
Zenoss Developer’s Guide
Version 2.3.3

February 19, 2009

Zenoss Developer’s Guide
Version 2.3.3
Copyright © 2009 Zenoss, Inc.

All rights reserved. The Zenoss logo is a registered trademark of Zenoss, Inc. Zenoss and Open Enterprise Management are trademarks of Zenoss,
Inc. in the U.S. and other countries. Zenoss can be contacted at:

Zenoss, Inc.
275 West St. Suite 204
Annapolis MD
21401
U.S.A.

Flash is a registered trademark of Adobe Systems Incorporated.

Java is a registered trademark of Sun Microsystems, Inc.

Linux is a registered trademark of Linus Torvalds.

SNMP Informant is a trademark of Garth K. Williams (Informant Systems, Inc.).

Tomcat is a trademark of the Apache Software Foundation.

Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

All other companies and products mentioned are trademarks and property of their respective owners.

iii

Table of Contents
1. Introduction .. 1

1.1. Overview .. 1
1.1.1. Model .. 1
1.1.2. Availability ... 1
1.1.3. Events .. 1
1.1.4. Performance .. 1

1.2. Detailed Architecture ... 2
1.2.1. User Layer .. 2
1.2.2. Data Layer .. 2
1.2.3. Collection and Control Service Layer ... 2

2. Getting Started ... 4
2.1. Working with the Source Code ... 4

2.1.1. Getting the Source Code .. 4
2.1.2. Keeping up-to-date with your checked-out code ... 5
2.1.3. Getting Patches .. 5
2.1.4. Style Guidelines ... 5
2.1.5. Generating Diffs for new Fixes ... 7
2.1.6. Submitting a Fix .. 7

2.2. Development Toolchain Requirements .. 8
2.2.1. Appliance ... 8

2.3. Programming Techniques ... 10
2.3.1. Calling Methods Using REST ... 10
2.3.2. Miscellaneous Notes .. 14

2.4. zendmd: Command-line Access to the Device Management Database (DMD) 14
2.5. Programming Documentation .. 16

2.5.1. Python .. 16
2.5.2. Zenoss API .. 16
2.5.3. Other Resources ... 16
2.5.4. Contributing to the Documentation ... 17

3. ZenPacks ... 18
3.1. Overview ... 18
3.2. Creating a ZenPack ... 18

3.2.1. ZenPack Names .. 18
3.2.2. Specifying Dependencies .. 19
3.2.3. Locating ZenPack Source Outside of Zenoss .. 19
3.2.4. Community ZenPack Subversion Access ... 19

3.3. ZenPack Structure and Contents ... 19
3.4. Developing the ZenPack ... 22

3.4.1. Base ZenPack Class .. 22
3.4.2. Storing Objects in the ZODB .. 23
3.4.3. Providing DataSource classes .. 23
3.4.4. Performance Template Checklist .. 24
3.4.5. Providing daemons .. 26
3.4.6. setuptools and the zenpacksupport ... 26

3.5. Building and Distributing ZenPacks .. 26
3.5.1. Migrating between versions .. 27
3.5.2. Converting older ZenPacks to ZenPack eggs .. 27

3.6. Where to Get More Information ... 27
4. Zenoss Datastores .. 28

4.1. Zope Object Database (ZODB) .. 29
4.2. MySQL Event database .. 30

Zenoss Developer’s Guide

iv

4.2.1. Connecting to the Database .. 30
4.2.2. MySQL in 60 Seconds .. 31

4.3. Python Pickle Files .. 32
4.4. Round-Robin Database ... 32

5. Events ... 35
5.1. Understanding an Event Entry ... 35

5.1.1. Event Design ... 35
5.2. Sending an Event .. 35
5.3. Adding an Event Class ... 36

5.3.1. Add to ZenEventClasses .. 37
5.3.2. Add the class to the import XML .. 37
5.3.3. Write a migrate script .. 37

6. zProperty Management ... 39
6.1. Adding a zProperty ... 39

6.1.1. Adding a zProperty to an Event ... 39
6.1.2. Adding a zProperty to a Device ... 39

6.2. Migrating the zProperty Code .. 39
7. Device Management ... 41

7.1. Adding Devices Programatically .. 41
7.1.1. Using a REST call .. 41
7.1.2. Using an XML-RPC Call from Python ... 41
7.1.3. XML-RPC Attributes .. 41

7.2. Editing Device Information ... 42
7.2.1. Using a REST call .. 42
7.2.2. Using an XML-RPC Call from Python ... 42

7.3. Deleting A Device .. 43
7.3.1. Using a REST call .. 43
7.3.2. Using an XML-RPC Call from Python ... 43

7.4. Checking If A Device Exists ... 43
7.4.1. Using a REST call .. 44
7.4.2. Using an XML-RPC Call from Python ... 44

7.5. Exporting a Device List ... 44
8. Extending the Model .. 45

8.1. Add a ZenModel Relationship ... 45
8.1.1. One-to-One (1:1) Relationships ... 45

8.2. One-to-Many (1:N) Relationships ... 46
8.3. Many-to-Many (M:N) Relationships ... 47

8.3.1. One-to-Many (1:N) Container Relationships .. 49
8.4. Zenoss XML Schema .. 50

8.4.1. object ... 53
8.4.2. objects .. 54
8.4.3. property .. 55
8.4.4. tomany ... 56
8.4.5. tomanycont .. 57
8.4.6. toone .. 58
8.4.7. link .. 58

8.5. Zenoss Permissions ... 59
8.5.1. Adding New Permissions ... 59
8.5.2. Assigning Permissions to a Method .. 59
8.5.3. Checking Links .. 60

9. Zenoss Daemons ... 61
9.1. Twisted Network Programming Overview .. 61

9.1.1. Understanding NJobs, Driver and DeferredList ... 61
9.2. Zenoss Daemon Overview .. 66

Zenoss Developer’s Guide

v

9.3. zenhub: Daemon to ZODB management .. 67
9.3.1. Daemon to ZODB management ... 68
9.3.2. Heartbeats and other Events .. 68
9.3.3. Pluggable Daemon Services .. 68

9.4. ZenRender and Graphs ... 68
9.5. Developing a Daemon .. 69

9.5.1. Command-line Options .. 69
9.5.2. Add the Daemon Control Script .. 70
9.5.3. Setup ZenHub Communications .. 70

10. Add a Performance Daemon .. 72
10.1. Overview ... 72
10.2. DataMaps ... 72
10.3. Performance Collection .. 73
10.4. Creating a New Collector .. 74

10.4.1. Constructor .. 74
10.4.2. Getting a List of Devices .. 75
10.4.3. fetchConfig() .. 77
10.4.4. Collector's ZenHub Service ... 78
10.4.5. Miscellanous Functions .. 79
10.4.6. Collect the Performance Data .. 79

11. Adding a new Device Type ... 83
11.1. Overview ... 83
11.2. Add the MIB .. 83
11.3. Add a Device organizer .. 83
11.4. Create a Modeler ... 84

11.4.1. Verify the SNMP connectivity and OIDs ... 85
11.4.2. Common SNMP Issues .. 85
11.4.3. Modeler Code .. 86
11.4.4. Testing the Modeler .. 88

11.5. Create a Performance Collector .. 89
11.5.1. Performance Data Collector Code .. 89
11.5.2. Writing Your Own Command Parser .. 90

11.6. Create the Template ... 92
11.6.1. Create the DataSource .. 92
11.6.2. Create a Threshold .. 92
11.6.3. Create a Graph ... 93

11.7. Map Events .. 93
12. Extending the User Interface .. 94

12.1. Overview of the Zenoss UI Technologies ... 94
12.1.1. HyperText Markup Language (HTML) .. 94
12.1.2. Cascading Style Sheets (CSS) ... 94
12.1.3. Zope 2, ZPT and TAL ... 94
12.1.4. ZPT and Macro Exapnsion for TAL (METAL) ... 95
12.1.5. JavaScript / AJAX ... 95
12.1.6. JavaScript libraries: YUI and MochiKit ... 95

12.2. Customizing the Navigation Bar ... 96
12.2.1. Adding a link ... 96
12.2.2. A simple HTML page .. 96
12.2.3. A simple TAL and METAL page ... 97

12.3. Customizing the Logo .. 97
12.4. Zope 2 Page Templates, TAL and METAL and Zenoss ... 98

12.4.1. Tips .. 100
12.5. Zope 3 Views Explained ... 101

12.5.1. The Zope 2 Way ... 101

Zenoss Developer’s Guide

vi

12.5.2. The Zope 3 Way ... 102
12.6. Other Customziations ... 104

12.6.1. Adding Tabs ... 104
12.6.2. Adding a Dialog .. 107
12.6.3. Adding a New Menu or Menu Item .. 109
12.6.4. Creating a Table Using ZenTableManager .. 111
12.6.5. Creating an Editable Table .. 112
12.6.6. How to Save Properties via an Edit Screen ... 113

12.7. Creating a Dashboard Portlet ... 115
12.7.1. Create a ZenPack .. 116
12.7.2. Write the Python back-end code ... 117
12.7.3. Write the JavaScript Portlet ... 119
12.7.4. Register the portlet .. 124

12.8. Debugging Tips ... 125
13. Reports ... 126

13.1. Adding a New Report ... 126
13.2. Plugins ... 127
13.3. Adding Export Buttons to Reports .. 127

14. Migrating Zenoss Code ... 129
14.1. Introduction and Steps .. 129
14.2. How It Works ... 129
14.3. What You Write .. 129

14.3.1. Implement cutover() ... 130
14.3.2. Supporting Code ... 130
14.3.3. Testing and Deployment ... 130

15. Testing ... 132
15.1. Zenoss Unit Tests .. 132

15.1.1. Introduction .. 132
15.1.2. doctest Testing .. 132
15.1.3. Zenoss' Test Runner ... 133
15.1.4. Integrating With Buildbot ... 138
15.1.5. Javascript Test Framework .. 138

15.2. Functional User Interface Testing ... 138
15.2.1. Introduction .. 138
15.2.2. Installing and Running ... 138

15.3. Where to Get More Information ... 139
A. Event Database Dictionary .. 140
B. TALES Expressions ... 141

B.1. Examples ... 141
B.1.1. ping ... 141
B.1.2. DNS forward lookup ... 141
B.1.3. DNS reverse lookup .. 141
B.1.4. snmpwalk .. 141

B.2. TALES Device Attributes ... 142
B.3. TALES Event Attributes .. 143

Glossary .. 144

vii

List of Figures
1.1. Zenoss Detailed Architecture .. 2
4.1. Datastores Overview .. 28
4.2. RRD Overview ... 34
8.1. ZenRelations .. 45
9.1. ZenHub, Daemon and the ZODB ... 67
10.1. Modeling Overview ... 73
10.2. Complex Thresholds .. 76

viii

List of Tables
1.1. Data-Layer Daemon .. 2
1.2. Automated Modeling Daemons ... 3
1.3. Availability Monitoring Daemons .. 3
1.4. Event Collection Daemons ... 3
1.5. Performance Monitoring Daemons ... 3
1.6. Automated Response Daemons .. 3
2.1. zendmd Names and Descriptions .. 16
7.1. XML-RPC Attributes and Descriptions ... 41
9.1. Common Daemon Classes .. 67
9.2. ZenRender Default URLs ... 69
11.1. Modeler Functions ... 84
11.2. CommandParser Helper Parsers .. 92
12.1. Zenoss portal_skins directories and their Descriptions .. 98
15.1. Types of Testing .. 132
B.1. TALES Device Attributes ... 142
B.2. TALES Event Attributes .. 143

1

Chapter 1. Introduction
1.1. Overview

The Zenoss system brings together many types of monitoring and management information. The information is
available through a standard web browser. In fact all aspects of the system are accessed though the web there is
no need to edit configuration files.

At a high level, Zenoss consists of four major parts:

1. Model

2. Availability

3. Events

4. Performance

1.1.1. Model
At the core of Zenoss is the Model. The standard model is a detailed description of all the devices Zenoss manages
and their relationship to your business or other important groupings. Because of the large amount of information in
the model there are several ways that information can be added. First is through auto discovery. This is the primary
way that information is added to the model. Zenoss auto-discovery is very flexible and can use several different
transports. The model can also be populated though the web UI or through Zenoss' external APIs. Version 2.0 adds
discovery locking which allows auto-discovered information to be overridden with manually added information.

The model is used to drive the monitoring elements of the Zenoss system which will be described throughout the
rest of this document.

1.1.2. Availability
Availability monitoring consists of running tests against the IT infrastructure to determine if it is currently function-
ing properly. These test are typically run externally to the monitored system. Example tests include: ping, process,
and service tests.

1.1.3. Events
The Zenoss Event Management System is a consolidation of status information from all parts of the Zenoss system
as well as external systems. When a Zenoss monitoring daemon detects a failure or threshold breach events are
generated. This is similar to most other monitoring systems available. Zenoss does more in that it also takes event
import from other parts of the IT infrastructure. These include Syslog and SNMP Traps. It's one thing to bring the
events into a single repository but an event management system must do more. As events are received Zenoss runs
them through a set of rules that augment the information they contain and integrate them with the model.

1.1.4. Performance
The Zenoss Performance Management System tracks important IT resource information as it changes over time.
This process is also known as data collection. It is critical to know how much disk space is available, what the
CPU load is and how long a web page takes to download. This system can collect information though SNMP,
custom scripts (ZenCommands) or XML-RPC. Performance information is integrated with the Zenoss Model so
that resource usage is shown in the context of other Zenoss information.

Introduction

2

1.2. Detailed Architecture

Figure 1.1. Zenoss Detailed Architecture

1.2.1. User Layer
The User Layer is manifested as a Web Console/Portal (Zope). This layer consists of the Graphical User Interface
(GUI), which allows the user access to the following pieces of information:

Dashboard Events Locations

Devices Manufacturers Reports

Services Systems Users

Networks Groups Administration

The User Layer Interacts with the Data layer and translates the information for display in the GUI.

1.2.2. Data Layer
The Data layer is where all of the information about the monitored environment is stored. For more information
about how data is stored, see Chapter 4, Zenoss Datastores .

Table 1.1. Data-Layer Daemon

Daemon Description

ZenHub Broker of information between the data layer and the collection daemons.

1.2.3. Collection and Control Service Layer
The services that collect the data and feed it to the Data Layer come from the daemons associated with the Collection
and Control Services Layer. These daemons can be broken down into five distinct areas: Automated Modeling,

Introduction

3

Availability Monitoring, Event Collection, Performance Monitoring, or Automated Response. The daemons that
fall under each layer are detailed below.

Table 1.2. Automated Modeling Daemons

Daemon Description

Zendisc Zendisc is a subclass of zenmodeler and it goes out to discover new network resources.
It walks the routing table to discover the network topology and then pings all discov-
ered networks to find active IPs and devices.

ZenWinModeler ZenWinModeler is used for the auto-discovery of Windows Services (WMI) running
on a windows box.

ZenModeler ZenModeler is a configuration collection and configuration daemon. It is used for
high-performance, automated model population using SNMP, SSH, and Telnet to col-
lect its information. Zenmodeler works against devices that have been loaded into the
DMD.

Table 1.3. Availability Monitoring Daemons

Daemon Description

ZenPing ZenPing is the ping status monitoring (ICMP) for Zenoss. ZenPing does the high-
performance asynchronous testing of the ICMP status.

ZenWin ZenWin is used for Windows Service Monitoring (WMI).

ZenStatus ZenStatus performs active TCP connection testing of remote daemons.

ZenProcess ZenProcess enables process monitoring using SNMP host resources mib.

Table 1.4. Event Collection Daemons

Daemon Description

ZenSyslog ZenSyslog is collection of and classification of syslog events.

ZenEventlog ZenEventlog is used collect (WMI) event log events.

ZenTrap ZenTrap collects SNMP Traps. It receives traps and turns them into events.

Table 1.5. Performance Monitoring Daemons

Daemon Description

ZenPerfSNMP ZenPerfSNMP does the high performance asynchronous SNMP performance collec-
tion.

ZenPerfXMLRpc ZenPerfXMLRpc is used for XML RPC Collection.

ZenCommand ZenCommand is used for XML RPC Collection specifically it allows the running of
Nagios and Cactii plug-ins on the local box or on remote boxes through SSH.

Table 1.6. Automated Response Daemons

Daemon Description

ZenActions ZenActions is used for alerts (SMTP, SNPP and Maintenance Windows).

