Zenoss’

Open Enterprise Management

Zenoss Developer's Guide

Version 2.3

Zenoss, Inc.
WWW.Zenoss.com

Copyright © 2008 Zenoss, Inc., 275 West St. Suite 204, Annapolis, MD 21401, U.S.A. All rights reserved. The Zenoss logo is a
registered trademark of Zenoss, Inc. Zenoss and Open Enterprise Management are trademarks of Zenoss, Inc. in the U.S. and

other countries.

Flash is a registered trademark of Adobe Systems Incorporated.

Java is a registered trademark of Sun Microsystems, Inc.

Linux is a registered trademark of Linus Torvalds.

SNMP Informant is a trademark of Garth K. Williams (Informant Systems, Inc.).

Tomcat is a trademark of the Apache Software Foundation.

Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

All other companies and products mentioned are trademarks and property of their respective owners.

Zenoss Developer’s Guide for Version 2.3

Zenoss Developer’s Guide for Version 2.3

Table of Contents

R T g1 oo (0 i1 o o PP PP TUPPPTR 1
LU OVEIVIBIV oottt et e e ettt e et h e e et b e et e et e et e e e 1
0 Y oo = TP PSP UPPPTTRPPPPN 1
102, AVAIHEDIHITY e 1

L L 3 VOIS i 1
L.1A PEIOMMBNCE ettt ettt ettt e ettt e s 1

1.2. Detailed ATChITECIUIEeeiiiii ettt ettt et e e e et eeeab e e eenaas 2
U = g R Y= PP TUPRPPIN 2
L1.2.2. DAIA LAYEN ..ottt 2
1.2.3. Collection and Control SErVICE LAYEruieiiiiiiieiiiii et e 3

2. GEIING SEAMEA ettt ettt e e et e ettt e e et e et e et e et e e et et e et e et e eeenta e aae 5
2.1. Working wWith the SOUrCe COUEiiiiiiiieii e 5
2.1.1. Getting the SOUMCE COUEu.iiiieiieieei ettt et e e e e e eeenees 5
2.1.2. Keeping up-to-date with your checked-out COOEcoouviiiiiiiiiiiiiiiic e 5
2.1.3. GELING PAlChEScoviieeiei e 6
214, Style GUILEITNESoiiiii ettt ettt e e et e e e e e e ra e een 6
2.1.5. Generating DiffS fOr NEW FIXEScooiuiiiiiiii i e 8
2.1.6. SUBMITLING @ FIX ooeeitieiiiii ettt e e e e e e e e s 8

2.2. Programming TEChNIGUESuuieeiieeeiii ettt ettt ettt e et r e e e et eeeeaa s 8
2.2.1. Caling Methods USING REST ...ttt 8

2.3. zendmd: Command-line Access to the Device Management Database (DMD)ccoceevvinieeennen. 10
2.4. Programming DOCUMENTEEIONiiieiieiiiii ettt ettt e e e 13
240 PYENON et 13
2.4.2. ZENOSS APl o 13
2.4.3. OtNES RESOUICESieiiiti ettt e e et e e et et e et et r e e e e e e e ena s 13
2.4.4. Contributing to the Documentation (Errors, Tips, HOWTOS)cccuvuiieiiiiinieiiiiineeeeiinnnn, 13

3L ZENPACKS ...ttt et a e e e eaaas 14
3.1l OVEIVIBIN ettt ettt ettt e ettt e et a e ettt e e e e e et e e e e e bt e e eeba e aeen 14
3.2, Creating @ ZENMPECK .. .cooeiiieiiii et 14
321, ZENPACK NAIMESoiiiiii ettt ettt e et et e e et et e e eeba e aee 14
3.2.2. SPeCifying DEPENTENCIESuiiiiiii ettt ettt e e e e e eaaas 15
3.2.3. Locating ZenPack Source OULSIde Of ZENOSSuiiiiiiiieiiiiiiieeceii e 15

3.3. ZenPack Structure and CONLENESiieieiieiiiii ettt e et et eeene e eennns 15
3.4. Developing the ZENPaCKcoouuiiiiiii e 17
3.4.1. BESE ZENPACK ClASSiiiiiiiiiiii ettt ettt 17
3.4.2. Storing ObJectS iN the ZODBoiiiiiiiiii e 18
3.4.3. Providing DalaSOUrCE ClASSEScieruuieiiiiiie et ettt e e et e e et e e 18
3.4.4. Providing GBEIMONS ...ccuuuiiiiti ettt ettt e et ettt e ettt e et et e e e e ea b aeeeesbaeeeernaeeenns 19
3.4.5. setuptools and the zenpackSUPPOITiiiieiiiii e 19

3.5. Building and Distributing ZEeNPaCKScccuuuiiiiiiiieieii e 20
3.5.1. Migrating DEtWEEN VEISIONScuuuuiiiiiieieii ettt et e et e e et e e e e s 20
3.5.2. Converting older ZenPacks to ZenPack €00Sccvvuuieiiiiiiieiiii e 20

3.6. Where to Get More INfOrMELIONooeeeuuieiiiiie et e e e e e e e eeees 21
4. ZENOSS DALBSIOMESieiiieitie ittt ettt 22
4.1. Zope Object Dataase (ZODB)iiiiiiiieiiii et 22
4.2. MYySQL EVENE aLADESE .. .ceeviieiiiiiiee ettt ettt ettt ettt 23
4.2.1. Connecting to the Datalasec.uuiieiiiiiiii e 24

4.3. ROUNA-RODIN DELADESEeeiiieeii et 24
4.4, Python PICKIE FIIES ... et e e 25
T Y o | £ PP PTRUPTPPN 26
5.1. Understanding an EVENE ENEIY ...coouuniiiii et e e e 26

IS = 1o [aTe =T T Y= o | 26

5.3. AddiNG N EVENE ClaSS ...uiiiiiiiiiciii et e e e e e e e et e e e e aaaas 27
5.3.1. Add tO ZENEVENTCIBSSESiiiviiiiiiiiiiie et e et e e e e e et e e e et e e e e 27
5.3.2. Add the class to the imPOrt XIMLiiiiiii e e 28
NGRS A VLY € (= W 0 | = (S o] o S 28

6. ZPrOPErtY MaNagBMENT ..ottt e 29

30 o o [g Vo = W4 e (0] o 1= 1 Y 29
6.1.1. Adding a zProperty t0 @an EVENEoiiiiiiiii e 29
6.1.2. Adding a ZProperty t0 @aDEVICEc..uiiiiiiiiii e 29

6.2. Migrating the ZProperty COOEoivuiiiiiiiiii e e e e e e e e e e e et e e eaaees 29

A D =Y o Y == == o PP 31

7.1. Adding Devices ProgramatiCallyceeiuiiiiiiiiiis e 31
711 USING @REST Call ooiiiiiiiiii e 31
7.1.2. Using an XML-RPC Call from Pythonccocoiiiiiiiii e 31
7.1.3. XML-RPC ALIDULES ...uiiiiiiiiiei ettt e e et e e et e e e e e eanes 31

7.2. Editing Device INFOMMatioNo.uiiiiiieiie e e e e e e e e e e e e e et e e eanaaees 32
7.2.1. USINg @ REST Call oouiiiiiii e e 32
7.2.2. Using an XML-RPC Call from Pythonccooiiiiiiiiiiii e 32

AR = L= (T o AN L= Y ot S 33
7.3.1. USINg @ REST Call oouiiiiiiiii e e 33
7.3.2. Using an XML-RPC Call from Pythonccocoiiiiiiiiiiii e eai e 33

7.4. Checking If A DEVICE EXISES ...uoiiviiiiiiiciiii i e e e e e e e e e e e e et e e e eaaeees 33
7.4.1.USINg @REST Call .ooviiiiiiii e e e 33
7.4.2. Using an XML-RPC Call from Pythonccoooiiiiiiiiiiii e 34

7.5. EXPOrting @ DEVICE LISt ..uiiiiiiiiiiii et e e e e e e e e e e et e e e eaans 34

8. EXteNdiNg the MOEL ... e e e 35

8.1. Add aZenModel REGONSNIPcovvniiiiii e 35
8.1.1. One-to-One (1:1) RE@iONSNIPS ..ccvuiiiiiiiie e e e e e e 35

8.2. One-to-Many (L:N) RE@ONSNIPScovviiiiiici e e e e e 35

8.3. Many-to-Many (M:N) RE@ioNSNIPScccvniiiiiiii e e 37
8.3.1. One-to-Many (1:N) Container REatioNSNIPS ... ccvuiiiiieiiiiieiieeii e 38

8.4, ZeN0SS XML SCHEIMA .oviiiiiiiiii et e e e et e e e et e e e eat e eeenens 39
S 51 T o o] o 41
S A o) o] o 42
LS I G T o 0] o< 1 1 PP PPN 43
S I N o 7= Y PP 44
L I 00 7=)Y/ oo | PSPPI 44
S I G T (00 o= PPN 45
ST 1o PSP PT 45

8.5, ZENOSS PEIMISSIONS .eetuiiiiiii et ettt ettt et s e et e e et e et et e e e et e e e e e bt e e e et e e e e et e eeeerannes 46
8.5.1. Adding NeW PEIMISSIONSccuuiiiiiieiiii e e e e e e e e e e e et e e e eaaes 46
8.5.2. Assigning Permissions to aMethodooooiiiiiiiiiiii e 46
8.5.3. CheCKing LINKSuuiiiiiiiiiiii e e e e e e e e e e e e e e et s e e e eaaeees 47

0. ZENOSS DBEIMONS ...ttt e ettt et et et e e e e r e ees 48

9.1. Twisted Network Programming OVEIVIEWcciiuieiiiiiiiiieeie e e e e e e e e e e e e eanaas 48

9.2. ZeN0SS DAEMON OVEIVIEW ..eevvtiieeiiii e et it e e e ettt e e ettt e e e eat e e e e e et reeeeateneeeeateaeeeestnseeeeatnnaeaees 48

9.3. zenhub: Daemon to ZODB MaNAGEMENLcivuuiiiieeii e e e e e e e e e e e e e e et e e e e e eeaenns 49
9.3.1. Daemon to ZODB ManageMENTuiuuiiiiiiieie e e e e e e e 49
9.3.2. Heartheats and Other EVENESoiiiiiiiiiii e 49
9.3.3. Pluggable DaEmON SENVICEScivuieiiiiieiii e e e e e e e e e e e e e e e e et e e et e eaneees 50

9.4. Developing @ DaBIMONiiieiii e e e e e e e e e e e e e e e e e e a e aaas 50
9.4.1. Command-1iNE OPLIONSuiiiiiieiiieiii e et e e e e e e e e et e e e e e e et e e aaaastnaes 50
9.4.2. Add the Daemon Control SCIPLcvveiiii e eaa e 51
9.4.3. Setup ZenHUb COMMUNICAIONSivvieiiiieiie e e e e e e e e e et e e e e e e e aanees 51

10. Add a PerfOrmManCe DaBMIONcuuieniiiieie e e e e e e e et e et e et et et s it et s aetesaaaesteeaasenaes 53

O @ = 4T P 53
02 B - = Y=o PP 53
10.3. Performance COIECHIONoiiiiii et e e e e e et e e e 54
10.4. Creating a NEW COllECIONiiiiiiiii e e e e e e e e e e e e aenas 54
L0 B O = {1 o (o PP 55
10.4.2. Getting @ LisSt Of DEVICES ...cvuiiiiiiiiii et e e e e et eean e eaes 55
L0 C T = (vl o101 o () IR 56
10.4.4. Collector's ZeNHUD SEIVICEccoovuiiiiiii i e e 57
10.4.5. MisCEllanoUS FUNCLIONScovuiiiiiiiie et e e e e e et e e e eaae e eeees 58
10.4.6. Collect the Performance DAoooveeuiiiiiiiii e e e e eaeans 58

11, AdAING 8 NEW DEVICE TY P wotiiiiiieiii ettt ettt et et e e e e r e et e e e e et e e et e e et e e et e e et e e st e eanaeeannaees 62
@ = 4T P 62
2 AN (o I8 {0 T= 1 = PR 62
11.3. Add @ DEVICE OFQANIZEN ...oviiiiii e ee e e e e e e e e e e e e e e et e e et e et e e et e e e e eenaas 62
11,4, Create @ MOUEIEr ... e e et a e aae 63
11.4.1. Verify the SNMP connectivity and OIDSc.cooiiiiiiiiiiiiiiiccie e 64
11.4.2. ComMMON SNIMP ISSUBSceuiiiiiiiiiiie ittt et e e e e e e e e e e enees 64
e T Voo = 1= @ L= P 64
11.4.4. Testing the MOGEIEr . ..oniiiii e e e e s 67

11.5. Create a Performance COLECIOruuiiiiiiiiie e 67
11.5.1. Performance Data Collector COUEocveviuiiiiiiiiieiiiii et e s 68

11.6. Create the TEMPIAIE ...v.iiii i e e e e e e et e e et eean s 68
11.6.1. Create the DEASOUINCEiiveeeiieeiii ettt e e et e et e et e e e et e e e e ae s 68
11.6.2. Create @ ThresSholdiiiiiiii e 68
11.6.3. Create @ Graphcooiii i 68

L0 7. M A EVENES oottt 68
12. Extending the USer INtEIfACteuiiiiiiiii e e e e e e et e e et e e e e e e eaaaas 70
12.1. Overview of the Zenoss Ul TEChNOIOGIESuieiiiiiiiii e e 70
12.1.1. HyperText Markup Language (HTML) ..ooouniiiiiie e e 70
12.1.2. Cascading Style ShEetS (CSS) ..ucivuiiiiiiiiii e e e e aaas 70
12.1.3. Z0OPE 2, ZPT @8N0 TAL ooriiiiii it a e 70
12.1.4. ZPT and Macro Exapnsion for TAL (METAL) ..oiviiii e, 71
12,15, JAVASCIIPE 1 AJAX et 71
12.1.6. JavaScript libraries: YUI and MochiKitccoiiiiiiiiiiiici e 71

12.2. Customizing the Navigation Barcccouiiiiiiiiiiii e e 72
20 R o o Vo = T 1 72
12.2.2. A SIMPIE HTML PAgE .tuiiiiiieiii et e e e e e e e e e e an s 72
12.2.3. A smple TAL and METAL PAgE ..ccvuiiiiiieiiiieiii e e e e e e e e 73

2 2RC T @0 o 41141 o TR 1 L= I o TN 73
12.4. Zope 2 Page Templates, TAL and METAL and ZEN0SScccuuveviiieeiiieiiiieeiieeeieeee e eaen 74
2 T T o~ PR 76

12.5. Other CUSIOMZIGLIONS ...vuueiiitieeeeetii e ettt e e e et e e e eet e e e eet e e e eate e e e eateneeeeate s eeeeatnsaeeentnaeaaees 77
1250, AAAING TaS .vtuiiiiiiiiee et aaaa 77
3 o o [g To =T BT oo 80
12.5.3. Adding aNew Menu or Menu ItemMcoiiiiiiiiiii e e 81
12.5.4. Creating a Table Using ZenTableManagercccouveiiiiiiiiiieiiiiecie e e 83
12.5.5. Creating an Editable Tablecoiiiiiiiiiii e 84
12.5.6. How to Save Properties viaan Edit SCreencoooiiiiiii i 85

12.6. Creating a Dashboard POMtIELcooiuniiiiiiiii e e e e eaa 87
12.6.1. Create @ ZENPACK iiieiiieiiiii ettt ettt 87
12.6.2. Write the Python back-end Codeocooviiiiiiiii e 88
12.6.3. Write the JavaSCript POItIELc..iiiiiiiiii e 90
12.6.4. REQISEr the POIIELceeiii e e 95

2 A B 1= o U o o 1o TR o1 96

G T o= o] 1 £ PP 97
G50 Ao o [g Vo = W AN =TV 3= oo o U 97

G T2 . 1 1 U 98

13.3. Adding EXport BUttONS 10 REPOIMScvvuiciiiiciiiei e e e e e e eanas 98

14. Migrating Zen0SS COOEcvvuiiiiiieiii et et e e e e e e e e e e et e e e e et e e et e e et e e et e e tn e e et e eeannas 100
14.1. INtroduCtion aNd SEEPS ..vuuiiiiiiii i e e e e e e 100

I 2 T T VLY] PP 100

I AT o= B o TU VLY) = SRR 100
14.3.1. IMPIEMENE CULOVE() wvvniirnieii e eeie e e e e e e e e e e e et e e st e e ea e eanes 101

14.3.2. SUPPOIING COUE ..vuniiiiiciii et e e e e e e e et e e e e e aaeeaens 101

14.3.3. Testing and DePlOYMENtcovuiiiiii e e e e e e e e 101

ST 1=~ 11 o o PP 103
15.1. ZENOSS UNIT TESES .euuiiiiiiiieiiiie ettt sttt et e ettt e e et e e e et e e e e et e e e e et e e e e et aeas 103
IS0 0 O 1 g 1 oo (1 o1 o o PP 103

15.1.2. Zen0SS TESE RUNNENciiieiiiii et e e e e e e e e e e e e enaes 103

15.1.3. Integrating With BUuildbDOtoiiiiiiii e 104

15.2. Functional User INterfate TESING ..ovvuiviiiiii i e e e e e e e e e e e e eees 104

IS 322 T 1 g 1 oo (1 o1 o o PP 104

15.2.2. Installing and RUNNINGiiiiiii e e e e e e e e e e e e aanes 104

15.3. Where to Get More INfOrMELiONoeuuuiiiiiii e e e e eaees 104

A. Event Datahase DICHIONAIYcouuuiiiiiiiiiiieiie e e e e e e e e e e e e e e e e e et e e et e e et e e st e e eaaaeranaees 105
o T I N I S o o === T PPN 106
I 0 o = 106
00 0 O o1 o 106

B.1.2. DNS fOrward 100KUDuuiiiiiiiiiiiei e e e e e e e e e e e et e e eaaaeees 106

B.1.3. DNS reverse I00KUD ...cvuiiiiiiiii e e e e e e e e e eaeas 106

I = 010 Y7 P 106

B.2. TALES DEVICE ALITDULES ...ovviiiiiiiii e ettt e et e e e e e et s e e e et s e e e eatnaeeaees 107

B.3. TALES EvENt AHIBULES ..oouviiiiiii e et e et eeeaa e eees 108
L1075 PN 109

List of Figures

1.1. Zenoss Detail€d ATCIITECIUNEouieieiiie e ettt e et e e e et e et e e e e e et e e et e e eneanens

List of Tables

L1 DaarLayer DBEMONSuiieiiiiiiiete ettt ettt ettt et e e et et et 2
1.2. Automated MOdeling DBEIMONScouuuiiiiiii ettt et et ettt e et e e e et e e e ena e e eeeens 3
1.3. Availability MONItOring DBEMONSciieiiieiiiii ettt ettt e e e et e e e et e e e en e eennes 3
1.4. Event COIIECHION DBEIMONSuuu ittt ettt ettt ettt et et e et eeenae e e e ennas 3
1.5. Performance MoNitoring DaBIMONSuuiiiiiiieiiii ettt ettt e e et eeeea s 3
1.6. Automated RESPONSE DAEMONSueiiitieeeiiti ettt e et e et e et et e et e et et e e e e et e e e e et e e eeeba s 4
2.1. zendmd NameS and DESCIIPLIONScevvuueiiiiiiee ettt e et et e et e et e e e e e e 12
7.1. XML-RPC Attributes and DESCIIPLIONScieitieiiiiie ettt ettt ettt e e e e eneans 31
11,1, MOOEEr FUNCHIONSiiiiieeeite ettt ettt et e e et e et b e e et et e e et et e e e e eaa s 63
12.1. Zenoss portal_skins directories and their DESCIIPLIONSviiiiiiiiiiiier e 74
2 300 PP PP PPPPPT 107
2 3PP PPPPPR 108

Vi

Chapter 1. Introduction

1.1. Overview

The Zenoss system brings together many types of monitoring and management information. The information is
available through a standard web browser. In fact all aspects of the system are accessed though the web there is
no need to edit configuration files.

At ahigh level, Zenoss consists of four major parts:
1. Model

2. Avalilability

3. Events

4. Performance

1.1.1. Model

At the core of Zenossisthe Model. The standard model is a detailed description of all the devices Zenoss manages
and their relationship to your business or other important groupings. Because of the large amount of information in
the model there are several ways that information can be added. First isthrough auto discovery. Thisisthe primary
way that information is added to the model. Zenoss auto-discovery is very flexible and can use several different
transports. The model can also be populated though the web Ul or through Zenoss' external APIs. Version 2.0 adds
discovery locking which allows auto-discovered information to be overridden with manually added information.

The model is used to drive the monitoring elements of the Zenoss system which will be described throughout the
rest of this document.

1.1.2. Availability

Availability monitoring consists of running tests against the I T infrastructure to determineif it is currently function-
ing properly. These test are typically run externally to the monitored system. Example tests include: ping, process,
and service tests.

1.1.3. Events

The Zenoss Event Management System is a consolidation of status information from all parts of the Zenoss system
as well as external systems. When a Zenoss monitoring daemon detects a failure or threshold breach events are
generated. Thisis similar to most other monitoring systems available. Zenoss does more in that it also takes event
import from other parts of the IT infrastructure. These include Syslog and SNMP Traps. It's one thing to bring the
eventsinto a single repository but an event management system must do more. As events are received Zenoss runs
them through a set of rules that augment the information they contain and integrate them with the model.

1.1.4. Performance

The Zenoss Performance Management System tracks important I T resource information as it changes over time.
This process is also known as data collection. It is critical to know how much disk space is available, what the
CPU load is and how long a web page takes to download. This system can collect information though SNMP,
custom scripts (ZenCommands) or XML-RPC. Performance information is integrated with the Zenoss Model so
that resource usage is shown in the context of other Zenoss information.

Introduction

1.2. Detailed Architecture

Figure 1.1. Zenoss Detailed Architecture

1.2.1. User Layer

The User Layer is manifested as a Web Console/Portal (Zope). This layer consists of the Graphical User Interface
(GUI), which allows the user access to the following pieces of information:

Dashboard Events Locations
Devices Manufacturers Reports
Services Systems Users
Networks Groups Administration

The User Layer Interacts with the Data layer and trandlates the information for display in the GUI.

1.2.2. Data Layer

The Data Layer is where all of the information about the system is stored. This layer consists of the following
Zenoss Daemons as well as zeoctl and zopectl to run the heart of the system. Zeoctl is the backend object database
that stores the configuration model and zopect! controls the zope web application devel opment environment used
to develop the console.

Table1.1. Data-Layer Daemons

Daemon Description

ZenRRD ZenRRD gathers Time Series Data and acts as an RRDtool.

ZenEvents ZenEvents interacts with the MySQL Events Database.

ZenModel ZenModel Isthe United Configuration Model of the Zope object database.

Introduction

Daemon Description

ZenHub Broker of information between the data layer and the collection daemons.

1.2.3. Collection and Control Service Layer

The servicesthat collect the dataand feed it to the Data L ayer come from the daemons associated with the Collection
and Control Services Layer. These daemons can be broken down into five distinct areas: Automated Modeling,
Availability Monitoring, Event Collection, Performance Monitoring, or Automated Response. The daemons that
fall under each layer are detailed below.

Table 1.2. Automated Modeling Daemons

Daemon

Description

Zendisc

Zendiscisasubclass of zenmodeler and it goes out to discover new network resources.
It walks the routing table to discover the network topology and then pings all discov-
ered networksto find active IPs and devices.

ZenWinModeler

ZenWinModeler is used for the auto-discovery of Windows Services (WMI) running
on awindows box.

ZenModeler

ZenModeler is a configuration collection and configuration daemon. It is used for
high-performance, automated model population using SNMP, SSH, and Telnet to col-
lect itsinformation. Zenmodel er works against devices that have been loaded into the
DMD.

Table 1.3. Availability Monitoring Daemons

Daemon Description

ZenPing ZenPing is the ping status monitoring (ICMP) for Zenoss. ZenPing does the high-
performance asynchronous testing of the ICMP status.

ZenWin ZenWin is used for Windows Service Monitoring (WMI).

ZenStatus ZenStatus performs active TCP connection testing of remote daemons.

ZenProcess ZenProcess enables process monitoring using SNMP host resources mib.

Table 1.4. Event Collection Daemons

Daemon Description

ZenSyslog ZenSyslogis collection of and classification of syslog events.

ZenEventlog ZenEventlog is used collect (WMI) event log events.

ZenTrap ZenTrap collects SNMP Traps. It receives traps and turns them into events.

Table 1.5. Performance M onitoring Daemons

Daemon Description

ZenPerfSNMP ZenPerf SNM P does the high performance asynchronous SNMP performance collec-
tion.

ZenPerfXMLRpc ZenPerfXMLRpc isused for XML RPC Caollection.

ZenCommand ZenCommand is used for XML RPC Collection specificaly it allows the running of
Nagios and Cactii plug-ins on the local box or on remote boxes through SSH.

Introduction

Table 1.6. Automated Response Daemons

Daemon

Description

ZenActions

ZenActionsis used for aerts (SMTP, SNPP and Maintenance Windows).

Chapter 2. Getting Started

2.1. Working with the Source Code
2.1.1. Getting the Source Code

If all that you would like to do is browse through the source code, then you can just go to the Trac / Subversion page

The version control system used by Zenoss is Subversion [http://subversion.tigris.org/]. Subversion has excellent
documentation [http://svnbook.red-bean.com/] intheform of an O'Reilly [http://oreilly.com/] book. For the moment,
well just provide the minimum number of commands to get started.

The absolute latest version of Zenoss can be accessed directly through the Subversion repository. This code should
not be used for production purposes as there are changes actively being made which may not have been thoroughly
tested.

From a command-line prompt, go to a directory where you would like to see the source code be delivered. Here's
a sample command to get the source code:

$ svn co http://dev. zenoss. org/svn/trunk/Products

Thiswill create adirectory called Pr oduct s inthe current directory and checkout the source code. Thisrepository
is readable anonymously, so no credentials are required.

To see what other portions of the code are available, such as ZenPacks or support utilities, you can look using the
following Subversion command:

$ svn I's http://dev. zenoss. org/ svn/trunk

Other tools that can be used to view or checkout the source code for different platforms are available. See the
Subversion web site for more details.

2.1.1.1. Getting Subversion for the Appliance

The rPath [http://www.rpath.com/corp/] appliance does not ship with the svn binaries, but you can till obtain them.
First you will need to edit the/ et ¢/ conar yr c file and change thisline:

i nstall Label Path zenoss-project.zenoss. | oc@enoss: devel -2. 3-beta

Change the above line to this:

i nstal | Label Pat h zenoss-project. zenoss. | oc@enoss: devel -2. 3-beta conary.rpath. comapl:1
Now you should be able to obtain the subver si on package by using the conary update command:

[root @ocal host ~] conary update --resolve subversion

For more information about rPath commands, see their documentation wiki [http://wiki.rpath.com/wi-
ki/Main_Page]. There are also a set of blog entries Conary Uncorked [http://setefw.livejournal.com/6120.html] has
been put together by a dedicated rPath user that introduces some of the conary commands much more gently.

2.1.2. Keeping up-to-date with your checked-out code

The following command, issued from the base directory of where you checked out the Zenoss code, will update
all code from that directory and all subdirectories and bring it up to date with what is current in the Subversion
repository (and therefore apply al of the current patches to the code you checked out previously):

http://subversion.tigris.org/
http://subversion.tigris.org/
http://svnbook.red-bean.com/
http://svnbook.red-bean.com/
http://svnbook.red-bean.com/
http://oreilly.com/
http://oreilly.com/
http://www.rpath.com/corp/
http://www.rpath.com/corp/
http://wiki.rpath.com/wiki/Main_Page
http://wiki.rpath.com/wiki/Main_Page
http://wiki.rpath.com/wiki/Main_Page
http://setefw.livejournal.com/6120.html
http://setefw.livejournal.com/6120.html

Getting Started

svn update

Note

If you have modified any code in this directory, these changes will be merged with the latest code
updates. If there are differences that Subversion cannot automatically resolve, svn will tell you that
thereisaproblem by showing the updated fileisin conflict (ie showing you a'C' beside the file when
you run svn status).

You can tell if you have modified any of the filesin the checked-out directory by typing the following:
$ svn status
If you are only interestd in modifying one file rather than everything, you can specify that one file:

$ svn udpate fil enanme

2.1.3. Getting Patches

For issue tracking, bug reports and linking patches to bug reports, Zenoss uses Trac [http://trac.edgewall.org/] to
manage issues. The Zenoss Trac server isfound here [http://dev.zenoss.com/trac/report].

You can click on the Search box on the top right-hand side and enter a search term to look for keywords in the
tickets. Thiswill then present you with the ability to search for changesets (ie Subversion revisions), trouble tickets,
or the Wiki.

Alternatively, from the start page you can click on the Custom Query which will allow you to view the results from
your customized query.

Once you have found a patch that applies to your system, you can use the zenpatch command in order to apply
them to your system. (As mentioned previoudly, if you use the svn update commands, you will already be at the
|atest patched level.)

$ zenpatch revi si on_nunber

2.1.4. Style Guidelines

These following guidelines are targeted at Python files. HTML files, Zope Page Template (ZPT) files, shell scripts,
etc should adhere to these as much as is reasonable and conventional in those languages. Currently, we follow
Guido's Style Guide for Python Code [http://mww.python.org/dev/peps/pep-0008/] which is detailed in PEP 8
(Python Enhancement Proposals).

Any style conventions that stray from PEP-8 should be annotated in this document.

2.1.4.1. Docstrings

Every method and function definition within Zenoss should include a docstring. The docstring is usually composed
of two parts: the explanatory text and the doctest code. The explanation usually includes adescription of all or most
of the following aspects of the function:

e Thefunction's purpose
¢ The context in which the function is usually called

e What parametersit expects

http://trac.edgewall.org/
http://trac.edgewall.org/
http://dev.zenoss.com/trac/report
http://dev.zenoss.com/trac/report
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/

Getting Started

* What it returns

* Any side effects of the function
This explanatory text should scale in size with the complexity and significance of the function.

The second part of the docstring isthe doctest section. Thisis composed of zendmd commands and expected output
from those commands. The commands are run as part of the testing process and output is compared to the output
lines. This code serves two primary purposes. First it is a working example of how the function should be called
and what it returns. Second it serves as a basic test to ensure the function is not horribly broken. Thisis not intended
as areplacement for unit tests. Thorough testing of boundary cases and unusual situations still belongsin unit tests
whereas the doctests are much simpler and more instructional in nature.

