

 Zenoss, Inc.
 www.zenoss.com

Zenoss Administration for Version 2.3

Copyright © 2008 Zenoss, Inc., 275 West St. Suite 204, Annapolis, MD 21401, U.S.A. All rights reserved. The Zenoss logo is a
registered trademark of Zenoss, Inc. Zenoss and Open Enterprise Management are trademarks of Zenoss, Inc. in the U.S. and
other countries.

Flash is a registered trademark of Adobe Systems Incorporated.
Java is a registered trademark of Sun Microsystems, Inc.
Linux is a registered trademark of Linus Torvalds.
SNMP Informant is a trademark of Garth K. Williams (Informant Systems, Inc.).
Tomcat is a trademark of the Apache Software Foundation.
Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

All other companies and products mentioned are trademarks and property of their respective owners.

Zenoss Administration for Version 2.3

1. Introduction ... 1
1. Zenoss Overview .. 1

1.1. The Zenoss Standard Model ... 1
1.2. Availability Monitoring in Zenoss .. 1
1.3. Zenoss Event Management System .. 1
1.4. Zenoss Performance Monitoring System ... 2

2. Detailed Architecture ... 3
1. Zenoss Detailed Architecture .. 3
2. User Layer .. 3
3. Data Layer .. 4
4. Collection and Control Services Layer .. 4

4.1. Automated Modeling Daemons ... 4
4.2. Availability Modeling Daemons .. 4
4.3. Event Collection Daemons ... 5
4.4. Performance Monitoring Daemons .. 5
4.5. Automated Response Daemons ... 5

3. Key Concepts ... 6
1. Classification ... 6
2. zProperties .. 6
3. Inheritance and Path Navigation .. 6

4. Zenoss Interface and Navigation .. 7
1. Zenoss Dashboard ... 7
2. Left Navigation Menu .. 7

2.1. Main Views ... 8
2.2. Classes ... 8
2.3. Browse By .. 8

2.3.1. Management Menu .. 8
2.3.2. Adding New Devices .. 8
2.3.3. Adding and Managing MIBS ... 8
2.3.4. Adding Additional Collectors and Scaling Zenoss .. 9
2.3.5. Editing Other Zenoss Settings .. 11

2.4. Hiding the Left Navigation Menu .. 12
3. Directory Path .. 12
4. Device/IP Search Box .. 12
5. User Information Area ... 12
6. Customizing Zenoss Dashboard Portlets .. 12

6.1. Devices Issues Portlet .. 14
6.1.1. Configuring the Device Issues Portlet .. 14

6.2. Top Level Organizers .. 14
6.2.1. Configuring the Top Level Organizer Portlet ... 15

6.3. Watch List Portlet ... 15
6.3.1. Configuring the Watch List Portlet .. 16

6.4. Google Maps Portlet ... 16
6.4.1. Configuring the Google Maps Portlet ... 17

6.5. Zenoss Issues Portlet ... 18
6.5.1. Configuring the Zenoss Issues Portlet .. 18

6.6. Production States Portlet .. 19
6.6.1. Configuring the Production States Portlet ... 19

7. Zenoss Network Map ... 20
8. "Menu-ized" Elements ... 21

8.1. Page Menus ... 21
8.2. Table Menus .. 22

5. User Management ... 23
1. About Zenoss User Accounts ... 23
2. Creating New User Accounts ... 23
3. Editing User Accounts ... 24

3.1. Setting User Passwords .. 25
3.2. Editing User Contact Information .. 25

iii

3.3. Assigning Roles and Permissions to Users ... 25
3.4. Setting the Default User Level ... 25
3.5. Setting the Dashboard Timeout and Refresh Time ... 25
3.6. Specifying a Default Dashboard Organizer .. 26
3.7. Associating Objects in Zenoss with Specific Users .. 26

4. User Groups ... 27
6. Device Access Control Lists (ACLs) (Commercial) ... 29

1. About Device ACLs in Zenoss ... 29
2. Key Elements ... 29

2.1. Permissions and Roles ... 29
2.2. Administered Objects .. 29
2.3. Users and Groups ... 29
2.4. Assigning Administered Object Access ... 29
2.5. Portlet Access Control ... 29

3. Setup and Configuration Examples ... 30
3.1. Restricted User with ZenUser Role .. 30
3.2. Restricted User with ZenManager Role ... 30
3.3. Adding Device Organizers .. 30
3.4. Restricted User Organizer Management .. 30
3.5. Viewing Events .. 31

4. Detailed Restricted Screen Functionality ... 31
4.1. Dashboard ... 31
4.2. Device List .. 31
4.3. Device Organizers .. 31
4.4. Reporting .. 31

7. Email and Pager Settings .. 32
1. About Email and Pager Settings ... 32
2. Setting SMTP and SNPP Information ... 32

8. Organizers and Path Navigation in Zenoss ... 34
1. About Organizers and Path Navigation .. 34
2. Classes .. 34

2.1. Setting zProperties at the Class Level ... 35
2.2. Defining and Applying Templates at the Class Level ... 36
2.3. Creating New Classes .. 37

3. Systems .. 37
3.1. Adding, Moving and Nesting Systems .. 37

3.1.1. Moving the Sub-System .. 38
4. Groups .. 39

4.1. Adding Groups ... 39
4.1.1. Moving Groups ... 40

5. Locations .. 40
5.1. Google Maps Geographic View of Network Health ... 40

5.1.1. Overview .. 40
5.1.2. API Key ... 41
5.1.3. Setting an Address for a Location .. 41
5.1.4. Clearing the Google Maps Cache .. 41
5.1.5. Network Links ... 41
5.1.6. Google Maps Example .. 42

5.2. Adding, Moving, and Nesting Locations ... 42
5.2.1. Moving Sub-locations ... 43

6. Inheritance ... 43
7. Multiple Mix-In Inheritance and Performance (RRD) Template Binding 44

7.1. Template Binding Example 1 .. 44
7.2. Template Binding Example 2 .. 44

9. zProperties ... 45
1. About zProperties .. 45
2. Event zProperties .. 45
3. Device zProperties .. 45

iv

Zenoss Administration Guide

4. Service zProperties .. 49
5. Process zProperties .. 49
6. Network zProperties .. 49
7. Manufacturer zProperties .. 50

10. Device Inventory and Configuration .. 51
1. What is Inventory and Configuration in Zenoss? ... 51
2. How Does Zenoss Model Devices? ... 51
3. The ZenModeler Daemon ... 51
4. Adding an Individual Device ... 51
5. Add an Individual Device with Context ... 53
6. Auto-Discovery of Devices ... 54
7. Device List .. 56

7.1. Managing Multiple Devices using the Device List ... 57
8. Individual Device Tabs ... 57

8.1. Device Status Tab ... 57
8.1.1. Device Status Tab Example .. 58

8.2. OS (Operating Systems) Tab ... 59
8.2.1. File System Monitoring ... 60

8.3. Hardware Tab .. 60
8.4. Software Tab ... 61
8.5. Events Tab .. 62
8.6. History Tab ... 62
8.7. Performance Tab .. 63

8.7.1. Graph Surfing ... 63
8.8. Edit Tab .. 64
8.9. Custom Tab ... 65
8.10. zProperties Tab ... 65
8.11. Templates Tab .. 66
8.12. Administration Tab .. 67
8.13. Collector Plugins tab ... 67
8.14. Modifications Tab ... 67

9. Searching For a Device By Name or IP Address .. 68
10. Editing Device Configurations ... 68
11. Managing Devices ... 69

11.1. Remodeling a Device ... 69
11.2. Changing the Device Class of a Device ... 70
11.3. Resetting Device Manage IP ... 70
11.4. Renaming a Device ... 71
11.5. Locking Device Configurations ... 71
11.6. Resetting the Device Community ... 72
11.7. Pushing Configuration Changes Back to the Zenoss System .. 72
11.8. Clearing Heartbeats ... 72
11.9. Deleting Devices From the System ... 73

12. Modeling Devices Using SNMP ... 73
12.1. Testing to See if a Device is Running SNMP .. 73
12.2. Modeling Remote Windows Devices Using SNMP .. 73
12.3. Modeling Remote Linux Devices Using SNMP .. 74
12.4. Modeling Cisco Devices Using SNMP .. 74

13. Modeling Using SSH/COMMAND ... 74
13.1. Using Device Class to Monitor Devices Using SSH ... 75

14. Modeling Devices Using PortScan .. 75
14.1. Using the /Server/Scan Device Class to Monitor with Portscan 75

15. Modeling Plugins .. 75
15.1. Getting a List of Modeling Plugins for a Device .. 75

16. Debugging the Modeling Process ... 76
17. Using zLinks to Add Custom Links to a Device Status Page .. 76
18. Dumping and Loading Devices Using XML Lists .. 76

11. Monitoring VMware Devices ... 77

v

Zenoss Administration Guide

1. Monitoring VMware Servers with Zenoss .. 77
1.1. ZenVMware ZenPack .. 77
1.2. Setting Up VMware Monitoring .. 77
1.3. Viewing VMware Devices .. 79
1.4. Viewing Guest Virtual Machines .. 80
1.5. VMware Events .. 81
1.6. Migration Events .. 84
1.7. Custom Data Sources .. 84

12. Event Monitoring .. 87
1. About Event Monitoring In Zenoss ... 87
2. Event Concepts ... 87

2.1. Event Life Cycle .. 87
2.2. De-duplication ... 87
2.3. Begin-End Correlation ... 88

3. Zenoss Event Console .. 88
3.1. Viewing Event Details ... 89

4. Generating and Sending a Test Event .. 90
4.1. Sending Events from the Command Line .. 91

5. Event Classes ... 92
5.1. Creating a New Event Class .. 92

6. Event Manager Settings .. 93
6.1. Accessing Event Manager Settings ... 93
6.2. Changing Event Database Connection Information .. 93
6.3. Changing Cache Settings for the Event Manager ... 93
6.4. Change the Maintenance Settings for the Event Manager .. 94

7. Acknowledging Events ... 94
8. Moving Events To History .. 94
9. Clearing The Event History ... 95
10. Event Class Mapping ... 95
11. Applying Event and Device Context Using Event zProperties ... 98
12. Mapping Events Through the UI ... 99
13. Using Mappings to Correlate Events .. 100
14. Event Commands ... 101

14.1. Commands Tab ... 101
14.2. Create an Event Command Example ... 101
14.3. Test the Event Command .. 102

15. SNMP Traps and Event Transforms ... 102
15.1. SNMP Trap Mapping ... 102
15.2. Sending Test Traps .. 103
15.3. Transforming Events with Event Mappings .. 104
15.4. Event Transforms Based on Event Class .. 105

16. Custom Event Views .. 105
17. Use ZenMail and ZenPop to Turn Email Messages into Zenoss Events 107

17.1. ZenMail .. 107
17.2. ZenPop ... 108
17.3. How Zenoss Translates Various Message Elements to the Event 108

17.3.1. How Zenoss uses the FROM field .. 108
17.3.2. How Zenoss uses the TO Field .. 108
17.3.3. How Zenoss uses the SUBJECT Field ... 108
17.3.4. How Zenoss uses the Message Body ... 108

13. Availability Monitoring ... 109
1. Monitoring Topology with ZenPing .. 109

1.1. Controlling the Ping Cycle Time .. 109
1.2. Using the Predefined /Ping Device Class ... 109

2. Monitoring TCP Services .. 109
2.1. Zenstatus ... 110
2.2. Adding a Service To Monitor .. 110
2.3. Monitoring Status Service Status Information ... 110

vi

Zenoss Administration Guide

2.4. Editing Service Information .. 111
2.5. Configuring Service zProperties .. 112
2.6. Using the Predefined /Server/Scan Device Class ... 112
2.7. Monitoring a Service Using a Service Class ... 112

3. Monitoring Processes ... 114
3.1. Adding Processes to Monitor ... 114
3.2. Configuring Process zProperties .. 116

14. Performance Monitoring ... 117
1. Performance Monitoring ... 117
2. Performance Templates .. 117

2.1. The Templates Page ... 118
3. Template Binding .. 118
4. Data Sources .. 119
5. Data Points .. 120
6. Thresholds ... 121
7. Graph Definitions .. 122

7.1. Graph Points .. 123
7.1.1. Data Point Graph Points .. 123
7.1.2. Threshold Graph Points ... 124
7.1.3. Custom Graph Points .. 124

7.2. Custom Graph Definition ... 124
7.3. Graph Commands ... 124

8. Changing the Order of the Graphs .. 125
9. Monitoring A File System and Changing a Threshold ... 125

15. Monitoring Devices Remotely via SSH .. 127
1. Monitoring Devices Remotely via SSH .. 127

1.1. Installing Zenoss Plugins on the Remote Machine ... 127
1.1.1. Zenoss Plugin Installation Technique: RPM ... 127
1.1.2. Zenoss Plugin Installation Technique: setuptools .. 127
1.1.3. Testing the Plugin Installation ... 128
1.1.4. Troubleshooting the Plugin Installation ... 128
1.1.5. Changing Zenoss to Monitor the Devices Remotely Using SSH 128
1.1.6. Using the Predefined /Server/Cmd Device Class ... 130

16. Monitoring Using ZenCommand .. 131
1. About ZenCommands ... 131
2. Example: Writing a ZenCommand (check_http example) .. 131
3. Collect Data from A ZenCommand ... 133
4. Plugin Format for ZenCommands ... 133
5. Testing ZenCommands ... 134

17. Monitoring Windows Devices .. 135
1. Device Preparation for Windows Devices ... 135
2. Setting Windows zProperties ... 135
3. Testing WMI on a Windows Server ... 135
4. Other Optional Windows Configuration Items ... 136
5. Modeling Services on Windows Devices .. 136
6. Collecting Windows Eventlog Events .. 136
7. Monitoring Windows Performance with SNMP-Informant .. 136
8. Running Commands on Windows Servers Using Winexe ... 137

18. Windows Performance Monitoring (Zenwinperf) (Commercial) .. 139
1. About Windows Performance Monitoring ... 139
2. Zenwinperf Daemon .. 139

2.1. ZenwinPerf zProperties .. 139
2.2. How to Create a WinPerf Data Source ... 139
2.3. Windows Performance Counters .. 140

3. /Device/Server/Windows/WMI Device Class .. 140
3.1. Device Templates .. 140

3.1.1. Device Template .. 140
3.1.2. File System Template .. 141

vii

Zenoss Administration Guide

3.1.3. ethernetCsmacd Template .. 141
19. SNMP Monitoring ... 142

1. SNMP from the Command Line ... 142
20. Alerting Rules ... 143

1. Creating and Using Alerts ... 143
1.1. Setting SMTP Settings For Alerts ... 143

2. Creating a New Alerting Rule .. 144
2.1. Define and Enable This Alert .. 146
2.2. 1.1.1 Create the Content of the Alert Message .. 147
2.3. Create a Schedule for Sending the Alert .. 148

3. Escalation of Messaging in Zenoss ... 150
3.1. Creating an Alerting Hierarchy .. 150

4. Adding Delay and Schedules to Alerting Rules .. 151
21. UI Commands ... 152

1. About UI Commands ... 152
2. Defining UI Commands .. 152

2.1. UI Command Example: Echo Command ... 153
3. Running Commands from the Zenoss Web UI ... 154
4. Auto-Running Commands Based on Events .. 154

22. Production States and Maintenance Windows .. 157
1. About Production States and Maintenance Windows ... 157
2. Production States .. 157

2.1. Defining Production States for Devices ... 157
3. Maintenance Windows ... 157

3.1. Creating and Using Maintenance Windows .. 158
23. Reporting ... 160

1. About Reporting in Zenoss .. 160
2. Organizing Reports .. 161
3. Navigating and Sorting Report Results .. 161
4. Exporting Reports ... 161

4.1. Add An Export Button to a Report .. 161
5. Reports Included With Zenoss .. 162

5.1. Device Reports ... 162
5.2. Event Reports .. 163
5.3. Performance Reports ... 163
5.4. User Reports .. 164

6. Graph Reports .. 164
6.1. Creating a New Graph Report .. 165
6.2. Adding Graphs ... 165
6.3. Customizing Graph Text ... 166
6.4. Organizing Graphs .. 167

7. MultiGraph Reports ... 167
7.1. Creating A New MultiGraph Report ... 168
7.2. Collections .. 169
7.3. Graph Definitions ... 170
7.4. Graph Groups .. 171
7.5. Graph Order .. 172

8. Creating Custom Reports .. 172
8.1. Creating Custom Reports Using the ZMI ... 172
8.2. Create A Custom Device Report Example .. 172

9. Using Reports to Help Troubleshoot Zenoss Daemons .. 174
24. Advanced Zenoss Reports (Commercial) .. 175

1. Additional Reports ... 175
25. General Zenoss Administration ... 176

1. Working with Zenoss from the Command Line .. 176
2. Minimal Zenoss - ZEO and Zope .. 176
3. Checking the Version of Zenoss .. 176
4. Checking for Zenoss Updates .. 177

viii

Zenoss Administration Guide

5. Starting and Stopping the Zenoss Daemons .. 177
6. Zenoss Daemon Commands and Options ... 177

6.1. Configuring Zenoss Daemons ... 178
6.2. General Options for All Daemons .. 178
6.3. zenhub Options .. 178
6.4. zenmodeler Options .. 178
6.5. zenperfsnmp Options ... 179
6.6. zenperfxmlrpc Options ... 179
6.7. zenprocess Options ... 180
6.8. zenping Options ... 180
6.9. zensyslog Options ... 180
6.10. zenstatus Options .. 180
6.11. zenactions Options .. 181
6.12. zentrap Options ... 181
6.13. zencommand Options ... 181

7. Troubleshooting Zenoss Daemons .. 181
8. Automatic Startup in Linux Environments .. 182
9. Using Zenoss with a Remote MySQL Instance .. 182
10. Loading and Registering MIBs with Zenoss .. 182

10.1. Resolving MIB Dependencies .. 183
26. Backup, Recovery and Maintenance .. 184

1. Backup and Restore ... 184
1.1. Backup Details ... 184
1.2. Backups Tab .. 185
1.3. Remote Backups ... 185
1.4. Restore Details ... 185
1.5. Periodic Backups .. 186

1.5.1. Pack ZEO Database .. 186
1.5.2. Log Rotate Script ... 186
1.5.3. Backing up the MySQL Event Backend .. 186

27. ZenPacks ... 187
1. Introduction to ZenPacks .. 187

1.1. Installing ZenPacks ... 187
1.1.1. Installing via the Command Line ... 187
1.1.2. Installing via the User Interface ... 188
1.1.3. Installing All Core ZenPacks via RPM .. 188

1.2. Creating a ZenPack ... 188
1.2.1. Packaging and Distributing Your ZenPack ... 189

1.3. Removing a ZenPack ... 189
2. Zenoss Core ZenPacks ... 189

2.1. ZenJMX ZenPack ... 189
2.1.1. About ZenJMX .. 189
2.1.2. JMX Background ... 189
2.1.3. ZenJMX Capabilities .. 190
2.1.4. Single Value Attribute Calls .. 190
2.1.5. Complex-Value Attribute Calls .. 191
2.1.6. Operation Calls .. 191
2.1.7. ZenJMX Behavior .. 194
2.1.8. Running the ZenJMX Daemon .. 194
2.1.9. Defining Custom JMX Data Sources .. 194
2.1.10. Enabling Remote JMX Access .. 195
2.1.11. Interrogating an JMX Agent via JConsole .. 196
2.1.12. Installing ZenJMX .. 200

2.2. ApacheMonitor ZenPack .. 200
2.3. DellMonitor ZenPack .. 202
2.4. HPMonitor ZenPack .. 202
2.5. MySqlMonitor ZenPack ... 202
2.6. NtpMonitor ZenPack ... 203

ix

Zenoss Administration Guide

2.6.1. Components .. 203
2.6.2. DataSource Class Options .. 203
2.6.3. Example ... 203

2.7. LDAPMonitor ZenPack ... 204
2.7.1. Components .. 204
2.7.2. DataSource Class Options .. 204
2.7.3. Additional Configuration ... 205
2.7.4. Example ... 205

2.8. RPCMonitor ZenPack .. 205
2.8.1. Components .. 205
2.8.2. DataSource Class Options .. 205
2.8.3. Additional Configuration ... 206
2.8.4. Example ... 206

2.9. IRCMonitor ZenPack .. 206
2.9.1. Components .. 206
2.9.2. DataSource Class Options .. 207
2.9.3. Example ... 207

2.10. JabberMonitor ZenPack .. 207
2.10.1. Components .. 207
2.10.2. DataSource Class Options .. 207
2.10.3. Example ... 208

2.11. DigMonitor ZenPack ... 208
2.11.1. Components .. 208
2.11.2. DataSource Class Options .. 208
2.11.3. Example ... 209

2.12. FTPMonitor ZenPack ... 209
2.12.1. Components .. 209
2.12.2. Datasource Class Options ... 209
2.12.3. Example ... 210

2.13. NNTPMonitor ZenPack .. 210
2.13.1. Components .. 210
2.13.2. DataSource Class Options .. 211
2.13.3. Example ... 211

28. Zenoss Global Dashboard (ZenGlobe) (Commercial) .. 212
1. About Zenoss Global Dashboard (ZenGlobe) .. 212
2. Additional Requirements .. 212
3. Installation ... 212

3.1. Setting Up Users on Remote Zenoss Instances .. 213
4. Setup and Configuration ... 213
5. Using the Zenoss Global Dashboard .. 213
6. Viewing a Zenoss Instance from the Zenoss Global Dashboard ... 214
7. Logging out of ZenGlobe .. 214

29. Zenoss High Availability ... 215
1. Overview ... 215
2. Conventions ... 215
3. Prerequisites ... 216
4. Installation of Packages .. 216
5. Stopping Services .. 216
6. Setting up DRBD for File System Replication ... 216
7. Relocating Shared Data to the Replicated Disk .. 217
8. Setting up Heartbeat for Resource Migration .. 218
9. Setting up Heartbeat Resources .. 218
10. Troubleshooting .. 220
11. References ... 220

30. Distributed Collector .. 221
1. What is Distributed Collector? ... 221

1.1. Restrictions and Requirements ... 221
1.2. Navigating Existing Collectors and Hubs ... 221

x

Zenoss Administration Guide

2. Typical Usage Scenarios for Distributed Monitoring ... 222
2.1. Scalability on the Local Device ... 222
2.2. Scalability Over Multiple Remote Devices ... 222
2.3. Collectors and or Hubs Set Up through a Firewall ... 222
2.4. Collection Over Multiple Overlapping IP Spaces .. 222

3. Deploying Hubs .. 222
4. Deploying Collectors ... 224

4.1. Deleting Collectors ... 225
4.2. Updating a Hub or Collector ... 225

5. Adding Devices to Collectors ... 225
5.1. Moving Devices Between Collectors .. 226
5.2. Installation Notes .. 227
5.3. Debugging ... 227
5.4. Firewall Notes .. 227
5.5. Platform Notes ... 228

31. Monitoring Virtual Host Machines (Commercial) ... 229
1. About Monitoring Virtual Host Monitoring ... 229
2. Using Zenoss Virtual Host Monitor ... 229

32. Predictive Thresholding (ZenHoltWinters) (Commercial) .. 230
1. About Predictive Thresholding ... 230
2. Using Predictive Thresholding ... 230
3. Customizing the Thresholds .. 230

33. Authentication Enterprise ZenPacks .. 231
1. Active Directory Authentication (Commercial) .. 231

1.1. About Active Directory Authentication .. 231
1.2. Active Directory Monitored Metrics ... 231

2. LDAP Authentication in Zenoss (Commercial) .. 232
2.1. About LDAP Authentication ... 232
2.2. Setting Up LDAP Authentication ... 232

34. Transaction Monitoring ZenPacks ... 233
1. Synthetic Transactions (Zenwebtx)(Commercial) ... 233

1.1. About Synthetic Transaction (Zenwebtx) ... 233
1.2. Overview .. 233
1.3. Creating a WebTx Data Source .. 233
1.4. Data Source Tab ... 234
1.5. Script Tab .. 234
1.6. Creating the Twill Commands ... 235
1.7. TestGen4Web ... 235
1.8. Manually Creating Twill Commands ... 235
1.9. Event Generation .. 236
1.10. Data Points .. 236

2. Mail Transactions Monitoring (ZenMailTx) (Commercial) .. 236
2.1. About Mail Transaction Monitoring .. 236
2.2. Creating a ZenMailTX Data Source .. 236
2.3. Zenmailtx daemon .. 237

3. SQL Transaction Monitoring (ZenSQLTx) (Commercial) .. 237
3.1. About SQL Transaction Monitoring .. 237
3.2. How To Create an SQL Data Source ... 237

35. Application Monitoring Enterprise ZenPacks .. 238
1. MS SQL Monitoring (MSSQLServer)(Commercial) .. 238

1.1. About MS SQL Transaction Monitoring .. 238
1.2. Installed Objects ... 238

1.2.1. Device Class .. 238
1.2.2. Event Class ... 238
1.2.3. WinServices .. 238
1.2.4. IpServices ... 238
1.2.5. Performance Templates ... 238
1.2.6. Datasources ... 238

xi

Zenoss Administration Guide

1.2.7. Thresholds .. 239
1.3. Using the MSSQLServer ZenPack .. 239

2. MS Exchange Monitoring (MSExchange)(Commercial) ... 239
2.1. About MS Exchange Monitoring .. 239
2.2. Installed Objects ... 239

2.2.1. Device Classes ... 239
2.2.2. Event Classes .. 239
2.2.3. Event Class Keys .. 239
2.2.4. Alerting Rules .. 240
2.2.5. WinServices .. 240
2.2.6. IP Services .. 240
2.2.7. Performance Templates ... 240
2.2.8. Datasources ... 240
2.2.9. Thresholds .. 241

2.3. Performance Counters and Thresholds .. 241
2.4. Reports, Views & Dashboards ... 241
2.5. Using the the MSExchange ZenPack .. 242

3. IIS Monitoring (Commercial) .. 242
3.1. About IIS Monitoring .. 242
3.2. Setting up IIS Monitoring ... 242

4. JBoss Application Server Monitoring (Commercial) ... 242
4.1. About JBoss Application Server Monitoring ... 242
4.2. Overview .. 242
4.3. Collected Metrics for JBoss .. 243
4.4. Setting Up the JBoss ZenPack ... 244

5. WebLogic Application Server Monitoring (Commercial) ... 244
5.1. About WebLogic Application Server Monitoring ... 244
5.2. Weblogic Collected Metrics .. 244

5.2.1. Overall Application Server Vitals ... 244
5.2.2. Entity EJB, Message Driven Bean (MDB), and Session EJB Subsystem Met-
rics .. 245
5.2.3. Data Pool (JDBC) metrics .. 245
5.2.4. Queue (JMS) Metrics .. 245

6. Tomcat Application Server Monitoring (Commercial) ... 245
6.1. About Tomcat Application Server Monitoring ... 245
6.2. Collected Metrics for Tomcat .. 246
6.3. Tomcat Monitoring Setup ... 246

36. Integration Enterprise ZenPacks ... 247
1. Remedy Integration in Zenoss (Commercial) .. 247

1.1. About Remedy Integration .. 247
1.2. Setting Up Remedy Integration .. 247

2. RANCID Integration (Commercial) .. 247
2.1. About RANCID Integration .. 247
2.2. Setting Up RANCID Integration .. 248

A. Net-SNMP and Zenoss .. 249
1. Net-SNMP Configuration Settings .. 249

1.1. Community Information ... 249
1.2. System Contact Information .. 249
1.3. Extra Information ... 249

B. Event Database Dictionary .. 250
1. Event Database Dictionary .. 250

C. TALES Expressions .. 251
1. About TALES Expressions .. 251
2. TALES Device Attributes .. 251
3. TALES Event Attributes ... 253

D. Device Preparation .. 254
1. Net-SNMP ... 254
2. SNMP V3 Support ... 254

xii

Zenoss Administration Guide

3. Forwarding Syslog Messages from UNIX/Linux Devices .. 255
4. Forwarding Syslog Messages from a Cisco IOS Router ... 255

4.1. Other Cisco Syslog Configurations ... 255
5. Forwarding Syslog Messages from a Cisco CatOS Switch ... 256
6. Forwarding Syslog Messages using Syslog-ng .. 256

E. ZenWebTx Twill Commands Reference ... 258
1. About Twill Commands .. 258
2. Browsing ... 258
3. Assertions .. 258
4. Display .. 258
5. Forms ... 259
6. Cookies ... 259
7. Debugging ... 259
8. Other Commands .. 259
9. Details on Form Handling ... 260
10. ZenWebTx Extensions to Twill ... 261

10.1. twilltiming ... 261
10.2. twillextract ... 262
10.3. ignorescripts ... 262

F. Basic Troubleshooting in Zenoss .. 263
1. How To Troubleshoot Zenoss Daemons ... 263

1.1. Identify the Problem .. 263
1.1.1. Check the logs ... 263
1.1.2. Get more information .. 263
1.1.3. Find out what the program is _really_ doing .. 263

1.2. Narrow the Problem .. 264
1.3. Look for Conflicts ... 264
1.4. Reproduce the Problem .. 264
1.5. Getting Help Solving the Problem .. 264

1.5.1. Search the Zenoss Forums .. 264
1.5.2. Report the Problem to Zenoss ... 264

xiii

Zenoss Administration Guide

Chapter 1. Introduction
1. Zenoss Overview
The Zenoss system brings together many types of monitoring and management information. This information is
available through a standard web browser. In fact, all aspects of the system are accessed though the web there is
no need to edit configuration files. At a high level, Zenoss consists of four major parts:

Figure 1.1. Zenoss High-Level Architecture

1.1.The Zenoss Standard Model

At the heart of Zenoss is the Standard Model. The model is a detailed description of any device Zenoss manages
and that device's relationship to your other devices, business units or any other important groupings you define.
Because of the high degree of detailed information in the model, there are several ways the model's information
is populated. The primary way information is added to the model is through a process Zenoss calls "auto-discovery".
Auto-discovery is defined as Zenoss using one of the available transports to discover the services, interfaces etc
on a device. From this information, Zenoss builds a model of the device in the system. The model can also be
populated by adding and manipulating data associated with the device though the web UI (or through Zenoss' ex-
ternal APIs). Version 2.0 adds discovery locking, which allows auto-discovered information to be tightly integrated
with manually added information. The model is used to drive all monitoring elements of the Zenoss system, which
will be described throughout the rest of this document.

1.2. Availability Monitoring in Zenoss

Availability monitoring in Zenoss consists of the system running tests against the IT infrastructure to determine
if it is currently functioning properly. These tests are typically run external to the monitored system. Examples
tests include: ping tests, process tests, and service tests.

1.3. Zenoss Event Management System

The Zenoss Event Management System is a consolidation of status information from all parts of the Zenoss system
as well as any monitored external systems. When a Zenoss monitoring daemon detects a failure or threshold breach,
events are generated. This is similar to most other monitoring systems available. Zenoss does more in that it also

1

incorporates event imports from other parts of the IT infrastructure. These include Syslog and SNMP Traps. It is
one thing to bring the events into a single repository but an event management system must do more. As events
are received, Zenoss runs them through a set of rules that augment the information contained therein and integrates
all of this information into the Zenoss Model.

1.4. Zenoss Performance Monitoring System

The Zenoss Performance Management System tracks important IT resource information and tracks these changes
over time. It is critical to know how much disk space is available, what the CPU load is, or how long a web page
takes to download. Zenoss can collect information using SNMP, custom scripts (ZenCommands) or XML-RPC.
Performance information is integrated with the Zenoss Model so that resource usage is shown in the context of
other Zenoss information.

2

Introduction

Chapter 2. Detailed Architecture
1. Zenoss Detailed Architecture
The following diagram shows a more detailed view of the architecture of the Zenoss system.

Figure 2.1. Zenoss Detailed Architecture

The diagram shows the 3 distinct layers of the Zenoss system: The User Layer, the Data layer, and the Collection
and Control Layer where the Zenoss Daemons reside and perform their duties.

2. User Layer
The User Layer is manifested as a Web Console/Portal. This layer consists of the Graphical User Interface (GUI),
which allows the user access to the following pieces of information:

LocationsEventsDashboard

ReportsManufacturersDevices

UsersSystemsServices

AdministrationGroupsNetworks

The User Layer Interacts with the Data layer and translates the information for display in the GUI.

3

3. Data Layer
The Data Layer is where all of the system information is stored. This layer consists of the Zenoss Daemons as well
as zeoctl and zopectl to run the heart of the system. Zeoctl is the back-end object database that stores the configur-
ation model, and zopectl controls the zope web application development environment used to display the console.

DescriptionDaemon

ZenRRD gathers Time Series Data and acts as an
RRDtool.

ZenrRRD

Zenevents interacts with the MySQL Events Database.Zenevents

Zenmodel Is the United Configuration Model of the Zope
object database.

Zenmodel

Broker of information between the data layer and the
collection daemons.

Zenhub

4. Collection and Control Services Layer
The services that collect the data and feed it to the Data Layer come from the daemons associated with the Collection
and Control Services Layer. These daemons can be broken down into five distinct areas: Automated Modeling,
Availability Monitoring, Event Collection, Performance Monitoring, or Automated Response. The daemons that
fall under each layer are detailed below.

4.1. Automated Modeling Daemons

DescriptionDaemon

Zendisc is a subclass of zenmodeler and it goes out to
discover new network resources. It walks the routing

Zendisc

table to discover the network topology and then pings
all discovered networks to find active IPs and devices.

ZenWinModeler is used for the auto-discovery of Win-
dows Services (WMI) running on a windows box.

ZenwinModeler

ZenModeler is a configuration collection and configura-
tion daemon. It is used for high-performance, automated

ZenModeler

model population using SNMP, SSH, and Telnet to col-
lect its information. Zenmodeler works against devices
that have been loaded into the DMD.

4.2. Availability Modeling Daemons

DescriptionDaemon

Zenping is the ping status monitoring (ICMP) for Zenoss.
Zenping does the high-performance asynchronous testing
of the ICMP status.

Zenping

Zenstatus performs active TCP connection testing of re-
mote daemons.

Zenstatus

Zenprocess enables process monitoring using SNMP
host resources MIB.

Zenprocess

4

Detailed Architecture

4.3. Event Collection Daemons

DescriptionDaemon

Zensyslog is collection of and classification of syslog
events.

Zensyslog

Zeneventlog is used collect (WMI) event log events.Zeneventlog

Zentrap collects SNMP Traps. It receives traps and turns
them into events.

Zentrap

4.4. Performance Monitoring Daemons

DescriptionDaemon

ZenperfSNMP does the high performance asynchronous
SNMP performance collection.

ZenperfSNMP

ZenperfXMLrpc is used for XML RPC Collection.ZenperfXMLrpc

Zencommand is used for XML RPC Collection specific-
ally it allows the running of Nagios© and Cactii plug-
ins on the local box or on remote boxes through SSH.

Zencommand

4.5. Automated Response Daemons

DescriptionDaemon

Zenactions is used for alerts (SMTP, SNPP and Mainten-
ance Windows).

Zenactions

5

Detailed Architecture

Chapter 3. Key Concepts
1. Classification
Many of Zenoss’s hierarchies are used to classify IT entities, things like Devices (computers, routers, switches,
etc) or Events (status information sent out by devices). Once an item is properly classified the system understands
more about the item. This makes proper classification an important activity in the system. Often classification
happens automatically with the ability for manual override later.

2. zProperties
Zenoss allows configuration to be specified using its hierarchical organization system. zProperties are properties
applied to devices or groupings that help maintain more specific control in different modules of Zenoss. zProperties
can be set at any level of a hierarchy, and values set at lower levels of the hierarchy override those above.

3. Inheritance and Path Navigation
Zenoss uses hierarchies much like a file system does to organize information. These hierarchies are navigated using
paths just like a UNIX file system or a web URL. The paths are navigating objects in a database though, and not
an actual file system.

6

Chapter 4. Zenoss Interface and
Navigation
1. Zenoss Dashboard
Once you have installed Zenoss and entered the URL for the UI, the Zenoss Dashboard appears. The Dashboard
is the primary window into the devices, events and activities within the Zenoss system. The Dashboard shows
Systems-level event summaries, devices that currently have events with severity of at least “Error” magnitude,
and infrastructure issues along with a navigational bar. There is a search field, where you can enter a machine’s
name or partial name or IP address. All or some of a machine's name may be typed in to search for it, as well as
an IP address. User information may be accessed through the “Preferences” link in the top right of the screen.
Below the Preferences link is the time and date that Zenoss was last updated. Every 60 seconds there is an AJAX
call that refreshes the data fields and polls for new data. If the poll fails, it will display “Lost Connection to Zenoss”
near the User information area.

Figure 4.1. Zenoss Dashboard

2. Left Navigation Menu
The Left Navigation menu consists of the three main sections: the Main Views, Classes, Browse By, and a Man-
agement Section.

Hiding the Left Navigation Menu

7

You can use the triangle above the left navigation menu to hide the menu, and then you can use the pin icon to
“pin” the menu into place and the left navigation menu will remain visible.

2.1. Main Views

The Main Views section of the Navigational Bar consists of the following views: The Dashboard, which returns
you to the main view; The Event Console, which will show a list of all of the current events in the Event Database;
The Device List, which shows you a list of all of the devices in the Zenoss system; and the Network Map link
which shows you a graphical representation of the devices in your network.

2.2. Classes

The Classes area contains the following links: The Events link will take you to the event management tabs where
you can monitor event status, events, history, zProperties, event transforms and also track any changes made to
events. The Devices link allows you to manage sub-devices and a summary of events by severity. You can also
look at events sorted by severity followed by device name, history of device events, PerfConfig, zProperties for
Devices, and recent changes made to the Devices. The Services link allows you show service Classes, administer
commands on a Service basis and also access zProperties and track any changes made to Services monitoring.
Processes Classes allows you to create new process groupings)here called Sub-folders) and also add processes to
monitor. You can also set a Sequence or order in which to gather process monitoring information. You can also
use the Process Class to run commands against processes, or access process zProperties. The Products link will
show you a list of all the manufacturers of devices in the Zenoss database.

2.3. Browse By

Use the "Browse by" areas to see data based on any of the logical groupings Zenoss allows you to create. Either
"Systems", a more generic "Groups", the physical location-related "Locations", a networking based "Networks",
or you can see and define "Reports". Browsing by Systems allows you to see network statuses broken down into
the system groupings you have created. Show performance data based on these systems and also see Events and
the Event history for these systems. You can also Use the Administration tab to define commands, create maintenance
windows or define administered objects on a Systems basis. Browsing by Groups allows you access to the same
kind of data accessed when Browsing by System (only here on a "Group" basis) with the notable exception of
tracking Performance data on a Group basis. Browsing by Locations refer to seeing data related to devices grouped
by physical locations. Here devices can only be in one location but multiple nested sub-locations. A device can
reside in several Groups in the groupings area, but should only reside in one physical location at a given level of
a hierarchy. Nesting in sub-locations is perfectly acceptable, though. For example, a device can reside in the Loc-
ation "Maryland", and also in sub-location Annapolis, but not simultaneously in the sub-location "Bethesda". Even
though both are sub-locations you can define under "Maryland". You can also see a cool Google-based map of the
physical locations of your devices and see status that way. Browsing by Networks, will show you the devices and
sub-networks, based on IP address groupings. You can also see and access zProperties based on IP address
groupings and see any changes made to any Networks. The Reports option allows you to see and define the Reports
available within the Zenoss system.

2.3.1. Management Menu

2.3.2. Adding New Devices

Use the Add Device left navigation menu to add new devices into Zenoss. For more information about adding
devices see the "Adding Devices" section in this guide.

2.3.3. Adding and Managing MIBS

You can use the Mibs link in the left navigation menu to add and manage MIBs in Zenoss. The preferred method
of MIB loading is still to do it from the command line using zenmib (as decribed in the section called "Loading
and Registering MIBs with Zenoss". This tab is especially useful for checking MIBs you have loaded through the
command line. You can, however use the Mibs link to create and build your own Mibs. To add a MIB, select the
Mibs link and from the table menu and select Add Mib. You can add all of the

8

Zenoss Interface and Navigation

You can also use this table menu to delete MIBS and move them into different sub folders.

2.3.4. Adding Additional Collectors and Scaling Zenoss

You can add additional collectors to Zenoss to allow for better performance and scaling when the device count
gets too large for one collector. This number is somewhere between 1000 and 1200 devices. When a Zenoss col-
lector is collecting data from more than that number of devices, it becomes harder for the collector to complete
the collection cycle in the given cycle interval time. The default collector is localhost, but you can add another
instance of Zenoss on another server to act as a collector. In prior versions of Zenoss, these collectors were known
as Performance Monitors and Status Monitors.

Figure 4.2. Collectors Tab

If you click the name of a collector you will see all of the attributes of a given collector. You can also see all of
the devices that this collector will monitor.

Figure 4.3. Individual collector attributes

9

Zenoss Interface and Navigation

If you click the Edit tab you can change any of the following settings to better optimize this collectors performance
against the devices you want it to poll.

Figure 4.4. Individual Collector Edit tab

• Event Log Cycle Interval (secs) - The Event Log Cycle interval tells the controller The default is 60 secs.

• SNMP Performance Cycle Interval (secs) - The SNMP Performance Cycle Interval tells the controller at what
interval to run the SNMP performance cycle to get performance data from the devices. The default is 300 seconds.

• Process Cycle Interval (secs) - This setting sets the number of seconds to wait before polling the devices for
process status information. The default is 180 seconds.

• Process Parallel Jobs - This setting limits the number of parallel jobs this collector is allowed to perform for
Zenoss at any given time. The default is 10 jobs.

• Status Cycle Interval (secs) - This setting sets the number of seconds to wait between polling the devices for
this collector for their status. The default is 60 seconds.

• Windows Service Cycle Interval (secs) - This setting controls the interval at which the collector polls Windows
devices for Service status data. The default is 60 seconds.

• Windows Modeler Cycle Interval (secs) - This setting sets the number of seconds to wait in between polling
Windows devices to model them. The default is a 60 second interval.

• Config Cycle Interval (mins) - This setting sets the interval for getting and sending configuration data for the
collector and associated devices. The default is 360 minutes.

10

Zenoss Interface and Navigation

• Ping Time Out (secs) - This setting sets the time after which an unreturned ping packet will generate another
ping try up to the number set in the Ping Tries setting. The default is 1.5 seconds.

• Ping Tries - This setting sets a number of times to attempt to get a ping packet returned from the collector. The
default number of tries is 2.

• Maximum Ping Packets in Flight - This setting sets the maximum number of ping packets allowed to be either
coming or going from the collector as generated by this central instance of Zenoss. The default number of
packets allowed is set to 75.

• Ping Cycle Time (secs) - The number of seconds to wait before sending another ping packet to a device. The
default is 60 seconds.

• Maximum Ping Failures - The default maximum ping failures is 1440

• Modeler Cycle Interval (mins) - This is the default interval for modeler to model the devices the collector is re-
sponsible for. The default is 720 mins.

• Default Discovery Networks - This where to put the networks you want this collector to discover by default.
For example using the 10.1.2.0/24 namespace will give you that namespace as a basis for the other devices.

• Render URL - The render URL is the URL to provide the performance data to the viewing instance of Zenoss.

• RenderServer - The render server is the location of the server on the collector where the performance and status
information is served from.

• Render User - If the render server specified above requires a user, you would see/enter the render server user
name here. The default is blank.

2.3.5. Editing Other Zenoss Settings

The following settings can be changed in this tab.

• Dashboard Production State Threshold - This setting defines the production state of devices that are allowed to
appear on the dashboard. The number here correlates with the State conversion setting below. Any device having
a threshold below this threshold will not appear on the dashboard regardless of the event severity.

• Dashboard Priority Threshold - Use this threshold to define what severity of events are allowed to appear on
the dashboard. This threshold correlates with the Priority conversions defined below. Any event having a dash-
board priority that falls below this threshold will not appear on the dashboard.

• State Conversions - These settings associate a numerical value to each of the defined production states. It is not
important what the numbers are as much as the relationship between the numbers. It is also used in the Dashboard
Production state threshold above.

• Production:1000

• Pre-Production:500

• Test:400

• Maintenance:300

11

Zenoss Interface and Navigation

• Decommissioned:-1

• Priority Conversions - These settings associate a numerical value to each of the defined event priorities. It is
not important what the numbers are as much as the relationship between the numbers. It is also used in the
Dashboard Priority threshold above.

• Highest:5

• High:4

• Normal:3

• Low:2

• Lowest:1

• Trivial:0

• Administrative Roles - Use the Administrative Roles file to define and name administrative roles to be associated
with groups of users, they currently do not have differences in permission levels, but are good for grouping
users by job function. A decent organizer tool, but it will not differentiate access levels.

• For more information about the email and paging settings found on this tab, see the "Setting SMTP and SNPP
Information" section in this guide.

2.4. Hiding the Left Navigation Menu

You can use the triangle above the left navigation menu to hide the menu, and then you can use the pin icon to
“pin” the menu into place and the left navigation menu will remain visible.

3. Directory Path
The directory path is where the path on the machine is displayed showing the current location of the data appearing
in the UI.

4. Device/IP Search Box
You can use the Search box to find any device using its name (or partial name) or IP address.

5. User Information Area
The ID of the current user is shown in the top right of the screen just to the left of the Preferences link. You can
also access user setting by clicking the Settings link in the left navigation area in the link or log out using the Log
Out link.

6. Customizing Zenoss Dashboard Portlets
You can customize the Zenoss Dashboard by selecting and arranging various portlets that display different inform-
ation about the system. You can also arrange how the portlets appear on the screen.

To set the arrangement of the portlets on the dashboard, from the top right hand side of the Dashboard, select
Configure layout. The Column Layout dialog appears.

12

Zenoss Interface and Navigation

Figure 4.5. Column Layout Dialog

Select the column layout for your dashboard. Once you have selected the column layout, you can then drag and
drop the portlets wherever you want on those grids.

To select which portlets you want to see on the dashboard: From the Zenoss Dashboard, in the top right, select
Add Portlet. The Add Portlet dialog appears.

Figure 4.6. Add Portlet Dialog

Select the portlets you want to appear on the dashboard from the list. Available portlets include:

• Device issues

• Top level Organizers

• Watch List

13

Zenoss Interface and Navigation

• Google Maps

• Zenoss Issues

• Production States

6.1. Devices Issues Portlet

This section displays the name of the device, the acknowledged status, and amount of Critical and Error severity
level events. “Devices” can be clicked on to take you to the Devices event log, which is default sorted by severity.
Clicking on the specific device will take you to the device log of that device. The events are shown in fractions of
acknowledged/total. If they are acknowledged it shows the user that acknowledged it.

Figure 4.7. Device Issues Portlet

6.1.1. Configuring the Device Issues Portlet

To configure the information that appears in the Device Issues Portlet click the asterisk in the top right of the
portlet window. A drop down configuration dialog appears where you can change the information for this portlet.
You can change the Title of the portlet or the Refresh Rate. This is also how you remove the portlet from the
Dashboard.

Figure 4.8. Device Issues Portlet Configuration

6.2.Top Level Organizers

The Top Level Organizers portlet shows all of the organizers at the top level of the hierarchy so you can see summary
events for each organizer.

14

Zenoss Interface and Navigation

Figure 4.9. Top Level Organizer Portlet

6.2.1. Configuring the Top Level Organizer Portlet

To configure the information that appears in the Top Level Organizer Portlet click the asterisk in the top right of
the portlet window. A drop down configuration dialog appears where you can change the information for this
portlet. You can change the Title of the portlet or the Refresh Rate, and also choose which Root Organizer you
want to display. This is also how you remove the portlet from the Dashboard.