4

Chapter 2. Getting Started

2.1. Working with the Source Code

2.1.1. Getting the Source Code

If all that you would like to do is browse through the source code, then you can just go to the Trac / Subversion page.

The version control system used by Zenoss is Subversion [http://subversion.tigris.org/]. Subversion has excellent
documentation [http://svnbook.red-bean.com/] in the form of an O'Reilly [http://oreilly.com/] book. For the
moment, we'll just provide the minimum number of commands to get started.

The absolute latest version of Zenoss can be accessed directly through the Subversion repository. This code should
not be used for production purposes as there are changes actively being made which may not have been thoroughly
tested.

From a command-line prompt, go to a directory where you would like to see the source code be delivered. Here's
a sample command to get the source code:

$ svn co http://dev.zenoss.org/svn/trunk/Products

This will create a directory called Products in the current directory and checkout the source code. This repository
is readable anonymously, so no credentials are required.

To see what other portions of the code are available, such as ZenPacks or support utilities, you can look using the
following Subversion command:

$ svn ls http://dev.zenoss.org/svn/trunk

Other tools that can be used to view or checkout the source code for different platforms are available. See the
Subversion web site for more details.

2.1.1.1. Getting Subversion for the Appliance

The rPath [http://www.rpath.com/corp/] appliance does not ship with the svn binaries, but you can still obtain
them. First you will need to edit the /etc/conaryrc file and change this line:

installLabelPath zenoss-project.zenoss.loc@zenoss:devel-2.3-beta

Change the above line to this (note that this should be all one line and has been modified to make it look better
in print):

installLabelPath zenoss-project.zenoss.loc@zenoss:devel-2.3-beta
 conary.rpath.com@rpl:1

Now you should be able to obtain the subversion package by using the conary update command:

[root@localhost ~] conary update --resolve subversion

http://subversion.tigris.org/
http://subversion.tigris.org/
http://svnbook.red-bean.com/
http://svnbook.red-bean.com/
http://svnbook.red-bean.com/
http://oreilly.com/
http://oreilly.com/
http://www.rpath.com/corp/
http://www.rpath.com/corp/

Getting Started

5

For more information about rPath commands, see their documentation wiki [http://wiki.rpath.com/wi-
ki/Main_Page]. There are also a set of blog entries Conary Uncorked [http://setefw.livejournal.com/6120.html]
has been put together by a dedicated rPath user that introduces some of the conary commands much more gently.

2.1.2. Keeping up-to-date with your checked-out code
The following command, issued from the base directory of where you checked out the Zenoss code, will update
all code from that directory and all subdirectories and bring it up to date with what is current in the Subversion
repository (and therefore apply all of the current patches to the code you checked out previously):

$ svn update

Note
If you have modified any code in this directory, these changes will be merged with the latest code
updates. If there are differences that Subversion cannot automatically resolve, svn will tell you that
there is a problem by showing the updated file is in conflict (ie showing you a 'C' beside the file when
you run svn status).

You can tell if you have modified any of the files in the checked-out directory by typing the following:

$ svn status

If you are only interestd in modifying one file rather than everything, you can specify that one file:

$ svn udpate filename

2.1.3. Getting Patches
For issue tracking, bug reports and linking patches to bug reports, Zenoss uses Trac [http://trac.edgewall.org/] to
manage issues. The Zenoss Trac server is found here [http://dev.zenoss.com/trac/report].

You can click on the Search box on the top right-hand side and enter a search term to look for keywords in the
tickets. This will then present you with the ability to search for changesets (ie Subversion revisions), trouble tickets,
or the Wiki.

Alternatively, from the start page you can click on the Custom Query which will allow you to view the results from
your customized query.

Once you have found a patch that applies to your system, you can use the zenpatch command in order to apply
them to your system. (As mentioned previously, if you use the svn update commands, you will already be at the
latest patched level.)

$ zenpatch revision_number

2.1.4. Style Guidelines
These following guidelines are targeted at Python files. HTML files, Zope Page Template (ZPT) files, shell scripts,
etc should adhere to these as much as is reasonable and conventional in those languages. Currently, we follow
Guido's Style Guide for Python Code [http://www.python.org/dev/peps/pep-0008/] which is detailed in PEP 8
(Python Enhancement Proposals).

Any style conventions that stray from PEP-8 should be annotated in this document.

http://wiki.rpath.com/wiki/Main_Page
http://wiki.rpath.com/wiki/Main_Page
http://wiki.rpath.com/wiki/Main_Page
http://setefw.livejournal.com/6120.html
http://setefw.livejournal.com/6120.html
http://trac.edgewall.org/
http://trac.edgewall.org/
http://dev.zenoss.com/trac/report
http://dev.zenoss.com/trac/report
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/

Getting Started

6

2.1.4.1. Docstrings

Every method and function definition within Zenoss should include a docstring. The docstring is usually composed
of two parts: the explanatory text and the doctest code. The explanation usually includes a description of all or most
of the following aspects of the function:

• The function's purpose

• The context in which the function is usually called

• What parameters it expects

• What it returns

• Any side effects of the function

This explanatory text should scale in size with the complexity and significance of the function.

The second part of the docstring is the doctest section. This is composed of zendmd commands and expected output
from those commands. The commands are run as part of the testing process and output is compared to the output
lines. This code serves two primary purposes. First it is a working example of how the function should be called
and what it returns. Second it serves as a basic test to ensure the function is not horribly broken. This is not intended
as a replacement for unit tests. Thorough testing of boundary cases and unusual situations still belongs in unit tests
whereas the doctests are much simpler and more instructional in nature.

Docstrings begin on the line immediately following the function definition and are indented one level from the
definition. The first and last lines of the docstring are three double quotes and a newline. One blank line separates the
description from the epydoc section. epydoc [http://epydoc.sourceforge.net/] can take sprecially formatted text in
the docstrings and use them to create API documentation. The Zenoss API documentation [http://www.zenoss.com/
community/docs/zenoss-api-docs/] is located on the Zenoss website and is updated every release.

Another blank line separates the epydoc section from the doctest section. The code for the function begins on the
line immediately following the docstring. Example:

def TruncateStrings(longStrings, maxLength):
 """
 Foo truncates all the strings in a list to a maximum length.
 longStrings is any iterable object which returns zero or more
 strings. maxLength is the length to which each element from
 longStrings should be truncated.

 @param longStrings: an iterable object which returns zero or more strings
 @type longStrings: Python iterable
 @param maxLength: max length of each element in longStrings
 @type maxLength: int
 @return: longStrings in the same order but possibly truncated
 @rtype: list
 @todo: Add more epydoc attributes!

 >>> from Products.SomeModule import TruncateStrings
 >>> TruncateStrings(['abcd', 'efg', 'hi', ''], 3)

http://epydoc.sourceforge.net/
http://epydoc.sourceforge.net/
http://www.zenoss.com/community/docs/zenoss-api-docs/
http://www.zenoss.com/community/docs/zenoss-api-docs/
http://www.zenoss.com/community/docs/zenoss-api-docs/

Getting Started

7

 ['abc', 'efg', 'hi', '']
 >>> TruncateStrings([], 5)
 []
 """
 return [s[:maxLength] for s in longStrings]

The easiest way to create the doctest portion is from within zendmd. Except for the indentation, the docstring should
exactly match commands and output from a zendmd session.

Use the available epydoc fields [http://epydoc.sourceforge.net/manual-fields.html] where they are applicable.
Some of the useful common fields are:

Commonly-used epydoc fields

@param param_name Describe the parameter

@type data_type Data type of the parameter

@return Describe the return value

@rtype Data type of the return value

@permission Zope permission that the method requires

@todo Todo for this method

Note
Within the description section of the docstring, you may use the string DEPRECATED on its own line
to denote that the method is deprecated.

2.1.5. Generating Diffs for new Fixes
Once you've determined how to fix something, or have found a way to add a feature, modify the source code in
your checkout directory. Once that's complete, we just need to generate a diff starting from the base of the checkout
directory.

To generate a diff of all files in the current directory and all subdirectories:

$ svn diff >
mychanges.diff

To produce a diff for just a single file:

$ svn diff
source_file
 >
mychanges.diff

2.1.6. Submitting a Fix
Zenoss accepts user contributions using the following procedure:

http://epydoc.sourceforge.net/manual-fields.html
http://epydoc.sourceforge.net/manual-fields.html

Getting Started

8

1. Complete the form [http://www.zenoss.com/zenoss_forms/contribute?c=contribute] to allow Zenoss to accept
your code.

2. Create a ticket in our ticketing system [http://dev.zenoss.com/trac/wiki/HowToAddTicket].

3. Add the keyword contribute to the ticket.

4. Attach your patch (in diff format) or code to the ticket.

Note
All contributions will be accepted under the terms of the Zenoss Contribution Agreement.

2.2. Development Toolchain Requirements
There are a number of other tools that are required to build Zenoss from source (aka a toolchain). Among them are
things such as a C compiler, the make command and other associated tools.

2.2.1. Appliance
The Zenoss appliance is based upon the rPath Linux 1 (rpl1) distribution.

Troves (like the gcc toolchain) which are not available on the Zenoss update repository server [update.zenoss.com]
are generally available from install labels such as:

conary.rpath.com@rpl:1

The trove candy store is rBuilder Online [http://www.rpath.com/rbuilder]. It is strongly recommend getting an
account there since it provides a nice search capability for packages of interest. Plus there are forums for asking
appliance-specific questions.

For a gcc toolchain, try this as the root user:

conary update --resolve autoconf automake make which \
 --install-label="conary.rpath.com@rpl:1"
conary update --resolve gcc=conary.rpath.com@rpl:1 \
 --install-label="conary.rpath.com@rpl:devel"

The binutils trove should already be on the box.
An actual install sequence looked like the ouput below. If the --info switch is used, it is possible to see if every-
thing is going to resolve nicely. And if you are really paranoid, use the --test flag which runs through the update
but does not commit the result.

conary update autoconf automake make which --resolve --info \
 --install-label="conary.rpath.com@rpl:1"
 Install autoconf(:data :doc :runtime)=2.59-7-0.1
 Install automake(:data :doc :runtime)=1.9.6-3-0.1
 Install m4(:runtime)=1.4.3-4-0.1
 Install make(:doc :locale :runtime)=3.80-7.2-1
 Install which(:doc :runtime)=2.16-3-0.1

http://www.zenoss.com/zenoss_forms/contribute?c=contribute
http://www.zenoss.com/zenoss_forms/contribute?c=contribute
http://dev.zenoss.com/trac/wiki/HowToAddTicket
http://dev.zenoss.com/trac/wiki/HowToAddTicket
update.zenoss.com
update.zenoss.com
http://www.rpath.com/rbuilder
http://www.rpath.com/rbuilder

Getting Started

9

conary update autoconf automake make which --resolve \
 --install-label="conary.rpath.com@rpl:1"
Including extra troves to resolve dependencies:
 m4:runtime=1.4.3-4-0.1
Applying update job:
 Install autoconf(:data :doc :runtime)=2.59-7-0.1
 Install automake(:data :doc :runtime)=1.9.6-3-0.1
 Install m4(:runtime)=1.4.3-4-0.1
 Install make(:doc :locale :runtime)=3.80-7.2-1
 Install which(:doc :runtime)=2.16-3-0.1

conary update --info --resolve gcc=conary.rpath.com@rpl:1 \
 --install-label="conary.rpath.com@rpl:devel"
 Install gcc(:devel :devellib :doc :lib :locale :runtime)=3.4.4-9.4-1
 Install libgcc(:devellib)=4.1.2-11-1[~!gcc.core]

conary update --resolve gcc=conary.rpath.com@rpl:1 \
 --install-label="conary.rpath.com@rpl:devel"
Including extra troves to resolve dependencies:
 libgcc:devellib=4.1.2-11-1
Applying update job:
 Install gcc(:devel :devellib :doc :lib :locale :runtime)=3.4.4-9.4-1
 Install libgcc(:devellib)=4.1.2-11-1[~!gcc.core]

Generally try to find something on the rpl:1 branch name and do not mix rpl:2 stuff with the rpl:1 stuff. In some
cases, you may have to resort to pulling a trove from the rpl:devel branch if it cannot find it elsewhere. That's
what happened above when trying to resolve the libgcc dependency for the gcc trove. Adding the extra --
install-label option was necessary so that libgcc could be found. How could you know it was on rpl:devel?
Go to rBuilder Online and search for that package and it should tell you.

If you want to see where the files for a trove actually got installed:

conary q trove_name --lsl

[code]# conary q gcc --lsl
...
lrwxrwxrwx 1 root root 3 2004-07-07 17:04:44 UTC /usr/bin/cc -> gcc
-rwxr-xr-x 1 root root 81452 2006-06-19 18:02:30 UTC /usr/bin/gcc
-rwxr-xr-x 1 root root 16134 2005-10-15 07:22:42 UTC /usr/bin/gccbug
...

Lastly, conary makes it relatively easy to run-away if you're not happy with a trove you've installed. Use conary
rblist to see what packages have been commited to the conary stack.

conary rblist | more
r.3:
 installed: gcc(:devel :devellib :doc :lib :locale :runtime)
conary.rpath.com@rpl:1/3.4.4-9.4-1
 installed: libgcc(:devellib) conary.rpath.com@rpl:devel/4.1.2-11-1

r.2:

Getting Started

10

 installed: autoconf(:data :doc :runtime) conary.rpath.com@rpl:1/2.59-7-0.1
 installed: automake(:data :doc :runtime) conary.rpath.com@rpl:1/1.9.6-3-0.1
 installed: m4(:runtime) conary.rpath.com@rpl:1/1.4.3-4-0.1

r.1:
 updated: info-raa-web(:user) products.rpath.com@rpath:raa-2/1-1.1-2 ->
1-1.3-2
 ...

Here is how you would remove the gcc trove that was just installed:

conary rb r.3
Applying update job:
 Erase gcc(:devel :devellib :doc :lib :locale :runtime)=3.4.4-9.4-1
 Erase libgcc(:devellib)=4.1.2-11-1[~!gcc.core]

conary q gcc
gcc was not found

Be careful with what troves that you remove!

2.3. Programming Techniques

2.3.1. Calling Methods Using REST
REpresentational State Transfer (REST) is a method of marshalling data types and calling functions using HTTP.
Zope supports a number of different Remote Procedure Call (RPC) mechanisms, including REST.

This section describes some more advanced Zenoss concepts that we have encountered as the product has rolled
out. Some may be appropriate for your environment. Usually they require at least a little coding experience, but
they are really not that hard.

2.3.1.1. How To Call Methods Using REST

Zenoss's web interface will let you run any method of any object using a simple URL. Calls will be in the following
format:
http://USERNAME :PASSWORD @MY_ZENOSS_HOST :8080/PATH_TO_OBJECT /METHOD_NAME
?ARG =VAL

The user with the rights to view this information.
The user's password
Hostname or IP of your instance of Zenoss
The full path to the object you wish to access
The object's method you wish to run
A method's parameter name
A methods's parameter value

Another example:

This example will give the most recent load average of a Linux server:
http://USERNAME:PASSWORD@MY_ZENOSS_HOST:8080/zport/dmd/Devices/Server/Linux/devices/angel

/getRRDValue ?dsname =laLoadInt5_laLoadInt5

Getting Started

11

Notice the following things about this URL:

/zport/dmd/Devices/Server/Linux/devices/angel is the full path to our object you want to access
getRRDValue is the method in the Device object we wish to run
dsname is a parameter to the getRRDValue method.
laLoadInt5_laLoadInt5 is the value of dsname which is the name of the data source we are interested in.

Watching the URLs as you browse the web interface can give you a place to start searching.

2.3.1.2. Sending an Event

Events can be sent to Zenoss through the web interface as well as through using zensendevent, but also through
a programmatic interface.

2.3.1.2.1. Using a REST Call

Sending an event through a rest call can be done by a simple web get. In this example we will use wget to send an
event. If you use wget don't for get to escape the "&" or wrap the URL in single quotes.

[zenos@zenoss $] wget 'http://admin:zenoss@MYHOST:8080/zport/dmd/ZenEventManager/manage_addEvent?
device=MYDEVICE&component=MYCOMPONENT&summary=MYSUMMARY&severity=4&eventclass=EVENTCLASS'

2.3.1.2.2. Using XML-RPC

To send an event to Zenoss using XML-RPC you will first need to create a dictionary (in Perl a hash) that will
represent the event. Zenoss will need at a minimum the following fields:

Event fields

device the name of the device from which this event originates

component the sub-component of the device (for instance eth0, http, etc)

summary the text message of the event

severity an integer between 0 and 5 with higher numbers being higher severity. Zero is clear.