Docstrings begin on the line immediately following the function definition and are indented one level from the
definition. Thefirst and last lines of the docstring are three double quotes and anewline. One blank line separatesthe
description from the epydoc section. epydoc [http://epydoc.sourceforge.net/] can take sprecially formatted text in
the docstrings and use them to create APl documentation. The Zenoss APl documentation [http://www.zenoss.com/
community/docs/zenoss-api-docs/] islocated on the Zenoss website and is updated every release.

Another blank line separates the epydoc section from the doctest section. The code for the function begins on the
lineimmediately following the docstring. Example:

def TruncateStrings(longStrings, nmaxLength):
Foo truncates all the strings in alist to a maximumlength. 1longStrings is any
iterabl e object which returns zero or nore strings. nmaxLength is the length to
whi ch each el ement fromlongStrings should be truncated.

@aram | ongStrings: an iterable object which returns zero or nore strings

@ar am maxLength: the length to which each elenent fromlongStrings should be truncat:¢
@ype maxLengt h: int

@eturn: Elerments fromlongStrings in the sane order but possibly truncated

@type: list

@ odo: Add nore epydoc attributes!

>>> from Products. SoneMbdul e inport TruncateStrings
>>> TruncateStrings(['abcd , '"efg', "hi', "], 3)
["abc', 'efg', 'hi', "']

>>> TruncateStrings([], 5)

[]

return [s[:maxLength] for s in longStrings]

The easiest way to create the doctest portion isfrom within zendmd. Except for the indentation, the docstring should
exactly match commands and output from a zendmd session.

Use the available epydoc fields [http://epydoc.sourceforge.net/manual -fiel ds.html] where they are applicable. Some
of the useful common fields are:

Commonly-used epydoc fields
@param par am nane Describe the parameter

@typedat a_t ype Datatype of the parameter

http://epydoc.sourceforge.net/
http://epydoc.sourceforge.net/
http://www.zenoss.com/community/docs/zenoss-api-docs/
http://www.zenoss.com/community/docs/zenoss-api-docs/
http://www.zenoss.com/community/docs/zenoss-api-docs/
http://epydoc.sourceforge.net/manual-fields.html
http://epydoc.sourceforge.net/manual-fields.html

Getting Started

@return Describe the return value
@rtype Datatype of the return value
@permission Zope permission that the method requires
@todo Todo for this method

Note

Within the description section of the docstring, you may use the string DEPRECATED on its own line
to denote that the method is deprecated.

2.1.5. Generating Diffs for new Fixes

Once you've determined how to fix something, or have found a way to add a feature, modify the source code in
your checkout directory. Oncethat's complete, we just need to generate a diff starting from the base of the checkout
directory.

To generate adiff of al filesin the current directory and all subdirectories:
$ svn diff > mychanges. diff
To produce a diff for just asinglefile:

$ svn diff source_file > mychanges. diff

2.1.6. Submitting a Fix

Zenoss accepts user contributions using the following procedure:

1. Completethe form [http://www.zenoss.com/zenoss_forms/contribute?c=contribute] to allow Zenoss to accept
your code.

2. Createaticket in our ticketing system [http://dev.zenoss.com/trac/wiki/HowToAddTicket].
3. Addthekeyword cont ri but e to theticket.

4. Attach your patch (in diff format) or code to the ticket.

Note

All contributions will be accepted under the terms of the Zenoss Contribution Agreement.

2.2. Programming Techniques
2.2.1. Calling Methods Using REST

REpresentational State Transfer (REST) is a method of marshalling data types and calling functions using HTTP.
Zope supports a number of different Remote Procedure Call (RPC) mechanisms, including REST.

This section describes some more advanced Zenoss concepts that we have encountered as the product has rolled
out. Some may be appropriate for your environment. Usually they require at least a little coding experience, but
they are really not that hard.

http://www.zenoss.com/zenoss_forms/contribute?c=contribute
http://www.zenoss.com/zenoss_forms/contribute?c=contribute
http://dev.zenoss.com/trac/wiki/HowToAddTicket
http://dev.zenoss.com/trac/wiki/HowToAddTicket

Getting Started

2.2.1.1. How To Call Methods Using REST

Zenosssweb interface will let you run any method of any object using asimple URL. Callswill be in the following
format:

http://USERNAVE®: PASSWORDB@/Y_ZENCSS_HOST®: 8080/ PATH_TO_OBJECT®/ METHOD_NAVE®?
ARGB=VALO@

© Theuser with the rights to view this information.
® Theuser's password

©® Hostname or IP of your instance of Zenoss
rest_riebbal | gt 2the object you wish to access

© Theobject's method you wish to run

O A method's parameter name

@ A methods's parameter value

Another example:

This example will give the most recent |oad average of aLinux server:
http://USERNAME:PASSWORD@MY _ZENOSS HOST :8080/zport/dmd/
Devices/Server/Linux/devices/angel ®/getRRDV al ue®?dsname®=laloadInt5 |al_oadl nt5®

Notice the following things about this URL :

O /zport/dmd/Devices/Server/Linux/devices/angel is the full path to our object you want to access

©® getRRDValueisthe method in the Device object we wish to run

® dsnameisaparameter to the getRRDValue method.

® laloadint5_lal oadInt5 isthe value of dsname which is the name of the data source we are interested in.

Watching the URLSs as you browse the web interface can give you a place to start searching.

2.2.1.2. Sending an Event

Events can be sent to Zenoss through the web interface as well as through using zensendevent, but also through
aprogrammatic interface.

2.2.1.2.1. Using a REST Call

Sending an event through arest call can be done by a simple web get. In this example we will use wget to send an
event. If you use wget don't for get to escape the "&" or wrap the URL in single quotes.

[zenos@zenoss $] wget 'http://admin:zenoss@M Y HOST:8080/zport/dmd/ZenEventM anager/manage_addEvent?
device=MY DEVICE& component=MY COMPONENT& summary=MY SUMMARY & severity=4& eventclasssEVENTCLASS

2.2.1.2.2. Using XML-RPC

To send an event to Zenoss using XML-RPC you will first need to create a dictionary (in Perl a hash) that will
represent the event. Zenoss will need at a minimum the following fields;

Event fields
device the name of the device from which this event originates
component the sub-component of the device (for instance ethO, http, etc)

summary the text message of the event

Getting Started

severity an integer between 0 and 5 with higher numbers being higher severity. Zerois clear.
Y ou can send an event to Zenoss via an interactive session with the Python interpreter as follows:

>>> fromxmrpclib inport ServerProxy

>>> nyurl = " http://adm n: zenoss @WHOST: 8080/ zport / dnmd/ ZenEvent Manager'
>>> serv = ServerProxy(nyurl)

>>> evt = {'device':'mydevice', 'conmponent’':'eth0",

... 'summary':'ethO is down', 'severity' :4, 'eventCass':'/Net'}

>>> serv. sendEvent (evt)

See below for examplesin other languages.

2.2.1.2.3. Example Usage in Other Languages

Please note that we are a Python shop and may not be able to answer specific questions about XML-RPC clients
written in other languages.

2.2.1.2.3.1. Perl

Send an event via perl using RPC::XML::Client

require RPC.: XM
require RPC. : XM.:: Cient;

$serv = RPC.: XM.: : dient->new(' http://YOURZENGCSS: 8081/ ") ;

%vt = ('device' => 'nydevice2', 'conmponent' => 'ethl', 'summary' => 'ethl is down', 'se
$args = RPC.: XM.::struct->new %evt);

$serv->sinpl e_request (' sendEvent', $args);

2.2.1.2.3.2. Ruby

Thisisan example of an Interactive Ruby (IRB) session (the returns have been omitted for the sake of clarity). Note,
however, that the Ruby standard library is under active development in general, and specifically, the XML-RPC lib
in Ruby is not stable. As of Feb 2007, thereisagreat deal of on-going discussion regarding XML-RPC in Ruby by
Ruby devel opers and contributors. The following is known to work in previous versions of Ruby:

irb(main):001:0> require "xmrpc/client"

irb(main):002: 0> server = XMLRPC. : C i ent.new2(' user: pass@ttp:// YOURZENCSS: 8080/ zport/ dm
irb(main):003:0> evt = {'device' => 'nydevice3d', 'conmponent' => 'eth2', 'sunmary' => 'etl
i rb(main):004: 0> server.call (' sendEvent', evt)

Java | spent too much timetrying to get a Java example running (using the lastest 3.x XML-RPC libs from Apache).
Using their example as well as many | found on the net, | consistently got lots of errors, only some of which | was
able to fix. | tried with Java 1.3, 1.4.2, and 1.5 -- all returned nearly identical results. If someone can provide a
moder n, working example, we will post it here. But we don't have to time to figure this one out right now.

2.3. zendmd: Command-line Access to the De-
vice Management Database (DMD)

Zenoss uses the Zope database (ZODB) to store its information. Since the ZODB is an Object-Oriented DataBase,
this is not organized by tables, rows and columns, but by objects. The object that Zenoss uses to store the basic
model of your network is in the Device Management Database (DM D) object.

10

Getting Started

Y ou can access the DMD through an interactive, programmable interpreter: zendmd. zendmd is the Python inter-
preter, with a handle to the database stored in the default namespace, and afew handy functions.

To start zendmd and see how the interpreter works, use the following commands:

$ zendnd

>>> 1 + 2

3

>>> | en('hello there')
11

>>> for i in range(5):
.. print i

0

1

2

3

4

These are all basic Python interpreter features. zendmd adds in a reference to the root of the object tree which is
known asdmd. Y ou can see thisroot namein the URL s used to refer to objects when using Zenoss from the browser.

Thereis abuilt-in function that can be used to find devices.

$ zendnd
>>> print dnd
<Dat aRoot at /zport/dnd>
>>> find('local host.|ocal domain')
<Devi ce at /zport/dnd/ Devi ces/ Server/ Li nux/ devi ces/ | ocal host. | ocal domai n>

Thef i nd() function also takes wildcards:

>>> find('local *")
<Devi ce at /zport/dnd/ Devi ces/ Server/ Li nux/ devi ces/ | ocal host .| ocal domai n>

You can perform scripting at the command prompt. For example, we can count the number of interfaces on our
device:

>>> d = find('local*")

len(d.os.interfaces())
5

Y ou can inspect the objects:

>>> d. get Managel p()

'127.0.0.1'
for i in d.os.interfaces():
for ain i.ipaddresses():

print a.nane(), a.getlpAddress()
ethO 192.168. 1. 148/ 24

Y ou can perform low-level checks such as re-indexing all the objects:

11

Getting Started

>>> rei ndex()
Or check/repair relationships on all devices:

>>> for d in dnd. Devi ces. get SubDevi ces():
d. checkRel ati ons(repair=True)

Finally, after making changes you can commit them to the database:

>>> comit ()

or synch against the database and restore the old state to your interpreter, reverting any changes:
>>> synch()

Zendmd can be used to automate repetitive tasks. For example, you can enter in alarge list of devices. First, create
atext file containing the names of those devices:

$ cat >l ot sOF Devi ces. t xt
devi cel

myhost . nydomai n. com
host 2. mydonmai n. com

"D

Of course, the datacould comefrom aninventory list or other database. Then, you can usethe dmd to processthefile:

$ zendnd

for line in file('lotsOfDevices.txt'):
d = dnd. Devi ces. Server. Li nux. createl nstance(line.strip())
commit ()
d. col | ect Devi ce()

Y ou can feed zendmd commands on stdin:
$ zendnd < AddDevi ces. py

Y ou can aso import scripts:

$ zendnd

i mport MyScripts

MyScri pts. | oadDevi ces(dnd)

If you want to create a stand-alone command, reading the $ZENHOVE/ ZenMbdel / zendnd. py fileis a good
Start.

The full List of zendmd names s described below.

Table 2.1. zendmd Names and Descriptions

zendmd Name Description
dmd Device Management Database, the root persistent object
app The Zope Application, the root of the database
zport Zenoss Portal, the portal that contains Zenoss
find() L ook up devices by name, and by address; supports wildcards

12

Getting Started

zendmd Name Description
devices Equivalent to dmd.Devices
sync() Revert the objectsin zendmd back to the statein the ZODB
conmit() Push object changes to the persistent store
abort () Undo any object changes and refresh from persistent storage
me areference to the machine running zendmd, if it can be found
rei ndex() recreates the indexes against the objects
I ogi n() sets the security context of the given user
| ogout () removes any security context

2.4. Programming Documentation
2.4.1. Python

If you are new to Python here are afew resources to get you started:

« Theofficial Python documentation [http://docs.python.org/index.html] contains atutorial and the reference guide
for the standard libraries that ship with Python. Note that Zenossis currently constrained to using Python 2.4, so
be careful when reading about different Python features.

« Dive Into Python [http://diveintopython.org/] is an excellent book if you are familiar with other programming
languages and contains lots of great examples.

2.4.2. Zenoss API

Asmentioned previously, more detailed information is gathered using the epydoc documentation system, and there-
sultsareinthe Application Programming I nterface (API) documentation [http://www.zenoss.com/community/docs/
zenoss-api-docy/].

2.4.3. Other Resources

Discussion regarding development of Zenoss takes place on the zenoss-dev mailing list and forums [http://
forums.zenoss.com/viewforum.php?f=3].

2.4.4. Contributing to the Documentation (Errors, Tips,
HowTos)

If you find errors or omissionsin the documentation, you can either submit aticket (see Section 2.1.6, “ Submitting
aFix") or send an e-mail to docs@zenoss.com [mailto:docs@zenoss.com]. It's possible to contribute other material
[http://www.zenoss.com/community/get-invol ved/how-to-contribute-web-content], too! That information is avail-
able on the Zenoss Wiki [http://www.zenoss.com/community/wiki].

13

http://docs.python.org/index.html
http://docs.python.org/index.html
http://diveintopython.org/
http://diveintopython.org/
http://www.zenoss.com/community/docs/zenoss-api-docs/
http://www.zenoss.com/community/docs/zenoss-api-docs/
http://www.zenoss.com/community/docs/zenoss-api-docs/
http://forums.zenoss.com/viewforum.php?f=3
http://forums.zenoss.com/viewforum.php?f=3
http://forums.zenoss.com/viewforum.php?f=3
mailto:docs@zenoss.com
mailto:docs@zenoss.com
http://www.zenoss.com/community/get-involved/how-to-contribute-web-content
http://www.zenoss.com/community/get-involved/how-to-contribute-web-content
http://www.zenoss.com/community/wiki
http://www.zenoss.com/community/wiki

Chapter 3. ZenPacks

3.1. Overview

A ZenPack is a package that adds new functionality to Zenoss. For basic information on ZenPacks see the Zenoss
Admin Guide section on ZenPacks. The following information pertains to the creation of more complex ZenPacks
that contain skins, Python classes, daemons, etc.

Asof Zenoss 2.2 the ZenPack framework has switched to using Python Eggs [http://peak.telecommunity.com/Dev-
Center/PythonEggs] as the packaging mechanism for ZenPacks. Python Eggs are the standard mechanism for pack-
aging and distributing code.

Note

The zenpack command should be used for installation and removal of ZenPacks, not the easy_install
command that is frequently used with non-ZenPack Python Eggs.

The use of dotted names for ZenPacks (see Section 3.2.1, “ZenPack Names® below) was aso introduced in this
version. Zenoss 2.2 supports installation and use of pre-2.2 ZenPacks, but all new ZenPacks are created in the new
format. This document relates to ZenPacks created in the new style. For documentation on ZenPacks predating
Zenoss 2.2 please see previous versions of this document and the Zenoss Admin Guide.

If you developed pre-2.2 ZenPacks and wish to convert them to Egg-style ZenPacks see the section below Sec-
tion 3.5.2, “Converting older ZenPacks to ZenPack eggs’.

3.2. Creating a ZenPack

ZenPacks can be created through the Zenoss user interface by using the Create ZenPack... menu item on the Zen-
Packs page. This creates the ZenPack on the filesystem at $ZENHOVE/ ZenPacks/ zenpacki d and installs
it into Zenoss.

3.2.1. ZenPack Names

ZenPack names consist of at least three strings joined by periods. The first of these strings is aways "ZenPacks."
Each of these strings must start with aletter and contain only letters, numbers and underscores. The reason for this
naming scheme is that the ZenPack will setup namespaces in Python that reflect these names. There is a python
namespace called ZenPacks. Within that namespace are packages representing the second part of al the installed
ZenPack and so on. So for example if you have a ZenPack named ZenPacks. MyConpany. MyZenPack then
it isimportablein Python (and zendnd) as

i mport ZenPacks. MyConpany. MyZenPack

And adatasource class provided by this example might be accessed as

from ZenPacks. MyConpany. MyZenPack. dat asour ces. MyDat aSour ceCl ass i nport MyDat aSour ced ass
The advantage of these namespaces is that they help prevent namespace conflicts between different

organizations authoring ZenPacks. So if a third party wants to develop an HTTP monitoring Zen-

Pack they could name it ZenPacks. Qur Conpany. H t pMoni t or and it would not conflict with the
ZenPacks. zenoss. Ht t pMoni t or Core ZenPack.

14

http://peak.telecommunity.com/DevCenter/PythonEggs
http://peak.telecommunity.com/DevCenter/PythonEggs
http://peak.telecommunity.com/DevCenter/PythonEggs

ZenPacks

3.2.2. Specifying Dependencies

The ZenPack Edit page allows you to specify versions of Zenoss that your ZenPack is compatible with as well as
dependencies on other ZenPacks. The first item in the Dependencies section of that page is the version of Zenoss
that isrequired. If that field is blank then your ZenPack will be installable under any version of Zenoss version 2.2
or later. If you enter a specific version number then the ZenPack will run only under that exact version of Zenoss,
thisis usually not desirable. The most typical verson requirement isto specify that the ZenPack is compatible with
any version of Zenoss equal to or greater than a specific version. The syntax for this is ">=X" where X is the
minimum version the ZenPack requires. For example, if a ZenPack requires Zenoss version 2.2.1 or greater the
version specification would be

>=2.2.1

Below the Zenoss version specification isalist of al other ZenPack eggs installed. Old-style (non-egg) ZenPacks
cannot be listed as dependencies and do not appear in this list. If your ZenPack requires another ZenPack to be
installed then check the checkbox to the left of the other ZenPack's name. Optionally you can also give a version
specification for each ZenPack you require.

3.2.3. Locating ZenPack Source Outside of Zenoss

For any non-trivial ZenPackswe recommend maintai ning the source code somewhere other than $ZENHOVE/ Zen-
Packs. There are a couple reasons for this:

 Performing a zenpack --remove deletes the ZenPack's directory from $ZENHOVE/ ZenPacks. If you do not
have the files copied in another location you can easily lose all or some of your work.

 If your ZenPack source is maintained in a version control system it is frequently easier to keep the code within
alarger checkout directory elsewhere on the filesystem.

To move a ZenPack source directory out of $ZENHOVE/ ZenPacks you can simply copy the directory to
the new location then run install again using the - - | i nk option. This will remove the $ZENHOVE/ Zen-
Packs/ Your ZenPackl d directory.

cp -r $ZENHOVE/ ZenPacks/ Your ZenPackl d SormeQt herDirectory
zenpack --link --install SomeQ herDirectory/ Your ZenPackl d

3.3. ZenPack Structure and Contents

This section describes the files and directory structures that make up most ZenPacks. A more detailed source of
information about Python Eggs, entry points and other technical details of building eggs is found here [http://
peak.telecommunity.com/DevCenter/setuptool s|

Note

The $ZENHOVE/ Pr oduct s/ ZenhMbdel / ZenPackTenpl at e directory contains the template
filesand directories used when Zenoss creates a ZenPack. If you decide to change these files, note that
these changes will not be preserved across upgrades.

* Setup.py

Thisfile contains parametersfor use by setuptoolsand distutilsin creating eggs and doing sourceinstalls. Zenoss
creates an appropriate set up. py when a ZenPack is created. ZenPack developers should usually edit thisin-
formation through the ZenPack edit page within Zenoss rather than directly inthe set up. py file.

15

http://peak.telecommunity.com/DevCenter/setuptools
http://peak.telecommunity.com/DevCenter/setuptools
http://peak.telecommunity.com/DevCenter/setuptools

ZenPacks

Any time a ZenPack is saved or exported via the GUI Zenoss will modify certain values at the top of the
set up. py file. The lines that Zenoss modifies are clearly commented and segregated at the top of the file. If
you wish to make changesto set up. py you can safely do so aslong as you leave those lines intact.

ZenPacks

This directory mirrors the dotted name structure of your ZenPack name. For example, if your ZenPack nameis
ZenPacks. MyConpany. MyZenPack then thisdirectory will contain adirectory named My Conpany which
will contain a MyZenPack directory. This last directory with the same name as the last part of your ZenPack
name is where most of the ZenPac code resides. The structure of that directory isvery similar to that of previous
non-egg ZenPacks.

* Other directories

As mentioned above, the ZenPacks directory will contain a directory structure that mirrors the name of your
ZenPack.

o <ZenPackld>

Thisisthe directory whose name is that of the last part of your dotted ZenPack name.

e _init__.py
Thisfile containsany codethat needsto be executed when the ZenPack isloaded. Zenossloadsall installed
ZenPacks on startup. Typically this file contains a few lines that will register a skins directory if the
ZenPack provides one. Also, if this class contains a class named ZenPack then on installation Zenoss will
create an instance of that class rather than the base ZenPack class in the object database.

» daemons
See below for more details on providing daemonsin ZenPacks.

* datasources
See below for more details on providing datasource classes in ZenPacks.

* lib

Thisdirectory isintended to hold any 3rd party modulesor other code your ZenPack dependson. A module
named Foo in thisdirectory would be imported with

i mport ZenPacks. MyConpany. MyZenPack. | i b. Foo
e Mmigrate
See below for more details on migrating between versions of your ZenPack.
* modeler
See below for more details on providing modeler plugins in ZenPacks.
* objects
Database obj ects such as Device Classes and Performance Templatesthat are added to the ZenPack viathe

GUI are exported to an obj ect s. xml filein this directory. When the ZenPack is installed on another
system those objects will be copied into that object database.

16

ZenPacks

* reports
This directory contains any report plugins provided by the ZenPack.
e services

Zenoss daemons usually communicate with zenhub to retrieve their configuration, send events, and write
performance data. If a ZenPack provides a daemon then it typically will also provide a ZenHub service
for that daemon. See the section on ZenHub for further details.

e skins

This directory contains any skins directories that should be added to Zope. Note that this contains di-
rectories of skins, not the skin files themselves. If you include skins directories make sure that the
__init__. pyfileinthedirectory aboveskinsisregistering thisdirectory. (Thedefault__init __. py
file provided in new ZenPacks does this for you.)

* build

Thisdirectory iscreated by Python when the ZenPack is exported to an egg file or whenitisinstalled from source.
Thisdirectory can safely be del eted at any timeif you wish and need not be kept within any version control system.

o dist

Thisdirectory is created when thet ZenPack is exported to an egg file. The egg fileisinitially created within here
then copied to $ZENHOME/export. This directory can safely be deleted at any time if you wish and need not be
kept within any version control system.

e ZenPackl d. egg-info

This directory contains files which describe the egg meta-data. This is created when the egg file is generated or
the ZenPack is installed from source. This directory can safely be deleted at any time if you wish and need not
be kept within any version control system.

Thisfileis updated every time a ZenPack is edited and saved. ZenPack developers should normally not edit this
#emanually.

3.4. Developing the ZenPack
3.4.1. Base ZenPack Class

$ZENHOVE/ Pr oduct s/ ZenMbdel / ZenPack. py contains the base ZenPack class. When a ZenPack isin-
stalled Zenoss inspects Your ZenPackl d/ ZenPacks/..../LastPart Of Nane/ _init__ . py to seeif
it contains a class named ZenPack. If it does then Zenoss instantiates it otherwise Zenoss instantiates the base
ZenhMbdel . ZenPack. ZenPack class. That instance is then added to the dnd. ZenPackManager . packs
tree.

There are severa attributes and methods of ZenPack that subclasses might be interested in overriding:

Interesting ZenPack properties and methods

packZProperties is amechanism for easily adding zPr oper t i es. packZPropertiesis alist
of tuples, with each tuple containing three stringsin this order:

« the name of the zProperty

17

ZenPacks

« the default value of the zProperty
« thetype of the zProperty ('string’, 'int', tc.)

Zenoss will automatically create these when the ZenPack is in-
stalled and remove them when the ZenPack is removed. See
ZenPacks. zenoss. MySql Moni t or for an example of this usage.

install (self, app) parais called when the ZenPack is installed. If you override this be sure to
call theinherited method within your code.

renove(sel f, app, is called when the ZenPack is removed. As with i nst al | (), make sure
| eavenj ect s) you call the inherited method if you override.

3.4.2. Storing Objects in the ZODB

ZenPacks can provide Python classesfor objectsthat will be stored in the object database. The most frequent example
of thisisDat aSour ce subclasses. When aZenPack isremoved those classes are no longer accessible so the objects
in the database are broken. (Zeo needs to have the appropriate Python class in order to unpickle an object from the
database.) In previous versions of Zenoss there was not an easy way to associate instances of a ZenPack-provided
class with the ZenPack that provided the class. As aresult ZenPack removal could easily cause broken objects to
remain in the database. If Zope had already |oaded a classinto the interpreter the objects in question might continue
to function until Zope was restarted, making diagnosis of such problems even more difficult.

In Zenoss 2.2 the ZenPackPer si st ance class aims to remedy this problem. Any Python class provid-
ed by a ZenPack should subclass the ZenMobdel . ZenPackPer si st ence. ZenPackPer si st ence class.
Zenoss maintains a catalog of all ZenPackPer si st ence instances in the database. When a ZenPack is re-
moved, the catalog is queried to determine which objects need to be deleted. Any ZenPack-provided Python
class that might be instantiated in the object database should subclass ZenPackPer si st ence and define
ZENPACKID in the class as the name of the ZenPack providing the class. For an example of this see the
ZenPacks. zenoss. MySql Moni t or . dat asour ces. MySgl Moni t or Dat aSour ce ZenPack.

3.4.3. Providing DataSource classes

ZenPacks can provide new classes of Dat aSour ces by subclassing the
Zenhbdel . RRDDat aSour ce. RRDDat aSour ce class. If you include only one Dat aSour ce class per file,
name the modul es after the class the contain (ie MyDat aSour ce. py contains the class MyDat aSour ce), and
place those modules in the ZenPack's dat asour ces directory then they will automatically be discovered by
Zenoss. If you wish to customize this behavior take alook at the ZenPack. get Dat aSour ced asses() func-
tion. Seethe ZenPacks. zenoss. Ht t pMoni t or and ZenPacks. zenoss. MySgl Moni t or ZenPacks for
examples of ZenPacks that provide custom Dat aSour ce classes.

When creating a custom Dat aSour ce class one of the first decisions you have to make is whether you want
zencommand to process these Dat aSour ces for you or whether you will provide a custom collector daemon to
process them. The zencommand daemon is a very versatile mechanism for executing arbitrary commands either
on the Zenoss server or on the device being monitored, processing performance data returned by the Dat aSour ce
and generating eventsin Zenoss as appropriate. zencommand expects the command it executes be compatible with
the Nagios plug-in API [http://nagiosplug.sourceforge.net/devel oper-guidelines.html]. Specifically two aspects of
that API are of most importance:

Return code The command should exit with a return code of O, 1, 2 or 3. See here [http://
nagi osplug.sourceforge.net/devel oper-guidelines tmI#AEN78] in the Nagios plug-in
API for more detail.

18

http://nagiosplug.sourceforge.net/developer-guidelines.html
http://nagiosplug.sourceforge.net/developer-guidelines.html
http://nagiosplug.sourceforge.net/developer-guidelines.html#AEN78
http://nagiosplug.sourceforge.net/developer-guidelines.html#AEN78
http://nagiosplug.sourceforge.net/developer-guidelines.html#AEN78

ZenPacks

Performance data If the command returns performance data then that data can be pulled into Zenoss by
creating DataPoints with the same names used in the command output. See here [http:/
nagiosplug.sourceforge.net/devel oper-guidelines.htmlI#AEN203] in the Nagios plug-in
API for more detail.

If you want zencommand to handle instances of your custom Dat aSour ce class then several methods in RRD-
Dat aSour ce are of particular insterest:

get Descri ption(sel f) This returns a string describing the Dat aSour ce instance. This string is
displayed next to the DataSource on the RRDTemplate view page.

useZenCommand(sel f) Thedefault implementation returnsFal se. If you want to usezencommand
then override this method and return Tr ue.

get Cormmand(sel f, con- This returns the string that is the command for zencommand to execute.

text, cnd=None) context is the device or component to be collected. If you need to evaluate
TALES expressions in the command to replace things like ${dev/id} and so
forth you can call the parent class's get Command() and pass your com-
mand as the cmd argument. (cmd will not be passed into your method, it
exists specifically for subclasses to pass their commands to the parent for
TALES evauation.)

checkCommandPr efi x(sel f, Zenosswill check the string you return from get Conmrand() to seeif it

context, cmd) is arelative or absolute path to a command. If the string starts with /' or '$'
then Zenoss assumes it is absolute. Otherwise the zProperty zCommandPath
from the context is prepended to the cmd string. Y ou can override check-
CommandPr ef i x() if you wish to alter this behavior.

Make sure that your Dat aSour ce subclasses also subclass ZenPackPer si st ence and list it first among the
parent classes. See the section on ZenPackPer si st ence. py for more details.

3.4.4. Providing daemons

ZenPacks can provide new performance collectors and event monitors. This is a somewhat complex undertaking,
so before deciding to write your own daemons make sure that zencommand and a custom Dat aSour ce class
won't fit your needs (see Section 3.4.3, “Providing DataSource classes’ above.) Any filein aZenPack'sdaenons
directory is symlinked in $ZENHOVE/ bi n when the ZenPack is installed. Also, the Zenoss script that controls the
core daemons will attempt to manage your daemon too. So a zenoss start, for example, will attempt to start your
daemon as well as the core daemons.

Custom daemons usually subclass the ZenHub. PBDaenon. PBDaenbn class. This class provides the basic
framework for communicating with zenhub. See the section "Writing a Zenoss Performance Collector” for more
details.

3.4.5. setuptools and the zenpacksupport

Zenoss requires a Python module called set upt ool s to create and install eggs. The set upt ool s module is
installed by the Zenossinstaller inthe $ZENHOVE/ | i b/ pyt hon directory. Zenoss al so provides amodule named
zenpacksupport which extends setuptools. The zenpacksupport class defines additional metadatathat is
writtento and read from ZenPack eggs. Thismetadatais provided through additional optionspassedtotheset up()
call inaZenPack'sset up. py file. Those arguments are:

compatZenossVers This is the version specification representing the required Zenoss version from the
ZenPack's Edit page.