Figure 4.10. Top Level Organizer Configuration

6.3. Watch List Portlet

The Watch List Portlet shows a Device Watch List you can configure a list of watch devices an also the refresh
rate for the gathering data for devices in the list. The Watch list portlet can also be used to watch individual Event
Classes in the case that you have different people in the department handling different kinds of errors - and you
want to separate the event-flow. Example; You map disk read errors for the symmpi driver to /VMWare, and you
want your VMWare staff to watch that event class - but not necessarily watch everything going on with the guests.

Figure 4.11. Watch List Portlet

15

Zenoss Interface and Navigation

6.3.1. Configuring the Watch List Portlet

To configure the information that appears in the Device Issues Portlet click the asterisk in the top right of the
portlet window. A drop down configuration dialog appears where you can change the information for this portlet.
You can change the Title of the portlet or the Refresh Rate. This is also how you remove the portlet from the
Dashboard. You can also add or remove devices from the Watch List here.

Figure 4.12. Watch List Portlet Configuration

6.4. Google Maps Portlet

The Google Maps Portlet allows you to see the Location map with Location you have set up and network connection
statuses. Here is a look at the Google Maps portlet.

Figure 4.13. Google Maps Portlet

16

Zenoss Interface and Navigation

6.4.1. Configuring the Google Maps Portlet

To configure the information that appears in the Device Issues Portlet click the asterisk in the top right of the
portlet window. A drop down configuration dialog appears where you can change the information for this portlet.
You can change the Title of the portlet or the Refresh Rate. This is also how you remove the portlet from the
Dashboard. You can also set the Base Location here.

Figure 4.14. Configuring the Google Maps Portlet

17

Zenoss Interface and Navigation

6.5. Zenoss Issues Portlet

Zenoss Infrastructure Issues will show any problems with a Zenoss daemon. Heartbeats statuses of the Zenoss
daemons appear here when there is a problem. If an issue appears in this list, it could be that the daemon is not
running.

Figure 4.15. Zenoss Issues Portlet

6.5.1. Configuring the Zenoss Issues Portlet

To configure the information that appears in the Device Issues Portlet click the asterisk in the top right of the
portlet window. A drop down configuration dialog appears where you can change the information for this portlet.
You can change the Title of the portlet or the Refresh Rate. This is also how you remove the portlet from the
Dashboard.

Figure 4.16. Configuring the Zenoss Issue Portlet

18

Zenoss Interface and Navigation

6.6. Production States Portlet

The Production States Portal allows you to see all of the devices in a given Production State.

Figure 4.17. Production State Portlet

6.6.1. Configuring the Production States Portlet

To configure the information that appears in the Device Issues Portlet click the asterisk in the top right of the
portlet window. A drop down configuration dialog appears where you can change the information for this portlet.
You can change the Title of the portlet or the Refresh Rate. This is also how you remove the portlet from the
Dashboard. You can also choose what Production States you want to appear on the Dashboard here.

19

Zenoss Interface and Navigation

Figure 4.18. Configuring the Production State Portlet

7. Zenoss Network Map
The Network Map is a Flash representation of your network's layer 3 topology. You can see the status of the devices
on your network by noting the background color of the devices. You can select a particular device or network by
double clicking on its icon in the map. This will center the map on the device or network and show the links from
this node based on the number of hops selected. The same result is achieved by typing the name of the device or
network and clicking the "Refresh" button. Note that when you select a node what is actually displayed are the
links that are currently loaded into the map it does not download new link data at that time.

To load/reload the link data for a particular node, double click on that node, select the number of hops and click
the refresh button. You can also filter the devices shown by Device Class. For example, to show only Linux devices,
select /Server/Linux in the Device Class Filter and click refresh.

You can also adjust the number of viewable hops from the selected device by using the Number of Hops slider in
the top right corner. You can also spread out the icons on the map by using the Repulsion slider also in the top
right corner. If you'd like to get more detail on the selected device or network, just click the Go to Status Page link
in the top left corner.

20

Zenoss Interface and Navigation

Figure 4.19. Zenoss Network Map

8. "Menu-ized" Elements
Zenoss now has two different kinds of menus where some elements that previously resided on pages are now located.

8.1. Page Menus

Page menus extend the tabs near the top of the page and usually affect the entire object that the page represents.
This could be a device, event or any grouping of these elements. In the following figure you can see the Page menu
expanded next to the Classes tab.

Figure 4.20. Page Menu

21

Zenoss Interface and Navigation

8.2.Table Menus

Table menus are accessed by clicking the triangle next to a table title inside a particular page. The following figure,
which is the same page as above, shows the Table menu expanded. In this case it is the Sub-Devices table menu.

Figure 4.21. Sub-Devices Table Menu

22

Zenoss Interface and Navigation

Chapter 5. User Management
1. About Zenoss User Accounts
Each user should have a unique User ID. These User IDs group permissions and alerting rules together as well as
providing security to the Zenoss system. To create and manage user accounts in Zenoss, you must be logged into
the Zenoss Admin account, or logged in to a created user account with manage privileges. Custom Event Views
and Alerting Rules are also defined per user. Those items are discussed in other areas of this documentation.

2. Creating New User Accounts
To create a new user account:

1. From the menu on the left side of the Zenoss Dashboard, select Zenoss Settings.

2. Click the Users Tab. The Users Administration page appears.

Figure 5.1. User Administration page

3. Click the User Folder table menu to show the User Options.

Available options will be Add User, Delete User and Add to ZenPack

4. Select Add User.

The Add User dialog appears.

Figure 5.2. Add User Dialog

23

5. Enter a name for the account in the Username field.

6. Enter an Email address for the user account.

This is the address where any alerts you set up for this user will be sent.

7. Click the OK button.

The user appears in the User List.

You have now created a new user account. You must still edit the User account to provide a password and ad-
ditional User details. See the Editing Users section in the Users Guide section for information on setting User
preferences.

3. Editing User Accounts
1. From the menu on the left side of the Zenoss Dashboard, select Settings.

2. Click the Users Tab.

The Users Administration page appears.

3. Click the name of the user account you want to edit.

The individual User Administration page for the newly created user appears.

Figure 5.3. Individual User Administration Page

4. Make the changes as detailed in the sub sections below and click the Save button to keep the changes.

24

User Management

3.1. Setting User Passwords

From the Individual User Administration page, assign a password for the user. Enter it again to confirm it in the
next text box.

3.2. Editing User Contact Information

From the Individual User Administration page, you can enter and edit the email address and/or pager number.

3.3. Assigning Roles and Permissions to Users

From the Individual User Administration page, you can assign specific roles for each user privileges for this User.
These roles are roles available to be set by the one Zenoss Admin user. If you have manger role set, then you can
change settings for your own account or for any other accounts as well (including other manager accounts).

Table 5.1.

PrivilegesRole

The Manager role has full privileges. This role has
viewing and editing privileges on objects in the system.
Managers also see the Management area of the Naviga-
tion menu on the left side of the web console. These op-
tions include: Adding Devices, User management for all
users (including changing roles), Monitors, Live Event
viewing, History Events and also the About information.

Manager

ZenUser has viewing information of all the information
in the system., Users with the role ZenUser can also edit
their own user information (except for changing their
Role). ZenUsers cannot add devices and do not see the
Management section of the Navigation menu on the left
side of the web console.

ZenUser

3.4. Setting the Default User Level

The Default User Admin Level sets the default role for administered objects. This default is easily changed, but
you should choose the role here that is most commonly added. Choose between the following roles to set as the
default.

• Administrator

• Engineer

• Analyst

• Tester

These User admin levels are currently merely ways to categorize and group users. In the future there may be more
attributes that would be assignable per group/role. For now it is just a way to categorize and classify users.

3.5. Setting the Dashboard Timeout and Refresh Time

You can change the Dashboard Settings such as timeout and Refresh times on a per user basis. In the Dashboard
Refresh and Dashboard Timeout fields, enter the number of seconds before a timeout message appears for the
Zenoss Dashboard.

25

User Management

3.6. Specifying a Default Dashboard Organizer

The default Dashboard organizer is what appears in the Devices Summary on the Dashboard for this particular
user. You can change your default dashboard view to display the information as either Devices, Systems, Groups,
or Locations.

3.7. Associating Objects in Zenoss with Specific Users

You can associate any object in the Zenoss system with a particular user (for monitoring or reporting purposes).
To create these associations:

1. From the Individual User Administration page, click the Administered Objects tab.

The Administered Object Tab appears.

Figure 5.4. Administered Objects Initial View

2. Select an object type from the Administered Devices table menu. You can choose between adding a Device,
System, Group, or Location.

A dialog will appears where you can specify the component you want to add as an administered object.

3. Click the OK Button.

The Device appears in the Administered Devices list for this user.

26

User Management

Figure 5.5. Administered Object - Object Added

4. You can now change the role that is associated for this user on this object.

The default role is set in the Individual User Administration Page.

You can also set administered objects from the device you want to add as an administered object. For example,
navigate to the device you want to add to this user’s administered objects page. Open the page menu for this
device, select More and then the Administration option. Open the Administrator's table menu choose Add Ad-
ministrator and select the user you want to add as an administrator. The object is added to the user’s administered
object list, and the name appears in this object’s Administrator’s List.

4. User Groups
You can create Zenoss User groups to aggregate rules and apply them across multiple user accounts. To create a
new User Group:

1. From the Left Navigation menu, select Settings.

2. Click the Users tab.

The Users tab appears.

Figure 5.6. Users Tab showing User Groups

3. From the Groups table menu, select Add New Group.

The Add New Group dialog appears.

27

User Management

Figure 5.7. Add New User Group Dialog

4. In the Group field, enter a name for this user group.

5. Click the OK button.

The name of the group you entered appears in the Groups list.

6. Click the name of the Group you just created.

The Edit tab for this group appears.

7. From the Users In Group Table menu, select Add User.

The Add User to Group dialog appears.

Figure 5.8. Add User to Group Dialog

8. From the User drop-down, select the users you want to add to the group.

9. Click the OK button.

The user(s) you have selected appear in the list of users for this group.

You can also choose administered objects and Alerting Rules for this User group. These Alerting Rules will apply
to all users in the group. The User's original Alerting Rules and objects will also apply.

28

User Management

Chapter 6. Device Access Control Lists
(ACLs) (Commercial)
1. About Device ACLs in Zenoss
The Device ACL Enterprise ZenPack (ZenDeviceACL) adds fine-grained security controls to Zenoss. For example,
this control can be used to give limited access to certain departments within a large organization or limit a customer
of a service provider to only see their own data. A user with limited access to objects also has a more limited view
to screens within the system. As an example, most global views, such as the network map, event console, and all
types of class management are not available. The Device List is available as are the device organizers; Systems,
Groups, and Locations. A limited set of reports can also be accessed.

2. Key Elements

2.1. Permissions and Roles

Actions within Zenoss are assigned permissions. For instance to access the device edit screen you must have the
“Change Device” permission. Permissions not assigned directly to a user since this would be difficult to managed.
Instead permissions are granted to Roles, which are then assigned to a user. A common example is the ZenUser
role within Zenoss Core. Its primary permission is “View” which grants read-only access to all objects. ZenManagers
have additional permissions such as “Change Device” which grants them access to the device edit screen. The
Device ACL ZenPack has two the new role, ZenRestrictedManager, which allows a more limited set of device
edit functions. In Zenoss Core when you assign a role to a user using the Roles field on the Edit tab it is “global”.
When creating a restricted user you may not want to give that user any global role.

2.2. Administered Objects

Device ACLs provide limited control to various objects within the system. Administered objects are the same as
the device organizers: Groups, Systems, and Locations and Devices. If access is granted to any device organizer,
it flows down to all devices within that organizer. To assign access to objects for a restricted user, you must have
the Manager or ZenManager roles. Zenoss grants access to objects is granted using the “Administered Objects”
tab of a user or user group. To limit access, you must NOT assign a “global” role to the user or group.

2.3. Users and Groups

Users and user groups work exactly as they would normally. See the section in the User Management section of
this guide dealing with users and groups.

2.4. Assigning Administered Object Access

On each user or group there is a tab called “Administered Objects”. The menu has an add item for each type of
administered object. Adding an object will pull up a dialog box with live search on the given type of object. After
an object has been added you can assign it a role. Roles can be different for each object so a user or group might
have ZenUser on a particular device but ZenManger on a location organizer. If multiple roles are granted to a
device though direct assignment and organizer assignment the resulting permissions will be additive. In our example
above if the device was within the organizer the user would end up with the ZenManager role on the device.

2.5. Portlet Access Control

Within Zenoss Core portlet access can be controlled this is important for Device ACLs see the Zenoss Admin
Guide for more details.

29

3. Setup and Configuration Examples

3.1. Restricted User with ZenUser Role

1. As admin or any user account with Manager or ZenManager role create a user named acltest. Don’t forget to
set its password.

2. From the user’s Edit tab, make sure that no role is assigned.

3. Now go to the user’s “Administered Objects” tab.

4. On the menu select the “Add Device…” item and add an existing device to that user.

The device’s role will default to ZenUser, leave it this way for now.

5. Log out of your browser, or open a second browser and login as acltest.

6. Click on the “Device List”.

You should see only the device you assigned to acltest.

7. Navigate to the device and notice that you don’t have the “Edit” tab available. This is because you are in read-
only mode for this device.

3.2. Restricted User with ZenManager Role

Following the example above:

1. Change the acltest user’s role to “ZenManager” on the device.

You will need to do this as a user with ZenManager global rights. Log out and back in if necessary.

2. Go back to the acltest user “Administered Objects” tab and set the role on your device to ZenManager.

3. As acltest, navigate back to your device and notice that you now have access to the Edit tab. The device menu
will have many more items as well

3.3. Adding Device Organizers

1. Go to the Groups root and create a group called “RestrictGroup”.

2. Go back to the acltest user’s Administered Objects tab and add the group to the user.

3. Now logged in as acltest notice that the left nav has the Groups item. Group can be added to a user. If more are
added then the first will be used.

4. Now place a device within this group and as acltest you should not only see the device within the group but
also in the device list

3.4. Restricted User Organizer Management

1. Now give the acltest user ZenManager on your RestrictedGroup.

30

Device Access Control Lists (ACLs)
(Commercial)

2. As acltest you can now add sub-organizers under the RestrictedGroup.

3.5. Viewing Events

A user in restricted mode does not have access to the global event console. The available events for the user can
be seen under his organizers.

4. Detailed Restricted Screen Functionality

4.1. Dashboard

By default the dashboard is configured with only three portlets: Object Watch List, Device Issues, and Production
State. These have content that will be restricted to objects for a given user.

4.2. Device List

The device list will automatically be filtered to devices of a restricted user scoped to accessible devices. There are
no menu items available.

4.3. Device Organizers

Device organizers are a good way to control groups of devices for a restricted user. Remember that every device
added to the group will be accessible to the user. Permissions will be inherited down multiple tiers of a device or-
ganizer.

4.4. Reporting

Reports are limited to device reports and performance reports.

31

Device Access Control Lists (ACLs)
(Commercial)

Chapter 7. Email and Pager Settings
1. About Email and Pager Settings
Zenoss alerts can be sent to users via email (SMTP) or pager (SNPP.) Many operating systems include an SMTP
server (such as Sendmail or Postfix) with their distributions. If your OS does not include a mail server you will
need to install one or specify a separate SMTP server in the settings. Many pagers can accept messages via email,
but Zenoss also provides the option of sending pages via SNPP if you specify an SNPP server in the settings.

2. Setting SMTP and SNPP Information
To edit Zenoss's SMTP and SNPP settings make sure you are logged into a Zenoss manager account and click on
Settings in the left navigation menu.

1. While logged in to a user account with management privileges, from the left navigation menu, click Settings.
The Settings Tab appears.

Figure 7.1. Zenoss Settings- Settings Tab

2. Change the following SMTP Settings as necessary:

32

Table 7.1.

DescriptionField

Set the SMTP Host to your corporate email server. If
you were a Zenoss employee for example your corpor-
ate email server would be mail.zenoss.com.

SMTP Host

Usually Port 25.SMTP Port

leave this field blank for noneSMTP Username

leave this field blank for noneSMTP Password

Use if you want the emails to come from a specific
email address.

From Address for Emails

Check this box if you use transport layer security for
your email alerts.

Use TLS?

3. Enter a Page Command as necessary if you are using Zenoss to send pages. The pageCommand variable enables
Zenoss to executes the pageCommand when a page is sent, and writes the message to the stdin of the subshell.
The command prints any error messages to stdout. This enables a wider ranging of paging customization.

The page Command that is standard in zenoss is:

$ZENHOME/bin/zensnpp localhost 444 $RECIPIENT

This uses ZENHOME to send the page from the localhost, but you can use any page command customizations
you want. In this case $RECIPIENT is actually the paging address for the user as set in the setting for each
user.

33

Email and Pager Settings

Chapter 8. Organizers and Path
Navigation in Zenoss
1. About Organizers and Path Navigation
Zenoss allows you to group any objects in the system (devices, subsystems, zProperties, templates, etc.) The
groupings can be created in any way that you desire or define. There are also device classes that are tied to events
coming into the system and inheritance works the same for any of these groupings. So each device can belong to
several different groupings including groups, systems, locations and device classes. In the example below, you
can see the device tilde.zenoss.loc belongs to 5 different classifications. Any zProperties and monitoring settings
for each of these groups are now applied to to tilde.zenoss.loc.

Figure 8.1. Device Groupings

Zenoss uses several organizers to classify and organize devices in the system.

• Class - the most important organizer - templates and zProperties are inherited through this hierarchy

• Systems

• Groups

• Locations

2. Classes
The most important organizer within Zenoss is Class. There are Device Classes, Event Classes, Service Classes,
and Product Classes. Templates and zProperties are can both be inherited based on Class. These attributes can be
overwritten further down the class hierarchy all the way down to the individual component level. The Class hierarchy
includes all defined and standard Classes and Sub-classes.

The following examples use Device Classes and Sub-classes, but the same concepts apply to Event Classes, Service
Classes, and Product Classes. When you add a new device to Zenoss, you should (after providing the network
name or IP address), at a minimum, specify its device class. Templates and zProperties can be set at any level in
the Device Class hierarchy.

To see all of the device in Device Class:

1. From the left navigation menu, select Devices.

34

The Device Classes tab appears. Notice the navigation path above the tab has changed to '/Devices'. This is
how you know your position within the class hierarchy.

Figure 8.2. Device Class Tab

The Device Class tab shows an event rainbow for that class level and a Summary for the next level of class hierarchy
with an indicator of whether or not there any devices in any of the classes that have events associated with them.

2.1. Setting zProperties at the Class Level

To set zProperties at the Device Class Level:

1. Navigate to the Device Class tab for the class you where you want to set zProperties, and click the zProperties
Tab.

The zProperties tab for this Device Class appears.

35

Organizers and Path Navigation in
Zenoss

Figure 8.3. Device Class zProperties tab

2. Now you can define any of the normal Device zProperties and these will apply to all devices in this class or
added to this class unless over-ridden at a lower level in the hierarchy.

2.2. Defining and Applying Templates at the Class Level

To define Templates at the Device Class Level:

1. Navigate to the Device Class tab for the class you where you want to set Templates, and click the Templates
Tab.

The Templates tab for this Device Class appears.

36

Organizers and Path Navigation in
Zenoss

Figure 8.4. Device Class Template tab

2. Now you can define or bind any Device Template and they will apply to all devices in the class or added to this
class unless over-ridden at a lower level in the hierarchy.

2.3. Creating New Classes

To create a new Device Class:

From the Class level where you want to add the organizer, navigate to the Classes tab.

From the SubClasses Table menu, select Add New Organizer and then enter a name for the organizer.

To add devices to this device class you can navigate to the Device List, select the Devices you want to add to the
class and from the table menu, select Move to Class and choose which class you want to move the devices to.

3. Systems
Systems are intended to follow virtual setups like you would have in a network setup or systems grouped by
functionality.

3.1. Adding, Moving and Nesting Systems

To create a new System or Sub-System:

1. From the Navigation menu on the left, under Browse by, select Systems.

The Sub-systems Status tab appears.

37

Organizers and Path Navigation in
Zenoss

Figure 8.5. Sub-systems Status Menu

2. Open the Sub-Systems table menu and select the Add New Organizer option. The Add Organizer dialog appears.

Figure 8.6. Add Organizer Dialog

3. In the ID field, Enter the name for the new Sub-system.

4. Click OK.

The new sub-system is added and appears in the list.

3.1.1. Moving the Sub-System

To move the sub-system into another group or sub-group:

1. Select the system from the system list by clicking the check box next to the systems that you want to move and
then open the Sub-Systems table menu to show the Subsystem options.

2. Select the Move Organizer option. The Move Organizer dialog appears:

38

Organizers and Path Navigation in
Zenoss

Figure 8.7. Move Organizer Dialog

3. From the pop-up menu, select where you want to move this system.

4. Click Move.

The system is moved to the selected system and the attributes page for the system where you moved the system
appears.

4. Groups
Using Groups is much like using systems only the intent is to use groups as functional divisions or even monitoring
organizers to assign attributes to multiple objects with similar function or even among departmental lines. Note
that groups do not appear on the Dashboard. Even though they do not appear on the dashboard, they still help to
create additional organizers for monitoring or alerting.

4.1. Adding Groups

1. From the Navigation menu on the left, under Browse by, select Groups.

2. From the Settings tab, open the Sub-Groups table menu.

3. Select the Add New Organizer option.

The Add Organizer dialog appears.

Figure 8.8. Add Organizer Dialog

4. In the ID field, Enter the name for the new Sub-Group.

5. Click OK. The new sub-group is added and appears in the list.

39

Organizers and Path Navigation in
Zenoss

4.1.1. Moving Groups

To move the sub-group into another group or sub-group:

1. Select the group from the group list by clicking the check box next to the groups that you want to move and
then open the Sub-Groups table menu to show the group options.

2. 1.Select the Move Organizer option.

The Move Organizer dialog appears.

Figure 8.9. Move Organizer

3. From the pop-up menu, select where you want to move this group.

4. Click Move.

The group is moved to the selected group and the attributes page for the group where you moved the group
appear.

5. Locations
Using Locations is much like using systems and groups only the intent is to use locations as logical groupings for
physical locations of systems. They can be as general as city and state or as specific as rack or closet. It is completely
customize-able. Note that locations also do not appear on the Dashboard. Even though they do not appear on the
dashboard, they still help to create additional organizers for monitoring or alerting.

5.1. Google Maps Geographic View of Network Health

5.1.1. Overview

Zenoss can map Locations using a Google Maps mashup feature by setting the Location's "Address" property to
an address that Google Maps considers valid. The selected Location will appear on the map as a dot. The color of
the dot represents the highest severity of any event on any device under that Location. In addition, network con-
nections that span Locations will be represented on the map by lines also color-coordinated to the appropriate to
the status of that connection.

To access the Google Map for a network Location, from the left navigation menu, click 'Locations', select the
Location you wish to see the network map, and click the 'Map' tab. The Network map is also one of the portlets
you can add to the dashboard.

40

Organizers and Path Navigation in
Zenoss

5.1.2. API Key

Before you can use the Google Maps feature, you must register for a Google Maps API key. Free Google Maps
API keys are linked to a base URL by which an application must be accessed for Google Maps to function. Enterprise
customers do not have this limitation.

To obtain a free Google Maps API key:

1. Point your browser to: http://www.google.com/apis/maps/signup.html

2. Fill in the URL by which you access your Zenoss web interface. Include the port. For example, "http://local-
host:8080".

Users accessing the Zenoss web interface via a different URL than the one you specify here (for example, by
IP instead of hostname) will not be able to use the Google Maps feature.

3. Agree to the terms and click OK to receive your API key. Copy it to the clipboard.

5.1.3. Setting an Address for a Location

1. From the left navigation menu, select Locations.

2. From the Summary table, next to Address, click Edit.

An Edit dialog slides down.

3. In the New Address field, enter a complete address that can, be resolved by Google Maps (if you're unsure,
head to http://maps.google.com and see if it maps).

4. Click the Save button.

You have now created the address for the location that will appear on the map for this location. You must add
devices (at least one) to the Location for the dot to appear on the map.

5.1.4. Clearing the Google Maps Cache

Sometimes there can be issues with drawing the maps and seeing the network status of locations or connections.
Clearing out the Geocache will solves the problems. Zenoss provides a menu item to clear the geocode cache. To
clear the geocode cache, navigate to the Locations tab and from the page menu, select the Clear Geocode Cache
menu item.

5.1.5. Network Links

If two devices in the same network are in different mappable Locations, a line will be drawn on the map representing
a network connection between the two. If there are multiple separate network connections between the same two
Locations, only one line will be drawn. The color of the line will represent the highest severity of any events af-
fecting the connection. These are determined by:

• A ping down event on the device at either end of the connection; or

• Any event on the interface at either end of the connection.

5.1.5.1. zDrawMapLinks Property

Calculating network links on the fly is an expensive procedure. If you have a large number of Devices that have
been assigned Locations, drawing those links on the map may take a long time. In order to save time, you can tell

41

Organizers and Path Navigation in
Zenoss

Zenoss not to attempt to draw links for specific networks (for example, a local network comprising many devices
that you know does not span multiple Locations).

1. Navigate to the Network and click the "zProperties" tab.

2. Set the "zDrawMapLinks" property to "False."

3. Click "Save."

Like all zProperties, this setting will be inherited by all subnetworks. If you have few networks for which links
would be drawn, it might be a good idea to set zDrawMapLinks to False on /Networks, and only set it to True
on a network where you know a Location-spanning WAN connection exists.

5.1.6. Google Maps Example

This example will walk you through creating and displaying some Google map links of devices and sending a test
event to see how the links are affected by changes in the system.

1. Navigate to /Network, click "zProperties" and set "zDrawMapLinks" to False. Save.

2. Navigate to /Locations and create two sub-Locations, called "New York" and "Los Angeles".

3. Go to the Status tab of each of the two new Locations. Set the "Address" property of each to "New York, NY"
and "Los Angeles, CA" respectively.

4. Set the location of a device in Zenoss to /Locations/New York. Find another device on the same network and
set its location to /Locations/Los Angeles.

5. Navigate to /Locations and click on the "Map" tab. Notice that both New York and Los Angeles are represented
as dots on the map, but that there is no link drawn between the two.

6. Now navigate to the Network to which both devices are connected. Click the "zProperties" tab and set
"zDrawMapLinks" to True. Save.

7. Navigate back to the "Map" tab of /Locations. Notice that a green line is now drawn between New York and
Los Angeles.

8. Send an event (See Chapter 10, Section 4 of this guide) to the device in /Locations/New York, with a severity
of "Critical." Do not specify a component. Now refresh the /Locations "Map" tab. Notice that the New York
dot has become red. Also notice that the link between New York and Los Angeles remains green.

9. Now navigate to the New York device's "OS" tab and determine the id of the component that is connected to
the network shared with the Los Angeles device. Send another test event, but this time specify that component.
Now refresh the /Locations "Map" tab and notice that the line linking the two locations has become red.

5.2. Adding, Moving, and Nesting Locations

To create a new Location or Sub-Location:

1. From the Navigation menu on the left, under Browse by, select Locations.

The Sub-locations Status tab appears.

42

Organizers and Path Navigation in
Zenoss

2. Open the Sub-Locations table menu to show Sub-Locations options.

3. Select the Add New Organizer option.

The Add Organizer dialog appears.

4. In the ID field, Enter the name for the new Sub-location.

5. Click OK.

The new sub-location is added and appears in the list.

5.2.1. Moving Sub-locations

To move the sub-location into another location or sub-location:

1. Select the location from the location list by clicking the check box next to the locations that you want to move
and then from the Sub-Locations table, select the Move Organizer option. The Move Organizer dialog appears.

2. From the pop-up menu, select where you want to move this location.

3. Click Move.

The location is moved to the selected location and the attributes page for the location where you moved the
location appears.

6. Inheritance
Inheritance is how many attributes are applied to device at different points in the device hierarchy. The following
diagram shows an example of how and where zProperties can be set throughout the device class tree.

Figure 8.10. Zenoss Device Class Tree and Inheritance

In this example, you can see that the default properties can be set at the highest level (/), as you go further down
the hierarchy, though, you can see that you can override any of the zProperties set at the root level. The next two
lines show how the device tree further defines properties for Linux servers. If you wanted to set up and use SNMP

43

Organizers and Path Navigation in
Zenoss

monitoring for the all Linux servers (inclusive of) build.zenoss.loc, you can change these properties at the /Serv-
er/Linux level. Now if you wanted to change how you collected information for remote Linux servers (such as
dev.zenoss.loc) you can create a sub-group within the /Server/Linux group called /Server/Linux/Remote and set
these servers will use SSH monitoring and change the associated properties for that sub-group. Now also within
the /Server group you can create another sub-group for Windows servers that change the zProperties specifically
for WMI monitoring. All of these zProperties and groupings co-exist with any changes made lower in the hierarchy
taking priority. It is very similar to a directory tree only you can place items in multiple organizers.

7. Multiple Mix-In Inheritance and Performance (RRD)
Template Binding
Performance configurations are stored in objects called RRDTemplates, frequently just referred to as templates.
Templates contain other objects that define where and how to obtain performance data, thresholds for that data
and graphs of the data. A template can be defined anywhere in the Device Class hierarchy or on an individual
device.

The determination of which templates apply to what objects is called binding. There are two steps to binding: first
is determining which template names are appropriate and second is locating the correct templates with those names.
The template names used for components such as FileSystems, Interfaces, etc is the same as the components' meta
type. For example, file systems use templates name FileSystem. Devices are more complex because users can
modify the names of the templates to be used and can specify more than one name. This list of template names is
stored in the zDeviceTemplates zProperty. This zProperty can be edited directly on the zProperties page of any
Device or Device Class. It can also be edited through the Bind Templates menu item and dialog available from
the Templates page of any Device or Device Class. The second step of template binding is finding the correct
template with the given name. As with zProperties, templates can be defined directly on a Device or they can be
inherited from one of the Device Classes above it. The first templates found with the correct names searching up
the hierarchy are used. Any similarly named templates farther up the hierarchy are ignored.

7.1.Template Binding Example 1

You add a new device at /Devices/Server/Linux/Example1Server. You haven't edited its zDeviceTemplates so it
is inheriting the value of "Device" from the root Device Class, in this case "/Devices". Zenoss looks to see if there
is a template named Device defined on Example1Server itself. There is not, so it checks /Devices/Server/Linux.
There is a template named Device defined for that Device Class, so that template is used for Example1Server.
There is also a template named Device defined at /Devices, but that one isn't used in this case because the one at
/Devices/Server/Linux overrides it.

7.2.Template Binding Example 2

You want to perform specific monitoring of servers running a certain web application, but those servers are spread
across several different Device Classes. You create a new template at /Devices called WebApplication with the
appropriate Data Sources, Thresholds and Graphs. You then append the name "WebApplication" to the
zDeviceTemplates zProperty for the Devices Classes and/or individual Devices running this web application. (You
could use the Bind Templates menu item and dialog on the Templates page if you prefer instead of directly editing
zDeviceTemplates.)

44

Organizers and Path Navigation in
Zenoss

Chapter 9. zProperties
1. About zProperties
The previous section hinted at zProperties and how they are inherited throughout the system. This section will
detail those zProperties and how to access them to set them, and what each one does.

zProperties are properties that Zenoss uses to specify various items that control the information in the system.
ZProperties are very powerful and can automate many tasks that are repeatable or things you would normally have
to do on an individual basis and apply them in many places or groups.

zProperties are configured either for all items, for an individual device, or for any devices that fall further down
in the hierarchy tree. zProperties are also zen-packable meaning the settings you set here will be added to any
ZenPack you create for wherever in the class hierarchy you are. zProperties exist for:

• Events

• Devices

• Services

• Networks

2. Event zProperties
To access Event zProperties, from the left navigation menu, select Event and click the zProperties tab. You can
also set zProperties for any event class in the events hierarchy by navigating to the level in the event hierarchy
where you want to set the zProperty and clicking the zProperties tab.

Table 9.1.

DescriptionProperty TypeProperty Name

Location to which an event will be
stored. Possible values are: status,
history and drop. Default is status
meaning the event will be an “active”
event. History sends the event directly
to the history table. Drop tells the sys-
tem to discard the event.

stringzEventAction

A list of classes that a clear event
should clear in addition to its own
class.

lineszEventClearClasses

Allows you to override the severity
value of an event. If this is -1 it is ig-
nored. Possible values are 0 – 5.

intzEventSeverity

3. Device zProperties
To access Device zProperties, from the left navigational menu, select Devices and then click the zProperties tab.
You can also select any of the Device Classes and the zProperties tab to set zProperties anywhere in the Device
hierarchy. To set zProperties for an individual Device, navigate to that device, open the page menu, select the
More option and then the zProperties tab.

45

Table 9.2.

DescriptionProperty TypeProperty Name

Allows you to set the timeout time of
the collector client in seconds

intzCollectorClientTimeout

Converts incoming characters to Uni-
code.

stringzCollectorDecoding

Switch to indicate whether to log
changes.

booleanzCollectorLogChanges

A link to tall collector plugins for this
device.

lineszCollectorPlugins

Time to wait for a command to com-
plete.

floatzCommandCommandTimeout

The cycle time you use when execut-
ing zCommands for this device or or-
ganizer.

intzCommandCycleTime

***stringzCommandExistanceTest

Time to wait for a login prompt.floatzCommandLoginTimeout

Number of times to attempt login.intzCommandLoginTries

Password to use when performing
command login.

intzCommandPassword

Default path where ZenCommand
plug-ins are installed on the local

stringzCommandPath

Zenoss box or a remote box in the case
where SSH is used to run the com-
mand.

Port to connect to when performing
command collection.

intzCommandPort

Protocol to use when performing
command collection. Possible values
are ssh, telnet.

stringzCommandProtocol

Path to search for any commands.lineszCommandSearchPath

Username to use when performing
command collection.

stringzCommandUsername

Templates associated with this device.
Linked by name.

lineszDeviceTemplates

Regular expression of file system
names to ignore.

stringzFileSystemMapIgnoreNames

DO NOT USElineszFileSystemMapIgnoreTypes

Icon to represent the device wherever
device Icon is shown (network map,

lineszIcon

device status page etc.) Most devices
such as windows servers, Linux serv-
ers, and routers have images set by
default

Show the interface description field in
the interface list.

booleanzIfDescription

A regular expression filters out inter-
faces that should not be discovered.

stringzInterfaceMapIgnoreNames

46

zProperties

DescriptionProperty TypeProperty Name

A regular expression filters out inter-
face maps that should not be dis-
covered.

stringzInterfaceMapIgnoreTypes

Highest port to scan, default to 1024.intzIpServiceMapMaxPort

Path to the key to access a device.lineszKeyPath

Place to enter any links associated
with the device.

textzLinks

A regular expression that uses inter-
face name to determine whether or not
the IPs on an interface should be incor-
porated into Zenoss's network map.
For instance, a loopback interface "lo"
might be excluded.

stringzLocalInterfaceNames

IP addresses that should be excluded
from the network map. for instance
127.x address most likely be excluded.
If you have addresses that you reuse
for connections between clustered
machines they might be added here as
well.

intzLocalIpAddresses

The maximum number of OIDs to be
sent by Zenoss' SNMP collection dae-
mons when querying information.
Some devices have small buffers for
handling this information so the num-
ber should be lowered.

intzMaxOIDPerRequest

A catalog query string that will find
interfaces to be pinged by description.

stringzPingInterfaceDescription

A catalog query string that will find
interfaces to be pinged by name.

stringzPingInterfaceName

Whether or not to ping the device.booleanzPingMonitorIgnore

Production state threshold at which
Zenoss will begin to monitor a device.
Default of 500 equals Pre-Productions.

intzProdStateThreshold

DO NOT USEstringzPythonClass

Only collect routes that are directly
connected to the device.

booleanzRouteMapCollectOnlyIndirect

Only collect local routes (these are
usually manually configured vs. those
learned through a routing protocol.)

booleanzRouteMapCollectOnlyLocal

The shared private key used for authen-
tication. Must be at least 8 characters
long.

stringzSnmpAuthPassword

use either "MD5" or "SHA" signatures
to authenticate SNMP requests

stringzSnmpAuthType

Array of SNMP community strings
that the ZenModeler will try to use
when collecting SNMP information.

lineszSnmpCommunities

47

zProperties

DescriptionProperty TypeProperty Name

Community to be used when collect-
ing SNMP information. If it is differ-
ent than what is found by ZenModeler,
it will be set on the modeled device.

stringzSnmpCommunity

Whether or not to ignore monitoring
SNMP on a device.

booleanzSnmpMonitorIgnore

Port that the SNMP agent listens on.intzSnmpPort

The shared private key used for en-
crypting SNMP requests. Must be at
least 8 characters long.

stringzSnmpPrivPassword

Either "DES" or "AES" cryptographic
algorithms.

stringzSnmpPrivType

The Security Name (user) to use when
making SNMPv3 requests.

stringzSnmpSecurityName

Timeout time in seconds for an SNMP
request

floatzSnmpTimeout

Amount of tries to collect SNMP dataintzSnmpTries

SNMP version used. Valid values are
v1, v2.

stringzSnmpVer

The amount of time that zenstatus
should wait before marking an IP Ser-
vice down.

zStatusConnectTimeout

Currently unused.zSysedgeDiskMapIgnoreNames

When logging into a Cisco device is-
sue the enable command to enable ac-
cess during command collection.

booleanzTelnetEnable

Regular expression to match the en-
able prompt.

stringzTelnetEnableRegex

Regular expression to match the login
prompt.

stringzTelnetLoginRegex

Regular expression to match the pass-
word prompt.

stringzTelnetPasswordRegex

Time to wait for the telnet prompt to
return.

floatzTelnetPromptTimeout

List of regular expressions to match
the command prompt.

lineszTelnetSuccessRegexList

On a Cisco device, set term length to
Zero.

booleanzTelnetTermLength

Whether or not to send the log.booleanzWinEventlog

Sets minimum severity to collect from
the win event log. Important to note
that the higher the number, the lover
the severity. 1 being the most sever
and 5 being the least severe.

intzWinEventlogMinSeverity

The password used to remotely login
if it is a Windows machine.

stringzWinPassword

zWinServices

48

zProperties

DescriptionProperty TypeProperty Name

The user name used to remotely login
if it is a Windows machine.

stringzWinUser

Use this to turn on or off all WMI
monitoring.

booleanzWmiMonitorIgnore

Use this to turn on or off all
XML/RPC monitoring.

booleanzXmlRpcMonitorIgnore

4. Service zProperties
To access Service zProperties, from the left navigation menu, select Services and the click the zProperties tab.
You can also access the Services zProperties tab anywhere in the services hierarchy by going to the level where
you want to set the zProperty and clicking the zProperties tab.

Table 9.3.

DescriptionProperty TypeProperty Name

Determines what severity to send for
the specified service.

intzFailSeverity

Fields to hide from Services instance
list

lineszHideFieldsFromList

Tells whether or not to monitor a ser-
vice.

booleanzMonitor

5. Process zProperties
To access Process zProperties, from the left navigation menu, select Processes and the click the zProperties tab.
You can also access the Process zProperties tab anywhere in the processes hierarchy by going to the level where
you want to set the zProperty and clicking the zProperties tab.

Table 9.4.

DescriptionProperty TypeProperty Name

Determines whether or not to send an
event if the specified process is restar-
ted.

booleanzAlertOnRestart

Determines the number of instances
of the process that are running.

booleanzCountProcs

Determines what severity to send for
the specified process.

intzFailSeverity

Tells whether or not to monitor a pro-
cess.

booleanzMonitor

6. Network zProperties
To access Network zProperties, from the left navigation menu, select Networks and then click the zProperties tab.
You can also access the zProperties tab for any sub-network that exists with in the Networks page.

49

zProperties

Table 9.5.

DescriptionProperty TypeProperty Name

Should zendisc perform auto-discov-
ery on this network

booleanzAutoDiscover

List of netmask numbers to use when
creating network containers. Default
is 24, 32 which will make /24 net-
works at the top level of the networks
tree if a network us smaller than /24.

lineszDefaultNetworkTree

Number of pings to sent without being
returned before Zendisc removes the
device.

intzPingFailThresh

7. Manufacturer zProperties

Table 9.6.

DescriptionProperty TypeProperty Name

FUTURE USEstringzDeviceClass

FUTURE USEstringzDeviceGroup

FUTURE USEstringzSystem

50

zProperties

Chapter 10. Device Inventory and
Configuration
1. What is Inventory and Configuration in Zenoss?
Inventory and configuration refers to the population of the device database and also the collection of information
about the devices in the system. This is often referred to as “modeling”, and Zenoss can perform this process using
auto-discovery, one-at-a-time using the web UI, or both loaded via an XML file.

2. How Does Zenoss Model Devices?
Zenoss can model devices using SNMP, SSH, or the Telnet transport protocol. Each technique for modeling produces
a varying richness of information in the model. SNMP modeling often provides the most complete set of model
information, and SSH/Telnet is typically used to augment the model when an SNMP Agent does not report a spe-
cific piece of critical information.

3.The ZenModeler Daemon
Modeling is performed using the “ZenModeler” daemon. ZenModeler iterates over the list of devices in the system
and attempts to auto-discover the sub-components of each device. This includes network interfaces, file systems,
processes, and IP services (as well as others). By default, the system is setup to perform complete remodeling
every 6 hours. This may be too often for large deployments. Often this process is run only once per day from a
cron job.

4. Adding an Individual Device
Zenoss will add, model, and monitor those devices you add to the system. This section will walk you through
adding an individual device.

1. From the menu on the left side of the page, select Add Device.

The Add Device page appears.

51

Figure 10.1. Add Device - Full Page

2. In the Device Name field, enter the network (DNS) name or IP address of the device. Additionally, you can see
all of the fields and areas where you can add additional information about a device.

3. Choose a device class from the Device Class drop-down list. We will classify this sever as a windows server
so we choose /Server/Windows as the device class path.

4. Select a discovery protocol. You can choose from snmp, or none.

These methods are described in the above section about how Zenoss models devices.

52

Device Inventory and Configuration

5. Device Name, Device Class Path and Discovery Protocol are the only required fields for adding a device.
Zenoss will attempt to fill in the following fields or they can be filled in later. Information you add here may
conflict with information Zenoss discovers about the device.

NOTE: - When adding Cisco routers in classes other than /Network, you should set the zProperty for zIfDescrip-
tion to True. This will give you additional information about Cisco routers. The option is already set to True
by default for the /Network class.

6. Scroll down to the bottom of the page and click the Add Device button.

A Status page appears showing a log of the operations Zenoss is using to gather information about the device.

7. Scroll to the bottom of the page that results when you add a device. (You may have to scroll for a bit). There
will be a link you can click to navigate to a device. Click the link that says:

Navigate to device <device name>

The Main Device page appears showing the Status Tab.

Figure 10.2. Main Device Page

5. Add an Individual Device with Context
You can also add an individual device with context. This means that wherever in the hierarchy you choose to add
the device, that is where the device will appear in the hierarchy rather than the default of adding a device with no
context where the device goes into the /Discovered hierarchy by default.

To add a device with context:

1. Navigate to the place in the Device tree where you want to add the device.

This is the context part.

53

Device Inventory and Configuration

2. Open the page menu, select the Manage option and then the Add Device option.

The Add Device dialog appears.

Figure 10.3. Add Device with Context Dialog

3. Fill out the fields the same as when you add a device without context (The only difference here is that the Device
Class is pre-selected.)

4. Click OK.

The Device is added into the selected Device Class and the main Device page appears showing the Status Page.

6. Auto-Discovery of Devices
Zenoss can SNMP-walk the entire network and the routing tables and then model each individual device to add
them all at once to the database. The daemon that does this is called ZenDisc. To perform auto-discovery, the
machine on which Zenoss is installed must have an SNMP agent running.

To add all of the devices on a given network or subnetwork into the Zenoss system:

1. From the left navigation menu select networks.

The Networks Overview page appears.

54

Device Inventory and Configuration

Figure 10.4. Networks Overview Tab

2. Click the checkbox next to the network you want to add all of the devices from. You can also use Subnetworks
table menu to add a new network to the list.

3. Once you have selected the network, open the Subnetworks table menu and select Discover Devices.

4. The Discover Device page will appear showing you the status of all the device collections going on.

55

Device Inventory and Configuration

Figure 10.5. Auto-Discovery of Devices

This command will first model the monitoring machine and then walk through the routing tables of all routers
it can find. Auto-discovery will go as far as valid SNMP access is found or until a network is discovered in the
DMD that has its zAutoDiscover property set to False.

Routers discovered through this process will be placed in the device path /Network/Router.

When devices are discovered they are placed into the /Discovered device path. They should then be moved to
a more specific part of the tree. Servers are normally organized by OS, so windows machines might go to
/Server/Windows. Other information can be added to a device, like its Business System or its Location, using
the Edit tab on a device.

When devices are discovered they are placed into the /Discovered device path. They should then be moved to
a more specific part of the tree. Servers are normally organized by OS, so windows machines might go to
/Server/Windows. Other information can be added to a device, like its Business System or its Location, using
the Edit tab on a device.

7. Device List
The Device List shows a list of all the Devices in the system. You can search for all devices, see an event summary/
You can also perform some management tasks to apply to devices or groups of devices in the list.

To access the device list, from the left navigation menu, select Device List.

The Device List appears.

56

Device Inventory and Configuration

Figure 10.6. Device List

7.1. Managing Multiple Devices using the Device List

You can use the Device list page menu to manage multiple devices by selecting the devices (by clicking in the
boxes next to the devices you want to move) and then selecting the appropriate menu option from the menu.

Available options for managing multiple devices are:

• Move to class – for moving devices to new classes

• Set Groups – for assigning devices to groups

• Set Systems – for assigning devices to systems

• Set Location – for assigning devices to locations

• Set Monitor – for assigning monitors for collecting from selected devices

• Delete devices – for removing devices from the system

• Lock devices – for providing configuration locks for devices

8. Individual Device Tabs
Once Zenoss discovers and models a device it assigns certain properties and attributes to a device and classifies
these discoveries throughout a Device's information tabs. The following tabs are available when an individual
device is selected.

8.1. Device Status Tab

The Status tab is the default tab that is shown when you click on a device.

There is a Device Status table that shows important device status at a glance. The number of events grouped by
severity can be found on the left side of this table. You can click on the 'Event Rainbow' to view the list of events
for the device.

57

Device Inventory and Configuration

Also on the left side of the Device Status table is the device availability, uptime, last collection and modified time.
On the right side of the Device Status table is the Component Status list. Each item in the list is a type of device
component, which are IpService, WinService, IpRouteEntry, IpInterface, CPU, FileSystem, and Other. The status
of each device component type is determined by the collective status of the monitored components of the same
type. If the IpService status is green, then all monitored IpServices on this device are functioning normally. If there
is an event related to a monitored IpService, the component and highest severity event associated with that com-
ponent will be displayed in the status. If there is an event unrelated to a known component, it will be placed under
the component type Other. If you click on the component type, you will be sent to the OS tab of the Device where
you can manage the components on this device.

Figure 10.7. Individual Device - Status Tab

8.1.1. Device Status Tab Example

1. Click on the "OS" tab of any device. If you do not have an IpInterface eth0, add the interface by clicking the
"Add IpInterface" menu item in the "Add..." submenu. Once you have added the component you'll want it to
be monitored.

2. On the IpInterface edit screen, set Monitor to "True" and click "Save".

3. Now return to the Device Status page.

The IpInterface type should appear.