You can send an event to Zenoss via an interactive session with the Python interpreter as follows:

>>> from xmlrpclib import ServerProxy
>>> myurl= 'http://admin:zenoss@MYHOST:8080/zport/dmd/ZenEventManager'
>>> serv = ServerProxy(myurl)
>>> evt = {'device':'mydevice', 'component':'eth0',
... 'summary':'eth0 is down','severity':4, 'eventClass':'/Net'}
>>> serv.sendEvent(evt)

See below for examples in other languages.

2.3.1.2.3. Example Usage in Other Languages

Please note that we are a Python shop and may not be able to answer specific questions about XML-RPC clients
written in other languages.

2.3.1.2.3.1. Perl

Send an event via Perl using RPC::XML::Client

Getting Started

12

require RPC::XML;
require RPC::XML::Client;

$serv = RPC::XML::Client->new('http://YOURZENOSS:8081/');
%evt = ('device' => 'mydevice2', 'component' => 'eth1',
 'summary' => 'eth1 is down', 'severity' => 4);
$args = RPC::XML::struct->new(%evt);
$serv->simple_request('sendEvent', $args);

2.3.1.2.3.2. Ruby

This is an example of an Interactive Ruby (IRB) session (the returns have been omitted for the sake of clarity). Note,
however, that the Ruby standard library is under active development in general, and specifically, the XML-RPC lib
in Ruby is not stable. As of Feb 2007, there is a great deal of on-going discussion regarding XML-RPC in Ruby by
Ruby developers and contributors. The following is known to work in previous versions of Ruby:

require "xmlrpc/client"
url='user:pass@http://YOURZENOSS:8080/zport/dmd/DeviceLoader')
server = XMLRPC::Client.new2(url)

evt = {'device' => 'mydevice3', 'component' => 'eth2',
 'summary' => 'eth2 is down', 'severity' => 4}
server.call('sendEvent', evt)

2.3.1.2.3.3. PHP

<?php

include("xmlrpc.inc");

function ifInOutBps($host, $port, $user, $pass, $device, $interface) {

 $ifInOctets = 'ifInOctets_ifInOctets';
 $ifOutOctets = 'ifOutOctets_ifOutOctets';

 # base url $url = '/zport/dmd/Devices';

 # message $msg = new xmlrpcmsg(

 $device.'.os.interfaces.'.$interface.'.getRRDValues', array());

 $xifInOctets = new xmlrpcVal($ifInOctets);
 $xifOutOctets = new xmlrpcVal($ifOutOctets);
 $xifOctets = new xmlrpcVal(array($xifInOctets, $xifOutOctets), 'array');
 $msg->addParam($xifOctets);

 # client $clt = new xmlrpc_client($url, $host, $port);
 # $clt->setCredentials($user, $pass);

 # get response $rsp = $clt->send($msg);

 # any error? if ($rsp->faultCode()) {

Getting Started

13

 die('ifInOutBps - Send error: '.$rsp->faultString().'

'); }

 # convert to data structure $dst = xmlrpc_decode($rsp->serialize());

 return(array('in'=>$dst[$ifInOctets]*8, 'out'=>$dst[$ifOutOctets]*8));

}

?>

2.3.1.2.3.4. Java

This example uses the the Apache XML-RPC library [http://ws.apache.org/xmlrpc/index.html] and Java 6 to send
an event to the Zenoss server.

Required jars on the classpath (all available from the Apache download):

• xmlrpc-client-3.1.jar

• ws-commons-util-1.0.2.jar

• xmlrpc-common-3.1.jar

import java.net.URL;
import java.util.HashMap;

import org.apache.xmlrpc.client.XmlRpcClient;
import org.apache.xmlrpc.client.XmlRpcClientConfigImpl;

public class JavaRPCExample {

 public static void main(String[] args) throws Exception {
 XmlRpcClientConfigImpl config = new XmlRpcClientConfigImpl();
 url= "http://MYHOST:8080/zport/dmd/ZenEventManager"
 config.setServerURL(new URL(url));
 config.setBasicUserName("admin");
 config.setBasicPassword("zenoss");

 XmlRpcClient client = new XmlRpcClient();
 client.setConfig(config);

 HashMap<String,Object> params = new HashMap<String,Object>();

 params.put("device", "mydevice");
 params.put("component", "eth0");
 params.put("summary", "eth0 is down");
 params.put("severity", 4);
 params.put("eventClass", "/Net");

 client.execute("sendEvent", new Object[]{params});
 }

http://ws.apache.org/xmlrpc/index.html
http://ws.apache.org/xmlrpc/index.html

Getting Started

14

}

2.3.2. Miscellaneous Notes

2.3.2.1. pkg_resources

Should one need to use pkg_resources, it would normally be imported like this:

import pkg_resources

To avoid the mysterious warning

_xmlplus UserWarning

use the following import line:

import Products.ZenUtils.PkgResources

2.4. zendmd: Command-line Access to the De-
vice Management Database (DMD)

Zenoss uses the Zope database (ZODB) to store its information. Since the ZODB is an Object-Oriented DataBase,
this is not organized by tables, rows and columns, but by objects. The object that Zenoss uses to store the basic
model of your network is in the Device Management Database (DMD) object.

You can access the DMD through an interactive, programmable interpreter: zendmd. zendmd is the Python inter-
preter, with a handle to the database stored in the default namespace, and a few handy functions.

To start zendmd and see how the interpreter works, use the following commands:

These are all basic Python interpreter features. zendmd adds in a reference to the root of the object tree which is
known as dmd. You can see this root name in the URLs used to refer to objects when using Zenoss from the browser.

There is a built-in function that can be used to find devices.

$ zendmd
>>> print dmd
<DataRoot at /zport/dmd>
>>> find('localhost.localdomain')
<Device at /zport/dmd/Devices/Server/Linux/devices/localhost.localdomain>

The find() function also takes wildcards:

>>> find('local*')
<Device at /zport/dmd/Devices/Server/Linux/devices/localhost.localdomain>

Getting Started

15

You can perform scripting at the command prompt. For example, we can count the number of interfaces on our
device:

You can inspect the objects:

You can perform low-level checks such as re-indexing all the objects:

>>> reindex()

Or check/repair relationships on all devices:

>>> for d in dmd.Devices.getSubDevices():
... d.checkRelations(repair=True)
...

Finally, after making changes you can commit them to the database:

>>> commit()

or synch against the database and restore the old state to your interpreter, reverting any changes:

>>> synch()

Zendmd can be used to automate repetitive tasks. For example, you can enter in a large list of devices. First, create
a text file containing the names of those devices:

$ cat >lotsOfDevices.txt
device1
myhost.mydomain.com
host2.mydomain.com
^D

Of course, the data could come from an inventory list or other database. Then, you can use the dmd to process the file:

$ zendmd
for line in file('lotsOfDevices.txt'):
... d = dmd.Devices.Server.Linux.createInstance(line.strip())
... commit()
... d.collectDevice()

You can feed zendmd commands on stdin:

$ zendmd < AddDevices.py

You can also import scripts:

$ zendmd

Getting Started

16

import MyScripts
MyScripts.loadDevices(dmd)

If you want to create a stand-alone command, reading the $ZENHOME/ZenModel/zendmd.py file is a good
start.

The full List of zendmd names is described below.

Table 2.1. zendmd Names and Descriptions

zendmd Name Description

dmd Device Management Database, the root persistent object

app The Zope Application, the root of the database

zport Zenoss Portal, the portal that contains Zenoss

find() Look up devices by name, and by address; supports wildcards

devices Equivalent to dmd.Devices

sync() Revert the objects in zendmd back to the state in the ZODB

commit() Push object changes to the persistent store

abort() Undo any object changes and refresh from persistent storage

me a reference to the machine running zendmd, if it can be found

reindex() recreates the indexes against the objects

login() sets the security context of the given user

logout() removes any security context

2.5. Programming Documentation

2.5.1. Python
If you are new to Python here are a few resources to get you started:

• The official Python documentation [http://docs.python.org/index.html] contains a tutorial and the reference
guide for the standard libraries that ship with Python. Note that Zenoss is currently constrained to using Python
2.4, so be careful when reading about different Python features.

• Dive Into Python [http://diveintopython.org/] is an excellent book if you are familiar with other programming
languages and contains lots of great examples.

2.5.2. Zenoss API
As mentioned previously, more detailed information is gathered using the epydoc documentation system, and the
results are in the Application Programming Interface (API) documentation [http://www.zenoss.com/communi-
ty/docs/zenoss-api-docs/].

2.5.3. Other Resources
Discussion regarding development of Zenoss takes place on the zenoss-dev mailing list and forums [http://
forums.zenoss.com/viewforum.php?f=3].

http://docs.python.org/index.html
http://docs.python.org/index.html
http://diveintopython.org/
http://diveintopython.org/
http://www.zenoss.com/community/docs/zenoss-api-docs/
http://www.zenoss.com/community/docs/zenoss-api-docs/
http://www.zenoss.com/community/docs/zenoss-api-docs/
http://forums.zenoss.com/viewforum.php?f=3
http://forums.zenoss.com/viewforum.php?f=3
http://forums.zenoss.com/viewforum.php?f=3

Getting Started

17

2.5.4. Contributing to the Documentation
If you find errors or omissions in the documentation, you can either submit a ticket (see Section 2.1.6, “Submitting
a Fix”) or send an e-mail to docs@zenoss.com [mailto:docs@zenoss.com]. It's possible to contribute other
material [http://www.zenoss.com/community/get-involved/how-to-contribute-web-content], too! That information
is available on the Zenoss Wiki [http://www.zenoss.com/community/wiki].

mailto:docs@zenoss.com
mailto:docs@zenoss.com
http://www.zenoss.com/community/get-involved/how-to-contribute-web-content
http://www.zenoss.com/community/get-involved/how-to-contribute-web-content
http://www.zenoss.com/community/get-involved/how-to-contribute-web-content
http://www.zenoss.com/community/wiki
http://www.zenoss.com/community/wiki

18

Chapter 3. ZenPacks
3.1. Overview

A ZenPack is a package that adds new functionality to Zenoss. For basic information on ZenPacks see the Zenoss
Admin Guide section on ZenPacks. The following information pertains to the creation of more complex ZenPacks
that contain skins, Python classes, daemons, etc.

As of Zenoss 2.2 the ZenPack framework has switched to using Python Eggs [http://peak.telecommunity.com/
DevCenter/PythonEggs] as the packaging mechanism for ZenPacks. Python Eggs are the standard mechanism for
packaging and distributing code.

Note
The zenpack command should be used for installation and removal of ZenPacks, not the easy_install
command that is frequently used with non-ZenPack Python Eggs.

The use of dotted names for ZenPacks (see Section 3.2.1, “ZenPack Names” below) was also introduced in this
version. Zenoss 2.2 supports installation and use of pre-2.2 ZenPacks, but all new ZenPacks are created in the new
format. This document relates to ZenPacks created in the new style. For documentation on ZenPacks predating
Zenoss 2.2 please see previous versions of this document and the Zenoss Admin Guide.

If you developed pre-2.2 ZenPacks and wish to convert them to Egg-style ZenPacks see the section below Sec-
tion 3.5.2, “Converting older ZenPacks to ZenPack eggs” .

3.2. Creating a ZenPack
ZenPacks can be created through the Zenoss user interface by using the Create ZenPack… menu item on the Zen-
Packs page. This creates the ZenPack on the filesystem at $ZENHOME/ZenPacks/zenpackid and installs
it into Zenoss.

3.2.1. ZenPack Names
ZenPack names consist of at least three strings joined by periods. The first of these strings is always "ZenPacks."
Each of these strings must start with a letter and contain only letters, numbers and underscores. The reason for this
naming scheme is that the ZenPack will setup namespaces in Python that reflect these names. There is a python
namespace called ZenPacks. Within that namespace are packages representing the second part of all the installed
ZenPack and so on. So for example if you have a ZenPack named ZenPacks.MyCompany.MyZenPack then
it is importable in Python (and zendmd) as

import ZenPacks.MyCompany.MyZenPack

And a datasource class provided by this example might be accessed as

from ZenPacks.MyCompany.MyZenPack.datasources.MyDataSourceClass \
 import MyDataSourceClass

The advantage of these namespaces is that they help prevent namespace conflicts between different
organizations authoring ZenPacks. So if a third party wants to develop an HTTP monitoring Zen-
Pack they could name it ZenPacks.OurCompany.HttpMonitor and it would not conflict with the
ZenPacks.zenoss.HttpMonitor Core ZenPack.

http://peak.telecommunity.com/DevCenter/PythonEggs
http://peak.telecommunity.com/DevCenter/PythonEggs
http://peak.telecommunity.com/DevCenter/PythonEggs

ZenPacks

19

3.2.2. Specifying Dependencies
The ZenPack Edit page allows you to specify versions of Zenoss that your ZenPack is compatible with as well as
dependencies on other ZenPacks. The first item in the Dependencies section of that page is the version of Zenoss
that is required. If that field is blank then your ZenPack will be installable under any version of Zenoss version 2.2
or later. If you enter a specific version number then the ZenPack will run only under that exact version of Zenoss,
this is usually not desirable. The most typical verson requirement is to specify that the ZenPack is compatible with
any version of Zenoss equal to or greater than a specific version. The syntax for this is ">=X" where X is the
minimum version the ZenPack requires. For example, if a ZenPack requires Zenoss version 2.2.1 or greater the
version specification would be
>=2.2.1

Below the Zenoss version specification is a list of all other ZenPack eggs installed. Old-style (non-egg) ZenPacks
cannot be listed as dependencies and do not appear in this list. If your ZenPack requires another ZenPack to be
installed then check the checkbox to the left of the other ZenPack's name. Optionally you can also give a version
specification for each ZenPack you require.

3.2.3. Locating ZenPack Source Outside of Zenoss
For any non-trivial ZenPacks we recommend maintaining the source code somewhere other than $ZENHOME/Zen-
Packs. There are a couple reasons for this:

• Performing a zenpack --remove deletes the ZenPack's directory from $ZENHOME/ZenPacks. If you do not
have the files copied in another location you can easily lose all or some of your work.

• If your ZenPack source is maintained in a version control system it is frequently easier to keep the code within
a larger checkout directory elsewhere on the filesystem.

To move a ZenPack source directory out of $ZENHOME/ZenPacks you can simply copy the directory to
the new location then run install again using the --link option. This will remove the $ZENHOME/Zen-
Packs/YourZenPackId directory.

cp -r $ZENHOME/ZenPacks/YourZenPackId SomeOtherDirectory
zenpack --link --install SomeOtherDirectory/YourZenPackId

3.2.4. Community ZenPack Subversion Access
There is a Community ZenPack development site [http://community.zenoss.org/trac-zenpacks/] for hosting Sub-
version source code control access to all contributed Community ZenPacks. Accounts will be granted by request
and offered to ZenPack contributors. The goal of this site is to encourage ZenPack development and open up im-
provements to all ZenPacks to a greater audience.

The Community ZenPack development site contains instructions for:

• working with Community ZenPacks from Subversion

• building and modifying ZenPacks

• converting old-style ZenPacks to Python Egg ZenPacks

3.3. ZenPack Structure and Contents
This section describes the files and directory structures that make up most ZenPacks. A more detailed source of
information about Python Eggs, entry points and other technical details of building eggs is found here [http://
peak.telecommunity.com/DevCenter/setuptools]

http://community.zenoss.org/trac-zenpacks/
http://community.zenoss.org/trac-zenpacks/
http://peak.telecommunity.com/DevCenter/setuptools
http://peak.telecommunity.com/DevCenter/setuptools
http://peak.telecommunity.com/DevCenter/setuptools

ZenPacks

20

Note
The $ZENHOME/Products/ZenModel/ZenPackTemplate directory contains the template
files and directories used when Zenoss creates a ZenPack. If you decide to change these files, note that
these changes will not be preserved across upgrades.

A ZenPack has the concept of a namespace, so that multiple people or organizations can create similar
ZenPack names without their code colliding with each other. In this example, the name of the ZenPack is
ZenPacks.pkg.zpid , where pkg is the package name and zpid is the ZenPack id.

