I MQ filesystem space
(usually /var/mqm)

I global error reports
(.FDC files under /var/mqm/errors)

I Queue Manager status
and local QM error reports

I status of the listener process (runmqlsr)

I channel status
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BASIC STUFF – CONT.

Queue Manager status
dspmq

echo "ping qmgr" | runmqsc QMNAME

Listener status
ps -ef | grep runmqlsr

echo "display lsstatus()" | runmqsc QMNAME

Channel status
echo "display chstatus()" | runmqsc QMNAME
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QUEUE MONITORING – BASIC METRICS

Number of messages on queue: current depth
echo "display ql(QUEUE.NAME) curdepth" | runmqsc QMNAME

Queue capacity: max depth
echo "display ql(QUEUE.NAME) maxdepth" | runmqsc QMNAME

Combined, they give us another key health check – queue % fill.
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MESSAGE FLOW

First attempt at a trigger expression:
{queue_curdepth_itemkey.min(#20)} > 0

This is probably going to be insufficient.
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MESSAGE FLOW, CONTINUED

To look for the drops over a period of time, we need
to add a coupled calculated item, with the following formula:
last(queue_depth, #1) - last(queue_depth, #2)
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MESSAGE FLOW – FINAL

Now, we can examine if the queue is being unloaded,
with this revised trigger expression:
{queue_depth.min(#20)} > 0 and {queue_depth_change.min(#20)} >= 0
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LOADABLE MODULES

I Support for loadable modules introduced in 2.2 (2013)

I Very easy to wrap around existing C code

I Very easy to get started (src/modules/dummy)

I Noticeable performance gains
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...EXISTING C CODE

Look at the IBM provided samples, in this case, amqsailq.c.
/* bag for inquiry */
mqCreateBag(MQCBO_ADMIN_BAG, &adminBag, &cc, &r);
/* bag for the response */
mqCreateBag(MQCBO_ADMIN_BAG, &responseBag, &cc, &r);

/* create the inquiry by putting request items in the bag */
mqAddString(adminBag, MQCA_Q_NAME, MQBL_NULL_TERMINATED, queue, &cc, &r);
mqAddInteger(adminBag, MQIA_Q_TYPE, MQQT_LOCAL, &cc, &r);
mqAddInquiry(adminBag, MQIA_CURRENT_Q_DEPTH, &cc, &r);

/* execute the inquiry */
mqExecute(

/* needed params omitted here */
);
if (reason == MQRC_CMD_SERVER_NOT_AVAILABLE) {

MQDISC(&hConn, &cc, &r);
exit(98);

}
/* when mqExecute was successful */
if ( compCode == MQCC_OK ) {

mqInquireBag(responseBag, MQHA_BAG_HANDLE, 0, &qAttrsBag, &cc, &r);
mqInquireInteger(qAttrsBag, MQIA_CURRENT_Q_DEPTH, MQIND_NONE, &qDepth, &cc, &r);
printf("%d\n", qDepth);

}
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VERY EASY TO WRAP AROUND...

Look at the samples: zabbix−2.2.10/src/modules/dummy− orig/.
In our case, you need to add around 40 lines of code.

static ZBX_METRIC keys[] = {
{"mq.q.curdepth", CF_HAVEPARAMS, mq_q_curdepth, "ECHO"},
{NULL}

};

int mq_q_curdepth(AGENT_REQUEST *request, AGENT_RESULT *result) {
char *param;

if (request->nparam != 1) {
SET_MSG_RESULT(result, strdup("You must give the queue name as parameter"));
return SYSINFO_RET_FAIL;

}
param = get_rparam(request, 0);

// code that sets gathered_value goes here
SET_UI64_RESULT(result, gathered_value);
return SYSINFO_RET_OK;

}
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PERFORMANCE GAINS

A simple shell script that gathers queue depth:
echo "DIS QL($1) CURDEPTH" | runmqsc | grep "[C]URDEPTH(" | grep -o ’[0-9]\+’

The same thing can be (quite easily) done in C.

No surprises. Wrapping it in a module is even more effective.
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SHARE

All the code that I’ve discussed here is uploaded
to Zabbix Share – hope some of it proves useful.

https://share.zabbix.com/cat-app/queue-managers/ibm-mq-agent-module

Keep in mind that it’s written as a proof of concept,
for the purposes of this talk.

You should at least add additional error checking
after each MQI call (see the MQCONN call for an example).
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Any questions?
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Thank you!
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