4. Now update the table by sending an event linked to a component and not linked to any known components.
From the left navigation menu, click Events.

5. From the page menu, click on the "Add Event" menu item. Enter the name of the device. In the Component
field, enter "eth0". Leave the severity as "Critical" and click the "OK" button.

58

Device Inventory and Configuration

6. Now send another event, once again use the "Add Event" menu item. Enter the name of the device. In the
Component field, enter "Not a known component" (or any other string that isn't a name of a component on this
device) Set the severity to "Error" and click the "OK" button.

7. Now refresh the Device Status page.

You should see that the IpInterface type group has a component "eth0" with a red status indicating that a Crit-
ical event has been received.

8. If you click on the status bubble, you will be taken to the Events page for that device. You'll also notice that
you have a new type group, Other, with the component name we chose earlier. The status color of this component
should be orange which represents the Error event you created.

There is also a Device Information table that shows device details. The left side of the Device Information table
has the assigned organizers such as Location, Device Groups, Systems as well as the assigned status monitors
and performance monitor. You can click on a organizer or monitor to view the status page for the organizer or
monitor. The right side of the Device Information table includes data about the hardware and operating system
of the device.

8.2. OS (Operating Systems) Tab

The OS tab contains logical Operating System components such as:

• Interfaces

• IP Services

• Win Services (for Windows devices)

• File Systems

• Routes

• OS Processes

59

Device Inventory and Configuration

Figure 10.8. Individual Device - OS Tab

8.2.1. File System Monitoring

File system monitoring is only usable if the system has a good HOST-RESOURCES MIB. File systems monitor
the amount of blocks used and show total bytes, available bytes, used bytes and percent used. You can set thresholds
to alert when a specific event occurs such as the disk reaches 90% utilization.

8.3. Hardware Tab

The Hardware tab gives you information about the device’s available/used memory, available/used swap and in-
formation on the CPU(s).

60

Device Inventory and Configuration

Figure 10.9. Individual Device Hardware Tab

8.4. Software Tab

The Software tab gives a list of all installed software. This software can be sorted by Manufacturer, Name or Install
Date.

Figure 10.10. Individual Device - Software Tab

61

Device Inventory and Configuration

8.5. Events Tab

The Events tab is very similar to other event views. You can sort events using several items including, but not
limited to, Component, EventClass and Count. You can also filter events by Severity, State or a regular expression
applied over all events. You can also can move, map or acknowledge Events here.

Figure 10.11. Individual Device - Events Tab

8.6. History Tab

The History tab shows the events that have finished with the event life cycle by some means and have been archived
in the history.

Figure 10.12. Individual Device - Status Tab

62

Device Inventory and Configuration

8.7. Performance Tab

The Perf tab shows performance graphs for the currently selected device. It displays Load Average 5 Min, CPU
Utilization, CPU Idle, Free Memory and Free Swap. This can be changed to update hourly, daily, weekly, monthly
or yearly.

Figure 10.13. Individual Device Performance tab

8.7.1. Graph Surfing

You can use the controls on the sides of the graph to “graph surf”. Graph surfing is when you use the controls on
the sides of the graph to change the graph and look at it in different ways. The arrows and magnifying glasses allow
you to see the data in different ways.

8.7.1.1. Linking the graphs together

The default is that all the graphs move in sync with one another so that if you click the back arrow for any graph,
they will all move backward, however you can keep it so that the arrow for each graph only works for that partic-
ular graph by un-checking the Link Graphs box.

8.7.1.2. Resetting the View

The Reset button returns to the default (initial view) of the graphs. Scrolling data back and forth horizontally. To
scroll data on the horizontally, use the arrows on either side of each graph. Each click will scroll the next unit back
and once you have scrolled data back, you can also use the arrows to scroll the graphs forward.

63

Device Inventory and Configuration

8.7.1.3. Zooming In on Data

You can also zoom in and out on the data that appears on graph by clicking the enlarge (+) magnifying glass or
zooming out by clicking on the (-) magnifying glass. You can use any combination of scrolling and zooming to
see the data exactly how you want to see it.

8.8. Edit Tab

Use this tab to change any of the properties of the device.

Figure 10.14. Individual Device - Edit Tab

64

Device Inventory and Configuration

8.9. Custom Tab

The Custom tab allows you to set values in the custom fields you define in Custom Schema. To access the Custom
tab, open the Device page menu, select More and then Custom.

Figure 10.15. Individual Device Custom Tab

8.10. zProperties Tab

The Device zProperties tab is where you can configure zProperties either for all devices, for an individual device,
or for any devices that fall further down in the device hierarchy tree. To configure them for all devices click the
zProperties tab from the Device Overview tab. To configure zProperties for an individual device, click on the
device name in the Device Overview and then click the zProperties tab for that device. To access the zProperties
tab, open the device table menu, select More and then zProperties.

65

Device Inventory and Configuration

Figure 10.16. Individual Device - zProperties Tab

8.11.Templates Tab

The template tab shows all of the performance templates bound by name to this device or group of devices. To
access the Templates tab, open the Device table menu, select More and then Templates.

Figure 10.17. Individual Device - Templates Tab

66

Device Inventory and Configuration

8.12. Administration Tab

To access the Administration tab, open the Device page menu, select More and then Administration.

Figure 10.18. Individual Device Administration Tab

8.13. Collector Plugins tab

The Collector Plugins tab shows you a list of all plugins available for the device. To access the Collector Plugins
tab, open the Device page menu, select More and then Collector Plugins.

Figure 10.19. Individual Device - Collector Plugins Tab

8.14. Modifications Tab

The Modifications tab logs user changes via the Zope interface. To access the Modifications tab, open the Device
page menu, select More and then Modifications.

67

Device Inventory and Configuration

Figure 10.20. Individual Device - Modifications Tab

9. Searching For a Device By Name or IP Address
The first and most prominent way to search for a device is to type in the name or IP of the device in the “Device/IP
Search” field at the top of the application. However this is not very useful if you cannot remember the name of
the device or are not looking for a specific device. In this case you can use the “Browse by” section of the left
navigation menu. Browse by allows you to browse by Systems, Groups, Locations and Reports. Browsing by
Systems allows you to browse by some common types of Devices such as File Servers, Printers and Infrastructure
and are arranged hierarchically. Browsing by Groups allows you to browse by groups that you can set up to organize
your devices. These groups can be named whatever you like and are arranged hierarchically. Browsing by Locations
is basically the same as the others, is just allows you to arrange your devices into groups based on location and
are arranged hierarchically as well.

10. Editing Device Configurations
If you wish to edit the configuration of a device, first locate the device either by using the “Browse By” menu or
by searching for the device in the search box at the top of the application. You can then edit the device configuration
by selecting the “Edit” tab of the device and changing any of the information. The following figure shows the Edit
tab for a Linux server.

68

Device Inventory and Configuration

Figure 10.21. Device - Edit Tab

11. Managing Devices
To manage various device attributes you can use the Manage menu item in the page menu for each device. The
options for this menu are More... Manage... and Run Commands... Use the Manage item to make all of the changes
described in the section below. It is also important to note that you can set up many of these management activities
according to the inheritance and hierarchies of the various device organizers. Just navigate to the organizer (Class,
System, Group or Location) and follow the same steps. Exceptions to this inheritance are noted in each section
below.

11.1. Remodeling a Device

To make Zenoss got to a device and recollect all of the configuration information for the device:

69

Device Inventory and Configuration

1. Navigate to the Device.

2. From the Device page menu, select Manage and then Model Device.

The Device is remodeled and the remodeling status page appears.

11.2. Changing the Device Class of a Device

To change the Device Class for a device:

1. Navigate to the Device.

2. From the Device page menu, select Manage and then Change Class.

The Device Class Change dialog appears.

Figure 10.22. Change Device Class Path Dialog

3. Select the new Device class for this device from the drop-down menu.

4. Click OK.

The device class for the current device has been changed.

11.3. Resetting Device Manage IP

To Reset the manage IP of a Device in the system:

1. Navigate to the Device.

2. From the Device page menu, select Manage and then Reset IP.

The Rest IP dialog appears.

70

Device Inventory and Configuration

Figure 10.23. Reset IP Dialog

3. Enter the new IP for the device (or leave it blank to allow the IP to be set by DNS).

4. Click OK.

The IP for the device is reset.

11.4. Renaming a Device

To rename a device that is in the Zenoss system:

1. Navigate to the Device.

2. From the Device page menu, select Manage and then Rename Device.

Figure 10.24. Rename Device Dialog

3. In the ID field, enter the new name for the device.

4. Click OK.

The Device is renamed in the system.

11.5. Locking Device Configurations

You can lock a device's configuration in a few ways to prevent changes from being overwritten when remodeling
the device. There are two levels of locking that are available. You can Lock the configuration from deletion and
updates, or lock from deletion. You can also use this dialog to Unlock the device configuration.

1. Navigate to the Device.

71

Device Inventory and Configuration

2. From the Device page menu, select Manage and then Lock.

The Lock Configuration Confirmation Dialog appears.

Figure 10.25. Configuration Lock Editing Dialog

3. If you want to send events when actions are blocked by a lock click the checkbox.

4. Change the locking configuration by clicking the button for the lock configuration you want to set.

The lock is set for the device.

11.6. Resetting the Device Community

To change the Device community string:

1. Navigate to the Device.

2. From the Device page menu, select Manage and then select Reset Community.

The community for the device is reset.

11.7. Pushing Configuration Changes Back to the Zenoss System

You can push the any changes you make to the device configuration to the Zenoss system and the associated col-
lectors, without waiting for a remodel.

To push the changes:

1. Navigate to the Device.

2. From the Device page menu, select Manage and then select Push Changes.

A status message appears in the upper right of the screen confirming that the changes have been pushed up to
the collectors.

11.8. Clearing Heartbeats

To clear the heartbeats associated with a particular device:

1. Navigate to the Device.

72

Device Inventory and Configuration

2. From the Device page menu, select Manage and then select Clear Heartbeats.

The heartbeats for this device are moved to the event history.

The Edit tab for the ZenEventManager appears. Make any changes you want to make (if necessary)and click
Save.

11.9. Deleting Devices From the System

To delete a device from the Zenoss system:

1. Navigate to the Device.

2. From the Device page menu, select Manage and then select Delete Device.

The Delete Device Confirmation dialog appears.

Figure 10.26. Delete Device Confirmation Dialog

3. Click OK.

The Device is removed from the system.

12. Modeling Devices Using SNMP
This section various describes the methods used to model devices using SNMP.

12.1.Testing to See if a Device is Running SNMP

To test whether or not a device is running SNMP run:

$ snmpwalk -v1 -c communityString gate system

If this command does not time out, SNMP is installed and working correctly.

12.2. Modeling Remote Windows Devices Using SNMP

By default Windows may not have any SNMP installed. To install SNMP, go to Start -> Control Panel ->Add or
Remove Programs -> Add/Remove Windows Components. Check the box for Management and Monitoring tools
and install them. Next, you need to turn the services on and configure them, so go to Control Panel -> Administrative
Tools -> Services and start both SNMP Service and SNMP Trap Service. Set the SNMP Community string in the
SNMP Service properties to the community string of your SNMP.

If you want processor and memory monitoring, install SNMP-Informant on the device. Go to www.snmp-inform-
ant.com and download SNMP for Windows.

73

Device Inventory and Configuration

To collect Windows Event logs or log files from a windows box using syslog you can use SyslogAgent from ht-
tp://syslogserver.com/syslogagent.html.

12.3. Modeling Remote Linux Devices Using SNMP

To configure a Linux machine for monitoring, it must have SNMP installed. A good Linux SNMP application is
net-snmp. Download, install and configure net-snmp and you can use SNMP to monitor Linux devices with Zenoss.

12.4. Modeling Cisco Devices Using SNMP

Cisco devices come with SNMP already installed. However, you have to configure SNMP on each Cisco device
to be in the same community as the rest of your network.

13. Modeling Using SSH/COMMAND
In some situations a system may not offer an SNMP Agent that Zenoss can securely access. This is often the case
when Zenoss is used to monitor production systems that only provide SSH access. Additionally, when SNMP
modeling is not available (or it does not provide a complete set of information), command plugins can be used to
model a device. Note: These “modeling” command plugins should not be confused with the “performance” command
plugins used elsewhere in Zenoss.

Each built-in zenoss modeling command plugin is differentiated by the platform on which it runs. To determine
the platform for the device you want to model, run the “uname” command in a shell on the device. The compatib-
ility options for the Zenoss modeling plugins are currently Linux or Darwin. The modeling command plugins can
be extended for platforms not listed above. However, the procedure for creating new modeling command plugins
is beyond the scope of the Administration Guide.

To model a device using command plugins, first you must add the device to zenoss using the protocol "none" and
then choose which plugins you wish to apply.

1. Go to the Add Device page.

2. Set discover to “None”.

3. Once the device is added, navigate to the device and view its zProperties tab.

4. If necessary, set zCommandUsername and zCommandPassword to the username and password of the device
(or set up passwordless authentication using RSA/DSA keys.)

5. Click “Edit” next to zCollectorPlugins.

6. Click Add Fields on the right to get a complete list of command plugins.

7. Make sure zenoss.cmd.uname is positioned first on the left hand side.

8. Click the X next to plugins you wish to remove, and drag other plugins over to the left.

9. Remodel the device.

74

Device Inventory and Configuration

13.1. Using Device Class to Monitor Devices Using SSH

The /Server/Cmd device class is an example configuration for modeling and monitoring devices using SSH. The
CollectorPlugins have been modified as described above, and the Device, Filesystem, and Ethernet interface tem-
plates used to gather data over SSH have been created. You can use this device class as a reference for your own
configuration; or, if you have a device that needs to be modeled or monitored via SSH/Command, you can place
it in this device class to use the preconfigured templates and zProperties. You will still need to set the zCommand-
Username and zCommandPassword zProperties to the appropriate SSH login information for each device.

14. Modeling Devices Using PortScan
You can also do a modeling of IP services by doing a port scan. To model the device using a port scan:

1. Go to the zProperties tab of a device.

2. Change the zTransportPreference to “portscan”.

3. Remodel the device.

14.1. Using the /Server/Scan Device Class to Monitor with Portscan

The /Server/Scan device class is an example configuration for modeling devices using a port scan. You can use
this device class as a reference for your own configuration; or, if you have a device that will use only a port scan,
you can place it under this device class and remodel the device.

15. Modeling Plugins
Zenoss uses plug-in maps to map real world information into the standard Zenoss model. Input to the plug-ins can
come from SNMP, SSH or Telnet. Selection of which plug-ins to run against a device is done by matching the
plug-in name against the zProperty, zCollectorPlugins. Plug-ins selected in zCollectorPlugins are the ones that are
collected.

• DeviceMap – collects basic information about a device such as its OS type and hardware model.

• InterfaceMap – collects the list of interfaces on a device.

• RouteMap – collects the routing table from the device.

• IpServicesMap – collects the IP services running on the device.

• FileSystemMap – collects the list of file systems on a device.

15.1. Getting a List of Modeling Plugins for a Device

Plugins are controlled by a regular expression that matches their name. You can get a list of plugins for any device
by navigating to the device and opening the page menu, selecting More and then Collector Plugins. The Collector
Plugins tab appears showing all of the collector plugins for the device.

75

Device Inventory and Configuration

16. Debugging the Modeling Process
The modeler can be run from the command line against a single device. This can be handy if you need to debug
an issue with a plugin. By passing the command “ --collect” to the modeler, you can control which collection maps
are used. This command will run only the interface plugin against a device called build.zenoss.loc:

$ zenmodeler run -v 10 --collect=IpInterface -d build.zenoss.loc

If it returns any stack traces, send them to our support team along with the command you ran and the version in-
formation of your Zenoss instance.

17. Using zLinks to Add Custom Links to a Device Status
Page
You can add custom links within Zenoss to associate with a device, device class, or hierarchy of devices. You can
use the zLinks zProperty to add links that will appear in the Status tab. These links are typically used to simplify
access to other control screens and drill-down interfaces available on the device.

To add links:

1. Select a device from the Device list where you want to add a custom link.

You can also create zLinks at the Device Class level to apply to all devices in the Class and also any devices
added to the class in the future.

2. From the device page menu, select More and then zProperties.

3. Scroll down to the zLinks zProperty.

4. Enter the link in the zLinks text field in the Value column.

You can use any URL expressions including http, telnet, file, mailto, etc. You can put other types of http markup,
including image references, such as the performance graphs from other pages.

5. Click Save.

The zLink is saved and will now appear on the Status tab for the selected device.

18. Dumping and Loading Devices Using XML Lists
Zenoss allows you to export a list of your devices to an XML file for easy importing into another Zenoss instance.
From the command line, use the command:

zendevicedump -o mydevicelist.xml

This will dump the names of your devices, including their device classes, groups, systems etc. to a file called
mydevicelist.xml.

To load these devices into another Zenoss instance (or reload them into the same instance), while in the Zenoss
instance where you want the devices to be discovered, run the command:

zendeviceload -i mydevicelist.xml

Zenoss will then attempt to discover each of the devices in the XML file.

76

Device Inventory and Configuration

Chapter 11. Monitoring VMware Devices
1. Monitoring VMware Servers with Zenoss

Note

This feature is available only for Zenoss Enterprise and Professional versions.

With Zenoss, you can collect information to monitor your VMware infrastructure. By entering a single set of
connection parameters, you allow Zenoss to:

• Obtain the names and properties of various entities in your VMware infrastructure

• Monitor metrics collected by VMware

• Retrieve VMware events

Zenoss extracts VMware information through the VMware Infrastructure (VI) SDK, VMware's SOAP interface
to its line of server virtualization products. The SDK can be accessed from an individual ESX server or vCenter
Server (previously, VirtualCenter Server) instance, which can return information about many ESX servers.

Note

For more information about VMware infrastructure, see VMware's Introduction to VMware Infrastructure
at:

http://www.vmware.com/support/pubs/vi_pages/vi_pubs_35u2.html.

1.1. ZenVMware ZenPack

Zenoss' VMware features are implemented through the ZenVMware ZenPack. The ZenVMware ZenPack uses the
2.5 version of the VI API. It is compatible with ESX Server 3.5, VirtualCenter Server 2.5, and ESX Server 3i. It
is not explicitly compatible with ESX Server 3.0.x or VirtualCenter 2.0.x, or any previous versions.

1.2. Setting Up VMware Monitoring

Follow these steps to begin monitoring your VMware servers.

1. From the Zenoss Navigation Menu, click Devices.

The list of Devices appears.

77

http://www.vmware.com/support/pubs/vi_pages/vi_pubs_35u2.html

Figure 11.1. Add VMware Infrastructure

2. In the Sub-Devices list, click VMware.

3. From the Page menu, select Manage > Add VMware infrastructure.

The Add VMware infrastructure dialog appears.

Figure 11.2. Add VMware Infrastructure Dialog

4. Enter parameters to connect to the ESX server or vCenter Server that will provide monitoring capabilities.

• ID - Enter a name for the infrastructure to be monitored.

• Host - Enter the hostname of the server providing the VI SDK connections. This can be an individual ESX
server or the location of a vCenter Server instance.

78

Monitoring VMware Devices

• Use SSL - Select this option if the connection should be made by using SSL encryption.

• Username - Enter the user name used to authenticate.

• Password - Enter the password used to authenticate.

• Collector - Select the collector to use to retrieve information from the VI SDK endpoint.

5. Click OK.

Zenoss begins modeling the VMware infrastructure. It places the information in the device hierarchy under
/Devices/VMware/ID, where ID is the value of the ID field you entered during setup.

1.3. Viewing VMware Devices

Zenoss represents these VMware entities as devices:

• Hosts (ESX servers)

• Resource Pools

• Data stores

• Clusters

Each of these categories is represented as a device class under the newly created organizer. For example, if the ID
of an infrastructure is esxwin, then four device classes appear below /Devices/VMware/esxwin: Clusters, Datastores,
Hosts, and ResourcePools.

Figure 11.3. VMware Device Classes

If the SDK endpoint is an individual ESX server, then the Clusters organizer will be empty. (A VMware cluster
is a concept external to an individual host.)

79

Monitoring VMware Devices

1.4. Viewing Guest Virtual Machines

To view guest VMs on an ESX server:

1. Navigate to a device in the Hosts class.

2. Click the Guests tab.

The Virtual Guests Devices list appears.

Figure 11.4. Virtual Guest Devices

In the list, the first column contains a link to the guest component, named the same name as the VM. (This is not
necessarily the same as the VM hostname.) If the VM has been modeled elsewhere in Zenoss, then a link to that
device appears in the Managed Device column.

s shown in the previous figure, none of the VMs are being monitored in their "native" device classes. For example,
the guest named "ldap test box" is a Linux VM with the hostname "test-ldap-1.zenoss.loc." If you add that device
to /Devices/Server/Linux (by using the Add Device feature in the Left Navigation area), a link will appear.

80

Monitoring VMware Devices

Figure 11.5. Virtual Guest Devices - Managed Device

Click the Name link to go to the Guest component status page, which shows the VM's relationships to other VMware
entities, and provides access to VMware-specific metrics and events.

Click the managed device link to go to the Device status page, which contains information about the device as a
separate Linux or Windows server. These two status pages link to each other.

1.5. VMware Events

VMware records a wide range of events that are available through the VI SDK. Zenoss extracts these events and
makes them available in the event console.

Figure 11.6. VMware Events (Event Console)

81

Monitoring VMware Devices

The device column shows the ID of the VMware entity with which the event is associated, unless the event is
specific to a guest VM. In that case, the device column shows the ID of the host, and the component column displays
the ID of the guest.

Zenoss maps the VMware event to the event class and assigns the event a severity level. The event class appears
in the eventClass column.

To see detailed event information and the original VMware event type, click the magnifying glass that appears at
the end of the event row.

Figure 11.7. VMware Events (Event Console) - View Details

The VMware event type is the value shown for eventGroup.

82

Monitoring VMware Devices

Figure 11.8. Event Details (Fields Tab)

83

Monitoring VMware Devices

The Details tab shows additional "raw" content from the VMware event.

Figure 11.9. Event Details (Details Tab)

1.6. Migration Events

When a VMotion guest migrates from one host to another, VMware records events to signal its progress. When a
VmMigrated event occurs, it is duplicated to become two events, which are mapped to the /VMware/Migration
event class in Zenoss. One event contains the originating host as the device; the other lists the destination host as
the device.

An Event Command (see the Commands tab on the Event Manager page) reacts to these events by remodeling the
two hosts and generating an updated view of the guests. The time required to produce updated guest lists (from
the time migration completes) is between 30 seconds and four minutes.

1.7. Custom Data Sources

In Zenoss, metric-bearing VMware entities (such as Hosts, Guests, and Clusters) have associated templates. These
templates define which metrics are gathered. By default, only a subset is collected; however, you can add more
by adding data sources to the templates. Once created, you can then create custom graphs from these data sources.

To create a custom data source:

1. Select the template to which you want to add the data source.

2. From the DataSources list of options, select Add Datasource.

The Add DataSource dialog appears.

84

Monitoring VMware Devices

Figure 11.10. Add Data Source

3. Select the VMware data source from the list of options.

4. Enter or select values to create the data source:

• Event Key - Not used.

• Severity - Not used.

• Group, Counter, and Roll-up Type - VMware-specific data points are determined by this trio of strings. For
information about each of these metrics, see the chapter titled "Performance Counters Reference" in the VI
SDK Programming Guide, available from this location:

http://www.vmware.com/support/developer/vc-sdk/visdk25pubs/visdk25programmingguide.pdf

• Instance - Certain metrics are further specified by an instance name. For example, the metric whose
Group/Counter/Rollup Type triplet is Network/Network Data Receive Rate/average requires the name of the

85

Monitoring VMware Devices

http://www.vmware.com/support/developer/vc-sdk/visdk25pubs/visdk25programmingguide.pdf

actual interface for full specification. In Zenoss, this metric is represented by the data source nicRx on the
template VMwareNic. The VMwareNic template is bound to the individual host interfaces, each of whose
ID is the interface name. In this case, the instance name is ${here/instanceId}.

5. Click Save to save the new data source.

86

Monitoring VMware Devices

Chapter 12. Event Monitoring
1. About Event Monitoring In Zenoss
The Zenoss Event Management system can collect events from syslog, Windows event log, SNMP traps, and
XML-RPC. Processing is performed on raw events to integrate them tightly into the Zenoss model. Specifically,
an event is run through a set of rules to determine the class of the event, which can then provide additional inform-
ation such as event severity or up-down correlation.

2. Event Concepts
These are the primary concepts associated with Zenoss and its event monitoring system.

2.1. Event Life Cycle

The Zenoss Event Life Cycle is a very straightforward process. The first step of the life cycle is the creation of the
event. The default state of the event is set to “New”. The event can then be Acknowledged, Suppressed or “dropped”
with an Event class rule. From there, an event will be archived into the Event History database in one of four ways.
The event can manually be put into the history database; it can be put into the database due to auto clear correlation
(bad event happens, good event for the same thing happens, move bad event to history), an event class rule, and
an inactive timeout.

Figure 12.1. Event Life Cycle

2.2. De-duplication

If a single event is submitted multiple times for some reason, instead of the event clogging up the event log with
hundreds or perhaps even thousands of events, an event counter is incremented. The matching is done through the
event class. Additional matching event submissions do not generate more instances of that event in the event list,
but that they only increased the event counter. This is important so that the occurrences of the same event occurrences
do not create alert “chatter” in the time between when the event occurs and the time it takes you to acknowledge
or correct the event.

87

Figure 12.2. De-duplication

2.3. Begin-End Correlation

An event enters the Event Life Cycle at the start of the event, and at the end of the event, it leaves the life cycle.
If a positive event that corresponds to a negative event that has already been received, the associated negative
event is cleared. This is done by matching several key data points in the events themselves.

Figure 12.3. Begin-End Correlation

3. Zenoss Event Console
The Event Console is the central nervous system for event viewing. It is a repository for all events that come into
the system. To access the event console, from the left navigation menu, click Event Console.

The Event console appears.

88

Event Monitoring

Figure 12.4. Zenoss Event Console

When looking at events, there are quite a few sorting and filtering schemes available. Events can be sorted by
clicking on “device”, “component”, “eventClass”, “summary”, “firstTime”, “lastTime” and “count”. You can also
filter by state and severity or by using the “Filter” field. “Filter” is a regular expression on all text seen in the event
list. Events can be selected and either Acknowledged, moved to History, or Mapped into a specific location. You
can also click on the component to navigate to the component where the event was triggered.

3.1. Viewing Event Details

You can view the details for any event in the system. To open the Event details window click on the magnifying
glass in the right-most column in the Event Console. The Event Detail window opens showing the Fields tab.

89

Event Monitoring

Figure 12.5. Event Details Fields Tab

This event details screen highlights the minutia for the event.

4. Generating and Sending a Test Event
You can use Zenoss to add an artificial event to the event database to test your setups and mappings. To add a new
event:

1. From the left navigation menu, select Events.

The Events/Classes tab appears.

2. Open the Events page menu and select Add Event.

The Add Event Screen appears.

90

Event Monitoring

Figure 12.6. Add Event Dialog

3. Fill out the fields according to the kind of event you want to send. The following fields are available:

• Message

• Device

• Component

• Severity

• Event Class Key

• Event Class

4. Click the OK button.

The Event Console appears with your event at the top.

4.1. Sending Events from the Command Line

Zenoss allows you to send events TO Zenoss using a command line tool. This script only relies on python, so it
can be moved easily to other systems. zensendevent uses the following options:

Usage:

zensendevent [options] summary words

Options:

• -d, --device

The local fully-qualified domain name

• -p, --component

Component from which this event is sent.

• -s, --severity

Severity of this event: Critical, Error, Warn, Info, Debug, Clear. Default: Warn

91

Event Monitoring

• -c, --class

Event class for this event

• --port

xmlrpc server port. Default: 8081

• --server

xmlrpc server. Default: localhost

• --auth

xmlrpc server auth. Default: admin:zenoss

Example:

zensendevent -c /App/Fail -p sky -s Critical Onos\! very bad message\!

5. Event Classes
The first integration step performed on a received event is assignment of the event class. Event classes are added
to the system using the hierarchical scheme found throughout Zenoss. Events are mapped to Event Classes by
Event Class instances. Event Class instances are looked up by a non-unique key called EventClassKey.

5.1. Creating a New Event Class

To create a new Event class:

1. From the left navigation menu, click Events.

2. If it is not already open, click the Classes tab.

3. Open the SubClasses table menu and select the Add Organizer option.

The Add Organizer dialog appears.

Figure 12.7. Add Organizer Dialog

4. In the ID field, enter the name for the new Event Class.

5. Click OK.

The Event class appears in the SubClasses list.

92

Event Monitoring

6. Event Manager Settings
You can specify specific settings for the Event Manager. The settings you can change are the connection to the
MySQL Event Database, changing Event Cache timeouts and counts and make changes to the Event manager
Maintenance Settings.

6.1. Accessing Event Manager Settings

From the left navigation menu, select Event Manager. The Event Manager Settings Edit tab appears.

Figure 12.8. Event Manager Edit Tab

6.2. Changing Event Database Connection Information

Navigate to the Event Manager and in the Connection information area make any necessary changes. The available
connection information changes include:

• Backend Type – not editable at this point

• User Name – user name for the MySQL database

• Password – password for the user name identified above

• Database – which database to use

• Hostname – IP address or of the host

• Port – Port to use when accessing the event database

6.3. Changing Cache Settings for the Event Manager

Navigate to the Event Manager and in the Cache area make any necessary changes. The available Cache options
include:

93

Event Monitoring

• Cache Timeout – sets the cache timeout for the event monitor. the lower the setting the more responsive your
event console will be.

• Clear Cache Count – Clear the cache count for events (affects event counts, de-dup, etc.)

• History Cache Timeout – Sets the timeout for the History cache. Again the lower the number the more responsive
your history will be.

• History Cache Clear Count – clears the counts for the history.

6.4. Change the Maintenance Settings for the Event Manager

Navigate to the Event Manager and in the Maintenance area make any necessary changes. The available fields
include:

• Event Aging Threshold (hours) - This threshold tells Zenoss how long to wait before aging an event into the
history table.

• Don't Age This Severity and Above - Whichever severity you specify here will not age out and be placed in the
event history. So any event meeting the selected severity (or greater) will remain in the event list until acknow-
ledged or moved into the event history manually.

• Delete Historical Events Older Than (days) - When an event in the event history is older than the number of
days you enter here will automatically be purged (deleted) events from the event history.

• Default Availability Report (days) - Enter a number of days here for the automatically generated availability
report for Zenoss. This reports gives a graphical summary of the actual availability and status of Zenoss going
back the number of days you specify here.

• Default Syslog Priority - This is the default level of severity of an event in order to generate an entry into the
syslog.

7. Acknowledging Events
Acknowledging Events is a way to let the system know that someone has seen the event and is either in progress
fixing it or has fixed it or is saying the problem is under control. The acknowledged status for the event is displayed
on the Dashboard.

To acknowledge an event:

1. Navigate to the event console.

2. Select the event you want to acknowledge from the Event Console by clicking the checkbox at the left of the
event.

3. Open the Events page menu and select the Acknowledge Events option.

Note the change in color (from deep red red to a pale red/pink) for the event you acknowledged.

4. Return to the dashboard, sort by Acknowledged and note the event appears in this list now.

8. Moving Events To History
Instead of deleting events, you manually send events to the event history. We call it “historifying” events. More
detailing about automating when events are sent to the event history can be found in the Event Life Cycle Section.

To send an event to the event history:

94

Event Monitoring

1. Navigate to the Event Console.

2. Select the event you want to send to history from the Event Console by clicking the checkbox at the left of the
event.

3. Navigate back to the Event console and select the same event (click the checkbox to the left of the event) scroll
to the bottom of the page and click the History Button.

4. Open the Event Console page menu and select the Move Events to History option.

A confirmation dialog appears.

5. Click OK.

Note that the event disappears from the Event Console.

9. Clearing The Event History
By default, the Event History is set to 0 which means to never age-out and delete any events in the Event History.
You can change this setting by using the left navigation menu and choosing Event Manager. In the Maintenance
area, set the number days to wait before deleting items from the history in the "Delete Historical Events Older
Than (days)" field.

10. Event Class Mapping
Event Class Maps are the mechanism by which the events are integrated into the Zenoss system.

The following diagram shows an example of an event class mapping:

Figure 12.9. Event Class Mapping

In this example, the event comes into the system it is parsed, and then assigned to the appropriate event class.
Then, as the event class key is found and associated with the event, then the context for that event class is applied
to the incoming event. Then the status for the event is updated based on its classification.

95

Event Monitoring

To create or update event class mappings:

1. From the left navigation menu, select Events.

2. Click the Mappings tab.

The Mappings page appears.

Figure 12.10. Event Mapping Page

3. Click the name of the Event Class Mapping you want to Edit.

The page for the Event mapping you have chosen appears.

Figure 12.11. IndividualEvent Mapping Page

96

Event Monitoring

4. Click the Edit tab.

The Edit Event mapping tab appears.

Figure 12.12. Edit Event Mapping Tab

5. Use the fields to define the Event Mapping.

The fields in this tab are defined as follows:

Name – Any name you want to call the Event Class Map.

Event Class Key – The Event Class key is what is initially used to map incoming events to event classes. For
syslog events, EventClassKey is most commonly the “Tag” or identifier of the syslog event. Often, the syslog
tag maps to the process name from which the event came.

Because the EventClassKey is non-unique, further matching may need to be performed to find a unique instance.
This matching can be done through mechanisms, regular expression match, or Python expression evaluation.
Because there will be list of instances against which these rules will be evaluated, the order of evaluation is
important.

Sequence – If there is more than one match you can use the Sequence field to define sequencing priorities. The
“Sequence” tab allows all instances for a particular EventClassKey to be ordered.

Rule – Enter a python expression to match to the event. This expression will be evaluated with the variable
name “evt” bound to the current event. A detailed list of fields can be found in the Event Database Dictionary
Appendix of the Admin Guide. An example of a rule using these fields would be:

evt.priority>4

Regex – The regex field is where you can enter regular expressions to match with events. When performing
regular expression matches on an event extraction directives can be used to populate attributes of the event.
These directives follow the Python format for named extractions in the form (?P<keyName>\S+).

97

Event Monitoring

Example - When creating a regular expression the original event text can be added to the example field and
upon save the regular expression will be tested against this text. It is a great debugging tool for regex expressions.

Transform – one or more python statements. This allows you to modify the event through manipulation of the
EVT variable. This section uses TALES Expressions, see the TALES Expressions section of this document for
more information on using these expressions.

Explanation - Enter a textual description for matches for this event class mapping. Use in conjunction with the
Resolution field.

Resolution - Use the Resolution field to enter resolution instructions for clearing the event.

If the EventClassKey lookup returns no results a second lookup will be performed using the key “defaultmap-
ping”. Default mappings can be used to match large ranges of events by regular expression.

6. Once you have made all of your changes, click the Save button.

11. Applying Event and Device Context Using Event
zProperties
Once an event has been mapped to its class, two things happen: (1) Its Event context is applied and (2) its Device
context(s) are applied. EventClass context application is done by looking up the zProperty list zEventProperties.

Any property names found in zEventProperties are set in the same way that other zProperties are, except that when
looking up the property, the prefix 'zEvent_' is added to the property name. When the zEventProperties value is
changed, Zenoss creates a placeholder for each of the properties in the list on the zProperties screen.

A common event property to change is 'Severity' and, in fact, Severity is added by default to zEventProperties. To
change the Severity of a classified event, change the value of zEvent_severity in the Event Class Path for the event.

After the event context has been applied, then the device context is applied. During this process, the productionState,
location, DeviceClass, DeviceGroups, and Systems, are all attached to the event in the event database. Once these
properties have been associated with the event, Zenoss attempts to update the zEventProperties (as described
above) but using the device class path instead of the event class path. This allows a particular device or class of
devices to override the default values for any given event.

To edit the Event zProperties:

1. From the main screen for any Event Class Mapping, select the zProperties tab for the Event Class mapping you
want to change.

The zProperties tab for that mapping appears.

98

Event Monitoring

Figure 12.13. Event Mapping zProperties

2. Use the fields to define the Event zProperties.

The three properties you can edit are:

zEventAction – zEventAction tells what to do when there is a match for this class. Your choices are Drop,
Status, and History.

zEventClearClasses – allows you to enter matches that send clear events when they appear on this particular
device.

zEventSeverity – gives the default severity for events of this class.

12. Mapping Events Through the UI
As events come into the system, sometimes Zenoss has not seen them before and does not know how to classify
them. As an administrator, you will classifying events and creating event maps through the UI. (So the event will
be managed the same way each time.)

1. Navigate to the Event Console.

2. Select the event you want to map in the console by clicking in the checkbox to the left of the event.

3. Open the Event Console page menu and select the Map Events to Class option.

The map events to class dialog appears.

99

Event Monitoring

Figure 12.14. Map Events Dialog

4. Select the event class where you want to map this event.

5. Click OK.

The event class for this event and events with the same parameters will now take on the characteristics defined
for the event class.

13. Using Mappings to Correlate Events
You can use Zenoss to create multiple event class mappings that can correlate two events and create an action
based on the occurrence of the two events. An example would be creating a correlation such as the beginning of
a failure with the end of a failure so that the clear event and then automatically move the event to the history
database.

1. Navigate to one of the event classes you want to correlate.

Click the Mappings tab. Create an additional mapping.

2. Click on the Classes tab again, then click on the mapping you just created, then click on its Edit tab.

3. Set Event Class Key back to the event class you want to correlate.

4. Make any changes to the Event Mapping fields you want such as adding the text “totally broken” in the Regex
field.

5. Make a second mapping in the same class with a related name to the first so you know its correlated with the
first mapping.

6. Set the Event Class Key the same event class key you set for the above event mapping.

7. Make any changes to the Event Mapping fields you want such as adding the text “everything is ok” in the Regex
field.

8. Go to the zProperties tab and set zEventSeverity to Clear (in the case where you want the 2nd event to create
a clear correlation). When this mapping matches the event will become a clear event and will clear all active
events of the same class.

100

Event Monitoring

9. Once this is done, go to the “Sequence” tab and notice that all three mappings with the same event class key
are listed here.

10. The order will control how the mappings are applied. Our first mapping will apply to all events with the given
event class key and will prevent our new rules from becoming active.

11. Put this mapping at the end of the sequence by changing its sequence number to 3 and clicking Save.

14. Event Commands
Event Commands allow users to define arbitrary shell commands to be executed when events are received by
Zenoss that meet the criteria defined in the event command. Event commands are carried out by the zenactions
daemon. We're going to create an event command that uses the mappings we created in the last section. Our
command will write text from our event into a log file.

14.1. Commands Tab

To access the Commands tab, from the left navigation menu, select Settings and then click the Commands tab.
The Commands tab appears

<Commands Tab screen>

This tab shows all of the defined commands in Zenoss and you use the Define Commands table menu to Add or
Delete any Commands.

14.2. Create an Event Command Example

This example will give you the framework for creating an event command.

1. Click on Event Manager and go to the Commands page.

2. Create a new event command called writeFile.

3. Edit the command with the following values.

Set Enabled = True

Default Command timeout = 60

Delay = 0

4. Set the command as follows:

echo "${evt/evid} ${dev/id} ${dev/manageIp} ${evt/message}" >> /tmp/cmdoutput

5. Set Clear Command

echo "${evt/evid} ${evt/clearid} ${dev/id} ${evt/message}"" >> /tmp/cmdoutput

6. In the Where area, add a filter of Message contains "testing event commands".

7. Click Save.

101

Event Monitoring

14.3.Test the Event Command

The Add Event page is a good tool for testing event commands. Follow these steps to create an event that meets
the criteria for the event command you just created.

1. Start watching the output file with the command:

tail -f /tmp/cmdoutput

2. Create an artificial down event using the Add Event functionality and defining it as follows:

Message = My Application is totally broken

Device = <any device in your system>

Event Class Key =

Severity = Critical

3. Look at the output file. After the next zenactions cycle you should see the down event.

4. Now let’s clear the down event by sending an up event.

Message = Now everything is ok

Device = <any device in your system -same device you used above>

Event Class Key =

Severity = Info

15. SNMP Traps and Event Transforms

15.1. SNMP Trap Mapping

If an SNMP trap comes in and is classified as an "/Unknown" event type, this is because Zenoss does not know
what you want to do with this event.

To map this event, from the Event Console, click the checkbox next to the unknown event, and from the page
menu, select Map Events to Class.

The Event Mapping dialog appears. Each category does different things to the event: changing its severity, moving
it to the history table, etc. For now, select "/App" and press the Map button.

To edit this mapping, from the left navigation, select Events and then click the Mappings tab. Search for and find
your Event map and then click the name of the map. Now click the Edit tab.

This will take you to the edit screen for an Event "Mapper". These are the rules used to map this event to the "/App"
category. This rule, since it matches the Trap by a very specific OID, is all you need.

In the "transform" section of the mapper, you can put some code to modify the summary. For example, lets say
you want to set the summary string to "spam Filter Detects Virus". You would put this in the transform edit area:

evt.summary = "spam Filter Detects Virus"

A trap has a header with some standard (and mostly useless) information. But then it has a sequence of attribute/val-
ues You can see these values as event details if you click on the last column of the event.

102

Event Monitoring

You have indicated you want the value for the OID ".1.3.6.1.4.1.9789.1500.2.5" as the summary. If you had the
MIB loaded, you could do this:

evt.summary = evt.spamFilterDetectsVirus

But... we have the OID and the data is still in there. We just need to use the slightly more cryptic:

evt.summary = getattr(evt, ".1.3.6.1.4.9789.1500.2.5", "Unexpected missing OID")

The "device" object for the event has been made available, too:

evt.summary = getattr(evt, ".1.3.6.1.4.9789.1500.2.5", "Unexpected missing OID") + " from device " + device.getId()

Zenoss uses MIBs to translate SNMP Traps that contain raw OID values Loading a MIB into Zenoss allows it to
translate numeric OIDs like .1.3.6.1.2.1.1.6 into descriptive phrases like “sysLocation”. It also makes it easier to
manipulate the events in an event mapping.

Figure 12.15. SNMP Trap Transform

The following is a small demonstration MIB.

NOTIFICATION-TEST-MIB DEFINITIONS ::= BEGIN
IMPORTS
ucdavis FROM UCD-SNMP-MIB
NOTIFICATION-TYPE FROM SNMPv2-SMI
;
demonotifs OBJECT IDENTIFIER ::= { ucdavis 991 }
demo-notif NOTIFICATION-TYPE
OBJECTS { sysLocation }
STATUS current
DESCRIPTION "Just a test notification"
::= { demonotifs 17 }
END

15.2. Sending Test Traps

And here's how we send an SNMP trap.

1. From the command line, enter the following command:

$ snmptrap -v 2c -c public localhost '' 1.3.6.1.4.1.2021.991.1.3.6.1.2.1.1.6 s "Device in Annapolis"

2. Save this demonstration MIB into a file.

3. Send the trap.

103

Event Monitoring

4. Open the Event Console and find the trap you just sent.

5. In the far right column of the event console, click the magnifying glass in the far right column for the event you
just sent.

6. Click the Details tab.

You should see:

.1.3.6.1.2.1.1.6 Device in Annapolis

7. Send this event to the history.

You are now going to load some MIBs into Zenoss so we can get this OID translated into a more understandable
format.

1. Copy your demonstration MIB into $ZENHOME/share/mibs/site.

2. Run zenmib to load it into Zenoss:

$ zenmib run -v 10 DEBUG:zen.zenmib:TRAP-TEST-MIB.mib INFO:zen.zenmib:Unable to find a file providing the MIB UCD-SNMP- MIB ...

3. Your MIB loaded, but it's missing some other definitions. They happen to be on the system somewhere else,
so you can copy them in:

$ cp /usr/share/snmp/mibs/SNMPv2-MIB.txt $ZENHOME/share/mibs/site $ cp /usr/share/snmp/mibs/UCD-SNMP-MIB.txt $ZENHOME/share/mibs/site

4. Run zenmib again and get these loaded into Zenoss:

$ zenmib run -v 10

5. Send the trap a second time:

$ snmptrap -v 2c -c public localhost '' 1.3.6.1.4.1.2021.13.991 .1.3.6.1.2.1.1.6 s "Device in Annapolis"

6. Now go check the event. Make sure the count is 1. If the count is 2, send the event to the history and send the
trap again. Look at the Details tab. Now you should see something like this:

sysLocation Device in Annapolis

You should also see that the event summary changes from:

snmp trap 1.3.6.1.4.1.2021.13.991 from localhost

to:

snmp trap ucdExperimental from localhost

While this is an improvement, we would like to get the “sysLocation” value “Device in Annapolis” into the
summary so that users do not have to drill down into the detail screen.

15.3.Transforming Events with Event Mappings

To modify events as they arrive, we will create an event map through the user interface as we did earlier. Create
a new Event Class.

Go to the event console and create an event mapping in this class from the existing event.

104

Event Monitoring

On the map go to the “Edit” tab. We can filter what events this mapping will work against. For example you could
filter on messages that contain the text ucdExperimental. Type “ucdExperimental” in the Regex field.

You can update the event with detail data in the Transform section. The entry field allows you to put in arbitrary
Python scripts. The event is provided as “evt” and the device as “dev”. In this case, we'll extract the sysLocation
event detail and make it the summary:

evt.summary = evt.sysLocation

Save this event mapping. Move all the events to history. Resend the trap. The summary for the trap should now
read the device name in the location you have assigned.

If you have any problems with the Transform, check the zentrap.log file for errors that occurred.

15.4. Event Transforms Based on Event Class

When an event arrives into the Zenoss system, values (such as severity) can be changed. For example, the summary
can be made more informative, or the severity changed according to some text within the summary.

Each Event Class allows for a short python script to be executed when an event arrives.

For example, a user may want full-filesystem threshold events on /data to be critical. The following python script
in the Threshold Transform of /Events/Perf/Filesystem:

if evt.component == '/data' and evt.severity != 0:
 evt.severity = 5

Like event mappings for Event Class Keys, both "evt" and "device" objects are available within the script of the
transform.

16. Custom Event Views
In this activity, you will create and edit a custom event view so you can save views of the event list that have been
narrowed down according to filters you set and save. These custom event views are set on a per user basis.

To create a new custom event view:

1. Click the Preferences link in the top right of the dashboard.

2. Click the Event Views tab.

The Event Views tab appears.

105

Event Monitoring

Figure 12.16. Custom Event Views - Initial Views

3. Open the Event View table menu and select the Add Event View option. The Add Event View dialog appears.

Figure 12.17. Add Custom Event View

4. In the ID text field, enter the name for the new Custom Event View.

5. Click OK.

This custom event view appears in the list. Notice there is a custom alerting rainbow for this event view.

6. Click the link for the new event view you created.

Notice the size of the list and the number of entries.

7. Click the Edit tab.

The Edit Event views tab appears.

106

Event Monitoring

Figure 12.18. Custom Event Views - Edit Tab

8. Add conditions for this event view.

Type - Here you can select if you want to show active events or the event history.

Where - Use the Where area to add filters (similar to alerting rules where clauses.)

Order by - his determines the order of the entries in the view.

Result Fields: Result fields are the fields that appear in the view. For this activity, we will remove eventClass
from the view. Click the X next to eventClass in the Result Fields area.

9. Click Save.

10. Click the View tab to see the results of this Custom Event view.

17. Use ZenMail and ZenPop to Turn Email Messages
into Zenoss Events
ZenMail and ZenPop allow network administrators to turn email messages into events in Zenoss. This can be
useful in situations where embedded systems (WAPs, NAS devices, RAID controllers) rely on email notification
for events.