19

http://nagiosplug.sourceforge.net/developer-guidelines.html#AEN203
http://nagiosplug.sourceforge.net/developer-guidelines.html#AEN203
http://nagiosplug.sourceforge.net/developer-guidelines.html#AEN203

ZenPacks

prevZenPackName This is the name of the old-style (non-egg) ZenPack that this ZenPack re-
places. If a ZenPack with this name is installed in Zenoss then it is upgrad-
ed and replaced when this ZenPack is installed. For example, if Ht t pMoni -
tor isinstaled and then ZenPacks. zenoss. Ht t pMoni t or is installed (which
has prevZenPackName=HttpMonitor) then ZenPacks. zenoss. Ht t pMoni t or will
replace Htt pMoni tor. All packable objects in the database that are includ-
ed in HtpMonitor will be added to ZenPacks. zenoss. Htt pMoni t or
instead. A migrate script is usually required to set class correct-
ly on instances of ZenPack-provided classes in the object database. The
ZenPacks. zenoss. Ht t pMoni t or ZenPack hasan exampleof thisinitsm gr at e
directory, inthe Convert Ht t pMoni t or Dat aSour ces. py file.

3.5. Building and Distributing ZenPacks

From your ZenPack's page in the GUI select the Export ZenPack... menu item to create an egg file. Thefileisfirst
created in your ZenPack's di st directory then copied to the $ZENHOVE/ expor t directory.

Y ou can optionally also download the egg fil e through your web browser when doing the export. As part of the export
process Zenoss exports database objects to the obj ect s/ obj ect s. xm filein your ZenPack source directory.
If you don't need to update the obj ect s. xm file you can create the egg from the command line instead

cd Your ZenPackDi rectory
pyt hon setup. py bdist_egg

This createsthe egg filein the ZenPack'sdi st directory.

Users who install your egg file will not be able to edit the ZenPack or re-export it. These functions require the
set up. py file which is not usually distributed within the egg file itself. In most cases this is desirable because
end-users should usually not be making changes and redistributing a different version of your ZenPack than the
one you developed.

There are times when you want to allow others to develop a ZenPack with you. In these cases you must provide
them with the entire source directory, not just an egg file.

3.5.1. Migrating between versions

Any time a ZenPack is installed Zenoss looks in the ZenPack's ni gr at e directory for steps whose ver-
sion is greater than or equa to the version of the ZenPack being installed. Migrate steps are classes that
subclass ZenModel . ZenPack. ZenPackM grati on. This mechanism alows zenpacks to modify items
in the object database that were created by previous versions of the ZenPack and need updating. The
ZenPacks. zenoss. MySql Moni t or Core ZenPack includes good examples of how migrate steps are written.

3.5.2. Converting older ZenPacks to ZenPack eggs

Zenoss 2.2 includes a new script called eggifyzenpack which automates much or all of the process of converting
a pre-2.2 ZenPack to an egg ZenPack. The script is in $ZENHOVE/ bi n so is usualy on the zenoss user's path
dready. The - - newi d option is required and specifies the new name of the ZenPack. (See the section above on
ZenPack names.) the sole positional argument to eggifyzenpack isthe current name of the installed ZenPack to be
converted. Zeo must be running prior to invoking the script.

eggi fyzenpack --new d ZenPacks. MyConpany. MyZenPackNane MyQ dZenPackNane

Thiswill create a ZenPack with the name given with - - newi d in $ZENHOVE/ ZenPacks. The old ZenPack that
was converted is uninstalled and removed from $ZENHOVE/ Pr oduct s. ZenPacks converted in this way have

20

ZenPacks

PREV_ZENPACK NAMEintheir set up. py set tothe name of the old ZenPack that they replace. When auser with
the old ZenPack installed installs the new egg ZenPack it will be processed as an upgrade and the older ZenPack
will be removed.

3.6. Where to Get More Information

Discussion regarding devel opment of ZenPacks takes place on the zenoss-zenpacks mailing list and forums [http://
forums.zenoss.com/viewforum.php?f=6].

21

http://forums.zenoss.com/viewforum.php?f=6
http://forums.zenoss.com/viewforum.php?f=6
http://forums.zenoss.com/viewforum.php?f=6

Chapter 4. Zenoss Datastores

There are afew datastores used by Zenoss:

Datastores

Z0DB Object-oriented databse for Python objects

MySQL The Event database where event information is stored.

RRD files Round Robin Database that stores performance information.

Picklefiles Python pickle files are used to cache information otherwise obtained from zenhub.

4.1. Zope Object Database (ZODB)

The ZODB [http://wiki.zope.org/zope2/ZODB/FrontPage] is an object-oriented database used by Zope to store
Python objects and their states. For example, modelers maintain information about devices and their configuration
in the ZODB.

Zenoss uses ZEO, which is alayer between Zope and the ZODB. ZEO allows for multiple Zope servers to connect
to the same ZODB. The ZODB is started and stopped by zeoct | .

Note

ZODBs can be clustered using ZEO, but Zenoss Enterprise and Zenoss Professional customers should
contact Zenoss Inc technical support before investigating clustering.

Hereis asimple example of using transactionsin the ZODB:

i mport transaction

trans= transaction. get ()

Determine that bad things have happened
i f bad_t hing:
trans. abort ()
... any other cleanup required inside the function eg 'return'

Life is good!

NB: Usernane or programnhanme -- it's just a text field
trans. set User("zennodel er")

trans. note("Added good things to xyz object")

trans. comt ()

: Tip
Theset User () andnot e() functions are responsible for creating entries that can be found under
the Modifications tab or menu-item.

There arerestrictions on what data can be stored, specifically data typesthat can be pickled [http://docs.python.org/
library/pickle.html]. Basic Python data types such as strings, numbers, lists and dictionaries can be pickled, but
Python code objects cannot be pickled. In addition, files and sockets cannot be pickled.

22

http://wiki.zope.org/zope2/ZODB/FrontPage
http://wiki.zope.org/zope2/ZODB/FrontPage
http://docs.python.org/library/pickle.html
http://docs.python.org/library/pickle.html
http://docs.python.org/library/pickle.html

Zenoss Datastores

Note

The ZODB cannot detect changes to mutable types like lists and dictionaries. In order for changes
to be detected, not only isconmi t () afterwards, but you must explicitly tell the ZODB about the
change by modifying aPer si st ent objects p_changed attribute.

The followi ng inmports shouldn't be required in Zenoss code
as it should already be taken care of for you. These are
included nerely to explicitly show the cl ass dependenci es.
i mport ZODB

from Persistence inport Persistent

i mport transaction

cl ass nyExanpl ed ass(Persistent):
An exanple class to be used to denonstrate the use of the
modifying a list and then notifiying ZODB that work needs
to be done through the _p_changed attribute.

def __init__ (self):

Initializer

self.nylist=[]

def addToMyList(self, listltem):

Track the listltens that we need

self.nylist.append(listltem)
sel f. _p_changed= True # Notify ZODB

transacti on.conmt ()

Asagenera rule, usecomi t () whenever you want other processes to have access to your database changes. So
if adaemon is collecting and Zope needs to do something with the data, run conmi t () first from the daemon.

This should be enough information to get you started. See ZODB for Python Programmers [http://www.zope.org/
Documentation/ArticlesZODB1] for more details.

4.2. MySQL Event database

MySQL [http://www.mysgl.com/] is an open-source relational database that Zenoss uses to store Zenoss events.
Configuration information about the MySQL database can be maintained by going to the Event Manager link from
the navigation bar when you are logged in as a user with ZenManager privileges.

Tip

1| MySQL-level performance tweaking can substantially improve Zenoss ability to handle events.
One tool that can be used to improve your database performance is MySQLTuner [http://
wiki.mysgltuner.com/MySQL Tuner].

23

http://www.zope.org/Documentation/Articles/ZODB1
http://www.zope.org/Documentation/Articles/ZODB1
http://www.zope.org/Documentation/Articles/ZODB1
http://www.mysql.com/
http://www.mysql.com/
http://wiki.mysqltuner.com/MySQLTuner
http://wiki.mysqltuner.com/MySQLTuner
http://wiki.mysqltuner.com/MySQLTuner

Zenoss Datastores

If you need a connection to the MySQL events database, here is how to retrieve a connection and how to put it
back into the poal.

DbConnect i onPool ishiddenandisaccessed through DbAccessBase. It followsthe Singleton design pattern,
soit'll only actually create one DbConnect i onPool . It extends the Python class Queue, so DbConnect i on-
Pool isalso asynchronized queue and should be thread-safe. DbAccessBase isextended by Event Manager -
Base>?, so if you have access to the ZenEvent Manager (located at / zport/ dnd/ ZenEvent Manager)
you'll have the ahility to get a database connection.

4.2.1. Connecting to the Database

First you'll need to get aninstance of ZenEvent Manager OR aninstance of aclassthat extendsDbAccessBase.
Within Zenoss, aZenEvent Manager should already be instantiated.

Next isthet ry block which should include ANY database calls. This is where you'll get a connection from the
pool with theconnect () method. You may pass this around to other methods or create a cursor and make some
database transactions. The t ry block MUST be completed with afi nal | y block that includes the cl ose()
method. You MUST pass the connection object to the cl ose() method. This will ensure that even if the code
within the t r y breaks, we are not leaking database connections. If you create more than one connection (ie more
than one connect () cal inyour t ry block) you will need to have a corresponding cl ose() cal. Thereis
ALWAYS a one-to-one relationship between connect () andcl ose() calls.

Hereisablock of code that illustrates best practices for using the DbConnect i onPool

zem = sel f. dnd. ZenEvent Manager

try:
connl = zem connect ()
conn2 = zem connect ()
cursl = connl. cursor()
curs2 = conn2. cursor()
do work

curs3 = connl. cursor ()

finally:
zem cl ose(connl)
zem cl ose(conn2)

Takealook at Event Manager Base. py for some examples of code using the DbConnect i onPool .

4.3. Round-Robin Database

RRD [http://oss.oetiker.ch/rrdtool/] is used by Zenoss to store and graph performance collection data. These data
files have afixed format that is decided at their creation time, and record datapoints at set intervals. Thisdatais|ater
consolidated into coarser time units (so as to reduce the total size of datafiles) and the RRD toolset also contains
code to create graphs.

A few other interesting facts:

24

http://oss.oetiker.ch/rrdtool/
http://oss.oetiker.ch/rrdtool/

Zenoss Datastores

» Zenossisagold-level sponsor of RRD

¢ The Renderserver sends RRD graphics to web browsers

4.4. Python Pickle Files

Python's native storage for storing data is called a Pickle. Pickle files are used by zenper f snip for caching
configuration information gathered from zenhub. This is a perofrmance enhancement for dealing with startup
communications with zenhub, as larger sites with hundreds or more devices could experience enough of a delay
during initialization that Zenoss would have difficulty functioning until the configuration information had been
gathered. Every update from the Zenoss server (which is dealt with by zenhub) causes zenper f snnp to update
the picklefiles.

The pickle files are kept in the $ZENHOVE/ per f / Devi ces/ devi cenane/ directory, and are named col -
| ector-config. pi ckl e. These picklefilesare only read during startup and are periodically recreated, so it is
safe to delete them, and it is not necessary to back them up.

25

Chapter 5. Events
5.1. Understanding an Event Entry

From a Python programming perspective, an event is essentially adictionary of keyword/value pairsthat gets passed
up to zenhub to be stored and parsed. A description of the standard fields used in Zenoss can be found in an appendix
of thisguide.

Need link back to the table

From the user's perspective, the events can be found in either the Event Console or in the Events tab. To view an
event'sinformation, click on the magnifing glassicon in the event entry and it will display threetabs: Fields, Details
and Log.

Need screenshots here

The standard keyword and value pairs are presented to the user in the Fields tab of the event. Any non-standard

keyword/value pairs are presented in the Details tab. The Log tab is for post-processed events and so won't trouble
us for the moment.

5.2. Sending an Event

Events can be created through a number of different ways:

« from the command line (zensendevent)

through the user interface (Add Event)

by daemons which convert their messages into events (eg zentr ap)
 from daemons and programs which have detected error conditions
« From an external source using (for example) XML-RPC

Regardless of what program generates the event, or from which protocol the event is sent to Zenoss, the following
fields (at a minimum) should be specified:

Event fields

device the name of the device from which this event originates
component the sub-component of the device (for instance ethO, http, etc)
summary the text message of the event

severity an integer between 0 and 5 with higher numbers being higher severity. Zero is clear. Note that for
Python code, that mappings to names are provided (see example below).

Here is an example using Python from within a program that connects to zenhub:
Inport severities (eg Oear, Debug, Info, Warning, Error Critical) and

sone event classes into our nanmespace
from Products. ZenEvent s. ZenEvent O asses i nport *

26

Events

cl ass exanpl ed ass(PBDaenon):
def exampl efunc(self):

event = {}
event['component’]= 'eth0
event['severity']= Warning
event['summary']= "ethO is down'
event['message’]= 'Received error code Oxa7 fromlisten()’
sel f.sendEvent (event, device='nydevice')

Using XML-RPC in Python:

fromxmrpclib inport ServerProxy

myurl = "http://adm n: zenoss@WHOST: 8080/ zport/ dnd/ ZenEvent Manager'

serv = ServerProxy(myurl)

evt = {'device':'nydevice', 'component':'eth0', 'sunmary':'eth0 is down',
"severity':4, 'eventC ass':'/Net'

serv. sendEvent (evt)

Tip

Some suggested non-standard fields for adding to your event are:

resolution Describe a method of fixing the situation that might have caused the event, or sug-
gest a course of action for diagnosing the condition.

explanation Describe in more detail the impact of this event on the computing environment.
For instance, does the condition which generates this event prevent a service from
starting or being monitored?

5.3. Adding an Event Class

Event classes can be added easily through the Ul. If you need to use an event class internally, however, you need
to make sure that class will always be available, which involves several more steps.

5.3.1. Add to ZenEventClasses

Add adefinition of the name of your new event classto Pr oduct s/ ZenEvent s/ ZenEvent asses:

My_New O ass = "/ M/ New Cl ass"

Now your event class is centralized and can be imported wherever you need to use it, e.g.:

from Products. ZenEvent s. ZenEvent C asses i nport My_New O ass

if thing.evclass == My_New_d ass:

27

Events

5.3.2. Add the class to the import XML

Several event classes areimported from XML by zenload just after the ZODB is created. To include your new event
classin thisimport, add an <object> element describing it to Pr oduct s/ ZenModel / dat a/ event s. xnl . Be
sure to nest it inside the classes that already exist, if appropriate. For example, if your new classis "/Status/New-
Class’, you would add it inside the <object id="Status> that already exists:

<obj ect id='"Status' npdul e=' Products. ZenEvents. Event Cl ass' cl ass=' Eventd ass> <!--This ol

<obj ect id='"Newd ass' nodul e=' Products. ZenEvents. Event d ass' cl ass=' EventC ass' > <! --Thi
</ obj ect >
></ obj ect >

5.3.3. Write a migrate script

Now, sinceyour codeisno longer backwards compatible, you need to add the new event classto databases that have
aready been created by writing a migrate script. (See HowToMigrateZenossCode for more detailed information).
Createanew scriptin Pr oduct s/ ZenModel / mi gr at e with aunique name (here newevent cl asses. py).
Fill it with this code:

__doc__="""Add new cl asses to Event Manager

import Mgrate

cl ass NewEvent Cl asses(M grate. Step):
version = Mgrate. Version(1, 1, 0) # Replace this with the correct version
def cutover(self, dnd):
dnd. Event s. creat eOr gani zer ("/ My/ Event / Cl ass")
dnd. Event s. creat eOr gani zer ("/ My/ Event/ Cl ass2") # Add nultiple new classes in the same |
dnd. ZenEvent Manager . bui | dRel ati ons()

NewEvent Cl asses()

Next, add your migrate script to Pr oduct s/ ZenModel / migrate/ __init__. py:

i nport neweventcl asses
Now
zenmigraterun

to make sure your classis created properly.

28

Chapter 6. zProperty Management

6.1. Adding a zProperty
6.1.1. Adding a zProperty to an Event

InEvent C ass. py...

def buil dZProperties(self):
edi ct = sel f.get DrdRoot (" Events")
edict. _setProperty("zNewProperty", "default val ue")
edi ct. _setProperty("zNew ntegerProperty”, -1, type="int")
edi ct. _setProperty("zNewHl oat Properties”, 10.01, type="float")
edict. _setProperty("zNewLi stProperty", ["default value", "another default value"], type:
edi ct. _set Property("zNewBool eanProperty", Fal se, type="bool ean")

Adding a new property to the EventClass is as easy adding a new line to the buildZProperties method. Y ou need
to set anew property at the "Events' level.

6.1.2. Adding a zProperty to a Device

InDevi ced ass. py

def buil dDevi ceTreeProperties(self):
devs= sel f. get DdRoot (" Devi ces")

devs. _set Property("zNewProperty", "default val ue")

devs. _set Property("zNew nt egerProperty", -1, type="int")

devs. _set Property("zNewrl oat Properties", 10.01, type="float")

devs. setProperty("zNewLi st Property"”, ["default value", "another default value"], type=
devs. _set Property("zNewBool eanProperty", Fal se, type="bool ean")

Adding a new property to the DeviceClass is as easy adding a new line to the buildDeviceTreeProperties method.
Y ou need to set a new property at the "Devices' level.

6.2. Migrating the zProperty Code

Create anew filein $ZENHOVE/ Pr oduct s/ ZenMbdel / i gr at e/ zNewPr operty. py

29

zProperty Management

Add zNewProperty to Deviced ass.

import Mgrate

cl ass zNewProperty(Mgrate. Step):
version= Mgrate.Version(1l, 1, 0)

def cutover(self, dnd):
i f not dnd. Devices. hasProperty("zNewProperty"):
dnd. Devi ces. _setProperty("zNewProperty", "default value here")

ZNewPr operty()
When azenmigrate is executed, this code will create the new zProperty for al Devices. Do not forget to update the

Migrate.Version to your current working version. For more information on migrating: see the section on Chapter 14,
Migrating Zenoss Code.

30

Chapter 7. Device Management
7.1. Adding Devices Programatically

Devices can be added to Zenoss through the Ul but also through a programmatic interface. Thishow to will describe
adding a device using that interface.

7.1.1. Using a REST call

Adding a device through a rest call can be done by a ssimple web get. In this example we will use wget to add a
device. If you use wget don't for get to escape the"&" or wrap the URL in single quotes.

[zenos@zenoss §] wget "http://admin:zenoss@M Y HOST :8080/zpor t/dmd/Devicel oader/loadDe-
vice?deviceName=NEWDEV | CE& devicePath=/Server/Linux'

Theresult of thiscommand will bethelog of auto-discovery and you canlook for the string "NEWDEV | CE |loaded!"
to seeif it was successful. Possible failure messages are: "NEWDEVICE exists' and "no snmp found"

7.1.2. Using an XML-RPC Call from Python

Thisis an example of how to add a device using python. Because XML-RPC can be used from any language feel
free to use your favorite. What is important here is the base URL in ServerProxy, passing named parameters, and
calling "loadDevice" on your proxy object.

>>> fromxmrpclib inport ServerProxy

>>> serv = ServerProxy('http://adm n: zenoss @WHOST: 8080/ zport/ dnd/ Devi ceLoader ')
>>> dev = {' deviceNane':' NEWDEVI CE', 'devicePath':'/Server/Linux'}

>>> serv. | oadDevi ce(dev)

Y ou can check on the device with another XML-RPC call:

>>> fromxmrpclib inmport ServerProxy
>>> serv = ServerProxy('http://adm n: zenoss@WHOST: 8080/ zport/ dnd/ Devi ces/ Server/ Li nux/ de
>>> print serv.getManagel p()

7.1.3. XML-RPC Attributes

Table7.1. XML-RPC Attributes and Descriptions

XML-RPC Attributes Description

deviceName the name or P of the device. If it'sanameit must resolvein DNS

devicePath the device classwherethefirst "/" startsat "/Devices" like"/Server/Linux" the default
is"/Discovered”

tag the tag of the device

serialNumber the serial number of the device

zSnmpCommunity SNMP community to use during auto-discovery if noneis given the list zZSnmpCom-
munities will be used

zSnmpPort SNMP port to use default is 161

zSnmpVer SNMP version to use default v other valid values are v2

31

Device Management

XML-RPC Attributes Description

rackSlot the rack slot of the device.

productionState production state of the device default is 1000 (Production)

comments any comments about the device

hwManufacturer hardware manufacturer this must exist in the database before the device is added

hwProductName hardware product this must exist in the manufacturer object specified

osManufacturer OS manufacturer this must exist in the database before the device is added

osProductName OS product this must exist in the manufacturer object specified

locationPath path to the location of this device like "/Building/Floor" must exist before device is
added

groupPaths list of groupsfor this device multiple groups can be specified by repeating the attribute
in the url

systemPaths list of systems for this device multiple groups can be specified by repeating the at-
tribute in the url

statusMonitors list of status monitors (zenping) for this device default is"localhost"

performanceM onitor performance monitor to use default is "localhost"

discoverProto discovery protocol default is"snmp" other possible valueis "none"

7.2. Editing Device Information

Devices can be edited through the Ul but also through a programmatic interface. This how to will describe editing
deviceinfo using that interface.

7.2.1. Using a REST call

Editing device info through arest call can be done by a simple web get. In this example we will use wget to add a
device. If you use wget don't for get to escape the"&" or wrap the URL in single quotes.

[zenos@enoss $] wget 'http://adm n: zenoss@AHOST: 8080/ zpor t/ dnd/ Devi ces/ Ser ver/ Li nux/ de

The result of thiscommand will change the Serial Number to MY SERIALNUM and the Tagto MY TAG for device,
MYDEVICE.

7.2.2. Using an XML-RPC Call from Python

Thisis an example of how to edit device info using Python. Because XML-RPC can be used from any language
feel free to use your favorite. What is important here is the base URL in ServerProxy, passing named parameters,
and calling edi t Devi ce on your proxy object.

>>> fromxmrpclib inport ServerProxy
>>> serv = ServerProxy('http://adm n: zenoss@WHOST: 8080/ zport/ dnd/ Devi ces/ Server/ Li nux/ de
>>> serv. manage_edit Devi ce(' MYTAG , ' MYSERI ALNUM)

Hereisthe signature of manage_edi t Devi ce() from Devi ce. py

def manage_edit Devi ce(self, tag="", serial Number="",

32

Device Management

zSnnpCommmuni ty="", zSnnpPort=161, zSnnmpVer="v1",
rackSl ot =0, productionState=1000, conments="",
hwivanuf act urer ="", hwPr oduct Name="",

osManuf acturer="", osProduct Nane="",

| ocati onPat h="", groupPaths=[], systenPaths=[],

statusMnitors=["local host"], performanceMonitor="1ocal host",
priority=3, REQUEST=None):

7.3. Deleting A Device

Devices can be deleted through the Ul but al so through a programmatic interface. This how to will describe deleting
adevice using that interface.

7.3.1. Using a REST call

Deleting a device through arest call can be done by a simple web get. In this example we will use wget to delete a
device. If you use wget don't forget to escape the "&" or wrap the URL in single quotes.

[zenos@enoss $] wget 'http://adm n: zenoss@AYHOST: 8080/ zpor t/ dnd/ Devi ces/ Ser ver/ Li nux/ de

The result of this command will delete the device MYDEVI CE.

7.3.2. Using an XML-RPC Call from Python

Thisisan example of how to delete adevice using Python. Because XM L-RPC can be used from any language feel
free to use your favorite. What is important here is the base URL in ServerProxy, passing named parameters, and
calling del et eDevi ce on your proxy object.

>>> fromxmrpclib inport ServerProxy
>>> serv = ServerProxy('http://adm n: zenoss@IHOST: 8080/ zport/ dnd/ Devi ces/ Server/ Li nux/ de
>>> serv. del et eDevi ce()

7.4. Checking If A Device Exists

Devices can be checked for existence through the Ul but also through a programmatic interface. This how to will
describe how to check if a device exists using that interface.

7.4.1. Using a REST call

Checking if adevice existsthrough arest call can be done by a simple web get. In this example we will use wget to
check of the existence of adevice. If you use wget don't for get to escapethe"&" or wrap the URL in single quotes.

[zenos@zenoss $] wget ‘http://admin:zenoss@M YHOST :8080/zport/dmd/Devices/Ser ver /L inux/de-
vicesMYDEVICE'

If this command results with an exit code of 1 and a server response code of 404, then MYDEVI CE does not exist
in Zenoss. If this command results with an exit code of 0 and a server response code of 200, the MYDEVI CE does
exist in Zenoss.

33

Device Management

7.4.2. Using an XML-RPC Call from Python

This is an example of how to check if a device exists using Python. Because XML-RPC can be used from any
language feel free to use your favorite. What isimportant here is the base URL in ServerProxy.

>>> fromxmrpclib inmport ServerProxy
>>> serv = ServerProxy('http://adm n: zenoss@WHOST: 8080/ zport/ dnd/ Devi ces/ Server/ Li nux/ de

>>> try:
>>> serv.getld()
>>> exists = True
>>> except:
>>> exi sts = Fal se
7.5. Exporting a Device List
Go to the ZMI

http://local host:8080/zport/dmd/Devices/manage
Make a script object called get MyDevi ceLi st () . Then put the following into the body of the script...
return [d.id for d in context.getSubDevices()]

Then call it like this
http://local host:8080/zport/dmd/Devices/getMyDevicel ist

You can do all kinds of stuff thisway. Thiswill return al device |P addresses:
return [d.managelp for d in context.getSubDevices()]

You get theidea. You can call this method form different parts of the tree to limit the list of devices.
http://local host:8080/zport/dmd/Devices/Server/Linux/getMyDevicel ist

Chapter 8. Extending the Model

8.1. Add a ZenModel Relationship
8.1.1. One-to-One (1:1) Relationships

Example of 1:1 Server to Admin Relationship

from Products. ZenRel ati ons. Rel Schema i nport *@
cl ass Server (Device):

_relations = (®
("adm n" ©, ToOne(ToOne, "Adm n", "server")@),
) + Device. _relations

cl ass Adni n(Test BaseC ass):

_relations = (
("server", ToOne(ToOne, "Server", "adnmin")),©®
)

The Server object isan example of aclassthat inheritsfrom Device. According to this relationship there can be only
one Admin assigned to a Server and only one Server assigned to an Admin. Thisrelationship is created by:

Importing ToOne from Products.ZenRel ations.Rel Schema.

Appending atwo-item tuple to the _relations attribute

Thefirst item in the tupleisa"string" object which isthe local name

The second item in the tupleisa"Rel Schema object which represents the rel ationship to another class. Inthis
case the ToOne constructor creates/returns that "Rel Schema' object

(-~)

ToOne constructors takes three parameters:

» Thefirst parameter isa"type" object, "remoteType" which represents the relationship from ancther class.
The "type" should be of aclass derived from Rel Schema

» Thesecond parameter isa"string" object, “remoteClass' which isthe class name of therelative. In this case
it isagain a ToOne relationship.

» Thethird parameter isa"string" object, "remoteName" which the remote name of itself.
@ Appending acomplementary two item tuple to the _relations attribute in the relative class.

8.2. One-to-Many (1:N) Relationships

Thisisarea example which illustrates a one-to-many relationship between one Location and many Devices.

35

Extending the Model

From Device.py

1.‘.r;)m Products. ZenRel ati ons. Rel Schema i nmport *

C| ;ass Devi ce(ManagedEntity, Commrandabl e):
é;/ént_keyz portal type = meta_type = 'Device'
defaul t _cat al og= "devi ceSearch" #devi ce ZCat al og
rel ati onshi pManager Pat hRestriction = '/ Devi ces'
._.r.el ations = ManagedEntity. relations + (

("location", ToOne(ToMany, "Location", "devices")),

)

From Location.py

from Products. ZenRel ati ons. Rel Schema i nport * @
cl ass Locati on(Devi ceOrgani zer):

Organi zer configuration
dnmdRoot Name = "Locati ons"

portal type meta_type = event_key = 'Location'

_relations® = DeviceOrganizer. _relations + (
("devices" ©®, ToMany(ToOne, "Device","location")),®
)

According to thisrelationship there can be only one L ocation assigned to a Device but morethan one Device assigned
to aLocation. Thisrelationship is created by:

Importing ToOne and ToMany from Products.ZenRel ations.Rel Schema.

Appending atwo-item tuple to the _relations attribute

Thefirst itemin the tupleis a"string" object which isthe local name

The second item in the tuple is a"Rel Schema" object which represents the relationship to another class.

[~)

Rel Schema constructors takes 3 parameters:

» Thefirst parameter isa"type" object, "remoteType" which represents the relationship from ancther class.
The "type" should be of aclass derived from Rel Schema

» The second parameter isa"string" object, "remoteClass" which is the class name of the relative.
e Thethird parameter isa"string" object, "remoteName" which the remote name of itself.

Appending a complementary two item tuple to the _relations attribute in the relative class.

36

Extending the Model

8.3. Many-to-Many (M:N) Relationships

Thisis area example from Devi ce. py which illustrates a many-to-many relationship between many Devices
and many Device Groups.

from Products. ZenRel ati ons. Rel Schema i nport *

cl ass Devi ce(ManagedEntity, Conmandabl e):

event _key = portal _type = neta_type = 'Device'
default _catal og = "devi ceSearch" #devi ce ZCatal og
rel ati onshi pManager Pat hRestriction = '/ Devi ces'

_relations = ManagedEntity. relations + (
("groups", ToMany(ToMany, "DeviceG oup", "devices")),
)

From DeviceGroup.py

from Products. ZenRel ati ons. Rel Schema i nport *
cl ass Devi ceG oup(Devi ceOrgani zer):

Organi zer configuration
dndRoot Nane = "G oups”

portal type meta_type = event _key = 'Devi ceG oup'

_relations = DeviceOrgani zer. _relations + (
("devi ces", ToMany(ToMany, "Device", "groups")),
)

According to this relationship there can be more than one Device assigned to a Device Group and more than one
Device Group assigned to a Device. This relationship is created by:

* |mporting ToMany from Products.ZenRel ations.Rel Schema.
* Appending a two-item tuple of to the _relations attribute
o Thefirst item in the tupleisa"string" object which isthe local name

0 The second item in the tuple is a "Rel Schema" object which represents the relationship to another class. In this
case the ToMany constructor creates/returns the Rel Schema object.

+ Rel Schema constructors takes 3 parameters

The first parameter is a "type" object, "remoteType" which represents the relationship from another class. The
"type" should be of a class derived from Rel Schema

37

Extending the Model

The second parameter is a "string" object, "remoteClass’ which is the class name of the relative. In this case it
is again the ToMany relationship.

