

© 2007 Zend Technologies, Inc. All rights reserved.

Zend PlatformTM

White Paper:

Scalability and Responsiveness
with Zend Platform's Job Queue

By Dotan Perry and Shie Erlich

June 2007

Zend PlatformTM

2 w w w . z e n d . c o m

Scalability and Responsiveness with Zend Platform's
Job Queue
Job Queue is used to make applications more responsive by allowing tasks to be

performed on other machines (e.g.: dedicated machine), and scheduling tasks to a

future time (usually to low-traffic hours). Moreover, Job Queue supports more

complex application-level logic such as recurring jobs, job dependencies, job

priorities, different scheduling algorithms (by priority, application etc.), easy

detection and handling of failed jobs. Job Queue offers both a web-based

management UI, and a programmer-oriented rich API, which allows embedding

sophisticated logic into applications. This article will demonstrate basic usage of Job

Queue, through an imaginary company wesellalot.com.

wesellalot.com is a large and successful site, selling all kinds of merchandise to a

very large number of users. In order to support the large operation, wesellalot.com

has a large cluster of web servers, stationed behind a high-end load balancer. The

site's responsiveness is usually good, but is largely affected by the load from the

checkout process, as it involves heavy database activity (verifying credit card's

validity, charging, processing order, sending confirmation emails etc). During peak

customer activity, the delays increase, and the site's responsiveness is at its worst.

Zend PlatformTM

3 w w w . z e n d . c o m

The Simple Scenario
A common layout of cluster web servers consists of a group of machines behind a

load balancer, probably communicating with a database machine, storage devices,

and remote services. In this article, we'll demonstrate a simple Job Queue

deployment, by installing it on a single dedicated machine in the cluster1.

A simplified checkout process consists of the following stages:

1. Verification of the credit card using a remote credit company site

2. Order processing

3. Sending a confirmation email

Each of the steps depends on the successful completion of the previous step, and a

failure in any of the steps requires sending an appropriate email to the customer.

We will optimize the process using the following methods:

1. Offloading the task to the dedicated machine, thereby reducing the load on

the front end web servers

2. Postpone tasks to low-traffic hours, evenly distributing the load throughout

the day

1 If needed, Job Queue can be installed on multiple machines, which allows more fine-grained control over the way jobs are

distributed.

Zend PlatformTM

4 w w w . z e n d . c o m

The original checkout.php script looks like the following:

<?php

$transaction = TxManager::instance()->getTx($_GET['tx_id']);

If (!verifyCreditCard($transaction->creditCard)) {

 sendFailureEmail($transaction->error(), $transaction->customerEmail());

 gracefulExit();

}

If (!processOrder($transaction)) {

 sendFailureEmail($transaction->error(), $transaction->customerEmail());

 gracefulExit();

}

sendSuccessEmail($transaction->customerEmail());

displayOrderConfirmedPage();

?>

This script runs on each of the front end servers during checkout, and the

customer's browser waits for the long operation end before displaying a message.

Zend PlatformTM

5 w w w . z e n d . c o m

Step 1: Off Load to a Dedicated Server
The first example will simply off load the original checkout.php task to the

dedicated machine. Instead of the original checkout.php script (which will now

reside on the dedicated machine).

The front-end server will now run add_checkout_job.php, which looks like:

<?php

$queue = new ZendApi_Queue("192.168.1.10:10003");

$queue->login("queuePassword"); // log into the dedicated job queue machine,
using its password

$checkoutJob = new ZendApi_Job("checkout.php");

$id = $queue->addJob($checkoutJob);

echo "Your order has been added to the queue. The order ID is $id.
Confirmation email will be sent later.";

?>

This script will be very fast, and the actual checkout.php task will be performed

asynchronously on the dedicated machine as soon as possible2.

2 In this example we didn't use any scheduling and priority properties for the job. By default, a job will be

performed as soon as possible.