17.1. ZenMail

ZenMail serves as an SMTP server that you can bind to a specific TCP port. You can then configure your embedded
system to send mail to the Zenoss server explicitly by using the Zenoss's server's IP address as the relay. Alternat-
ively, ZenPop allows you to retrieve event emails from a POP server.

ZenMail supports the following configuration directives:

${ZENHOME}/bin/zenmail (no arguments): default operation. Binds to port 25 on all ports and listens for email
messages to arrive. Ignores the TO field in the email and uses the FROM address as the device IP address.

107

Event Monitoring

${ZENHOME}/bin/zenmail --listenPort: Bind to the port provided. Useful in situations where an SMTP server is
already running on the Zenoss server and you don't wish to interfere with the existing mail delivery system. Semantics
are the same as the no-argument version (FROM address used as the device IP).

17.2. ZenPop

ZenPOP supports the following configuration directives:

--usessl: Issue the STARTTLS command to the POP server and attempt to transfer email messages using SSL
encryption. This is required if retrieving mail from Google.

--nodelete: Do not issue the DELE command after retrieving all messages. This is typically used during initial
testing so that you don't have to resend test messages to the POP account. Note that some email systems (most
notably Google) do not actually delete messages when the DELE command is issued.

--pophost: The hostname or IP address of the POP server to retrieve messages from.

--popport: The TCP port the POP server listens on. Defaults to 110. Used in situations where the POP provider
listens on another port (e.g. Google on port 995)

--popuser: The username that contains email messages to retrieve

--poppass: The password to use for the username provided

--cycletime: The time to sleep between polls. All emails are retrieved and then ZenPOP sleeps for this amount of
time before waking up and attempting to pull new emails.

17.3. How Zenoss Translates Various Message Elements to the
Event

17.3.1. How Zenoss uses the FROM field

If the FROM field is an IP address Zenoss associates the event with the device that has the same IP address. If the
FROM field is a FQDN Zenoss resolves it to an IP address and performs the device association using the resolved
IP address. The resolution of hostname uses A records and not MX records.

17.3.2. How Zenoss uses the TO Field

Zenoss completely ignores the TO field in the email message. ZenMail accepts email to any user and domain name
combination. ZenPOP also drops the TO field and only pays attention to the FROM field.

17.3.3. How Zenoss uses the SUBJECT Field

ZenMail and ZenPOP use the SUBJECT as the summary for the event

17.3.4. How Zenoss uses the Message Body

ZenMail and ZenPOP use the first mime attachment as the event details. Secondary message bodies (typically
HTML encoded versions of the message) are ignored, as are any additional attachments (typically files).

108

Event Monitoring

Chapter 13. Availability Monitoring
1. Monitoring Topology with ZenPing
The availability monitoring system within Zenoss provides active testing of the IT Infrastructure. The system
currently consists of Zenping, Zenoss’ Layer-3 aware topology-monitoring daemon, and Zenstatus, a TCP status
tester.

ZenPing is configured automatically. You can use the About page, Status tab to stop and start Zenping. ZenPing
does the high-performance asynchronous testing of the ICMP status. The most important element of this daemon
is that Zenoss has built a compete model of the your routing system. If there are gaps in Zenoss’ routing model,
the power of ZenPing’s topology monitoring will not be available. If there are these gaps, this issue can be seen
in the zenping.log file.

Zenmodeler goes out and discovers the routes to each device in the Zenoss network. Zenoss tries not to use Internet
routing tables and prefers to rely on Zenmodeler to discover the relationships on its own and create its own network
map.

Basically if any known route is broken, there will only be one ping event that is generated by the outage. Any ad-
ditional outages beyond that will only flag that device and the next time a ping sweep occurs the errors beyond
the known router will not occur.

Zenmodeler works from the Zenoss system to further away from the server.

This monitoring model breaks down if the routers do not share their routing tables and interface information.

1.1. Controlling the Ping Cycle Time

1. From the left Navigation menu, select Monitors and select the Status monitor localhost and click the localhost
link.

2. Notice the list of machines being pinged by this monitor.

3. In the “Edit” tab, change “Cycle Interval” to the desired interval.

4. On the next configuration cycle, the ping monitor will ping at the interval you set.

1.2. Using the Predefined /Ping Device Class

The /Ping device class is an example of a configuration for devices that should only be monitored for availability.
Zenoss will not gather performance data for devices placed under this class; it will only ping them. You can use
it as a reference for your own configuration; or, if you have a device that you want be monitored for availability
alone, you can place it under this class.

2. Monitoring TCP Services
Use the Service menu to manage and monitor services that are running on your networks. To access the Services
pages, from the left Navigational menu, choose Services. The Services Overview appears.

The Services overview shows the folders and sub-folders and lists all of the services that have been added to the
system to monitor.

109

2.1. Zenstatus

ZenStatus performs monitoring of TCP services. It is configured by turning on monitoring of a service under the
“Services” root on the Navigation Toolbar. Service monitoring can be turned on a service class but this can be
overridden on any service instance. For example, “SMTP” will be monitored by default but it may not be a critical
service on all boxes. If this is the case, it may be removed on specific devices. Also, if the service is configured
to only listen on localhost (127.0.0.1) the service will not be monitored.

2.2. Adding a Service To Monitor

To add a service to monitor:

1. From the Services Overview page, in the Services text field, enter the name of the service you want to monitor.

2. Click the Add button.

The service appears in the Services list.

Figure 13.1. Services List - Classes tab

3. To set monitoring to True, click the Edit tab and set the Monitor pop-up to True. The service is now being
monitored.

2.3. Monitoring Status Service Status Information

To view the status information associated with a given service, select the service from the Services list in the Services
Overview page.

The Individual Service Status tab appears.

110

Availability Monitoring

Figure 13.2. Individual Service Status Tab

This tab shows you a summary of the details associated with this service. You can see the name of the service,
whether its monitored or not, a Description, any associated Service Keys and a List of Devices where the service
is currently running. To change any of this information, click the Edit tab.

2.4. Editing Service Information

To edit the information that appears on the Individual Service Status tab, from the Individual Services page, click
the Edit tab.

Figure 13.3. Individual Service- Edit Tab

111

Availability Monitoring

From this screen, use the Monitor pop-up to select True to monitor the service and False to not monitor the service.
You can also add any associated Service Keys or enter a brief Description.

2.5. Configuring Service zProperties

You can configure zProperties either for all services, for an individual service or for any services that fall further
down in the service hierarchy tree. To configure them for all services click the zProperties tab from the Service
Overview tab. To configure zProperties for an individual service, click on the service name in the Service Overview
and then click the zProperties tab for that service. The Service zProperties Tab appears.

Figure 13.4. Individual Service - zProperties Tab

You can configure the following zProperties for an individual service from this tab:

• ZFailSeverity

• ZHideFieldsFromList

• zMonitor

For more information about the Services zProperties, see the zProperties Appendix.

2.6. Using the Predefined /Server/Scan Device Class

The /Server/Scan device class is an example configuration for monitoring TCP services on devices using a port
scan. You can use this device class as a reference for your own configuration; or, if you have a device that you
want to be monitored for service availability alone, you can place it under this device class. Zenoss will not collect
performance data for devices in this class.

2.7. Monitoring a Service Using a Service Class

This section will show you how to set up monitoring of an IP service across a group of devices using a service
class.

1. Navigate to the OS tab for a device you have loaded into the system.

112

Availability Monitoring

The OS Tab for a device appears.

Figure 13.5. Showing Processes to Monitor

2. In the IP Services area, click the link to the service you want to monitor.

The service summary for the service you have selected appears.

Figure 13.6. Service Summary

3. From here set the Monitored flag to True to monitor this service for only this machine. You can also set this
service to be monitored system-wide.

113

Availability Monitoring

4. To monitor a service system wide, click the Click the Service Class link.

This page will show you everywhere the service is running and whether the service is monitored or not.

5. Click the Edit tab and set Monitored to True.

This will turn on monitoring for every instance of this service in the system.

6. Click Save.

7. Click the Status tab once again.

Most of the instances of the Service will now be set to green, meaning they are monitored and up. The ones
that remain unmonitored indicate that they have this service class set to not monitor at a local level.

3. Monitoring Processes
Zenoss is able to monitor any processes running on your network. You can configure Zenoss to monitor process
as they occur throughout your system.

Zenoss process monitoring works according to how it appears in the following diagram:

Figure 13.7. Process Monitoring

You can see that ZenProcess uses a regex match to see if it can find PIDS matching the expression to see that these
process are running on the selected device.

3.1. Adding Processes to Monitor

To add a process to monitor:

1. From the left navigation menu, select Processes.

The Processes page appears.

114

Availability Monitoring

Figure 13.8. Processes Page

2. From the Processes table menu, select Add Process.

The Add OS Process Dialog Appears.

Figure 13.9. Add OS Process Dialog

3. Enter the regular expression (regex) name of the process you want to monitor in the Processes field and click
the OK button.

The process is added and the Processes window re-appears showing the process you just entered.

Now you are monitoring this process, so after a remodel (which you can do manually or it occurs at 6 hour in-
tervals), it will show every device (occurrence) where this process is running. As such, the process is now being
monitored wherever it occurs.

Clicking on a specific process will take you to an interface that shows all instances of that process running
across machines that have it monitored. If the process has multiple instances the Zenoss will monitor the sum
of CPU and memory utilization of all processes as well as the count of total processes running. However, if the
process has only a single instance, CPU utilization and memory usage are graphed for the single process. To
perform process monitoring the device SNMP agent must have a reasonable HOST-RESOURCES MIB.

115

Availability Monitoring

3.2. Configuring Process zProperties

You can configure zProperties either for all processes for an individual process or for any processes that fall further
down in the process hierarchy tree. To configure them for all processes click the zProperties tab from the Process
Overview tab. To configure zProperties for an individual process, click on the process name in the Process Overview
and then click the zProperties tab for that process. The Process zProperties Tab appears.

Figure 13.10. Processes zProperties tab

You can configure the following zProperties for either all processes or the selected process from this tab:

• ZAlertOnRestart

• ZCountProcs

• ZFailSeverity

• zMonitor

For more information about the Services zProperties, see the zProperties Appendix.

116

Availability Monitoring

Chapter 14. Performance Monitoring
1. Performance Monitoring
Zenoss includes several methods for monitoring performance metrics of devices and device components. ZenPerf-
SNMP collects data via SNMP from any device configured properly for SNMP monitoring. ZenCommand can
login to devices via telnet or ssh and run scripts to collect performance data. ZenPacks can provide additional
means of collecting performance data. Examples include ZenJMX; which collects data from enterprise Java applic-
ations, and HttpMonitor; which checks the availability and responsiveness of web pages. Regardless of the monit-
oring method used, configuration information is stored in Performance Templates.

The following image shows that graph as it appears in the Perf tab.

Figure 14.1. Perf Tab showing Load Average Graph

The Performance Template for this Load Average 5 minutes graph (as for any other graph appearing on the Perf
tab) can be found by opening the Device page menu, choosing More.. and then the Templates option and then
clicking the name of the template.

2. Performance Templates
Performance Templates define the specific instructions for performance data collection for devices and device
components. Templates contain three types of sub objects: Data Sources, Thresholds and Graph Definitions. Data
Sources specify exactly which data points to collect and what method to use to collect them. Thresholds define
expected bounds for collected data and specify events to be created in Zenoss if the data does not match those
bounds. Graph Definitions describe how to graph the collected data on the device or device components Performance
or Status page.

117

Figure 14.2. Performance Template for Load Average Graph

2.1.The Templates Page

The Templates page lists all the Templates available to a particular Device or Device Class. For Devices Classes
you can get to this page via the Templates tab. For Devices you use the page menu->More->Templates menu item.
The Templates page shows Performance Templates defined that that particular Device or Device Class and all
those defined further up the Device Class hierarchy. If more than one Template of the same name is defined then
only the one to which this Device or Device Class can bind is shown (the others have been overridden by that one.)

3.Template Binding
Templates can be defined on Devices Classes and on individual devices. Before Zenoss begins performance col-
lection for a device or component it must determine which Templates apply. This process is called template binding.
The first step to binding is determining the list of Template names that apply to this device or component. For
device components this is usually just the meta type of the component (e.g. FileSystem, CPU, HardDisk, etc.) For
devices this list is the zDeviceTemplates zProperty. The second step to binding is finding Templates that match
these names. For each name Zenoss searches first the Device then up the Device Class hierarchy looking for a
template with that name. Zenoss uses the first template it finds with the correct name, ignoring others of the same
name that might exist farther up the Device Class hierarchy.

The Templates page for any Device or Device Class shows the templates available for binding. This page shows
a list of all templates that are defined at this point or higher in the Device hierarchy. Use the Bind Templates menu
item to bring up the Bind Performance Templates dialog. This dialog lets you view and change which templates
are currently bound. You can edit the list of template names a device will bind to either by using the Bind Templates
dialog or by editing the zDeviceTemplates zProperty directly on the zProperties page. There is no way to edit the
bound name for a device component.

118

Performance Monitoring

DefinitionName Binding

The device object itself. (These OIDs don’t have an snmp
index number.)

Device

The file system object currently uses the host resources
MIB.

FileSystem

Interfaces are bound using their interface type. For ex-
ample: ethernetCsmacd

Interface

Hard disk object for I/O stats such as Windows boxes
with Informant MIB.

HardDisk

4. Data Sources
Data Sources specify exactly which data points to collect and how to collect them. Every Performance Template
has one or more Data Sources. Zenoss provides two built in types of Data Sources: SNMP and COMMAND.
Other types can be provided through ZenPacks. When creating a new Data Source with the Add New DataSource
menu item you choose from a list of available Data Source types. All Data Source types will have a Name field
and an Enabled True/False option. Which other configuration options are presented depends on the type of Data
Source.

SNMP Data Sources define data to be collected via SNMP by the ZenPerfSNMP daemon. They contain one addi-
tional field to specify which SNMP OID to collect. Note that many OIDs need to end in .0 in order to work. Because
SNMP Data Sources specify exactly one performance metric they usually have exactly one Data Point (see below.)
See SNMP Monitoring section for further details.

COMMAND Data Sources specify data to be collected by a shell command that is executed on either the Zenoss
server itself or on the monitored device via a telnet or ssh session. The ZenCommand daemon processes COMMAND
Data Sources. A COMMAND Data Source might return one or more performance metrics and will usually have
one Data Point for each metric (see below.) Shell commands used with COMMAND Data Sources must return
data that conforms to the Nagios plug-in output specification. See the Monitoring Using ZenCommand section for
further details.

Figure 14.3. Data Source

119

Performance Monitoring

5. Data Points
A single Data Source might return data on one or more performance metrics. Data Sources can contain one or
more Data Points to represent each individual metric retrieved by the Data Source. Data Points are created via the
Add DataPoint menu item when viewing a Data Source. Each Data Point has the following fields:

• Name - In the case of an SNMP Data Point this is usually the same name as the Data Source. For COMMAND
Data Points the name should be the same name used by the shell command in returning the data. See the plug-
in output specification mentioned above for details.

• Type - Zenoss uses RRDTool to store performance data. This field specifies which RRD data source type to
use in storing the data for this Data Point. The available options are COUNTER, DERIVE, ABSOLUTE,
GAUGE. A source declared as COUNTER will save the rate of change of the value over a step period. This
assumes that the value is always increasing (the difference between the current and the previous value is greater
than 0). Traffic counters on a router are an ideal candidate for using COUNTER. DERIVE is the same as
COUNTER, but it allows negative values as well. If you want to see the rate of change in free disk space on
your server, then you might want to use the DERIVE. ABSOLUTE also saves the rate of change, but it assumes
that the previous value is set to 0. The difference between the current and the previous value is always equal to
the current value. Thus it just stores the current value divided by the step interval (300 seconds in our example).
GAUGE does not save the rate of change. It saves the actual value itself. There are no divisions or calculations.
Memory consumption in a server is a typical example of gauge. When debating choosing COUNTER you may
want to instead choose DERIVED and then a datapoint with a minimum of zero. This creates the same conditions
as the COUNTER with one notable exception. COUNTER is a ‚Äúsmart‚Äù data type. It can wrap the data
when a maximum number of values is reached in the system. An issue that can sometimes arise is a case when
there is a loss of reporting and the system (when looking at COUNTER values) thinks it should wrap the data.
This creates an artificial spike in the system and will create statistical anomalies.

• RRDMin - Any value received less than this number will be ignored.

• RRDMax - Any value received greater than this number will be ignored.

• Create Cmd - RRD expression used to create the database for this Data Point. If this is left blank then Zenoss
will use a reasonable default that is appropriate for most situations. Details on the create command can be found
at http://oss.oetiker.ch/rrdtool/doc/rrdcreate.en.html

120

Performance Monitoring

Figure 14.4. Data Points

6.Thresholds
Thresholds define expected bounds for Data Points. When a Data Point goes outside a Threshold a Zenoss event
is created. Zenoss provides one built in type of Threshold, the Min/Max Threshold. Mix/Max Thresholds inspect
incoming data to see if it exceeds a given maximum or falls below a given minimum. ZenPacks can provide other
types of Thresholds. The fields for a Min/Max Threshold are:

• Name - This name is displayed on the Performance Template page and is used in creating Threshold events.

• Data Points - Select one or more of the Data Points from this Template to which this Threshold should apply.

• Min Value - If this field is not empty then any time one of the selected Data Points falls below this value an
event will be triggered. The field may contain a number or it may contain a Python expression. When using a
python expression the variable "here" is references the device or component for which data is being collected.
For example, an 85% threshold on an interface might be specified as: here.speed * .85 / 8. (The division by 8
is because interface speed is frequently reported in bytes/sec where the performance data is frequently bytes/sec.)

• Max Value - If this field is not empty then any time one of the selected Data Points goes above this value an
event will be triggered. Like Min Value above, it may contain a number or a Python expression.

• Event Class - The event triggered when this Threshold is breached will be of this Event Class.

• Severity - The first event triggered when this Threshold is breached will have this severity.

• Escalate Count - If the threshold is broken this many consecutive times the severity of the event will be escalated
one step.

• Enabled - Allows you to enable or disable this Threshold.

121

Performance Monitoring

Figure 14.5. Threshold Definition

7. Graph Definitions
A Graph Definition contains the settings to produce a graphic representation of performance data on the device's
Perf page or on the component's Status page. These graphs can include any of the Data Points or Thresholds from
this Template. New Graph Definitions are created via the "Add Graph..." menu item on any Performance Template
page. There are several settings on the Graph Definition that determine the appearance of the graph:

• Name - The name of the graph as it will appear on the Perf or Status page.

• Height - The height of the graph in pixels.

• Width - The width of the graph in pixels

• Units - The label for the graph's vertical axis.

• Log - If True then the scale of the vertical axis will be logarithmic, if False then it is linear. This is useful in
situations where the data being graphed grows exponentially. Note that only positive data can be graphed logar-
ithmically.

• Base 1024 - Select True if the data you are graphing is measured in multiples of 1000 or 1024.

• Min Y - This sets the bottom value for the graph's vertical axis.

• Max Y - This sets the top value for the graph's vertical axis.

• Has Summary - If True then a summary of the data's current, average and maximum values is shown at the
bottom of the graph.

122

Performance Monitoring

Figure 14.6. Graph Definition

7.1. Graph Points

Each Data Point or Threshold that is part of a graph is represented by a Graph Point. Several types of Graph Points
are available that correspond to Data Points, Thresholds or Custom graphing commands. You can add as many
Graph Points as you like to a Graph Definition. The Sequence field determines the order in which the Graph Points
are drawn on the graph. You can edit the Sequence numbers and reorder the Graph Points using the Re-sequence
Graph Points menu item. Note that Thresholds are always drawn before other Graph Points.

7.1.1. Data Point Graph Points

DataPoint Graph Points draw the value of Data Points from the Template on a graph. Add a new DataPoint Graph
Point to the Graph Definition using the "Add DataPoint..." menu item. The Add GraphPoint dialog will appear
allowing you to select one or more Data Points defined in this Template. One DataPoint Graph Point will be created
for each DataPoint you select in this list. Additionally, there is a Include related thresholds checkbox. If this is
selected then any Graph Points will be created for any Thresholds that have been applied to the selected Data
Points as well. Clicking on the name of a Graph Point will take you to its edit page. This page will have different
fields for different types of Graph Points. DataPoint Graph Points have the following fields:

• Name - This is the name that appears on the Graph Definition page and by default is also the name that will be
used in the graph legend.

• Consolidation - This is the RRD function used to graph the Data Point's data to the size of the graph. For most
purposes the default value of AVERAGE is appropriate.

• RPN - You may enter an RPN expression that alters the value of the data being graphed for the Data Point. For
example, if the data is stored as bits but you would like to graph it as bytes you could use an RPN of "8,/" to
divide by 8. You can read more details of RRDTool RPN notation at http://oss.oetiker.ch/rrdtool/tut/rpntutori-
al.en.html

• Limit - You can specify a maximum value for the data being graphed.

123

Performance Monitoring

• Line Type - Select Line to have the data graphed as a line. Selecting Area will cause the area between the line
and the horizontal axis to be filled with the same color as the line. You can select None if you want to use this
Data Point for Custom RRD commands but don't want it to be explicitly drawn.

• Line Width - Enter the pixel width of the line.

• Stacked - If True then the Line or Area is drawn above the previously drawn data. At any point in time on the
graph the value plotted for this data is the sum of the previously drawn data and the value of this Data Point at
this time. For example, if you were measuring packets in and packets out you could stack them to get an idea
of the total number of packets.

• Color - You may specify a color for the Line or Area. Some color names are recognized but more reliably you
can use a three or six digit hex value.

• Format - This is the RRD format to use when displaying values in the graph summary. Information on RRDTool
formatting strings can be found at http://oss.oetiker.ch/rrdtool/doc/rrdgraph_graph.en.html

• Legend - This is the name that will be used for this data in the graph legend. By default this is a TALES expression
that specifies the Graph Point name. The variables available in this TALES expression are here (the device or
component being graphed) and graphPoint (the Graph Point itself.)

• Available RRD Variables - This field lists the RRD variables already defined in this Graph Definition that could
be used in the RPN field.

7.1.2.Threshold Graph Points

Threshold Graph Points draw the value of Thresholds from the Template on a graph. Add a new Threshold Graph
Point to the Graph Definiton using the "Add Threshold..." menu item. The Add GraphPoint dialog will appear al-
lowing you to select one or more Thresholds defined in this Template. One Threshold Graph Point will be created
for each Threshold you select in this list. Threshold Graph Points have several settings: Name, Color and Legend.
See the section on DataPoint Graph Points above for a description of these fields.

7.1.3. Custom Graph Points

Custom Graph Points allow you to insert specific RRD graph commands into the Graph Definition. For details on
DEF, CDEF and VDEF commands see http://oss.oetiker.ch/rrdtool/doc/rrdgraph_data.en.html. For details on the
other RRD commands see http://oss.oetiker.ch/rrdtool/doc/rrdgraph_graph.en.html

7.2. Custom Graph Definition

The Graph Custom Definition tab allows you to specify exactly your own set of RRD commands to draw this
graph. The Graph Points specified on the Graph Definition tab are used to define data that is available to the
commands you specify here but the Graph Points will not be drawn unless you explicitly draw them with the
commands you specify here. The Available RRD Variables lists the values defined by the Graph Points that are
available for your use.

7.3. Graph Commands

The Graph Commands tab shows an approximate representation of the RRD commands that will be used to draw
this graph. It is mainly useful as a debugging tool when using Custom Graph Points or the Custom Definition tab.

124

Performance Monitoring

8. Changing the Order of the Graphs
You can customize many of the features of the graphs including things like thresholds. As an example, you can
change the sequence of the appearance of the graphs on the page.

1. Navigate to a device in your system.

2. From the page menu, select More >> Templates.

3. Click the “Create Local Copy” button.

4. Click on the name of the template.

5. In the Graphs area of the page, use the Seq boxes to order the graphs on the page.

9. Monitoring A File System and Changing a Threshold
Zenoss also monitors File System Utilization.

To see File system statistics:

1. Navigate to the OS tab for a device you have loaded into the system.

2. Click the “/” File System.

Here you see a summary of the statistics for the file system for the device.

You can change the threshold for events to occur in the local template for this file system. This example walks
you through creating a low threshold and then generating events based on this new low threshold.

3. Click More and then Templates.

4. Click the Create Local Copy button to make a local copy of the template for this device.

5. In the Thresholds area, in the Add box, enter the name “Really Low Threshold” and click the Add button.

The Really Low Threshold appears in the list.

6. Click on the link for the Really Low Threshold.

7. Choose usedBlocks use Blocks

8. In the Max Value area, enter the following expression:

here.totalBlocks * .05

Basically this sets the really low threshold at 5% of usage.

9. Make sure Enabled is set to True.

You can leave the other values the same since we will gather this data from the same data-source and other at-
tributes.

125

Performance Monitoring

You have now created a new threshold that you can create and send events based upon.

126

Performance Monitoring

Chapter 15. Monitoring Devices
Remotely via SSH
1. Monitoring Devices Remotely via SSH
You can monitor device remotely via SSH. Monitoring devices remotely basically consists of 2 distinct installations.
You must install the Zenoss plugins on each remote device you want to monitor as detailed in the following sub-
sections.

1.1. Installing Zenoss Plugins on the Remote Machine

The Zenoss Plugins are packaged in 2 formats: native format and source distribution. The native format (RPM) is
recommended in Red Hat based systems that support Red Hat Package Management. Using the RPM distribution
allows system administrators to easily update the package when newer versions are released. The source distribution
is assembled using setuptools, and is commonly used by developers rather than system administrators. The benefit
of using the source distribution is that you do not need root privileges to install the Zenoss plugins.

1.1.1. Zenoss Plugin Installation Technique: RPM

The RPM for the Zenoss Plugins is a noarch RPM, which means it can be installed on any architecture (i386,
amd64, ia_64). The only external dependency needed to install the zenoss plugins RPM is python itself. Most
Linux distributions include python in their standard loads.

To install the zenoss plugins RPM use the following command:

$ sudo rpm -Uvh zenoss-plugins-*.rpm

Where 'zenoss-plugins-*.rpm' equals the latest Zenoss plugin RPM file.

1.1.2. Zenoss Plugin Installation Technique: setuptools

As noted above, the setuptools installation method allows non-root users to install and use the zenoss plugins. The
full set of setuptools arguments are supported, but most people will want to use the default build and install com-
mands:

$ python setup.py build

$ sudo python setup.py install

The above commands will install the Zenoss Plugins into directories that are accessible to all users. If you are unable
to install system software (because you are a nonprivileged user) you can still install and use the Zenoss Plugins.
However, you must go through some extra leg work to get the plugins installed. For a more detailed discussion of
how to install the plugins using a non-privileged account see the following URL:

http://dev.zenoss.org/trac/wiki/FAQ#HowdoIinstalltheZenossPlugins

An alternative to downloading the source tarball, exploding it, and running setup.py is to use setuptool's built-in
command 'easy_install'. To automatically download and install the zenoss plugins using easy_install run the fol-
lowing command:

$ sudo easy_install Zenoss-Plugins

Where 'Zenoss-Plugins' is the name of the current Zenoss plugin file.

127

1.1.3.Testing the Plugin Installation

The entry point to the Zenoss Plugins is the zenplugin.py command. When run without any arguments, zenplugin.py
reports the proper usage of the script providing insight into which options should be run for troubleshooting.

The Zenoss Plugins detect platform specific runtime values using plugins. For example, the CPU plugin for the
linux2 platform uses /proc to read values. In comparison, the CPU plugin for the freebsd5 platform uses a different
technique. In order to test the installation you will need to determine which plugins are available for your platform.
To do this run the following command:

$ zenplugin.py --list-plugins

After determining a list of supported plugins for your platform run the zenplugin.py with the plugin name as the
argument. The following command line illustrates:

$ zenplugin.py cpu

1.1.4.Troubleshooting the Plugin Installation

1.1.4.1. "Command not found" when running zenplugin.py

If you receive a "command not found" when running the zenplugin.py command check to make sure that the dir-
ectory zenplugin.py was installed into is included in your PATH. If you installed via rpm you can use the command
"rpm -ql zenoss-plugins | grep zenplugin.py". If you installed via setuptools pay close attention to the "Installing..."
messages to see the full directory paths.

1.1.4.2. "platform 'XXX' is not implemented. no plugins exists"

This message indicates that no development work has been put towards implementing plugins for your particular
platform. If you receive this message and would like the plugins to support your platform mail the output of the
following command to the development team:

$ python -c 'import sys; print sys.platform'

1.1.5. Changing Zenoss to Monitor the Devices Remotely Using SSH

You must change the Zenoss properties for the group where you want to collect remote information using SSH.

1. Navigate to the device class path you want to monitor remotely. You can apply this monitoring per device or
per device class path.

2. Change the zProperties value for the group. Click the zProperties tab.

The zProperties tab appears.

128

Monitoring Devices Remotely via SSH

Figure 15.1. Device Group zProperties Tab

You must make changes to the following zProperties:

• zCollectorPlugins

• zCommandPassword

• zCommandPath

• zCommandUsername

• zSnmpMonitorIgnore

• zTransportPreference

Here are the values we have setup on our remote devices. These have a pre-shared key (with no password)
setup from the collector to the remote boxes (it can also use password authorization if the password is entered
into zCommandPassword.

ValuezProperties

snmp|portscanzCollectorPlugins

The SSH password for the remote machine.zCommandPassword

The path to zenplugin.pyzCommandPath

The SSH Username for the remote machine.zCommandUsername

TruezSnmpMonitorIgnore

commandzTransportPreference

NOTE: It takes two passes to get full modeling. The first gets the platform type so we know what plugins to
run on the second pass which gives us interfaces, filesystems, etc. Run the command:

$ zenmodeler run -d enter_server_name_here

129

Monitoring Devices Remotely via SSH

Run the command a second time to use the plug ins the command gathered on the first pass.

1.1.6. Using the Predefined /Server/Cmd Device Class

The /Server/Cmd device class is an example configuration for modeling and monitoring devices using SSH. The
zProperties have been modified as described above, and Device, Filesystem and Ethernet interface templates that
gather data over SSH have been created.

You can use this device class as a reference for your own configuration; or, if you have a device that needs to be
modeled or monitored via SSH/Command, you can place it under this device class to use the preconfigured templates
and zProperties. You will still need to set the zCommandUsername and zCommandPassword zProperties to the
appropriate SSH login information for each device.

130

Monitoring Devices Remotely via SSH

Chapter 16. Monitoring Using
ZenCommand
1. About ZenCommands
Zenoss has the ability to run Nagios® or Cactii plug-ins though the process ZenCommand. In prior versions of
Zenoss, this was called Zenagios. ZenCommand can run plugins locally and remotely using a native SSH transport.
When run, Zenoss will track the return code of each plug-in and create events with the output from the plug-in.
Zenoss can track performance information from a plug-in also.

Figure 16.1. Running ZenCommands

2. Example: Writing a ZenCommand (check_http ex-
ample)
You can use a ZenCommand plugin (check_http) to check for specific content of a web page (implicitly checking
for server/page 200 status as well).

An example of setting up a ZenCommand plugin to check specific content is:

1. 1.Make sure you are the zenoss user.

2. Test the plugin from the command line. Once its working we will integrate it with Zenoss. check_http -h will
display all plugin options. Here is the command to test the product directory.

$ZENHOME/libexec/check_http -H www.zenoss.com

If the check_http command is correct, the output will look similar to the following.

HTTP OK HTTP/1.0 200 OK - 0.723 second response time |time=0.722758s;;;0.000000 size=7932B;;;0

You can see that this command plugin returns a valid value we are ready for the next step.

3.

4. Add the device you want to check (one running a www. website) to the Zenoss system setting the discovery
protocol to 'none'.

131

5. Navigate to the device in the Zenoss system and use the page menu to select More and then Templates.

6. Click Create Local Copy button.

You have now overridden the default Device template with one specific to this device.

7. Drill into the template and remove the sysUpTime data source since we won’t be using SNMP for this device.

8. Add a new description to the template something like “Web testing template”.

9. Add a new Data Source called rootWebCheck.

10. Drill into rootWebCheck and set the following variables:

• Source Type = COMMAND

• Component = rootWebCheck

• Cycle Time = 30

11. Debug your ZenCommand by running zencommand in the foreground with debugging on.

zencommand run -d www.website.com -v10

Where www.website.com is the site you are trying to monitor.

12. The command template field is a TALES expression so we can do some substitution in our command that will
make it generic for any device we add to this class. First let’s set the -H flag to be the IP of the device against
which this command will be run.

check_http -H ${here/manageIp}

13. Now let’s add a check looking for content on the page. The -r flag will run a regular expression against the web
page to check for text. We will look for three pieces of text:

check_http -H ${here/manageIp}-r textstring1

Where textsrting1 is some text you know to be displayed on the resulting webpage.

14. For this example, you want this command to be generic, so make a custom field for the regex that can be changed
per device. Set the default to “.*” which will match everything. Go to /Devices/Custom Schema and add a new
field:

• Label = Web Match Regex

• Name = cWebMatchRegex

• Type = string

• Default = .*

• Visible = True

15. Now go back our template and change the command to be.

check_http -H ${here/manageIp}-r ${here/cWebMatchRegex}

16. Now add the regex value into cWebMatchRegex that we used in the example above.

132

Monitoring Using ZenCommand

17. Test your ZenCommand from the command line.

3. Collect Data from A ZenCommand
To collect and display some data from the ZenCommand example above, you can log the data to see something
like response time in a graphical format.

1. Go to the /Web/Device template.

2. Go to the Data Source you created in the check_http example above.

3. At the bottom there is a table of Data Points add one called “time”

4. The default type of GAUGE is fine so there is no need to modify the Data Point.

5. Test your command again and you should see a log message that starts with:

DEBUG:zen.zencommand:storing responseTime = 1.0

6. Make a graph to display your data. In the Device template, create a graph called “Web Response Time”.

7. For this graph, set the following values:

• Data Sources = rootWebCheck_responseTime

• Units = Seconds

• Min Y = 0

8. Now look at the Perf tab for the device www.website.com (whatever website you were using to check) to see
the graph. Graph data won’t show up until collection as run several times. Restart zencommand so that the new
configuration will take place immediately.

4. Plugin Format for ZenCommands
Nagios® plugins are configured using a Command Template that is much like the RRDTemplates used for per-
formance monitoring. So a template named “Device” will bind to all devices below the template definition.
Within each template is a list of commands that will run. The commands can be any program that follows the
Nagios® plug-in standard (inputs are command line arguments output is first line of stdout plus a return code) as
defined in:

http://nagiosplug.sourceforge.net/developer-guidelines.html

A Nagios® command has several fields:

• name – name of the command object

• enabled – should this command be used on a give device

• component – the component name to use when zencommand sends events to Zenoss

• event class – the event class to used when sending events to Zenoss

• severity – the default severity to use when sending events to Zenoss

• cycle time – how often a command should be run in seconds

133

Monitoring Using ZenCommand

• command template – the command to run

The command template string is built using Zope TALES. Several variables are passed when evaluating the
template. They are:

• zCommandPath – The path to the zencommand plug-ins on a given box it comes from the zProperty zCommand-
Path. zCommandPath will be automatically added to a command if a path is absent from the beginning of the
beginning of the command.

• devname – The device name of the device against which the command is being evaluated

• dev – The device object against which the command is being evaluated

• here – The context of evaluation. For a device, this is equivalent to dev for a component such as a filesystem or
interface this is the component object

• compname – If this command evaluates against a component, this is its name as a string

• now – The current time

Template values are accessed like shell variables. They are the same as the expression syntax used in the section
of this guide called TALES Expressions. Here are some examples:

Run an http check against all devices using the url /zport/dmd

check_http –H ${devname}-u /zport/dmd

In a template named FileSystem the following command will run against all FileSystems on a device.

check_disk –w 10% -c 5% -p ${compname}

5.Testing ZenCommands
ZenCommand Data Sources can be tested using the zentestcommand shell script. From the command line, simply
run:

zentestcommand –d devicename --datasource=datasourcename

Where devicename is the device you wish to run the command on and datasourcename is the name of a data source
on a template associated with the device. zentestcommand will print the results of the command to stdout.

134

Monitoring Using ZenCommand

Chapter 17. Monitoring Windows
Devices
1. Device Preparation for Windows Devices
Zenoss requires you to do some device preparation to Windows devices you want to monitor. Make sure the fol-
lowing items have been checked for the devices.

1. Check that the SNMP agent enabled.

This is done through Add/Remove programs -> Add/Remove Windows Components -> Management and
Monitoring Tools.

2. Make sure DCOM is enabled for WMI connections.

3. Optionally, you can use SNMP-Informant to have CPU, Memory and Disk I/O stats.

SNMP-Informant agents grab information from Windows devices via WMI on the server where they are installed
and then converts system, state and operational data into SNMP OIDs for broadcast. Zenoss can then process the
SNMP OID information and generate Events and alerts based on this information. SNMP-Informant is not necessary
in Zenoss Enterprise as this functionality is built in. Not using an agent such as SNMP-Informant will limit the
amount of information that Zenoss can process.

2. Setting Windows zProperties
This section will give you the important zProperties to set for getting information from windows servers into
Zenoss. For each Windows server, navigate to the zProperties for that device and set the following zProperties:

• zWmiMonitorIgnore - Use this to turn on or off all WMI monitoring. If it is set to False, then Windows monit-
oring is ON. If Ignore is set to True, then WMI Monitoring is OFF. You can set this at the Server/Windows
Class level. That way any device placed in this class has Windows monitoring automatically turned on.

• zWinUser - Must be the local admin. The format for zWinUser is:

• .\Username - The format to use when the account is a local account.

• DOMAIN\Username - The format for a Domain account.

• zWinPassword - Enter the password used to remotely login to the Windows machine.

3.Testing WMI on a Windows Server
Use the following steps to test the WMI connections on the Windows server.

1. Run wbemtest

2. Click “Connect…”

3. In the Namespace field enter \\HOST\root\cimv2

135

4. Enter login information in “User” and “Password” fields.

5. Click the “Query…” button.

6. Enter “select * from win32_service” should return a dialog with list of services on the box.

4. Other Optional Windows Configuration Items
There are a few other options for potentially gathering additional information from Windows devices. If you have
any of the following installed, Zenoss can get additional information from:

• Dell Open Manage agent gives detailed OS and hardware information.

• HP Insight Management Agent gives detailed OS and hardware information.

5. Modeling Services on Windows Devices
ZenWin is used for Windows Service Monitoring over WMI. It runs under windows and monitors the up/down
availability of windows services.

ZenWinModeler like the ZenModeler uses collector plugins to retrieve data from devices. Rather than the methods
used by ZenModeler, the ZenWinModeler uses WMI alone to collect its data. The WinServiceMap WMI plugin
is available and is included in zCollectorPlugins on the /Server/Windows device class by default. WinServiceMap
retrieves the all the monitorable services on a device whether it is up or down.

All Windows services are, by default, NOT monitored. If you would like to monitor a specific windows service,
it is very simple to turn it on.

Navigate to the Windows device and click the OS tab.

Click the service you want to monitor and change the value of monitor to “True”.

If you do not see the service you would like to monitor, click on the WinServices table menu.

Select the “Add WinService...” menu item.

6. Collecting Windows Eventlog Events
ZenEventlog is used collect (WMI) event log events. Use the following zProperties to define how Windows Event
Log events are processed and monitored:

• zWinEventLog - This zProperty tells Zenoss whether or not to read the event log into Zenoss.

• zWinEventLogMinSeverity - Sets minimum severity to collect from the win event log. Important to note that
the higher the number, the lower the severity. 1 being the most severe and 5 being the least severe.

7. Monitoring Windows Performance with SNMP-Inform-
ant
Zenoss can use information from SNMP-informant to get SNMP information from Windows devices. First, you
must install the free version of snmp-informant from: http://www.snmp-informant.com

To make sure SNMP Informant is running and setup correctly, run this command to walk the SNMP Informant
MIB:

136

Monitoring Windows Devices

snmpwalk -v1 -c<community> <server> 1.3.6.1.4.1.9600

This command will return some performance information if SNMP-informant is configured and running correctly.

Once this is configured properly SNMP information is gathered and used by the Zenoss system the same as any
other device sending SNMP traps.

8. Running Commands on Windows Servers Using
Winexe
You can use winexe commands to run commands on monitored Windows servers from within Zenoss.

Usage:

$ZENHOME/bin/winexe [options] //host [command]

UseOptions

Uninstall winexe service after remote execution--uninstall

Reinstall winexe service before remote execution--reinstall

Use SYSTEM account--system

Run as user (BEWARE: password is sent in cleartext
over net)

--runas=[DOMAIN\]USERNAME%PASSWORD

UseHelp Options

Show this help message-?, --help

Display brief usage message--usage

UseCommon samba options

Set debug level-d, --debuglevel=DEBUGLEVEL

Send debug output to STDERR--debug-stderr

Use alternative configuration file-s, --configfile=CONFIGFILE

Set smb.conf option from command line--option=name=value

Basename for log/debug files-l, --log-basename=LOGFILEBASE

enable talloc leak reporting on exit--leak-report

enable full talloc leak reporting on exit--leak-report-full

Print version-V, --version

UseConnection Options

Use these name resolution services only-R, --name-resolve=NAME-RESOLVE-ORDER

socket options to use-O, --socket-options=SOCKETOPTIONS

Primary netbios name-n, --netbiosname=NETBIOSNAME

Set the workgroup name-W, --workgroup=WORKGROUP

Set the realm name--realm=REALM

Use this Netbios scope-i, --scope=SCOPE

Set max protocol level-m, --maxprotocol=MAXPROTOCOL

UseAuthentication Options

Set the network username-U, --user=[DOMAIN\]USERNAME[%PASSWORD]

137

Monitoring Windows Devices

UseAuthentication Options

Don't ask for a password-N, --no-pass

Password--password=STRING

Get the credentials from a file-A, --authentication-file=FILE

Set the client signing state-S, --signing=on|off|required

Use stored machine account password (implies -k)-P, --machine-pass

DN to use for a simple bind--simple-bind-dn=STRING

Use Kerberos-k, --kerberos=STRING

Restricted list of authentication mechanisms available
for use with this authentication

--use-security-mechanisms=STRING

138

Monitoring Windows Devices

Chapter 18. Windows Performance
Monitoring (Zenwinperf) (Commercial)
1. About Windows Performance Monitoring
ZenWinPerf is an Enterprise ZenPack that allows performance monitoring of Windows servers without an inter-
mediary Windows server doing the data collection. ZenwinPerf provides the WinPerf Data Source, which uses a
Windows performance counter rather than an SNMP OID to specify the value to collect. WinPerf Data Sources
are processed by the zenwinperf daemon.

2. Zenwinperf Daemon
The zenwinperf daemon does the actual work of opening the winexe/typeperf connections and sending the data
back to Zenoss. This daemon appears on the Zenoss Daemons page and can be started, stopped and restarted from
there. From the command line it can be controlled via the zenoss script or by issuing commands directly to the
daemon which is symlinked at $ZENHOME/bin/zenwinperf.

2.1. ZenwinPerf zProperties

ZenWinPerf creates several zProperties that control its behavior. Values for the zProperties are initially set on the
/Devices device class. As with any zProperty, these values can be overridden in other device classes and on indi-
vidual devices themselves.

• zWinPerfCycleSeconds - This is how frequently (in seconds) winperf datasources are collected. By default this
is set to 300.

• zWinPerfTimeoutSeconds - Deprecated. If no data is collected on a connection after this many seconds the
connection is closed and a new one created. This value should be greater than zWinPerfCycleSeconds. By default
this is set to 600.

• zWinPerfCyclesPerConnection - Deprecated. This is the number of collection cycles requested of typeperf.
After (at most) this many cycles typeperf will exit and zenwinperf will create a new connection to the server
and a new call to typeperf. (This value is passed as the -sc value to typeperf.) By default this is set to 12.

2.2. How to Create a WinPerf Data Source

There is an example template with WinPerf Date Sources on the /Devices/Server/Windows device class called
ZenWinPerf Example. To create your own WinPerf Data Sources follow these steps:

1. Navigate to either a new or an existing Performance Template and select "New DataSource" from the Data
Sources table menu.

2. Enter a name for the Data Source, select WinPerf as the type and click OK.

3. Enter a Windows performance counter in the Perf Counter field. See below for more details on Windows perf
counters.

4. Click the Save button. (Notice that a datapoint is created with the same name as the perf counter you selected.)

5. If you wish you can test the counter by entering a device id in the Test Device field and clicking the Test button.

139

2.3. Windows Performance Counters

ZenWinPerf uses a Windows utility called typeperf to obtain performance data. Information on performance
counters can be found with the typeperf documentation here: http://www.microsoft.com/resources/documenta-
tion/windows/xp/all/proddocs/en-us/nt_command_typeperf.mspx?mfr=true

3. /Device/Server/Windows/WMI Device Class
The ZenWinPerf ZenPack includes a /Device/Server/Windows/WMI class that has several new device templates
bound and several collector plugins from ZenPacks.zenoss.WinModelerPlugin enabled.

Any Windows device placed in this device class will use WMI as its primary data modeling and data collection
mechanism.

A WMI connection cannot be established without a valid set of credentials. These credentials are set with two
zProperties: zWinPassword and zWinUser. Like all Windows credentials, the domain should be specified in the
zWinUser entry, so use .\username for an account that isn't in the domain but just on the local computer.

The following collector plugins are enabled by default with this new device class:

• zenoss.wmi.WinServiceMap

• zenoss.wmi.CpuMap

• zenoss.wmi.FileSystemMap

• zenoss.wmi.IpInterfaceMap

• zenoss.wmi.IpRouteMap

• zenoss.wmi.MemoryMap

• zenoss.wmi.ProcessMap

• zenoss.wmi.WindowsDeviceMap

• zenoss.wmi.SoftwareMap

The SoftwareMap plugin collects data from the Win32_Product class. The WMI provider for this class is not installed
by default on some versions of Windows, especially the Standard Editions of the Server products. To enable to
the modeling of software inventory, the WMI Installer Provider must be installed. This can be done by going to
the Add/Remove Programs applet in control panel, choosing Windows Components, selecting Management and
Monitoring Tools, and then finally the WMI Installer Provider component.

3.1. Device Templates

The following device templates are bound to the new /Devices/Server/Windows/WMI class: Device, FileSystem,
and ethernetCsmacd.

3.1.1. Device Template

The Device template provides the following Data Sources:

• cpuPercentProcessorTime

• diskAvgQueueLength

• memoryAvailableKBytes

• # memoryPagesPerSec

140

Windows Performance Monitoring
(Zenwinperf) (Commercial)

• sysUpTime

And the following graphs:

• CPU

• Free Memory

• Paging

• Avg. Disk Queue Length

3.1.2. File System Template

The File System template includes the following Data Sources:

• diskTime

• freeMegabytes

• freeSpace

And then the following graphs:

• Utilization

• IO ServiceTime

3.1.3. ethernetCsmacd Template

The ethernetCsmacd template includes the following Data Sources:

• bytesReceivedSec

• bytesSentSec

• packetsReceivedErrors

• packetsReceivedSec

• # packetsSentErrors

• packetsSentSec

And then the following graphs:

• Packets

• Errors

• Utilization

141

Windows Performance Monitoring
(Zenwinperf) (Commercial)

Chapter 19. SNMP Monitoring
1. SNMP from the Command Line
OID represent the data points where the data for the graphs comes from. Sometimes the reason that a graph is not
appearing is because the OID for the particular graph is not valid for the device. You can test this validity using
the command line to see if you can return a value. To test the validity of an OID data point giving performance
data:

1. SSH to the Zenoss instance.

Use Username: root

Password: zenoss

2. Run the command snmp get for one of the OIDs

In this case lets use the command:

$ snmpget -v1 -cpublic build .1.3.6.1.4.1.2021.4.14.0

If the OID is valid it will return a value.