The third parameter isa"string" object, "remoteName" which the remote name of itself.

* Appending a complementary 2 item tuple to the _relations attribute in the relative class.

8.3.1. One-to-Many (1:N) Container Relationships

Deviceto Hard Drives

Thisisarea example which illustrates a one-to-many relationship between one ! DeviceHW and many HardDrives
where a!DeviceHW object contains HardDrives.

From DeviceHW.py...

from Products. ZenRel ati ons. Rel Schema i nport *
cl ass Devi ceHW Har dwar e) :
meta type = "Devi ceHW

_relations = Hardware. relations + (
(" harddi sks", ToManyCont (ToOne, "HardDi sk", "hw')),

)

From HardDisk.py...

from Products. ZenRel ati ons. Rel Schema i nport *
cl ass Har dDi sk(HWConmponent) :
portal type = neta_type = 'HardDi sk’

_relations = HAMConponent. rel ations + (
("hw', ToOne(ToManyCont, "DeviceHW, "harddi sks")),
)

According to thisrelationship there can be only one DeviceHW assigned to aHardDisk but more than one HardDisk
assigned to a DeviceHW. Thisrelationship is created by:

* Importing ToOne and ToManyCont from Products.ZenRel ations.Rel Schema.

* Appending a 2 item tuple of to the _relations attribute

o Thefirst item in the tupleisa"string" object which isthe local name

0 The second item in the tuple is a"Rel Schema" object which represents the relationship to another class.

+ Rel Schema constructors takes 3 parameters

38

Extending the Model

The first parameter is a "type" object, "remoteType" which represents the relationship from another class. The
"type" should be of a class derived from Rel Schema

The second parameter isa"string" object, "remoteClass’ which is the class name of the relative.
The third parameter isa"string" object, "remoteName" which the remote name of itself.

* Appending a complementary 2 item tuple to the _relations attribute in the relative class.
Specifying the remoteClass in a Relationship

The remoteClass parameter can be specified in areleationship by two methods.

("admin”, ToOne(ToOne, "Admin", "server"))

Inthe example above " Admin" isthe remote class on the relationship. For thisto work properly the module " Admin"
must be in the python path and it must contain a class named "Admin".

This behavior can be modified by using the attribute zenRelationsBaseM odule. For instance if Admin was located
in the path Products.ZenModel you could set zenRelationsBase = " Products.ZenModel". Now the remote classisin
the module Products.ZenModel . Admin and the class must be Named "Admin".

If you wish to put multiple classes into one module and use them in relations you can add the class name to the end
of the remoteClass value. For instance "Admin.Test" would access the module Admin with the class Test.

If the two classes in a relation are in a different packages then you can use the fully qualified path to the
class. For instance here are the definitions of two classes in different packages. Products.ZenWidgets.Menu and
Products.ZenModel .DeviceOrganizer.

In Products.ZenWidget.Menu.py

cl ass Menu(ZenMbdel RM :

_relations = (

("deviceOrg", ToOne(ToManyCont, "Products.ZenMdel . Devi ceOrganizer", "nenus")),
)

In Products.ZenModel .DeviceOrgai zer.py

cl ass Devi ceOrgani zer (ZenModel RV :

_relations = (
("menus", ToManyCont(ToOne, "Products.ZenW dget.Menu", "deviceOrg")),
)

8.4. Zenoss XML Schema

This XML schema describes the output of the zendump command.

39

Extending the Model

<?xm version="1.0" encodi ng="UTF-8" ?>

<xs:schema xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema" >
<xs:el ement name="1link">
<xs: conpl exType>

<xs:attribute name="objid" type="xs:string" use="required" />

</ xs: conpl exType>
</ xs: el ement >

<xs: el enent nanme="obj ect">
<xs: conpl exType>

<xs: choi ce>
<xs: el enent ref="object" />
<xs: el enent ref="property" />
<xs: el enent ref="tomany" />
<xs: el enent ref="tomanycont" />
<xs:el enment ref="toone" />

</ xs: choi ce>

<xs:attribute name="nodul e" type="xs: NMTOKEN' use="required" />
<xs:attribute name="cl ass" type="xs: NMITOKEN' use="required" />

<xs:attribute name="id" type="xs:string" use="required" />
</ xs: conpl exType>
</ xs: el ement >

<xs: el enent nanme="obj ects">
<xs: conpl exType>
<XS:sequence>
<xs: el enent ref="object" />
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >

<xs: el enent nanme="property">
<xs: conpl exType m xed="true">

<xs:attribute name="type" type="xs: NMIOKEN' use="required" />

<xs:attribute name="visible" use="optional">
<xs:si nmpl eType>
<xs:restriction base="xs: NMTOKEN' >
<xs:enuneration val ue="True" />
</xs:restriction>
</ xs:si npl eType>
</xs:attribute>

<xs:attribute name="node" type="xs:string" use="optional" />
<xs:attribute name="setter" type="xs: NMITOKEN' use="optional" />

<xs:attribute name="sel ect _vari abl e" use="optional ">
<xs:si nmpl eType>
<xs:restriction base="xs: NMTOKEN' >
<xs:enuneration val ue="IineTypes" />
<xs:enuneration val ue="rrdtypes"” />
<xs:enuneration val ue="sourcetypes" />
</ xs:restriction>
</ xs: si npl eType>
</ xs:attribute>
<xs:attribute name="id" type="xs: NMTOKEN' use="required" />

40

Extending the Model

</ xs: conpl exType>
</ xs: el ement >

<xs: el enent nanme="t omany" >
<xs: conpl exType>
<XS:sequence>
<xs:elenment ref="1ink" />
</ xs: sequence>
<xs:attribute name="id" type="xs: NMITOKEN' use="required" />
</ xs: conpl exType>
</ xs: el ement >

<xs: el enent nanme="t omanycont" >
<xs: conpl exType>
<Xs:sequence>
<xs: el enent ref="object"” maxCccurs="unbounded" />
</ xs: sequence>
<xs:attribute name="id" type="xs: NMTOKEN' use="required" />
</ xs: conpl exType>
</ xs: el ement >

<xs:el enment nanme="toone">
<xs: conpl exType>
<xs:attribute name="objid" type="xs:string" use="required" />
<xs:attribute name="id" type="xs: NMTOKEN' use="required" />
</ xs: conpl exType>
</ xs: el ement >

</ xs: schena>

8.4.1. object

<xs: el enent nanme="object">
<xs: conpl exType>
<xs: choi ce>
<xs: el enent ref="object" />
<xs: el enent ref="property" />
<xs: el enent ref="tomany" />
<xs: el enent ref="tomanycont" />
<xs:el enent ref="toone" />
</ xs: choi ce>
<xs:attribute name="nodul e" type="xs: NMITOKEN' use="required" />
<xs:attribute name="cl ass" type="xs: NMITOKEN' use="required" />
<xs:attribute name="id" type="xs:string" use="required" />
</ xs: conpl exType>
</ xs: el ement >

8.4.1.1. Example

<obj ect id='del et eActi onRul eW ndows' nodul e=' Products. ZenMbdel . ZenMenul teml cl ass=" ZenMei
<property type="text" id="description" node="w' >

41

Extending the Model

Del ete Rul e Wndows. ..

</ property>

<property type="text" id="action" node="w' >

di al og_del et eAct i onRul eW ndows

</ property>

<property type="bool ean" id="isgl obal" node="w' >
True

</ property>

<property type="lines" id="pernissions" node="w' >
(' Change Alerting Rules',)

</ property>

<property type="bool ean" id="isdial og" nmode="w' >
True

</ property>

<property type="float" id="ordering" node="w' >
80.0

</ property>

</ obj ect >

The object element is an XML representation of a Zope object. The example above is the XML representation of
aZenMenultem object.

8.4.1.2. Attributes

* id - the unique identifier for the object instance
« class - the classname of the object instance

* module - the module in which this object's classis defined

8.4.1.3. Children

 object - an object may also have objects as children
 property - (see property element section below)

« tomany - (see tomany element section below)

« tomanycont - (see tomanycont element section below)

« toone - (see toone element section below)

8.4.2. objects

<xs: el enent nanme="obj ects">
<xs: conpl exType>
<Xs: sequence>
<xs: el enent ref="object" />
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >

42

Extending the Model

8.4.2.1. Example

<obj ect s>

<obj ect id='del et eActi onRul eW ndows' nodul e=' Products. ZenModel . ZenMenul tem cl ass=' ZenMel
<property type="text" id="description" node="w' >

Del ete Rul e W ndows. ..

</ property>

</ obj ect >

</ obj ect s>

The object element is an XML representation of a Zope object. The example above is the XML representation of
aZenMenultem object.

8.4.2.2. Children

« object - the objects element may also have object as children

8.4.3. property

<xs: el enent nanme="property">
<xs: conpl exType mi xed="true">
<xs:attribute name="type" type="xs: NMITOKEN' use="required" />
<xs:attribute nanme="visible" use="optional">
<xs: si npl eType>
<xs:restriction base="xs: NMTOKEN' >
<xs:enuneration val ue="True" />
</xs:restriction>
</ xs: si npl eType>
</ xs:attribute>
<xs:attribute name="node" type="xs:string" use="optional" />
<xs:attribute name="setter" type="xs: NMTOKEN' use="optional" />
<xs:attribute name="sel ect _vari abl e" use="optional ">
<xs: si npl eType>
<xs:restriction base="xs: NMTOKEN' >
<xs:enuneration value="IineTypes" />
<xs:enuneration val ue="rrdtypes" />
<xs: enuneration val ue="sourcetypes" />
</xs:restriction>
</ xs: si npl eType>
</ xs:attribute>
<xs:attribute name="id" type="xs: NMTOKEN' use="required" />
</ xs: conpl exType>
</ xs: el ement >>

8.4.3.1. Example

<property type="float" id="ordering" node="w' >
80.0
</ property>

43

Extending the Model

The property element represents a property of an object in Zope. The example above represents an "ordering”
property of an object. The value of the "ordering" property is 80.0 and is of type float.

8.4.3.2. Attributes
* id - the unique identifier of this property
« type- the datatype of the property's value
« visible - an optional boolean, aflag used to display or hide the property
« mode - read/write permission of this property
* setter - the name of the method to set this property

» select_variable - the name of the list which hold the possible values of this property

8.4.4. tomany

<xs: el enent nanme="t onmany" >
<xs: conpl exType>
<XS:sequence>
<xs:elenent ref="Ilink" />
</ xs: sequence>
<xs:attribute nanme="id" type="xs: NMITOKEN' use="required" />
</ xs: conpl exType>
</ xs: el ement >

8.4.4.1. Example

<t omany i d='devices' >
<link objid="/zport/dnd/ Devi ces/ Server/Li nux/devi ces/ MYDEVI CE' / >
</t omany>

The tomany element represent a ToManyRelationship object in Zope. The example above is of the "devices' to
many relationship on an object.

8.4.4.2. Attributes

* id - unique name of the to many relationship

8.4.4.3. Children

« link - (seelink element below) These links are the XML representations of the references to related objects

8.4.5. tomanycont

<xs: el enent nanme="t onanycont" >
<xs: conpl exType>
<Xs:sequence>
<xs: el enent ref="object" nmaxCccurs="unbounded" />
</ xs: sequence>

Extending the Model

<xs:attribute name="id" type="xs: NMTOKEN' use="required" />
</ xs: conpl exType>
</ xs: el ement >

8.4.5.1. Example

<t omanycont id='instances' >

<obj ect id='"dropbear' nodul e=' Products. ZenEvents. Event C asslnst' class='Eventd assl nst'
<property type="string" id="eventd assKey" node="w' >

dr opbear

</ property>

<property type="int" id="sequence" node="w' >

1

</ property>

</t omanycont >

8.4.5.2. Attributes

* id - the name of the to many cont relationship

8.4.5.3. Children

« object - the tomanycont element may have objects elements as children, these subobjects are the XML represen-
tations of these related objects

8.4.6. toone

<xs: el enent nanme="toone">
<xs: conpl exType>
<xs:attribute nanme="objid" type="xs:string" use="required" />
<xs:attribute nane="id" type="xs: NMTOKEN' use="required" />
</ xs: conpl exType>
</ xs: el ement >

8.4.6.1. Example

<t oone id='perfServer' objid="/zport/dnd/ Mnitors/Performance/l ocal host'/>

The toone element represents a ToOneRel ationship on an object. The example above is atoone relationship named
"perfServer”. It represents a device's relationship to only one perfomance server "localhost"

8.4.6.2. Attributes

* id - the name of the toone relationship of an object

 objid - the path to the related object

8.4.7. link

<xs: el ement nane="link">

45

Extending the Model

<xs: conpl exType>
<xs:attribute name="objid" type="xs:string" use="required" />
</ xs: conpl exType>
</ xs: el ement >

8.4.7.1. Example

<link objid="/zport/dnd/ Devices/ Server/Li nux/ devi ces/ MYDEVI CE' / >

Thelink is areference to another object element rather than a new instance of an object element.

8.4.7.2. Attributes

 objid - isthe path to the object

8.5. Zenoss Permissions

In this example we'll be adding a new permission named "Example Permission”, assigning it to a method, then
checking for that permission.

8.5.1. Adding New Permissions

1. Add the new permission to $ZENHOVE/ Pr oduct s/ ZenModel / ZenossSecurity. py

ZenossSecurity. py isafilewhere all the string constants for Zenoss permissions are held. By adding this
lineto ZenossSecurity. py weve made anew constant that will be used to assign to a method.

ZEN EXAMPLE PERM SSI ON=' Exanpl e Perm ssi on'

2. Now that we have a "name" for the permission available, we should add the permission to Zope. In $ZEN-
HOVE/ Pr oduct s/ ZenModel / Zent i nal Port al . py thereisaclassnamed Por t al Gener at or . There
isamethod named set upPer ni ssi ons() definedin Port al Gener at or .

Here you'll see a group of calls to manage permissions. Add a new line to this method that adds your new
permission.

np(ZEN_EXAMPLE_PERM SSI ON, [ZEN_MANAGER ROLE, MANAGER ROLE], 1)

The first parameter is the permission. In this example the permission being managed is
ZEN_EXAMPLE_PERMISSION. The second parameter is the list of default roles assigned to the permission.
InthisexampleZEN_MANAGER_ROLE and MANAGER_ROLE are set as defaults. The third argument isthe
acquired flag. When the flag is set to true, the permissions will be acquired in addition to the ones specified.

3. To make your permission official you'll need to use this permission. Apply your newly added permission to a
method. See the next section on assigning permissions to a method. Y our permission must be delcared and used
by a method to make it avalid permission.

8.5.2. Assigning Permissions to a Method

1. Import your your new permission:
from Products. ZenModel . ZenossSecurity inport *

2. Import ClassSecuritylnfo. In most cases we have set ClassSecuritylnfo to security

46

Extending the Model

from AccessControl inmport CassSecuritylnfo
security = CassSecuritylnfo()

3. Above the method definition add this line of code

security. decl areProt ect ed(ZEN_EXAVMPLE _PERM SSI ON, ' exanpl eMet hod')
def exampl eMet hod(sel f):

The first parameter to decl ar ePr ot ect ed() is the permission to be set on the method. In this case the
permission is ZEN_EXAMPLE_PERM SSI ON. The second parameter is the name of the method. In this case
the name of the method isexanpl eMet hod() .

8.5.3. Checking Links

1. To check permission on a object, call checkRenot ePer () .
sel f. checkRenot ePer n{ ZEN_EXAMPLE_PERM SSI QN, f 00)
The first parameter is the permission to check. In this case the permission is ZEN EXAMPLE _PERM SSI ON.

The second parameter is the object being checked. In this case the name of the object isfoo. Thiscall will check
if foo hasthe ZEN_EXAMPLE_PERM SSI ON.

47

Chapter 9. Zenoss Daemons

9.1. Twisted Network Programming Overview

Zenossrelies heavily on the Twisted network [http://twistedmatrix.com/trac/] Python libraries. Twisted providesan
asynchronous, layered networking stack that isused by Zenossfor daemon communicationsaswell asfor contacting
devices. The main Twisted documentation [http://twistedmatrix.com/trac/wiki/Documentation] can provide amore
detailed background.

One of the central conceptsin Twisted is not a multi-threaded design, but an asynchronous design. This means that
it isevent-driven (ie the next function to be called depends on what datais received) with co-operative multi-tasking
(ie abadly behaved function that sleeps or takes along time to execute can stall an entire application). The unit of
co-operative multi-tasking is a deferred object. A simplified overview is that a Twisted program starts a bunch of
deferred tasks and then waits for timers to expire and network events to happen.

Daemons communi cate with ZenHub via Twisted Perspective Broker (PB) [http://twistedmatrix.com/projects/core/
documentation/howto/index.html], which is alibrary for transfering objects over the network. The most important
PB concepts for our purposes are these:

* Methodsthat start with r enot e_ are callable from the daemons.

e There are restrictions on what type of objects can be passed back and forth between the service and the daemon.
Passing native Python typesis supported, as well as some support for more simple objects (classes without meth-
ods). Simple objecteds can be marked using the PB method pb. set Unj el | yabl eFor O ass() to help ac-
complish this goal.

Can we include the Twisted overview diagram (http://twistedmatrix.comvprojects/core/documentation/how-
to/overview.html) here?

9.2. Zenoss Daemon Overview

There are afew general types of daemon typesin Zenoss:

Types of Daemonsfound in Zenoss

zenhub Each instance of zenhub opens a connection to the ZODB. All other daemons connect
to the hub in order to receive and transmit changes to the ZODB.

modeler daemons These daemons attempt to construct a model of devices and networks using Zenoss ob-
jects, and associate componentswith devicesto preparefor performance data collection.

collector daemons Collector daemons are concerned with gathering performance data for each of the mod-
eled components and storing the results in RRD files. The RRD data is always stored
locally to the host that runs the collector daemon.

event daemons An event daemon converts messages received from devices using whatever method the
device supports, and converts the messages into Zenoss events.

zenrender A render server takes a request for an RRD graph, renders the graphic and sends the
graphic back. A render server will be found where collectors run, as the collectors gen-
erate the RRD files.

48

http://twistedmatrix.com/trac/
http://twistedmatrix.com/trac/
http://twistedmatrix.com/trac/wiki/Documentation
http://twistedmatrix.com/trac/wiki/Documentation
http://twistedmatrix.com/projects/core/documentation/howto/index.html
http://twistedmatrix.com/projects/core/documentation/howto/index.html
http://twistedmatrix.com/projects/core/documentation/howto/index.html

Zenoss Daemons

Zenoss Enterprise users also have the option of using Distributed Collectors, which can create hubs and collectors
on different hosts in order to monitor devices. With Distributed Collectors there may be multiple zenhub daemons
(one per hub, naturally), and for a host with collector daemons there will also be arenderserver.

9.3. zenhub: Daemon to ZODB management

The zenhub daemon (aka the Hub or ZenHub) is a single-threaded and asynchronous daemon that provides the
following features:

» Connections between daemons and the ZODB for persistent object management (eg configuration loading).
Writes to the ZODB are synchronous operations.

¢ Connections between daemons and the MySQL event database for events and event management. Writes to
MySQL are synchronous operations.

« Connections between daemons and performance datain RRD files
¢ Pluggable Daemon Services

« User-interactive RRD graph fetching (eg renderserver functionality)
 Loading configuration

TheHub (as of Zenossversion 2.3) can be split out some of itstasks by creating workers (aconfiguration file option).
Requests from collectors are farmed out to the worker processes to spread out some of the load.

Note

Propagating configuration changes and fetching RRD Datais not pushed through workers! Thismeans
that large configuration downloads will still affect the user experience. Some sort of caching on the
daemon's side may be necessary for large sites.

9.3.1. Daemon to ZODB management

The zenhub daemon manages updates to the object database (ZODB) to any daemons that connect to zenhub
(in practice this means all Zenoss daemons). The Hub watches for changes to the ZODB database (eg the use of
theconmi t () function) and initiates change notifications to any affected daemons. zenhub also provides daemos
access to the object database for loading configuration items and posting events.

9.3.2. Heartbeats and other Events

Another management function that zenhub providesisthe ability to send notifications (ie Zenoss events). An event
will be provided from the daemon to the Hub which then stores the event in the event database (ie aMySQL table)
and then the event is processed according to any mappings that match the event. In this way an event generated by
an error condition can be cleared by another event.

Each daemon should post an event when it is shutdown, so that the consol eiskept informed of intentional shutdowns.
However, these events should be cleared by matching start events. Start/shutdown events should only be sent when
the server is daemon-ized.

Each daemon should post a periodic Hear t beat event. If a heartbeat event is not updated the Zenoss GUI will
indicate a problem with the daemon. Ideally, adaemon only sends a heartbeat event after each successful operating
cycle (eg performance data collection). It is not acceptable to just post events in a separate thread or timer unless
that thread also does some minimal testing for internal status and health.

49

Zenoss Daemons

If the daemon cannot talk to the Hub (eg zenhub is down) then events are queued up. When communications are
restored the queued events are then delivered.

9.3.3. Pluggable Daemon Services

To implement these features, zenhub has a collection of Services that it is willing to provide to other daemons.
A daemon will connect and request a particular Service. ZenHub will create that Service, and send future object
change notices to the Service, which in turn can decide how best to notify the daemon. Some daemons, such as
zenping, have avery simple configuration that doesn't change very often. Others, such as the zenperfsnmp, have
amuch more complex configuration that must be kept up-to-date with model changes.

Each Serviceisimplemented as aclassthat zenhub can import. Using Twisted's Perspective Broker (PB) facilities,
a daemon can request that the Hub perform some action (ie a class method) and return the results to the daemon,
and vice versa. In other words, the Service acts as the interface between the daemon and the Hub. Theser vi ces
directory in a ZenPack directory structure is where the Service classis kept.

9.4. Developing a Daemon

9.4.1. Command-line Options

Each daemon should support:

$ nydaenon start

This should deamon-ize the new daemon, running it forever in the background.

$ nydaeron stop

This should find the collector and stop it with a graceful shutdown.

$ nydaenon run

The new daemon should run for one cycle (if it has acycle), and should not daemon-ize and log to stderr.

Thankfully most of this infrastructure is taken care of for you. Should you require more command-line options,
here's how you should take advantage of the existing code:

from Products. ZenHub. PBDaenon i nport PBDaenon
cl ass nycl ass(PBDaenon)

def buil dOptions(self):
"""Build our list of command-line options
PBDaenon. bui | dOpt i ons(sel f)
sel f. parser.add_option('--newoption’
dest ="' dest _var', action="store_true", default=False,
hel p="Do something really interesting")

The option formats are as specified in the Python opt par se library [http://docs.python.org/library/optparse.html].

Other features taken care of with the Zenoss daemon infrastructure is reading from configuration files, the - -
genconf flag (which produces a configuration file populated with all options, comments and default values) as

50

http://docs.python.org/library/optparse.html
http://docs.python.org/library/optparse.html

Zenoss Daemons

well asthe- - genxnil t abl e flag (which produces a DocBook XML table showing command-line switches). As
other features can be added to the base class, if you follow this reccomendation there are more things your daemon
getsfor free.

9.4.2. Add the Daemon Control Script

The daenons directory should contain afile with the name of your daemon (eg the one that should appear under
the Daemons tab under Settings). Thisfile is an executable shell script which should contain the following:

#! [usr/bin/env bash
$ZENHOVE/ bi n/ zenf uncti ons

MYPATH="python -c "inport os.path; print os.path.real path('$0")"’
THI SDI R="di r nane $MYPATH

PRGHOVE="di r nane $THI SDI R

PRGNAMVE=Nnydaenon. py

CFGFI LE=$CFGDI R/ nydaenon. conf

generic "$@
Of course, the PRGNANME and CFGFI LE variablesdon't necessarily need to be contain the same name as the daemon.
However, keeping the same name will certainly make things much less confusing.

Thenydaenon. py fileisassumed to live at the base of the ZenPack.

9.4.3. Setup ZenHub Communications

The basics of daemon communications are these

Procedure 9.1. Daemon to ZenHub Commnication Steps

1. A daemon connectsto ZenHub. The raw mechanics of this are handled by the PBDaenon claseses so we don't
need to explicitly code anything to deal with this administrivia

2. The daemon requests specific Services by name from ZenHub. The Services are classes either already known
to ZenHub or classesprovided intheser vi ces directory in aZenPack and areloaded by ZenHub at runtime.

3. Thedaemon callsr enpt e_ methods on the Service objectsfrom ZenHub to receive configuration information
or perform other work.

4. The Servicescan aso cal r enot e methods on the daemon to provide updates, etc.

9.4.3.1. Registering Services with the Hub

The ser vi ces directory needs to be created at the base directory of your ZenPack. Included in this directory is
the__init__.pyfile The _init__.py canbeempty, butit must exist or any service class files cannot be
loaded by zenhub.

zenhub imports Services (eg a daemon-to-Hub interface class) and the daemons can then use their own Service to
perform actions. Look for the example closest to your needs from the $ZENHOVE/ Pr oduct s/ ZenHub/ ser -
vi ces/ directory aswell asfrom other ZenPacks (eg HelloWorldZenPack, ZenIM X).

51

Zenoss Daemons

A basic Service class can be found in the Products. ZenHub. HubServi ce. HubServi ce
class. More complex daemons doing data collection may want to subclass
Pr oduct s. ZenHub. Per f or manceConf i g. Per f or manceConf i g instead to take advantage of some ad-
ditional infrastructure there.

52

Chapter 10. Add a Performance
Daemon

10.1. Overview

Zenoss is designed to be an extensible platform for integrating new performance collectors. Basically, this should
be a simple matter of getting the list of devices and sending/receiving data over the network to collect new values.
Essentially, thisiswhat every collector does.

Each collector should post values to RRD files and execute thresholds against those updates. The Python class
RRDUt i | supports writing values to RRD files. The Python class Thr eshol ds will simplify the execution of
thresholds on each RRD update.

Data collection needs to work in awide variety of networking infrastructures, so it needs to have acceptable perfor-
mance in light of high latency wide-area networks. Collectors should intentionally interleave requests to multiple
devices to reduce the overall time necessary to walk the list of devices. Collectors should not overload a single
device by sending multiple outstanding requests to that device.

In order to debug collection, the collector should be capable of logging detailed debugging output at each step
of collection, as well as posting events about collection failure. In particular, logging raw values and errors from
devices helps find errors in post-processing. Any performance information about total devices collected, or total
collect time should be posted at the informational level (above debug).

Since the collectors are generally going to run long-term, cached values and other stored and pre-computed values
should be periodically purged in order to synchronize the collectors' state with the real world, as well to eliminate
possible memory leaks.

If the collector monitors device components as well as whole devices, it may be necessary to load the device con-
figuration information in an incremental way. If it takes 30 minutes to gather the configuration information, this
is simply too slow and unresponsive. The collector should load its configuration information incrementaly, per-
forming collection against those devices it knows about. It can cache the configuration information persistently to
provide alarger "initial set" of configuration upon start-up.

Many collectors benefit from "pre-failing" their devices. They get the list of devices presently marked down by the
ping tester, and they skip those devices during collection. This eliminates unnecessary longer delays as collectors
run against devices that are just unreachable.

10.2. DataMaps

Zenoss divides data collection into two parts: modeling, and performance collection. During the modeling, or dis-
cover step, the external world is sampled through a series of plug-ins. The result of the discovery step is a generic
"Map": anested data structure that mimics the structure of the components within a device.

For example, we can query the list of network interfaces on a device using SNMP. We will map that into a data
structure to mimic the path on the device:

{ "os" : { "interfaces' { 'eth0': { '"type': 'ethernetCsmacd',

"speed': ... }
{ "ethl': { "type': 'ethernetCsmacd',
"speed': ... }

53

Add a Performance Daemon

These dictionaries of collected data are called Dat aMaps. Thereis a set of recursive functions that walk the maps
and apply the values to the device, creating components and setting values on them. In this way, a remote collector
can push updated configuration back to the central database without concern as to what the current configuration
is, and what exactly should be updated.

The Zenoss plugins are specialized to easily create these maps. Typically they consist of a single method pr o-
cess() totransform SNMP query resultsinto Dat aMaps. The plugin specifies the SNMP tables to be scanned,
and the process method is used to transform the results into DataM aps. Some plugins can test their applicability to a
specific device. For example, the plugin may only be appropriateif the device supports SNMPv2, or has aparticular
agent OID. These plugins have a "test” method which is run before the plugin is used by the modeler.

SSH plugins, which are very much like SNMP plugins, transform output of various commands into datamaps. For
example, the output of the Unix df command istransformed into a map to create and update filesystem information.

10.3. Performance Collection

Modeling updates the object database model with information about what data to collect. As an example, if the
modeler detects three network interfaces, it creates sl ot s for each network interface, and each of these dots is
referenced by an index. It is now up to the data collector to fill each of these slots with performance data.

When the performance collectors read their configuration, the devices are matched against templates, and each
template contains each datasources (iewhat datapoints (such as SNMP Ol Ds) and their slot to collect) and threshol ds.
In addition, any information necessary to read the performance data (eg zProperties that contain login information)
isretreived. Thisinformation is usually organized by device, and isloaded by the collector when it is started.

When devices change configuration (and therefore change the peformance datathat needsto be collected), the model
must be refreshed either with an explicit selection of Model Device on the device, or by the periodic runs of a
modeler (eg zennodel er).

Connecting Collectors and Services

All collectors (and the modelers) are sub-classed from PBDaenon. PBDaenon will automatically connect
to zenhub and re-connect as needed. It provides an easy-to-use Event Service.

The configuration format and API for getting and updating any specific collector will depend on the Service
it uses. There are afew caveats about forwarding configuration to collectors:

1. Change notifications are very "bursty".
2. A sequence of updatesin aburst will often update the same object many times.

3. The configuration for thousands of devices can take along time to extract. The configuration should be
pushed or pulled incrementally.

Caveats 1 and 2 mean that we often delay sending updates by several secondsto reduce the number of changes
sent. Caveat 3 makes for complex exchanges between a service and the collector. There are classes to support
delayed evaluation of configuration (Pr ocr ast i nat or). There is support for determining the type of ob-
ject change: the deletion of a device, the update of a template, and the update of a monitor's configuration
(Per f or manceConf i g).

10.4. Creating a New Collector

For this section, wewill contemplate anew collector that will collect ping performance data. We will want to create
anew DataSource type with several built-in DataPoints, such as Average Ping Time, and Fastest Ping Time.

