
Author: Gaylord Aulke, Zend Technologies
Nov. 2, 2007

PHP is not Java: Session 
Management Whitepaper

Technical



�

Zend Technical white paper | PHP is not Java: Session Management Whitepaper

Table of Content
Motivation 3
The Philosophical Background 3
Sessions: Ins and Out 4
How PHP Handles Sessions 4
Special Rules for PHP-based Sessions 5
About Connections 5
Multi-Page Forms/Wizards 6
Summary 6



�

Zend Technical white paper | PHP is not Java: Session Management Whitepaper

Motivation
PHP is used by developers that have a wide range of backgrounds and skill levels. 
When writing scalable PHP applications, it is crucial to understand the “shared nothing“ 
architecture of PHP. The most misunderstood component in this architecture is the session 
handling. 

The Philosophical Background 
Why have the developers of PHP neglected convenient features such as multi-threading, 
shared objects and thread synchronization? Obviously, they were aware of such possibi-
lities and they were capable enough to implement them. But they left them out by design. 
The underlying idea is “shared nothing“ architecture. Each request can be regarded as if 
it were the only one on the system. Process management and isolation is handled entirely 
by the web server. While a number of limitations are inherent to this design, its great 
advantage is simplicity. 
Another advantage is scalability. It is technically very hard to scale Java applications that 
use session objects, as they are live Java Objects that contain code and data. They can be 
accessed at any time by any number of processes and – in a cluster – from any number of 
cluster nodes. There are solutions to this in the Java world, but they are quite complex and 
often inefficient. In PHP, objects do not survive requests. Since every request is handled 
independently, it is very easy to distribute PHP applications across many servers for load 
balancing or fail over.
Resources opened by PHP also do not live longer than one request. Allocated memory is 
released and open connections are closed when the request is complete at the very latest. 
As PHP cleans up after completed requests, a badly coded script cannot kill the whole 
server.
If you have a background in Java – as does the author – you may not think this is en-
ough to build a scalable web application. Yet there are many examples of large, highly 
complex projects serving heavy traffic that use PHP. If you adhere to mainstream PHP 
practices, you will always be able to find much larger projects that reflect best practices 
and have been running successfully for months or years.



�

Zend Technical white paper | PHP is not Java: Session Management Whitepaper

Sessions: Ins and Out
Regardless of the language used, some types of data should go into user session storage 
while others should not. Here are some examples:
Ins
- User authentication: user name or ID after successful authentication, NOT passwords
- Profile data: user profile information after login for quick availability in personalization
- Rights, groups: depending on your rights management system, information about group 

membership and assigned rights and roles of the current user can be stored
-  Statistical information: which pages did the user visit in the current session, and what 

actions did the user perform?
-  Preferences, selection cache: selections the user has already made once can be reta-

ined for the duration of the session
-  Input field values for multi-page forms (see below). 
-  Security codes for form submit control (CAPTCHA support, XSRF protection etc.)

Out
-  Do not store any information pertaining to site navigation in the session. This will dis-

able the ‘Back’ button of the browser and cause a considerable degree of unnecessary 
application complexity. All navigation-related information must be transferred in the 
URL. You may wish to encode the URL, however.

How PHP Handles Sessions
In PHP, sessions are referenced as associative “super global“ arrays ($_SESSION) capa-
ble of storing any kind of information: arrays, objects and scalar values. However, please 
note that the session content is serialized and stored somewhere outside PHP as a binary 
string after every request. The string is read from storage and unserialized for the next 
request – one that may be served by a different machine in a cluster environment. That 
implies a few important rules:
-  Keep session content small (serialize/unserialize may take time otherwise), stay below 

100kb in any case, below 10kb (average) for sites with heavy traffic.
-  Load class definitions before session_start() is done, otherwise objects stored in the 

session cannot be unserialized correctly.
-  Never store resources such as connection handles in the session. They are not seriali-

zable.
Another important fact about sessions in PHP is that they are exclusively locked when 
used within a script. From the point at which a script calls session_start(), storage for a 
given user session is reserved exclusively for that process until the request is finished or 
session_close() or session_write_close() is called. If multiple requests for the same session 
are made concurrently (i.e. in Ajax-enabled sites or when using frames, iframes or em-
bedded media files generated by PHP), they are processed sequentially for the part that 
uses sessions. Many MVC implementations in PHP open the session at the very beginning 
of the request and do not explicitly close the session anywhere in the code. This results 
in sequential processing in the multi-request scenario, even when scaling to different ma-
chines over a cluster.



�

Zend Technical white paper | PHP is not Java: Session Management Whitepaper

Special Rules for PHP-based Sessions
-  Keep them small – no more than 10 kb of session data. Exceptions may be made (Multi-

Page Forms, see below). In any case, unneeded content needs to be removed from the 
session as early as possible.

-  Do not use sessions as a cache. Cache and session semantics differ in PHP. While the 
complete session context is loaded for each request, only a part of the cached data will 
be re-used. You should therefore use other caching methods such as temporary databa-
se tables, Zend Platform Cache API, Zend Framework Cache Module or memcacheD 
to cache pre-calculated values. If the cache is only valid for the current session, use the 
session ID as a part of the cache key.