Here are some basic SNMP Operators to gather certain information.

a. Walk a basic system MIB.

snmpwalk -v1 -cpublic <device name> system

b. Walk an interface description

snmpwalk -v1 -cpublic <device name> ifDescr

c. Get a single value.

snmpget -v1 -cpublic <device name> ifDescr.2

d. Detailed description of an OID value.

snmptranslate -Td RFC1213-MIB::ifDescr

e. Convert a name to a raw OID.

snmptranslate -On RFC1213-MIB::ifDescr

f. Convert a raw OID to a short name

snmptranslate -OS .1.3.6.1.2.1.2.2.1.2

142

Chapter 20. Alerting Rules
1. Creating and Using Alerts
The daemon ZenActions provides functionality for sending emails or pages based on events received. It continuously
evaluates every user’s paging rules against the event database. Each user has their own set of alerting rules.

Figure 20.1. Sending Alerts

1.1. Setting SMTP Settings For Alerts

To use email and pager alerts, you must have Zenoss pointing to an SMTP relay with the proper settings.

1. From the navigation menu on the left side of the Dashboard, select Settings.

The Settings page appears.

143

Figure 20.2. Settings Tab Showing SMTP Settings

2. To set up the mail servers, you must configure the SMTP Host, the SMTP Port, SNPP Host, and the SNPP Port.

Now you are prepared to create and use Alerting Rules for the Zenoss system.

2. Creating a New Alerting Rule
Alerting rules are created on a per user basis. You can add additional recipients for rules, but upon creation, the
rules are tied to a user account.

1. From the upper right corner of the Zenoss Dashboard, click the Preferences link.

The Preferences page appears.

144

Alerting Rules

Figure 20.3. Preferences Tab - Edit Tab

2. Select the Alerting Rules tab.

The Alerting Rules tab appears.

Figure 20.4. Alerting Rules Tab

3. From the Alerting rule table menu, select Add Alerting Rule.

The Add Alerting Rule dialog appears.

145

Alerting Rules

Figure 20.5. Add Alerting Rule Dialog

4. In the ID field, enter a name for the alert.

5. Click the OK button.

The main Alerting Rules page appears showing the alert you just created.

6. Click the name of the Alert you just created.

The Alert Details page appears.

Figure 20.6. Alert Details Edit Page

2.1. Define and Enable This Alert

Set the attributes from the Alert Details page, and clicking the Edit tab.

1. Use the Delay field to set the number of seconds to wait before sending the alert. If an event clears before delay
time no alert is sent.

2. To enable the alert, set Enabled to True.

146

Alerting Rules

3. Use the Repeat Time to set the time for repeating the alert to send the alert every x seconds until the event is
acknowledged.

4. In the Action field, select whether you want the system to send email or a page.

If action is defined as email the event will be emailed. If the default action is set to page, you will need to have
an SNMP paging server setup (see the external libs dir of install directory and the sendpage lib does this). Many
wireless phone systems have SMTP to SMS gateways so in many cases you use email to act like a page as well.

By default email alerts will be sent to the email address for this user and pager alerts will go to the specified
pager address.

You can override this by filling in the Address (optional) field.

5. The Where area of the tab sets the thresholds for the Alert.

The default rule that is created contains the thresholds for an event occurrence where the Event State is “New”,
Severity is “greater than Error”, and Production State is “Production”. You can change these thresholds by
changing the values in the pop-up menus.

6. You can also add additional filters to the Where area by choosing a filter from the Add Filter menu. Adding a
filter creates an additional pop-menu in the Where area where you can choose additional values to filter the
event. To Remove any of the filters for the alert, click the (-) minus button.

7. Click Save to save the values you entered on this tab.

2.2. 1.1.1 Create the Content of the Alert Message

1. From the Alerting Rules Page, click the Message tab to customize the message that is sent to the specified address.

The Message tab appears.

Figure 20.7. Alerting Rules Message Tab

147

Alerting Rules

2. Use the Message tab to specify the email message subject and body. You actually have two (2) message to
create. The first (called Message) is the message to send when the thresholds for the alert are met or exceeded.
The second message is the one to send when the event has cleared (called Clear Message).

The fields for the subject and message areas are python format strings.

At the bottom of the page there is a list of the fields available for an alert. A clear events fields are accessed by
prefixing the field name with “clear”. For instance the field prodState becomes clearProdState. There is also a
special field clearOrEventSummary which will print the clear summary or if it does not exist the original alert
summary. This is useful for the subject of a clear alert. In the case where an alert has no clear (it was deleted
for the UI for instance) a meaning full subject will still be created.

3. Click Save to save the data you entered on this page.

2.3. Create a Schedule for Sending the Alert

1. From the Alerting Rules page, click the Schedule tab to set up a schedule for the Alert.

The Schedule tab appears.

Figure 20.8. Alerting Rules - Schedule Tab

2. To add a new Schedule for the Alert, from the Active Periods table menu, select Add Rule Window.

The Add Active Period dialog appears.

148

Alerting Rules

Figure 20.9. Add Active Period Dialog

3. Enter a name for the schedule in the ID field and click the OK button.

The Schedule you added appears in the Active Periods list.

4. Click the name of the new Schedule to set the details for the schedule.

The Schedule Details page appears.

Figure 20.10. Alerting Rules - Schedule Details Page

5. If you want to restrict this Alert to only monitor at certain times for certain durations, set the Enabled field to
True.

6. In the Start area, enter the date you want the alert to start, or click the Select button to choose the date from a
calendar.

7. In the fields to the right of the date, select an hour and minute for the Alert to start.

8. Use the Duration area to specify the length of time you want to Alert to be listening based on the start time.

149

Alerting Rules

9. If you want the Alerting period to repeat you can choose a time frame from the Repeat pop-up menu. You can
choose from:

• Never

• Daily

• Every Weekday

• Weekly

• Monthly

• First Sunday of the Month

10. Choose a number of times to repeat the selected interval.

11. Click Save.

You have now saved all of the options for creating a new alert.

3. Escalation of Messaging in Zenoss
You can create a messaging hierarchy using some of the different managing tools available in Zenoss.

3.1. Creating an Alerting Hierarchy

You can create a alert Hierarchy based on event status and delays using Alerting Rules. For example, you send an
alert to Person A (for example the first level, on call tech) as soon as any event of a given priority occurs, if that
event is not Acknowledged or Suppressed (changing the status of the event) within a given time frame (For example,
an hour) you create an additional alerting rule to send email to the next person in the Alert Hierarchy, for example
Person B.

To create this hierarchy, first, you create an Alerting Rule for the Default case (the initial state). This case is "Any
when any new event of whatever priority occurs, alert Person A. To create this default rule, just create the Alerting
rule as usual. Set the Delay at 0 (Zero) seconds. Now for the next level in the alerting hierarchy (Person B) you
want to say "OK, if Person A does not acknowledge or suppress the event within an hour - then send an Alert to
the next person in the hierarchy (Person B). To create this hierarchy in Zenoss, you have to create an additional
alerting rule for Person B. There are 2 ways of doing this - you can A) Create an additional rule for the User account
you are currently logged in as or B) You can just add the additional (Person B's email address in the Address (op-
tional field). This added address overrides the User account email so email will only be sent to the newly added
email address.

For the 2nd Alerting Rule, set the delay to the number of seconds you want to wait after an event has come in and
has not been acknowledged or cleared. For our example, we have determined that time-frame to be one hour. One
hour is 3600 seconds. So in the Delay box for the Alerting Rule, enter 3600.

Now we need to pass a condition that will keep this alert from firing on all events, even the ones that Person A
acknowledges or Suppresses before the hour expires. In the Add filter area, select Event State and then select the
event state that will keep this rule from being executed on ALL events, even ones acknowledged by Person A. In
this case, an Event is considered to have a state of New unless it has been either Suppressed or Acknowledged so
let’s leave the setting at New. So now this alerting rule will send email to Person 2's email if an event remains in
the New State for more than 3600 seconds (one hour)

So this section defines a small 2 person hierarchy, but you can use the filters for alerting rules to create much more
sophisticated alerting hierarchies and scenarios. Device priority is a new attribute that will work great for defining
which person gets which alerts unless a device has a certain priority level in which case everyone gets the alert.

150

Alerting Rules

4. Adding Delay and Schedules to Alerting Rules
You can use Delays when creating alerting rules to set up on-call schedules and elevation hierarchies. Using delay
will allow you to specify that if an event is not acknowledged in a certain amount of time, then send email to the
next person in the hierarchy. You accomplish this by filtering on event state ('New' not acknowledged) and adding
a delay. Create an alerting rule for the tier 1 support person that does not have a delay so they find out immediately
and can acknowledge the event if possible.

1. Create a second alerting rule (this one will be for the tier 2 person in the hierarchy) and enable it.

2. Use the 'where' clause to say this rule is only in effect for events that have not been acknowledged.

Delay = 300 (in seconds, 5 minutes)

In the Where area,

Production State = Production

Severity >= Error

Event State = New

This rule now says fire this alert if there is an event in the system that is New (not acknowledged) for 5 minutes
send email to this user.

3. Click the Message tab and in the Message (or subject) field enter the following:

[Zenoss-delayed] %(device)s %(summary)s

4. In the Clear message (or Subject) area, enter the following.

[Zenoss-delayed] CLEAR: %(device)s %(clearOrEventSummary)s

5. Click the Schedule tab to edit the schedule. You can tell the rule to only be active when this user is on call (re-
member each alerting rule is user based).

6. In the Add field enter a name for the new schedule.

7. The new schedule appears in the list. Click the name of the new schedule.

Name = name of the new schedule

Enabled = True

Start = whenever you want the rule to start

Duration = how long you want this rule to be in effect

Repeat = number of times to repeat the schedule

Every = how many of the time periods to repeat for

8. Click Save.

151

Alerting Rules

Chapter 21. UI Commands
1. About UI Commands
User commands allow users to execute arbitrary shell commands from within Zenoss. These commands can then
be run manually against a single device or a group of devices. The user commands are executed on the Zenoss
server, not on the remote device (unless the user command explicitly uses ssh to connect to the remote device.)
User commands can be defined on any device class, system, group or location. They can also be defined globally
from the Settings page under the Manage tab.

2. Defining UI Commands
1. To access the Define Commands area, from any device you have loaded into your system, open the Device

page menu, select More >> Administration.

The Administration tab appears.

2. From Define Commands table menu, select Add User Command.

The Add User Command dialog appears.

Figure 21.1. Add User Command Dialog

3. In the Command Id field, enter a name for the command and click OK.

The Define Command page appears.

152

Figure 21.2. Define User Command Dialog

4. In the Description field, brief description of what the command will do.

5. In the Command section, enter the TALES expression based command you want to be run on the selected device
or devices.

6. Click the Save button.

The Command is saved and added to the command drop-down menu so you can choose to run it at any time.

2.1. UI Command Example: Echo Command

This section will walk you through creating an echo UI command. You can see the use of TALES expressions in
the definition of this command as in many other commands in Zenoss.

1. Go to the Settings - Manage tab.

2. Add a new command called “echoDevice”

3. Echo the name and IP of the device

echo name = ${here/id} ip = ${here/manageIp}

In a TALES expression ‘here’ is the object that the expression is executed against. Some TALES expressions
in Zenoss have other variables like evt for event and dev or device for the device. See the TALES Expression
appendix for more information on the syntax of the various TALES expressions.

4. Go to a device and run this command.

5. Now go back to the editing of this command and add some more information to the command.

echo name = ${here/id} ip = ${here/manageIp} hw = ${here/getHWProductName}

153

UI Commands

6. Now try running the command against a group of devices and see the command outputs.

3. Running Commands from the Zenoss Web UI
Zenoss allows commands to be run though the user interface. It comes with several built in commands such as
ping and traceroute. Commands can be run on a single device or on a group of devices.

You can run a command one time on a device or group of device from the Zenoss System.

1. Navigate to the Device or Device Group where you want to run the command (and where you have the command
defined).

2. 1.From the Device page menu, select Run Commands and then the command name you want to run.

The command is run and the output appears on the screen.

Figure 21.3. Command Output

4. Auto-Running Commands Based on Events
Zenoss allows you to set up commands to automatically be run against a device based on an event entering into
the system.

To run events based on Events:

1. 1.From the Zenoss Dashboard, from the left navigation menu, in the Management area, select Event Manager.

The Event Manager Edit tab appears.

2. Click the Commands tab.

The Commands tab appears.

3. Enter a name for the new Command, and click the Add button.

154

UI Commands

The new command appears in the command list.

4. Click on the name of the new command in the command list to give the command its attributes.

The Edit Command window appears.

Figure 21.4. Edit Event Command Page

5. Enable the command by setting the Enabled box to True.

6. Now set the other attributes for the command change the default timeout if necessary. Default timeout for the
command is 60 seconds.

7. You can also change the delay for the command so there is a gap between when the conditions for the command
to be run are met and when the command actually runs.

8. In the Command area, enter the command you want to run when the conditions are met. These commands use
TALES expressions. (See the section on TALES Expressions for more detail.)

9. In the clear Command area, enter a command to be run once the event has cleared.

Commands are built using TALES Expressions. Documented in the Appendix. When the conditions in the
Where clause are met, the command you create runs. The power of this command and where and what you can
run is only limited by the power of the scripts you create and the permissions on the machine where you want
to execute the commands.

This is optional, but could be useful if, for example, you were running an SMS modem separate from your
alerting rules and wanted to send on message in the Command area to send an SMS message if Ping went down,
and then when the Ping Down event was clear, you wanted to send an additional message from the SMS modem
that it is up.

10. At this point you use the “Where” area to set the conditions for this Command to be run.

155

UI Commands

11. In the Add Filter drop down select the filters for your Command.

12. You can filter on the Following Event cases:

• Agent

• Count

• Device Class

• Device Priority

• Event Class Key

• Facility

• Manage

• ntevid

• Priority

• Component

• Device

• Device Groups

• Event Class

• Event State

• IP Address

• Message

• OwnerId

You can add as many conditions as you want to further narrow the cases in which the Command will be ex-
ecuted.

13. Once you have completed setting up the conditions, click the Save button. Now the command is entered and
will run when the conditions are met.

156

UI Commands

Chapter 22. Production States and
Maintenance Windows
1. About Production States and Maintenance Windows
Zenoss has the capability to support “Maintenance Windows” or time periods (either scheduled or on the fly)
where the monitoring and alerting rules are changed. A set of rules governing monitoring, display and alerting can
be collectively defined as “Production States”. When there are temporary changes in Production State, and then a
reversion to the original state, this is a Maintenance Window.

2. Production States
Production State is an important concept in Zenoss. It determines whether or not a device is monitored and can be
used to control several elements of the event system such as whether or not an event will produce a remote alert
(email or page). Typically devices start off their life in state “Pre-Production.” In this state, devices are monitored
by default but no remote alerting occurs and events aren’t shown on the Dashboard. Once a device is in full “Pro-
duction” state monitoring is occurring and remote alerts are sent. If service needs to be performed on a device its
state can be set to “Maintenance” to temporarily block any remote alerts.

There are three factors that affect and define the Production State for devices:

1. Whether or not the device is being monitored.

2. Whether or not you want alerting to occur.

3. Whether or not the device appears on the dashboard.

The available Production States are merely combinations of the above:

• Production - you want all three: monitoring, alerting and dashboard.

• Pre-production - you may want monitoring but not alerting or the appearance of the device notices on the
dashboard

• Test - you may want monitoring and alerting (sent to one email) and but not displaying device info on the
dashboard.

• Maintenance - you want monitoring and collection to occur, and maybe or maybe not the device on the dashboard,
just not alerting occurring

• Decommissioned - no monitoring, no dashboard, no alerting

2.1. Defining Production States for Devices

You can set the Production State for a device or group of device(s) by going to the Edit Tab for the device or device
group and changing the Production State drop-down to whatever state you want the new Production State to be.
The default Production state when you add a device is Production. If you change the Production State for a hierarchy
of devices, the Production state propagates down the hierarchy except when you define an exception to the Production
State further down the hierarchy.

3. Maintenance Windows
Zenoss Maintenance Windows allow scheduled production state changes of a device or all devices in a System,
Group, or Location. Maintenance Windows are defined on the Manage tab of these objects.

157

A Maintenance Window has a Start Time, Duration, Repeat Cycle and Start and End Production State. A typical
Maintenance Window changes the Production State to Maintenance at its start, and to Production at its end. The
Start Production State for the Maintenance Window is the state that the monitoring for the device (or group of
devices) is in when the Maintenance Window begins or “opens”. For example, if your device(s) are running along
in a Production State of “Production” (meaning you are monitoring and alerting on the devices normally) and the
Maintenance Window opening time arrives, the Production State changes to the maintenance Window’s Start
Production State.

For example, if the Start Production State is set to Maintenance, this means you want monitoring and data collection
to continue to occur for the device, but you don’t want alerts to occur or any warnings to appear on the dashboard.
You can use this time to reboot the machine or make configuration changes that would normally create alerts and
not have them actually send alerts. You can either schedule a Maintenance Window or change the Production State
for the device manually at the time you want to make the changes. When the Maintenance window closes, the
device(s) change to the End Production State for the Maintenance Window. You define the End Production State
for the Maintenance Window. This refers to the Production State that you want the device(s) to revert to when the
Maintenance Window ends. So the Start Production State is the state you want when the Maintenance Window
opens - if I were setting up a Maintenance Window, I would define the window such that when its time for the
Maintenance Window to occur, I want the Start Production State to be Maintenance, and then when the Maintenance
Window time frame expires, I want the Stop Production State to be Production, meaning its back to monitoring
and alerting as normal. This would save sending out known alerts as you rebooted or created other, known, alerting
events.

3.1. Creating and Using Maintenance Windows

You can create a Maintenance Window for an individual device or for any grouping of devices in any hierarchy
you create and define. You can create these windows either for a single device or create a window per device class
or system, and have the window propagate to all devices that fall below where you create the window.

To create a new maintenance window:

1. Navigate to the device or group of devices where you want to define the maintenance window. Open the page
menu and select More and then Administration.

The Administration page appears.

2. From the Maintenance table menu, select Add Maint Window.

The Add Maintenance Window appears.

3. In the ID field enter a name for the maintenance window and click OK.

The name appears in the Maintenance Window list.

4. To define the window, click the name of the Maintenance Window.

The Maintenance Window Status Tab appears.

5. Define the attributes for this Maintenance window.

• Name - Name of the maintenance window.

• Enabled - True or False as to whether you want this maintenance window active.

• Start - The time for the window to become active.

• Duration - The length of time for the window to be in effect starting from the Start time.

• Start Production State - Defines the production state for the window before it opens.

• Stop Production State - Defines the production state for the object once the maintenance window closes.

158

Production States and Maintenance
Windows

6. Click Save.

159

Production States and Maintenance
Windows

Chapter 23. Reporting
1. About Reporting in Zenoss
Zenoss also excels at aggregating and reporting on data over time for any of the data you have set it up to monitor.

The kinds of Reports that are available include:

• Summary Reports for performance information (CPU, memory, i/o pages, load average, network interface util-
ization)

• Performance threshold summary reports

• Go through the history events and calculate the percentage uptime for device and is components.

• Availability report of any event class

• Ping Issues

• SNMP Issues

• SLA Reporting

• Graphing of trend over time: hourly, weekly, monthly, yearly

• Other Performance Reports

To see the Reports area of Zenoss, from the left navigation click Reports. The Reports organizer list appears.

160

Figure 23.1. Report Organizer List

2. Organizing Reports
Reports can be organized just like any other elements in the Zenoss system. You can create categories, sub-categories
and Organizers to organize the reports as you see fit. You can create any kind of hierarchy and relationships the
same way you can do for devices or events.

3. Navigating and Sorting Report Results
Each report result can be sorted by column heading by clicking on the column heading you want to sort by. You
can also sort this report based on any of the column headings or filter based on any keyword you enter in the filter
field.

4. Exporting Reports
You can export any of the included reports in Zenoss by going to the Exporting of Reports as comma separated
value (.csv) files. To export the reports, from the bottom of any of the reports, click the ”Export All” button.

4.1. Add An Export Button to a Report

Adding an Export All button to a report is fairly straightforward. The overall format of the report markup looks
something like this:

<tal:block tal:define="
objects python:here.ZenUsers.getAllThingsForReport();
objects python: (hasattr(request, 'doExport') and list(objects)) or objects;
tableName string: thisIsTheTableName;
batch python:here.ZenTableManager.getBatch(tableName,objects, sortedHeader='getUserid'
);
exportFields python:['getUserid', 'id', 'delay',
'enabled', 'nextActiveNice', 'nextDurationNice',
'repeatNice', 'where'];
">
<tal:block metal:use-macro="here/reportMacros/macros/exportableReport"> <tal:block metal:fill-slot="report">

161

Reporting

The normal report markup goes here:

</tal:block>

</tal:block>

</tal:block

The first definition is a call to some method that retrieves the objects for the report. This might be a list, tuple or
an iterable class.

If we are doing an export then we need this to be a list, so the second tal:define line makes sure we have a list in
the event that we are doing an export. It's good to not do this if we are not doing an export. Large reports might
run into performance issues if an iterable is converted to a list unnecessarily.

tablename is defined here for use by the getBatch() call that follows.

exportFields is a list of data to be included in the export. These can be attribute names or names of methods to
call. See DataRoot?.writeExportRows() for more details on what can be included in this list.

Within the <tal:block metal:fill-slot="report"></tal:block> block goes the report markup you would use when not
including the export functionality.

Note: If the Export All button is mysteriously not doing anything you may need to be using zenTableNavigation/mac-
ros/navtool rather than zenTableNavigation/macros/navbody in your report. The former includes the <form> tag,
the latter does not. If you are not providing a <form> tag then you need to use navtool so the export button is
within a form.

5. Reports Included With Zenoss
The basic Report categories (the ones included when you build Zenoss)

5.1. Device Reports

Device Reports aggregate and display data over many devices and device attributes.

• All Monitored Components – The All Monitored components shows all of the components currently being
monitored. This is NOT all components in the system, only the ones that Zenoss is currently collecting perform-
ance data on. The information that appears in this report is: the device name, Component, the type of component
(when available), the description, and the status of each device.

• Model Collection Age – The Model Collection age report shows information about the history of the modeling
that Zenoss does of each device. The information available in this report includes the device name, Device Class,
the time when the device was first seen by Zenoss, the last time Zenoss Collected Data on this device, and any
changes made to the configuration at that time.

• Device Changes - The Device Change report shows information about the history of any changes that Zenoss
detects when modeling each device. This report only shows devices with changes. The information available
in this report includes the device name, Device Class, the time when the device was first seen by Zenoss, the
last time Zenoss Collected Data on this device, and any changes made to the configuration at that time.

• Ping Status issues – The Ping Status Report shows the device name, the device class, the Product name, the
current state of the device and the Ping and SNMP status. The only devices that will show up here are devices
that actually have or have had Ping issues.

162

Reporting

• SNMP Status Issues - The SNMP Status Report shows the device name, the device class, the Product name, the
current state of the device and the Ping and SNMP status. The only devices that will show up here are devices
that actually have or have had SNMP issues.

• New Devices – The New Devices report shows devices that have been recently added. The report shows the
Device Name, the Device Class, when the device was first seen and the model collection age.

• New Devices – The New Devices report shows devices that have been recently added. The report shows the
Device Name, the Device Class, when the device was first seen and the model collection age.

5.2. Event Reports

Event reporting gives you aggregate data about events, event mappings and event classes.

• All Heartbeats – The All Heartbeats Report shows all heartbeats for monitored devices. Heartbeats are reported
by component and number of seconds.

• All Event Classes – The All Event Classes report shows all of the event classes that reside in the Zenoss system.
It also breaks these classes down by SubClasses, the number of instances of that class in the system and the
number of events in the system associated with each Event Class.

• All Event Mappings – The All Event Mappings shows all of the event mappings that you have created
throughout the system. You can sort them by Event Class key, Evaluation or number of events per event class.

5.3. Performance Reports

Performance Reporting allows you to roll up performance data across the Zenoss system.

• Aggregate Reports – The Aggregate reports shows the performance graphs for all of the devices in the system
in graphical format. Common performance stats include PU Usage, Aggregate Free Memory, Aggregate Free
Swap, and Network Output/Input. You can edit the graph parameters by clicking on the graph. You can change
the Width, height, Min Y and Max Y axis. You can also specify which devices are included in the aggregate
and the time span for the graph.

• File System Utilization Report – The File System Utilization Report shows the Total Bytes, used Bytes, Free
Bytes and % Utilization for each device. You can customize the report through the interface for such attributes
and start/end Date and Summary type; either average or Maximum.

• CPU Utilization Report – The CPU Utilization report shows all of the Monitored Interfaces, the list of devices
and the load average and % Utility. You can customize the report through the interface for such attributes and
start/end Date and Summary type; either average or Maximum.

• Threshold Summary – The Threshold Summary Report identifies the devices that approach or exceed their
thresholds and reports them in a list. You can see the device, the component, the event class, count, duration
and percentage. You can filter this list by Event Class or to see all Event Classes, leave the event class Selection
List blank. You can also change the start and end date for the reporting data.

• Availability Report – The Availability Report reports availability of devices in percentage form. You can filter
on device, component, event class or severity. You can also further limit the time frame for the availability.

The availability report provides an estimate of the time a device or component is available for monitoring things
such as Service-level Agreements (as an example).

163

Reporting

This report summarizes the amount of time a device or component can be considered "unavailable". The defin-
ition of unavailable differs depending on what type of service you require. If a web server goes down, the web
service is not available, even though the device may actually be reachable (pingable) on the network.

As Zenoss collects events against devices and components, these events are classified into categories that are
useful for determining if a particular service is unavailable. For example, the class "/Status/IpService" can
provide all the events related to a failed IP Service. The availability report adds up all of the time (lastTime -
firstTime) for all of the events based on device, component and/or eventClass. This defines the "unavailable"
period. The availability is the remainder of the period.

This is an optimistic estimate of availability because events that occur only once and events that have the same
first and last time, are not counted. Another assumption the estimate makes is that devices without any matching
events during the Availability time range are assumed to be 100% available.

• Memory Utilization – The Memory Utilization Report provides system wide information about the memory
usage for devices in the system. This report shows Total memory, Available memory, Cache memory, Buffered
memory, and percent of memory utilized.

5.4. User Reports

User Reports refer to report based on user account information and changes within the Zenoss system.

• Notification Schedules – The Notification Schedules Report shows all of the alerting rules and their associated
details with each one.

6. Graph Reports
Graph Reports allow you to assemble graphs from specific Devices and Device Components into a single report.
Click on Reports in the left navigation menu, then on the Graph Reports organizer to view or create Graph Reports.
Graph Reports have a normal view which is similar to the graph views for Devices and Device Classes. Graph
Reports also have a Printable view more appropriate for printing which can be brought up by clicking on the
Printable button at the top of the report view.

Note that Graph Reports can only display graphs that already exist on Device or Components within Zenoss. You
cannot define new graphs or alter existing graphs from within a Graph Report. If you need this type of functionality
you probably want MultiGraph Reports instead.

164

Reporting

Figure 23.2. Graph Report

6.1. Creating a New Graph Report

From within the Graph Reports organizer or a sub-organizer use the Add Graph Report menu item to create a new
report. After entering a name for the new report you will be taken to the edit page. The fields for a Graph Report
are:

• Name - The name of the report is displayed at the top of the report.

• Title - This description is displayed in the list of reports for the report organizer. It is also available for use in
the comments.

• Number of Columns - This is the number of columns the graphs will be displayed in on the report.

• Comments - The comments are displayed at the top of the Printable version of the report. This is a TALES
evaluated string that may contain html formatting. The variables available to the TALES expression are now
(the current datetime) and report (the report object itself.)

6.2. Adding Graphs

The Add New Graph section of the Edit page allows you to add one or more graphs to the report. The first step is
to select one or more Devices. The list of Devices can be narrowed by entering a search string to the left of the
Filter button and pressing Return or clicking the Filter Button. When you select one or more Devices the Component
list will display the names of all Components defined on at least one of the selected Devices. The Graph list will
list the Graphs available on one or more of the listed Devices. When one or more Components are selected the
Graph list will display Graphs from the selected Components rather than the selected Devices.

165

Reporting

At any point you may select one or more Graphs and use the Add Graph to Report button. Zenoss steps through
each selected Component (if any are selected) or Device (if no Components are selected) looking for graphs with
the given names. Matching graphs are added to the Graph Report.

Graph Reports maintain a static list of graphs which does not change when graphs are added or deleted from Per-
formance Templates. For example, take DeviceA which has only one graph called Graph1 and DeviceB which
has two graphs named Graph1 and Graph2. On the Graph Report edit page if you selected DeviceA and DeviceB
the list of graphs would include Graph1 and Graph2. Selecting both graphs and clicking the Add Graph to Report
button would add three graphs to the report: DeviceA's Graph1, DeviceB's Graph1 and DeviceB's Graph2. If at
some later date you created a Graph2 on one of DeviceA's Performance Templates it would not automatically appear
on the Graph Report, you would have to edit the report to specifically add it. Similarly, if one of the graphs was
removed from DeviceB's Template (or if DeviceB was deleted from Zenoss) you would need to manually remove
them from the Graph Report.

Figure 23.3. Graph Report Edit Page

6.3. Customizing Graph Text

The Graphs section of the Edit page lists the graphs that are included in this report. Click the name of any of the
graphs takes you to an edit page where you can edit the text that appears with the graph when the report is viewed.
The Summary field is displayed above the graph in the normal report view and the Comments field is displayed
to the left of the graph in the printable view. Both of these fields may contain TALES expressions with these
variables: dev (the device), comp (the component) and graph (the graph.)

166

Reporting

Figure 23.4. Graph Report Element

6.4. Organizing Graphs

In both the normal and printed view of the report graphs are laid out from left to right in as many columns as specified
on the report's edit page. For example, if a report has three columns then the first three graphs are placed on the
first line of the report and the fourth graph would be the first one on the second row. By altering the sequence of
the graphs on the edit page you can control where each graph appears on the report view. You change the sequence
by editing the values in the Seq column beside each graph name and choosing the Re-sequence Graphs menu item.

7. MultiGraph Reports
MultiGraph Reports are a powerful mechanism for combining data from different Devices and Components into
a single report. You can create a Graph Definition and have it drawn once for each in a group of Devices and
Components that you define. Alternatively, you can have the data for those graphs combined into a single graph.
The Graph Definitions are very similar to those used in Performance Templates except that these are defined and
used exclusively within a single report. The groups of Devices and Components you assemble are called Collections.
Specifying which Graph Definitions to apply to which Collections is done through Graph Group objects. Like
Graph Reports, MultiGraph Reports have two different views, normal which looks similar to Device and Component
graph pages and printable which is formatted more suitably for printing. The normal view is seen on the Report
tab of any MultiGraph Report. At the top right of that view is a button named Printable for displaying the printable
version.

MultiGraph Reports include their own Graph Definitions and thus do not use the Graph Definitions that are defined
within Performance Templates. If you want to create a report that includes graphs defined on Templates then you
may wish to use GraphReports rather than MultiGraph Reports.

167

Reporting

Figure 23.5. MultiGraph Report Graphs

7.1. Creating A New MultiGraph Report

From within the MultiGraph Reports organizer or a sub-organizer use the Add MultiGraph Report menu item to
create a new report. After entering a name for the new report you will be taken to the edit page. The fields for a
MultiGraph Report are:

• Name - The name of the report is displayed at the top of the report.

• Title - This is displayed at the top of the printable version of the report.

• Number of Columns - The report will display the graphs in this many columns on the report.

Once you've created the MultiGraph Report there are three steps required to get graphs showing on the report:

1. Create a Collection which contains the Devices and/or Components you want to graph.

2. Create a Graph Definition that describes the graph(s) you want on the report.

3. Create a Graph Group which specifies the Collection and the Graph Definition you just created. The Method
setting in the Graph Group lets you choose to have the graph drawn once for each Device/Component in the
Collection or you can have the data from all the Devices/Components combined into a single graph.

These are just the minimal steps to getting a functional MultiGraph Report. You can create any number of Collec-
tions, Graph Definitions and Graph Groups in a single report. See the sections that follow for details on creating
Collections, Graph Definitions and Graph Groups.

168

Reporting

Figure 23.6. MultiGraph Report Edit Page

7.2. Collections

A Collection is a group of Devices and/or Components. A MultiGraph Report must have at least one Collection.
Collections are listed in the Collections table on the report's Edit page. You can create a new Collection with the
Add Collection menu item on that table then specifying a name in the dialog that appears.

A Collection consists of one or more Collection Items. A Collection Item is a list of Device Classes, Systems,
Groups, Locations or specific Devices and Components that should be included in this Collection. You can create
as many Collection Items of the various types as you wish within a single Collection. The controls for creating
Collection Items are in the Add To Collection table of the Collection edit page. The Item Type menu lets you select
one of the following:

• Device Class/System/Group/Location - Selecting one of these options reveals a list of all organizers of that type.
You can select one or more of the organizers to include in the Collection. By selecting True for the Include
Suborganizers field the Collection will also include all organizers recursively beneath the ones you selected.
These Collection Items are dynamic - when devices are added or removed from these organizers they will appear
or disappear from the report. Clicking the Add to Collection button creates a new Collection Item for each of
the selected organizers.

• Specific Device/Component - Selecting this type reveals a list of all Devices in Zenoss. You can use the Filter
field to narrow this list by entering a full or partial Device name. Selecting one or more Devices will display a
list of Component names that apply to one or more of the selected Devices. If you do not select any Components
and click the Add to Collection button then a new Collection Item is created for each selected Device.

Once you have specified an Item Type and made your selection click the Add to Collection button to create the
new Collection Item. It will be added to the list of Collection Items at the end of the page. Collection items can
be deleted or reordered within this list. Order of the Collection Items determines the order that the graphs are drawn
in or the order that data is drawn on a combined graph. See the section on Graph Groups for more details.

169

Reporting

Figure 23.7. MultiGraph Report Collection

7.3. Graph Definitions

Graph Definitions in the context of MultiGraph Reports are very similar to those in Performance Templates. Settings
on the Graph Definition itself define some basic parameters, then you add Graph Points to specify which data
should be drawn. See the section on Graph Definitions in the Performance Chapter for details on creating Graph
Definitions.

The most significant differences between Graph Definitions in the two contexts is how DataPoint Graph Points
and Threshold Graph Points are added. When adding a DataPoint Graph Point to a Graph Definition within a
Performance Template you can select from a list of DataPoints that are defined on that Template. But within the
context of a MultiGraph Report there are no GraphPoint definitions to list. So instead of listing the available
DataPoints, the DataPoint Graph Point dialog has a text field where you enter the name of the DataPoint. To make
things easier the input has an auto-complete feature which knows the names of every DataPoint defined in Zenoss.
This same situation is true with Threshold Graph Points.

170

Reporting

Figure 23.8. MultiGraph Report Graph Definition

7.4. Graph Groups

Graph Groups are used to combine one Graph Definition with one Collection to produce graphs for the report.
You must have at least one Graph Group or your report will have no graphs. You create a new Graph Group by
selecting the Add Group menu item from the Graph Groups table menu. After entering a name for the Graph Group
you are presented with the Graph Group edit page. There are 4 settings on this page:

• Name - This is used to identify the Graph Group on the MultiGraph Report page. It does not appear anywhere
on the actual report.

• Collection - Select one of the Collections that have been defined for this report.

• Graph Definition - Select one of the Graph Definitions that have been defined for this report.

• Method - There are two options for applying the Graph Definition you selected to the Collection that you selected:
* Separate graph for each device: The Graph Definition will be used to draw one graph for each Device and
Component listed in the Collection. The graphs will appear in the list in roughly the same order they are specified
within the Collection. * All devices on a single graph: This draws one graph with the data from all the
Devices/Components on it.

171

Reporting

Figure 23.9. MultiGraph Report Graph Group

7.5. Graph Order

Graph Groups are drawn in the order they are listed on the MultiGraph Report edit page. You can change the order
of the Graph Groups by editing the sequence number next to each then using the Re-Sequence Items menu item
from that table's menu. If a Graph Group results in multiple graphs, the graphs are drawn in the order that the
Collection Items are listed within the corresponding Collection. If a Collection Item specifies a Device organizer
then the order of the Devices drawn from that Collection Item is indeterminate.

As with Graph Reports, if you have specified multiple columns for a report then the graphs are drawn left to right
in that number of columns using as many rows as necessary.

8. Creating Custom Reports
There are a few ways to create reports of your own. You can create some reports through the Zenoss user Interface
or using the Zope management Interface (ZMI).

8.1. Creating Custom Reports Using the ZMI

Zenoss Reports are written in python and templates are available through the Zope Management Interface (ZMI).
To access the ZMI for a particular page, add a /manage to whichever report you are looking at. The ability to create
individual reports is largely dependent on your ability to create python strings to get and display the information.
More details on this will be forthcoming as we add more new reports and create more.

8.2. Create A Custom Device Report Example

Here are the steps for creating a Custom Device Report that will show device name, network address, and device
serial number.

1. From the left navigation menu, select Reports.

2. From the Report Organizers list, click the Device Reports link.

This is where you will be adding a new report.

172

Reporting

3. From the bottom of the page enter a name for this custom report in the Add text box.

4. Click the Add button.

The report you just created will appear in the Report list.

5. Click the name of the new report from the list.

The Report detail page appears.

6. Click the Edit tab to define the report parameters.

7. Fill out the fields for this report as follows.

• Name- The name you want to give to the report.

• Title - The way the report is named in the display. Can be different from the name.

• Path -The path in the hierarchy where the report will be stored.

• Query - The actual query string for If you want to limit the report to just those devices that have a serial
number, you can set the Query value to:

here.hw.serialNumber != ""

• Sort Column - What column you want to use to sort the report.

• Sort Sense - The sense that the system uses to sort (For example asc is ascii)

• Columns These columns are the actual data that be retrieved and displayed in the report.

For example:

getId – would get the name of any devices

getManageIp – would get the IP addresses of the devices

getHWSerialNumber – will grab serial numbers for device.

• Column Names - You can add column names to make the column headers more descriptive.

For the example columns above you could use the column names:

Device

Address

Serial #

NOTE: The information that appears in the fields and how you actually get this information is found in the
admin guide in the Tales Expressions appendix in the Device schema section.

8. Click the Save button.

9. Now click the Report tab at the top of the page.

The new device report appears showing the devices that meet the criteria.

173

Reporting

9. Using Reports to Help Troubleshoot Zenoss Daemons
This section will show you how to find and view certain reports that will aid you in troubleshooting Zenoss daemons.

From the Zenoss web interface, navigate to Reports. Follow the path to the various reports listed below to see the
reports. The troubleshooting items on the right give you clues as to what to expect to find in the various reports.

Where It LivesReport NameTroubleshooting Items

/Reports/Device ReportsModel Collection Agezenmodeler issues

/Reports/Event Reports/All HeartbeatsAny internal Zenoss issues

/Reports/Device ReportsNew Deviceszendisc errors, adding devices

/Reports/User ReportsNotification SchedulesAny alerting rule issues, will show
all rules in the system

/Reports/Device ReportsSNMP Status IssuesGood summary of snmp status across
the system including non-monitored

/Reports/Device ReportsPing Status IssuesWhich devices are monitored and
whether ping is turned on or off

174

Reporting

Chapter 24. Advanced Zenoss Reports
(Commercial)
1. Additional Reports
ZenEnterpriseReports adds three new reports to the standard core reports. The three additional reports are:

• Maintenance Windows Report - showing all maintenance windows within the Zenoss instance. This report is
useful for tracking system up and down times.

• Organizer Availability Report - Gives you the availability percentage of all network organizers in the system.
This report can be filtered by Organizer, Event Class, Component and Date.

• Systems Availability report that shows you systems availability in time and percentage and is filterable by date.

175

Chapter 25. General Zenoss
Administration
1. Working with Zenoss from the Command Line
When working with Zenoss from the command line, you always want to be logged in as the user “zenoss”. If you
log in as root you must become zenoss by issuing the command:

su - zenoss

2. Minimal Zenoss - ZEO and Zope
The Zenoss user interface can run without any other Zenoss processes running. In this mode, only ZEO and Zope
are running.

This mode is useful for troubleshooting many Zenoss issues.

1. Stop all Zenoss processes.

$ zenoss stop

2. Start the Zope object database.

$ zeoctl start

3. Start Zope

$ zopectl start

4. Go to the web UI and confirm that you can access the Dashboard.

5. Start the other Zenoss daemons.

3. Checking the Version of Zenoss
You can use the Version tab to check the version of Zenoss and all of the associated components. To access this
information from the Navigation menu in the Dashboard, click Settings. Now click the Versions tab. The Versions
tab appears.

This tab shows the version of the following Zenoss components:

• Zenoss

• Zope

• Database

• Twisted

• OS

• Python

• RRD

176

• SNMP

This page also gives the Zope uptime.

4. Checking for Zenoss Updates
Use the Settings page Versions tab to check for updates to the Zenoss software. You can have Zenoss to check
daily or click the Check Zenoss Version Now button to check for an update. You can also see the last time a check
for updates was made.

5. Starting and Stopping the Zenoss Daemons
You can use the Zenoss management console to start and stop the Zenoss daemons as well as check the status of
the daemons. To access this information from the Navigation menu in the Dashboard, click Settings tab and then
click the Daemons tab.

Figure 25.1. Settings Page - Daemons Tab

This tab is made up of a list of all of the Zenoss daemons, their process IDs (PIDs), a status indicator and then an
Action area where you can restart a process or stop it. If a daemon is stopped, the Restart button changes to start.

6. Zenoss Daemon Commands and Options
All Zenoss daemons share some similar commands. These commands can be run from the command line for the
device where Zenoss is installed. Each daemon has the following commands:

• run – start daemon but don’t put it into the background. This is good for debugging.

• start – start as a daemon running in the background, detached from the shell.

• stop – stop the daemon.

• restart – stop/start the daemon. Sometimes the start command will run before the daemon has terminated. If this
happens just re-run the command.

• status – check the status of a daemon will print out the current process number if running.

177

General Zenoss Administration

• help – display a list of all options for the daemon.

6.1. Configuring Zenoss Daemons

Any daemon can be configured by adding key/value pairs to a file named $ZENHOME/etc/DAEMONNAME.conf.
Valid keys are the long option of any command line option. These can be listed by using the daemons “help”
command.

6.2. General Options for All Daemons

DescriptionCommand

show program's version number and exit--version

show this help message and exit-h, --help

Logging severity threshold-vLOGSEVERITY,--logseverity=LOGSEVERITY

override default logging path--logpath=LOGPATH

config file-CCONFIGFILE,-- configfile=CONFIGFILE

user to become when running default:zenoss--uid=UID

Cycle continuously on cycleInterval from zope-c, --cycle

Become a Unix daemon-D, --daemon

hostname of zeo server--host=HOST

port of zeo server--port=PORT

root object for data load (i.e. /zport/dmd)-RDATAROOT, --dataroot=DATAROOT

in memory cachesize default: 1000--cachesize=CACHESIZE

persistent cache file name default:None--pcachename=PCACHENAME

persistent cache file directory--pcachedir=PCACHEDIR

6.3. zenhub Options

DescriptionCommand

Port to listen to for XML RPC calls-x XMLRPCPORT, --xport=XMLRPCPORT

pb port--pbport=PBPORT

Location the password file is stored--passwd=PASSWORDFILE

Allows zenhub to use subordinate processes to handle
collector requests. Use to reduce the load on zenhub

--workers=NUMBER

without resorting to a multiple-hub configuration. The
value of NUMBER must be an integer greater than zero.

6.4. zenmodeler Options

DescriptionCommand

don't fork threads for processing--debug

number of devices to collect from in parallel--parallel=PARALLEL

run collection every x minutes--cycletime=CYCLETIME

Comma separated list of collection maps to ignore--ignore=IGNOREPLUGINS

Comma separated list of collection maps to use--collect=COLLECTPLUGINS

start path for collection ie /NetworkDevices-pPATH, --path=PATH

178

General Zenoss Administration

DescriptionCommand

fully qualified device name ie: www.zenoss.com-dDEVICE, --device=DEVICE

do not collect from devices whose collect date is within
this many minutes

-aCOLLAGE, --collage=COLLAGE

number of times to try to write if a read conflict is found--writetries=WRITETRIES

force collection of config data (even without change to
the device)

-F, --force

time to wait for connection failures when port scanning--portscantimeout=PORTSCANTIMEOUT

Login username-uUSERNAME, --user=USERNAME

Login password-PPASSWORD, --password=PASSWORD

number of times to try login-tLOGINTRIES, --loginTries=LOGINTRIES

timeout login expect statements-LLOGINTIMEOUT, --loginTimeout=LOGIN-
TIMEOUT

timeout when issuing a command-TCOMMANDTIMEOUT, --commandTimeout=COM-
MANDTIMEOUT

Path to use when looking for keys-KKEYPATH, --keyPath=KEYPATH

Path to use when looking for commands-sSEARCHPATH, --searchPath=SEARCHPATH

how to check for command-eEXISTENCETEST, --existenceTest=EXISTEN-
CETEST

timeout when discovering prompt-rPROMPTTIMEOUT, --promptTimeout=PROMPT-
TIMEOUT

regex that will find the login prompt-xLOGINREGEX, --loginRegex=LOGINREGEX

regex that will find the password prompt-wPASSWORDREGEX, --passwordRegex=PASS-
WORDREGEX

enter enable mode on a cisco device--enable

enter send terminal length 0 on a cisco device--termlen

time to wait before sending enable command--enablePause=ENABLEPAUSE

regex that will find the enable password prompt--enableRegex=ENABLEREGEX

NOTE: --ignore and --collect are mutually exclusive

6.5. zenperfsnmp Options

DescriptionCommand

XMLRPC url path for performance configuration server-zZOPEURL, --zopeurl=ZOPEURL

username for zope server-uZOPEUSERNAME, --zopeusername=ZOPEUSER-
NAME

password used to login to the zope server--zopepassword=ZOPEPASSWORD

XMLRPC path to an ZenEventManager instance--zem=ZEM

Specify a specific device to monitor-dDEVICE, --device=DEVICE

Specify a specific name of the monitor configuration--monitor=MONITOR

6.6. zenperfxmlrpc Options

DescriptionCommand

XMLRPC url path for performance configuration server-zZOPEURL, --zopeurl=ZOPEURL

179

General Zenoss Administration

DescriptionCommand

username for zope server-uZOPEUSERNAME, --zopeusername=ZOPEUSER-
NAME

password used to login to the zope server--zopepassword=ZOPEPASSWORD

XMLRPC path to an ZenEventManager instance--zem=ZEM

Specify a specific device to monitor-dDEVICE, --device=DEVICE

Specify a specific name of the monitor configuration--monitor=MONITOR

6.7. zenprocess Options

DescriptionCommand

XMLRPC url path for performance configuration server-zZOPEURL, --zopeurl=ZOPEURL

username for zope server-uZOPEUSERNAME, --zopeusername=ZOPEUSER-
NAME

password used to login to the zope server--zopepassword=ZOPEPASSWORD

XMLRPC path to an ZenEventManager instance--zem=ZEM

Specify a specific device to monitor-dDEVICE, --device=DEVICE

Specify a specific name of the monitor configuration--monitor=MONITOR

6.8. zenping Options

DescriptionCommand

path to our monitor config ie: /Monitors/StatusMonit-
ors/localhost

--configpath=CONFIGPATH

name to use when looking up our record in the dmd de-
faults to our fully qualified domain name as returned by
getfqdn

--name=NAME

Run in test mode: doesn't really ping, but reads the list
of IP Addresses that are up from /tmp/testping

--test

6.9. zensyslog Options

DescriptionCommand

Number of seconds between the writing of stats--statcycle=STATCYCLE

zope path to our dmd /zport/dmd--dmdpath=DMDPATH

try to parse the hostname part of a syslog HEADER--parsehost

print stats to log every 2 seconds--stats

log the original message--logorig

debug mode no threads--debug

Minimum priority that syslog will accept--minpriority=MINPRIORITY

Number of seconds between heartbeats--heartbeat=HEARTBEAT

Port number to use for syslog events--syslogport=SYSLOGPORT

6.10. zenstatus Options

DescriptionCommand

path to our monitor config ie: /Devices/Server--configpath=CONFIGPATH

180

General Zenoss Administration

DescriptionCommand

number of devices to collect at one time--parallel=PARALLEL

check events every cycletime seconds--cycletime=CYCLETIME

6.11. zenactions Options

DescriptionCommand

check events every cycletime seconds--cycletime=CYCLETIME

address from which email is sent--fromaddr=FROMADDR

http path to the root of the zope server--zopeurl=ZOPEURL

6.12. zentrap Options

DescriptionCommand

Number of seconds between the writing of stats--statcycle=STATCYCLE

Port number for listening for traps-tTRAPPORT, --trapport=TRAPPORT

6.13. zencommand Options

DescriptionCommand

XMLRPC url path for performance configuration server-zZOPEURL, --zopeurl=ZOPEURL

username for zope server-uZOPEUSERNAME, --zopeusername=ZOPEUSER-
NAME

password used to login to the zope server--zopepassword=ZOPEPASSWORD

XMLRPC path to an ZenEventManager instance--zem=ZEM

Specify a specific device to monitor-dDEVICE, --device=DEVICE

Specify a specific name of the monitor configuration--monitor=MONITOR

number of devices to collect at one time--parallel=PARALLEL

7.Troubleshooting Zenoss Daemons
When Zenoss is having an issue, it will write stack traces into its log files. These log files are important for deci-
phering exactly what went wrong with the application. This section demonstrates how to generate a stack trace.
This will generate a stack trace where you can see errors in the log.