Zend PlatformTM

6 w w w . z e n d . c o m

Step 2: Scheduling to low-traffic hours
Step 1 was beneficial by increasing the responsiveness of the front-end web server;

however, there is still a very high load on the dedicated machine and database

during peak-hours, which also hurts performance of other processes, such as

adding items to a shopping cart. Various strategies can be used when scheduling

tasks and processes with Job Queue, depending on the load characteristics of the

system as a whole. As an example for the possible benefit of JQ, we'll take a

system where 50% of the load comes from the checkout process and 50% from

other processes. The system load graph exhibits a peak at 09:00-10:00 and

another one at 21:00-23:00.

Load without JobQueue

0
2
4
6
8

10
12
14
16
18
20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Time of Day

Lo
ad Checkout

Other Proccesses

The effects of two possible strategies will be demonstrated:

1. Delaying the execution of all checkout related tasks by 4 hours.

2. Distributing the execution of checkout related tasks randomly across the low

traffic hours.

*Note that in all cases the total load on the system remains the same.

Zend PlatformTM

7 w w w . z e n d . c o m

To simply delay the execution of the job by 4 hours, we would change the

add_checkout_job.php script to look like this:

<?php

$queue = new ZendApi_Queue("192.168.1.10:10003");

$queue->login("queuePassword"); // log into the dedicated job queue machine,
using its password

$checkoutJob = new ZendApi_Job("checkout.php");

$checkoutJob->setScheduledTime(time() + 4*3600);

$id = $queue->addJob($checkoutJob);

echo "Your order has been added to the queue. The order ID is $id.
Confirmation email will be sent later.";

?>

After this modification, the load graph would look like:

Load with JobQueue
(4 hour delay of execution)

0
2
4
6
8

10
12
14
16
18
20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Time of Day

Lo
ad

Checkout

Other Proccesses

Notice that using this simple strategy the peak load dropped by 30% and the load

standard deviation dropped by 41%.

Zend PlatformTM

8 w w w . z e n d . c o m

It isn't much more difficult to implement the second strategy, and distribute tasks

across low traffic hours.

The resulting graph would look like:

Load with JobQueue
(random distribution over low-traffic hours)

0
2
4
6
8

10
12
14
16
18
20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Time of Day

Lo
ad Checkout

Other Proccesses

In this case we got a 46% reduction in peak load, while standard deviation dropped

by 76%!

The lower peak loads mean better responsiveness to the user during the times

when it matters the most. The lower standard deviation means resources can be

fully utilized throughout the day.

Zend PlatformTM

9 w w w . z e n d . c o m

Step 3: Breaking down tasks using dependencies
Step 2 accomplished the goal of moving the load to low-traffic hours; however,

users usually want to know if their credit card is invalid quickly, and not the day

after – which is exactly what happens when the task is scheduled for the night. In

this step, we will break down the checkout process into several steps, and handle

their scheduling separately. The goal is that the credit card verification will be done

ASAP, while other task will still be scheduled to low-traffic hours.

We'll break down checkout.php into several scripts: verify_card.php,

process_order.php, send_email.php. It's important to note that the scripts are

actually dependant on one another (you can't process an order without verifying

the credit card first), so we'll have to introduce the concept of dependencies.

When job B is dependent on job A it means that:

A is called B's predecessor

B will not be performed until A is completed successfully (if A fails, B will not

be executed)

Job Queue supplies an API function that can indicate a logical failure and can be

used to control the application flow (e.g. make the job show as failed if a

connection to database failed, or credit card verification failed).

Zend PlatformTM

10 w w w . z e n d . c o m

The new add_checkout_job.php script now looks like:

<?php

$queue = new ZendApi_Queue("192.168.1.10:10003");

$queue->login("queuePassword"); // log into the dedicated job queue machine,
using its password

$verifyJob = new ZendApi_Job("verify_card.php"); // will be performed ASAP

$verifyJobId = $queue->addJob($verifyJob);

// processOrderJob is both scheduled and dependent on verifyJob

$processOrderJob = new ZendApi_Job("process_order.php");

$processOrderJob->setScheduledTime($time() + 4*3600);

$processOrderJob->setJobDependency($verifyJobId);

$processOrderJobId = $queue->addJob($processOrderJob);

// sendEmailJob is dependent on processOrderJob. There's no need to schedule
it, since it can't be

// performed before processOrderJob is completed successfully

$sendEmailJob = new ZendApi_Job("send_email.php");

$sendEmailJob->setJobDependency($processOrderJobId);

$queue->addJob($sendEmailJob);

?>

This script allows the verify_card.php script to be performed ASAP, thereby allowing

a quicker response to the customer, but the rest of the process is scheduled to low-

traffic hour, thereby reducing the load.