Add a Performance Daemon

10.4.1. Constructor

The following example is a simple network ping-performance collector. It relies on the availability of fping to
perform the actual ping test.

cl ass pi ngper f (RRDDaenon) :
initial Services = RRDDaenon.initial Services + [
' ZenPacks. zenoss. Pi ngPer f . Pi ngConfi g'
]
configCyclelnterval = 20*60
pi ngCycl el nterval = 5*60

The class pingperf is derived from a base class that supports writing to RRD files. It is a also PBDaemon, which
meansthat it will connect to zenhub to fetch it's configs and post events. PingConfig isthe module/class that will be
loaded in ZenHub to satisfy zenperf's configuration requests. We also configure reasonable default values for two
cycles: the time between configuration refreshes and the time between ping tests.

def __init__(self):
RRDDaemon. __init__(self, 'pingperf')
sel f.devices = {} # device id -> ip address
sel f.running = Fal se

The constructor for this class calls the base's constructor, passing our name. We will need to hold the configuration
between cycles, so weinitialize an empty configuration. If the ping testing takeslonger than one configuration cycle,
we won't want to start a second test. We set a flag to note that we aren't running a ping test (yet).

When the base class is started, it attempts to connect to ZenHub and get remote references to the services is will
use. Most collectors have two services: Event Ser vi ce and a collector-specific service that scans the model for
configuration. Our service will be Pi ngConf i g. After the service reference are loaded, the base class calls a
connect ed() method.

def connected(self):
def inner(driver):
| og. debug("fetching config")
yield self.fetchConfig()
driver.next ()
drivelLater(self.configCyclelnterval, inner)
drive(inner).addCal | backs(sel f.pi ngDevi ces, self.errorStop)

This method uses a technique to serialize a callback chain. Seethe ZenUt i | s/ Dri ver . py for details on how
this works. The effect is that the config is loaded with the f et chConfi g() method, and the inner function is
called repeatedly after configCyclelnterval seconds.

Once the inner function compl etes the first time, it either calls pi ngDevi ces() onsuccessor error St op()
on failure.

10.4.2. Getting a List of Devices

When the collector connects, and requestsits config from the Service, the service will walk thelist of all the devices
for that monitor, and extract out the ping DataSources:

def renote_get Devi ces(sel f):
config =[]
moni tor = sel f.dnd. Monitors. Performance. _get Ob(sel f. nane)

55

Add a Performance Daemon

for dev in self.nonitor. devices():
for tenpl in dev.get RRDTenpl ates():
dat aSour ces = tenpl. get RRDDat aSour ces("' Pi ng')
i f dataSources:
br eak
el se:
conti nue
confi g. append(
(dev.id, # name of the device
dev. get Managel p(), # the IP to ping
dev. get Threshol dl nst ances(' Ping')
any threshol ds on the ping
)
)

To make this configuration load incremental, the Service can send just the name of the devices to load, and then
the collector can use a different method to load the configuration of each device at a later time. For such asimple
configuration, it may not be worth the extra complexity.

When this codeis placed into a class that is a sub-class of HubService, it can be loaded by name, when the collector
loads it services. PBDeamon will automatically connect you to this service, if the name of the service is provided
in the the class configuration.

The call to get this configuration in our new collector looks like this:

d = sel f.getService('some. package. Pi ngService'). call Renote(' get Devi ces')
d. addCal | back(sel f.start Col | ecti on)

Note

1. PBDaenon has already connected you to the service sone. package. Pi ngSer vi ce class.
2. get Devi ces becomesr enpt e_get Devi ces inthe hub.

3. The protocol for getting configurations is anything you like: you can control both sides of the
communications.

4. Requests and responses are asynchronous and will involve callback objects.

5. The communications are heavily dependent on the Prospective Broker (PB) library in Twisted.
Please refer to the Perspective Broker (PB) documentation [http://twistedmatrix.com/projects/core/
documentation/howto/pb-intro.html] for how the calls to remote objects work.

10.4.2.1. Thresholds

As each collector reads updated performance datait will evaluate any thresholds associated with those updates. The
classes representing those threshol ds must be |oaded before the thresholds may |oaded evaluated. So, each collector
asks ZenHub for the names of all of the thresholds that can be monitored, and imports them for future use.

The management of Thresholdswithin the collector iscomplex. Thereexistsaclass (Thr eshol ds) to managethe
Thresholds and transform performance updates into events.

10.4.3. f et chConfi g()

Let'slook at f et chConfi g():

56

http://twistedmatrix.com/projects/core/documentation/howto/pb-intro.html
http://twistedmatrix.com/projects/core/documentation/howto/pb-intro.html
http://twistedmatrix.com/projects/core/documentation/howto/pb-intro.html

Add a Performance Daemon

def fetchConfig(self):
'CGet configuration values from ZenHub'
def inner(driver):
yi el d sel f.nodel (). cal |l Renot e(' get Def aul t RRDCr eat eComand')
creat eCommand = driver. next ()

yield self.nodel ().call Remote(' propertyltens')
sel f.setPropertyltens(driver.next())

self.rrd = RRDUti | (createConmand, sel f. pingCyclelnterval)

yi el d sel f.nodel (). call Renot e(' get Thr eshol dCl asses')
sel f.remot e_updat eThr eshol dC asses(dri ver. next())

yi el d sel f.nodel (). call Renot e(' get Col | ect or Threshol ds')
self.rrdStats. config(self.options.nonitor,

sel f. name,

driver.next(),

cr eat eCommuand)

devices = []
if self.options.device:
devices = [sel f.options. device]
yi el d sel f.nodel (). call Renot e(' get Devi ces', devices)
update = driver.next()
if not isinstance(update, dict):
| og. error("getDevices returned: %" % update)
el se:
sel f.devices = update
return drive(inner)

Herethe samedrive/inner techniqueis used to serialize abunch of asynchronousremote method calls. The base class
provides amethod called model () which returns aremote reference to the collector-specific configuration class. We
call severa remote methods, most of which are inherited from a base ZenHub service class.

We must get the default RRD create command. Then we copy the collector properties, which provides updated
valuesfor pingCyclelnterval and configCyclelnterval. In order to execute thresholds, we need to know the set of all
threshold classes and get them imported. After the threshold classes are installed, we have to get the thresholds for
this collector. These thresholds do not belong to the datapoints to be collected (ping response time), but for values
like "total cycle time" that are based on the collectors performance.

Finally we call the remote method get Devi ces() which returnsamapping of deviceid to |P address. We make
alowances for the simple one-device invocation:

pi ngperf -v 10 -d soneDevice

10.4.4. Collector's ZenHub Service

Here's our ZenHub service:

from Products. ZenHub. servi ces. Perf ormanceConfi g i nport PerformanceConfig
cl ass Pi ngConfi g(PerformanceConfig):

57

Add a Performance Daemon

A very simple service for fetching device data

def get Devi ceConfig(self, device):
return (device.id, device.getMnagelp())

def sendDevi ceConfig(self, listener, config):
|'istener. call Renot e(' updat eDevi ce', config)

def renote_get Devices(sel f, devices):
result = {}
for d in self.config.getDevices():
if not devices or d.id in devices:
result[d.id] = d.getManagel p()
return result

Most of the implementation for this classisin the base class. The base class determines the devices affected when
database changes occur. It then uses the methods getDeviceConfig and sendDeviceConfig to figure out how to send
the changes to the collector.

10.4.5. Miscellanous Functions

Back to the collector, here are the methods that are called by ZenHub to update the collector with changes:

def renote_del et eDevi ce(sel f, dooned):
| og. debug(" Async del ete device %" % dooned)
try:
del sel f. devi ces[dooned]
except KeyError:
pass

def renote_updat eDevi ce(sel f, cfg):
| og. debug(" Async config update for %", cfg.nane)
d, ip =cfg
self.devices[d] =ip

10.4.6. Collect the Performance Data

The only method left in our simple collector is to actually ping some devices, post the timings to a configuration
file, send any resulting events, and send a heartbeat.

def pingDevices(self, ignored=None):
def inner(driver):
reactor.call Later(sel f.configCyclelnterval, self.pingDevices)
if not self.options.cycle:
sel f.stop()
if self.running:
log.error("Ping is still running")
return
sel f.running = True

| og. debug("Pinging %..." % (" ".join(self.devices.keys())[:100]))
start = time.tinme()

58

Add a Performance Daemon

revMap = dict([(ip, d) for d, ip in self.devices.itenms()])
fd, fname = nkstenp()
fp = os.fdopen(fd, "w')
| og. debug("Witing devices to tenpfile %." % f nane)
fp.wite('\n' .join(revMap. keys()) + '\n")
fp.close()
fromtwi sted.internet.utils inport getProcessQutput
fping = os.path.join(os.path.dirnane(__file__), "fping.sh")
| og. debug("starting %" % f pi ng)
yi el d get ProcessQut put (fpi ng, (fnane,))
| og. debug("fping returned: %" %driver.next())
for line in driver.next().split('\n"):

if not line: continue

mat ch = par selLi ne. mat ch(li ne)

if not match:

| og. debug(" % does not match expected output™ %/line)
conti nue

ip = match. group(IlP)

ms = float(rmatch. group(Ms))

if not revMap. has_key(ip):

conti nue
devi ce = revMap. pop(i p)
path = ' Devices/ %/ ping_time' % device

ms = self.rrd.save(path, ns, ' GAUGE)
for ev in self.threshol ds. check(path, time.time(), ns):
sel f. sendThr eshol dEvent (**ev)
os. unl i nk(f nane)
sel f. heartbeat ()
cycle = self.pingCyclelnterva
sel f.rrdStats. gauge(' devices', cycle, len(self.devices))
sel f.rrdStats. gauge(' down', cycle, len(reviap))
self.rrdStats. gauge(' cycleTime', cycle, tine.time() - start)

d = drive(inner)
def cl earRunni ng(arg):
sel f.running = Fal se
if isinstance(arg, Failure):
| og.error("Error pinging devices: %" % (arg,))
return arg
d. addBot h(cl ear Runni ng)
return d

Thisisalong method, so let'stakeit in parts. Let's take everything outside of the inner() function:

def inner():
#o.o...

d = drive(inner)
def cl earRunni ng(arg):
sel f.running = Fal se
if isinstance(arg, Failure):
msg = "Error occurred in pingperf collection: %" % (arg.val ue,)
sel f. sendEvent (VWARNI NG_EVENT, summrary=nsg)
return arg

59

Add a Performance Daemon

sel f.running = True
d. addBot h(cl ear Runni ng)
return d

Again we are using the same drive/inner approach to serialize asynchronous calls. We also want to track the fact
that we are running the inner method so that we can detect cases where our collection cycle istaking too long. The
clearRunning function is added to the callback chain to ensure that the running flag is reset however the inner func-
tion completes. It was also a convenient place to report on any errors. Here's the definition of WARNING_EVENT
to remove any mystery about it's value:

The following is a constant definition used to send an event if the collector has an error:

WARNI NG_EVENT = di ct (event O ass=St at us_Pi ng,
conponent =" pi ng",
devi ce=socket . get f gdn(),
severity=Warni ng)

The inner function does al the work:

def inner(driver):
reactor.call Later(sel f.configCyclelnterval, self.pingDevices)
if not self.options.cycle:
sel f.stop()
i f self.running:
log.error("Ping is still running")
return

This bit of code controls the ping cycle. By starting the timer call chain immediately we are ensured to repeat the
call in the future even if an error occurs or the collection takes too long.

| og. debug("Pinging %..." % (" ".join(self.devices.keys())[:100]))
start = time.tinme()

revvap = dict([(ip, d) for d, ip in self.devices.itens()])

fd, fname = nkstenp()

fp = os.fdopen(fd, "w')

| og. debug("Witing devices to tempfile 9%." % fnane)

fp.wite('\n' .join(revMap. keys()) + '\n")

fp.close()

Our implementation for pinging all the devices is farmed out to an external process (fping). So we write a config
filefor fping (alist of IP addresses) into atemporary file. Next, we run fping and collect the results:

fromtw sted.internet.utils inport getProcessQut put

fping = os.path.join(os. path.dirname(__file__), "fping.sh")
| og. debug("starting %" % fping)

yi el d get ProcessCut put (fping, (fname,))

| og. debug("fping returned: %" %driver.next())

The next loop parses each line of output using aregular expression:

| og. debug("fping returned: %" %driver.next())
for line in driver.next().split('\n"):
if not line: continue
mat ch = parselLi ne. match(li ne)
if not match:
| og. debug(" % does not match expected output™ %1line)

60

Add a Performance Daemon

conti nue
ip = match. group(IlP)
ms = float (rmatch. group(Ms))
if not revMap. has_key(ip):
conti nue

When amatch is found, we determine the device from the IP address and post the value to an RRD file:

devi ce = revMap. pop(i p)
path = ' Devices/ %/ ping_time' % device
ms = self.rrd.save(path, ns, ' GAUGE)

We usetheresulting value (which may have been averaged in with other datafrom the RRD file) to check thresholds:

for ev in self.threshol ds.check(path, time.time(), ns):
sel f. sendThr eshol dEvent (**ev)

Finally, we remove the temporary file, send a heartbeat, and report statistics on the total number of devices, the
devicesthat did not report, and the total time to process the device list.

os. unl i nk(f nane)

sel f. heartbeat ()

cycle = sel f.pingCyclelnterval

sel f.rrdStats. gauge(' devices', cycle, len(self.devices))
self.rrdStats. gauge(' down', cycle, len(reviap))
self.rrdStats. gauge(' cycleTime', cycle, tine.time() - start)

61

Chapter 11. Adding a new Device Type

In this example we'll add platform support for AlX, which uses vendor extensions to store MIB data which Zenoss
doesn't understand. To simplify things alittle, we'll say that our Zenoss server name is zenossl

11.1. Overview

Adding support for a new platform can be broken down into a number of easily-defined steps:

¢ Add the platform-specific MIB to make it easier to find items to collect SNMP information and map numeric
OIDsto names.

« Add adevice organizer for the platform to create atidy place to store platform-specific information.
» Create modelers to gather information which doesn't change all that often (eg network cards filesystem names)

« Create performance data collectorswhich will be used to gather current usage statistics (eg how full thefilesystem
isnow).

» Create templates which will be used to store the results from the data collectors and use the data for graphing.
Thisalso alows usto set thresholds so that we can generate events when certain conditions are met (eg filesystem
is95% full).

 Create event mappingsto create reasonabl e responses to events coming from the devices. Additionally, if the new
device warrantsiit, create a new event organizer to manage new events.

Tip

1| If the datais collected through an API or network protocol that Zenoss doesn't natively support, it may
be necessary to create a daemon that understands that protocol. This daemon might allow Zenoss to
model, collect performance data and event information, and then store that information.

11.2. Add the MIB

MIBs are used by Zenoss as a way to convert trap output from numeric OIDs to named OIDs. Once you add the
MIB it should be easy to point your device's trapsink to the Zenoss server and from the Zenoss server convert the
traps into Zenoss events.

The AIX MIB whichisstoredinthe/ usr/1i b/ sanpl es/ snnp/ ai x. my MIB file on any AlX server. Copy
the MIB fileto your Zenoss server and add it with the command:
zenmib run $ZENHOM E/shar e/mibg/site/aix.my

Verify that the MIB isin the http://zenoss1:8080/zport/dmd/Mibs mangement page.

11.3. Add a Device organizer

If you wish to create a device organizer so that it's easy to differentiate between other types of devices and the type
that you're adding, feel free to do so. In the case of AlX, there are a couple of types of setups:

Generic Al X Definitions

Standalone Thisdescribesthe case where the entire pSeries server isdedicated to running
one instance of AlX.

62

Adding anew Device Type

Logica PARtition (LPAR) Some Al X pSeriesserversare capabal e of running multipleinstancesof AlX.
An AlX instance (LPAR in IBM speak) is equivalent to a VMware image.

Frames AlIX LPARs are hosted on physical hardware (ie a pSeries server), which
is referred to as a frame. These frames are capable of being run as either a
standalone server or asabunch of LPARs. The frameislike aVMware host.

Virtual 10 (VIO) Server A VIO server isa special LPAR that allows you to consolidate |O hardware
(eg Ethernet, Fibre Channel cards) and share virtualized hardware with oth-
er LPARs. Thisis one of the key technologies required in order to perform
VMoation-style activites for AIX LPARs.

A separate server (called a Hardware Management Console (HMC)) is used to manage standal one devices, frames
and LPARSs (including VIO servers). The HMC is actually a Linux server with a custom configuration to support
AlX. Inthis example, well just add the AIX parts and ignore the HMC.

Add adevice classfor AlX inthe/ Devi ces/ Ser ver / Al X class. From the navigation bar at the left-hand side,
go to the Classes section and select Devices. Then click on Server, which shows you the Sub-Devices screen. From
the Sub-Devices table menu, select Add New Organizer. Provide anid (ie Al X) and click OK.

Under the newly created / Ser ver / Al X organizer, create the LPAR class. Under that class, creataa VI Oclass.

Inthisnewly created scheme, we'reintending on putting standalone serversand framesinthe/ Ser ver / Al Xclass,
any LPARsinthe/ Ser ver/ Al X/ LPARCclass, and any V10 servers (which are aspecial type of LPAR) under the
/ Server/ Al X/ LPAR/ VI Oclass. If we wanted to have each frame contain its own tab showing the LPARS that
it hosts, we would need to create new ZenMbdel objects (complete with relations), instatiate them at the base of
/ Server/ Al Xand then write more ZPTs to handle our custom behaviours.

Another situation where we might be forced to write our own device class Python code is where we want to add
propertiesthat don't exist in other devices. For instance, we may want to record whether or not aFibre Channel device
supports N-Port ID Virtualization (NPIV). This extra property would need to be subclassed from the ZenhMbdel
class and the object initialized from within our ZenPack's__i nit __. py file

11.4. Create a Modeler

When you navigate to a particular host and from the page menu select ManageModel Device, that runsal of the as-
sociated model ers (which, confusingly enough, are set for a device through the MoreCollector Plugins menu item).
What we need to do is copy and customize an existing modeler plugin from $ZENHOVE/ Pr oduct s/ Dat aCol -
| ect or/ pl ugi ns/ zenoss/ snnp and then add that plugin to our list of pluginsthat our platform's device class
will use.

Well start with creating aFi | esyst emmodeler plugin. We'll copy the HRFi | eSyst enivap plugin and call our

plugin Al XFi | eSyst enmvap. py. Using the information in the MIB, we can find the place where it stores the
list of filesystems.

Table11.1. Modeler Functions

Name Required? | Description

condi tion() N ReturnsTr ue or Fal se toindicate whether or not to run the other functions

preprocess() N Thiswill get called beforethe pr ocess() function

process() Y Thisis the actual function that processes any information retrieved from a
guery and convertsit into aformat suitable for updating the device model.

63

Adding anew Device Type

11.4.1. Verify the SNMP connectivity and OIDs

First, verify that your server's SNMP daemon is functional and that you have the correct SNMP version and cre-
dentials. We'll assume that we're using SNMP version 1 and are using the publ i ¢ community, and that your new
host will alow connections from our Zenoss server.

Run the snmpwalk command from the Zenoss monitoring server
snmpwalk -v1 -c public myaixbox.example.com 1.3.6.1.4.1.2.6.191.1 | head

This produces alot of output that we've truncated to save patience and space.

SNWPv2-SM : :enterprises.2.6.191.1.1.1.0 = INTEGER 5

SNWPv2-SM : :enterprises.2.6.191.1.1.2.0 = ""

SNWMPv2-SM : :enterprises.2.6.191.1.1.3.0 = INTEGER 2

SNWMPv2-SM : :enterprises.2.6.191.1.1.4.0 = Gauge32: O

SNWMPv2-SM : :enterprises.2.6.191.1.1.5.0 = INTEGER O

SNVPv2-SM : :enterprises.2.6.191.1.1.6.0 = I NTEGER 2

SNVPv2-SM ::enterprises.2.6.191.1.1.7.0 = STRING "The current used percentage 93 of the
SNWMPv2-SM : :enterprises.2.6.191.1.1.9.0 = INTEGER O

SNVPv2-SM ::enterprises.2.6.191.1.1.10.0 = INTEGER O

SNVPv2-SM ::enterprises.2.6.191.1.1.11.0 = INTEGER O

If you don't see output like the above, nothing else will work. Find the issue and fix it.

: Tip
1 The Zenoss community website hasaZenPack with agraphical MIB browser [http://www.zenoss.com/
community/projects/zenpacks/mib-browser] which might help for these steps.

11.4.2. Common SNMP Issues

Here's alist of some common reasons why snmpwalk may not return any data:
¢ The SNMP daemon on the remote system is not running

¢ The SNMP daemon on the remote system has different security credentials than what you're using (ie version 1
VS version 2c, wrong community name)

¢ The SNMP daemon on the remote system only allows connections from certain | P addresses or | P address ranges
and the Zenoss server doesn't meet that criteria.

* The SNMP daemon on the remote system only allows queries to certain portions of certain MIBs, and you have
specified something not allowed by that policy.

» Thefirewall(s) between the Zenoss server and the remote system do not allow UDP or SNMP traffic.
e Thefirewall on the Zenoss server does not allow UDP or SNMP traffic outbound or inbound.
e Thefirewall on the remote system does not allow UDP or SNMP traffic outbound or inbound.

As afirst sanity check, try the snmpwalk command on the remote host. For example:
snmpwalk -v1 -c public localhost 1.3.6.1.4.1.2.6.191.1 | head

11.4.3. Modeler Code

http://www.zenoss.com/community/projects/zenpacks/mib-browser
http://www.zenoss.com/community/projects/zenpacks/mib-browser
http://www.zenoss.com/community/projects/zenpacks/mib-browser

Adding anew Device Type

doc__="""Al XFi | eSyst emvap

Thi s nodel er determnes the fil esystenms on the device and updates appropriately.
It is up to the performance tenpl ate that nust be naned 'Fil esystens' to coll ect
the actual performance data (eg free/avail abl e bl ocks).

import re

fromProducts. ZenUils.Uils inmport unsigned

from Col | ector Pl ugi n inmport SnmpPl ugi n, Get Tabl eMap
from Dat aMaps i nport Cbj ect Map

cl ass Al XFi | eSyst emvap(SnnpPl ugi n):

mapt ype = "Fil eSyst enivap”

conpnane = "os"

rel name = "fil esystens”

modname = "Products. ZenMbdel . Fi | eSyst ent
devi ceProperties = \

SnnpPl ugi n. devi ceProperties + ('zFil eSystemvapl gnoreNanes',)

#

These colum names are for the aixFsTable fromthe

[Jusr/sanpl es/snnpd/ai xmb.ny MB file | ocated on your Al X hosts.
(It's in the bos.net.tcp.adt fileset.)

#
colums = {
".1': 'snnpindex', # aixFslndex
'.2': 'storageDevice', # ai xFsNane
'.3: '"nount', # ai xFsMount Poi nt
".4': 'type', # aixFsType
'".5: '"total Bl ocks', # aixFsSize - a value in MB

#
Comment out the following entries to reduce the anount
of stuff that we need to send. They are listed here
for reference and conpl et eness.
#
'.6': 'aixFsFree',
.7 : "ai xFsNum Nodes',
'.8': 'aixFsUsedl nodes',
'.9': 'aixFsStatus',
'.10': 'ai xFsExecution',
".11': ' ai xFsResul t M5g’,
}
snmpGet Tabl eMaps = (
Get Tabl eMap(' ai xFsTable', ".1.3.6.1.4.1.2.6.191.6.2.1', colums),
)
#
This table is included for reference
#

65

Adding anew Device Type

ai xFsType = {

1. "jfs',

2: 'jfs2',

3. 'cdrfs',
4: 'procfs',
5: 'cachefs',
6: 'autofs',
7. "afs',

8. 'dfs',

9: 'nfs',
10: 'nfs3',
11: 'other',

}

def process(self, device, results, lo0g):

Gather data fromthe standard Al X snnpd + friends"""

| og.info(' processing % for device %', self.name(), device.id)

get

#

Gather the data using SNVMP and just exit

i

data, tabledata = results

wi ped out. Quch!

#

fstable = tabl edata. get("aixFsTable")

if

ski

not fstabl e:

| og. warn(' No SNVP response from% for the % plugin',

return

pf snames = getattr(device, 'zFil eSystenivapl gnoreNanes'

maps = []

rm
for

= sel f.rel Map()

fs in fstable.val ues():

if not fs.has_key("total Bl ocks"):
continue # Ignore blank entries

if not self.checkColums(fs, self.colums, |o0g):
conti nue

#l og.info("Found %", fs['mount'])
#
Ensure that we only check on |ocal disk

NB: it may make sense to report on AFS/ DFS vol unes.

#
fstype = self.ai xFsType.get(fs['type'], None)
if fstype not in ("jfs', "jfs2"):

conti nue

if fs['total Blocks'] > 0 and (not ski pfsnanmes or not
om = sel f. object Map(fs)

#

The internal id that Zenoss uses can be used in URLs,

if there's an SNWP
ssue. If we don't, the filesystemtable in Zenoss w ||

get

device.id,

None)

66

whi | e

sel f. name(

re. search(ski pf snanes, f:

Adding anew Device Type

Uni x fil esystem names cannot. Map to an URL-safe nane.
#
omid = self.prepld(om nmount)

#

Map our M B data to what Zenoss expects
#

om bl ockSi ze = 1024**2; # ie MB

rm append(om
maps. append(rm

#
As a final sanity check, see if we found anything. If we

didn't find anything, that's probably an error so just return.
#

i

f len(maps) ==
|l og.warn("No filesystens found by % for %", self.nane(), device.id)
return

return maps

Note

Because this question occurs so often in the mailing lists, the following information bears repeating.
The function name required of any modeler isthe pr ocess() function.

11.4.4. Testing the Modeler

To test your new modeler plugin, add it to the list of modeler plugins. From within the newly-created Al X device
class, click on MoreCollector Pluginsto select the appropriate plugin, which should be in the list of items to add.

Y ou can test your new plugin by using zenmodeler from the command-line.
zenmodeler run -d myaixbox.example.com -v 10

For testing purposes, you may want to add this and only this modeler plugin to one particular host and make it the
only plugin. Any syntax errors or exceptions will be visible so that you can hopefully debug them.

Once you're satisfied that everything is working correctly, verify everything by running the ManageModel Device
command and then examining the OStab. If everythingiscorrect, you'll seeyour list of filesystemsinthe Filesystems
area, but with unknown for everything except the total size of the filesystems. The actual usage numbers of the
filesystem is collected by a different mechanism -- a performance data collector.

Keep in mind that amodeler is run infrequently (eg once aday or once aweek, depending on your settings), while
a performance data collector is run every five or ten minutes.

11.5. Create a Performance Collector

A performance data collector gathers the current statistics of items such as the amount of space used in afilesystem.
The data can be collected using either a script or an SNMP command. For our Fi | esyst emdata, we must create
a new data collector called Fi | esyst em(this is a special name) that will return a property called usedBlocks
(another special name).

If your operating system's MIB provides a usedBlocks (or something named like that) value, then we can make
use of existing Zenoss infrastructure and just collect that data using SNMP. Otherwise, you need to create a script

67

Adding anew Device Type

to take the total size of the filesystem (ie totalBlocks) and subtract the freeBlocks value. Unfortunately, AIX only
provides freeBlocks, so we need to create a command.

11.5.1. Performance Data Collector Code

11.6. Create the Template

A performance templateis essentially awrapper around reading and manipul ating the datafrom RRD database files.
The template has the same constraints as RRD. An example of a constraint is that if you decide that you wish to
change the collection frequency, or perform some funtion on returned data and store that computed value into the
RRD file, you need to remove the old RRD file and create a new one.

11.6.1. Create the DataSource

To create our new performance template, go to the AIX device class organizer and select MoreAll Templates. This
will take you to a screen which shows you the performance templates. From the menu, select Add Tempate... and
provide with an id of Filesystem (yes, there should already be one there, but fromthe/ Devi ces/ Ser ver path).

Click on the newly created performance tempate and add in a nice description. Then, click in the Data Sources
menu and select the Add DataSource... itme to create the special usedBlocks datasource. If your operating system's
MIB provides a usedBlocks (or something named like that) value, then select a type of SNMP. Otherwise, you
need to create a script to take the total size of the filesystem (ie totalBlocks) and subtract the freeBlocks value.
Unfortunately, AlX only provides freeBlocks, so we needed to create acommand like we did in the earlier section.

11.6.2. Create a Threshold

Defining athreshold on adatapoint does two things: it can be used to define aline on a graph showing the threshold
value and it can create an event when the threshold is passed and cleared. In this example for filesystems, we could
create a threshold that would aert us when we've gone past 95% utilization on a filesystem.

11.6.3. Create a Graph

From the deviceclass (ie/ Devi ces/ Ser ver/ Al X), click on the Templatestab. Click on the template and go to
the Graph Definitions sub-menu. From that sub-menu, choose Add a Graph. Y ou will be prompted for the name of
your new graph. Add the datapoints of interest to create a graph and then click on the 'save' button at the bottom of
the screen. Note that if you're interested in doing something more complicated than just adding datapoints, you'll
need to start browsing the RRDtool site [http://oss.oetiker.ch/rrdtool].

11.7. Map Events

If our new platform provides a reporting log that doesn't get passed into Zenoss, then we can write a daemon to
extract these messages and create events from these messages. Asan example, Al X records certain low-level events
such as hardware issues and core dumpsinto acircular log. If we wanted to extract thisinformation using atool like
errpt, then we would need to write a daemon that is capable of recording the last time that we saw an event, log
into the Al X server and grab the err pt information and convert that entry into a Zenoss event.

Once we have events coming into Zenoss, we might become aware of certain peculiarities in our events such a
certain informational message actually indicates that any previous critical failures are over. In order to cut down

68

http://oss.oetiker.ch/rrdtool
http://oss.oetiker.ch/rrdtool

Adding anew Device Type

on the amount of false alarms, we should create an event mapping that would examine informational messages and
clear out any critical events.

69

Chapter 12. Extending the User
Interface

12.1. Overview of the Zenoss Ul Technologies

The Zenoss user interface is built on top of Zope [http://www.zope.org/]. Zope provides a framework on which
progressively more sophisticated functionality can be built. (NB: Asthisintroduction is necessarily brief, it should
not be treated as technically correct in every detail, but as being generally believable.) You can layer the user
interface using multiple technologies, as well as mix and match:

e HyperText Markup Language (HTML) [http://www.w3.0rg/]

e Cascading Style Sheets (CSS) [http://www.w3.0rg/Style/CSY]

e Zope 2, Zope Page Templates (ZPT) and the Template Attribute Language (TAL)

e ZPT and Macro Exapnsion for TAL (METAL) [http://wiki.zope.org/ZPT/METAL Specification10]
« JavaScript / AJAX

« Yahoo User Interface (YUI) Library [http://devel oper.yahoo.com/yui/] and Mochikit [http://mochikit.com/]

12.1.1. HyperText Markup Language (HTML)

HTML is the most basic formatting language available on the Web, and some version of HTML is understood by
every web browser. HTML isin practice a sloppy variant of exXtensible Markup Language (XML) which divides
up a page into elements (ie tags such astitle, head or h3) and content (ie the things that you actually care about).