1. While logged in as the zenoss user, stop all zenoss processes.

2. Shut Down MySQL.

$ sudo service mysqld stop

3. Start the Zope Object Database.

$ zeoctl start

4. Run zenperfsnmp in the foreground in debug mode.

$ zenperfsnmp run

5. Notice there are stack traces saying that the daemon can’t connect to zenoss.

181

General Zenoss Administration

6. Start Zope.

$ zopectl start

7. Go to dashboard and see the error message “Lost connection to Zenoss”. This error on the dashboard can appear
for many reasons related to the loss of connectivity or some back end failure of the system.

8. Look for a more useful error in the zope log file $ZENHOME/log/event.log.

9. Restart mysqld.

$ sudo service mysqld start

10. Restart Zenoss.

$ zenoss start

11. Look at the end of all zenoss log files for any errors.

$ tail $ZENHOME/log/*.log | less

8. Automatic Startup in Linux Environments
Zenoss can be controlled entirely by the bin/zenoss script. To provide automatic startup in Linux environments,
you must link Zenoss to the /etc/rc.d/init.d directory

$ ln -s $ZENHOME/bin/zenoss /etc/rc.d/init.d

It is important to either add $ZENHOME to the root environment or to the zenoss script itself.

9. Using Zenoss with a Remote MySQL Instance
If you are interested in using a remote MySQL database for Zenoss, set it up the same way you would set it up if
you were using a native database. Then log into the management console.

1. First change the database address for the Backend Type for the mysql database.

From the Zenoss Dashboard, in the Navigational menu, select Event Manager.

The ZenEventManager page appears.

2. Change the Hostname field to the address of the MySQL database you want to use.

3. Restart Zenoss.

The MySQL database you entered is now the default database.

10. Loading and Registering MIBs with Zenoss
The MIB loader is called zenmib. To load MIBs, first copy them to $ZENHOME/share/mibs/site. Then run zenmib
using the command:

zenmib run mibfile

The MIB is now loaaded into Zenoss. You can see the MIBs you have loaded by using the left navigation menu
and clicking the Mibs link.

182

General Zenoss Administration

10.1. Resolving MIB Dependencies

You loaded aaa.mib, and when you attempt to load bbb.mib, you get this error:

INFO:zen.zenmib:Unable to find a file providing the MIB AAA-MIB

To resolve the dependency, load them like this

zenmib run aaa.mib bbb.mib

183

General Zenoss Administration

Chapter 26. Backup, Recovery and
Maintenance
1. Backup and Restore
Zenoss provides tools to backup the configuration and data from a Zenoss install and restore that information later.
This can be useful in taking periodic snapshots of your install for backup purposes, moving your data from one
Zenoss installation to another or restoring your setup and performing a fresh install of Zenoss. These are the spe-
cific items that are included in the backup and restore:

• The entire events database in mysql.

• The Zope database, which includes all devices, users, event mappings, etc.

• The $ZENHOME/etc directory, which contains config files for the zenoss daemons.

• The $ZENHOME/perf directory, which contains performance data,

The sections below describe in detail the backup and restore scripts and the options for controlling their behavior.
Typical use of zenbackup looks like:

> zenbackup --save-mysql-access --file=BACKUPFILEPATH

Typical use of zenrestore looks like:

> zenrestore --file=BACKUPFILEPATH

Suggestions for a satisfying backup/restore experience:

• If you have the available disk space, tar and zip $ZENHOME before starting any backup or restore operation.
This gives you a chance to recover in case something goes awry.

• Make sure Zenoss, including all daemons, is stopped before performing a restore.

• Using these tools to go from a newer version of Zenoss to an older version could be bad news and should
really be avoided.

• If you use these tools to go from an older version of Zenoss to a newer version you should run zenmigrate
after the restore.

• If restoring to a different zenoss installation than the backup is initially from, make sure file paths in the
$ZENHOME/etc/*.conf files are appropriate for the new environment after you restore.

1.1. Backup Details

The script for backup is $ZENHOME/bin/zenbackup. If zenoss is running then you can run zenbackup without
any arguments and a backup file will be placed in $ZENHOME/backups. zenbackup --help will give a full list of
the available options. Some of the more interesting options are:

--dbname

This is the name of the mysql database zenoss uses to hold event data. By default this is "zenoss" but this can be
specified when zenoss is installed. This value can be seen by looking at the database field on the Event Manager

184

page in zenoss. If you don't specify --dbname then zenbackup will attempt to retrieve this information from zeo
unless you specify --dont-fetch-args.

--dbuser, --dbpassword

These are the mysql username/password used to access the events database. If you don't specify --dbuser or --db-
password then zenbackup will attempt to retrieve this information from zeo unless you specify --dont-fetch-args.

--dont-fetch-args

This instructs zenbackup not to attempt to get values for dbname, dbuser and dbpassword from zeo.

--file=FILE

Use --file to specify a location for the backup file. By default it will be named zenoss_<DATE>.tgz and placed in
$ZENHOME/backups.

--stdout

This flag tells zenbackup to send the backup information to stdout instead of to a file. Incompatible with --verbose.

--save-mysql-access

This instructs zenbackup to save dbname, dbuser and dbpassword as part of the backup file so that zenrestore will
have this information during a restore operation. Use this with caution as it means your backup files will contain
a mysql username and password.

--no-eventsdb

Do not include the mysql events database as part of the backup.

-v, --verbose

Print progress messages. Incompatible with --stdout.

1.2. Backups Tab

Zenoss provides a simple web GUI for creating and managing backups. Navigate to Settings->Backups to view
the Backups page. The Create New Backup section allows you to create a backup through the GUI. The options
available are a subset of those available with the zenbackup command line tool (see above for details on the options.)
Below that is the Backups section which lists all backup files in $ZENHOME/backups. You can delete one or
more backup files by selecting them using the checkboxes and selecting the Delete Backup... menu item. Backup
files can become large as your databases grow, so you may want to limit the number of backups you keep if drive
space becomes an issue.

1.3. Remote Backups

Keeping backups on your zenoss server should help you recover if one of your databases becomes corrupt, your
configuration becomes problematic, etc. It will probably not help you recover from a situation where your disk
fails or any other failure that affects the system as a whole. For this reason it is advisable to keep at least one recent
backup file on a different server, ideally at a different physical location.

1.4. Restore Details

The script for restoring zenoss from a backup is $ZENHOME/zenrestore. Make sure that zenoss is stopped before
performing a restore. If you used the --save-mysql-access option when you created the backup file then you only
need to specify --file when you run zenrestore. Otherwise you need to specify dbname, dbuser and dbpassword
also.

--file

185

Backup, Recovery and Maintenance

This is a backup file created with zenbackup You must specify either --file or --dir.

--dir

The path to an unzipped backup file. You must specify either --file or --dir.

--dbname

This is the name of the mysql database zenoss uses to hold event data. This database must exist before zenrestore
is run. If there are any zenoss tables in the database they will be dropped by zenrestore before it restores the backed
up tables and data. If you use a different dbname than was in use when the backup was created then after the restore
you'll need to set the database name on the Event Manager page.

--dbuser, --dbpassword

These are the mysql username/password used to access the events database. If you don't specify --dbuser or --db-
password then zenrestore will attempt to use values stored in the backup file if --save-mysql-access was used in
creating it.

--no-eventsdb

Do not restore the mysql events database. If the backup file does not contain mysql events data then zenrestore
will not modify your events database even if you do not specify --no-eventsdb.

-v, --verbose

Print progress messages.

1.5. Periodic Backups

Backing up your Zenoss data and configuration is a very good idea. $ZENHOME/bin/zenbackup can create backups
that include your zeo database (devices, etc), RRD files (performance data), MySQL tables (events) and your
Zenoss configuration files. See section **** for information on using zenbackup and zenrestore.

1.5.1. Pack ZEO Database

The Zeo database needs to be packed periodically to reclaim space. To do this you should set up a cron job that
runs the following command weekly:

$ZENHOME/bin/zeopack.py -p 8100

1.5.2. Log Rotate Script

If your system uses logrotate to manage files put the following in /etc/logrotate.d/zenoss to manage Zenoss’ log
files:

/usr/local/zenoss/log/*.log {
weekly
rotate 2
copytruncate
}

1.5.3. Backing up the MySQL Event Backend

MySQL should be backed up following the MySQL manual.

186

Backup, Recovery and Maintenance

Chapter 27. ZenPacks
1. Introduction to ZenPacks
A ZenPack is a package that adds new functionality to the Zenoss. A ZenPack may add Action Rules, Event
Classes, Event Commands, User Commands, Service Classes, Data Sources, Graphs, Performance Templates,
Reports, Model Extensions or Product Definitions. A ZenPack may also add new daemons and new UI features
such as menus.

ZenPacks are a mechanism for extending and modifying Zenoss. This can be as simple as adding new Device
Classes or Performance Templates or as complex as extending the data model and providing new collection daemons.
ZenPacks can be distributed for installation on other Zenoss systems. Simple ZenPacks can be created completely
within the Zenoss user interface while more complex ZenPacks require development of scripts or daemons in Python
or another programming language.

For example, say you have developed a Performance Template for a new piece of hardware. You've created Data
Sources for the OID's you think are worth monitoring, Thresholds to make sure some of these values stay within
reasonable limits and several Graph Definitions to show this data graphically. Perhaps you've also created a new
Device Class for this hardware. You can create a ZenPack to easily distribute your Performance Template and
Device Class to other Zenoss administrators. This ZenPack can be entirely created from within the Zenoss user
interface.

For another example, say you want to monitor a new piece of software running on one of your servers. You would
like to monitor several performance metrics of this software, but they are available only via a programmatic API
provided with the software. You could develop a new collector daemon to gather data via this API and provide it
back to Zenoss. You might also create a new type of Data Source to provide configuration data for the new collector.
Obviously this effort would require development skills and intimate knowledge of Zenoss not necessary for the
previous example, but this functionality can still be distributed as a ZenPack.

1.1. Installing ZenPacks

ZenPacks are usually distributed as .egg files. Zenoss also supports .zip files, though support for this format will
be removed in a future version of Zenoss. Either ZenPacks of either type can be installed from the command line
on the Zenoss server or via the Zenoss user interface.

1.1.1. Installing via the Command Line

The following ZenPack command can be used from the command line to install ZenPack files. After installing or
updating ZenPacks you need to restart Zope and ZenHub:

zenpack --install <filename>
zopectl restart
zenhub restart

If you have the source code for the ZenPack you can install directly from that rather than from a .egg or .zip file.
The command is the same, you just specify the directory containing the source code. This copies the source code
into either $ZENHOME/ZenPacks (for newer egg ZenPacks) or $ZENHOME/Products (for older style ZenPacks.)

zenpack --install <directoryname>
zopectl restart
zenhub restart

If you are developing a ZenPack you usually will want to maintain your source code outside of $ZENHOME/Zen-
Packs or $ZENHOME/Products. This is advisable for two reasons. First, if you issue a zenpack --remove command
it will delete your code from either of those two locations and you would lose your files unless you had them
backed up elsewhere. Second, if you are maintaining your source code in a version control system it is frequently
more convenient to have the files reside elsewhere on the filesystem. Using the --link option you can install the
ZenPack but have Zenoss use your code from its current location. Instead of installing your code in $ZENHOME/Zen-

187

Packs or $ZENHOME/Products Zenoss will create a link in one of those locations that points to your source code
directory.

zenpack --link --install <directoryname>
zopectl restart
zenhub restart

1.1.2. Installing via the User Interface

You can upload and install a ZenPack .egg or .zip file via the user interface. From the Settings->ZenPacks page
choose the Install Zenpack... menu item. In the dialog that follows use the Browse button to select the .zip file
from your local computer. When you click the OK button the file is uploaded to the Zenoss server and installed.

1.1.3. Installing All Core ZenPacks via RPM

The Zenoss Core ZenPacks, along with third party ZenPacks, are available for download individually from ht-
tp://www.zenoss.com/community/projects/zenpacks/. Also on that page is a link to download an RPM that includes
the most popular Core ZenPacks. To install via the Core ZenPacks RPM follow these steps:

1. Download the appropriate file from http://www.zenoss.com/community/projects/zenpacks/all-core-zenpacks

2. Make sure zeo is running (as zenoss user):

zeoctl start

3. Install the rpm (as root user):

rpm -ihv <rpm file>

4. Restart Zope and ZenHub:

zopectl restart
zenhub restart

1.2. Creating a ZenPack

When logged into Zenoss as an Administrator click on the Setting link and then on the ZenPacks tab. Select the
"Create a ZenPack..." menu item. You will get a dialog asking for a name for your new ZenPack. The name must
be of the form ZenPacks.<organization>.<identifier>, where organization is a name that identifies you or your
organization and identifier is a string that represents the intent of your ZenPack. For example, ZenPacks.zenoss.Ht-
tpMonitor was created by zenoss to help monitor HTTP sites. Once you have entered a name click the save button.
This creates both the ZenPack object in the database as well as a new directory in the filesystem $ZENHOME/Zen-
Packs/<your zenpack id>.

Many types of objects can be added to a ZenPack via the user interface. Some examples are:

• Device Classes

• Event Classes

• Event Mappings

• User Commands

• Event Commands

• Service Classes

• Device Organizers

188

ZenPacks

• Performance Templates

Devices are the conspicuous omission from this list. Any individual Device is usually specific to a particular site
and therefore not likely to be useful to other Zenoss users.

To add one of these database objects to a ZenPack navigate to that object and use the "Add to ZenPack..." menu
item. Zenoss will present a dialog which lists all installed ZenPacks. Select the ZenPack to which you want to add
this object and click the Add button. To view the objects that are part of a ZenPack navigate to the Settings page
then the ZenPacks tab. Click on the name of the ZenPack and you will see a page that lists both the files and the
objects that are part of this ZenPack. You can remove objects from the ZenPack by selecting the checkboxes next
to them and using the "Delete from ZenPack..." menu item.

ZenPacks can contain items that are not zeo database items, such as new daemons, Data Source types, skins, etc.
These are added to a ZenPack by placing them in the appropriate subdirectory within the ZenPack's directory. See
the Core ZenPacks at http://www.zenoss.com/community/projects/zenpacks/ for examples of how to incorporate
such items into your ZenPack. Further information regarding ZenPack development is available in the Zenoss
Developers Guide.

Discussion regarding development of ZenPacks takes place on the zenoss-dev mailing list and forums: http://com-
munity.zenoss.com/forums/viewforum.php?f=3

1.2.1. Packaging and Distributing Your ZenPack

ZenPacks are usually distributed as .egg files. To create the installable .egg file for a ZenPack use the "Export
ZenPack..." menu item in the page menu when viewing a ZenPack. The dialog that follows has two options. The
first option simply exports the ZenPack to a file named <ZenPackId>.egg in the $ZENHOME/exports directory
on the Zenoss server. The second option does the same but then downloads the exported file to your browser.
Other Zenoss administrators can install this exported .egg file as described in the Installing ZenPacks section.

For information on how to make your ZenPack available on the zenoss.com site see http://www.zenoss.com/com-
munity/projects/zenpacks/how-to-contribute-a-zenpack

1.3. Removing a ZenPack

Warning: Removing a ZenPack can have unexpected consequences. For example, removing a ZenPack that installed
a Device Class will remove both the Device Class and all Devices within that class. Also, before removing a
ZenPack you should delete any Data Source of a type provided by the ZenPack. You should always perform a
backup of your Zenoss data before removing a ZenPack. See Section 21.1 Backup and Restore for information on
how to backup your Zenoss data.

2. Zenoss Core ZenPacks

2.1. ZenJMX ZenPack

2.1.1. About ZenJMX

ZenJMX is a ZenPack that allows Zenoss to communicate with remote JMX agents. The ZenJMX ZenPack intro-
duces a data source of type 'JMX'. A 'JMX' data source allows you to define which JMX attributes should be
monitored by Zenoss, as well as which operations you wish Zenoss to invoke. The ZenPack also introduces the
zenjmx daemon, which is used to perform the actual retrieval of data from a JMX agent.

2.1.2. JMX Background

Java Management Extensions (JMX) are used throughout the Java Virtual Machine to provide performance and
management information to clients. Using a combination of JConsole (Sun Microsystems' JMX client that is
shipped with the JDK) and JMX, a system operator can examine the number of threads that are active in the JVM
or change the log level. There are numerous other performance metrics that can be gleaned from the JVM, as well
as several management interfaces that can be invoked that change the behavior of the JVM.

189

ZenPacks

In Java 5, Sun introduced the Remote API for Java Management Extensions. This enhancement defines an RMI
wrapper around a JMX agent and allows for independent client development. ZenJMX accesses remote JMX
agents via the "Remote API for Java Management Extensions." It currently does not support local connections
(provided via the temporary directory) to JMX Agents.

2.1.3. ZenJMX Capabilities

ZenJMX is a full-featured JMX client that works "out of the box" with JMX agents that have their remote APIs
enabled. It supports authenticated and unauthenticated connections, and it can retrieve single-value attributes,
complex-value attributes, and the results of invoking an operation. Operations with parameters are also supported
so long as the parameters are primitive types (Strings, booleans, numbers), as well as the object version of primitives
(such as java.lang.Integer and java.lang.Float). Multi-value responses from operations (Maps and Lists) are sup-
ported, as are primitive responses from operations.

The "JMX" Data Source installed by ZenJMX allows you to define the connection, authentication, and retrieval
information you wish to use in order to retrieve performance information. The IP address is extracted from the
parent device, but the port number of the JMX Agent is configurable in each data source. This allows you to operate
multiple JMX Agents on a single device and retrieve performance information for each agent separately. This is
commonly used on production servers that run multiple applications.

Authentication information is also associated with each JMX Data Source. This offers the most flexibility for site
administrators because they can run some JMX agents in an open unauthenticated fashion and some JMX agents
in a hardened and authenticated fashion. SSL-wrapped connections are supported by the underlying JMX Remote
subsystem built into the JDK but they were not tested in the Zenoss labs. As a result, your success with SSL en-
crypted access to JMX Agents may vary.

The Data Source allows you to define the type of performance information you wish to achieve: single-value at-
tribute, complex-value attribute, or operation invocation. Each is described in detail in following sections. To
specify the type of retrieval you'll need to either specify an attribute name (and multiple or a single data point) or
you'll need to provide operation information.

Any numerical value returned by a JMX agent can be retrieved by Zenoss and graphed and checked against
thresholds. Non-numerical values (Strings and complex types) cannot be retrieved and stored by Zenoss.

Tread carefully when selecting the data point type. Many JMX Agent implementations use inconsistent nomenclature
when describing attributes. In some cases the term "Count" refers to an ever-increasing number (a "Counter" data
point type). In other cases the term "Count" refers to a snapshot number (a "Gauge" data point type). Make sure
you understand the semantics of the attribute name and choose the proper Zenoss data point type when you set up
your data point.

2.1.4. Single Value Attribute Calls

This is the most basic usage scenario. If you are interested in retrieving a single value from an MBean in a JMX
Agent, and the attribute returns simple numeric data, you fall into the "single value attribute" category. To define
a single-value attribute call simply provide the fully qualified name of your MBean and then provide the name of
the attribute in the "Attribute Name" field of the data source. Lastly, you must define a data point.

Some examples of this include the commonly referenced JDK Threading information:

• MBean Name: java.lang:type=Threading

• Attribute Name: ThreadCount

• Data Points:

• ThreadCount (type: counter)

Java uses lots of file descriptors during normal operation. The number of open file descriptors the JVM is working
with can be measured using the following information:

190

ZenPacks

• MBean Name: java.lang:type=OperatingSystem

• Attribute Name: OpenFileDescriptorCount

• Data Points:

• OpenFileDescriptorCount (type: gauge)

There are several other single-value attributes that can be retrieved from the JDK. We recommend using JConsole
to interactively navigate through the MBean hierarchy to determine which MBeans contain useful information to
you. See the "Interrogating an JMX Agent via JConsole" section for additional information on how to inspect the
MBeans deployed in an JMX Agent.

2.1.5. Complex-Value Attribute Calls

If your MBean attribute defines multiple sub-attributes (via CompositeData or Tabular) that you are interested in
capturing, then you fall into the category of a "complex-value attribute" call. The JDK contains a few complex-
value attributes you might be interested in capturing, including garbage collection statistics that were captured
during the copy and mark-sweep compact collection cycles.

To extract data from a complex-value attribute, you must define one or more data points in the data source. The
names of the data points are used as keys into the complex-value data structure returned from the MBean attribute.
For JMX CompositeData attributes, the data point names are used as a key to map the results. For JMX TabularData,
the data point names are used as indexes into the structure to map the result.

The JDK also provides heap memory information via a complex-value attribute. The amount of committed, used,
and maximum heap memory can be viewed by setting up a complex-value attribute in Zenoss with the following
information:

• MBean Name: java.lang:type=Memory

• Attribute Name: HeapMemoryUsage

• Data Points:

• committed (type: gauge)

• used (type: gauge)

• max (type: gauge)

2.1.6. Operation Calls

Some management values need to be computed. These situations frequently arise when custom MBeans are deployed
alongside an enterprise application. An MBean named "Accounting" might be deployed within an enterprise ap-
plication that defines operations intended for operators or support staff. These operations might include methods
such as "getBankBalance()" or "countTotalDeposits()".

ZenJMX has the ability to invoke operations, but there are some subtleties in how ZenJMX sends parameters to
the JMX Agent and interprets the response.

2.1.6.1. Operation Calls: Scenario #1-No parameters, single return value

In the most basic usage scenario no arguments are passed to the operation and a single value is returned. This usage
scenario is very similar to a single-value attribute call, except we're invoking an operation to retrieve the value
rather than accessing an attribute. The configuration for this hypothetical usage scenario follows:

• MBean Name: Application:Name=Accounting,Type=Accounting

• Operation Name: getBankBalance()

191

ZenPacks

• Data Points:

• balance (type: gauge)

2.1.6.2. Operation Calls: Scenario #2-No parameters, multiple values returned in List format

In this scenario no parameters are passed to an operation, but multiple response values are provided in a List. The
values returned are expressed in a List<Object>, but they are coerced (but not casted) to doubles prior to being
stored in Zenoss. This means that returning a numeric value as "1234" will work, but "1,234" will not work. The
litmus test is to evaluate if Double.valueOf(object.toString()) will successfully evaluate.

ZenJMX can be configured to read multiple values from an operation's results by defining multiple data points.
You must define a data point for each value returned from the operation, and if there is a mismatch between the
number of data points you define and the size of the List<Object> returned an exception will be generated. The
configuration for ZenJMX follows:

• MBean Name: Application:Name=Accounting,Type=Accounting

• Operation Name: getBalanceSummary()

• Data Points:

• dailyBalance (type: gauge)

• annualBalance (type: gauge)

2.1.6.3. Operation Calls: Scenario #3-No parameters, multiple values returned in Map format

In this scenario no parameters are passed to an operation, but multiple response values are provided in a Map<String,
Object>. The keyset of the Map contains the names of data points that can be defined, and the values are the values
of said data points. When a Map<String, Object> is returned you need not capture all of the returned values as
data points, and you can instead pick the exact values you are interested in. To choose the values to capture you
simply define data points with the same names as Strings in the keyset.

The following configuration demonstrates how to extract specific data points from an operation that returns a
Map<String, Object>. The key item to note in this configuration is that "dailyBalance" and "annualBalance" must
be present as keys in the returned Map<String, Object> and their values must be coercible via the
Double.valueOf(object.toString()) idiom.

• MBean Name: Application:Name=Accounting,Type=Accounting

• Operation Name: getBalances()

• Data Points:

• dailyBalance (type: gauge)

• annualBalance (type: gauge)

2.1.6.4. Operation Calls: Scenario #4-Single parameter in polymorphic operation

MBeans are implemented as Java classes and Java permits parameterized polymorphic behavior. This means that
multiple methods can be defined with the same name so long as their parameter signatures differ. You can safely
define "getBalance(String)" and "getBalance()" and the two exist as separate methods.

In order to properly resolve methods with the same name the caller must provide a Class[] that lists the types of
parameters that exist in the method's signature. This resolves the candidate methods to an individual method which
can then be invoked by passing an Object[].

ZenJMX allows you to resolve methods of the same name and asks you to provide the fully qualified class names
of each parameter in comma delimited format when you set up the data source. Note that primitive types (String,

192

ZenPacks

Boolean, Integer, Float) are supported but complex types are not supported, and that you must include the class'
package name when providing the information (java.lang.String).

The Object[] of parameter values must line up with Class[] of parameter types, and if there is a mismatch in the
number of types and values that are provided an exception will be generated.

The marshaling of values from String to Boolean, Integer, and Float types is provided via the .valueOf() static
method on each of those types. That is, if you define an attribute of type java.lang.Integer you must provide a
String that can be successfully passed to java.lang.Integer.fromValue(). If you fail to do so an exception is generated.

This example illustrates how to pass a single parameter to a polymorphic operation:

• MBean Name: Application:Name=Accounting,Type=Accounting

• Operation Name: getBalances()

• Paramater Types: java.lang.Integer

• Parameter Values: 1234

• Data Points:

• balance (type: gauge)

Here's another example where we've changed the type of the parameter passed to the method to be a String. Se-
mantically it represents a different type of Account in our example:

• MBean Name: Application:Name=Accounting,Type=Accounting

• Operation Name: getBalances()

• Paramater Types: java.lang.String

• Parameter Values: sbb552349999

• Data Points:

• balance (type: gauge)

2.1.6.5. Scenario #5: Multiple parameters in polymorphic operations

The above example describes how polymorphic behavior in Java functions and how method resolution can be
provided by identifying the Class[] that represents the parameters passed to a method. The situation where multiple
parameters are passed to a polymorphic operation is no different then the situation where a single parameter is
passed to a polymorphic operation, except that the length of the Class[] and Object[] is > 1.

When multiple parameters are required to invoke an operation you must provide the fully qualified class names
of each parameter's type in comma delimited format, as well as the object values for each type (also in comma
delimited format).

The following example demonstrates a configuration that passes 2 parameters to an MBean operation. The second
parameter passed is a default value to return if no account can be located matching the first parameter.

• MBean Name: Application:Name=Accounting,Type=Accounting

• Operation Name: getBalances()

• Parameter Types: java.lang.String, java.lang.Integer

• Parameter Values: sbb552349999, 0

• Data Points:

193

ZenPacks

• balance (type: gauge)

There are additional combinations that are possible with polymorphic methods and the values they return, and
those combinations are left as an exercise for the reader to explore. The logic for extracting results from multi-
value operation invocations follows the same rules as the logic for extracting results from a multi-value attribute
read. For additional information on the rules of that logic see the section above on multi-value attributes.

2.1.7. ZenJMX Behavior

The ZenJMX ZenPack defines a data source named "JMX" that allows you to query any single or complex-value
attribute, or invoke an MBean operation. It also comes with a built-in template named "Java" that contains MBean
information for a few beans built into the JVM.

When the "zenjmx" daemon is started it communicates with ZenHub and retrieves a list of devices that possess
"JMX" data sources. It also spawns a Java process. ZenJMX asynchronously issues queries for each of those
devices to the Java process via XML-RPC. The Java process then collects the data from the Java application and
returns the results to ZenJMX. Any collection or configuration errors are sent as events to Zenoss and will appear
in the event console.

Lastly, ZenJMX heartbeats after each collect to ZenHub to let Zenoss know that ZenJMX is still alive and well.

2.1.8. Running the ZenJMX Daemon

The zenjmx daemon can be started by running "${ZENHOME}/bin/zenjmx start". Output from zenjmx is logged
to ${ZENHOME}/log/zenjmx.log".

You can also run zenjmx in the foreground by running "${ZENHOME}/bin/zenjmx run". Additional parameters
(such as --cycle or --cycleTime) can be provided after the "run" or "start" command. This is consistent with how
other Zenoss daemons behave.

Most users will want to start the ZenJMX daemon in the background using the "${ZENHOME}/bin/zenjmx start"
command and immediately follow that up with "tail -f ${ZENHOME}/log/zenjmx.log" to see what ZenJMX is
doing.

2.1.9. Defining Custom JMX Data Sources

Custom JMX Data Sources allow system administrators to monitor any attribute or operation result accessible via
a JMX call. ZenJMX creates a "JMX" Data Source and allows you to provide Object information, as well as au-
thentication settings, and attribute/operation information. Determining which object and attribute names, as well
as which operations to invoke, is the key to customizing ZenJMX.

Start off by creating a new Performance template at the /Device level. The performance templates associated with
a device are accessible via the More->Templates link when looking at a device's page. Click the second down arrow
and select "Add Template". Provide a descriptive name for the template, such as "JVM Values". After the template
is created click on it. You should now be looking at the "JVM Values" performance template.

Click the down arrow next to Data Sources and select "Add Data Source". Provide a descriptive name of the JMX
value you wish to retrieve. In our case we are interested in memory information so set the ID to "Heap Memory".
Set the Type to JMX.

Enter the JMX Management Port (not necessarily the same as the listen port for your server) and Object Name.
The Object Name is also referred to as the MBean name. Enter "java.lang:type=Memory" as the Object Name. If
your JMX Agent requires authentication provide the user name and password.

Enter "HeapMemoryUsage" as the Attribute Name. Then add gauge data 425 points named "committed", "max",
and "used". Click Save.

Lastly, add graphs that reference these new data points.

194

ZenPacks

Please review "Interrogating an JMX Agent via JConsole" to learn how to determine the object name, attribute
name, and data points that might be interesting in your application.

2.1.10. Enabling Remote JMX Access

Each application server has a slightly different process for enabling remote JMX Access. It's best to consult with
your application server for specific instructions. We've included instructions for a few commonly used configurations
below.

JMX agents can be configured in two ways: remote access and local-only. When configured for remote access a
JMX client communicates with the JMX agent via a socket and uses the Remote Method Invocation (RMI) protocol
to access the MBeans. When configured for local-only access the JMX agent periodically dumps serialized MBeans
to a temporary directory on the machine. JConsole can be used to access JMX agents in local-only mode as well
as in remote mode (via RMI). ZenJMX can only be used with remote servers via RMI and cannot work with local-
only serialized MBeans. This is not a significant limitation because ZenJMX can establish RMI connections to
localhost just as easily as it can establish RMI connections to remote hosts.

2.1.10.1. Remote JMX Access for the standard JVM

The JAVA_OPTS environment variable can be used to enable remote access to JVM MBeans. Set it as follows:

JAVA_OPTS="-Dcom.sun.management.jmxremote.port=12345
JAVA_OPTS="${JAVA_OPTS} -Dcom.sun.management.jmxremote.authenticate=false"
JAVA_OPTS="${JAVA_OPTS} -Dcom.sun.management.jmxremote.ssl=false"

export JAVA_OPTS

When starting an application pass the JAVA_OPTS variable as an argument to the JVM as follows:

java ${JAVA_OPTS} -classpath /path/to/your/application.jar com.yourcompany.Main

You can then use JConsole to connect to localhost:12345. Authentication can be configured by modifying the
java.security file as well as java.policy. There are lots of examples available on the Internet that can provide
guidance in how to achieve authenticated remote access to JVM MBeans.

2.1.10.2. Remote JMX Access for Tomcat

The same JAVA_OPTS approach can be used to enable remote access to Tomcat MBeans. Set the JAVA_OPTS
variable as illustrated above and then execute the "./catalina.sh start" command in ${TOMCAT_HOME}/bin.

Note that Tomcat 6.0.14's catalina.sh does not process the "stop" command properly when the JAVA_OPTS
variable is set. We recommend using 2 separate shells when troubleshooting JMX problems in Tomcat: one for
starting Tomcat (with the JAVA_OPTS variable set) and a different one for stopping Tomcat (where the
JAVA_OPTS variable is not set).

2.1.10.3. Remote JMX Access for JBoss

JBoss uses the JAVA_OPTS approach for enabling remote access to beans. However, it requires some additional
properties. To set up your JAVA_OPTS for use in JBoss see the following code segment:

JAVA_OPTS="-Dcom.sun.management.jmxremote.port=12345"
JAVA_OPTS="${JAVA_OPTS} -Dcom.sun.management.jmxremote.authenticate=false"
JAVA_OPTS="${JAVA_OPTS} -Dcom.sun.management.jmxremote.ssl=false"
JAVA_OPTS="${JAVA_OPTS} -Djboss.platform.mbeanserver"
JAVA_OPTS="${JAVA_OPTS} -Djavax.management.builder.initial=org.jboss.system.server.jmx.MBeanServerBuilderImpl"
export JAVA_OPTS

When you start JBoss via the run.sh you must also pass the "-b 0.0.0.0" argument:

195

ZenPacks

cd ${JBOSS_HOME}/bin
./run.sh -b 0.0.0.0

JMX actually uses 2 separate ports for MBean access: one is used for initial connection handling and authentication,
and the other is used for RMI access. During the handshake between a JMX Client and the JMX Agent the agent
tells the client the IP address and port number for the RMI registry. By default JBoss sets the IP address to 127.0.0.1.
This works when the JMX client and the JMX agent reside on the same device, but it won't work in a distributed
environment.

By passing the "-b 0.0.0.0" argument you instruct JBoss to bind to all available network ports, and this results in
the JMX Agent's handshaking logic using a network reachable address when informing clients of the RMI registry
hostname and port.

2.1.10.4. Remote JMX Access for WebLogic

JSR-160 standardized remote access to JMX Agents, and allows for any client to connect to an JMX Agent using
classes packaged with the JDK. WebLogic versions prior to 9.0 required clients to use a WebLogic JMX client
library that used a proprietary protocol to interact with the JMX Agent. You'll need to make sure you're running
WebLogic 9.0 or higher in order to monitor it via ZenJMX.

If you're new to WebLogic and have not set up a domain and server you'll need to run the startWLS.sh script located
in ${BEA_HOME}/wlserver_10.0/server/bin. If you don't have the Terminal I/O package installed you can set
the JAVA_OPTIONS variable to the following value:

JAVA_OPTIONS="-Dweblogic.management.allowPasswordEcho=true"
export JAVA_OPTIONS

Provide a user name and password to start WebLogic. Note that WebLogic requires a password that is at least 8
characters long. Wait for WebLogic to generate a configuration and start up. Shut down WebLogic and restart it
with remote JMX access enabled.

To enable remote JMX access set the following variable:

JAVA_OPTIONS="-Dcom.sun.management.jmxremote.port=12347"
JAVA_OPTIONS="${JAVA_OPTIONS} -Dcom.sun.management.jmxremote.authenticate=false"
JAVA_OPTIONS="${JAVA_OPTIONS} -Dcom.sun.management.jmxremote.ssl=false"
export JAVA_OPTIONS

Then re-run the ./startWLS.sh script. JConsole can then communicate with the server on port 12347.

2.1.11. Interrogating an JMX Agent via JConsole

JConsole is a tool built into the JDK that allows system administrators to interrogate a JMX Agent and examine
the MBeans deployed within the server. JConsole also allows administrators to view JVM summary information,
including the amount of time the JVM has been running, how many threads are active, how much memory is cur-
rently used by the heap, how many classes are currently loaded, and how much physical memory exists on the
machine.

JConsole also provides a graph that shows memory, thread, and class usage over time. The scale of the graph can
be adjusted so that a system administrator can examine a specific period of time, or can zoom out to view a longer
range picture of usage. Unfortunately, JConsole can only produce graphs that show usage while JConsole was
running. Administrators cannot look back in time to a point where the JVM was running but JConsole was not
monitoring the JVM.

196

ZenPacks

Figure 27.1. JMX Heap Graph

The MBean tab along the top of JConsole provides an interactive method for examining MBean values. After
clicking on the MBean tab a panel will be displayed with a tree on the left hand side. The tree contains a hierarch-
ical list of all MBeans deployed in the JVM.

The standard JVM MBeans are all in the java.lang and java.util.logging packages. Application server specific
MBeans do not follow any standard naming pattern. Some vendors choose to use package names for their MBean
names while other vendors choose package-like names (but not fully qualified packages).

To get started expand the java.lang node in the Tree. This will expose several MBeans as well as additional folders.
Click on the Memory MBean and observe how the right hand side of the panel is populated with information about
the Memory MBean.

197

ZenPacks

Figure 27.2. Memory MBean

MBeans can contain attributes and operations. MBeans can also fire notifications to observers, but that's beyond
the scope of this document. The attributes tab lists all of the attributes in the first column and their values (or a
clickable attribute type) in the second column. In the case of Memory the HeapMemoryUsage is a Composite at-
tribute, otherwise referred to as a "complex-value attribute" in Zenoss. Double click the "javax.management.open-
mbean.CompositeDataSupport" type and you will see multiple attributes appear. The show the amount of committed,
maximum, and used memory sizes for the heap.

198

ZenPacks

Figure 27.3. Memory MBean Expanded

The unique name of the MBean can be viewed by clicking on the Info tab. The first value is MBean Name and it's
value in the case of Memory is: "java.lang:type=Memory". Note that there isn't a standardized way to name MBeans
and application server vendors do it differently.

You can also examine operation information by clicking on the Operations tab. These are methods that JConsole
can remotely invoke on an MBean that will result in some value being computed or some state changing in the
application. The Threading MBean has several operations that can be invoked that return information. Click on
the java.lang package and then click on the Threading operation. Lastly, click on the Operations tab. Methods like
"getThreadUserTime" are invocable.

199

ZenPacks

Figure 27.4. Operations Tab

Test the "getThreadUserTime" method by changing the p0 parameter to 1 and clicking the "getThreadUserTime"
button. A dialog window will be raised that displays the amount of CPU user time thread #1 has used. Try adjusting
the parameter to different values to observe the different CPU times for the threads.

2.1.12. Installing ZenJMX

Step #1: Install the ZenJMX ZenPack

ZenJMX is installed using the "zenpack" command. As the zenoss user 6 run the following command:

${ZENHOME}/bin/zenpack --install /path/to/ZenJMX-1.0.0-el5-i386.zip

Step #2: Install Sun's JRE

You will need Java SE Version 5.0 or higher. 1.4.2 will not work, nor will gcc-java. Make sure that after you install
Sun's JRE you update your PATH such that the "java" executable works. You can test this using the command
"which java" - if it returns a fully qualified path to java you have successfully installed Java.

2.1.12.1. Installing ZenJMX on an appliance

ZenJMX and Sun's JRE is installed using a conary command. As root, run the following command:

conary update --resolve group-zenjmx

2.2. ApacheMonitor ZenPack

ApacheMonitor provides a method for pulling performance metrics from the Apache HTTP Server (http://ht-
tpd.apache.org/) directly into Zenoss without requiring the use of an agent. This is accomplished by utilizing the
standard mod_status module that comes with version 1 and 2 of the HTTP server.

The following metrics will be collected and graphed for the Apache HTTP Server.

200

ZenPacks

• Requests per Second

• Throughput (Bytes/sec & Bytes/request)

• CPU Utilization of the HTTP server and all worker processes/threads

• Slot Usage (Open, Waiting, Reading Request, Sending Reply, Keep-Alive DNS Lookup and Logging)

Follow these steps to setup your HTTP server so that it will allow Zenoss to access the server status.

1. On the Apache server, find your httpd.conf file. This is normally located in /etc/httpd/httpd.conf or /etc/ht-
tpd/conf/httpd.conf. Other locations are possible depending on your operating system and setup.

2. Turn the ExtendedStatus option on in the httpd.conf file. This option will typically be commented out. You can
enable it by uncommenting it.

#ExtendedStatus on

... becomes ...

ExtendedStatus on

3. Enable the /server-status location in the httpd.conf file. This is another option that typically already exists but
is commented out.

#<Location /server-status>
SetHandler server-status
Order deny,allow
Deny from all
Allow from .example.com
#</Location>

... becomes ...

<Location /server-status>
SetHandler server-status
Order deny,allow
Deny from all
Allow from zenoss.yourdomain.com
</Location>

4. Save the httpd.conf file with these changes then restart httpd. This can be accomplished with following command.

apachectl restart

Once your Apache HTTP Server is configured to allow Zenoss to access the extended status, you can add Apache
monitoring to the device within Zenoss by simply binding the Apache template to the device.

1. Navigate to the device in the Zenoss web interface.

2. Click the device menu, choose More then Templates.

3. Click the templates menu, choose Bind Templates.

4. Ctrl-click the Apache template from /Devices/Server to choose it.

5. Click OK.

You will now be collecting the Apache HTTP Server metrics from this device.

201

ZenPacks

2.3. DellMonitor ZenPack

DellMonitor provides custom modeling of devices running the Dell OpenManage agents. It also contains hardware
identification for Dell proprietary hardware. The information is collected through the SNMP interface.

The following information is modeled:

• Hardware Model 11

• Hardware Serial Number

• Operating System

• CPU Information (socket, speed, cache, voltage)

• PCI Card Information (manufacturer, model)

2.4. HPMonitor ZenPack

HPMonitor provides custom modeling of devices running the HP/Compaq Insight Management Agents. It also
contains hardware identification for HP proprietary hardware. The information is collected through the SNMP in-
terface.

The following information is modeled.

• Hardware Model

• Hardware Serial Number

• Operating System

• CPU Information (socket, speed, cache)

2.5. MySqlMonitor ZenPack

MySqlMonitor provides a method for pulling performance metrics from the MySQL database server (ht-
tp://www.mysql.com/) directly into Zenoss without requiring the use of an agent. This is accomplished by utilizing
the MySQL client library to connect to the database remotely.

The following metrics will be collected and graphed for MySQL server.

• Command Statistics (SELECT, INSERT, UPDATE, DELETE)

• Select Statistics (Scan, Range Check, Range Join, Full Join)

• Handler Statistics (Keyed & Unkeyed Reads, Writes, Updates, Deletes)

• Network Traffic (Received & Sent)

Follow these steps to setup your MySQL server to allow Zenoss to read performance data from the system tables.

1. Connect to the MySQL database using the MySQL client.

mysql -u root

... or if there is a MySQL root password ...

mysql -u root -p

2. Create a user for Zenoss to use. The username "zenoss" is recommended.

202

ZenPacks

mysql> CREATE USER zenoss IDENTIFIED BY 'zenossPassword';

Query OK, 0 rows affected (0.00 sec)

3. Edit the zMySqlRootPassword zProperty for the device(s) within Zenoss that you intend to monitor MySQL
on.

4. Bind the MySQL template to the same device(s).

Pay particular attention to the MySQL Version 5+ setting in the datasource. If you are monitoring pre-v5 installations
of MySQL then be sure to set this value to False. If you are monitoring both pre v5 and v5+ installations then
create two templates, one for MySQL installations earlier than v5 and another for those after.

2.6. NtpMonitor ZenPack

ZenPacks.zenoss.NtpMonitor monitors the offset between system time and a target ntp server's (Network Time
Server) time.

2.6.1. Components

2.6.1.1. Event Classes

• /Events/Status/Ntp

2.6.1.2. Performance Templates

• NtpMonitor Datasource

2.6.1.3. Classes

• NtpMonitorDataSource

2.6.1.4. Datapoints

• offset Graphs: offset Skins: editNtpMonitorDataSource.pt

2.6.2. DataSource Class Options

The following Datasource options are available with this ZenPack:

• port - Port number to send ntp request (default: 123)

NOTE: The check_ntp plugin does not seems to use this option even though its usage notes that it exists.

• warning - Response time to result in warning status (seconds)

• critical - Response time to result in critical status (seconds)

• timeout - Seconds before connection times out (default: 10)

2.6.3. Example

The NTPMonitor template must be bound to the DeviceClass or Device you wish to monitor.

1. Install the ZenPack.zenoss.NNTPMonitor EGG.

2. Navigate to the device (or Device Class) that has a NTP Server you want to monitor (add the device if necessary).

203

ZenPacks

3. Choose the Templates options from the Server menu and the Bind Template option and bind the NTPServer
template to the device.

The next cycle of zencommand will collect offset data.

4. If a SSL or a custom port is being used, navigate to the NTPMonitor template and change the Use SSL and Port
options as needed.

2.7. LDAPMonitor ZenPack

The ZenPacks.zenoss.LDAPMonitor monitors the response time of an LDAP server in milliseconds.

2.7.1. Components

2.7.1.1. Performance Templates

• LDAPServer

2.7.1.2.Thresholds

• SlowLDAP - 5000ms threshold for Warning event on response time; escalated after 6

• BrokenLDAP - 30000ms threshold for Critical event on response time

2.7.1.3. DataSource

• ldap using LDAPMonitor; creates time DataPoint

2.7.1.4. Graph Definitions

• LDAP Server Response Time

2.7.1.5. zProperties

• zLDAPBaseDN - The Base Distinquished Name to use for the response time check. Defaults to dc=zen-
oss,dc=com. Should be customized to fit the customer's LDAP server requirements.

• zLDAPBindDN - The Distinquished Name to use for binding to the LDAP server, if authentication is required.
Defaults to nothing.

• zLDAPBindPassword - The password to use for binding to the LDAP server, if authentication is required. Defaults
to nothing.