In the $ZENHOME/ZenPacks/ directory, you will find the directory ZenPacks.pkg.zpid with the following
contents (abbreviated for clarity):

build

build/bdist.linux-i686
build/lib
build/lib/ZenPacks
...
dist

dist/ZenPacks.pkg.zpid-version_id-py2.4.egg
INSTALL.txt
README.txt
setup.py

ZenPacks

ZenPacks/__init__.py
ZenPacks/pkg
ZenPacks/pkg/__init__.py
ZenPacks/pkg/zpid

ZenPacks/pkg/zpid/__init__.py

ZenPacks/pkg/zpid/daemons

ZenPacks/pkg/zpid/datasources

ZenPacks/pkg/zpid/datasources/__init__.py
ZenPacks/pkg/zpid/lib

ZenPacks/pkg/zpid/lib/__init__.py
ZenPacks/pkg/zpid/libexec

ZenPacks

21

ZenPacks/pkg/zpid/migrate

ZenPacks/pkg/zpid/migrate/__init__.py
ZenPacks/pkg/zpid/modeler

ZenPacks/pkg/zpid/modeler/__init__.py
ZenPacks/pkg/zpid/modeler/plugins
ZenPacks/pkg/zpid/modeler/plugins/__init__.py
ZenPacks/pkg/zpid/objects

ZenPacks/pkg/zpid/objects/objects.xml
ZenPacks/pkg/zpid/parsers

ZenPacks/pkg/zpid/parsers/__init__.py
ZenPacks/pkg/zpid/reports

ZenPacks/pkg/zpid/services

ZenPacks/pkg/zpid/services/__init__.py
ZenPacks/pkg/zpid/skins

ZenPacks/pkg/zpid/skins/ZenPacks.pkg.zpid
ZenPacks.pkg.zpid.egg-info

ZenPacks.pkg.zpid.egg-info/entry_points.txt
ZenPacks.pkg.zpid.egg-info/namespace_packages.txt
ZenPacks.pkg.zpid.egg-info/not-zip-safe
ZenPacks.pkg.zpid.egg-info/PKG-INFO
ZenPacks.pkg.zpid.egg-info/SOURCES.txt
ZenPacks.pkg.zpid.egg-info/top_level.txt

This directory is created by Python when the ZenPack is exported to an egg file or when it is installed from
source. This directory can safely be deleted at any time if you wish and need not be kept within any version
control system.
This directory is created when the ZenPack is exported to an egg file. The egg file is initially created within
here then copied to the $ZENHOME/export directory. This directory can safely be deleted at any time if you
wish and need not be kept within any version control system.
This file contains parameters for use by setuptools and distutils in creating eggs and doing source installs.
Zenoss creates an appropriate setup.py when a ZenPack is created. ZenPack developers should usually edit
this information through the ZenPack edit page within Zenoss rather than directly in the setup.py file.

ZenPacks

22

Any time a ZenPack is saved or exported via the GUI Zenoss will modify certain values at the top of the
setup.py file. The lines that Zenoss modifies are clearly commented and segregated at the top of the file.
If you wish to make changes to setup.py you can safely do so as long as you leave those lines intact.
This directory mirrors the dotted name structure of your ZenPack name. For example, if your ZenPack name
is ZenPacks.MyCompany.MyZenPack then this directory will contain a directory named MyCompany
which will contain a MyZenPack directory. This last directory with the same name as the last part of your
ZenPack name is where most of the ZenPac code resides. The structure of that directory is very similar to that
of previous non-egg ZenPacks.
This is the directory whose name is that of the last part of your dotted ZenPack name.
This file contains any code that needs to be executed when the ZenPack is loaded. Zenoss loads all installed
ZenPacks on startup. Typically this file contains a few lines that will register a skins directory if the ZenPack
provides one. Also, if this class contains a class named ZenPack then on installation Zenoss will create an
instance of that class rather than the base ZenPack class in the object database.
See below for more details on providing daemons in ZenPacks.
See below for more details on providing datasource classes in ZenPacks.
This directory is intended to hold any 3rd party modules or other code your ZenPack depends on. A module
named Foo in this directory would be imported with

import ZenPacks.MyCompany.MyZenPack.lib.Foo

This directory is intended to hold plugins, such as Nagios-style or Cacti-style plugins.
See below for more details on migrating between versions of your ZenPack.
See below for more details on providing modeler plugins in ZenPacks.
Database objects such as Device Classes and Performance Templates that are added to the ZenPack via the
GUI are exported to an objects.xml file in this directory. When the ZenPack is installed on another system
those objects will be copied into that object database.
This directory contains any command parsers provided by the ZenPack. See Section 11.5.2, “Writing Your
Own Command Parser” section for more details.
This directory contains any report plugins provided by the ZenPack.
Zenoss daemons usually communicate with zenhub to retrieve their configuration, send events, and write
performance data. If a ZenPack provides a daemon then it typically will also provide a ZenHub service for
that daemon. See the section on ZenHub for further details.
This directory contains any skins directories that should be added to Zope. Note that this contains directories
of skins, not the skin files themselves. If you include skins directories make sure that the __init__.py file
in the directory above skins is registering this directory. (The default __init__.py file provided in new
ZenPacks does this for you.)
This directory contains files which describe the egg meta-data. This is created when the egg file is generated
or the ZenPack is installed from source. This directory can safely be deleted at any time if you wish and need
not be kept within any version control system.

This file is updated every time a ZenPack is edited and saved. ZenPack developers should normally not edit
this #le manually.

3.4. Developing the ZenPack
3.4.1. Base ZenPack Class
$ZENHOME/Products/ZenModel/ZenPack.py contains the base ZenPack class. When a ZenPack is in-
stalled Zenoss inspects YourZenPackId/ZenPacks/..../LastPartOfName/__init__.py to see if
it contains a class named ZenPack. If it does then Zenoss instantiates it, otherwise Zenoss instantiates the base
ZenModel.ZenPack.ZenPack class. That instance is then added to the dmd.ZenPackManager.packs
tree.

ZenPacks

23

There are several attributes and methods of ZenPack that subclasses might be interested in overriding:

Interesting ZenPack properties and methods

packZProperties is a mechanism for easily adding zProperties. packZProperties is a list
of tuples, with each tuple containing three strings in this order:

• the name of the zProperty

• the default value of the zProperty

• the type of the zProperty ('string', 'int', etc.)

Zenoss will automatically create these when the ZenPack is in-
stalled and remove them when the ZenPack is removed. See
ZenPacks.zenoss.MySqlMonitor for an example of this usage.

install(self, app) parais called when the ZenPack is installed. If you override this be sure to
call the inherited method within your code.

remove(self, app,
leaveObjects)

is called when the ZenPack is removed. As with install(), make sure
you call the inherited method if you override.

3.4.2. Storing Objects in the ZODB
ZenPacks can provide Python classes for objects that will be stored in the object database. The most frequent example
of this is DataSource subclasses. When a ZenPack is removed those classes are no longer accessible so the objects
in the database are broken. (Zeo needs to have the appropriate Python class in order to unpickle an object from the
database.) In previous versions of Zenoss there was not an easy way to associate instances of a ZenPack-provided
class with the ZenPack that provided the class. As a result ZenPack removal could easily cause broken objects to
remain in the database. If Zope had already loaded a class into the interpreter the objects in question might continue
to function until Zope was restarted, making diagnosis of such problems even more difficult.

In Zenoss 2.2 the ZenPackPersistance class aims to remedy this problem. Any Python class provid-
ed by a ZenPack should subclass the ZenModel.ZenPackPersistence.ZenPackPersistence class.
Zenoss maintains a catalog of all ZenPackPersistence instances in the database. When a ZenPack is re-
moved, the catalog is queried to determine which objects need to be deleted. Any ZenPack-provided Python
class that might be instantiated in the object database should subclass ZenPackPersistence and define
ZENPACKID in the class as the name of the ZenPack providing the class. For an example of this see the
ZenPacks.zenoss.MySqlMonitor.datasources.MySqlMonitorDataSource ZenPack.

3.4.3. Providing DataSource classes
ZenPacks can provide new classes of DataSources by subclassing the
ZenModel.RRDDataSource.RRDDataSource class. If you include only one DataSource class per file,
name the modules after the class the contain (ie MyDataSource.py contains the class MyDataSource), and
place those modules in the ZenPack's datasources directory then they will automatically be discovered by
Zenoss. If you wish to customize this behavior take a look at the ZenPack.getDataSourceClasses() func-
tion. See the ZenPacks.zenoss.HttpMonitor and ZenPacks.zenoss.MySqlMonitor ZenPacks for
examples of ZenPacks that provide custom DataSource classes.

When creating a custom DataSource class one of the first decisions you have to make is whether you want
zencommand to process these DataSources for you or whether you will provide a custom collector daemon to
process them. The zencommand daemon is a very versatile mechanism for executing arbitrary commands either

ZenPacks

24

on the Zenoss server or on the device being monitored, processing performance data returned by the DataSource
and generating events in Zenoss as appropriate. zencommand expects the command it executes be compatible with
the Nagios plug-in API [http://nagiosplug.sourceforge.net/developer-guidelines.html]. Specifically two aspects of
that API are of most importance:

Return code The command should exit with a return code of 0, 1, 2 or 3. See here [http://
nagiosplug.sourceforge.net/developer-guidelines.html#AEN78] in the Nagios plug-in
API for more detail.

Performance data If the command returns performance data then that data can be pulled into Zenoss by
creating DataPoints with the same names used in the command output. See here [http://
nagiosplug.sourceforge.net/developer-guidelines.html#AEN203] in the Nagios plug-in
API for more detail.

If you want zencommand to handle instances of your custom DataSource class then several methods in RRD-
DataSource are of particular insterest:

getDescription(self) This returns a string describing the DataSource instance. This string is
displayed next to the DataSource on the RRDTemplate view page.

useZenCommand(self) The default implementation returns False. If you want to use zencommand
then override this method and return True.

getCommand(self, con-
text, cmd=None)

This returns the string that is the command for zencommand to execute.
context is the device or component to be collected. If you need to evaluate
TALES expressions in the command to replace things like ${dev/id} and so
forth you can call the parent class's getCommand() and pass your com-
mand as the cmd argument. (cmd will not be passed into your method, it
exists specifically for subclasses to pass their commands to the parent for
TALES evaluation.)

checkCommandPrefix(self,
context, cmd)

Zenoss will check the string you return from getCommand() to see if it
is a relative or absolute path to a command. If the string starts with '/' or '$'
then Zenoss assumes it is absolute. Otherwise the zProperty zCommandPath
from the context is prepended to the cmd string. You can override check-
CommandPrefix() if you wish to alter this behavior.

Make sure that your DataSource subclasses also subclass ZenPackPersistence and list it first among the
parent classes. See the section on ZenPackPersistence.py for more details.

3.4.4. Performance Template Checklist
Performance templates are one of the easiest places to make a real user experience difference when new features
are added to Zenoss. Spending a very small amount of time to get the templates right goes a long way towards
improving the overall user experience.

3.4.4.1. Data Sources

• Can your datasource be named better?

• Is it a common metric that is being collected from other devices in another way? If so, name yours the same.
This makes global reporting much easier.

• camelCaseNames are the standard. Use them.

http://nagiosplug.sourceforge.net/developer-guidelines.html
http://nagiosplug.sourceforge.net/developer-guidelines.html
http://nagiosplug.sourceforge.net/developer-guidelines.html#AEN78
http://nagiosplug.sourceforge.net/developer-guidelines.html#AEN78
http://nagiosplug.sourceforge.net/developer-guidelines.html#AEN78
http://nagiosplug.sourceforge.net/developer-guidelines.html#AEN203
http://nagiosplug.sourceforge.net/developer-guidelines.html#AEN203
http://nagiosplug.sourceforge.net/developer-guidelines.html#AEN203

ZenPacks

25

• Never use absolute paths for COMMAND datasource command templates. This will end up causing problems on
one of the three platforms we deal with. Link your plugin into zenPath('libexec') instead.

3.4.4.2. Data Points

• Using a COUNTER? You might want to think otherwise.

• Unnoticed counter rollovers can result in extremely skewed data.

• Using a DERIVE with a minimum of 0 will record unknown instead of wrong data.

• Enter the minimum and/or maximum possible values for the data point if you know them.

• This again will allow unknown to be recorded instead of bad data.

3.4.4.3. Thresholds

• Don't include a number in your threshold's name.

• This makes people have to recreate the threshold if they want to change it.

3.4.4.4. Graph Definitions

• Have you entered the units? Do it!

• This will become the y-axis label and should be all lowercase.

• Always use the base units. Never kbps or MBs. bps or bytes are better.

• Do you know the minimum/maximum allowable values? Enter them!

• Common scenarios include percentage graphing with minimum 0 and maximum 100.

• Think about the order of your graph points. Does it make sense?

• Are there other templates that show similar data to yours? If so, you should try hard to mimic their appearance
to create a consistent experience.

3.4.4.5. Graph Points

• Have you changed the legend? Do it!

• Adjust the format so that it makes sense.

• %5.2lf%s is good for values you want RRDTool to auto-scale.

• %6.2lf%% is good for percentages.

• %4.0lf is good for four digit numbers with no decimal precision or scaling.

• Should you be using areas or lines?

• Lines are good for most values.

• Areas are good for things that can be thought of as a volume or quantity.

• Does stacking the values to present a visual aggregate make sense?

ZenPacks

26

3.4.5. Providing daemons
ZenPacks can provide new performance collectors and event monitors. This is a somewhat complex undertaking,
so before deciding to write your own daemons make sure that zencommand and a custom DataSource class
won't fit your needs (see Section 3.4.3, “Providing DataSource classes” above.) Any file in a ZenPack's daemons
directory is symlinked in $ZENHOME/bin when the ZenPack is installed. Also, the Zenoss script that controls the
core daemons will attempt to manage your daemon too. So a zenoss start, for example, will attempt to start your
daemon as well as the core daemons.

Custom daemons usually subclass the ZenHub.PBDaemon.PBDaemon class. This class provides the basic
framework for communicating with zenhub. See the section "Writing a Zenoss Performance Collector" for more
details.

3.4.6. setuptools and the zenpacksupport
Zenoss requires a Python module called setuptools to create and install eggs. The setuptools module is
installed by the Zenoss installer in the $ZENHOME/lib/python directory. Zenoss also provides a module named
zenpacksupport which extends setuptools. The zenpacksupport class defines additional metadata that is
written to and read from ZenPack eggs. This metadata is provided through additional options passed to the setup()
call in a ZenPack's setup.py file. Those arguments are:

compatZenossVers This is the version specification representing the required Zenoss version from the
ZenPack's Edit page.

prevZenPackName This is the name of the old-style (non-egg) ZenPack that this ZenPack re-
places. If a ZenPack with this name is installed in Zenoss then it is upgrad-
ed and replaced when this ZenPack is installed. For example, if HttpMoni-
tor is installed and then ZenPacks.zenoss.HttpMonitor is installed (which
has prevZenPackName=HttpMonitor) then ZenPacks.zenoss.HttpMonitor will
replace HttpMonitor. All packable objects in the database that are includ-
ed in HttpMonitor will be added to ZenPacks.zenoss.HttpMonitor
instead. A migrate script is usually required to set __class__ correct-
ly on instances of ZenPack-provided classes in the object database. The
ZenPacks.zenoss.HttpMonitor ZenPack has an example of this in its migrate
directory, in the ConvertHttpMonitorDataSources.py file.

3.5. Building and Distributing ZenPacks
From your ZenPack's page in the GUI select the Export ZenPack... menu item to create an egg file. The file is first
created in your ZenPack's dist directory then copied to the $ZENHOME/export directory.

You can optionally also download the egg file through your web browser when doing the export. As part of the export
process Zenoss exports database objects to the objects/objects.xml file in your ZenPack source directory.
If you don't need to update the objects.xml file you can create the egg from the command line instead

cd YourZenPackDirectory
python setup.py bdist_egg

This creates the egg file in the ZenPack's dist directory.

Users who install your egg file will not be able to edit the ZenPack or re-export it. These functions require the
setup.py file which is not usually distributed within the egg file itself. In most cases this is desirable because

ZenPacks

27

end-users should usually not be making changes and redistributing a different version of your ZenPack than the
one you developed.

There are times when you want to allow others to develop a ZenPack with you. In these cases you must provide
them with the entire source directory, not just an egg file.