: Tip
If you are converting an existing web page, verify itssanity by using thefree HTML validation service
[http://validator.w3.org/].

12.1.2. Cascading Style Sheets (CSS)

Web browsers take HTML and convert elements like hl (heading at level 1) and convert them into what each
browser thinks is appropriate for that element. That 'each browser' part means that the way that the page displaysis
different on each browser. Style sheets are away for the web page designer to tell the browser that a certain element
should have a certain style. As an example the hl element could be styled "Arial, 20pt, neon lime green and make
it blink". (Use the power responsibly! :)

The 'cascading' part of CSS means that stylesheets can build on each other. Practically, that means that the order in
which you load CSS information can lead to different results.

12.1.3. Zope 2, ZPT and TAL

Zope 2 [http://www.zope.org/] is essentially aweb server with brains. The brains part are the Python programming
language and the object-oriented database (ZODB), which are used to create web pages in a structured way.

Note

Thereisa Zope 1 and aso a Zope 3. Zope 1 is dead, and a large portion of the Zope community is
migrating to or has migrated from Zope 3. Zope 2 and Zope 3 are quite different, and a considerable

70

http://www.zope.org/
http://www.zope.org/
http://www.w3.org/
http://www.w3.org/
http://www.w3.org/Style/CSS/
http://www.w3.org/Style/CSS/
http://wiki.zope.org/ZPT/METALSpecification10
http://wiki.zope.org/ZPT/METALSpecification10
http://developer.yahoo.com/yui/
http://developer.yahoo.com/yui/
http://mochikit.com/
http://mochikit.com/
http://validator.w3.org/
http://validator.w3.org/
http://www.zope.org/
http://www.zope.org/

Extending the User Interface

amount of effort would be required in order to convert Zenossto Zope 3. Keep it in mind when looking
at Zope material that you need Zope 2.

Zope Page Templates [http://www.zope.org/Documentation/Books/ZopeBook/2_6Edition/ZPT.stx] are in essence
HTML pages which are well-formed (ie not sloppy HTML where you only need to care about creating a starting
element) with extra XML attributes (ie the bits after the el ement name in-between the < and > characters). The extra
XML bits (attributes) are not a part of any HTML standard and are ignored by HTML editors, meaning that ZPT
pages live happily with HTML. These attributes and the programming functionality that they deliver are called the
Template Attribute Language (TAL).

The TAL attributes allow you, the web page creator, to add dynamic content using information from inside the Zope
database (ZODB). From a Zenoss perspective, this allows you to write a query that you can use to build a table,
or show different items depending on what objects or devices exist in a particular state. In other words, TAL isthe
Zope way of accomplishing what you would normally need to doin a CGlI inside of a plain web server like Apache.

It should be noted that inside of TAL it is also possible to use arestricted subset of Python. The restrictions include
not being able to load certain standard libraries, as well as operations like reading and writing to disk. Thisis done
intentionally for security reasons.

12.1.4. ZPT and Macro Exapnsion for TAL (METAL)

TAL isthe programming language of Zope, allowing you to use parts of the database and programmatically work
with data. Thisisgood, but because TAL ishidden away inside of HTML, there's no way to reuse blocks of HTML
and TAL for your site just by using TAL. In order to re-use chunks of HTML and TAL in an easy-to-use fashion.

12.1.5. JavaScript / AJAX

Let's get one thing out of the way: Java and JavaScript only share the 'Java part, and that's only for marketing
reasons. Really. They'retotally different. Technically, JavaScript isactually called ECM A Script [http://www.ecma-
internati onal .org/publications/standards/Ecma-262.htm], but that's something that's much worse than JavaScript so
everyone cals it JavaScript.

JavaScript can be written directly on the web page inside of a script el ement anywherein an HTML page, or it can
be stored on a server and accessed from a script el ement using the name specificed in the src attribute.

So what's the AJAX part? Originaly, AJAX was shorthand for "Asynchronous JavaScript And XML", a set of
techniques for writing JavaScript. So AJAX is a state of mind rather than a standard. Generally, something is con-
sidered AJAX if it usesthe JavaScript XMLHt t pRequest () function to retrieve datafrom a server and presents
the returned XML document in ainteractive way to the user.

12.1.6. JavaScript libraries: YUl and MochiKit

There are a number of classes to make life programming in JavaScript easier. The ones that are implemented in
Zenoss are;

Y ahoo User Interface (Y UI) YUI is a collection of CSS templates and JavaScript utilities that create a

[http://devel oper.yahoo.com/yui/] cross-browser-compatible toolkit. This is quite an achievement considering
the many issues with how each browser implements (or doesn't) different
features.

MochiKit [http://mochikit.com/] MochiKit provides a set of low-level facilities to perform GUI functions.

71

http://www.zope.org/Documentation/Books/ZopeBook/2_6Edition/ZPT.stx
http://www.zope.org/Documentation/Books/ZopeBook/2_6Edition/ZPT.stx
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://developer.yahoo.com/yui/
http://developer.yahoo.com/yui/
http://mochikit.com/
http://mochikit.com/

Extending the User Interface

12.2. Customizing the Navigation Bar

Note

Thisinformation is presented here because many people want to be able to customize the navigation
bar. However, there are two possible issues with modifying this ZPT page:

« Itispossible that an upgrade or other operation will remove your modifications, so you will need
to perform them again. Saving the ZPT page in a ZenPack will allow you to save your changes, but
you will need to manage this ZenPack yourself.

» Zenoss may in the future completely change this code, and there will be no effort on Zenoss' part
to ensure that your changes are preserved.

Go to your Zenoss server with the following URL:
http://yourzenossserver:8080/zport/portal _sking/zenmodel/manage

12.2.1. Adding a link

Look for afilecalled| ef t Pane. Click on thefileand it will bring you to a screen which will show you the source
for thefile. Click on the Customize button which will copy it to the http://yourzenossserver:8080/zport/portal_sking/
custom folder and open up the file. Make whatever changes you wish and then save the file. The save button is
down at the bottom of the page.

Tip
Zope looksfor the customized version of web pagesinthecust omfolder first, before any other pages
of the same name.

12.2.2. A simple HTML page

If all you need is a simple web page, go to the ZMI and add the page.
http://yourzenossserver:8080/zport/portal_sking/manage

—

Thiswill bring you into the ZMI starting in the por t al _ski ns folder. From here, beside the Add button (which
is near the top-right-hand side of the screen), select Page Template and then click on the Add button.

In the dialog screen that comes up, give your new page aname in the Id input box. We'll use hel | oWér | d asthe
name of our fist page. Then click on the Add and Edit button.

This should bring us to a text-editor web page. Delete everything that's in there and add the following:

<htm >

<head>

<title>Hello Wrld</title>
</ head>

<body>

<h1l>Hel | o worl d! </ hl>
<p>My test page</p>

</ body>

</htm >

Click on the Save Changes button. Now try out our sample web page.

72

Extending the User Interface

http://yourzenossserver:8080/zport/helloWorld

Thisisjust a plain old web page, with nothing fancy about it. Not really anything much to see here or get excited
about.

But... did you notice that where we saved our file has absolutely no relation to where in the path we can reference
our new page? That's aZope thing. Since our page doesn't use any Zope features, we can put it anywhere. If we were
to use some of Zope's TAL we might need to be more concerned. The next section will illustrate this behaviour.

12.2.3. A simple TAL and METAL page

Using the same steps from the previous section, create a new Page Template called hel | oWor | d2, which isthe
new and improved (okay, maybe just different :) version of your first page. Add in the following:

<tal : bl ock metal : use-macr o="her e/t enpl at es/ macr os/ pagel" >
<tal:block nmetal :fill-slot="contentPane">

<hl>Hel |l o worl d! </ hl>
<p>My test page</p>
</tal: bl ock>

</tal: bl ock>

The/ zport/ portal _ski ns/zennodel / t enpl at es file containsthe METAL definitions used by Zenoss
pages. Oneof thepagel, page?2, or page3 macroswill probably be agood start for what you want. Look through
thet enpl at es page to see how it's built. Our example above uses the pagel macro.

After you've saved the page, you can try it out:
http://yourzenossserver:8080/zport/dmd/helloWorld2

Now you can see your page within all of the Zenoss page elements. There's a navigation bar, the logo, the server
time, search bar and everything else. Now try the following URL
http://yourzenossserver:8080/zport/dmd/Devices/hellowWorld2

Now the breadcrumb path showing that you are in the Devi ces part of Zenoss shows up. What happens now if
you go to the base of Zenoss?
http://yourzenossserver:8080/zport/hellowWorld2

Oops! That didn't look good, you've got an error screen. If you look in the View Error Details part, you'll notice
that it's complaining about missing her e/ br eadCr unbs. That's because the br eadCr unbs function isn't on
every object, just some of them.

From this point forward is a matter of examining other pages, seeing where they run from and trying out new
things. The functions that Zenoss provides are written in Python, so you'll need to learn more Python in order to

take advantage of Zope. See the Section 12.4, “Zope 2 Page Templates, TAL and METAL and Zenoss’ section
for more details.

12.3. Customizing the Logo

Here is how to change the logo that appearsin Zenoss to a custom logo of your choosing:

1. Go to http://yourzenoss:8080/zport/portal_skins/EnterpriseSkin/manage.

73

Extending the User Interface

a. Clickonzent er pri se. css and then its Customize button

b. Find zent - i ng/ zenoss-1 ogo- ent er pri se. png in the stylesheet and change it to zenoss- | o-
go-enterprise. png

c. Savethe Changes.
2. Go to http://lyourzenoss:8080/zport/portal _skins/EnterpriseSkin/zent-img/manage
a. Clickonzenoss- 1 ogo-ent er pri se. png and then its Customize button

b. Upload your replacement image. It should be 318x35 pixelsin size.

12.4. Zope 2 Page Templates, TAL and METAL
and Zenoss

Templates live in layers which, due to Zope magic (aka [Definition: acquisition]), are available anywhere in the
object tree. Asisthe case with most templating languages, Zope templates are context-agnostic, meaning that they
may be used as views on any object. When the name of atemplate is called against a particular context, the skins
tool (/ zport/ portal _ski ns inZenoss) will supply the appropriate template object, determined by the priority
of the layers -- given two templates with the same name, that in the higher priority layer will prevail. This alows
Zope productsto override the templates of other productsto provide different functionality. It can also result in total
confusion as to the source of atemplate as this processisin no way transparent.

Templates may be created inthe ZODB, or they may live on thefilesystem; thelatter is preferablefor al but the most
ad hoc situations. Typically, a Zope product that provides templates will register a ski ns directory, which will
include one or morelayers. When the product isinitialized, thelayersit provideswill be added to the skinstool under
whatever skin is specified. Zenoss has asingle skin, so only the order of the layers determines template inheritance.

The Zenoss Ul comprises severa layers, mostly for the purposes of organization. The ZenMbdel and Zen-
Event s products each have afolder (named zennodel andzenevent s, respectively), theZenUt i | s product
has one (inexplicably located at ZenUt i | s/ j s), and the ZenW dget s product hastwo (zent abl emanager
and zenui). zennodel and zenevent s generally contain templates applicable to classes provided by their
respective products. The zenui folder contains most of the dialog templates, nearly all of the CSS, JavaScript
(including the YUI library), image files and other templates that don't necessarily belong to a single product. The
zent abl emmanager layer provides resources related to ZenTabl eManager . The ZenUt i | s/ j s layer pro-
vides the MochiKit library and a few JavaScript utilities. Both the zent abl enanager folder and the ZenU-
tils/j s layer arelegacies and shouldn't be modified. All new templates should go in one of the other three, and
all static browser resources should goinzenui .

Table12.1. Zenosspor t al _ski ns directoriesand their Descriptions

Directory Notes

zennodel Contains the mgjority of the templates.

zenevents Event-specific templates.

zent abl emanager Deprecated.

zenui Most of the dialog templates, nearly al of the CSS, JavaScript (including the Y UI
library), imagefiles and other templates that don't necessarily belong to asingle prod-
uct.

ZenUils/js Deprecated. Thislayer is actualy not under por t al _ski ns. The MochiKit library
and afew JavaScript utilities

74

Extending the User Interface

Zope pagetemplatesare acombination of METAL, TAL and TALES, each of which is summarized more succinctly
than one familiar with them might expect here [http://www.owlfish.com/software/simpleTAL/tal-guide.html].

In short, METAL allowstemplates to define macros (which are essentially subtemplates that may be called by other
templates) and slots (which may be filled by other templates). For example, one wishing to have atitle on all pages
might create the following base.pt:

<htm netal: define-macro="base tenpl ate">
<head>
<title>Zenoss: <tal:block netal:define-slot="subtitle">
Default Subtitle</tal:block>
</title>
</ head>
<body>
<tal : bl ock netal:define-slot="content">Default Content</tal: bl ock>
</ body>
</htm >

Then on atemplate that might be used to view an object, one could:
<tal : bl ock netal:use-macro="here/ base/ macros/ base_tenpl ate" >
<tal:block netal:fill-slot="subtitle">My Subtitle</tal:block>
<tal:block netal:fill-slot="content">My Content</tal: bl ock>
</tal: bl ock>
Thisalowsfor relatively complex abstraction.
Zenoss has a base template providing several basic page types that include global CSS and JavaScript resources,
the basic page structure, and optionally the tab pane. This template is located at ZenMbdel / ski ns/ zennod-
el /t enpl at es. pt . When creating a new template, find another like it and copy thet enpl at es. pt macro

reference used there.

TAL comprises a set of attributes for page elements allowing for iteration loops, dynamic attribute mutation, and
other dynamic content. The above resource will summarize these more fully.

TALES allows access to the template's namespace. Some useful properties available on all templates:

Commonly-used Zope Propertiesin ZPT

here the context object

container the folder containing the context object

template the template object

root the portal object (zport)

user the current authenticated user object

request the current HttpRequest object

portal _url the base URL of the portal (eghtt p: // | ocal host : 8080/ zport)

75

http://www.owlfish.com/software/simpleTAL/tal-guide.html
http://www.owlfish.com/software/simpleTAL/tal-guide.html

Extending the User Interface

TALES accepts paths (e.g. her e/ i d) which it resolves into object properties. It will attempt to resolve the final
path element as a key index, a key name, an attribute, or a callable. For example, if mydict is a dictionary on the
context, here/mydict/mykey will return mydict[mykey]. If get Sonret hi ng() isamethod on the context, her e/
get Sonet hi ng will return the result of that method. However, if pyt hon: her e. get Sonet hi ng() returns
adictionary, one cannot do her e/ get Sorret hi ng/ nykey.

The path resolution is fairly limited -- for example, one cannot pass arguments to methods. In case
something more complex is needed, one can use python: followed by arbitrary Python code. For ex-
ample, pyt hon: here. nydi ct [nykey] will return the same thing as her e/ nydi ct/ mykey, while
pyt hon: her e. get Sonet hi ng(tenpl ate. i d) is not possible using a path. The previous paragraph's
impossible her e/ get Sorret hi ng/ nykey can be resolved this way: pyt hon: her e. get Sonet hi ng()
[mykey] .

Finally, if one wishesto generate a string, one may prepend the argument with string:. Everything after that will be
treated as a string, unless contained within ${}, in which case it will be evaluated as a TALES path. For example:

<span tal:content="string: The name of this
tenplate is ${tenplate/id}' />

12.4.1. Tips

« ZPT ignores everything inside a script element, although it does not ignore TAL defined on the element itself.
This can make dynamic JavaScript problematic. One way around this, however, islike this:

<script tal:content="string:
var tenplateld = '${tenplate/id}";
"></script>

Thisisobviously unwieldy, especially inthe case of several levelsof nested quotes, but it at least allows JavaScript
access to the template's namespace.

« Slots on macros are not inherited unless specifically defined. For example, if one has atemplate base. pt :

<tal : bl ock netal:define-nmacro="base">

My Base Tenpl ate

Default Content
</tal: bl ock>

from which one wishes to create a more specific base template, plaintext.pt:

<tal : bl ock netal:define-nmacro="pl ai ntext">
<styl e>body{font-fam |y: Courier, nonospace}</styl e>
<t al : bl ock netal: use-macro="her e/ base/ macr os/ base"/ >
</tal : bl ock>

templates calling here/plaintext/macros/plaintext will not be able to fill here/base/macros/base’'s ‘content’ slot.
One must chain the slots, defining a plaintext content slot inside the fill of base's content dlot:

<tal : bl ock netal:define-macro="pl ai ntext">
<styl e>body{font-fami|y: Couri er, nonospace} </ styl e>
<tal : bl ock netal:use-nmacro="here/base/ nacr os/ base" >

<tal:block netal :fill-slot="content">
<tal : bl ock netal : defi ne-sl ot="content">
</tal: bl ock>

76

Extending the User Interface

</tal: bl ock>

</tal: bl ock>
</tal: bl ock>

« Thanksto Zope's magical acquisition, templates can be treated as methods on objects. If an object may be viewed
at/ zport/ dnd/ obj ect/ nyt enpl at e, thencalingobj ect . myt enpl at e() inaPythonfilewill return
the HTML that template generates. In this case, however, there's no request object, so templates that ask for one

will throw an error. Thisisboth ablessing and a curse; many man-hours have been wasted searching for methods
that do not exist.

* Generaly, unless a specific tag is required, use <tal:block> for purely logical structures, as it will produce no
side effects (whereas using <div> could easily do so).

12.5. Other Customziations
12.5.1. Adding Tabs

This section will show how to add a new tab in Zenoss or modify existing one by means of ZenPack or zendmd.
A tabin Zenoss is an object property that resides within the following structure;

factory type_ information = (

"inmmedi ate_view : 'deviceOrganizerStatus',
"actions' :
(
{ 'id . 'status'
, nane’ : ' Status’
, ‘action' : 'deviceOrgani zer St at us'
, ' perm ssions' : (perm ssions.view,)
b
)

H
)

For example, tabsinthe Locat i ons screen are created from the Python class definition
Locati on(Devi ceOrgani zer, ZenPackabl e)
which residesin the module Locat i on. py inthe $ZENPATH Pr oduct s/ ZenhMbdel directory.

Zenoss works with class instances which are created runtime by Zope. These objects are packed within database
which is called ZODB. If you want to modify some object properties you should connect to ZODB and get the
object first, modify it and save your changes.

The following example shows the procedure for adding a new tab to Locations screen. This code is executed from
__init__. py of an example ZenPack.

i mport d obal s
i mport transaction
i mport os.path

7

Extending the User Interface

skinsDir = os.path.join(os.path.dirname(__file_), 'skins")
from Products. CMCore. DirectoryView inport registerDirectory
if os.path.isdir(skinsDir):

registerDirectory(skinsDir, globals())

from AccessControl inmport Perm ssions as perm ssions
from Products. ZenModel . ZenPack i nport ZenPackBase
fromProducts. ZenUils.Uils inmport zenPath

from Products. ZenModel . ZenossSecurity inmport *

from Products. ZenUils. ZenScri pt Base i nport ZenScri pt Base

cl ass ZenPack(ZenPackBase):

ol MapTab = { "id' : ' ol geomapt ab’
, ''nane' : ' OpenLayers Map'
, ‘action' : " OLGeoMapTab’
, ' perm ssions' : (perm ssions.view,)
}

def _registerOL.MapTab(sel f, app):
Register new tab in | ocations
dndl oc = sel f. get DrdRoot (' Locati ons')
finfo = dmdl oc. factory_type_information

actions = list(finfo[O][' actions'])
for i in range(len(actions)):
if(self.ol MapTab['id'] in actions[i].values()):
return

actions. append(sel f. ol MapTab)
finfo[O]["actions'] = tuple(actions)
dndl oc. factory_type_information = finfo
transaction.conmt ()

def _unregi sterO.MapTab(sel f, app):
dndl oc = sel f. get DrdRoot (' Locati ons')
finfo = dmdl oc. factory_type_information
actions = list(finfo[O][' actions'])
for i in range(len(actions)):
if(self.ol MapTab['id'] in actions[i].values()):
actions.renove(actions[i])
finfo[O]["actions'] = tuple(actions)
dndl oc. factory_type_information = finfo
transaction.conmt ()

def install(self, app):
ZenPackBase.install (sel f, app)
sel f. _registerOLMapTab(app)

def upgrade(sel f, app):
ZenPackBase. upgr ade(sel f, app)
sel f. _registerOLMapTab(app)

def renove(self, app, junk):
ZenPackBase. renove(sel f, app, junk)
zpm = app. zport. ZenPort| et Manager
sel f. _unregi ster OLMapTab(app)

78

Extending the User Interface

Theclassmethod r egi st er OLMapTab(sel f, app) registersthe modified property of object Locat i ons
, whichresidesin/ zport/ dnd/ Locat i ons inthe ZODB.

Thefunctionget DmdRoot (' Locat i ons') returnsthe classinstance of classLocat i on whichisin ZopeDB.
Next we get the dictionary of itsfactory type information property. Modify this, so that a new dictionary defining
thetab is appended to it. Thetab structure isdefined in olMapTab dictionary. Theid field istheidentification name
of thistab. You can put any string here. The name field is the string that is shown on your new tab, action pointsto
the template that is executed when you click on the tab and should be accessible in Zope. The permissionsfield is
default permissions for zenoss user to execute the template this tab pointsto. Thisline

dndl oc. factory_type_ information =
finfo

is very important because Zope won't detect any change to the persistent object andt r ansacti on. conmi t ()
won't save any modificationsto the object. Therule hereisthat comi t () savesonly modifications of object that
executesitsset at t r () method.

Of course every step shown above can be done manually within the zendmd prompt. The following session shows
adding new tabto Locat i ons in zendmd:

zenoss@b- server: / hone/ geoni ck$ zendnd

Wl conme to zenoss dnd conmand shel |!

use zhelp() to list commands

>>> from AccessControl inport Perm ssions as perm ssions
>>> | ocobj = dnd. get DndRoot (' Locati ons')

>>> | ocobj

<Location at /zport/dnd/Locati ons>

>>> finfo = | ocobj.factory_type_information

>>> finfo

({"imredi ate_view : 'deviceOrganizerStatus', 'actions': ({'action': 'deviceO ganizerStat!

"id': 'status', 'nane': 'Status', 'permissions': ('View,)}, {'action': 'viewEvents', 'i

"nanme': 'Events', 'permissions': ('View,)}, {'action': 'deviceOrganizerManage', 'id : "I
"Administration', 'permissions': ('Manage DMD ,)}, {'action': 'locationGeoMap', "id: '
"Map', 'permissions': (‘'View,)})},)

>>> actions = list(finfo[O]["actions'])

>>> ol MapTab = {"id': 'olgeomaptab', 'name': 'CpenLayers Map', 'action': 'OLGeoMapTab','|
>>> for i in range(len(actions)):
i f(ol MapTab['id'] in actions[i].values()):
br eak

>>> actions. append(ol MapTab)

>>> finfo[O]["'actions'] = tuple(actions)
>>> | ocobj . factory_type_information = finfo
>>> | ocobj . factory_type_information

({"imedi ate_view : 'deviceO ganizerStatus', 'actions': ({'action': 'deviceO ganizerStat:
"id': 'status', 'nane': 'Status', 'permissions': ('View,)}, {'action': 'viewEvents',

"id': 'events', 'nane': 'Events', 'permissions': ('View,)}, {'action': 'deviceO ganizerl
"id': 'nmanage', 'nane': 'Adm nistration', 'permissions': ('Manage DMD ,)}, {'action': "I

‘id : 'geomap', 'nane': 'Map', 'permissions': ('View,)}, {'action': 'O.GeoMapTab', ' peri
"id : 'olgeomaptab', 'nane': 'OpenLayers Map'})},)

>>>conmit ()

After commi t () the new tab should be in Locations. Don't forget to provide the template file.

Submitted by Nikolai Georgiev

79

Extending the User Interface

12.5.2. Adding a Dialog

The dialog container exists on every page in Zenoss; it's a DIV element with the id attribute of dialog. Loading a
dialog performstwo actions:

1. Fetching (viaan XHR) HTML to display inside the dialog container

2. Showing the dial og container. These can be accomplished by callingtheshow() method on the dial og container,
passing the event and an URL that will return the contents:

$('dialog').shomthis.event, 'dialog_MDalog)

The dialog can then be hidden with, predictably, $('dialog’).hide(). Since dialogs are ailmost always loaded via
clicking on a menu item, menu items whose isdialog attribute is Tr ue will generate the JavaScript to show the
dialog automatically. Seethe Section 12.5.3, “ Adding aNew Menu or Menu Item” section of this guide for more
information.'

Asfor the dialog box contents themselves, any valid HTML will do, but certain conventions exist. Dialogs should
have a header:

<h2>Per f orm Acti on</ h2>
Dialogs should also provide a cancel button:

<i nput id="dialog_cancel" type="button" val ue="Cancel "
onclick="$("'dialog).hide()"/>

The main wrinkle with dialogs occurs in the area of form submission. Some dialogs are self-contained, and can
carry their own form that is created and submitted just like any other form. Other dialogs, however, submit forms
that exist elsewhere on the page -- for example, dialogs that perform actions against multiple rows checked in a
table. These dialogs may use the submit_form method on the dialog container, which submits the form surrounding
the menu item that caused the dialog to be loaded to the url passed in to the method. Thus for a table surrounded
by a<form> and containing several checkboxes, dialogs loaded by menu items in the table's menu may submit the
table'sform to a url by providing a button:

<i nput type="subnit" nanme="doAction: nethod" value="Do It"
tal:attributes="onclick string:
$('dialog').subnmit_form(' ${here/ absolute_url_path}')"/>

See the section on Section 12.1.3, “Zope 2, ZPT and TAL” for more information about tal:attributes and the
${ her e/ absol ute_url _path}
syntax.

Finally, dialogsthat create objects should validate the desired id before submitting. A method on the dial og contai ner
called submi t _f orm and_check(), which accepts the same parameters as submi t _f or m() (URL), will
do this. It requires:

1. A text box with theid 'new_id', the value of which will be checked

2. A hidden input field with the id checkValidldPath, with a value containing the path in which the id should be
valid (for example, creatingadeviceunder/ zpor t / drd/ Devi ces will require checking that no other devices
in/zport/dmd/ Devi ces has the same id, so the value of checkValidldPath should be "/ zport/ dmd/
Devi ces". here/ get Pri maryUr | Pat h workswell for most cases).

3. An element with the id errmsg into which the error message from the validation method, if any, will be put

80

Extending the User Interface

For example, a generic object creation dialog:

<h2>Create bject</h2>

| D:
<input id="new_id" nanme="id"/>
<i nput type="hidden" id="checkValidldPath"
tal:attributes="val ue here/getPrimaryUrl Path"/>

<input tal:attributes="onclick string:
return $$('dialog').submt_formand check(' ${here/getPrimaryUrl Path}')"
i d="di al og_submit"
type="submit"
val ue="Creat e"
nane="cr eat e(bj ect : met hod"/ >
<i nput id="dial og_cancel" type="button" val ue="Cancel"
onclick="$('dialog).hide()"/>

These exampleswill cover most cases; generally, agood ideaisto |ook at other dialog templatesthat contain similar
elements or perform similar actions.

12.5.3. Adding a New Menu or Menu Item

Classes that inherit from the ZenMenuable mixin have a method called getMenus, which traverses up the object's
path aggregating ZenMenultem objects owned by its ancestors. These objects comprise an action to be executed, a
human-readable description, and various attributes restricting the objects to which the item is applicable.

For example, imagine basic menus exist on dmd and dmd.Devices:

dnd
Mor e (menu)
See nore... (menu item
Do nore. ..
Manage
Manage obj ect. ..
dnd. Devi ces
Mor e
See nore. ..
Do | ess...

A call to dmd.Devices.getMenus() will return:

Mor e
See nore... (from dnd. Devi ces)
Do nore. .. (from dnd)
Do |ess... (from dnd. Devi ces)
Manage

Manage object... (from dnd)

Asyou can see, menu itemsinherit their ancestors' unlessthey definetheir own, which override when their ancestors
conflict.

In theory, all ZenMenuables (which includes nearly all objectsin Zenoss) may own menu items; in practice, all but
afew menus live on /zport/dmd.

81

Extending the User Interface

Adding a new menu item is fairly straightforward. Because menu items are persistent objects, modifications must
happen in amigrate script (or beincluded as XML in a ZenPack). The method ZenMenuabl e. bui | dMenus()
accepts a dictionary of menus, each of which is a list of dictionaries representing the attributes of menu items.
Instructions on writing migrate scripts can be found elsewhere in this guide.

1. Find the id of the menu to which you wish to add items. The simplest way to do thisis to locate the menu_ids
definition on the page template that renders the menu. Tables will have a single menu id. The page menu may
have several, which will be rendered as submenus. The TopLevel menu is a special case; it appears in the page
menu, but itsitems are rendered as siblings of the other menus.

2. If activating the menu item will require a dialog, create one. See the Section 12.5.2, “Adding a Dialog” section
of this guide for more info.

3. Determine the objects for which the menu item should be visible. Menu items will use several criteriafor deter-
mining whether to apply:

« alowed _classes: A list of strings of class hames for which the menu item should be rendered.

» banned_classes: A list of strings of class names for which the menu item should not be rendered.

banned_ids: A list of strings of object ids for which the menu item should not be rendered.

isglobal: Whether the menu item should be inherited by children of the menu item's owner.

e permissions. The permissions the current user must have for the context in order for the item to render.

4. Figureout the action themenuitemwill perform. If it'sadialog, then the action isthe name of the dialog templ ate,
and the isdialog attribute of the menu item should be Tr ue. If it'saregular link, the action should be the URL
or "javascript:" you would normally have as the href attribute of an anchor.

5. Now build the dictionary. It should look like this, where Menuld is the menu from step 1.

menus = { 'Menuld': [

{ "id": "myUniqueld,
"description': 'Perform M Action...',
"action': 'dialog_myAction',
"isdialog': True,
"all owed_cl asses': (' MyGoodd ass',),
' banned_cl asses': (' WBadd ass',),
"banned_ids': ('Devices',),
"ordering': 50.0,
"perm ssions': (ZenossSecurity.ZEN COMON,)

H

1}

‘ordering' is afloat determining the item's relative position in the menu. Greater numbers mean the item will be
placed higher. Also notice that it's almost certainly pointless to set both allowed classes and banned_classes; it
was done here only as an example. The permission ZEN_COVMON is a standard Zenoss permission -- see the
Section 8.5, “Zenoss Permissions’ section of this guide for more information.