2.7.2. DataSource Class Options

• LDAP Server - defaults to ${dev/id}

• Base Distinguished Name - defaults to ${here/zLDAPBaseDN}

• Bind Password - defaults to ${here/zLDAPBindPassword}

• Use SSL - defaults to unchecked

• Port - defaults to 389

204

ZenPacks

2.7.3. Additional Configuration

The three zProperties (zLDAPBaseDN, zLDAPBindDN and zLDAPBindPassword) should be configured to allow
a valid connection to the LDAP server. The zLDAPBaseDN should be configured to issue a valid search to the
LDAP server; normally this property would be set to the root organization within the server. If authentication is
required on the server then zLDAPBaseDN and zLDAPBasePassword must also be configured.

2.7.4. Example

The NNTPMonitor template must be bound to the DeviceClass or Device you wish to monitor.

1. Install the ZenPack.zenoss.LDAPMonitor EGG.

2. Navigate to the device (or Device Class) that has a LDAP Server you want to monitor (add the device if neces-
sary).

3. Choose the Templates options from the Server menu and the Bind Template option and bind the LDAPServer
template to the device.

The next cycle of zencommand will collect offset data.

4. Choose the zProperties option from the Server menu.

5. Change the zLDAPBaseDN zProperty to be the appropriate base distinguished name for your LDAP server.
Typically this will be the organization's domain name, e.g. dc=foobar,dc=com. Check with your LDAP Admin-
istrator for more options.

6. Change the zLDAPBindDN and zLDAPBindPassword if authentication is required for the LDAP server. For
example, cn=joe,dc=foobar,dc=com. Check with your LDAP Administrator for the format in your organization.

7. If your LDAP Servers require SSL or a custom port then navigate to the LDAP Server template, choose the
ldap DataSource and then change the Use SSL and Port fields as needed.

8. Validate your configuration by running zencommand and observing that the check_ldap or check_ldaps command
correctly connects to your LDAP server:

zencommand run -v10 -d yourdevicenamehere

2.8. RPCMonitor ZenPack

ZenPacks.zenoss.RPCMonitor monitors the availability of an RPC server.

2.8.1. Components

2.8.1.1. Performance Templates

• RPCServer

2.8.1.2. DataSource

• rpc using RPCMonitor

2.8.2. DataSource Class Options

• RPC Server - defaults to ${dev/id}

205

ZenPacks

• RPC Command - defaults to ${here/zRPCCommand}

• Port - defaults to 0 (to use PortMapper)

2.8.3. Additional Configuration

The zProperty zRPCCommand must be configured to indicate which RPC command should be tested for availab-
ility.

2.8.4. Example

The RPCMonitor template must be bound to the DeviceClass or Device you wish to monitor.

1. Install the ZenPack.zenoss.RPCMonitor EGG.

2. Navigate to the device that has a RPC Server that needs to be monitored (add the device if necessary).

3. Choose the Templates options from the Server menu and the the Bind Template option and bind the RPCServer
template to the device.

The next cycle of zencommand will collect offset data.

4. Choose zProperties from the Server menu and set the appropriate RPC command to test in the zRPCCommand
zProperty, e.g. nfs, ypserv, etc.

5. If a custom port is being used, navigate to the RPCMonitor template and change the Port option as needed.

6. Validate your configuration by running zencommand and observing that the check_rpc command correctly
connects to your RPC server:

zencommand run -v10 -d yourdevicenamehere

2.9. IRCMonitor ZenPack

The ZenPacks.zenoss.IrcdMonitor monitors the number of users connected to an IRC server.

2.9.1. Components

2.9.1.1. Event Classes

• IRCD

2.9.1.2. Performance Templates

• IRCDMonitor

2.9.1.3. DataSource Classes

• IRCDMonitorDataSource

2.9.1.4. Graph Definitions

• number

206

ZenPacks

2.9.1.5. Skins

• editIRCDMonitorDataSource.pt

2.9.2. DataSource Class Options

• hostname - Name or IP address of remote server to connect to.

• port - Port number to connect to remote IRC server (default: 6667)

• warning_num - Number of connections to

• critical_num - Response time to result in critical status (seconds)

2.9.3. Example

The IrcdMonitor template must be bound to the DeviceClass or Device you wish to monitor.

1. Install the ZenPack.zenoss.IrcdMonitor EGG.

2. Navigate to the device (or Device Class) that has a IRC Server you want to monitor (add the device if necessary).

3. Choose the Templates options from the Server menu and the Bind Template option and bind the IRCDMonitor
template to the device.

The next cycle of zencommand will collect offset data.

2.10. JabberMonitor ZenPack

ZenPacks.zenoss.JabberMonitor monitors the response time of devices running a Jabber Server.

2.10.1. Components

2.10.1.1. Event Classes

• Jabber

2.10.1.2. Performance Templates

• JabberMonitor

2.10.1.3. DataSources

• JabberMonitorDataSource

2.10.1.4. DataPoints

• time

2.10.1.5. Graph Definitions

• time

2.10.2. DataSource Class Options

• Timeout (seconds) - Seconds before connection times out (default: 60)

207

ZenPacks

• Port - port number default 5223

• Send String - string to send to the server : default <stream:stream to='${dev/id}' xmlns:stream='http://etherx.jab-
ber.org/streams'>

• Expect String - string to expect in server response : default <stream

2.10.3. Example

The JabberMonitor template must be bound to the DeviceClass or Device you wish to monitor.

1. Install the ZenPack.zenoss.JabberMonitor EGG.

2. Navigate to the device (or Device Class) that has a Jabber Server you want to monitor (add the device if neces-
sary).

3. Choose the Templates options from the Server menu and the the Bind Template option and bind the Jabber
template to the device.

The next cycle of zencommand will collect offset data.

4. If a SSL or a custom port is being used, navigate to the JabberMonitor template and change the Use SSL and
Port options as needed.

2.11. DigMonitor ZenPack

DigMonitor monitors the response time of DNS lookups for devices running an Dig Server.

2.11.1. Components

2.11.1.1. Event Classes

• /Events/Status/DNS

2.11.1.2. Performance Templates

• NameServer

2.11.1.3. Datasource Classes

• DigMonitorDataSource

2.11.1.4. Datapoints

• time

2.11.1.5. Graph Definitions

• DNS Response Time

2.11.1.6. Skin Templates

• editDigMonitorDataSource

2.11.2. DataSource Class Options

• DNS Server: the nameserver against which the dig command should be run

208

ZenPacks

• Port: The port on which the nameserver is listening

• Record Name: The name of the record you wish to look up

• Record Type: The DNS record type (e.g. A, MX, CNAME)

2.11.3. Example

The DigMonitor template must be bound to the DeviceClass or Device you wish to monitor.

1. Install the ZenPack.zenoss.DigMonitor EGG.

2. Navigate to the device (or Device Class) that has a Dig Server you want to monitor (add the device if necessary).

3. Choose the Templates options from the Server menu and the Bind Template option and bind the DigMonitor
template to the device.

The next cycle of zencommand will collect offset data.

4. If a SSL or a custom port is being used, navigate to the DigMonitor template and change the Use SSL and Port
options as needed.

2.12. FTPMonitor ZenPack

The ZenPacks.zenoss.FTPMonitor ZenPack monitors connection response time to an FTP server.

2.12.1. Components

2.12.1.1. Event Classes

• Ftp

2.12.1.2. Performance Templates

• FtpMonitor

2.12.1.3. DataSource

• FtpMonitor

2.12.1.4. Datapoint Thresholds

• time

2.12.1.5. Graph Definitions

• time

2.12.2. Datasource Class Options

• Timeout - Seconds before connection times out (default: 60)

• Port - port to connect to FTP server (default 21)

• Send String - string to send to server

209

ZenPacks

• Expect String - string to expect in server response

• Quit String - String to send server to initiate a clean close of the connection

• Refuse - Accept tcp refusals with states ok, warn, crit (default: crit)

• Mismatch - Accept expected string mismatches with states ok, warn, crit (default: warn)

• Max Bytes - Close connection once more than this number of bytes are received

• Delay - Seconds to wait between sending string and polling for response

• Certificate (minimum days for which a certificate is valid)

• Use SSL - Use SSL for the connection.

• Warning response time (seconds) - Response time to result in warning status (seconds)

• Critical response time (seconds) - Response time to result in critical status (seconds) What metrics (datapoints)
does it collect? response time of the ftp connection

2.12.3. Example

The FTPMonitor template must be bound to the DeviceClass or Device you wish to monitor.

1. Install the ZenPack.zenoss.FTPMonitor EGG.

2. Navigate to the device (or Device Class) that has a FTP Server you want to monitor (add the device if necessary).

3. Choose the Templates options from the Server menu and the the Bind Template option and bind the Jabber
template to the device.

The next cycle of zencommand will collect offset data.

4. If a SSL or a custom port is being used, navigate to the FTPMonitor template and change the Use SSL and Port
options as needed.

2.13. NNTPMonitor ZenPack

The ZenPacks.zenoss.NNTPMonitor monitors the response time of an NNTP server in milliseconds.

2.13.1. Components

2.13.1.1. Performance Templates

• NNTPServer

2.13.1.2. DataSource

• nntp using NNTPMonitor; creates time

210

ZenPacks

2.13.1.3. DataPoint Thresholds

• SlowNNTP - 5000ms threshold for Warning event on response time; escalated after 6 BrokenNNTP - 30000ms
threshold for Critical event on response time

2.13.1.4. Graph Definitions

• NNTP Server Response Time

2.13.2. DataSource Class Options

• NNTP Server - defaults to ${dev/id}

• Port - defaults to 119

2.13.3. Example

The NNTPMonitor template must be bound to the DeviceClass or Device you wish to monitor.

1. Install the ZenPack.zenoss.NNTPMonitor EGG.

2. Navigate to the device (or Device Class) that has a NNTP Server you want to monitor (add the device if neces-
sary).

3. Choose the Templates options from the Server menu and the Bind Template option and bind the NNTPServer
template to the device.

The next cycle of zencommand will collect offset data.

4. If a SSL or a custom port is being used, navigate to the NNTPMonitor template and change the Use SSL and
Port options as needed.

5. Validate your configuration by running zencommand and observing that the check_nntp or check_nntps command
correctly connects to your LDAP server:

zencommand run -v10 -d yourdevicenamehere

211

ZenPacks

Chapter 28. Zenoss Global Dashboard
(ZenGlobe) (Commercial)
1. About Zenoss Global Dashboard (ZenGlobe)
The Zenoss Global Dashboard is a Zenoss Enterprise feature manager of managers for displaying in one location
the data from several Zenoss instances. Each Zenoss instance monitors a number of devices on various networks
and then the ZGB combines all of that data and makes for easy viewing of the data. You can view the data based
on collector, network, location and report on the device in combination of the groupings you create. This enhances
the scalability of Zenoss as well as extending the performance and reporting capabilities.

ZenGlobe is a standalone web server.

2. Additional Requirements
The Zenoss Global Dashboard requires at least Python 2.3.

3. Installation
1. Download the latest version of the Zenoss Global Dashboard.

2. Extract the tarball and change to the created directory using the following commands:

tar xzf zenglobe-1.0.tar.gz

cd ZenGlobe

3. Prior to starting up the first time, ZenGlobe needs to know the port it should bind to and the Zenoss instance it
should use for authentication. Run:

sudo ./zenglobe configure

4. Enter the port to which you want ZenGlobe to bind. Make sure you have nothing else listening at that port.

When asked, enter the hostname of a running Zenoss instance that you want ZenGlobe to use for authentication.
You can change this setting later, but in order to log in to ZenGlobe the first time you will need to use the username
and password of a user from this Zenoss instance. Anyone with a login to this Zenoss instance will be able to view
the ZenGlobe dashboard, but only the “admin” user will be able to edit settings.

1. Start ZenGlobe using the command:

sudo ./zenglobe start

2. Check to make sure that ZenGlobe has started by accessing from your browser:

http://[ZenGlobe machine hostname]:[port]/

The ZenGlobe login screen will appear. If you do not get the ZenGlobe login screen retrace your steps and try
again.

212

3.1. Setting Up Users on Remote Zenoss Instances

For security reasons, in order to gather data from remote Zenoss instances, ZenGlobe must have a login to those
instances. By default, this is set to be zenglobe:zenglobe; however, it is a good idea to reconfigure ZenGlobe to
use a more secure username and password combination.

You will also need to create a user on each Zenoss instance to be monitored using the same username and password.

1. In a browser, navigate to the Zenoss instance you wish to monitor, click “Settings” in the left nav pane, then
select the “Users” tab..

2. From the table menu, select “Add New User.” Enter the username that you want ZenGlobe to use to log in to
all Zenoss instances (e.g., “zenglobe”). You may leave the “Email” field blank. Click “OK.”

3. Repeat these steps for each Zenoss instance to be monitored, then configure ZenGlobe to log in as the remote
users you have just created.

4. Setup and Configuration
1. Log in to ZenGlobe as the admin user.

(Only the admin user can modify ZenGlobe options.)

2. Click the "Configure..." link in the top bar. The configuration box will slide down.

The options in this Configuration box are as follows:

• Zenoss Servers - The list of hostnames of the Zenoss instances ZenGlobe will monitor.

• Remote Login - The username and password ZenGlobe will use to access the remote Zenoss instances. By
default, it is set to zenglobe:zenglobe. Follow the instructions in 4.1.1 to set up matching users on each
Zenoss instance to be monitored.

• URL Template - The template ZenGlobe will use to build the URL by which it accesses monitored Zenoss
instances. If you run your Zenoss instances on a different port, or serve them behind Apache with rewritten
URLs, you will need to update this value to reflect that change.

3. You may also reset the port and authentication server using the same command line option you used when initially
configuring ZenGlobe:

sudo ./zenglobe configure

5. Using the Zenoss Global Dashboard
The global dashboard collects event and heartbeat data from the monitored Zenoss servers and aggregates them
into a single view.

• Device Issues - A list of all devices with serious events. The "Server" column displays the Zenoss server that
monitors that device.

• Zenoss Sub-Systems - A list of monitored Zenoss instances. An event rainbow is displayed for each instance,
showing a summary of active events.

• Zenoss Issues - A list of heartbeat issues from monitored Zenoss instances. Refer to the Zenoss admin guide for
instructions on how to handle these.

213

Zenoss Global Dashboard (ZenGlobe)
(Commercial)

6. Viewing a Zenoss Instance from the Zenoss Global
Dashboard
The drop-down list on the extreme left of the top bar can be used to view monitored Zenoss instances from within
ZenGlobe. Simply select the hostname of an instance from the list to load it below. For security's sake, you will
need to log in to the remote instance. You may return to the ZenGlobe dashboard at any time by selecting it from
the same drop-down list.

7. Logging out of ZenGlobe
To logout of the Zenoss Global Dashboard, just click "Logout" in the top bar to end your ZenGlobe session.

214

Zenoss Global Dashboard (ZenGlobe)
(Commercial)

Chapter 29. Zenoss High Availability
1. Overview
This chapter will describe the method for setting up two Zenoss master servers that operate in an active/passive
configuration to provide a single, highly-available master. In addition, a collector will be running on each master
to monitor the local network. The solution relies on DRBD (Distributed Replicated Block Device), which is a
distributed storage system for the Linux platform. It consists of a kernel module, several userspace management
applications and some shell scripts. DRBD bears similarities to RAID 1, except that it runs over a network.

The full deployment can conceptualized according to the following diagram. The number of non-master sites is
not limited. The collectors can be configured to choose the current active master either by a dynamically router
shared IP (BGP, etc.) or through a DNS lookup of a record that must be changed manually when the master site
is failed over.

Figure 29.1. Zenoss High Availability

2. Conventions
The following conventions will be used to reference different elements required during the installation and config-
uration.

• zenoss-master: Hostname of the current Zenoss master server or IP.

• zenoss-siteA: Hostname of the Zenoss server in site A.

• 10.0.1.20: IP address of the Zenoss server in site A.

215

• zenoss-siteB: Hostname of the Zenoss server in site B.

• 10.0.2.20: IP address of the Zenoss server in site B.

• cluster: Highly available combination of zenoss-siteA and zenoss-siteB.

• /dev/sdb1: Block-level device that will be replicated between site A and B.

• /r0: File system mount point for the /dev/sdb1 block device.

3. Prerequisites
Prior to beginning your installation and configuration you should make sure that the following prerequisites are
met.

• Architecture of both master systems is identical (i686 or x86_64)

• Operating system of both master systems is identical (RHEL5 or CentOS5)

• A spare partition that has been sized large enough to hold the MySQL and Zope database exists in an unpartitioned
and unmounted state on both masters.

• A standard installation of Zenoss Enterprise has already been performed on both of the masters. This should be
a clean installation that has not been further configured or used.

4. Installation of Packages
The following RPM packages must be installed to support the disk replicate and failover mechanism. These are
available as part of the standard repositories for RHEL5 and CentOS5.

• drbd82

• kmod-drbd82

• heartbeat

5. Stopping Services
Stop the MySQL and Zenoss services with the following commands on zenoss-siteA and zenoss-siteB.

service zenoss stop
service mysqld stop

6. Setting up DRBD for File System Replication
We will now use those extra partitions we setup to replicate the data that needs to be shared.

1. Setup /etc/drbd.conf with the following contents on zenoss-siteA and zenoss-siteB.

global {
 usage-count yes;
}

216

Zenoss High Availability

common {
 protocol C;
}
resource r0 {
 syncer {
 rate 500K;
 }
 on zenoss-siteA {
 device /dev/drbd0;
 disk /dev/sdb1;
 address 10.0.1.20:7788;
 meta-disk internal;
 }
 on zenoss-siteB {
 device /dev/drbd0;
 disk /dev/sdb1;
 address 10.0.2.20:7788;
 meta-disk internal;
 }
}

2. Create the DRBD meta-data on zenoss-siteA and zenoss-siteB.

drbdadm create-md r0

3. Start the drbd service on zenoss-siteA and zenoss-siteB.

service drbd start

4. Seed the replicated partition on zenoss-siteA only.

drbdadm -- --overwrite-data-of-peer primary r0

5. Format the replicated disk on zenoss-siteA only.

mkfs.ext3 /dev/drbd0

7. Relocating Shared Data to the Replicated Disk
There is very little data we need replicated, but whatever we do want to be replicated should be moved/linked to
the /r0 directory that will be replicated by DRBD.

1. Mount the replicate disk on zenoss-siteA.

mkdir /r0
mount /dev/drbd0 /r0
mkdir /r0/zenoss
chown zenoss:zenoss /r0/zenoss

2. Create initial MySQL data on zenoss-siteA.

service mysqld start
service mysqld stop

3. Move MySQL data to /r0 on zenoss-siteA.

mv /var/lib/mysql /r0/mysql
chown –R mysql:mysql /r0/mysql

4. Configure MySQL to find its data on /r0 on zenoss-siteA and zenoss-siteB.

217

Zenoss High Availability

ln –s /r0/mysql /var/lib/

5. Configure Zenoss to find its data on /r0 on zenoss-siteA and zenoss-siteB.

In /opt/zenoss/etc/zeo.conf find “$INSTANCE/var/Data.fs” and change it to “/r0/zenoss/Data.fs”

6. Create initial Zenoss data on zenoss-siteA.

service zenoss start
service zenoss stop

8. Setting up Heartbeat for Resource Migration
Heartbeat is part of the Linux HA project and is responsible for performing the real work of a active/passive high-
availability setup. It will mount /r0 on whichever node is currently the master as well as stopping and starting the
appropriate servers such as MySQL and Zenoss.

1. Create /etc/ha.d/ha.cf on zenoss-siteA with the following contents.

keepalive 2
deadtime 30
warntime 10
initdead 120
bcast eth0
node zenoss-siteA
node zenoss-siteB
crm yes

2. Create /etc/ha.d/authkeys on zenoss-siteA with the following contents.

auth 1
1 sh1 yourSecretKey

3. Set restrictive permissions on the authkeys file on zenoss-siteA.

chmod 0600 /etc/ha.d/authkeys

4. Copy the ha.cf and authkeys files from zenoss-siteA to zenoss-siteB.

5. Start the heartbeat service on zenoss-siteA and zenoss-siteB.

service heartbeat start

9. Setting up Heartbeat Resources
Now that we have a replicated disk and a cluster setup we need to tell heartbeat which resources we want it to
control. This is all done on zenoss-siteA exclusively. The heartbeat service will replicate the changes automatically.

1. Setup constraints to make sure our replicated disk is always in place before the services that require it are started.
This is done by creating a file called constraints.xml (location is irrelevant) with the following contents.

<constraints>
 <!-- /r0 can't be mounted until drbd is promoted -->
 <rsc_order id="r0_after_drbd"
 from="rg_zenoss" action="start"
 to="ms_zenoss" to_action="promote"
 type="after"/>

218

Zenoss High Availability

 <!-- /r0 and drbd always have to be colocated -->
 <rsc_colocation id="r0_on_drbd" to="ms_zenoss"
 to_role="master" from="rg_zenoss"
 score="INFINITY"/>
</constraints>

2. Load this file into heartbeat which will replicate it across the cluster.

cibadmin –U –x constraints.xml

3. Create a resources.xml file with the following content to setup all resources required for a Zenoss cluster.

<resources>
 <master_slave id="ms_zenoss">
 <meta_attributes>
 <attributes>
 <nvpair name="notify" value="yes"/>
 </attributes>
 </meta_attributes>

 <primitive class="ocf" type="drbd" provider="heartbeat"
 id="drbd_shared">
 <instance_attributes>
 <attributes>
 <nvpair name="drbd_resource" value="r0"/>
 </attributes>
 </instance_attributes>

 <operations>
 <op name="monitor" interval="29s" timeout="10s"
 role="Master"/>
 <op name="monitor" interval="30s" timeout="10s"
 role="Slave"/>
 </operations>
 </primitive>
 </master_slave>

 <group id="rg_zenoss">

 <!-- Mount /r0 -->
 <primitive class="ocf" type="Filesystem"
 provider="heartbeat" id="fs_shared">

 <instance_attributes>
 <attributes>
 <nvpair name="device" value="/dev/drbd0"/>
 <nvpair name="directory" value="/r0"/>
 <nvpair name="type" value="ext3"/>
 </attributes>
 </instance_attributes>
 </primitive>

 <!-- Take 192.168.1.229 IP -->
 <primitive class="ocf" type="IPaddr2"
 provider="heartbeat" id="ip_shared">
 <instance_attributes>
 <attributes>
 <nvpair name="ip" value="192.168.1.229"/>
 <nvpair name="nic" value="eth0"/>
 </attributes>
 </instance_attributes>
 </primitive>

 <!-- MySQL Service -->
 <primitive class="lsb" type="mysqld"
 provider="heartbeat" id="mysqld"/>

219

Zenoss High Availability

 <!-- Zenoss Service -->
 <primitive class="lsb" type="zenoss"
 provider="heartbeat" id="zenoss">
 <operations>
 <op id="zenoss_start" name="start" timeout="1m"/>
 <op id="zenoss_stop" name="stop" timeout="1m"/>
 <op id="zenoss_status" name="monitor"
 timeout="1m"/>
 </operations>
 </primitive>

 </group>
</resources>

4. Load this file into the cluster.

cibadmin –U –x resources.xml

10.Troubleshooting
The following are some commands that will greatly help you understand, operate and troubleshoot your cluster.

• crm_mon will show you the current state of all cluster resources and nodes.

• cat /proc/drbd will show you the current state of your replicated disk.

• crm_resource –r rg_zenoss –M –H <node-hostname> will migrate the rg_zenoss resource group to the specified
node.

• You should always run crm_resource –r rg_zenoss –U to unmigrate a resource afterwards or the resource will
never be able to fail back to the node you migrated away from.

11. References
Much more in-depth information on Linux clustering can be found at the following sites.

• Linux HA (http://www.linux-ha.org/)

• DRBD Users Guide (http://www.drbd.org/users-guide/ch-configure.html)

• CentOS DRBD Howto (http://wiki.centos.org/HowTos/Ha-Drbd)

220

Zenoss High Availability

Chapter 30. Distributed Collector
1. What is Distributed Collector?
Distributed Collector allows you to deploy additional performance collection and event monitoring daemons to
the Zenoss server or other servers. This allows you to:

• Distribute processor, disk, and network load between multiple servers

• Collect performance and events from networks that cannot be reached by the Zenoss server

• Configure more than one set of monitoring settings and assign devices to the configuration that makes most
sense

When you first install Distributed Collector, Zenoss is configured with one hub and one collector. A collector is
a set of collection daemons, on the Zenoss server or another server, that share a common configuration. That con-
figuration contains values such as number of seconds between SNMP collection cycles, default discovery networks,
and maximum number of zenprocess parallel jobs.

Each collector has its own copy of each of the Zenoss collection daemons. For example, Zenoss initially contains
collection daemons named zenperfsnmp, zenprocess, and zenping. If you create a new collector named My2ndCol-
lector, then the system creates new daemons named My2ndCollector_zenperfsnmp, My2ndCollector_zenprocess,
and My2ndCollector_zenping. This collector could run on the main Zenoss server or on a remote server.

You cannot delete the initial hub and collector setup by Distributed Collector (both named localhost).

In addition to collectors, Distributed Collector allows you to set up new hubs. A hub represents an instance of the
zenhub daemon, which is the daemon through which all collector daemons communicate with the object database
and event database. All collectors must belong to exactly one hub; however, a hub may have many collectors as-
sociated with it. All hubs (and indirectly all collectors) refer to the same object and event databases.

1.1. Restrictions and Requirements

Servers hosting remote hubs or collectors must be the same operating system and hardware architecture as the
Zenoss server. For example, if the Zenoss server if running RedHat Enterprise Linux v5 on Intel 32-bit hardware,
then hubs and collectors can be deployed only to other RHEL 5 32-bit servers. If your Zenoss server is a Zenoss
virtual appliance or hardware appliance, then the remote server must also be a Zenoss appliance.

For each distributed collector you add, you must have an additional 500 MB of system memory.

For additional platform-specific information, refer to Platform Notes.

1.2. Navigating Existing Collectors and Hubs

When you log in as the Zenoss admin user, the Navigation pane displays a link titled Collectors in the Management
area. Click this link to go to the Collectors page, which lists existing hubs and collectors in hierarchical form. Hubs
are listed at the top level; collectors are nested below the hub to which they belong.

From this page, you can:

• Add a hub

• Delete a hub (which also deletes its associated collectors)

• View and edit hub settings

221

The Daemons tab lists the copy of the zenhub daemon that belongs to the collector. Links adjacent to the daemon
name allow you to view its log, and view and edit its configuration. Use the buttons to the right of the daemon
name to stop, start, and restart the daemon.

2.Typical Usage Scenarios for Distributed Monitoring
Here are a few typical setup scenarios for utilizing multiple hubs and collectors:

• ZeoDB - local hub - local collector

• ZeoDB - local hub - multiple local collectors

• ZeoDB - local hub - remote collector

• ZeoDB - local hub - multiple remote collectors

• ZeoDB - remote hub - remote collector

• ZeoDB - multiple remote hubs - multiple remote collectors

• ZeoDB - local hub - local collector(s) - remote hub(s) - remote collectors

Each of these scenarios can address the following big-picture business cases to help make your monitoring more
effective, efficient and balanced.

2.1. Scalability on the Local Device

You can use distributed monitoring to have multiple local collectors that will utilize multiple CPUs. Since each
collector is one thread, the use multiple collectors allows the device to use its own load balancing to properly op-
timize multiple CPUs. If you were to only have one hub and one collector locally, the load would be concentrated
on a small portion of the potential power.

2.2. Scalability Over Multiple Remote Devices

Scaling on multiple remote devices basically enhances the same idea of single threads as with a single local device,
but spreads the collection and configuration burden across multiple machines to maximize efficiency.

2.3. Collectors and or Hubs Set Up through a Firewall

If you want to have collectors and hubs on different sides of a firewall, use the ZeoDB hostname and port numbers
to manage the flow of data through your firewall.

2.4. Collection Over Multiple Overlapping IP Spaces

Distributed monitoring is also an essential component for enabling multiple realm IP support available to Zenoss
Service Provider customers.

3. Deploying Hubs
Hubs are used to manage configuration data and pass it to the collectors. Hubs also take data from the collectors
and pass it to the ZeoDB. More hubs can be a more efficient way to manage larger deployments, as they help dis-
tribute the computing resources when configuration changes are made. They further remove the potential for
configuration changes to be a bottleneck to gathering and processing data.

To add a hub, from the main Collectors page, select Add Hub... from the table menu.

222

Distributed Collector

Figure 30.1. Hubs Table menu

The Add Hub dialog appears:

Figure 30.2. Add New Hub dialog

Use the following fields to define the hub:

• ID - Enter a name for the new hub. The name can be any unique combination of letters, digits, and dashes.

• Host - Enter the fully qualified domain name, IP address, or resolvable hostname of the server on which the
new hub will run.

• Host Root Password - Enter the root user password for the server you specified in the Host field.

• Port - Enter the port number on which the hub should listen for collectors. The default port is 8789.

• Hub Password - Enter the hub password that the collectors will use to log into this hub. The default password
is "zenoss."

• XML RPC Port - Specify the port on which the hub should listen for xml-rpc requests from the collectors or
other API clients.

223

Distributed Collector

• ZeoDB Host - Specify the server hosting the ZeoDB database (the object database). In most cases, this is the
IP address or hostname of the main Zenoss server.

• MySQL Root Password - Enter the password for the root MySQL user. If the MySQL root user does not have
a password, then leave this field blank.

Click OK. The system displays log output from the creation of the new hub. When fully configured (this may require
several minutes), click the link at the bottom of the page to go to the overview page for the new hub.

4. Deploying Collectors
To add new collector to a hub:

1. From the left navigation menu, select Collectors.

The main Collectors page appears, showing all of the hubs and collectors.

Figure 30.3. Main collectors page

2. Click the name of the hub where you want to add the collector.

The main page for this hub appears.

Figure 30.4. Main hub page

3. From the Zenoss Collectors table menu, choose Add Collector...

224

Distributed Collector

The Add Collector dialog appears.

Figure 30.5. Add Collector Dialog

4. Add information to the dialog to define the collector.

• ID - In the ID field, enter the name for the collector as it will be identified in Zenoss.

• Host - Enter the name of the host for the collector. This must be a fully qualified domain name, IP address,
or resolvable hostname. If you want the collector to run on the Zenoss server, then enter localhost.

• Host Root Password - Enter the password for the root user on the Host.

5. Click OK. The system displays log output from the creation of the new collector. When fully configured (this
may require several minutes), click the link at the bottom of the page to go to the overview page for the new
collector.

4.1. Deleting Collectors

To delete a collector, click the name of the hub where the collector exists from the main collectors page. The Hub
overview page appears. From the list of Zenoss Collectors, select the collector you want to delete. From the Zenoss
Collectors table menu, select Delete Collector.

When you delete collectors using this Zenoss instance, they are not removed or "uninstalled" in anyway from the
collector device. They continue to exist on the device until manually removed through the file system.

4.2. Updating a Hub or Collector

Any time you update your version of Zenoss or install additional ZenPacks, you should update any hubs or collectors.
You do this by navigating to the Overview page for the hub or collector, and then choosing Update Hub or Update
Collector from the page menu. This copies the most recent Zenoss code and ZenPacks to the server and restarts
the daemons running there.

5. Adding Devices to Collectors
Adding devices to collectors occurs when you add the device to Zenoss. When you click Add Device from the left
navigation menu you see the Add Device page.

225

Distributed Collector

Figure 30.6. Add Device Page

In the top right of the resulting page, you can see the Collector drop-down menu. Choose the collector you want
to use to collect the data for this device. The device then appears in the Device area for that collector. You can
access this page by choosing the Collectors item from the left navigation menu and then choosing the collector
from the resulting list. When you click on the name of the collector, the Overview page for the collector appears
and then in the Devices area at the bottom of the page you can see the Device list for this collector.

5.1. Moving Devices Between Collectors

You can move devices from one collector to another using the Set Collector table menu item for any Device view.
These Device views include:

• Device List

• Device Tree

• Any of the Organizers device list

The most basic way to do this (and also the most efficient for moving multiple devices from one collector to an-
other):

1. From the left navigation menu, select Device List.

The Device list appears.

2. Select all of the Devices you want to move to a particular collector by clicking the boxes next to all of the
name(s) of the devices.

226

Distributed Collector

3. From the Device list table menu, select Set Collector.

The Set Collector dialog appears.

4. Select the Collector from the drop-down list.

5. Click OK.

The device or devices are moved to the selected collector.

5.2. Installation Notes

• Make sure the Zenoss server's hostname is a fully qualified domain name.

• Remember that collectors and hubs can be pushed only to servers with identical operating system versions and
hardware architecture.

• Make sure that Event Manager > hostname has a fully qualified domain name (preferred) or at least a numeric
address that can be reached by any server that has collectors or hubs deployed to it.

• Distributed Collector shuts down the iptables firewall on the Zenoss server. If you have any other firewalls on
the Zenoss server, or on servers that host remote collectors or hubs, then you should disable their firewalls also.

5.3. Debugging

Hostname Configuration

The Zenoss server should have a properly configured hostname, preferably a fully qualified domain name. You
can check the hostname from the shell:

root# hostname

You also can check by using the python function used by Zenoss:

root# python -c 'import socket; socket.gethostname()'

MySQL Host

Hubs on remote servers need access to the MySQL events database. This setting is the Hostname field in the
Connection Information section of the Event Manager page. By default this is set to localhost, but will not work
for remote hubs. Distributed Collector attempts to set this field to the FQDN of the Zenoss server when it is installed.
If remote hubs appear to be having trouble connecting to MySQL or sending events, then check the value in this
field to make sure it can be reached from the server the hub is on.

MySQL Access Privileges

Another aspect of remote hubs connecting to MySQL is privileges. For a hub to connect to the events database,
the user specified in the User Name field in Event Settings must be granted privileges to connect to MySQL from
the remote server. Distributed Collector attempts to grant these privileges any time a remote hub is created or updated.
If a remote hub is logging error messages that indicate it is not allowed to connect to MySQL from the given host,
then these privileges are likely not set up correctly. Granting of these privileges requires a fully qualified domain
name for the remote server.

5.4. Firewall Notes

When a hub or collector is deployed DistributedCollector attempts to disable the iptables firewall on the Zenoss
server. This enables the remote collector or hub to communicate with the daemons and databases running on the
Zenoss server. You can re-enable iptables if you want to set up the proper rules to allow Zenoss traffic through.

227

Distributed Collector

Remote hubs need to communicate with the zeo database on the Zenoss server on port XXXX. Hubs also need to
communicate with the MySQL server, usually on the Zenoss server (see Event Manager > Hostname), on the port
specified in Event Manager > Port (usually 3306.) Collectors communicate with their hub on the port specified
when the hub was created. See the ZenHub Port field on the hub's overview page.

5.5. Platform Notes

Software Appliance and Hardware Appliance

• Hubs and collectors can be deployed only to other Zenoss software or hardware appliances.

• You must stop Zenoss on an appliance before deploying a hub or collector to it.

• You must set a password for the root user on an appliance before deploying a hub or collector to it.

• Do not use conary to update appliances being used as remote collectors or hubs.

228

Distributed Collector

Chapter 31. Monitoring Virtual Host
Machines (Commercial)
1. About Monitoring Virtual Host Monitoring
The ZenossVirtualHostMonitor Enterprise ZenPack allows you to monitor virtually hosted operating systems with
Zenoss. This ZenPack refers to a Virtual Machine Host as the one running on the bare metal, and Guest for those
running within the virtual hardware.

This ZenPack:

• Extends Devices to support a relationship from Host to Guest.

• Extends ZenModeler to find Guest OS's and add them to Virtual Hosts

• Provides screens and templates for collecting and displaying resources allocated to Guest OSs

2. Using Zenoss Virtual Host Monitor
To Use ZenossVirtualHostMonitor:

1. Make sure you have SNMP connectivity to your ESX 3.0 servers.

2. Make sure you have SSH keys to your Xen servers (as root).

3. Create your ESX 3.0 servers using the /Servers/Virtual Hosts/ESX device class. If you have these servers
modeled already, remove them and recreate them under the ESX device class. DO NOT MOVE THEM.

4. Repeat step 3 with Xen hosts (using the Xen device class).

5. Select the Guest menu and ensure that the guest hosts were found when the devices were added.

6. Using the VMware Virtual Infrastructure Client, add Zenoss to the list of destinations for SNMP traps. See the
Menus Administration-> VirtualCenter Management Server Configuration ->SNMP.

Optionally, you can install the VMware ESX MIB files in Zenoss.

Additional Notes:

• There is a handy link to the VMware web interface on each ESX server Status page.

• If the name of the Guest under ESX is the same as the name of a device being monitored directly by Zenoss, a
link will be provided to take you directly from to that device from the Guest list.

• The CPU monitoring on VMware shows very little relationship to actual CPU used. We have asked VMware
about the problem.

229

Chapter 32. Predictive Thresholding
(ZenHoltWinters) (Commercial)
1. About Predictive Thresholding
The ZenHoltWinters Enterprise ZenPack adds the ability to fire threshold events when a device exceeds cyclical
predicted values. Holt-Winters is the algorithm that we use for this prediction.

2. Using Predictive Thresholding
To use ZenHoltWinters, you need to add HoltWinters Thresholds against performance data. In any template, select
add a new Threshold and select the HoltWintersFailurs threshold type.

Note: Zenoss relies on the existence of Holt-Winters RRAs within an RRD file. After adding Holt-Winters
thresholds, the RRD files being monitored will need to be re-created so that the new configuration can occur. At
the time of Zenoss Enterprise 2.1.1, there is no conversion utility. You will have to remove any existing RRD files
so that new files can be created.

Important Note: Removing RRD files will remove any historical information associated with these RRD files.

3. Customizing the Thresholds
The Holt-Winters Threshold allows you to customize some aspects of the prediction engine. The 4 values to
modify are:

• Rows: The number of points to use for predictive purposes.

• Alpha: A number from 0 to 1 that controls how quickly the model adapts to unexpected values.

• Beta: A number from 0 to 1 that controls how quickly the model adapts to changes in unexpected rates changes.

• Season: The number of primary data points in a season. Note that Rows must be at least as large as Season.

230

Chapter 33. Authentication Enterprise
ZenPacks
1. Active Directory Authentication (Commercial)

1.1. About Active Directory Authentication

The ActiveDirectory is an Enterprise ZenPack allows you to authenticate users using Microsoft Active Directory.

This ZenPack creates a Device Class for Microsoft Active Directory with appropriate priorities and also creates a
Windows Service class and IP Service class for Active Directory-related services with monitoring enabled.

1.2. Active Directory Monitored Metrics

The Active Directory ZenPack allows you to monitors the following metrics:

• DS Client Binds/Sec

• DS Directory Reads/Sec

• DS Directory Searches/Sec

• DS Directory Writes/Sec

• DS Monitor List Size

• DS Name Cache Hit Rate

• DS Notify Queue Size

• DS Search Sub-operations/Sec

• DS Server Binds/Sec

• DS Server Name Translations/Sec

• DS Threads In Use

• KDC AS Requests

• KDC TGS Requests

• Kerberos Authentications

• LDAP Active Threads

• LDAP Bind Time

• LDAP Client Sessions

• LDAP Closed Connections/Sec

• LDAP New Connections/Sec

• LDAP New SSL Connections/Sec

• LDAP Searches/Sec

231

• LDAP Successful Binds

• LDAP UDP Operations/Sec

• LDAP Writes/Sec

• NTLM Authentications

2. LDAP Authentication in Zenoss (Commercial)

2.1. About LDAP Authentication

The LDAPAuthenticator Enterprise ZenPack allows Zenoss to use your existing LDAP authentication infrastructure
(Active Directory, OpenLDAP and others) to provide SSO to the Zenoss web interface.

2.2. Setting Up LDAP Authentication

Follow these steps to setup the integration once you have installed the the LDAPAuthenticator ZenPack.

1. Go to:

http://yourzenoss:8080/zport/acl_users

2. Choose your authentication plugin in the top-right and click Add.

• Choose "ActiveDirectory Multi Plugin" for Microsoft Active Directory.

• Choose "LDAP Multi Plugin" for any other LDAP server.

3. Complete the following form with your LDAP credentials and paths.

• The ID can should be something like ldapAuthentication.

• The Title can be left blank.

• Default User Roles should be set to ZenUser.

4. Navigate back to /zport/acl_users using the breadcrumbs at the top.

5. Click on plugins in the list of objects.

6. Click on the Authentication Plugins link.

7. Move your ldapAuthentication plugin to the list of active plugins.

232

Authentication Enterprise ZenPacks

Chapter 34.Transaction Monitoring
ZenPacks
1. Synthetic Transactions (Zenwebtx)(Commercial)

1.1. About Synthetic Transaction (Zenwebtx)

ZenWebTx is an Enterprise ZenPack that allows the user to test availability and performance of web sites. The
user creates one or more tests which mimic a user's actions in a web browser. Zenoss then performs these tests
periodically. Events are created in Zenoss whenever a test fails or a time threshold is exceeded. Additionally,
Zenoss can record data regarding each test run, such as time taken for the test to execute, time for any portion of
the test to complete and values extracted from web pages during the test.

1.2. Overview

Each test is represented by a single Data Source of type WebTx. ZenWebTx uses a scripting language called Twill
to describe the steps of a test. These steps include actions such as clicking on a link or filling out form fields, as-
sertions to check for the presence or absence of text on a page, and descriptions of what data to collect during the
test. Users can write Twill commands manually or they can record a browser session which ZenWebTx then
translates into Twill. These recordings can be made with a FireFox addon called TestGen4Web. A daemon named
zenwebtx processes these Twill commands periodically, recording data and creating events as appropriate.

WebTx Data Sources can contain many Data Points depending on the Twill commands you specify:

• The total number of seconds required to execute the transaction. All WebTx Data Sources include this Data
Point, named totalTime, by default.

• The success or failure of the transaction. All WebTx Data sources include this Data Point, named available, by
default.

• The presence or absence of text patterns on any page. Additionally, numeric values that are part of these patterns
can be extracted from the web page and recorded.

What's Included with ZenWebTx:

• New type of datasource, WebTx, which allows you to specify a web transaction

• New daemon, zenwebtx, that processes WebTx Data Sources

• New event classes: /Status/Web and /Perf/Web

• A sample performance template: ZenWebTx Example

1.3. Creating a WebTx Data Source

WebTx Data Sources are created in Performance Templates just like Data Sources that use SNMP or any other
method to gather data within Zenoss. To create a new WebTx Data Source you use the “AddData Source...” menu
item from the Data Sources table. A dialog will ask prompt you for some information. Enter the name of the new
Data Source, select WebTx as the type and click the OK button. There are then two pages you use to specify the
behavior of the new Data Source, the Data Source tab and the Script Tab.

233

1.4. Data Source Tab

After creating a new Data Source the next page you see is the Data Source tab. The fields on this page allow you
to specify parameters about how and when this Data Source's web transaction will be performed as well as what
data should be collected. The fields in the top part of the page are as follows:

• Name – This is the name of the Data Source that you initially specified in the Create Data Source dialog. This
name along with the Data Point names (see section below on Data Points) are used in Thresholds and Graph
Definitions to refer to the data collected by this Data Source.

• Source Type - This is always set to WebTx to indicate that this is a synthetic web transaction Data Source. This
can not be edited.

• Enabled – Can be set to True or False to indicate whether this Data Source should be collected. Normally this
is set to True, but you may wish to disable Data Sources occasionally while developing the Data Source or
making changes to the web application being tested.

• Component – Any time the web transaction fails an event is generated within Zenoss. This field allows you to
set the Component field of the generated event.

• Event Class – This allows you to select the Event Class of the events generated by this Data Source. Frequently
this is set to /Status/Web.

• Timeout - Number of seconds zenwebtx will attempt to execute this Data Source's twill commands before it
quits and generates an error event.

• Cycle Time - Number of seconds zenwebtx waits between the start of one test run and the start of the next.

• User Agent - This is the text zenwebtx will present to target web sites to identify itself.

1.5. Script Tab

The other page concerning WebTx Data Sources is the Script page, which you access via the Script tab when
viewing the Data Source. This page is where you specify the details of the transaction. It also helps to debug your
Twill commands when you are first setting up the Data Source.

• Initial URL – This is the url of the page where the transaction should start. This field frequently contains a
TALES expression to refer to a device's id or ip address. For example, this field is often http://${dev/id} or ht-
tp://${dev/manageIp}. For more details on TALES expressions see the Zenoss Admin Guide.

• TestDevice – This field is used for testing and debugging the Twill commands. You can enter the id of a device
and press the Test Twill Commands button to have Zenoss execute the Twill Commands against that device. If
you don't specify a device and you press the Test Twill Commands button then Zenoss will attempt to select a
device for you.

• Upload Recording – This field allows the user to upload a web session recording generated by the FireFox
TestGen4Web addon. If the user specifies a file here and clicks the Save button Zenoss will translate the file to
Twill Commands and replace the contents of the Twill Commands field with these newly translated commands.
NOTE: the current contents of the Twill Commands field is completely replaced when this is done.

234

Transaction Monitoring ZenPacks

• Twill Commands – These are the actual Twill commands that will be executed to produce values and events
for the Data Source. Twill is described in more detail in the section below.

1.6. Creating the Twill Commands

ZenWebTx uses a language called Twill to specify the steps of a web test. Each WebTx Data Source has a field
that contains the Twill commands that describe a web transaction. You can create this list of Twill commands
manually or you can record a session in a browser and use that as the basis for your Data Source.

Some Twill commands specify an action, such as following a specific link on a page or entering data in a form
field. Other Twill commands specify a test, such as searching for specific text on a page or making sure the title
does not contain specific text. The full range of available commands are described in the accompanying ZenWebTx
Twill Commands Reference.

1.7.TestGen4Web

TestGen4Web is an add-on for Firefox which allows you to record browser sessions. ZenWebTx can take these
sessions and convert them to Twill as a starting point for developing ZenWebTx Data Sources. TestGen4Web can
be found at https://addons.mozilla.org/firefox/addon/1385. Record a TestGen4Web session using the Record and
Stop buttons on the TestGen4Web toolbar in Firefox. Once you have recorded a session use the Save button in the
toolbar to save the session to a file. On the Script page of a ZenWebTx Data Source you can use the Browse button
to select your saved session. When you click the Save button the TestGen4Web session is converted to Twill and
placed into the Twill Commands field on that same page. Note: any previous Twill Commands will be replaced
by the converted TestGen4Web commands.

1.8. Manually Creating Twill Commands

Even if you use TestGen4Web to initially create Twill commands, you will frequently want to edit these commands
manually to add datapoints, additional content checks, etc. The ZenWebTx Twill Commands Reference describes
in detail the commands that can be used. The Test Twill Commands button on the Script page is invaluable for
testing your Twill commands as you create or edit them.

You can also execute twill commands interactively using the twill-sh program from the command line. This lets
you enter commands one at a time and inspect the pages that come back. You can invoke twill-sh with:

> PYTHONPATH=$ZENHOME/Products/ZenWebTx/lib
$ZENHOME/Products/ZenWebTx/bin/twill-sh

Within twill-sh you can use the help command to list available commands or get a description of any specific
command. Of particular interest are the following commands:

• showforms – lists the forms on the page and the fields within each

• showlinks – lists the links on the page

• show – list the actual source html from the page

• exit – quits twill-sh

Frequently the most convenient way to use twill-sh is to create a text file which contains your Twill commands.
You can then specify that file on the command line when you invoke twill-sh. This lets you inspect the situation
when your Twill commands hit a snag. You invoke twill-sh with a text file as such:

> PYTHONPATH=$ZENHOME/Products/ZenWebTx/lib
$ZENHOME/Products/ZenWebTx/bin/twill-sh -i myTwillCommands.txt

235

Transaction Monitoring ZenPacks

The -i option instructs twill-sh to leave you in the Twill shell rather than exiting when it is done running the com-
mands in myTwillCommands.txt.