3.5.1. Migrating between versions
Any time a ZenPack is installed Zenoss looks in the ZenPack's migrate directory for steps whose ver-
sion is greater than or equal to the version of the ZenPack being installed. Migrate steps are classes that
subclass ZenModel.ZenPack.ZenPackMigration. This mechanism allows zenpacks to modify items
in the object database that were created by previous versions of the ZenPack and need updating. The
ZenPacks.zenoss.MySqlMonitor Core ZenPack includes good examples of how migrate steps are written.

3.5.2. Converting older ZenPacks to ZenPack eggs
Zenoss 2.2 includes a new script called eggifyzenpack which automates much or all of the process of converting
a pre-2.2 ZenPack to an egg ZenPack. The script is in $ZENHOME/bin so is usually on the zenoss user's path
already. The --newid option is required and specifies the new name of the ZenPack. (See the section above on
ZenPack names.) the sole positional argument to eggifyzenpack is the current name of the installed ZenPack to be
converted. Zeo must be running prior to invoking the script.

eggifyzenpack --newid ZenPacks.MyCompany.MyZenPackName MyOldZenPackName

This will create a ZenPack with the name given with --newid in $ZENHOME/ZenPacks. The old ZenPack that
was converted is uninstalled and removed from $ZENHOME/Products. ZenPacks converted in this way have
PREV_ZENPACK_NAME in their setup.py set to the name of the old ZenPack that they replace. When a user with
the old ZenPack installed installs the new egg ZenPack it will be processed as an upgrade and the older ZenPack
will be removed.

3.6. Where to Get More Information
Discussion regarding development of ZenPacks takes place on the zenoss-zenpacks mailing list and forums [http://
forums.zenoss.com/viewforum.php?f=6].

http://forums.zenoss.com/viewforum.php?f=6
http://forums.zenoss.com/viewforum.php?f=6
http://forums.zenoss.com/viewforum.php?f=6

28

Chapter 4. Zenoss Datastores
There are a few datastores used by Zenoss:

Datastores

ZODB Object-oriented databse for Python objects

MySQL The Event database where event information is stored.

Pickle files Python pickle files are used to cache information otherwise obtained from zenhub.

RRD files Round Robin Database that stores performance information.

Figure 4.1. Datastores Overview

Zenoss Datastores

29

4.1. Zope Object Database (ZODB)
The ZODB [http://wiki.zope.org/zope2/ZODB/FrontPage] is an object-oriented database used by Zope to store
Python objects and their states. For example, modelers maintain information about devices and their configuration
in the ZODB.

Zenoss uses ZEO, which is a layer between Zope and the ZODB. ZEO allows for multiple Zope servers to connect
to the same ZODB. The ZODB is started and stopped by zeoctl.

Note
ZODBs can be clustered using ZEO, but Zenoss Enterprise and Zenoss Professional customers should
contact Zenoss Inc technical support before investigating clustering.

Here is a simple example of using transactions in the ZODB:

...
 import transaction

 ...
 trans= transaction.get()

 # Determine that bad things have happened
 if bad_thing:
 trans.abort()
 # ... any other cleanup required inside the function eg 'return'

 # Life is good!
 # NB: Username or program name -- it's just a text field
 trans.setUser("zenmodeler")
 trans.note("Added good things to xyz object")
 trans.commit()

Tip
The setUser() and note() functions are responsible for creating entries that can be found under
the Modifications tab or menu-item.

There are restrictions on what data can be stored, specifically data types that can be pickled [http://docs.python.org/
library/pickle.html]. Basic Python data types such as strings, numbers, lists and dictionaries can be pickled, but
Python code objects cannot be pickled. In addition, files and sockets cannot be pickled.

Note

The ZODB cannot detect changes to mutable types like lists and dictionaries. In order for changes
to be detected, not only is commit() afterwards, but you must explicitly tell the ZODB about the
change by modifying a Persistent objects _p_changed attribute.

 # The following imports shouldn't be required in Zenoss code
 # as it should already be taken care of for you. These are
 # included merely to explicitly show the class dependencies.
 import ZODB
 from Persistence import Persistent
 import transaction
 ...

http://wiki.zope.org/zope2/ZODB/FrontPage
http://wiki.zope.org/zope2/ZODB/FrontPage
http://docs.python.org/library/pickle.html
http://docs.python.org/library/pickle.html
http://docs.python.org/library/pickle.html

Zenoss Datastores

30

 class myExampleClass(Persistent):
 """
 An example class to be used to demonstrate the use of the
 modifying a list and then notifiying ZODB that work needs
 to be done through the _p_changed attribute.
 """
 def __init__(self):
 """
 Initializer
 """
 self.mylist= []

 def addToMyList(self, listItem):
 """
 Track the listItems that we need
 """
 self.mylist.append(listItem)
 self._p_changed= True # Notify ZODB

 transaction.commit()

As a general rule, use commit() whenever you want other processes to have access to your database changes. So
if a daemon is collecting and Zope needs to do something with the data, run commit() first from the daemon.

This should be enough information to get you started. See ZODB for Python Programmers [http://www.zope.org/
Documentation/Articles/ZODB1] for more details.

4.2. MySQL Event database
MySQL [http://www.mysql.com/] is an open-source relational database that Zenoss uses to store Zenoss events.
Configuration information about the MySQL database can be maintained by going to the Event Manager link from
the navigation bar when you are logged in as a user with ZenManager privileges.

Tip
MySQL-level performance tweaking can substantially improve Zenoss' ability to handle events.
One tool that can be used to improve your database performance is MySQLTuner [http://
wiki.mysqltuner.com/MySQLTuner].

If you need a connection to the MySQL events database, here is how to retrieve a connection and how to put it
back into the pool.

DbConnectionPool is hidden and is accessed through DbAccessBase. It follows the Singleton design pattern,
so it'll only actually create one DbConnectionPool. It extends the Python class Queue, so DbConnection-
Pool is also a synchronized queue and should be thread-safe. DbAccessBase is extended by EventManager-
Base>?, so if you have access to the ZenEventManager (located at /zport/dmd/ZenEventManager)
you'll have the ability to get a database connection.

4.2.1. Connecting to the Database
First you'll need to get an instance of ZenEventManager OR an instance of a class that extends DbAccessBase.
Within Zenoss, a ZenEventManager should already be instantiated.

Next is the try block which should include ANY database calls. This is where you'll get a connection from the
pool with the connect() method. You may pass this around to other methods or create a cursor and make some

http://www.zope.org/Documentation/Articles/ZODB1
http://www.zope.org/Documentation/Articles/ZODB1
http://www.zope.org/Documentation/Articles/ZODB1
http://www.mysql.com/
http://www.mysql.com/
http://wiki.mysqltuner.com/MySQLTuner
http://wiki.mysqltuner.com/MySQLTuner
http://wiki.mysqltuner.com/MySQLTuner

Zenoss Datastores

31

database transactions. The try block MUST be completed with a finally block that includes the close()
method. You MUST pass the connection object to the close() method. This will ensure that even if the code
within the try breaks, we are not leaking database connections. If you create more than one connection (ie more
than one connect() call in your try block) you will need to have a corresponding close() call. There is
ALWAYS a one-to-one relationship between connect() and close() calls.

Here is a block of code that illustrates best practices for using the DbConnectionPool

...
zem = self.dmd.ZenEventManager
try:
 conn1 = zem.connect()
 conn2 = zem.connect()
 curs1 = conn1.cursor()
 ...
 curs2 = conn2.cursor()
 ...
 # do work
 ...
 curs3 = conn1.cursor()
 ...
finally:
 zem.close(conn1)
 zem.close(conn2)
 ...
...

Take a look at EventManagerBase.py for some examples of code using the DbConnectionPool.

4.2.2. MySQL in 60 Seconds
To start an interactive session with MySQL, run the mysql as the zenoss user. The following example is from a
default install of Zenoss where there is no password for the MySQL root user.

$ mysql -uroot
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 17799
Server version: 5.0.45 Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

Once we've logged into MySQL, we can see the various databases and see the tables that are available. The events
database is maintained by Zenoss.

mysql> show databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| events |
| mysql |
| test |

Zenoss Datastores

32

+--------------------+
4 rows in set (0.03 sec)
mysql> use events;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed
mysql> show tables;
+------------------+
| Tables_in_events |
+------------------+
| alert_state |
| detail |
| heartbeat |
| history |
| log |
| status |
+------------------+
6 rows in set (0.00 sec)

From here we can determine what information is in what table. For instance, the log table.

mysql> describe log;
+----------+-------------+------+-----+-------------------+-------+
| Field | Type | Null | Key | Default | Extra |
+----------+-------------+------+-----+-------------------+-------+
evid	char(25)	NO	MUL		
userName	varchar(64)	YES		NULL	
ctime	timestamp	NO		CURRENT_TIMESTAMP	
text	text	YES		NULL	
+----------+-------------+------+-----+-------------------+-------+
4 rows in set (0.00 sec)

4.3. Python Pickle Files
Python's native storage for storing data is called a Pickle. Pickle files are used by zenperfsnmp for caching
configuration information gathered from zenhub. This is a perofrmance enhancement for dealing with startup
communications with zenhub, as larger sites with hundreds or more devices could experience enough of a delay
during initialization that Zenoss would have difficulty functioning until the configuration information had been
gathered. Every update from the Zenoss server (which is dealt with by zenhub) causes zenperfsnmp to update
the pickle files.

The pickle files are kept in the $ZENHOME/perf/Devices/devicename/ directory, and are named col-
lector-config.pickle. These pickle files are only read during startup and are periodically recreated, so it is
safe to delete them, and it is not necessary to back them up.

4.4. Round-Robin Database
RRD [http://oss.oetiker.ch/rrdtool/] is used by Zenoss to store and graph performance collection data. These data
files have a fixed format that is decided at their creation time, and record datapoints at set intervals. This data is later
consolidated into coarser time units (so as to reduce the total size of data files) and the RRD toolset also contains
code to create graphs.

http://oss.oetiker.ch/rrdtool/
http://oss.oetiker.ch/rrdtool/

Zenoss Datastores

33

A few other interesting facts:

• Zenoss is a gold-level sponsor of RRD

• The Renderserver sends RRD graphics to web browsers

Zenoss Datastores

34

Figure 4.2. RRD Overview

35

Chapter 5. Events
5.1. Understanding an Event Entry

From a Python programming perspective, an event is essentially a dictionary of keyword/value pairs that gets passed
up to zenhub to be stored and parsed. A description of the standard fields used in Zenoss can be found in Ap-
pendix A, Event Database Dictionary .

From the user's perspective, the events can be found in either the Event Console or in the Events tab. To view an
event's information, click on the magnifing glass icon in the event entry and it will display three tabs: Fields, Details
and Log.
Need screenshots here

The standard keyword and value pairs are presented to the user in the Fields tab of the event. Any non-standard
keyword/value pairs are presented in the Details tab. The Log tab is for post-processed events and so won't trouble
us for the moment.

5.1.1. Event Design
There are a few requirements for events:

• Event objects need to be persisted in the MySQL database.

• On queries from within Zope these queries must use the Zope security mechanisms to allow controlled access
to the data.

• Events must be constructable outside of a Zope framework as well.

To meet these requirements there are three types of event:

Event an event that lives outside of a Zope context and can go in and out of MySQL.

ZEvent event in a Zope context inherits from Event and has a subset of its fields populated as defined
by resultFields in a getEventList() query.

ZEventDetail full event information (all fields, detail, and log)

5.2. Sending an Event
Events can be created through a number of different ways:

• from the command line (zensendevent)

• through the user interface (Add Event)

• by daemons which convert their messages into events (eg zentrap)

• from daemons and programs which have detected error conditions

• From an external source using (for example) XML-RPC

Regardless of what program generates the event, or from which protocol the event is sent to Zenoss, the following
fields (at a minimum) should be specified:

Events

36

Event fields

device the name of the device from which this event originates

component the sub-component of the device (for instance eth0, http, etc)

summary the text message of the event

severity an integer between 0 and 5 with higher numbers being higher severity. Zero is clear. Note that for
Python code, that mappings to names are provided (see example below).

Here is an example using Python from within a program that connects to zenhub:

Import severities (eg Clear, Debug, Info, Warning, Error Critical) and
some event classes into our namespace
from Products.ZenEvents.ZenEventClasses import *

class exampleClass(PBDaemon):
 def examplefunc(self):
 event= {}
 event['component']= 'eth0'
 event['severity']= Warning
 event['summary']= 'eth0 is down'
 event['message']= 'Received error code 0xa7 from listen()'
 self.sendEvent(event, device='mydevice')

Using XML-RPC in Python:

from xmlrpclib import ServerProxy
myurl= 'http://admin:zenoss@MYHOST:8080/zport/dmd/ZenEventManager'
serv = ServerProxy(myurl)
evt = {'device':'mydevice', 'component':'eth0', 'summary':'eth0 is down',
 'severity':4, 'eventClass':'/Net'
 }
serv.sendEvent(evt)

Tip

Some suggested non-standard fields for adding to your event are:

resolution Describe a method of fixing the situation that might have caused the event, or sug-
gest a course of action for diagnosing the condition.

explanation Describe in more detail the impact of this event on the computing environment.
For instance, does the condition which generates this event prevent a service from
starting or being monitored?

5.3. Adding an Event Class
Event classes can be added easily through the UI. If you need to use an event class internally, however, you need
to make sure that class will always be available, which involves several more steps.

Events

37

5.3.1. Add to ZenEventClasses
Add a definition of the name of your new event class to Products/ZenEvents/ZenEventClasses:

...
My_New_Class = "/My/New/Class"

Now your event class is centralized and can be imported wherever you need to use it, e.g.:

...
from Products.ZenEvents.ZenEventClasses import My_New_Class
...
if thing.evclass == My_New_Class:
...

5.3.2. Add the class to the import XML
Several event classes are imported from XML by zenload just after the ZODB is created. To include your new event
class in this import, add an <object> element describing it to Products/ZenModel/data/events.xml. Be
sure to nest it inside the classes that already exist, if appropriate. For example, if your new class is "/Status/New-
Class", you would add it inside the <object id='Status'> that already exists:

...
<object id='Status' module='Products.ZenEvents.EventClass' class='EventClass'
>
<!--This event exists already -->
...
<object id='NewClass' module='Products.ZenEvents.EventClass' class='EventClass'
>
<!--This is your new event -->
</object>
></object>

5.3.3. Write a migrate script
Now, since your code is no longer backwards-compatible, you need to add the new event class to databases
that have already been created by writing a migrate script. (See Chapter 14, Migrating Zenoss Code for more
detailed information). Create a new script in Products/ZenModel/migrate with an unique name (here
neweventclasses.py). Here's an example:

__doc__="""Add new classes to EventManager
"""
...
import Migrate
...
class NewEventClasses(Migrate.Step):
 version = Migrate.Version(1, 1, 0) # Replace this with the correct version
 def cutover(self, dmd):
 dmd.Events.createOrganizer("/My/Event/Class")
 dmd.Events.createOrganizer("/My/Event/Class2") # Add multiple new classes in the same migrate script
 dmd.ZenEventManager.buildRelations()

Events

38

NewEventClasses()

Next, add your migrate script to Products/ZenModel/migrate/__init__.py:

...
import neweventclasses

Now

zenmigrate --dont-commit

to make sure your class is created properly.

Once you're satisfied with your changes, make the changes permanent with zenmigrate.

$ zenmigrate

39

Chapter 6. zProperty Management
6.1. Adding a zProperty

6.1.1. Adding a zProperty to an Event
In EventClass.py...

...

def buildZProperties(self):
 edict = self.getDmdRoot("Events")
 edict._setProperty("zNewProperty", "default value")
 edict._setProperty("zNewIntegerProperty", -1, type="int")
 edict._setProperty("zNewFloatProperties", 10.01, type="float")
 edict._setProperty("zNewListProperty", ["default value", \
 "another default value"], type="lines")
 edict._setProperty("zNewBooleanProperty", False, type="boolean")

...

Adding a new property to the EventClass is as easy adding a new line to the buildZProperties method. You need
to set a new property at the "Events" level.

6.1.2. Adding a zProperty to a Device
In DeviceClass.py

...

def buildDeviceTreeProperties(self):
 devs= self.getDmdRoot("Devices")

...

 devs._setProperty("zNewProperty", "default value")
 devs._setProperty("zNewIntegerProperty", -1, type="int")
 devs._setProperty("zNewFloatProperties", 10.01, type="float")
 devs._setProperty("zNewListProperty", ["default value", \
 "another default value"], type="lines")
 devs._setProperty("zNewBooleanProperty", False, type="boolean")
...
...