82

Extending the User Interface

If you have more menu items in the same menu, you can add them to that list; if you have more menus, you can
create more keys in the menus dictionary.

6. Finally, usethednd. bui | dMenus() method to create the Menul t ens:

dnd. bui | dMenus(menus)

12.5.4. Creating a Table Using ZenTableManager

ZenTableManager is a Zope product that helps manage and display large sets of tabular data. It alows for column
sorting, breaking down the set into pages, and filtering of elementsin the table.

Here's a sample of atable listing all devices under the current object along with their IPs. First we set up the form
that will deal with our navigation form elements:

<form nmet hod="post" tal:attributes="action here/absolute url_path" nane="[MFFORM " >
script type="text/javascript" src="/zport/portal skins/zennodel/submtViaEnter.js"></scri

Next, we set up our table, defining the objects we want to list (in this case, here/devices/getSubDevicesGen). We
then pass those objects, along with a unique tableName, to ZenTableManager, which will return a batch of those
objects of the right size (for paging purposes):

<t abl e cl ass="zent abl e"

tal : defi ne="objects here/devices/get SubDevi cesCen;

tabl eNane string: myDevi ceTabl e;

bat ch pyt hon: here. ZenTabl eManager . get Bat ch(t abl eNane, objects)"
tal : condition="python: batch or

her e. ZenTabl eManager . get Tabl eSt at e(t abl eNane, 'filter')">

Next, atable header and a couple of hidden fields:

<tr>

<th class="tabletitle" col span="2"> <!--Col span will of course change with the nunber of
My Devi ces

</th>

</tr>

<i nput type='hidden' nane='tabl eNanme' tal:attributes="value tabl eNane' />
<i nput type='hidden' nane='zenScreenNane' tal:attributes='"value tenplate/id />

Now we add the rows that describe our devices. First we need to set up the column headers so that they'll be
clickablefor sorting. For that, weuseZenTabl eManager . get Tabl eHeader (t abl eNane, fi el dNane,
fieldTitle, sortRule="cnp").

<t body>

<tr>

<I--W want to sort by nanes using case-insensitive conparison-->

<th tal:replace="structure python: here.ZenTabl eManager . get Tabl eHeader (
tabl eNane, 'prinmarySortKey', 'Nane', 'nocase')">nane</th>

<!--Default sortRule is fine for IP sorting-->

83

Extending the User Interface

<th tal:replace="structure python: here. ZenTabl eManager . get Tabl eHeader (
tabl eNanme, 'getDevicelp', "IP)">ip</th>
</tr>

Now the data themselves. In order to have our rows alternate colors, we'll use the useful TALES attribute "odd",
which is True for every other item in atal:repeat.

<tal:block tal:repeat="device batch">

<tr tal:define="odd repeat/device/odd"
tal:attributes="cl ass python:test(odd, 'odd', 'even')">
<td class="t abl eval ues" >

<a cl ass="t abl eval ues" href="href"
tal:attributes="href devicel/getDeviceUrl"
tal : content ="device/id">device

</ a>

</td>

<td cl ass="t abl eval ues"

tal : content ="devi ce/ get Devi cel p">i p</td>
</tr>

</tal: bl ock>

</t body>

Finally, let's add the navigation tools we need and close off our tags.

<tr>

<td col span="2" cl ass="t abl eheader" >

</td>

</tr>

</tabl e>
</fornp

12.5.5. Creating an Editable Table

But what if you want to be able to edit devices from this table? The process is simple. First, you add a checkbox
to the first column of your devicelist:

<td class="tabl eval ues” align="left">

<!'--Now add your checkbox, defining the list of devices as "devi ceNanes"-->
<input tal:condition="here/editabl eDevicelList"

type="checkbox" nanme="devi ceNames:|ist"

tal :attributes="val ue device/ get Rel ati onshi pManager|d"/>

<! --Then the first columm contents as above-->

<a...>devi ce</ a>

</td>

Now that we can choose devices from the list, we need the controls to edit them. In this case, we'll use a macro
defining controls that allow a device to be moved to a different device class. Just add the macro call to the end
of your table:

Extending the User Interface

</tr>

<!--Add controls here-->

<tal : bl ock tal:condition="here/editabl eDeviceList"

tal : defi ne="nuntCol ums string:5"> <!--This macro includes the <tr> tag, so we need to pa

</tal : bl ock>

</t abl e>
</fornp

12.5.6. How to Save Properties via an Edit Screen

Creating anew Edit Form.
Add form input fields

Add aboolean type:

<sel ect class="tabl eval ues"

tal:attributes="name MyBool eanProperty: bool ean">

<option tal:repeat="bool Prop python: (True, Fal se)" tal:content="bool Prop"
tal:attributes="val ue bool Prop; sel ected python: bool Prop==here. get MyBool eanProperty()"/>
</sel ect>

This block of code creates a select dropdown with two options: Tr ue and Fal se. The select dropdown is pre-
populated with the value returned by get MyBool eanPr opert y() . Thevaue of thisform field will be stored
in the attribute MyBooleanProperty.

Add atext box type:

<textarea cl ass="tabl eval ues" rows='5" col s="33"
tal:attributes="name MyTextProperty:text"

tal : content="herel/ get MyText Property" >
</textarea>

This block of code creates a text box.The text box is prepopulated with the string value returned by get My-
Text BoxPr operty() . Thevaue of thisform field will be stored in the attribute My TextBoxProperty.

Add atext type:

<i nput class="tabl eval ues" type="text" size="40"
tal:attributes="val ue here/ get MyStringProperty; name MyStringProperty"/>

This block of code creates atext field. The text field is prepopulated with the string value returned by get My S-
tringProperty().Thevalueof thisform field will be stored in the attribute MyStringProperty.

85

Extending the User Interface

Add a select dropdown type:

<sel ect class="t abl eval ues"

tal:attributes="nane MySel ect Property">

<option tal:repeat="propOption here/get M/Sel ect PropertyQOptions"

tal : content="propQOption"

tal:attributes="val ue propOption; sel ected python: propOpti on==get MySel ect Property()" />
</sel ect >

This block of code creates a select dropdown where the option value and displayed option string are the same. A
list of option values are returned by get MySel ect Pr opert yOpt i ons. The select dropdown is pre-populated
by the value in getMySelectProperty. The value of this form field will be stored in the attribute MySelectProperty.

<sel ect class="tabl eval ues"

tal:attributes="name MySel ect Property:int">

<option tal:repeat="propOpti onTupl e here/ get MySel ect PropertyQOpti onTupl es”

tal : content="python: propOpti onTupl e[0]"

tal:attributes="val ue propOptionTupl e[1]; sel ected python: propOpti onTupl e[1] ==get MySel ect
</sel ect >

This block of code creates a select dropdown where the option value is an integer and displayed option is a string.
A list of tuples containing the option values and displayed option string are returned by get MySel ect Pr oper -
t yOpti onTupl es. The select dropdown is pre-populated by the value in getMySelectProperty. The value of this
form field will be stored in the attribute MySelectProperty.

Add the form action

<formid=" MyFormi method="post" tal:attributes="action here/absolute url_path">

The form action should be set to afunction (i.e. her e/ absol ut e_ur | _pat h) that returnsthe path to the object
being edited.

<i nput class="tabl eheader" type="submt"
nane="saveProperties: met hod" val ue=" Save " />

This submit button name will be in the format savePr oper ti es: net hod. savePr operti es isthe method
name that will be executed when the submit button is clicked.

Addthesave() method

def saveProperties(self, REQUEST=None):
"""Save all Properties found in the REQUEST.formobject. """

86

Extending the User Interface

for nanme, value in REQUEST.formitens():
if getattr(self, name, None) != val ue:
sel f.set Property(nane, val ue)

return sel f.call ZenScr een(REQUEST)

CreateasavePr opert y() method in the effective object.

12.6. Creating a Dashboard Portlet

There are just afew distinct steps to creating a custom dashboard portlet:
 Create the ZenPack as a container to hold everything

* Write the Python code that will define the back-end data methods

» Write the JavaScript code defining the portlet

* Testing the new ZenPack

This tutorial will walk through examples of each of these in the creation of a simple portlet that provides atable
listing links to reports under agiven Repor t d ass.

12.6.1. Create a ZenPack

First, set up the directory structure by going into Zenoss, and from the navigation bar, go to the Settings area. From
here, click on the ZenPacks tab and from the page menu select the Create a ZenPack... menu item.

For the sake of our example, well use the name ZenPacks. nyexanpl e. portl et as the name for our
new ZenPack. When we take a look at the ZenPack from the filesystem level in the $ZENHOVE/ Zen-
Packs/ ZenPacks. nyexanpl e. portl et/ Zenpacks/ myexanpl e/ port| et directory, we should see
the following

Report Li st Port| et Pack/

_init__.py
ReportListPortlet.js

Next, add the following Python codeto __init__.py:

i mport 4 obal s
i mport os.path

skinsDir= os.path.join(os.path.dirname(__file__), 'skins')
from Products. CM-Core. DirectoryView i nport registerDirectory
if os.path.isdir(skinsbir):

registerDirectory("skins", globals())

This satisfies the ZenPack requirements for the 'skins' directory.

Theski ns directory isrequired, although you won't be using it in this portlet. Normally it contains Zope templates
specific to your ZenPack.

87

Extending the User Interface

The _init__ . pyisarequirement for Python modules (of which Zope products, and by extension ZenPacks, are
atype). When the ZenPack is loaded on Zenoss startup, codein __i nit__. py will berun. Thisiswhere you'll
place the back-end functions so that your portlet gets attached to the Zenoss portal object and made available to
the portlet front-end.

Finally, you'll need to make a ZenPack object so that you can hook into installation, upgrade and removal methods,
aswell asto register and unregister your portlet. Add the following codeinto __init__ . py:

from Products. ZenModel . ZenPack inport ZenPackBase

cl ass ZenPack(ZenPackBase):

Portl et ZenPack cl ass

def install(self, app):

Initial installation of the ZenPack

ZenPackBase.install (sel f, app)

def upgrade(sel f, app):

Upgr adi ng the ZenPack procedures

ZenPackBase. upgr ade(sel f, app)

def renove(self, app, |eavebjects=False):

Renmove t he ZenPack from Zenoss

NB: As of Zenoss 2.2, this function now takes three argunents.
ZenPackBase. renove(sel f, app, |eaveObjects)

Asyou can see, nothing special has been done yet; that will come later.

12.6.2. Write the Python back-end code

Sincethe Report Li st Port | et will present its information as tabular data, you'll be using the JavaScript Y Ul
library's Tabl eDat asour ce on the front-end (more about that in the next section). That datasource accepts data
as a JSON object with the following structure:

{

‘colums': ['Columl', ' Colum2'],
‘data': [
{
"Columl' :'row 1 val ue',
"Col um2' : " anot her row 1 val ue'
b
{

"Col um1l':'row 2 val ue',

88

Extending the User Interface

"Col um2': ' anot her row 2 val ue'

}

Thus you need a method in Zenoss to structure your list of reports accordingly and serialize it as JSON. Y ou then
need to place that method in Zenoss so that it's accessible to the browser viaan ordinary HTTP request. This method
should accept a path to aRepor t G ass whose reports are to be listed.

Here's the final method (we'll go through it piece by piece in a moment):
i mport sinplejson

def get JSONReportlList(self, path='/Device Reports'):
G ven a report class path, returns a list of links to child
reports in a format suitable for a Tabl eDat asour ce.

This function will be nobnkey-patched onto zport, so
references to self should be taken as referring to zport

Add the base path to the path given
path = '/zport/dnd/ Reports/' + path.strip('/")

Create the enpty structure of the response object
response = { 'colums': ['Report'], 'data': [] }

Retrieve the ReportC ass object for the path given. If
nothing can be found, return an enpty response
try:

reportCl ass = self.dnd. unrestrictedTraverse(path)
except KeyError:

return sinplejson.dunps(response)

CGet the list of reports under the class as (url, title) pairs
reports = reportC ass.reports()
reportpairs = [(r.absolute_url_path(), r.id) for r in reports]

lterate over the reports, create |inks, and append themto
the response object
for url, title in reportpairs:

link = "%" % (url, title)

row = { "Report': link }

response[' data'].append(row)

Serialize the response and return it
return sinplejson.dunps(response)

Monkey-patch onto zport
from Product s. ZenModel . Zenti nel Portal inmport Zentinel Port al
Zenti nel Portal . get JSONReportLi st = get JSONReport Li st

Thisfunction will bedefinedin_init__. py.

89

Extending the User Interface

First, you'll need si npl ej son to serialize the response:
i mport sinplejson

That's it for the method. This should now bein __init__ . py. Next, set up the monkey-patch by importing
zport 'sclass:

from Products. ZenModel . Zenti nel Portal inport Zentinel Port al
Then set your function as a class method:
Zenti nel Portal . get JSONReportLi st = get JSONReport Li st
And that's it! Now this method is accessible wherever zport is; for example, viaHTTP:

http:// myzenoss: 8080/ zport/ get JSONReport Li st ?pat h=Devi ce%20Reports

12.6.3. Write the JavaScript Portlet

Zenoss portlets rely on elements of both the MochiKit and Yahoo! Ul JavaScript libraries. JavaScript is a proto-
type-based language, not a class-based language; as aresult, innumerabl e efforts have been madeto create class-like
JavaScript objects. Zenossis no exception. It does not use Y Ul's class-like objects, but instead its own constructor,
based on the Pr ot ot ype library's Class, that allows simple subclassing.

Similarly, Zenossusesitsown Dat asour ce object that wrapsaround Y Ul'sDat aSour ce component; thisallows
for the use of datasource subclassing, as well as simple JSON serialization.

Asaresult of using these custom components, creating anew Por t | et isfairly straightforward. Each portlet must
have a corresponding Dat asour ce, which handles communication with the server.

The ReportListPortlet will use the predefined Tabl eDat asour ce, so no separate datasource class definition is
needed. See $ZENHOME/ Pr oduct s/ ZenW dget s/ ZenossPor t | et s/ Googl eMapsPortl et.j s foran
example of a customized datasource.

Theglobal YAHOOOobject definesanamespace; YAHOO. zenoss iswhereall custom Zenosscomponentsare stored.
The complete portlet definition, which should be placed in Repor t Li st Port | et . j s, follows. Asbefore, welll
go over it step by step in amoment.

var ReportListPortlet = YAHOO. zenoss. Subcl ass. creat e(
YAHQO. zenoss. portlet. Portlet);

ReportListPortlet.prototype = {

/1l Define the class name for serialization
__class__:"YAHQO. zenoss. portlet. ReportListPortlet”,

[l __init__ is run on instantiation (feature of Cl ass object)
_init__: function(args) {

/] args conprises the attributes of this portlet, restored
/1 fromserialization. Take themif they're defined,

/1 otherw se provide sensible defaults.

args = args || {};

id="id in args? args.id : getU D(' ReportList');

title = "title" in args? args.title: "Reports";

90

Extending the User Interface

b

bodyHei ght = ' bodyHei ght' in args? args. bodyHei ght: 200;

/1 You don't need a refresh time for this portlet. In case
/'l sonmeone wants one, it's available, but default is O
refreshTime = 'refreshTinme' in args? args.refreshTine: O;

/1 The dat asource has already been restored from

/'l serialization, but if not nmake a new one.

dat asource = 'datasource' in args? args.datasource
new YAHQO. zenoss. portl et. Tabl eDat asour ce({

/1l Query string will never be that long, so CET
/1 is appropriate here
met hod: ' GET',

/1l Here's where you call the back end met hod
url:'/zport/get JSONReportList',

/1 Set up the path argunment and set a default Reportd ass
queryArgunents: {'path':'/Device Reports'}

1)
/[l Call Portlet's __init__ method with your new args
this.superclass. __init_ (

{id:id,

title:title,
dat asour ce: dat asource,
refreshTi me: refreshTi ne,
bodyHei ght: bodyHei ght
}
)

/'l Create the settings pane for the portlet
this. buildSettingsPane();

/1 buildSettingsPane creates the DOM el enents that popul ate the
/] settings pane.
bui |l dSetti ngsPane: function() {

/] settingsSlot is the div that holds the el enents
var s = this.settingsSlot;

/1 Make a function that, given a string, creates an option
/1 element that is either selected or not based on the
/] settings you' ve already got.
var getopt = nethod(this, function(x) {
opts = {'val ue':x};
pat h = this.datasource. queryArgunents. pat h;
if (path==x) opts['selected]=true;
return OPTION(opts, X); });

/] Create the select el enent

91

Extending the User Interface

this. pathselect = SELECT(null, null);

/1 A function to create the option elements froma list of
/] strings
var createOptions = nmethod(this, function(jsondoc) {
for Each(j sondoc, method(this, function(x) {
opt = getopt(x);
appendChi | dNodes(t hi s. pat hsel ect, opt);
1)
1

/1 Wap these elements in a DIV with the right CSS cl ass,

/1l and give it a label, so it |ooks pretty

mycontrol = DIV({' class':'portlet-settings-control'}, [
D V({'class':"control -l1abel'}, 'Report Cass'),
thi s. pat hsel ect

1)

/1 Put the thing in the settings pane
appendChi | dNodes(s, mycontrol);

/1l Go get the strings that will popul ate your select el enent.

d = | 0adJSONDoc (' / zport/ dmd/ Report s/ get Organi zer Nanes') ;
d. addCal | back(net hod(this, createQptions));

b

/1 submitSettings puts the current values of the elenents in
/1 the settingsPane into their proper places.
submit Settings: function(e, settings) {

/1 Get your Reportd ass value and put it in the datasource
var mypath = this. pathsel ect. val ue;
thi s. dat asour ce. quer yArgunment s. path = mypat h;

/] Call Portlet's submtSettings
this.superclass.submtSettings(e, {'queryArgunents':
{" path': nypat h}
1
}
}
YAHQO. zenoss. portlet. ReportListPortl et = ReportlListPortlet;

The dashboard template loads al the dependencies for portlets, including the two important ones:
YAHQO. zenoss. Subcl ass and YAHOO. zenoss. portlet. Portl et .

First, createyour Repor t Li st Por t | et asasubclassof YAHOO. zenoss. portl et. Portl et (whichisde
fined in $ZENHOVE/ Pr oduct s/ ZenW dget s/ ski ns/ zenui /j avascript/portlet.js, if you care
to look at its code):

var ReportlListPortlet = YAHOO. zenoss. Subcl ass. creat e(
YAHQO. zenoss. portlet. Portlet);

Most of the Portlet class's options are fine here; you'll be adding a select element to the settings pane, to
select the base report class, and defining a Tabl eDat asour ce, to get data from your server-side method.
To customize the subclass, modify the prototype object of the portlet. When ReportLi stPortlet is

92

Extending the User Interface

called as a constructor, the attributes of Port| et's prototype are copied to ReportLi st Portl et, ex-
cept for those that Report Li st Port | et has defined itself. Port | et 's prototype is also made available as
Report Li st Portl et. supercl ass.

ReportListPortlet.prototype = {

The _ class _ attribute will be used when the portlet is restored from serialization. It points to the correct code, so
defineit as the eventual place of your Portlet in the YAHOO. zenoss namespace.

__class__:"YAHQO. zenoss. portlet. ReportListPortlet”,

The __init__ method is caled when a ReportListPortlet is created (a feature of
YAHQO. zenoss. O ass). The entity that restores portlets from saved settings will pass in an object containing
those settings as attributes, so you'll need to go through those, making any changes necessary and supplying defaults
if settings don't exist.

__init__: function(args) {

args = args || {};

id="id inargs? args.id : getU D('ReportList');

title = "title" in args? args.title: "Reports";

bodyHei ght = ' bodyHei ght' in args? args. bodyHei ght: 200;
refreshTine = 'refreshTine' in args? args.refreshTine: O;

In the process of iterating over settings, the method will come across the datasource. If it doesn't exist yet, you'll
need to create one. Since these are tabular data, you'll use TableDatasource.

datasource = 'datasource' in args? args.datasource :
new YAHQOO. zenoss. port | et. Tabl eDat asour ce({

met hod: ' GET'
Set the datasource's url to the path to the method on zport that you wrote previously:
url:'/zport/get JSONReportList',
And set up the arguments that get passed to that method, providing a default:
this.superclass. __init_ (
{id:id,

title:title,

dat asour ce: dat asour ce,

refreshTi me: refreshTi ne,

bodyHei ght: bodyHei ght

}
)

Sinceyou're going to have amodified settings pane, containing the select element by whichthebaseRepor t O ass
is chosen, you'll need to call a method to add that to the default elements.

this.buildSettingsPane();
}1

Now write that method, since you've finished the initialization.

bui |l dSetti ngsPane: function() {

93

Extending the User Interface

Portlet.settingsSlot is the reference to the div element that contains the settings pane.
var s = this.settingsSlot;

Since your settings pane will include a select element, you'll need to create options to be chosen, using MochiKit's
OPTI O\() ; aso, you want the select element to show the current value. This function will accept a string repre-
senting an existing Repor t Cl ass and build an option element, setting it as selected if it matchesthe current value.

var getopt = nethod(this, function(x) {
opts = {'val ue':x};
pat h = this.datasource. queryArgunents. pat h;
if (path==x) opts['selected]=true;
return OPTION(opts, X); });

Now create the select element to hold the options, again using MochiKit's SELECT() :
this. pathselect = SELECT(null, null);

Set up the function that accepts a list of strings and iterates over them, turning them into options and appending
them to your select element:

var createQptions = method(this, function(jsondoc) {
for Each(j sondoc, method(this, function(x) {
opt = getopt(x[0]);
appendChi | dNodes(t hi s. pat hsel ect, opt);
1)
1

Now put the (currently empty) select element into a div with the proper CSS class defined, so that it will organize
itself properly in the settings pane, and have alabel:

mycontrol = DIV({'class':'portlet-settings-control'}, [
DIV({'class':'control-label'}, 'Report Cass'),
thi s. pat hsel ect

1)
appendChi | dNodes(s, mycontrol);

Finally, you'reready to get the datafor all of your option elements. Y ou'll use MochiKit'shandy | oadJ SONDoc(),
which accepts a URL, fires off an XHR, parses the response text as JSON, and returns a JavaScript object, with
which you'll call back to your option-building method:

d = [oadJSONDoc (' / zport/ dnd/ Report s/ get Organi zer Nanes') ;
d. addCal | back(net hod(this, createQptions));

b

Lastly, you need to hook into the method that saves changed settings, so it will include your Repor t O ass string:
submt Settings: function(e, settings) {

var nypath = this. pathsel ect. val ue;
t hi s. dat asour ce. quer yArgunents. path = nypat h;

/[l Call Portlet's subnmtSettings
this.superclass. subm tSettings(e, {' queryArgunents':

{' path': nypath}

94

Extending the User Interface

s
}

All that'sleft isto assign the Repor t Li st Port | et constructor to the YAHOO. zenoss namespace:

YAHOO. zenoss. portl et. ReportListPortlet = ReportListPortlet;

12.6.4. Register the portlet

Now you need to tell Zenoss about the portlet and assign permissions. Openup __i nit __. py again, and add the
following Python code to the top:

from Products. ZenModel . ZenossSecurity inport ZEN COMVON
fromProducts. ZenUils.Uils inmport zenPath

Next, modify the ZenPack class you defined way back in step 1. Since upgrading and installing the portlet will
amount to the same thing, create a method on your ZenPack class to cover those steps:

def _registerReportListPortlet(self, app):
zpm = app. zport. ZenPort| et Manager
portletsrc = zenPat h(' Products', 'ReportlListPortletPack',
"ReportListPortlet.js")

zpmregi ster_portlet(
sour cepat h=portl etsrc,
i d=' ReportListPortlet',
title="Report List',
per m ssi on=ZEN_COVMON)

That method will let ZenPor t | et Manager , the object on zpor t that, unsurprisingly, manages portlets, know
about the portlet source code. ThezenPat h() functionisautility that joins strings together to create afilesystem
path under $ZENHOVME -- in this case, pointing to the directory where your ZenPack will be installed. When regis-
tering a portlet, you provide an id, atitle, and the permissions for the portlet (as this portlet should be visible to
everyone, ZEN COMMON is the appropriate permission).

Now you can modify youri nst al | (), upgrade() andr enove() methods:

def install(self, app):
ZenPackBase. install (sel f, app)
sel f. registerReportlListPortlet(app)

def upgrade(sel f, app):
ZenPackBase. upgr ade(sel f, app)
sel f. registerReportlListPortlet(app)

def renove(self, app):
ZenPackBase. renove(sel f, app) zpm =
app. zport. ZenPort | et Manager
zpm unregi ster_portlet('ReportListPortlet')

Save and exit. You can test your ZenPack at this point by navigating to the parent directory of Report Li st -
Por t | et Pack and running:

95

Extending the User Interface

zenpack --install ReportlListPortl etPack

Load up the Zenoss Ul in your browser and click Add Portlet on your dashboard. Make sure the Report List portlet
appears as an option. If so, add one and check that you can change the base Repor t Cl ass. Also make sure it
shows reports.

Now all that's left is to export the ZenPack from Zenoss. From the ZenPacks tab under Settings, click on your
new ZenPack. From the page menu, select the Export ZenPack... menu item. That will create a new egg file called
ZenPacks. nyexanpl e. port| et. egg. Distribute away!

12.7. Debugging Tips

There are quite anumber of components used in order to create the Zenoss interface, and it can be quite achallenge
to understand what's happening and how to fix issues. The following are alist of some simple debugging tips:

» Usepagetemplatesrather than full HTML pageswhenever possible. There areanumber of dependencies between
CSS, JavaScript and other components, and doing it the hard way can bereally hard. Trying to do things the hard
way in across-browser fashion is exceptionaly difficult. As a side benefit, using the page templates means that
your pages will benefit from any improvements in the base product.

* RunFireFox version 3.x or better, and examine the Error Consoleto find out what JavaScript errors are occurring.
There will be tons of CSS issues coming from different CSS pages (it's annoying, but not fatal), but you can
safely ignore them.

« The Firefox Error Console will not tell you if Firefox wasn't able to find or load a JavaScript file (ie the path
you've specified in your web page to get to the JavaScript file is incorrect). In order to determine if Zope was
given a path to afilename that it couldn't find, you'll need to go into Zope's ZMlI, go to the error log (eg http://
yourzenossserver:8080/error_log/manage) and remove al of the error log filters. After you do that, retry the
operation and you can see what files Zope wasn't able to find and fix the paths in your page.

96

Chapter 13. Reports
13.1. Adding a New Report

Zenoss reports are simply HTML pages that use TALES markup. For a more thorough discussion, see Chapter 12,
Extending the User Interface.
Adding a report through the ZMI is currently not working as advertised in this section and needs to be fixed.

New pages can be created using the Zope Management Interface (ZMI) interface. Navigate to thisurl on your Zenoss
server:
http://yourzenossserver:8080/zport/dmd/Reports

You can add areport at this point in the Reports tree by adding "/manage” to the URL in your browser:
http://yourzenossserver:8080/zport/dmd/Reportsymanage

Here you can select Report from the menu on the right, and add a new Report. Name it "test" and save it. After
you see your new "test" report, leave the ZMI by selecting the "test" object, and then selecting the Test tab at the
top of the page.

Y ou will then see a sample page:

Reports

This is Page Tenplate test.

If we use some TALES templates, we can get a test page that has the Zenoss look and feel. Navigate back to our
test page under the ZMl:
http://local host:8080/zport/dmd/Reports/test/manage

Now change the text to this:

<tal: bl ock netal:use-nmacro="here/reportMacros/ macros/ exportabl eReport">

<tal:block netal:fill-slot="report">
<tal: bl ock netal:use-nmacro="here/tenplates/nmcros/pagel">
<tal :block netal :fill-slot="breadCrunbPane">

</tal: bl ock>

<tal:block netal :fill-slot="contentPane">

<hl>Reports</ hl>

This is Page Tenplate <i tal:content="here/title_ or_id/>.
</tal: bl ock>

</tal: bl ock>

</tal: bl ock>

</tal: bl ock>

The meat of areport goes here:

<tal :block metal :fill-sl ot="contentPane" >

97

Reports

</tal:block>

Typically, alist of recordsis pulled from the database, summarized, and then shown in a table using the TALES
markup.

Although you can make changes and save them using the web interface, it is a cumbersome editor. It is simpler to
make the changes to an external file and reload it. If you store your file in the $ZENHOVE/ Pr oduct s/ ZenRe-
ports/reports directory, you can load it in with the ReportL oader?:

$ cd $ZENHOVE/ Pr oduct s/ ZenReport s

$ python ReportlLoader.py --force

13.2. Plugins

Reports are often summarieswhich are not tied to aparticul ar object. Instead of adding code to objectsto make them
available in the page template, you can put the python code for areport in the $ZENHOVE/ Pr oduct s/ ZenRe-
port s/ pl ugi n directory.

Y ou can execute a plugin using thistal:block:

<tal : bl ock tal:define="
obj ects python: here. Report Server. plugin(' cpu', here. REQUEST);

</tal: bl ock>

Plugins are executed every time areport is run, and do not require a Zope restart to get pick up changes. With help
from the ZenReports? Plugin module, you can even test the reports from the command line. This further reduces
the number of times that Zope is used as a devel opment environment.

See the examplesin the plugins directory.

13.3. Adding Export Buttons to Reports

Adding an Export All button to a report is fairly straightforward. The overall format of the report markup looks
something like this:

<tal : bl ock tal:define="

obj ects python: here. ZenUsers. get Al | Thi ngsFor Report();

obj ects python: (hasattr(request, 'doExport') and list(objects)) or objects;
tabl eNanme string: thislsTheTabl eNane;

bat ch pyt hon: her e. ZenTabl eManager . get Bat ch(t abl eNane, obj ect s,

sort edHeader =" get Userid');

exportFields python:['getUserid' , 'id , 'delay',

"enabl ed', 'nextActiveN ce', 'nextDurationN ce',

98

Reports

‘repeatNice', 'where'];

"

<tal : bl ock mnetal : use-macr o="her e/ report Macr os/ macr os/ export abl eReport ">
<tal:block nmetal :fill-slot="report">

The normal report markup goes here

</tal:block>
</tal:block>
</tal:block

The first definition is a call to some method that retrieves the objects for the report. This might be alist, tuple or
an iterable class.