Zend PlatformTM

11 w w w . z e n d . c o m

Step 4: A recurring cleanup job
When the system is running for a long time, failed jobs will start to accumulate

(successful jobs can be configured to be automatically cleaned-up), burdening the

database. In this step, we'll introduce the concept of a recurring job, and

demonstrate use of Job Queue's query abilities. Let's add a cleanup job, which runs

every hour, and cleans up all failed jobs.

Here's a simple snippet of adding a recurring job:

<?php

$queue = new ZendApi_Queue("192.168.1.10:10003");

$queue->login("queuePassword"); // log into the dedicated job queue machine,
using its password

$cleanupJob = new ZendApi_Job("cleanup.php");

$cleanupJob->setRecurrenceData(60*60, time()); // job is performed every hour,
starting immediately

$queue->addJob($cleanupJob);

?>

The code of cleanup.php looks like:

<?php

$queue = new ZendApi_Queue("192.168.1.10:10003");

$queue->login("queuePassword"); // log into the dedicated job queue machine,
using its password

$jobs_status = array(status=>JOB_QUEUE_STATUS_LOGICALLY_FAILED);

$all_failed_jobs = $queue->getJobsInQueue($jobs_status);

foreach ($all_failed_jobs as $failed_job) {

 echo "removing job $failed_job from queue…";

 $queue->removeJob($failed_job);

}

?>

Zend PlatformTM

12 w w w . z e n d . c o m

That was easy, wasn't it? Job Queue offers a rich API that allows for much more

fine-grained control over the jobs in the queue, and more advanced applications

like:

• Querying the status of a job that already completed, including the HTML

output it produced

• Advanced queries (i.e.: jobs with status failed, high priority which originated

in an accounting application)

• Allowing the job to be performed within the same context as the script

inserting the job

• Different scheduling algorithms

I can do all this with Cron, right? Wrong!
A frequently asked question is "why is Job Queue better than simply using a cron

job to schedule PHP scripts?". The main advantage of Job Queue, is that it isn't a

"fire and forget" mechanism like cron, where once a job has been started, there is

no way to follow up on its status, completion etc. Job Queue is a job management

system, which allows doing a lot more:

• Keeping track of previous jobs, including all their attributes (output, date,

errors etc.)

• Dependencies between jobs

• Different prioritization schemes

• Implementing complex application logic based on job attributes

• Different kinds of relevant statistics

• Suspend/resume individual jobs as well as the entire queue

• Easy to use web-based UI

Zend PlatformTM

13 w w w . z e n d . c o m

Conclusion
As this article demonstrated, Job Queue provides an easy way to improve user

experience by performing tasks asynchronously, thereby keeping the page a lot

more responsive. Moreover, it allows offloading tasks to backend machines, thereby

relieving the load from the front-end web server. Job Queue also allows utilization

of unused resources by scheduling resource-intensive tasks to hours where the site

is relatively idle. Since Job Queue supplies a PHP client API, it is very easy to

embed it into existing applications, both for simple routine tasks, and using the

advanced features for building complex applications.

About the Authors:
Dotan Perry is a software engineer in the Zend Platform group, and is Job Queue's
lead developer.
Shie Erlich is a software team leader in the Zend Platform group, co-designer of Job
Queue, and co-author of the Krusader open source project.

	Scalability and Responsiveness with Zend Platform's Job Queue
	 The Simple Scenario
	 Step 1: Off Load to a Dedicated Server
	 Step 2: Scheduling to low-traffic hours
	 Step 3: Breaking down tasks using dependencies
	Step 4: A recurring cleanup job
	I can do all this with Cron, right? Wrong!
	 Conclusion