1.9. Event Generation

There are several situations where ZenWebTx will create events in Zenoss. These events will use the Component
and Event Class specified on the Data Source tab. These situations are:

• ZenWebTx is unable to retrieve a page during the transaction

• One of the Twill commands fails, such as finding text that doesn't exist or following a link that doesn't exist

• The Timeout specified on the Data Source tab is exceeded.

• A Threshold defined for one of the Data Points in this Data Source is exceeded. Thresholds are defined within
the Performance Template that contains the Data Source.

1.10. Data Points

Data produced by any Zenoss Data Source are called Data Points. ZenWeb Data Sources contain two Data Points
by default:

• totalTime – this is the number of seconds taken to complete the entire transaction

• success – this is either 1 or 0 depending on whether the transaction succeeded or not

Other Data Points can be created by using the extract and printTimer Twill commands. These output data values
when the Twill commands are run. You also need to create new Data Points with the same name you used in those
commands to bring that data into Zenoss. The description of extract and printTimer in the ZenWebTx Twill
Commands Reference contains more details.

2. Mail Transactions Monitoring (ZenMailTx) (Commer-
cial)

2.1. About Mail Transaction Monitoring

ZenMailTX is an Enterprise ZenPack that allows you to monitor round-trip email delivery. It provides a new type
of data source, MAILTX, that contains server and message information. ZenMailTX datasources are processed
by a new daemon, zenmailtx.

2.2. Creating a ZenMailTX Data Source

To create your own MailTX Data Sources follow these steps:

1. Navigate to either a new or an existing Performance Template and select "New DataSource" from the Data
Sources table menu.

2. Enter a name for the Data Source, select MAILTX as the type and click OK.

3. Enter the To Address and From Address.

4. Enter the SMTP server details, including the transport security (TLS or SSL) and port (default 25).

5. Enter the POP server details, including the transport security and port (default 110).

236

Transaction Monitoring ZenPacks

6. Enter the body of the test message.

7. Click the Save button.

You may test the Data Source settings by clicking the “Test Now” tab, entering a device against which to test the
Data Source, and clicking “Test Email.”

Any of the MAILTX fields can take TAL expressions. It is often convenient to use a custom variable to define the
value of the password fields. Because those fields are expected to be set via custom variables they are plain text
fields, and not the typical password entry field.

2.3. Zenmailtx daemon

The zenmailtx daemon sends the test email message via the SMTP server specified, retrieves the email message
from the POP server specified, and sends the time taken to send, time taken to fetch, and total time back to Zenoss.
This daemon appears on the Zenoss Daemons page and can be started, stopped and restarted from there. From the
command line it can be controlled via the zenoss script or by issuing commands directly to the daemon, which is
symlinked at $ZENHOME/bin/zenmailtx.

3. SQL Transaction Monitoring (ZenSQLTx) (Commercial)

3.1. About SQL Transaction Monitoring

ZenSQLTx is an Enterprise ZenPack that allows the user to test the availability and performance of MySQL and
MSSQL servers. It provides a new type of Data Source, SQL, which contains a set of SQL queries to be executed
against a server. SQL Data Sources are processed by the zencommand daemon.

3.2. How To Create an SQL Data Source

To create your own SQL Data Sources follow these steps:

1. Navigate to either a new or an existing Performance Template and select "New DataSource" from the Data
Sources table menu.

2. Enter a name for the Data Source, select SQL as the type and click OK.

3. Choose MySQL or MS SQL as the Database Type. Set the Host Name on which the database is located (accepts
a TALES expression, such as “${here/id}” or “${here/getManageIp}”). Also set the port on which the database
server is listening (default MySQL port is 3306, default MSSQL port is 1433), the name of the database, and
a username and password that has permission to connect to the database and run the queries you specify.

4. Specify the SQL queries that this Data Source should execute. A summary of MySQL syntax may be found
here: http://dev.mysql.com/doc/refman/5.0/en/sql-syntax.html. A summary of MS SQL syntax may be found
in the documentation accompanying the software.

5. Click the Save button. Notice that a datapoint is created corresponding to the total query time in milliseconds.

237

Transaction Monitoring ZenPacks

Chapter 35. Application Monitoring
Enterprise ZenPacks
1. MS SQL Monitoring (MSSQLServer)(Commercial)

1.1. About MS SQL Transaction Monitoring

The MSSQLServer Enterprise ZenPack monitors Microsoft SQL Server and its related services. The ZenPack
enables users to view graphs based on MS SQL Server Performance Counters and to monitor processes related to
MS SQL Server. This ZenPack is dependent on the ZenWinPerf ZenPack in its use of the WinPerf datasource
type.

1.2. Installed Objects

1.2.1. Device Class

• /Devices/Server/Windows/MSSQLServer

1.2.2. Event Class

• /Events/Win/MSSQLServer

1.2.3. WinServices

• MSSQLSERVER

• MSSQLServerOLAPService

• MsDtsServer

• ReportServer

• SQLBrowser

• SQLSERVERAGENT

• SQLServer

• SQLWriter

• msftesql

1.2.4. IpServices

• ms-sql-s

1.2.5. Performance Templates

• MSSQLServer

1.2.6. Datasources

• ssamFullScansPerSec

• ssbmBufferCacheHitRatio

238

• ssbmFreePages

• ssdDataFileSSizeKB

• ssgsUserConnections

• sslkAverageWaitTimeMs

• sslkLockRequestsPerSec

• sslkNumberOfDeadlocksPerSec

• ssltLatchWaitsPerSec

• ssmmConnectionMemoryKB

• ssssBatchRequestsPerSec

1.2.7.Thresholds

• ssbmBufferCacheHitRatioLessThan90Percent

1.3. Using the MSSQLServer ZenPack

After installation you will have a device class MSSQLServer. Place any devices with MSSQLServer installed into
this device class. An MSSQLServer template will automatically be bound to your devices. Make sure the zenwinperf
daemon is running. On a device, click on the ‘More’ – ‘Push Changes’ menu item. This will update the collectors.
To view the graphs, click on the ‘Perf’ tab.

2. MS Exchange Monitoring (MSExchange)(Commercial)

2.1. About MS Exchange Monitoring

The MS Exchange EnterpriseZenPack is an application monitoring ZenPack that monitors Micosoft Exchange
and its related services. The ZenPack enables users to view graphs based on MS Exchange Performance Counters
and to monitor processes related to MS Exchange. This ZenPack is dependent on the ZenWinPerf ZenPack and
its use of the WinPerf datasource type.

2.2. Installed Objects

2.2.1. Device Classes

• /Devices/Server/Windows/MSExchange

2.2.2. Event Classes

• /Events/Win/Exchange

2.2.3. Event Class Keys

• MSExchangeDSAccess_2064

• MSExchangeDSAccess_2069

• MSExchangeIS_9582

239

Application Monitoring Enterprise
ZenPacks

2.2.4. Alerting Rules

• MSExchangeISWMTotal16MBFreeBlocks

2.2.5. WinServices

• IISADMIN

• IMAP4Svc

• MSExchangeES

• MSExchangeIS

• MSExchangeMGMT

• MSExchangeMTA

• MSExchangeSA

• MSExchangeSRS

• POP3Svc

• RESvc

• SMTPSVC

• W3SVC

2.2.6. IP Services

• imap4-ssl

• msexch-routing

2.2.7. Performance Templates

• MSExchangeIS is automatically bound to Device Class MSExchange

2.2.8. Datasources

• logicalDiskFreeMegabytes

• memoryPercentCommittedBytesInUse

• mseisMailboxFolderOpensPerSec

240

Application Monitoring Enterprise
ZenPacks

• mseisMailboxLocalDeliveryRate

• mseisMailboxMessageOpensPerSec

• mseisRPCAveragedLatency

• mseisRPCOperationsPerSec

• mseisRPCRequests

• mseisVMLargestBlockSize

• mseisVMTotalFreeBlocks

• mseisVMTotalLargeFreeBlockBytes

• mseisVMTotal16MBFreeBlocks

2.2.9.Thresholds

• logicalDiskFreeMegabytesUnder100

• logicalDiskFreeMegabytesUnder25

• memoryPercentCommittedBytesInUseOver75

• mseisVMLargestBlockSizeUnder16

• mseisVMLargestBlockSizeUnder32

• mseisVMTotal16MBFreeBlocksUnder3

• mseisVMTotalLargeFreeBlockBytesUnder32

2.3. Performance Counters and Thresholds

ZenPack will automatically set up performance monitoring templates for the following core metrics:

2.4. Reports, Views & Dashboards

• MSExchangeAvailability.pt

• Availability Summary

• Up/Down%, Uptime %, Up Since (Dials?),

241

Application Monitoring Enterprise
ZenPacks

• Current status matrix for key exchange services

2.5. Using the the MSExchange ZenPack

After installation you will have a device class MSExchange. Place any devices with MSExchange installed into
this device class. An MSExchange template will automatically be bound to your devices. Make sure the zenwinperf
daemon is running. On a device, click on the ‘More’ – ‘Push Changes’ menu item. This will update the collectors.
To view the graphs, click on the ‘Perf’ tab.

3. IIS Monitoring (Commercial)

3.1. About IIS Monitoring

The IISMonitor Enterprise ZenPack collects key metrics from Microsoft IIS. The metrics are collected using
Windows Perfmon and require no agent to be installed on the IIS server.

• Connections Attempts

• Throughput (Bytes & Files)

• Requests (GET, HEAD, POST, CGI, ISAPI)

• Standard: GET, HEAD, POST, CGI, ISAPI

• WebDAV: PUT, COPY, MOVE, DELETE, OPTIONS, PROPFIND, PROPPATCH, MKCOL

• Other: SEARCH, TRACE, LOCK, UNLOCK

3.2. Setting up IIS Monitoring

Follow these steps to setup your IIS server to have this information collected.

1. Make sure you have the ZenPack properly installed.

2. Verify that your Zenoss Windows service account has access to the IIS server. Within Zenoss this is specified
using zWinUser and zWinPassword.

3. Bind the IIS performance template to the IIS server device within Zenoss.

4. JBoss Application Server Monitoring (Commercial)

4.1. About JBoss Application Server Monitoring

JBossMonitor is an Enterprise ZenPack that allows System Administrators to monitor JBoss Application Servers.
JBossMonitor uses the JMX Remote API and accesses MBeans deployed within JBoss that contain performance
information about the components that are being managed.

4.2. Overview

The collected performance information includes: pool sizes for data sources (JDBC), enterprise java beans (EJBs),
message queues (JMS), threads, servlets, JSPs, and classloaders. Cache information is also accessible, providing
system administrators insight into the number of hits (or misses) their cache policy has produced.

The ZenPack also aggregates individual performance metrics into higher level concepts that provide a picture of
the performance of the application. Cache hits and misses are combined on the same graph to provide an overall
picture of cache performance. Likewise, queue metrics are combined to show the number of messages currently
on the queue, being processed, and being placed on the queue. Queue subscribers and publishers are also graphed.

242

Application Monitoring Enterprise
ZenPacks

Each of the individual performance metrics can be trended and predicted, and thresholds can be explicitly defined.
Both the predicted thresholds and explicit thresholds inform system administrators of potential future problems
before they occur. Since so much of J2EE involves "managed resources", the ability to monitor pool sizes and
alert administrators prior to resources being exhausted is extremely valuable and can reduce the likelihood of a
fatal outage caused by resource depletion.

Most of the metrics that are collected in JBossMonitor represent combinations of individual component metrics.
For example, the Thread Pool metric represents all threads in all pools. It is possible to configure JBossMonitor
to perform at higher granularity and have it monitor a Thread Pool with a particular name. However, since these
names are application and specific we have chosen to configure JBossMonitor to collect at a rather coarse grained
level out of the box. The installer is highly encouraged to customize and configure!

One particular performance template that screams for end-user configuration involves Servlets. If a site to be
monitored is revenue generating, and credit card submissions from the website are handled via a back-end servlet
it may be critically important to monitor the resources made available by the JBoss container to the servlet container.
If the number of free spaces in the servlet pool dwindles to 0 it could prevent your application from making a sale.

4.3. Collected Metrics for JBoss

The following list shows al of the collected metrics for JBoss servers:

• Active Threads

• JMS Message cache memory usage

• JMS Message hits/misses

• JMS Topic/Destination queue size

• Java heap memory usage

• JCA commit, rollback, and transaction count

• JCA Connection pool in-use connections and available connections

• JCA connections created/destroyed

• JCA total connections

• JGroups cluster messages sent/received

• JGroups cluster bytes sent/received

• MBean creation/removal count

• MBean messages processed count

243

Application Monitoring Enterprise
ZenPacks

4.4. Setting Up the JBoss ZenPack

The JBoss Application server ZenPack does not require any additional setup after unzipping. Although you can
customize the data points the same way you would customize any data point in Zenoss.

5.WebLogic Application Server Monitoring (Commercial)

5.1. About WebLogic Application Server Monitoring

WebLogicMonitor is an Enterprise ZenPack that allows System Administrators to monitor a WebLogic Server.
WebLogicMonitor uses the JMX Remote API and and accesses MBeans deployed within JBoss that contain per-
formance information about the components that are being managed. This performance information includes pool
sizes for data sources (JDBC), threads, connections (JCA), queues (JMS), servlets, JSPs, enterprise java beans
(EJB), timer queues.

Throughput is also monitored when it is available. This metric is computed by WebLogic and is based on the
number of messages moving through a queue at any given time. The throughput metric gives a good picture of the
health of the messaging subsystem, which is commonly used throughout many enterprise applications. Stateless,
Stateful, and Entity EJB performance metrics are monitored, as are message driven bean performance.

Security realms are also monitored for potential denial of service attacks. This includes recording of authentication
failures, broken out by valid accounts, invalid accounts, and accounts that are currently locked out. Application
specific realms can be monitored by customizing the built in WebLogic default realm.

All of the observed values are fed into the comprehensive Zenoss thresholding and event subsystem, allowing
events to be correlated.

5.2. Weblogic Collected Metrics

5.2.1. Overall Application Server Vitals

• Number of total and active JMS connections and servers

• Overall number of JTA transactions that are rolled back or abandoned

• JTA transactions rolled back due to system, app, or resource issues

• Number of JTA rollbacks that timeout

• Active and committed JTA transaction count

• Timer exceptions, executions, and scheduled triggers

• User accounts that are locked and unlocked

• Authentication failures against locked accounts and non-existent accounts

• Total sockets opened, and the current number of open sockets

• JVM Mark/Sweep and Copy garbage collector execution counts

244

Application Monitoring Enterprise
ZenPacks

• Number of JVM daemon threads

• JVM Heap/Non-Heap used and committed memory

5.2.2. Entity EJB, Message Driven Bean (MDB), and Session EJB Subsystem
Metrics

• Rollback and commit count on a per-EJB basis

• Bean pool accesses, cache hits, and cache misses

• Number of Beans in use, idle, and destroyed

• Number of activations and passivations

5.2.3. Data Pool (JDBC) metrics

• Leaked, Total, and Active connections

• Number of requests waiting for a connection

• Number of reconnect failures

5.2.4. Queue (JMS) Metrics

• Bytes received, currently active, and pending in the queue

• Number of queue consumers

• Number of current, pending, and receives messages

6.Tomcat Application Server Monitoring (Commercial)

6.1. About Tomcat Application Server Monitoring

TomcatMonitor is an Enterprise ZenPack that allows System Administrators to monitor the Tomcat Application
Server. Tomcat is a web application container that conforms to many parts of the J2EE Specification.

The more extensive JBoss Application Server uses Tomcat as a Web Application engine to manage web applications
deployed inside enterprise applications within JBoss. As a result, the TomcatMonitor ZenPack can be used to
monitor Tomcat MBeans that are active within JBoss.

This ZenPack focuses on the metrics that Tomcat updates in it's internal MBean container that is accessible via
the remote JMX API.

These metrics focus on attributes that relate to the servicing of web pages and primarily include thread pool size,
CPU use, available file descriptors, JSP and servlet counts, and request counts.

TomcatMonitor places much emphasis on monitoring thread status because every web request is serviced in a
separate thread. Each thread requires file descriptors to be maintained, and thus those are monitored as well. The
amount of CPU time spent servicing each thread is also captured and reported.

245

Application Monitoring Enterprise
ZenPacks

TomcatMonitor also reports on the number of times JSPs and Servlets are reloaded. This metric can be useful in
highly dynamic sites where JSPs or Servlets change on the fly and need to be reloaded periodically. Monitoring
of this metric can lead to the identification of small "Reloading Storms" before they cause production outages.

The amount of time Tomcat spends servicing a request is also recorded. This extremely high level metric can
provide insight into downstream systems that are not monitored. If all the Tomcat resources are within normal
tolerances but processing time suddenly spikes it can be an indication that a back-end service (such as a database
or another web service) is misbehaving.

All metrics captured by TomcatMonitor can be predicted using the built-in Zenoss trending software. Explicit
thresholds can also be defined that operate on top of the existing robust event engine.

These event based notifications can be useful at multiple granularities of monitoring, all the way from the high
level "Web Processing Time" metric down to the number of times a servlet is being reloaded per minute.

6.2. Collected Metrics for Tomcat

The following metrics can be collected and graphed for Tomcat:

• Tomcat cache (accesses vs hits)

• Daemon and User thread count

• Overall CPU time

• Global Request Traffic: bytes sent/received

• Global Request Traffic: request count and error count

• Global Request processing time

• JSP/Servlet reload time

• Servlet class loading and processing time

• Servlet request and error count

6.3.Tomcat Monitoring Setup

The out-of-the-box TomcatMonitor data source configuration has been defined at the macro level, but can be
configured to operate on a more granular basis. For example, the Servlet Reload Count applies to all servlets in
all web applications but it could be narrowed to be Servlet /submitOrder in web application "production server".

246

Application Monitoring Enterprise
ZenPacks

Chapter 36. Integration Enterprise
ZenPacks
1. Remedy Integration in Zenoss (Commercial)

1.1. About Remedy Integration

The RemedyIntegrator Enterprise ZenPack provides a way to have Zenoss automatically open tickets in your
Remedy system when specific events occur. The cases are opened by Zenoss sending a specially formatted email
to the Remedy service's email address.

1.2. Setting Up Remedy Integration

Follow these steps to setup the integration once you have installed the RemedyIntegrator ZenPack.

1. Go to Settings/Users within the Zenoss web interface.

You will find a new user named "Remedy."

2. Change the email address for this user to the email address that your Remedy service picks up email on.

3. Go to the Alerting Rules tab of the Remedy user.

4. Click on the "Open Ticket" alerting rule to edit it.

5. Click on the Message tab and modify the following attributes for your specific setup:

• Server: remedy.yourdomain.com

• Login: remedyUsername

• Password: remedyPassword

• Support Company: Your Company

• Support Organization: YourSupport

• Assigned Group: YourGroup

... and any other attributes you would like to customized ...

6. Click Save then go back to the Edit tab.

7. Set the alerting rule to Enabled and adjust the event filter to your requirements.

2. RANCID Integration (Commercial)

2.1. About RANCID Integration

RANCIDIntegrator is an Enterprise ZenPack designed to allow integration between the popular RANCID (ht-
tp://www.shrubbery.net/rancid/) configuration management tool and Zenoss. The integration points between the
tools can be described as following:

247

• Zenoss will build the router.db file for RANCID. This allows for the centralization of administration activities
and reduces the duplication of effort normally required to maintain the two tools.

• Implementation of this feature is as easy as adding a cronjob to execute $ZENHOME/bin/zenrancid as often as
you'd like the router.db file to be updated.

• Zenoss will automatically run RANCID's rancid-runm tool on a single device in response to a ciscoConfig-
ManEvent SNMP trap being sent from the device to Zenoss. Cisco devices will send this trap whenever their
configuration is changed. This allows for real-time capturing of router configuration changes in your CVS re-
pository.

2.2. Setting Up RANCID Integration

To implement this feature you must configure your Cisco routers to send their SNMP traps to the Zenoss server.

Link from Cisco router device status pages to the most recent configuration stored in your CVS repository via
viewvc (http://www.viewvc.org/).

To implement this feature, change the zRancidUrl to your viewvc URL, other configuration options can be set
using the following zProperties:

• zRancidRoot: File system directory where RANCID is installed. It may be NFS mounted from the real RANCID
server. Default is "/opt/rancid"

• zRancidUrl: Base URL to viewvc. Default is http://rancid.mydomain.com/viewvc

• zRancidGroup: RANCID group attribute. Controls what router.db file the device is written to. Can be set at the
device class or device level. Default is "router" on the /Network/Router/Cisco class.

• zRancidType: RANCID type attribute. Controls what device type is written to the router.db file. Can be set at
the device class or device level. Default is "cisco" on the /Network/Router/Cis

248

Integration Enterprise ZenPacks

Appendix A. Net-SNMP and Zenoss
1. Net-SNMP Configuration Settings
These are the Net-SNMP configurations settings that are needed for Zenoss. Add these lines to your snmpd.conf.

1.1. Community Information

This line will map the community name "public" into a "security name":

sec.name source community

com2sec notConfigUser default public

This line will map the security name into a group name:

groupName securityModel securityName

group notConfigGroup v1 notConfigUser

group notConfigGroup v2c notConfigUser

This line will create a view for you to let the group have rights to:

Make at least snmpwalk -v 1 localhost -c public system fast again.

name incl/excl subtree mask(optional)

view systemview included .1

This line will grant the group read-only access to the systemview view.

group context sec.model sec.level prefix read write
notif
access notConfigGroup "" any noauth exact systemview
none none

1.2. System Contact Information

It is also possible to set the sysContact and sysLocation system variables through the snmpd.conf file:

syslocation Unknown (edit /etc/snmp/snmpd.conf)

syscontact Root <root@localhost> (configure /etc/snmp/snmp.local.conf)

Added for support of bcm5820 cards. pass .1 /usr/bin/ucd5820stat

1.3. Extra Information

See the snmpd.conf manual page, and the output of "snmpd -H".

trapcommunity public

trapsink default

249

Appendix B. Event Database Dictionary
1. Event Database Dictionary

DescriptionEvent Database Field

events will deduplicate based on the value of this field.
by default: device, component, eventClass, eventKey,
severity

dedupid

name of devicedevice

name of component (like eth0, httpd, etc)component

eventClass (if not specified maybe added by rule process
if this fails will be /Unknown)

eclass

If a component needs further deduplication specification
this field maybe used

eventKey

message text truncated at 150 characterssummary

full message textmessage

number from 0 to 5severity

state of event 0 = new, 1 = acknowledged, 2 = suppressedeventState

key by which rules processing begins. Often equal to
component.

eventClassKey

logical group of event source (syslog, ping, nteventlog
etc)

eventGroup

last time event changed automatically updatedstateChange

unix timestamp when event is received.firstTime

last time an event was receivedlastTime

number of times an event has repeatedcount

prodState of the device contextprodState

id of event that suppressed this eventsuppid

fqdn of the collector from which this event camemanager

collector name from which event came (zensyslog, zen-
trap, etc)

agent

device class from device contextDeviceClass

device location from device contextLocation

device systems from device context separated by |Systems

device systems from device context separated by |DeviceGroups

IP from which event cameipAddress

syslog facility of this is syslog eventfacility

syslog priority of this is syslog eventpriority

nt event id if this is nt eventlog event.ntevid

250

Appendix C.TALES Expressions
1. About TALES Expressions
TALES is syntax you can use to retrieve values call methods on Zenoss objects. Several fields in Zenoss accept
TALES syntax, including command templates, event mapping transforms, user commands, event commands,
zProperties, zLinks and others.

Commands (those associated with devices as well as those associated with events) can use TALES expressions to
incorporate data from the related devices and/or events. TALES is a syntax for specifying expressions that let you
access the attributes of certain objects such as a device or an event in Zenoss. For additional documentation on
TALES syntax please see the TALES section at:

http://www.zope.org/Documentation/Books/ZopeBook/2_6Edition/AppendixC.stx

Depending on the context you may have access to a device and/or an event. Below is a list of the attributes and
methods you may wish to use on device and event objects. The syntax for accessing device attributes and methods
is ${dev/attributename}, so for example to get the manageIp of a device you would use ${dev/manageIp}. For
events, the syntax is ${evt/attributename}

A command to ping a device might look like this. The ${..} is a TALES expression to get the manageIp value for
the device.

{{{
ping -c 10 ${dev/manageIp}
}}}

More Examples:

DNS forward lookup

(assumes device/id is a resolvable name)

{{{
host ${device/id}
}}}

DNS reverse lookup

{{{
host ${device/manageIp}
}}}

SNMP Walk

{{{
snmpwalk -v1 -c${device/zSnmpCommunity} ${here/manageIp} system
}}}

To use these expressions effectively you need to know which objects, attributes and methods are available to you
in which contexts. Usually there is a dev and/or device which allows you access the device in a particular context.
Contexts related to a particular event usually have evt and/or event defined. Some available attributes for each of
these classes are listed below. List items with parenthesis after them are methods and much have the parenthesis
included in the TALES expression to function correctly.

2.TALES Device Attributes

DescriptionAttribute

The primary means of identifying a device within ZenossgetId

251

DescriptionAttribute

The IP address used to contact the device in most situ-
ations

getManageIp

The production status of the device: Production, Pre
Production, Test, Maintenance or Decommisioned. This

productionState

attribute is a numeric value, use getProductionStateString
for a textual representation.

Returns a textual representation of the productionStategetProductionStateString

The agent returned from snmp collectionsnmpAgent

The description returned by the snmp agentsnmpDescr

The oid returned by the snmp agentsnmpOid

The contact returned by the snmp agentsnmpContact

The system name returned by the snmp agentsnmpSysName

The location returned by the snmp agentsnmpLocation

When snmp collection was last performed on the device.
This is a DateTime object.

snmpLastCollection

Textual representation of snmpLastCollectiongetSnmpLastCollectionString

The slot name/number in the rack where this physical
device is installed

rackSlot

User entered comments regarding the devicecomments

A numeric value: 0 (Trivial), 1 (Lowest), 2 (Low), 3
(Normal), 4 (High), 5 (Highest)

priority

A textual representation of the prioritygetPriorityString

Name of the manufacturer of this hardwaregetHWManufacturerName

Name of this physical productgetHWProductName

Used to associate this device with a hardware product
class

getHWProductKey

Name of the manufacturer of this device's operating
system.

getOSManufacturerName

Name of the operating system running on this device.getOSProductName

Used to associate the operating system with a software
product class

getOSProductKey

Serial number for this physical devicegetHWSerialNumber

Name of the Location assigned to this devicegetLocationName

Link to the Zenoss page for the assigned LocationgetLocationLink

A list of names of the Systems this device is associated
with

getSystemNames

A list of names of the Groups this device is associated
with

getDeviceGroupNames

Version of the operating system running on this devicegetOsVersion

When the last change was made to this devicegetLastChangeString

Uptime returned from snmpgetLastPollSnmpUpTime

Textual representation of the snmp uptime for this deviceuptimeStr

Textual representation of the ping status of the devicegetPingStatusString

Textual representation of the SNMP status of the devicegetSnmpStatusString

252

TALES Expressions

3.TALES Event Attributes

DescriptionAttribute

A key used to correlate duplicate eventsdedupid

A unique id for the eventevid

The id of the associated device, if applicabledevice

The IP Address of the associated device, if applicableipAddress

The component of the associated device, if applicablecomponent

The event class associated with this deviceeventClass

logical group of event source (syslog, ping, nteventlog
etc)

eventGroup

The eventKey is the primary criteria for mapping events
into event classes

eventKey

syslog facility of this is syslog eventfacility

One of 0 (Clear), 1 (Debug), 2 (Info), 3 (Warning), 4
(Error) or 5 (Critical)

severity

syslog priority of this is syslog eventpriority

Text description of the eventsummary

When the mysql record for this event was last modifiedstateChange

The first time this event was seenfirstTime

The last time this event was seen and it's count incremen-
ted

lastTime

Number of times this event has been seencount

prodState of the device contextprodState

fqdn of the collector from which this event camemanager

collector name from which event came (zensyslog, zen-
trap, etc)

agent

zProperties are also available for devices and events using the same syntax as above.

253

TALES Expressions

Appendix D. Device Preparation
1. Net-SNMP
By default Net-SNMP does not publish the full SNMP tree. Check to see if that is currently the case on a device
and configure it correctly.

1. Confirm snmpd is running:

> snmpwalk -v1 -cpublic <your device name> system

2. Retrieve the IP table for the device with snmpwalk:

> snmpwalk -v1 -cpublic <your device name> ip

Typical SNMP View:

view systemview included .1
view systemview included .1.3.6.1.2.1.25.1
access notConfigGroup "" any noauth exact systemview none none

2. SNMP V3 Support
Zenoss has initial support for SNMPv3 data collection.

The following new zProperties control the authentication and privacy of these requests:

• zSnmpAuthType: use either "MD5" or "SHA" signatures to authenticate SNMP requests

• zSnmpAuthPassword: the shared private key used for authentication. Must be at least 8 characters long.

• zSnmpPrivType: either "DES" or "AES" cryptographic algorithms.

• zSnmpPrivKey: the shared private key used for encrypting SNMP requests. Must be at least 8 characters long.

• zSnmpSecurityName: the Security Name (user) to use when making SNMPv3 requests.

If zSnmpPrivType and zSnmpPrivPassword are set, the message is sent with privacy and authentication. If only
the zSnmpAuthType and zSnmpAuthPassword are set, the message is sent with Authentication but no Privacy. If
neither the Priv or Auth values are set, the message is sent with no authentication or privacy. It is an error to set
the PrivType and PrivPassword without also setting an AuthType and AuthPassword.

SNMPv3 encryption using the AES (Advanced Encryption Standard) algorithm is supported only if the host platform
net-snmp library supports it.

At the time of this writing, RedHat 5 does not, Ubuntu 7.10 does not, but OpenSuSE 10.2 and the Zenoss Appliance
do.

You can determine if your platform supports AES with the following test:

$ snmpwalk -x AES 2>&1 | head -1

If the response is:

"Invalid privacy protocol specified after -x flag: AES"

254

then your platform does *not* support AES encryption for SNMPv3.

If the response is:

"No hostname specified."

Then your platform *does* support AES.

SNMPv3 Traps are not supported by Zenoss in version 2.1.1.

3. Forwarding Syslog Messages from UNIX/Linux Devices
Zenoss has its own syslog server, zensyslog. Managed devices should point their syslog daemons to zenoss. To
do this, edit the /etc/syslog.conf file and add an entry where 1.2.3.4 is the zensyslog IP.

1. Log on to the target device (as a super user).

2. Open /etc/syslog.conf file with a text editor (e.g VI).

3. Enter *.debug and press the Tab key. then enter the host name or IP address of the Zenoss server. See example
below:

*.debug @192.168.X.X

4. Save the file and exit the file editor program.

5. Restart the Syslog service using the command below:

/etc.init.d/syslog restart

4. Forwarding Syslog Messages from a Cisco IOS Router
Here are some links to Cisco commands to turn on syslog. Typically, it’s easier to use syslog than SNMP traps
from network devices. The most basic IOS command to send syslog messages is:

logging 1.2.3.4

4.1. Other Cisco Syslog Configurations

Here are some additional configurations for other Cisco devices. To set up these configurations follow the following
steps using the configurations that follow below.

1. Log on to the target router.

2. Type the command enable at the prompt.

3. Once you are prompted for a password, enter the correct password.

4. Type the command config at the prompt.

5. Type the command terminal at the configuration prompt.

6. At the prompt, Set the Syslog forwarding mechanism. See example below:

logging <IP address of the Zenoss server>

7. Exit out all the prompts to the main router prompt.

255

Device Preparation

Catalyst

set logging server enable
set logging server 192.168.1.100
set logging level all 5
set logging server severity 6

Local Director

syslog output 20.5
no syslog console
syslog host 192.168.1.100

PIX Firewalls

logging on
logging standby
logging timestamp
logging trap notifications
logging facility 19
logging host inside 192.168.1.100

5. Forwarding Syslog Messages from a Cisco CatOS
Switch
1. Log on to the target switch.

2. Type the command enable at the prompt.

3. Once you are prompted for a password, enter the correct password.

4. Set the Syslog forwarding mechanism. See example below:

set logging server <IP address of the Zenoss server>

5. You can set the types of logging information that you want the switch to provide with the commands below as
examples:

set logging level mgmt 7 default
set logging level sys 7 default
set logging level filesys 7 default

6. Forwarding Syslog Messages using Syslog-ng
Here is an example for FreeBSD and Linux platforms.

1. Log on to the target device (as a super user)

2. Open /etc/syslog-ng/syslog-ng.conf file with a text editor (e.g VI).

3. Add source information to file. See example below:

FreeBSD:

source src { unix-dgram("/var/run/log"); internal ();};

Linux: (will gather both system and kernel logs)

source src {
internal();
unix-stream("/dev/log" keep-alive(yes) max-connections(100));
pipe("/proc/kmsg");

256

Device Preparation

udp();
};

4. Add destination information (in this case, the Zenoss server). See example below:

log { source(src); destination(zenoss); };

257

Device Preparation

Appendix E. ZenWebTx Twill
Commands Reference
1. About Twill Commands
Twill is the language used by ZenWebTx to simulate user actions in a web browser and to test pages retrieved by
the simulation. Below is a list of the Twill commands available for use within ZenWebTx Data Sources. For further
information on ZenWebTx please see the ZenWebTx documentation.

Some Twill commands below produce text output, especially those under the heading Display. These commands
do not affect the execution of tests by ZenWebTx, but they may be useful in testing and debugging your ZenWebTx
Data Sources. Their output can be seen when using the Test Twill Commands button on the Script page of ZenWebTx
Data Sources.

2. Browsing
• go <url> - visit the given URL.

• back - return to the previous URL.

• reload - reload the current URL.

• follow <link name> - follow a link on the current page

3. Assertions
• code <code> - assert that the last page loaded had this HTTP status, e.g. ̀ `code 200`` asserts that the page loaded

fine.

• find <regexp> - assert that the page contains this regular expression.

• notfind <regexp> - assert that the page *does not* contain this regular expression.

• url <regexp> - assert that the current URL matches the given regexp.

• title <regexp> - assert that the title of this page matches this regular expression.

4. Display
• echo <string> - echo the string to the screen.

• redirect_output <filename> - append all twill output to the given file.

• reset_output - display all output to the screen.

• save_html [<filename>] - save the current page's HTML into a file. If no filename is given, derive the filename
from the URL.

• show - show the current page's HTML.

• showlinks - show all of the links on the current page.

• showforms - show all of the forms on the current page.

• showhistory - show the browser history.

258

5. Forms
• submit *[<n>]* - click the n'th submit button, if given; otherwise submit via the last submission button clicked;

if nothing clicked, use the first submit button on the form. See `details on form handling` for more information.

• formvalue <formnum> <fieldname> <value> - set the given field in the given form to the given value. For read-
only form widgets/controls, the click may be recorded for use by submit, but the value is not changed unless
the 'config' command has changed the default behavior. See 'config' and `details on form handling` for more
information on the 'formvalue' command. For list widgets, you can use 'formvalue <formnum> <fieldname>
+value' or 'formvalue <formnum> <fieldname> -value' to select or deselect a particular value.

• fv - abbreviation for 'formvalue'.

• formaction <formnum> <action> - change the form action URL to the given URL.

• fa - abbreviation for 'fa'.

• formclear - clear all values in the form.

• formfile <formspec> <fieldspec> <filename> [<content_type>]* - attach a file to a file upload button by filename.

6. Cookies
• save_cookies <filename> - save current cookie jar into a file.

• load_cookies <filename> - replace current cookie jar with file contents.

• clear_cookies - clear all of the current cookies.

• show_cookies - show all of the current cookies. Sometimes useful for debugging. See note under the Display
heading above.

7. Debugging
• debug <what> <level> - turn on or off debugging/tracing for various functions. The first argument is either 'http'

to show HTTP headers, 'equiv-refresh' to test HTTP EQUIV-REFRESH headers, or 'twill' to show twill commands.
The second argument is '0' for off, '1' for on.

8. Other Commands
• tidy_ok - check to see if 'tidy' runs on this page without any errors or warnings. (`tidy` is very stringent - you've

been warned!)

• exit *[<code>]* - exit with the given integer code, if specified. 'code' defaults to 0.

• run <command> - execute the given Python command.

• runfile <file1> [<file2> ...]* - execute the given files.

259

ZenWebTx Twill Commands Refer-
ence

• agent - set the browser's "User-agent" string.

• sleep [<seconds>] - sleep the given number of seconds. Defaults to 1 second.

• reset_browser - reset the browser.

• extend_with <module> - import commands from Python module. This acts like ``from <module> import *``
does in Python, so e.g. a function ̀ `fn`` in ̀ `extmodule`` would be available as ̀ `fn``. See *examples/extend_ex-
ample.py* for an example.

• add_auth <realm> <uri> <user> <password> - add HTTP Basic Authentication information for the given
realm/URI combination. For example, “add_auth IdyllStuff http://www.idyll.org/ titus test” tells twill that a request
from the authentication realm "IdyllStuff" under http://www.idyll.org/ should be answered with username 'titus',
password 'test'. If the 'with_default_realm' option is set to True, ignore 'realm'.

• config [<key> [<value>]] - show/set configuration options.

• add_extra_headers <name> <value> - add an extra HTTP header to each HTTP request.

• show_extra_headers - show the headers being added to each HTTP request.

• clear_extra_headers - clear the headers being added to each HTTP request.

9. Details on Form Handling
Both the `formvalue` (or `fv`) and `submit` commands rely on a certain amount of implicit cleverness to do their
work. In odd situations, it can be annoying to determine exactly what form field ̀ formvalue` is going to pick based
on your field name, or what form & field `submit` is going to "click" on.

Here is the pseudocode for how `formvalue` and `submit` figure out what form to use (function `twill.com-
mands.browser.get_form`)::

for each form on page:

if supplied regexp pattern matches the form name, select

if no form name, try converting to an integer N & using N-1 as

an index into the list or forms on the page (i.e. form 1 is

the first form on the page).

Here is the pseudocode for how `formvalue` and `submit` figure out what form field to use (function `twill.com-
mands.browser.get_form_field`)::

search current form for control name with exact match to fieldname;

if single (unique) match, select.

if no match, convert fieldname into a number and use as an index, if

possible.

if no match, search current form for control name with regexp match to fieldname;

260

ZenWebTx Twill Commands Refer-
ence

if single (unique) match, select.

if *still* no match, look for exact matches to submit-button values.

if single (unique) match, select.

Here is the pseudocode for `submit`::

if a form was _not_ previously selected by formvalue:

if there's only one form on the page, select it.

otherwise, fail.

if a field is not explicitly named:

if a submit button was "clicked" with formvalue, use it.

otherwise, use the first submit button on the form, if any.

otherwise:

find the field using the same rules as formvalue

finally, if a button has been picked, submit using it;

otherwise, submit without using a button

10. ZenWebTx Extensions to Twill
ZenWebTx adds several additional commands to the standard Twill vocabulary.

10.1. twilltiming

This is used to set timers within a set of Twill commands. If you then define a Data Point for this timer you can
graph and set Thresholds on this timer value. To use twilltiming you must include the line "extend_with twilltiming"
once near the top of your ZenCommands. You then use the command "startTimer myTimerName" to start a new
timer and "printTimer myTimerName" to output the value. Timer values should only be output once, so for example,
to output the time from the start of the script to more than one point in the script you need to use more than one
timer. Example:

extend_with twilltiming

setTimer wwwZenossCom

setTimer bothPages

go http://www.zenoss.com

printTimer wwwZenossCom

setTimer communityPage

follow "Community"

printTimer communityPage

printTimer bothPages

261

ZenWebTx Twill Commands Refer-
ence

To use these timers in Zenoss you create Data Points with the same name as the timers. In this example you could
create Data Points named wwwZenossCom, communityPage and bothPages. You could then use there Data Points
in Zenoss Thresholds and Graph Definitions.

10.2. twillextract

twillextract is used to extract numeric values from web pages during the transaction. To use twillextract you include
the command "extend_with twillextract" once near the top of your Twill commands. You then use the command
"extract <dataName> <regularExpression>" to match the given regular expression to the current page. The value
1 or 0 is assigned to dataName depending on whether the regular expression matched or not. Additionally, you
can use python's regular expression substring matching syntax to extract substrings of the matched text. For example,
http://www.zenoss.com contains a copyright notice near the bottom that looks like "Copyright (c) 2005-2007,
Zenoss Inc." The following Twill commands use a regular expression to grab the 2nd year from that notice:

extend_with twillextract

go http://www.zenoss.com

extract copyright "(?P<firstYear>[0-9]*)-(?P<secondYear>[0-9]*) Zenoss, Inc"

(?P<name>.....) is python syntax for naming that particular part of the regular expression. The value extracted from
that part of the matching text is given the name from the extract command, then a dash, then the name from the
sub pattern. In this example copyright gets a value of 1 or 0 depending on whether the pattern was found on the
page or not, and copyright-firstYear and copyright-secondYear get the values extracted from the matched text. To
use these values in Zenoss you must create Data Points in the WebTx Data Source with the same name as those
you used in the extract command. In this case you would create Data Points named copyright, copyright-firstYear
and copyright-secondYear. You can then create Graph Definitions and Thresholds for these Data Points if you
wish.

10.3. ignorescripts

This is used to strip javascript from visited pages before they are processed by Twill. Usually Twill ignores script
tags, however it is possible for script to include strings that Twill will interpret as HTML tags. Including the
command "extend_with ignorescripts" near the top of your Twill commands will cause all script tags to be stripped
thereby avoiding this issue.

262

ZenWebTx Twill Commands Refer-
ence

Appendix F. Basic Troubleshooting in
Zenoss
1. How To Troubleshoot Zenoss Daemons
Help for figuring out why collectors are failing

If Zenoss behaves strangely or otherwise does not do what you expect it to do, you can enable debugging messages
to help you diagnose problems.

To do so, edit the configuration file of the daemon where you want to enable debugging: Go to Settings/Daemons/edit
config. Then change the line "level info" in the section eventlog to "level debug". Save, then restart the daemon
(under tab "Daemons").

You should now see debug information in the daemon's logfile unter $ZENHOME/log.

Do not forget to turn off debugging when you are finished troubleshooting; the logfiles grow quickly in debug
mode.

1.1. Identify the Problem

1.1.1. Check the logs

Your first step in troubleshooting a daemon is to look in the logs for errors. The Zenoss logs are located in in
$ZENHOME/logs. You can view the logs via the web user interface under the About link.

1.1.2. Get more information

You can get additional logging by decreasing the verbose limit and running the daemon in foreground mode.

For example, this command will run zenperfsnmp:

$ $ZENHOME/bin/zenperfsnmp run -v 10

See this page: http://www.zenoss.com/community/docs/howtos/zenoss-daemon-command-line-arguments/ for a
list of command line options for the remaining Zenoss daemons.

You will get more (sometimes, a lot more) log messages, but zenperfsnmp will only perform a single scan of all
the devices.

1.1.3. Find out what the program is _really_ doing

If a program is hanging, or not behaving as you expect, you can eavesdrop on what the program is asking the op-
erating system to do on its behalf. This is a good way to determine if a helper program is failing, or system errors
are not propagating up to the log file.

On Linux machines, the command to trace these system calls is "strace". On the appliance you can add strace to
your system with:

$ conary update strace

Other posix-like operating systems have their own commands (truss on Solaris, dtrace on OS X). For example,
you can verify that zenperfsnmp is really sending packets:

$ strace -f -e trace=sendto \
$ZENPERFSNMP/bin/zenperfsnmp run

Don't forget the largest and most complex Zenoss daemon: MySQL.

263

Check the version against the one needed by Zenoss. If you see "Lost Connection to Zenoss" in the dashboard, it
is likely a MySQL connection problem.

1.2. Narrow the Problem

If you have managed to limit a problem to a single device, or simply suspect a device because it's running an odd
configuration, or was recently added, most of the active collectors will allow you to scan a single device:

$ $ZENHOME/bin/zenperfsnmp run -v 10 --device SomeDevice

If the problem is related to a long running server, you can ask that the server run in foreground mode, but continue
with the normal endless cycle:

$ $ZENHOME/bin/zenperfsnmp run -v 10 --cycle

1.3. Look for Conflicts

Are you running more than one copy of a daemon? During debugging and before version 1.1, Zenoss could lose
track of background processes.

Stop zenoss and look for stray processes:

$ ps auxww | grep /z

Are you resource limited? Is the file system full? Do you have free memory? My favorite tool for this is "top"
under Linux:

$ top

This program will constantly update the display with a list of the most CPU hungry programs. You can also sort
the list by memory usage.

1.4. Reproduce the Problem

The ability to reproduce a problem with a consistent set of steps will help enormously. Often the only way to find
the problem is to use "binary search". You reproduce the problem and take away "half" of the configuration. Slowly
you can reduce the "halves" that are causing the problem until a single element remains.

1.5. Getting Help Solving the Problem

1.5.1. Search the Zenoss Forums

Hopefully someone has seen a similar problem. Their pain can save you time and energy. Also, we are always
looking for patterns across users and that will help narrow down an issue.

1.5.2. Report the Problem to Zenoss

Some problems should be reported, even in the absence of detailed information because they are almost certainly
bugs.

• the python interpreter crashes (a segmentation fault, for example)

• a python trace in a log file

• a daemon regularly drops heartbeats

• a daemon's size grows over time to consume all resources

264

Basic Troubleshooting in Zenoss

	Zenoss Administration Version 2.3
	Contents
	Chapter 1. Introduction

	Chapter 2. Detailed Architecture

	Chapter 3. Key Concepts

	Chapter 4. Zenoss Interface and Navigation

	Chapter 5. User Management

	Chapter 6. Device Access Control Lists
	Chapter 7. Email and Pager Settings

	Chapter 8. Organizers and Path Navigation in Zenoss

	Chapter 9. zProperties

	Chapter 10. Device Inventory and Configuration

	Chapter 11. Monitoring VMware Devices

	Chapter 12. Event Monitoring

	Chapter 13. Availability Monitoring

	Chapter 14. Performance Monitoring

	Chapter 15. Monitoring Devices Remotely via SSH

	Chapter 16. Monitoring Using ZenCommand

	Chapter 17. Monitoring Windows Devices

	Chapter 18. Windows Performance Monitoring (Zenwinperf)

	Chapter 19. SNMP Monitoring

	Chapter 20. Alerting Rules

	Chapter 21. UI Commands

	Chapter 22. Production States and Maintenance Windows

	Chapter 23. Reporting

	Chapter 24. Advanced Zenoss Reports

	Chapter 25. General Zenoss Administration

	Chapter 26. Backup, Recovery, and Maintenance

	Chapter 27. ZenPacks

	Chapter 28. Zenoss Global Dashboard

	Chapter 29. Zenoss High Availability

	Chapter 30. Distributed Collector

	Chapter 31. Monitoring Virtual Host Machines

	Chapter 32. Predictive Thresholding

	Chapter 33. Authentication Enterprise ZenPacks

	Chapter 34. Transaction Monitoring ZenPacks

	Chapter 35. Application Monitoring Enterprise ZenPacks

	Chapter 36. Integration Enterprise ZenPacks

	Appendix A. Net-SNMP and Zenoss

	Appendix B. Event Database Dictionary

	Appendix C. TALES Expressions

	Appendix D. Device Preparation

	Appendix E. ZenWebTx Twill Commands Reference

	Appendix F. Basic Troubleshooting in Zenoss