If we are doing an export then we need this to be a list, so the second tal:define line makes sure we have alist in
the event that we are doing an export. It's good to not do thisif we are not doing an export. Large reports might run
into performance issuesif aniterable is converted to alist unnecessarily.

tablename is defined here for use by the get Bat ch() call that follows.

exportFieldsisalist of datato beincluded in the export. These can be attribute names or names of methods to call.
See DataRoot?.writeExportRows() for more details on what can be included in thislist.

Within the <tal:block metal:fill-slot="report"></tal:block> block goes the report markup you would use when not
including the export functionality.

Note

If the Export All button is mysteriously not doing anything you may need to be using zenTableNav-
igation/macros/navtool rather than zenTableNavigation/macros/navbody in your report. The former
includes the <form> tag, the latter does not. If you are not providing a <form> tag then you need to
use navtool so the export button iswithin aform.

99

Chapter 14. Migrating Zenoss Code

Note

Thissection is not intended for ZenPack writers but for people modifying the core code (eg files under
the $ZENHOVE/ Pr oduct s/ directory). If you are migrating code in a ZenPack, see Section 3.5.1,
“Migrating between versions’.

14.1. Introduction and Steps

If you have added new functionality to Zenoss that will break backwards compatibility, you need to provide code
for your version that will allow users to upgrade without breakage.

Here's a breakdown of everything you will need to do in order to create your migration code and move your new
code into production:

1. Create your code in the $ZENHOVE/ Pr oduct s/ ZenModel / m gr at e/ m gr at e package directory.
2. Add animport statementto __init__ . py

3. Run zenmigraterun iteratively to test

14.2. How It Works

The first place to look is in Products/ZenModel / migrate. For starters, examine the code in
m grat e. M gr at e and note the St ep class - thisis what you will subclass when writing your migration code.
Them grate. M grate. M grati on. mai n() method is what is called from the zenni gr at e. py script
and is what fires off the whole process.

To further understand the process, notethe global variableal | St eps: thisisappended to every time Migrate.Step
isinstantiated.

But, you ask, how does my codegetintoal | St eps?

Onceyour migration codeiscomplete, you will do acouplethings: add your fileto the migratedirectory and then add
animport statementtomi grate/ __init__ . py. When migrate. Migrate isimported in the zenmi gr at e. py
script, the__i ni t __. py codeisrun. Each moduleimported by thisfile hasaclassthat getsinstantiated at the end
of itsmodule (seethe M grate. Step. __init__ () method). It isthrough this mechanism that each custom
migration module in the migrate directory isadded to al | St eps (sorted by name and version number).

When i grate. M grate. mai n() iscaled, al | St eps isiterated and checks are performed to see if each
migration step needsto berun or not. mai n() calscut over () ,whichcalsm grat e(), and thisiswhere the
actual work of migration occurs, where your code gets executed.

14.3. What You Write

As noted, your migration code will subclass i gr at e. M gr at e. St ep. You can stub your migration file out
likethis:

doc__ =""'"My nmigration code'""’

100

Migrating Zenoss Code

from Acqui sition inport aqg_base
import Mgrate

cl ass MyM grateCode(M grate. Step):
version = Mgrate. Version(1, 1, 0) # this needs to be updated to the appropriate ver:

def cutover(self, dnd):
pass

MyM gr at eCode()

Y ou will need to do the following to this code:

1. Fill in the doc string

2. Update the version passed to Migrate.Version

3. Updatethe cut over () method with actual code

4. Add any supporting code you might need that doesn't strictly belongin cut over ()

14.3.1. Implement cutover()

Implementation is very straight-forward: you get the dmd object passed into the cut over () method, thus giving
you access to nearly every part of Zenoss. The only thing you don't have direct access to is the portal object. But
you can easily get that by calling dnd. get Physi cal Root ().

Implementation details are 100% dependent upon what part of Zenoss you are migrating -- if you look at the current
migration scripts (in trunk), you will get agood sense of the diversity aswell as many examples from which to work.

Changes made to the ZODB database (dmd and associated objects hierarchies) are not committed back to the
database unless the - - conmi t flag is passed to zenmigrate. This lets the developer repeatedly run a script and
debug without making permanent changes to the database. If your migrate script makes changes outside of the Zope
database it should probably implement St ep. r evert () toundo any changesit has made.

14.3.2. Supporting Code

Supporting codeisjust modularization. If you're going to be using afunction (or method) more than once, just break
it out of the cut over () method. Thiswill make maintenance easier and will allow those who come after you to
see the intent of the migration code more quickly.

14.3.3. Testing and Deployment

Once your code meets with your approval (and that of the Zenoss development team), you are free to name
it something appropriate and save it to Pr oduct s/ ZenModel / m gr at e. Upon adding your migration mod-
ule, you must now edit Product s/ ZenModel /migrate/ __init__.py so that it gets imported when
zenmni grat e. py isrun.

After adding your script (and after every change you make to your new script), be sure to run zenmigrate run. Here
are some things you can do to help ensure quality:

1. Load Zenoss in aweb browser, and navigate to the part of the application that was impacted by your migration
script

101

Migrating Zenoss Code

2. Look at thelog filesfor error output

3. Load up zendmd from the command line and make sure that no errors are generated when using the part of the
API impacted by the change

After someone reviews the changes, your migration code is ready for deployment.

102

Chapter 15. Testing

15.1. Zenoss Unit Tests
15.1.1. Introduction

Standard unit test Tests
Support for doctest Tests
Testing.ZopeTestCase Tests

Integrating with runtests Testing

15.1.2. Zenoss' Test Runner

Zenoss has a Zope product, ZenT estRunner, whose sole purpose it to run a specific group of tests. We did thisin
order to avoid running all the testsin the Pr oduct s directory if you only want to run tests on a specific portion
of Zenoss.
All of our examples should be run asthezenoss user. If you really want to run all of the tests:
runtests
or aternatively
runtests -t unit
Torun al of the ZenModel tests:
runtests ZenModel
All that is required by developersisthat they add testsinto thet est s directory.
1. Run the existing tests to make sure that you know what to expect:
runtests
2. Gotothet est s directory inside of the directory with the classes you want tested:
cd $ZENHOM E/Products’ZenM odel/tests
3. Copy one of the existing tests to a name reflecting the product for which you are adding tests:
cp testZenM odel.py testZenNewProduct.py
4. Changethei nport lineinthe new fileto reflect the new product name:
from Products inmport ZenNewProduct as product
5. Save and quit, then run the test suites to make sure everything is passing:

runtests ZenM odel

103

Testing

15.1.3. Integrating With Buildbot

The Buildbot [http://buildbot.net/trac] program is a Python-based build and test system used at Zenoss Inc in order
to perform nightly builds of the various architectures, run unit tests and sanity check the code with PyFlakes [http://
divmod.org/trac/wiki/DivmodPyflakes].

Note

The current Bui | dbot configuration is not visible outside of Zenoss Inc, and so this section is for
curiousity purposes only.

15.2. Functional User Interface Testing
15.2.1. Introduction

Functional testing refersto testing of the task-oriented features (aka functions) as opposed to the much lower-level
unit-tests. A good unit test will tell you if apiece of code isworking within specifications, while a good functional
test will tell you if the entire program works as expected for a particular task.

15.2.2. Installing and Running

Selenium [http://selenium.openga.org/] is a suite of tools used to create tests and record their results. These regres-
sion tests are intended to be run against multiple different browsersin order to verify the targeted web application.

15.2.2.1. Installing and Configuring Mac OS X
Sel eni umuses Fi r eFox by default, so you need to make surethat f i r ef ox- bi n isinyour search path:
which firefox-bin
If that returns nothing, then you need to add the pathto f i r ef ox- bi n to PATH. For example:
export PATH=$PATH:/Applicationg/I nter net/Fir efox.app/ContentsM acOS/

The actual Selenium tests are found in the $ZENHOVE/ Pr oduct s/ ZenUl Test s/ t est s/ sel eni um direc-
tory.

15.3. Where to Get More Information

Discussion regarding testing takes place on the zenoss-testing mailing list and forums [http://forums.zenoss.com/
viewforum.php?=7].

104

http://buildbot.net/trac
http://buildbot.net/trac
http://divmod.org/trac/wiki/DivmodPyflakes
http://divmod.org/trac/wiki/DivmodPyflakes
http://divmod.org/trac/wiki/DivmodPyflakes
http://selenium.openqa.org/
http://selenium.openqa.org/
http://forums.zenoss.com/viewforum.php?f=7
http://forums.zenoss.com/viewforum.php?f=7
http://forums.zenoss.com/viewforum.php?f=7

Appendix A. Event Database Dictionary

Event Field Description

dedupid events will deduplicate based on the value of this field.
by default: device, component, eventClass, eventKey,
severity

device name of device

component name of component (like ethO, httpd, etc)

eclass eventClass (if not specified maybe added by rule process
if thisfailswill be /Unknown)

eventKey if acomponent needs further deduplication specification
this field maybe used

summary message text truncated at 150 characters

message full message text

severity number from0to 5

eventState state of event 0 = new, 1 = acknowledged, 2 = suppressed

eventClassK ey key by which rules processing begins. Often equal to
component.

eventGroup logical group of event source (syslog, ping, nteventlog
etc)

stateChange last time event changed automatically updated

firstTime unix timestamp when event is received.

lastTime last time an event was received

count number of times an event has repeated

prodState prodState of the device context

suppid id of event that suppressed this event

manager fgdn of the collector from which this event came

agent collector name from which event came (zensyslog, zen-
trap, etc)

DeviceClass device class from device context

Location device location from device context

Systems device systems from device context separated by |

DeviceGroups

device systems from device context separated by |

ipAddress ip from which event came

facility syslog facility of thisis syslog event

priority syslog priority of thisis syslog event
ntevid nt event id if thisis nt eventlog event.

105

Appendix B. TALES Expressions

TALES is syntax you can use to retrieve values call methods on Zenoss objects. Several fields in Zenoss accept
TALES syntax, including command templates, event mapping transforms, user commands, event commands, zProp-
erties, zLinks. and others.

Commands (those associated with devices aswell asthose associated with events) can use TALES expressionstoin-
corporate data from the related devices and/or events. TALES isasyntax for specifying expressionsthat et you ac-
cesstheattributes of certain objects such asadevice or an event in Zenoss. For additional documentation on TALES
syntax please see the TALES [http://www.zope.org/Documentation/Books/ZopeBook/2_6Edition/AppendixC.stx]
section in the Zope book.

Depending on the context you may have access to a device and/or an event. Below is alist of the attributes and
methods you may wish to use on device and event objects. The syntax for accessing device attributes and methodsis
${ dev/attributename} , so for example to get the managel p of adevice you would use ${ dev/managel p} . For events,
the syntax is ${ evt/attributename}

B.1. Examples
B.1.1. ping

A command to ping a device might look like this. The ${..} isa TALES expression to get the managelp value for
the device.

ping -c 10 ${dev/ managel p}

B.1.2. DNS forward lookup

Assuming that the ${ device/id} is aresolvable name

host ${devi ce/id}

B.1.3. DNS reverse lookup

host ${devi ce/ managel p}

B.1.4. snmpwalk

snnmpwal k -v1l -c${devi ce/ zSnmpCommuni ty} ${here/ managel p} system
zProperties are also available for devices and events using the same syntax as above.

To use these expressions effectively you need to know which objects, attributes and methods are available to you
in which contexts. Usually there is a dev and/or device which allows you access the device in a particular context.
Contexts related to a particular event usually have evt and/or event defined. Some available attributes for each of
these classes are listed below. List items with parenthesis after them are methods and much have the parenthesis
included in the TALES expression to function correctly.

106

http://www.zope.org/Documentation/Books/ZopeBook/2_6Edition/AppendixC.stx
http://www.zope.org/Documentation/Books/ZopeBook/2_6Edition/AppendixC.stx

TALES Expressions

B.2. TALES Device Attributes

TableB.1.

Device Attribute

Description

getld

The primary means of identifying a device within Zenoss

getManagel p

The P address used to contact the device in most situations

productionState

The production status of the device: Production, Pre Production, Test, Main-
tenance or Decommisioned. This attribute is a numeric value, use getPro-
ductionStateString for atextual representation.

getProductionStateString

Returns atextual representation of the productionState

snmpAgent

The agent returned from SNMP collection

snmpDescr The description returned by the SNM P agent
snmpOid The oid returned by the SNMP agent
snmpContact The contact returned by the SNMP agent
snmpSysName The system name returned by the SNMP agent
snmpLocation The location returned by the SNMP agent

snmpLastCollection

When snmp collection was|last performed on the device. ThisisaDateTime
object.

getSnmpL astCollectionString

Textual representation of snmpLastCollection

rackSlot

The slot name/number in the rack where this physical deviceisinstaled

comments

User entered comments regarding the device

priority

A numeric value: 0 (Trivia), 1 (Lowest), 2 (Low), 3 (Normal), 4 (High), 5
(Highest)

getPriorityString

A textual representation of the priority

getHWM anufacturerName Name of the manufacturer of this hardware

getHWProductName Name of this physical product

getHWProductK ey Used to associate this device with a hardware product class
getOSManufacturerName Name of the manufacturer of this device's operating system
getOSProductName Name of the operating system running on this device
getOSProductK ey Used to associate the operating system with a software product class
getHW Serial Number Serial number for this physical device

getL ocationName Name of the Location assigned to this device

getL ocationLink Link to the Zenoss page for the assigned Location

getSystemNames A list of names of the Systems this device is associated with

getDeviceGroupNames

A list of names of the Groups this device is associated with

getOsVersion

Version of the operating system running on this device

getL astChangeString

When the last change was made to this device

getL astPoll SnmpUpTime

Uptime returned from snmp

uptimeStr

Textual representation of the snmp uptime for this device

getPingStatusString

Textual representation of the ping status of the device

107

TALES Expressions

Device Attribute

Description

getSnmpStatusString

Textual representation of the SNMP status of the device

B.3. TALES Event Attributes

TableB.2.
TALESEvent Attribute Description
dedupid A key used to correlate duplicate events
evid A uniqueid for the event
device Theid of the associated device, if applicable
ipAddress The IP Address of the associated device, if applicable
component The component of the associated device, if applicable
eventClass The event class associated with this device
eventGroup logical group of event source (syslog, ping, nteventlog etc)
eventKey The eventKey isthe primary criteria for mapping events into event classes
facility The Unix syslog facility if thisis a syslog event
severity One of 0 (Clear), 1 (Debug), 2 (Info), 3 (Warning), 4 (Error) or 5 (Critical)
priority syslog priority of thisis syslog event
summary Text description of the event
stateChange When the mysql record for this event was last modified
firstTime Thefirst time this event was seen
lastTime The last time this event was seen and its count incremented
count Number of times this event has been seen
prodState prodState of the device context
manager Fully-qualified domain name of the collector from which this event came
agent collector name from which event came (zensyslog, zentrap, etc)

zProperties are also available for devices and events using the same syntax as above.

108

Glossary

Zenoss Glossary

This glossary should be useful for users who need a reference for the occasiona clarification as well as developers
who need an explicit and detailed understanding of terms varying contexts.

Daemon

Data Collection

Device

Device Management Database

Event

GPL

ICMP

In Unix, adaemon is a computer program that runs in the background rather than
under thedirect control of auser. Systemsoften start (or "launch™) daemons at boot
time: they often serve the function of responding to network requests, hardware
activity, or other programs by performing some task. Daemons can also configure
hardware (like devfsd on some Linux systems), run scheduled tasks (like cron),
and perform avariety of other tasks.

These are the terms related to the data collection process. The Zope product re-
sponsible for this areas of Zenossis the DataCollector

Collecting - the process of obtaining information from networked resources, de-
vices, hosts and their operating systems.

Callector Client - since the information obtained during the Collecting process are
networked resources, we need clients to to connect to these resources and thisis
what the Collector Client does. Each client usually wraps some amount of low-
er-level Twisted Python networking code.

Data Collector - thisisthe zenmodeler, the brains behind Collecting.

Data Map - after networked resource data is collected, it needs to be parsed and
presented to the Zenoss system. This parsed data is stored in a Data Map and is
used to keep track of changes in networked resources.

Plugins - plugins for Data Collection tell the Collector Clients what information
to get from the networked resources.

A deviceisdefined as aZenoss code abstraction for acombination of anetworked
resources hardware and that hardware's operating system. Any piece of hardware
attached to anetwork you want to monitor using Zenoss. These can include: print-
ers, servers, routers, and switches among others.

The DMD isan object inside of the ZODB where Zenoss storesdevice and network
configuration information.

An event can be defined as "a significant change in state or any action or occur-
rence detected by a program. Events can be user actions, such as clicking amouse
button or pressing akey, or system occurrences, such as running out of memory.
State changes for objects can create also create events.

The GNU General Public License (GNU GPL or simply GPL) is a widely used
free software license.

Short for Internet Control Message Protocol, an extension to the I nternet Protocol
(IP) defined by RFC 792. ICMP supports packets containing error, control, and
informational messages. The PING command, for example, uses ICMP to test an
Internet connection.

109

Glossary

Management Information Base

Modeling

Object Identifier

RRDTemplate

Severity

Simple Network Management
Protocol

SNMP Walk

sudo

A management information base (MIB) is atype of database used to manage the
devicesin acommunications network. It comprisesacollection of objectsina(vir-
tual) database used to manage entities (such as routers and switches) in anetwork.
Objects in the MIB are defined using a subset of Abstract Syntax Notation One
(ASN.1) called "Structure of Management Information Version 2 (SMIv2)" RFC
2578.The software that performs the parsing is an MIB compiler. The databaseis
hierarchical (tree structured) and entries are addressed through object identifiers.
Internet documentation RFCs discuss MIBs, notably RFC 1155, "Structure and
Identification of Management Information for TCP/IP based internets’, and its
two companions, RFC 1213, "Management Information Base for Network Man-
agement of TCP/IP-based internets’, and RFC 1157, "A Simple Network Man-
agement Protocol”.

A model isthe collection of code abstractions (python objects) that represents ac-
tual networked resources. Modeling (creating a model of @) a piece of hardware
inyour system consists of gathering all of that date possible about that device and
creating a device profile based upon that data. This model can be supplemented
by hand entered data that is of particular use in creating a more accurate profile
(model) of the device. This information can also be re-used to assist in the mod-
eling of hardware producing similar data.

In the context of SNMP, consists of the object identifier for an object in a Man-
agement Information Base (MIB).

The top level performance configuration object is an RRDTemplate. RRDTem-
plates define the data sources to collect, any thresholds and how the data sources
should be graphed. RRDTemplates are defined in the PerfConf tab of any device
tree object or on the collected object itself.

Levelsof Severity ishow eventswithin the Zenoss System are classified. Thescale
isasfollows: Color = Severity Red = Critical Orange = Error Y ellow = Warning
Blue = Information Grey = Debug

A set of protocols for managing complex networks. The first versions of SNMP
were developed in the early 80s. SNMP works by sending messages, called pro-
tocol dataunits (PDUS), to different parts of anetwork. SNMP-compliant devices,
called agents, store data about themselves in Management Information Bases
(MIBs) and return this data to the SNMP requesters.

Zenoss supports SNMPv1 fully throughout the product asthisisthe most common
protocol used in the industry.

The operation performed using SNMP to gather information about a specific de-
vice.

sudo (substitute user [or superuser] do), pronounced like sudo in sudoku, isapro-
gramin Unix, Linux, and similar operating systems such asMac OS X that allows
users to run programs with the security privileges of another user (normally the
system's superuser) in a secure manner. Users must confirm their identity to sudo
by supplying their password before running the target program. Once authentica-
tion hastaken place, and if /etc/sudoersfileis configured to give the user accessto
the command requested, then the system allowsthe command, but logsit. InaGUI
environment, graphical frontends such as kdesu and gksudo are used to launch ad-
ministrator-only applications like the Synaptic Package Manager. Ubuntu Linux
iswell-known for forcing all administrative access to be done via sudo — the root

110

Glossary

Virtual Appliance

VMware — Virtua Machine
ware

ZEO

Zope Management Interface

Zope Object DataBase

password is disabled by default, but can be enabled via the passwd tool. Mac OS
X also uses sudo for tasks such as Software Update. The configuration file /etc/
sudoers specifies which users can run which commands, and on which machines.
Because sudo is very particular about the format of this configuration file, and
errors could cause serious problems, editing should always be done with the pro-
vided visudo or sudoedit tool, which checks for correctness before saving.

A virtua appliance is a minimalist virtual machine image designed to run under
VMware, providing network applications such as webservers. Virtual appliances
are asubset of the broader class of software appliances. Like software appliances,
virtual appliances are aimed to eliminate the installation, configuration and main-
tenance costs associated with running complex stacks of software. A key concept
that differentiatesavirtual appliance from avirtual machineisthat avirtual appli-
anceis afully pre-installed and pre-configured application and operating system
environment whereas a virtual machine is, by itself, without software Typically a
virtual appliance will have aweb interface to configure the inner workings of the
appliance. A virtua appliance is usually built to host a single application, and so
represents a new way of deploying network applications. See also VMware.

VMware refers to the computer and operating-system instance that executes the
VMware Workstation process as the host machine, and identifies instances of op-
erating systems (or of virtual appliances) running inside avirtual machine as guest
virtual machines. Like an emulator, VMware Workstation provides a completely
virtualized set of hardware to the guest operating system — for example, regard-
less of make and model of the physical network adapter, the guest machinewill see
an AMD PCnet network adapter. VMware virtualizesall deviceswithin the virtual
environment, including the video adapter, network adapter, and hard disk adapters.
It also provides pass-through drivers for USB, serial, and parallel devices.

ZEO isalayer between Zope and the ZODB, and allows multiple Zope serversto
share the same ZODB. zenhub (the Zenoss Hub) attaches to the ZODB through
ZEO.

The ZMI refers to the user interface provided by the Zope system to create and
manage Zope products (Zenoss being a Zope product). The ZMI on aZenoss sys-
tem can be accessed by going to the URL of your Zenoss server and adding the
name manage to the end. For example, http://yourzenossserver:8080/zport/man-

age

The ZODB is the Object-Oriented DataBase (OODB) used by Zope. The OODB
part meansthat datais not stored in terms of tables, rows and columns, but instead
as objects.

111

	Zenoss Developer's Guide for Version 2.3
	Table of Contents
	Chapter 1. Introduction
	1.1. Overview
	1.1.1. Model
	1.1.2. Availability
	1.1.3. Events
	1.1.4. Performance

	1.2. Detailed Architecture
	1.2.1. User Layer
	1.2.2. Data Layer
	1.2.3. Collection and Control Service Layer

	Chapter 2. Getting Started
	2.1. Working with the Source Code
	2.1.1. Getting the Source Code
	2.1.1.1. Getting Subversion for the Appliance

	2.1.2. Keeping up-to-date with your checked-out code
	2.1.3. Getting Patches
	2.1.4. Style Guidelines
	2.1.4.1. Docstrings

	2.1.5. Generating Diffs for new Fixes
	2.1.6. Submitting a Fix

	2.2. Programming Techniques
	2.2.1. Calling Methods Using REST
	2.2.1.1. How To Call Methods Using REST
	2.2.1.2. Sending an Event
	2.2.1.2.1. Using a REST Call
	2.2.1.2.2. Using XML-RPC
	2.2.1.2.3. Example Usage in Other Languages
	2.2.1.2.3.1. Perl
	2.2.1.2.3.2. Ruby

	2.3. zendmd: Command-line Access to the Device Management Database (DMD)
	2.4. Programming Documentation
	2.4.1. Python
	2.4.2. Zenoss API
	2.4.3. Other Resources
	2.4.4. Contributing to the Documentation (Errors, Tips, HowTos)

	Chapter 3. ZenPacks
	3.1. Overview
	3.2. Creating a ZenPack
	3.2.1. ZenPack Names
	3.2.2. Specifying Dependencies
	3.2.3. Locating ZenPack Source Outside of Zenoss

	3.3. ZenPack Structure and Contents
	3.4. Developing the ZenPack
	3.4.1. Base ZenPack Class
	3.4.2. Storing Objects in the ZODB
	3.4.3. Providing DataSource classes
	3.4.4. Providing daemons
	3.4.5. setuptools and the zenpacksupport

	3.5. Building and Distributing ZenPacks
	3.5.1. Migrating between versions
	3.5.2. Converting older ZenPacks to ZenPack eggs

	3.6. Where to Get More Information

	Chapter 4. Zenoss Datastores
	4.1. Zope Object Database (ZODB)
	4.2. MySQL Event database
	4.2.1. Connecting to the Database

	4.3. Round-Robin Database
	4.4. Python Pickle Files

	Chapter 5. Events
	5.1. Understanding an Event Entry
	5.2. Sending an Event
	5.3. Adding an Event Class
	5.3.1. Add to ZenEventClasses
	5.3.2. Add the class to the import XML
	5.3.3. Write a migrate script

	Chapter 6. zProperty Management
	6.1. Adding a zProperty
	6.1.1. Adding a zProperty to an Event
	6.1.2. Adding a zProperty to a Device

	6.2. Migrating the zProperty Code

	Chapter 7. Device Management
	7.1. Adding Devices Programatically
	7.1.1. Using a REST call
	7.1.2. Using an XML-RPC Call from Python
	7.1.3. XML-RPC Attributes

	7.2. Editing Device Information
	7.2.1. Using a REST call
	7.2.2. Using an XML-RPC Call from Python

	7.3. Deleting A Device
	7.3.1. Using a REST call
	7.3.2. Using an XML-RPC Call from Python

	7.4. Checking If A Device Exists
	7.4.1. Using a REST call
	7.4.2. Using an XML-RPC Call from Python

	7.5. Exporting a Device List

	Chapter 8. Extending the Model
	8.1. Add a ZenModel Relationship
	8.1.1. One-to-One (1:1) Relationships

	8.2. One-to-Many (1:N) Relationships
	8.3. Many-to-Many (M:N) Relationships
	8.3.1. One-to-Many (1:N) Container Relationships

	8.4. Zenoss XML Schema
	8.4.1. object
	8.4.1.1. Example
	8.4.1.2. Attributes
	8.4.1.3. Children

	8.4.2. objects
	8.4.2.1. Example
	8.4.2.2. Children

	8.4.3. property
	8.4.3.1. Example
	8.4.3.2. Attributes

	8.4.4. tomany
	8.4.4.1. Example
	8.4.4.2. Attributes
	8.4.4.3. Children

	8.4.5. tomanycont
	8.4.5.1. Example
	8.4.5.2. Attributes
	8.4.5.3. Children

	8.4.6. toone
	8.4.6.1. Example
	8.4.6.2. Attributes

	8.4.7. link
	8.4.7.1. Example
	8.4.7.2. Attributes

	8.5. Zenoss Permissions
	8.5.1. Adding New Permissions
	8.5.2. Assigning Permissions to a Method
	8.5.3. Checking Links

	Chapter 9. Zenoss Daemons
	9.1. Twisted Network Programming Overview
	9.2. Zenoss Daemon Overview
	9.3. zenhub: Daemon to ZODB management
	9.3.1. Daemon to ZODB management
	9.3.2. Heartbeats and other Events
	9.3.3. Pluggable Daemon Services

	9.4. Developing a Daemon
	9.4.1. Command-line Options
	9.4.2. Add the Daemon Control Script
	9.4.3. Setup ZenHub Communications
	9.4.3.1. Registering Services with the Hub

	Chapter 10. Add a Performance Daemon
	10.1. Overview
	10.2. DataMaps
	10.3. Performance Collection
	10.4. Creating a New Collector
	10.4.1. Constructor
	10.4.2. Getting a List of Devices
	10.4.2.1. Thresholds

	10.4.3. fetchConfig()
	10.4.4. Collector's ZenHub Service
	10.4.5. Miscellanous Functions
	10.4.6. Collect the Performance Data

	Chapter 11. Adding a new Device Type
	11.1. Overview
	11.2. Add the MIB
	11.3. Add a Device organizer
	11.4. Create a Modeler
	11.4.1. Verify the SNMP connectivity and OIDs
	11.4.2. Common SNMP Issues
	11.4.3. Modeler Code
	11.4.4. Testing the Modeler

	11.5. Create a Performance Collector
	11.5.1. Performance Data Collector Code

	11.6. Create the Template
	11.6.1. Create the DataSource
	11.6.2. Create a Threshold
	11.6.3. Create a Graph

	11.7. Map Events

	Chapter 12. Extending the User Interface
	12.1. Overview of the Zenoss UI Technologies
	12.1.1. HyperText Markup Language (HTML)
	12.1.2. Cascading Style Sheets (CSS)
	12.1.3. Zope 2, ZPT and TAL
	12.1.4. ZPT and Macro Exapnsion for TAL (METAL)
	12.1.5. JavaScript / AJAX
	12.1.6. JavaScript libraries: YUI and MochiKit

	12.2. Customizing the Navigation Bar
	12.2.1. Adding a link
	12.2.2. A simple HTML page
	12.2.3. A simple TAL and METAL page

	12.3. Customizing the Logo
	12.4. Zope 2 Page Templates, TAL and METAL and Zenoss
	12.4.1. Tips

	12.5. Other Customziations
	12.5.1. Adding Tabs
	12.5.2. Adding a Dialog
	12.5.3. Adding a New Menu or Menu Item
	12.5.4. Creating a Table Using ZenTableManager
	12.5.5. Creating an Editable Table
	12.5.6. How to Save Properties via an Edit Screen

	12.6. Creating a Dashboard Portlet
	12.6.1. Create a ZenPack
	12.6.2. Write the Python back-end code
	12.6.3. Write the JavaScript Portlet
	12.6.4. Register the portlet

	12.7. Debugging Tips

	Chapter 13. Reports
	13.1. Adding a New Report
	13.2. Plugins
	13.3. Adding Export Buttons to Reports

	Chapter 14. Migrating Zenoss Code
	14.1. Introduction and Steps
	14.2. How It Works
	14.3. What You Write
	14.3.1. Implement cutover()
	14.3.2. Supporting Code
	14.3.3. Testing and Deployment

	Chapter 15. Testing
	15.1. Zenoss Unit Tests
	15.1.1. Introduction
	15.1.2. Zenoss' Test Runner
	15.1.3. Integrating With Buildbot

	15.2. Functional User Interface Testing
	15.2.1. Introduction
	15.2.2. Installing and Running
	15.2.2.1. Installing and Configuring Mac OS X

	15.3. Where to Get More Information

	Appendix A. Event Database Dictionary
	Appendix B. TALES Expressions
	B.1. Examples
	B.1.1. ping
	B.1.2. DNS forward lookup
	B.1.3. DNS reverse lookup
	B.1.4. snmpwalk

	B.2. TALES Device Attributes
	B.3. TALES Event Attributes

	Glossary