Adding a new property to the DeviceClass is as easy adding a new line to the buildDeviceTreeProperties method.
You need to set a new property at the "Devices" level.

6.2. Migrating the zProperty Code
Create a new file in $ZENHOME/Products/ZenModel/migrate/zNewProperty.py

zProperty Management

40

__doc__='''

Add zNewProperty to DeviceClass.
'''
import Migrate

class zNewProperty(Migrate.Step):
 version= Migrate.Version(1, 1, 0)

 def cutover(self, dmd):
 if not dmd.Devices.hasProperty("zNewProperty"):
 dmd.Devices._setProperty("zNewProperty", "default value here")

zNewProperty()

When a zenmigrate is executed, this code will create the new zProperty for all Devices. Do not forget to update the
Migrate.Version to your current working version. For more information on migrating: see the section on Chapter 14,
Migrating Zenoss Code .

41

Chapter 7. Device Management
7.1. Adding Devices Programatically

Devices can be added to Zenoss through the UI but also through a programmatic interface. This how to will describe
adding a device using that interface.

7.1.1. Using a REST call
Adding a device through a rest call can be done by a simple web get. In this example we will use wget to add a
device. If you use wget don't forget to escape the "&" or wrap the URL in single quotes.

$ wget
 'http://admin:zenoss@MYHOST:8080/zport/dmd/DeviceLoader/loadDevice\
?deviceName=NEWDEVICE&devicePath=/Server/Linux'

The result of this command will be the log of auto-discovery and you can look for the string "NEWDEVICE loaded!"
to see if it was successful. Possible failure messages are: "NEWDEVICE exists" and "no snmp found"

7.1.2. Using an XML-RPC Call from Python
This is an example of how to add a device using Python. Because XML-RPC can be used from any language feel
free to use your favorite. What is important here is the base URL in ServerProxy, passing named parameters,
and calling loadDevice on your proxy object.

>>> from xmlrpclib import ServerProxy
>>> url = 'http://admin:zenoss@MYHOST:8080/zport/dmd/DeviceLoader'
>>> serv = ServerProxy(url)
>>> dev = {'deviceName':'NEWDEVICE', 'devicePath':'/Server/Linux'}
>>> serv.loadDevice(dev)

You can check on the device with another XML-RPC call:

>>> from xmlrpclib import ServerProxy
>>> cp = 'Devices/Server/Linux/devices'
>>> url = 'http://admin:zenoss@MYHOST:8080/zport/dmd/%s/NEWDEVICE' % cp
>>> serv = ServerProxy(url)
>>> print serv.getManageIp()

7.1.3. XML-RPC Attributes

Table 7.1. XML-RPC Attributes and Descriptions

 XML-RPC Attributes Description

deviceName the name or IP of the device. If it's a name it must resolve in DNS

devicePath the device class where the first "/" starts at "/Devices" like "/Server/Linux" the default
is "/Discovered"

tag the tag of the device

Device Management

42

 XML-RPC Attributes Description

serialNumber the serial number of the device

zSnmpCommunity SNMP community to use during auto-discovery if none is given the list zSnmpCom-
munities will be used

zSnmpPort SNMP port to use default is 161

zSnmpVer SNMP version to use default v1 other valid values are v2

rackSlot the rack slot of the device.

productionState production state of the device default is 1000 (Production)

comments any comments about the device

hwManufacturer hardware manufacturer this must exist in the database before the device is added

hwProductName hardware product this must exist in the manufacturer object specified

osManufacturer OS manufacturer this must exist in the database before the device is added

osProductName OS product this must exist in the manufacturer object specified

locationPath path to the location of this device like "/Building/Floor" must exist before device is
added

groupPaths list of groups for this device multiple groups can be specified by repeating the attribute
in the url

systemPaths list of systems for this device multiple groups can be specified by repeating the at-
tribute in the url

statusMonitors list of status monitors (zenping) for this device default is "localhost"

performanceMonitor performance monitor to use default is "localhost"

discoverProto discovery protocol default is "snmp" other possible value is "none"

7.2. Editing Device Information
Devices can be edited through the UI but also through a programmatic interface. This how to will describe editing
device info using that interface.

7.2.1. Using a REST call
Editing device info through a rest call can be done by a simple web get. In this example we will use wget to add a
device. If you use wget don't forget to escape the "&" or wrap the URL in single quotes.

$ wget 'http://admin:zenoss@MYHOST:8080/zport/dmd/Devices/\
Server/Linux/devices/MYDEVICE/manage_editDevice?serialNumber=MYSERIALNUM\
&tag=MYTAG'

The result of this command will change the Serial Number to MYSERIALNUM and the Tag to MYTAG for device,
MYDEVICE.

7.2.2. Using an XML-RPC Call from Python
This is an example of how to edit device info using Python. Because XML-RPC can be used from any language
feel free to use your favorite. What is important here is the base URL in ServerProxy, passing named parameters,
and calling editDevice on your proxy object.

Device Management

43

>>> from xmlrpclib import ServerProxy
>>> url = 'http://admin:zenoss@MYHOST:8080/zport/dmd/Devices/'
 'Server/Linux/devices/MYDEVICE'
>>> serv = ServerProxy(url)
>>> serv.manage_editDevice('MYTAG', 'MYSERIALNUM')

Here is the signature of manage_editDevice() from Device.py

def manage_editDevice(self, tag="", serialNumber="",
zSnmpCommunity="", zSnmpPort=161, zSnmpVer="v1",
rackSlot=0, productionState=1000, comments="",
hwManufacturer="", hwProductName="",
osManufacturer="", osProductName="",
locationPath="", groupPaths=[], systemPaths=[],
statusMonitors=["localhost"], performanceMonitor="localhost",
priority=3, REQUEST=None):

7.3. Deleting A Device
Devices can be deleted through the UI but also through a programmatic interface.

7.3.1. Using a REST call
Deleting a device through a rest call can be done by a simple web get. In this example we will use wget to delete a
device. If you use wget don't forget to escape the "&" or wrap the URL in single quotes.

$ wget 'http://admin:zenoss@MYHOST:8080/zport/dmd/Devices/\
Server/Linux/devices/MYDEVICE/deleteDevice'

The result of this command will delete the device MYDEVICE.

7.3.2. Using an XML-RPC Call from Python
This is an example of how to delete a device using Python. Because XML-RPC can be used from any language feel
free to use your favorite. What is important here is the base URL in ServerProxy, passing named parameters, and
calling deleteDevice on your proxy object.

>>> from xmlrpclib import ServerProxy
>>> cp = 'Devices/Server/Linux/devices'
>>> url = 'http://admin:zenoss@MYHOST:8080/zport/dmd/%s/NEWDEVICE' % cp
>>> serv = ServerProxy(url)
>>> serv.deleteDevice()

7.4. Checking If A Device Exists
Devices can be checked for existence through the UI but also through a programmatic interface. This how to will
describe how to check if a device exists using that interface.

Device Management

44

7.4.1. Using a REST call
Checking if a device exists through a rest call can be done by a simple web get. In this example we will use wget to
check of the existence of a device. If you use wget don't for get to escape the "&" or wrap the URL in single quotes.

$ wget 'http://admin:zenoss@MYHOST:8080/zport/dmd/Devices/Server\
/Linux/devices/MYDEVICE'

If this command results with an exit code of 1 and a server response code of 404, then MYDEVICE does not exist
in Zenoss. If this command results with an exit code of 0 and a server response code of 200, the MYDEVICE does
exist in Zenoss.

7.4.2. Using an XML-RPC Call from Python
This is an example of how to check if a device exists using Python. Because XML-RPC can be used from any
language feel free to use your favorite. What is important here is the base URL in ServerProxy.

>>> from xmlrpclib import ServerProxy
>>> cp = 'Devices/Server/Linux/devices'
>>> url = 'http://admin:zenoss@MYHOST:8080/zport/dmd/%s/NEWDEVICE' % cp
>>> serv = ServerProxy(url)
>>> try:
>>> serv.getId()
>>> exists = True
>>> except:
>>> exists = False

7.5. Exporting a Device List
Go to the ZMI
http://localhost:8080/zport/dmd/Devices/manage

Make a script object called getMyDeviceList(). Then put the following into the body of the script...

return [d.id for d in context.getSubDevices()]

Then call it like this
http://localhost:8080/zport/dmd/Devices/getMyDeviceList

You can do all kinds of stuff this way. This will return all device IP addresses:

return [d.manageIp for d in context.getSubDevices()]

You get the idea. You can call this method form different parts of the tree to limit the list of devices.
http://localhost:8080/zport/dmd/Devices/Server/Linux/getMyDeviceList

45

Chapter 8. Extending the Model
8.1. Add a ZenModel Relationship

The ZenRelations class allows Zope objects to form bi-directional relationships. There are four different types
of relationships possible:

ONE_TO_ONE only one object at each end of the relationship

ONE_TO_MANY classic parent-child relation, not containment objects have different primary paths

ONE_TO_MANY_CONT standard Zope one-to-many containment relation (but bi-directional)

MANY_TO_MANY many objects on both ends of relationship

Figure 8.1. ZenRelations

8.1.1. One-to-One (1:1) Relationships
Example of 1:1 Server to Admin Relationship

...
from Products.ZenRelations.RelSchema import *

...
class Server(Device):
...
_relations = (

("admin"

Extending the Model

46

, ToOne(ToOne, "Admin", "server")

),
) + Device._relations
...
...
class Admin(TestBaseClass):
...
_relations = (
("server", ToOne(ToOne, "Server", "admin")),

)
...
...
...

The Server object is an example of a class that inherits from Device. According to this relationship there can be only
one Admin assigned to a Server and only one Server assigned to an Admin. This relationship is created by:

Importing ToOne from Products.ZenRelations.RelSchema.
Appending a two-item tuple to the _relations attribute
The first item in the tuple is a "string" object which is the local name
The second item in the tuple is a "RelSchema" object which represents the relationship to another class. In this
case the ToOne constructor creates/returns that "RelSchema" object

ToOne constructors takes three parameters:

• The first parameter is a "type" object, "remoteType" which represents the relationship from another class.
The "type" should be of a class derived from RelSchema

• The second parameter is a "string" object, "remoteClass" which is the class name of the relative. In this case
it is again a ToOne relationship.

• The third parameter is a "string" object, "remoteName" which the remote name of itself.
Appending a complementary two item tuple to the _relations attribute in the relative class.

8.2. One-to-Many (1:N) Relationships
This is a real example which illustrates a one-to-many relationship between one Location and many Devices.

From Device.py

...
from Products.ZenRelations.RelSchema import *
...
class Device(ManagedEntity, Commandable):
...
event_key= portal_type = meta_type = 'Device'

default_catalog= "deviceSearch" #device ZCatalog

relationshipManagerPathRestriction = '/Devices'

Extending the Model

47

...
_relations = ManagedEntity._relations + (
("location", ToOne(ToMany, "Location", "devices")),
)
...

From Location.py

...
from Products.ZenRelations.RelSchema import *

...
class Location(DeviceOrganizer):
...
Organizer configuration
dmdRootName = "Locations"

portal_type = meta_type = event_key = 'Location'

_relations

 = DeviceOrganizer._relations + (
("devices"

, ToMany(ToOne,"Device","location")),

)
...

According to this relationship there can be only one Location assigned to a Device but more than one Device assigned
to a Location. This relationship is created by:

Importing ToOne and ToMany from Products.ZenRelations.RelSchema.
Appending a two-item tuple to the _relations attribute
The first item in the tuple is a "string" object which is the local name
The second item in the tuple is a RelSchema object which represents the relationship to another class.

RelSchema constructors takes three parameters:

• The first parameter is a "type" object, "remoteType" which represents the relationship from another class.
The "type" should be of a class derived from RelSchema

• The second parameter is a "string" object, "remoteClass" which is the class name of the relative.

• The third parameter is a "string" object, "remoteName" which the remote name of itself.

Appending a complementary two item tuple to the _relations attribute in the relative class.

8.3. Many-to-Many (M:N) Relationships
This is a real example from Device.py which illustrates a many-to-many relationship between many Devices
and many Device Groups.

Extending the Model

48

...
from Products.ZenRelations.RelSchema import *
...
class Device(ManagedEntity, Commandable):
...
event_key = portal_type = meta_type = 'Device'

default_catalog = "deviceSearch" #device ZCatalog

relationshipManagerPathRestriction = '/Devices'
...
_relations = ManagedEntity._relations + (
("groups", ToMany(ToMany, "DeviceGroup", "devices")),
)
...

From DeviceGroup.py

...
from Products.ZenRelations.RelSchema import *
...
class DeviceGroup(DeviceOrganizer):
...
Organizer configuration
dmdRootName = "Groups"

portal_type = meta_type = event_key = 'DeviceGroup'

_relations = DeviceOrganizer._relations + (
("devices", ToMany(ToMany,"Device","groups")),
)
...

According to this relationship there can be more than one Device assigned to a Device Group and more than one
Device Group assigned to a Device. This relationship is created by:

• Importing ToMany from Products.ZenRelations.RelSchema.

• Appending a two-item tuple to the _relations attribute

• The first item in the tuple is a "string" object which is the local name

• The second item in the tuple is a RelSchema object which represents the relationship to another class. In this
case the ToMany constructor creates/returns the RelSchema object.

The RelSchema constructors take three parameters

• The first parameter is a "type" object, "remoteType" which represents the relationship from another class.
The "type" should be of a class derived from RelSchema

• The second parameter is a "string" object, "remoteClass" which is the class name of the relative. In this case
it is again the ToMany relationship.

• The third parameter is a "string" object, "remoteName" which the remote name of itself.

Extending the Model

49

• Appending a complementary two-item tuple to the _relations attribute in the relative class.

8.3.1. One-to-Many (1:N) Container Relationships
Device to Hard Drives

This is a real example which illustrates a one-to-many relationship between one DeviceHW and many HardDrives
where a DeviceHW object contains HardDrives.

From DeviceHW.py...

...
from Products.ZenRelations.RelSchema import *
...
class DeviceHW(Hardware):
...
meta_type = "DeviceHW"
...
_relations = Hardware._relations + (
("harddisks", ToManyCont(ToOne, "HardDisk", "hw")),
)
...

From HardDisk.py...

...
from Products.ZenRelations.RelSchema import *
...
class HardDisk(HWComponent):
...
portal_type = meta_type = 'HardDisk'
...
_relations = HWComponent._relations + (
("hw", ToOne(ToManyCont, "DeviceHW", "harddisks")),
)
...

According to this relationship there can be only one DeviceHW assigned to a HardDisk but more than one HardDisk
assigned to a DeviceHW. This relationship is created by:

* Importing ToOne and ToManyCont from Products.ZenRelations.RelSchema.

* Appending a two item tuple of to the _relations attribute

o The first item in the tuple is a "string" object which is the local name

o The second item in the tuple is a RelSchema object which represents the relationship to another class.

+ RelSchema constructors takes three parameters

The first parameter is a "type" object, "remoteType" which represents the relationship from another class. The
"type" should be of a class derived from RelSchema

The second parameter is a "string" object, "remoteClass" which is the class name of the relative.

Extending the Model

50

The third parameter is a "string" object, "remoteName" which the remote name of itself.

* Appending a complementary 2 item tuple to the _relations attribute in the relative class.

Specifying the remoteClass in a Relationship

The remoteClass parameter can be specified in a releationship by two methods.

("admin", ToOne(ToOne, "Admin", "server"))

In the example above "Admin" is the remote class on the relationship. For this to work properly the module "Admin"
must be in the python path and it must contain a class named "Admin".

This behavior can be modified by using the attribute zenRelationsBaseModule. For instance if Admin was located
in the path Products.ZenModel you could set zenRelationsBase = "Products.ZenModel". Now the remote class is in
the module Products.ZenModel.Admin and the class must be Named "Admin".

If you wish to put multiple classes into one module and use them in relations you can add the class name to the end
of the remoteClass value. For instance "Admin.Test" would access the module Admin with the class Test.

If the two classes in a relation are in a different packages then you can use the fully qualified path to the
class. For instance here are the definitions of two classes in different packages. Products.ZenWidgets.Menu and
Products.ZenModel.DeviceOrganizer.