About Connections
Resources such as connection handles needed for the entire session cannot be stored 
in the PHP session. This is a frequent problem, and common solutions are generally 
available for any scenario that may require them. For example, the connection overhead 
of a MySQL database is so low (and dropping further in version 5.1) that a normal 
connect/disconnect can be used in every request without running into problems on most 
sites. If you need more scale than a single database server can handle, distribute your 
load across multiple database servers and use replication. Further optimization may be 
achieved with SQLrelay or MySQL proxy, but only after verifying that the standard setups 
is unsatisfactory.
Oracle and IBM have recently added low-overhead connection models for PHP in their new 
product versions, making them usable with default PHP connection handling. Commonly 
used back-end systems for PHP such as memcacheD can also handle tens of thousands of 
connections simultaneously with ease.
When using other back-end systems that are less popular in the PHP world and have 
more connection overhead, like IMAP servers or SAP systems, it may be advisable to 
keep a connection open for the duration of the user session. Note that this differs from 
the connection pooling approach since it does not share connections between different 
users but opens one connection exclusively for a single user. Since no object can handle 
such a connection for the duration of a user session on the web-server side, this needs 
to be realized outside the apache process – outside your front-end PHP code. It could be 
implemented by using the PHP2Java bridge while running a small multi-threaded Java 
application to handle access to the connections. Another option would be to set up an 
intermediate service like IMAP PROXY to hold open connections and re-use them. In cases 
where such an application is not already available, it can be implemented in virtually any 
language and called via REST, SOAP, XMLRPC or any other suitable transport protocol. 
For an implementation in PHP, libraries like nanoserve can be used as a base platform. 



�

Zend Technical white paper | PHP is not Java: Session Management Whitepaper

Multi-Page Forms/Wizards
Complex form workflows involving a sequence of forms that can be navigated forward 
and backward by the user are common in web applications. It is a best practice to store 
all entered data in the session only until the user finally commits the result, saving it to the 
database in a single transaction. This reduces database access and obviates the need 
to manage half-completed forms. While this can lead to bigger session sizes, PHP can 
usually handle them with ease. In any case, it is important to clear data from the session 
as soon as possible to reduce average session size across the application.

Summary
PHP sessions are different from the ones used in other languages. Due to the “shared 
nothing“ architecture of PHP, objects cannot survive a request. Session data is therefore 
serialized to external storage for each request, meaning that only serializable data can be 
stored, not resources such as DB handles. This is a very powerful and scalable approach 
for session data averaging around 10-100kb, as serialized session storage can easily be 
spread over a cluster and serialization does not introduce a great deal of overhead.

About Zend Technologies
Zend Technologies, Inc., the PHP company, is the leading provider of products and services for developing, deploying and 
managing business-critical PHP applications. PHP is used by more than twenty-two million Web sites and has quickly become the 
most popular language for building dynamic web applications. Deployed at more than 15,000 companies worldwide, the Zend 
family of products is a comprehensive platform for supporting the entire lifecycle of PHP applications. Zend is headquartered in 
Cupertino, California. For more information, please visit www.zend.com

ZEND: The holistic approach to PHP
• Application management and availability with Zend PlatformTM

• Development of PHP applications with Zend StudioTM, the leading development environment for PHP
• Certified and officially supported PHP installations with Zend CoreTM

• Access to expertise of leading PHP experts with Zend Professional ServicesTM

• Improved PHP knowledge through Zend TrainingTM offers
• Protection of intellectual property and source code and administration of licensing models with Zend GuardTM

• The certified and manufacturer-supported collection of PHP components and PHP libraries – Zend FrameworkTM

• First class 24/7 support via the Zend NetworkTM

© 2007 Zend Corporation · Zend and Zend Platform are registered 
trademarks of Zend Technologies, Ltd. · All other trademarks are the 
property of their respective owners 
0200-T-WP-1107-R1-EN

Your local partner:Corporate Headquarters:
Zend Technologies, Inc.
19200 Stevens Creek Blvd.,
Suite 100
Cupertino, CA 95014
Tel.:  1-888-PHP-ZEND
 1-888-747-9363
Fax: 1-408-253-8801

Central Europe:
(Germany, Austria, Switzerland)
Zend Technologies GmbH
Bayerstraße 83
80335 Munich
Germany 
Tel.:  +49-89-516199-0
Fax:  +49-89-516199-20

International:
Zend Technologies, Ltd.
12 Abba Hillel Street
Ramat Gan
Israel 52506
Tel.:  972-3-753-9500
Fax:  972-3-613-9501

UK:
Zend Technologies
Stirling House
9 Burroughs Gardens
London, NW4 4AU 
United Kingdom
Tel.:  +44 20 8458 8550
Fax:  +44 20 8458 8550

Italy:
Zend Technologies
Largo Richini 6
20122 Milano
Italy
Tel.:  +39 02 5821 5832
Fax:  +39 02 5821 5400

France :
Zend Technologies SARL
5 Rue de Rome
ZAC Les Algorthmes
93110 Rosny sous Bois
France
Tel .:  +33 1 4855 0200
Fax :  +33 1 4812 3132