In Products.ZenWidget.Menu.py

...
class Menu(ZenModelRM):
...
 _relations = (
 ("deviceOrg",
 ToOne(ToManyCont,
 "Products.ZenModel.DeviceOrganizer",
 "menus")),
)
...

In Products.ZenModel.DeviceOrgaizer.py

...
class DeviceOrganizer(ZenModelRM):
...
 _relations = (
 ("menus",
 ToManyCont(ToOne,
 "Products.ZenWidget.Menu",
 "deviceOrg")),
)
...

8.4. Zenoss XML Schema
This XML schema describes the output of the zendump command.

<?xml version="1.0" encoding="UTF-8" ?>

Extending the Model

51

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
>
 <xs:element name="link"
>
 <xs:complexType>
 <xs:attribute name="objid" type="xs:string" use="required"
 />
 </xs:complexType>
 </xs:element>

 <xs:element name="object"
>
 <xs:complexType>
 <xs:choice>
 <xs:element ref="object"
 />
 <xs:element ref="property"
 />
 <xs:element ref="tomany"
 />
 <xs:element ref="tomanycont"
 />
 <xs:element ref="toone"
 />
 </xs:choice>
 <xs:attribute name="module" type="xs:NMTOKEN" use="required"
 />
 <xs:attribute name="class" type="xs:NMTOKEN" use="required"
 />
 <xs:attribute name="id" type="xs:string" use="required"
 />
 </xs:complexType>
 </xs:element>

 <xs:element name="objects"
>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="object"
 />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="property"
>
 <xs:complexType mixed="true"
>
 <xs:attribute name="type" type="xs:NMTOKEN" use="required"
 />
 <xs:attribute name="visible" use="optional"
>
 <xs:simpleType>

Extending the Model

52

 <xs:restriction base="xs:NMTOKEN"
>
 <xs:enumeration value="True"
 />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="mode" type="xs:string" use="optional"
 />
 <xs:attribute name="setter" type="xs:NMTOKEN" use="optional"
 />
 <xs:attribute name="select_variable" use="optional"
>
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN"
>
 <xs:enumeration value="lineTypes"
 />
 <xs:enumeration value="rrdtypes"
 />
 <xs:enumeration value="sourcetypes"
 />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="id" type="xs:NMTOKEN" use="required"
 />
 </xs:complexType>
 </xs:element>

 <xs:element name="tomany"
>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="link"
 />
 </xs:sequence>
 <xs:attribute name="id" type="xs:NMTOKEN" use="required"
 />
 </xs:complexType>
 </xs:element>

 <xs:element name="tomanycont"
>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="object" maxOccurs="unbounded"
 />
 </xs:sequence>
 <xs:attribute name="id" type="xs:NMTOKEN" use="required"
 />
 </xs:complexType>
 </xs:element>

Extending the Model

53

 <xs:element name="toone"
>
 <xs:complexType>
 <xs:attribute name="objid" type="xs:string" use="required"
 />
 <xs:attribute name="id" type="xs:NMTOKEN" use="required"
 />
 </xs:complexType>
 </xs:element>

</xs:schema>

8.4.1. object

 <xs:element name="object"
>
 <xs:complexType>
 <xs:choice>
 <xs:element ref="object"
 />
 <xs:element ref="property"
 />
 <xs:element ref="tomany"
 />
 <xs:element ref="tomanycont"
 />
 <xs:element ref="toone"
 />
 </xs:choice>
 <xs:attribute name="module" type="xs:NMTOKEN" use="required"
 />
 <xs:attribute name="class" type="xs:NMTOKEN" use="required"
 />
 <xs:attribute name="id" type="xs:string" use="required"
 />
 </xs:complexType>
 </xs:element>

8.4.1.1. Example

<object id='deleteActionRuleWindows' module='Products.ZenModel.ZenMenuItem'
 class='ZenMenuItem'
>
<property type="text" id="description" mode="w"
 >
Delete Rule Windows...
</property>
<property type="text" id="action" mode="w"
 >
dialog_deleteActionRuleWindows
</property>

Extending the Model

54

<property type="boolean" id="isglobal" mode="w"
 >
True
</property>
<property type="lines" id="permissions" mode="w"
 >
('Change Alerting Rules',)
</property>
<property type="boolean" id="isdialog" mode="w"
 >
True
</property>
<property type="float" id="ordering" mode="w"
 >
80.0
</property>
</object>

The object element is an XML representation of a Zope object. The example above is the XML representation of
a ZenMenuItem object.

8.4.1.2. Attributes

• id - the unique identifier for the object instance

• class - the classname of the object instance

• module - the module in which this object's class is defined

8.4.1.3. Children

• object - an object may also have objects as children

• property - (see property element section below)

• tomany - (see tomany element section below)

• tomanycont - (see tomanycont element section below)

• toone - (see toone element section below)

8.4.2. objects

 <xs:element name="objects"
>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="object"
 />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

Extending the Model

55

8.4.2.1. Example

<objects>
<object id='deleteActionRuleWindows' module='Products.ZenModel.ZenMenuItem'
class='ZenMenuItem'
>
<property type="text" id="description" mode="w"
 >
Delete Rule Windows...
</property>
</object>
</objects>

The object element is an XML representation of a Zope object. The example above is the XML representation of
a ZenMenuItem object.

8.4.2.2. Children

• object - the objects element may also have object as children

8.4.3. property

 <xs:element name="property"
>
 <xs:complexType mixed="true"
>
 <xs:attribute name="type" type="xs:NMTOKEN" use="required"
 />
 <xs:attribute name="visible" use="optional"
>
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN"
>
 <xs:enumeration value="True"
 />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="mode" type="xs:string" use="optional"
 />
 <xs:attribute name="setter" type="xs:NMTOKEN" use="optional"
 />
 <xs:attribute name="select_variable" use="optional"
>
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN"
>
 <xs:enumeration value="lineTypes"
 />
 <xs:enumeration value="rrdtypes"
 />

Extending the Model

56

 <xs:enumeration value="sourcetypes"
 />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="id" type="xs:NMTOKEN" use="required"
 />
 </xs:complexType>
 </xs:element>>

8.4.3.1. Example

<property type="float" id="ordering" mode="w"
 >
80.0
</property>

The property element represents a property of an object in Zope. The example above represents an "ordering"
property of an object. The value of the "ordering" property is 80.0 and is of type float.

8.4.3.2. Attributes

• id - the unique identifier of this property

• type - the datatype of the property's value

• visible - an optional boolean, a flag used to display or hide the property

• mode - read/write permission of this property

• setter - the name of the method to set this property

• select_variable - the name of the list which hold the possible values of this property

8.4.4. tomany

 <xs:element name="tomany"
>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="link"
 />
 </xs:sequence>
 <xs:attribute name="id" type="xs:NMTOKEN" use="required"
 />
 </xs:complexType>
 </xs:element>

8.4.4.1. Example

Extending the Model

57

<tomany id='devices'
>
<link objid='/zport/dmd/Devices/Server/Linux/devices/MYDEVICE'
/>
</tomany>

The tomany element represent a ToManyRelationship object in Zope. The example above is of the "devices" to
many relationship on an object.

8.4.4.2. Attributes

• id - unique name of the to many relationship

8.4.4.3. Children

• link - (see link element below) These links are the XML representations of the references to related objects

8.4.5. tomanycont

 <xs:element name="tomanycont"
>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="object" maxOccurs="unbounded"
 />
 </xs:sequence>
 <xs:attribute name="id" type="xs:NMTOKEN" use="required"
 />
 </xs:complexType>
 </xs:element>

8.4.5.1. Example

<tomanycont id='instances'
>
<object id='dropbear' module='Products.ZenEvents.EventClassInst'
class='EventClassInst'
>
<property type="string" id="eventClassKey" mode="w"
 >
dropbear
</property>
<property type="int" id="sequence" mode="w"
 >
1
</property>
...
</tomanycont>

Extending the Model

58

8.4.5.2. Attributes

• id - the name of the to many cont relationship

8.4.5.3. Children

• object - the tomanycont element may have objects elements as children, these subobjects are the XML represen-
tations of these related objects

8.4.6. toone

 <xs:element name="toone"
>
 <xs:complexType>
 <xs:attribute name="objid" type="xs:string" use="required"
 />
 <xs:attribute name="id" type="xs:NMTOKEN" use="required"
 />
 </xs:complexType>
 </xs:element>

8.4.6.1. Example

<toone id='perfServer' objid='/zport/dmd/Monitors/Performance/localhost'
/>

The toone element represents a ToOneRelationship on an object. The example above is a toone relationship named
"perfServer". It represents a device's relationship to only one perfomance server "localhost"

8.4.6.2. Attributes

• id - the name of the toone relationship of an object

• objid - the path to the related object

8.4.7. link

 <xs:element name="link"
>
 <xs:complexType>
 <xs:attribute name="objid" type="xs:string" use="required"
 />
 </xs:complexType>
 </xs:element>

8.4.7.1. Example

<link objid='/zport/dmd/Devices/Server/Linux/devices/MYDEVICE'

Extending the Model

59

/>

The link is a reference to another object element rather than a new instance of an object element.

8.4.7.2. Attributes

• objid - is the path to the object

8.5. Zenoss Permissions
In this example we'll be adding a new permission named "Example Permission", assigning it to a method, then
checking for that permission.

8.5.1. Adding New Permissions
1. Add the new permission to $ZENHOME/Products/ZenModel/ZenossSecurity.py

ZenossSecurity.py is a file where all the string constants for Zenoss permissions are held. By adding this
line to ZenossSecurity.py we've made a new constant that will be used to assign to a method.

ZEN_EXAMPLE_PERMISSION='Example Permission'

2. Now that we have a "name" for the permission available, we should add the permission to Zope. In $ZEN-
HOME/Products/ZenModel/ZentinalPortal.py there is a class named PortalGenerator. There
is a method named setupPermissions() defined in PortalGenerator.

Here you'll see a group of calls to manage_permissions. Add a new line to this method that adds your new
permission.

 mp(ZEN_EXAMPLE_PERMISSION, [ZEN_MANAGER_ROLE, MANAGER_ROLE], 1)

The first parameter is the permission. In this example the permission being managed is
ZEN_EXAMPLE_PERMISSION. The second parameter is the list of default roles assigned to the permission.
In this example ZEN_MANAGER_ROLE and MANAGER_ROLE are set as defaults. The third argument is the
acquired flag. When the flag is set to true, the permissions will be acquired in addition to the ones specified.

3. To make your permission official you'll need to use this permission. Apply your newly added permission to a
method. See the next section on assigning permissions to a method. Your permission must be delcared and used
by a method to make it a valid permission.

8.5.2. Assigning Permissions to a Method
1. Import your your new permission:

 from Products.ZenModel.ZenossSecurity import *

2. Import ClassSecurityInfo. In most cases we have set ClassSecurityInfo to security

 from AccessControl import ClassSecurityInfo
 security = ClassSecurityInfo()

3. Above the method definition add this line of code

Extending the Model

60

 security.declareProtected(ZEN_EXAMPLE_PERMISSION, 'exampleMethod')
 def exampleMethod(self):
 ...

The first parameter to declareProtected() is the permission to be set on the method. In this case the
permission is ZEN_EXAMPLE_PERMISSION. The second parameter is the name of the method. In this case
the name of the method is exampleMethod().

8.5.3. Checking Links
1. To check permission on a object, call checkRemotePerm().

 self.checkRemotePerm(ZEN_EXAMPLE_PERMISSION, foo)

The first parameter is the permission to check. In this case the permission is ZEN_EXAMPLE_PERMISSION.
The second parameter is the object being checked. In this case the name of the object is foo. This call will check
if foo has the ZEN_EXAMPLE_PERMISSION.

61

Chapter 9. Zenoss Daemons
9.1. Twisted Network Programming Overview

Zenoss relies heavily on the Twisted network [http://twistedmatrix.com/trac/] Python libraries. Twisted provides an
asynchronous, layered networking stack that is used by Zenoss for daemon communications as well as for contacting
devices. The main Twisted documentation [http://twistedmatrix.com/trac/wiki/Documentation] can provide a more
detailed background.

One of the central concepts in Twisted is not a multi-threaded design, but an asynchronous design. This means that
it is event-driven (ie the next function to be called depends on what data is received) with co-operative multi-tasking
(ie a badly behaved function that sleeps or takes a long time to execute can stall an entire application). The unit of
co-operative multi-tasking is a deferred object. A simplified overview is that a Twisted program starts a bunch of
deferred tasks and then waits for timers to expire and network events to happen.

Daemons communicate with ZenHub via Twisted Perspective Broker (PB) [http://twistedmatrix.com/projects/
core/documentation/howto/index.html], which is a library for transfering objects over the network. The most im-
portant PB concepts for our purposes are these:

• Methods that start with remote_ are callable from the daemons.

• There are restrictions on what type of objects can be passed back and forth between the service and the daemon.
Passing native Python types is supported, as well as some support for more simple objects (classes without meth-
ods). Simple objecteds can be marked using the PB method pb.setUnjellyableForClass() to help ac-
complish this goal.

Can we include the Twisted overview diagram (http://twistedmatrix.com/projects/core/documentation/how-
to/overview.html) here?

9.1.1. Understanding NJobs, Driver and DeferredList
Writing scalable, single-threaded communications servers requires an event-driven programming approach. Small,
simple I/O steps are connected by callbacks, rather than normal control flow. For example, instead of just sending a
request and waiting for the response you have to create the request, queue it for delivery, send it when the network
flow-control says it has space, wait for the response, reading it piecemeal, as it arrives, and then correlating it to
the sent message. Fortunately, we use a comprehensive library that performs many of these steps for us, so the
underlying steps are not as small. But, once you have queued your request, you must head back to the main event
loop so that I/O from many different parts of your application can complete in a reactive manner. The fundamental
callback mechanism is the Twisted library's Deferred. There are three common tasks that our data collectors perform
in an asynchronous environment. They are:

1. Perform these tasks, in any order, and report to me when they are complete.

2. Perform this long list of tasks, but do not do more than N of them at a time.

3. Perform a sequence of related activities in the correct order.

9.1.1.1. DeferredList

Lets say you need to perform I/O requests in parallel, and you don't care which finishes first, so long as they all
complete before the next step. For this problem, we gather up the deferreds from each step as we initiate it, and we
hand them to a DeferredList. Once they have all fired (with callbacks or errbacks) the DeferredList will return a list
of the results, along with a boolean value indicating success or failure.

http://twistedmatrix.com/trac/
http://twistedmatrix.com/trac/
http://twistedmatrix.com/trac/wiki/Documentation
http://twistedmatrix.com/trac/wiki/Documentation
http://twistedmatrix.com/projects/core/documentation/howto/index.html
http://twistedmatrix.com/projects/core/documentation/howto/index.html
http://twistedmatrix.com/projects/core/documentation/howto/index.html

Zenoss Daemons

62

from twisted.internet.defer import DeferredList

d1 = task1()
d2 = task2()
d3 = task3()
d = DeferredList([d1, d2, d3])
d.addCallback(printResults)

def printResults(results):
 for success, value in results:
 if success:
 print "Callback successful:", value
 else:
 print "Errback: ", value

Each task runs in parallel, completing at its own pace. This approach is useful for knowing when a number of
unrelated requests have completed. For example, fetching the initial configuration may have several requests that
are not interrelated. These may be done in parallel, so long as they all complete before collection begins.

9.1.1.2. NJobs

Each collector can overwhelm existing resources if it does not limit itself. For example, file descriptors in a process
are normally limited to approximately a thousand. Unless you change the operating system's default it is not possible
to talk to more than a thousand devices at one time if each requires its own file descriptor. So, we normally wish to
a talk to as many as we can concurrently, but not so many that we run out of local resources. NJobs takes a callable
that takes a single argument and returns a deferred, and a sequence of items, along with a value N, such that only
N of the callables are outstanding at each time.

from Products.ZenUtils.NJobs import NJobs

jobs = NJobs(10, collectDevice, devices)
d = jobs.start()
d.addCallback(printResults):

def printResults(results):
 for result in results:
 print "Result is", results

The callable is called on the sequence list in the order given, but each call may complete out-of-order. Therefore,
the results may also have a different order than the input sequence. NJobs prevents us from having to write a built-
in limit to each type of asynchronous collector.

9.1.1.3. Driver

The most difficult to understand of the asynchronous tools that uses Deferreds is Driver. First let's understand
the basic problem. We have a sequence of asynchronous activities we want to link together, but each step requires
some intervening computation or organization. If the activities were synchronous, they might look like this:

config = readConfig()
self.updateConfig(config)
for d in self.config:
 clearStatus(d.id)

Zenoss Daemons

63

collect(self.config)
sendHeartbeat()

Each of these steps must be completed in order. Using just deferreds we might right something like this:

d = readConfig()
d.addCallback(updateConfig)
def clearStatuses(self):
 d = DeferredList([clearStatus(d.id) for d in self.config])
 d.addCallback(collect)
 d.addCallback(heartbeat)
d.addCallback(clearStatuses)

The interleaving of synchronous calls (the for loop) and asynchronous calls twists the code around the callback
mechanism. There is a mechanism in Python that can be used to straighten out a convoluted sequence of actions to
produce a stream of results. Like a tokenizer, which uses yield to produce tokens as they have been discovered
in an input stream, Driver uses yield to produce deferreds as they come up. Driver consumes the deferreds and
resumes computation when they complete. So lets see what this code looks like when we yield a deferred whenever
we have one:

yield readConfig()
self.updateConfig(results)
for d in self.config:
 yield clearStatus(d.id)
yield self.config()
yield sendHeartbeat()

What remains is very much like the normal synchronous control flow, except the result from the deferreds are
missing. The value results in the 2nd line of the example is a stand-in for some mechanism to get the results
of the last deferred that was returned by yield.

Here's the example in a more complete fragment:

from Products.ZenUtils.Driver import drive
def cycle(driver):
 yield readConfig()
 self.updateConfig(driver.next())
 for d in self.config:
 yield clearStatus(d.id)
 driver.next()
 yield self.config(); driver.next()
 yield sendHeartbeat(); driver.next()
drive(cycle)

So, when we drive one of these deferred-generating-sequences, we get a reference to the driver. The driver keeps
the last value returned by a deferred result, so that it is available to the iterator. I know that construction is difficult
to understand... but understanding is not necessary to use Driver. If you have a sequence of code, where deferreds
keep cropping up and preventing your workflow from, well, flowing, you can use Driver to make flow like the
synchronous version.

First, you need a generator which takes a single argument. If you don't have one, you can make one right in the
body of the function:

Zenoss Daemons

64

def f(a, b, c, d):
 def inner(drive):
 yield g(a, b, c, d)
 drive.next()
 return drive(inner)

Next, just yield the deferreds as they come up, and get the result with driver.next(). It's good to call
driver.next() even if you don't use the result, because if the result was an exception, driver.next() will
throw the exception.

Finally, drive returns a deferred, so be sure to perform callback handling on it. The callback value of the deferred
is the last value from the last deferred.

drive(function).addBoth(self.handleResult)

9.1.1.4. A Simple Example

The following code is a simple example of the usage of a Twisted client / server code as well as the Zenoss driv-
er() code.

#! /usr/bin/env python

__doc__= """
Simple example of using ZenUtils Driver and Twisted Perspective Broker (PB).
Sums all of the numbers that are given as command line arguments by repeatedly
calling a remote add method on the server-side object.
"""

from twisted.spread import pb
from twisted.internet import reactor
import Globals
from Products.ZenUtils.Driver import drive

class Server(pb.Root):
 """
 This is the server-side object.
 """

 def __init__(self, port):
 """
 Listen on the specified port.

 @param port: the TCP/IP port to listen on
 @type port: positive integer
 """
 reactor.listenTCP(port, pb.PBServerFactory(self))

 def remote_add(self, x, y):
 """
 Add the two parameters together and return the result.

Zenoss Daemons

65

 @param x: first operand
 @type x: number
 @param y: second operand
 @type y: number
 @return: the sum of x and y
 @rtype: number
 """
 return x + y

class Client(object):
 """
 This is the client-side object.
 """

 def __init__(self, port, numbers, callback):
 """
 Connect to the server and drive the sum method.

 @param port: TCP/IP port number on which a server is listening
 @type port: positive integer
 @param numbers: numbers to add
 @type numbers: list of numbers
 @param callback: a callable that accepts an argument
 @type callback: Twisted callback object
 """
 self.numbers = [int(n) for n in numbers]
 self.clientFactory = pb.PBClientFactory()
 drive(self.sum).addCallback(callback)
 reactor.connectTCP('localhost', port, self.clientFactory)

 def sum(self, driver):
 """
 Get the root object. Call the remote add method repeatedly keeping
 track of the total.
 This is a Python iterable.

 @param driver: a driver of the iterables
 @param driver: Zenoss driver() class
 @return: deferred to track the returned number
 @rtype: Twisted deferred object
 """
 yield self.clientFactory.getRootObject()
 root = driver.next()
 total = 0
 for n in self.numbers:
 yield root.callRemote('add', total, n)
 total = driver.next()

def main(numbers):
 """
 Assign a port. Create the client and server. Run the reactor.

Zenoss Daemons

66

 @param numbers: numbers to add
 @type numbers: list of numbers
 """
 port = 7691

 # Add the server to the reactor
 Server(port)

 def callback(total):
 """
 A simple callback to return the total and stop the reactor

 @param total: the total, as returned by the server
 @param total: number
 """
 print total
 reactor.stop()

 # Add the client to the reactor
 Client(port, numbers, callback)

 reactor.run()

if __name__ == '__main__':
 import sys
 if len(sys.argv) > 1:
 main(sys.argv[1:])
 else:
 print 'Usage: %s <number> [number...]' % __file__

9.2. Zenoss Daemon Overview
There are a few general types of daemon types in Zenoss:

Types of Daemons found in Zenoss

zenhub Each instance of zenhub opens a connection to the ZODB. All other daemons connect
to the hub in order to receive and transmit changes to the ZODB.

modeler daemons These daemons attempt to construct a model of devices and networks using Zenoss ob-
jects, and associate components with devices to prepare for performance data collection.

collector daemons Collector daemons are concerned with gathering performance data for each of the mod-
eled components and storing the results in RRD files. The RRD data is always stored
locally to the host that runs the collector daemon.

event daemons An event daemon converts messages received from devices using whatever method the
device supports, and converts the messages into Zenoss events.

zenrender A render server takes a request for an RRD graph, renders the graphic and sends the
graphic back. A render server will be found where collectors run, as the collectors gen-
erate the RRD files.

Zenoss Daemons

67

Zenoss Enterprise users also have the option of using Distributed Collectors, which can create hubs and collectors
on different hosts in order to monitor devices. With Distributed Collectors there may be multiple zenhub daemons
(one per hub, naturally), and for a host with collector daemons there will also be a renderserver.

From a programming perspective, most daemons will choose one of the following classes:

Table 9.1. Common Daemon Classes

Class Features

CmdBase logging and option parsing

ZenDaemon logging and option parsing, daemon

ZCmdBase logging and option parsing, daemon, ZODB connection

PBDaemon logging and option parsing, daemon, PB communications

9.3. zenhub: Daemon to ZODB management
The zenhub daemon (aka the Hub or ZenHub) is a single-threaded and asynchronous daemon that provides the
following features:

• Connections between daemons and the ZODB for persistent object management (eg configuration loading).
Writes to the ZODB are synchronous operations.

• Connections between daemons and the MySQL event database for events and event management. Writes to
MySQL are synchronous operations.

• Connections between daemons and performance data in RRD files

• Pluggable Daemon Services

• User-interactive RRD graph fetching (eg renderserver functionality)

• Loading configuration

Figure 9.1. ZenHub, Daemon and the ZODB

The Hub (as of Zenoss version 2.3) can be split out some of its tasks by creating workers (a configuration file option).
Requests from collectors are farmed out to the worker processes to spread out some of the load.

Zenoss Daemons

68

Note
Propagating configuration changes and fetching RRD Data is not pushed through workers! This means
that large configuration downloads will still affect the user experience. Some sort of caching on the
daemon's side may be necessary for large sites.

9.3.1. Daemon to ZODB management
The zenhub daemon manages updates to the object database (ZODB) to any daemons that connect to zenhub
(in practice this means all Zenoss daemons). The Hub watches for changes to the ZODB database (eg the use of
the commit() function) and initiates change notifications to any affected daemons. zenhub also provides daemos
access to the object database for loading configuration items and posting events.

9.3.2. Heartbeats and other Events
Another management function that zenhub provides is the ability to send notifications (ie Zenoss events). An event
will be provided from the daemon to the Hub which then stores the event in the event database (ie a MySQL table)
and then the event is processed according to any mappings that match the event. In this way an event generated by
an error condition can be cleared by another event.

Each daemon should post an event when it is shutdown, so that the console is kept informed of intentional shutdowns.
However, these events should be cleared by matching start events. Start/shutdown events should only be sent when
the server is daemon-ized.

Each daemon should post a periodic Heartbeat event. If a heartbeat event is not updated the Zenoss GUI will
indicate a problem with the daemon. Ideally, a daemon only sends a heartbeat event after each successful operating
cycle (eg performance data collection). It is not acceptable to just post events in a separate thread or timer unless
that thread also does some minimal testing for internal status and health.

If the daemon cannot talk to the Hub (eg zenhub is down) then events are queued up. When communications are
restored the queued events are then delivered.

9.3.3. Pluggable Daemon Services
To implement these features, zenhub has a collection of Services that it is willing to provide to other daemons.
A daemon will connect and request a particular Service. ZenHub will create that Service, and send future object
change notices to the Service, which in turn can decide how best to notify the daemon. Some daemons, such as
zenping, have a very simple configuration that doesn't change very often. Others, such as the zenperfsnmp, have
a much more complex configuration that must be kept up-to-date with model changes.

Each Service is implemented as a class that zenhub can import. Using Twisted's Perspective Broker (PB) facilities,
a daemon can request that the Hub perform some action (ie a class method) and return the results to the daemon,
and vice versa. In other words, the Service acts as the interface between the daemon and the Hub. The services
directory in a ZenPack directory structure is where the Service class is kept.

9.4. ZenRender and Graphs
ZenRender provides access to RRD files (and rrdtool) stored on a remote collector from a user's browser, and allows
this even with firewalls. Zenrender can implement rendering methods via PB and HTTP.

ZenHub maintains a connection from zenrender, so an HTTP request to ZenHub and back through to the remote
zenrender is an option. zenrender can implement all the RenderServer methods via HTTP requests, too.

Zenoss Daemons

69

You can use the following default URLs to get a graph:

Table 9.2. ZenRender Default URLs

Default URL Description

http://
host-
name:8080/zport/
RenderServer

The Zope RenderServer (original mechanism)

http://
zenoss:8090/
collector

ZenHub, where collector is the name of the collector defined in the model. This port
number can only be changed by editing the Render hub service.

http://
hostname:8091

A direct reference to zenrender at the given hostname. The port number is config-
urable at each zenrender server.

9.5. Developing a Daemon

9.5.1. Command-line Options
Each daemon should support:

$ mydaemon start

This should deamon-ize the new daemon, running it forever in the background.

$ mydaemon stop

This should find the collector and stop it with a graceful shutdown.

$ mydaemon run

The new daemon should run for one cycle (if it has a cycle), and should not daemon-ize and log to stderr.

Thankfully most of this infrastructure is taken care of for you. Should you require more command-line options,
here's how you should take advantage of the existing code:

from Products.ZenHub.PBDaemon import PBDaemon
class myclass(PBDaemon)

 ...

 def buildOptions(self):
 """Build our list of command-line options
 """
 PBDaemon.buildOptions(self)
 self.parser.add_option('--newoption',
 dest='dest_var', action="store_true", default=False,
 help="Do something really interesting")

Zenoss Daemons

70

The option formats are as specified in the Python optparse library [http://docs.python.org/li-
brary/optparse.html].

Other features taken care of with the Zenoss daemon infrastructure is reading from configuration files, the --
genconf flag (which produces a configuration file populated with all options, comments and default values) as
well as the --genxmltable flag (which produces a DocBook XML table showing command-line switches). As
other features can be added to the base class, if you follow this reccomendation there are more things your daemon
gets for free.

Note

The code to allow commands to get command-line option values out of a config file in $ZEN-
HOME/etc/ currently can only set values on lower-case options. Please be aware of this when you
create new command-line options.

9.5.2. Add the Daemon Control Script
The daemons directory should contain a file with the name of your daemon (eg the one that should appear under
the Daemons tab under Settings). This file is an executable shell script which should contain the following:

#! /usr/bin/env bash

. $ZENHOME/bin/zenfunctions

MYPATH=`python -c "import os.path; print os.path.realpath('$0')"`
THISDIR=`dirname $MYPATH`
PRGHOME=`dirname $THISDIR`
PRGNAME=mydaemon.py
CFGFILE=$CFGDIR/mydaemon.conf

generic "$@"

Of course, the PRGNAME and CFGFILE variables don't necessarily need to be contain the same name as the daemon.
However, keeping the same name will certainly make things much less confusing.

The mydaemon.py file is assumed to live at the base of the ZenPack.

9.5.3. Setup ZenHub Communications
The basics of daemon communications are these

Procedure 9.1. Daemon to ZenHub Commnication Steps

1. A daemon connects to ZenHub. The raw mechanics of this are handled by the PBDaemon claseses so we don't
need to explicitly code anything to deal with this administrivia.

2. The daemon requests specific Services by name from ZenHub. The Services are classes either already known
to ZenHub or classes provided in the services directory in a ZenPack and are loaded by ZenHub at runtime.

3. The daemon calls remote_ methods on the Service objects from ZenHub to receive configuration information
or perform other work.

4. The Services can also call remote_ methods on the daemon to provide updates, etc.

http://docs.python.org/library/optparse.html
http://docs.python.org/library/optparse.html
http://docs.python.org/library/optparse.html

Zenoss Daemons

71

9.5.3.1. Registering Services with the Hub

The services directory needs to be created at the base directory of your ZenPack. Included in this directory is
the __init__.py file. The __init__.py can be empty, but it must exist or any service class files cannot be
loaded by zenhub.

zenhub imports Services (eg a daemon-to-Hub interface class) and the daemons can then use their own Service to
perform actions. Look for the example closest to your needs from the $ZENHOME/Products/ZenHub/ser-
vices/ directory as well as from other ZenPacks (eg HelloWorldZenPack, ZenJMX).

A basic Service class can be found in the Products.ZenHub.HubService.HubService
class. More complex daemons doing data collection may want to subclass
Products.ZenHub.PerformanceConfig.PerformanceConfig instead to take advantage of some ad-
ditional infrastructure there.

72

Chapter 10. Add a Performance
Daemon

10.1. Overview
Zenoss is designed to be an extensible platform for integrating new performance collectors. Basically, this should
be a simple matter of getting the list of devices and sending/receiving data over the network to collect new values.
Essentially, this is what every collector does.

Each collector should post values to RRD files and execute thresholds against those updates. The Python class
RRDUtil supports writing values to RRD files. The Python class Thresholds will simplify the execution of
thresholds on each RRD update.

Data collection needs to work in a wide variety of networking infrastructures, so it needs to have acceptable perfor-
mance in light of high latency wide-area networks. Collectors should intentionally interleave requests to multiple
devices to reduce the overall time necessary to walk the list of devices. Collectors should not overload a single
device by sending multiple outstanding requests to that device.

In order to debug collection, the collector should be capable of logging detailed debugging output at each step
of collection, as well as posting events about collection failure. In particular, logging raw values and errors from
devices helps find errors in post-processing. Any performance information about total devices collected, or total
collect time should be posted at the informational level (above debug).

Since the collectors are generally going to run long-term, cached values and other stored and pre-computed values
should be periodically purged in order to synchronize the collectors' state with the real world, as well to eliminate
possible memory leaks.

If the collector monitors device components as well as whole devices, it may be necessary to load the device con-
figuration information in an incremental way. If it takes 30 minutes to gather the configuration information, this
is simply too slow and unresponsive. The collector should load its configuration information incrementally, per-
forming collection against those devices it knows about. It can cache the configuration information persistently to
provide a larger "initial set" of configuration upon start-up.

Many collectors benefit from "pre-failing" their devices. They get the list of devices presently marked down by the
ping tester, and they skip those devices during collection. This eliminates unnecessary longer delays as collectors
run against devices that are just unreachable.

10.2. DataMaps
Zenoss divides data collection into two parts: modeling, and performance collection. During the modeling, or dis-
cover step, the external world is sampled through a series of plug-ins. The result of the discovery step is a generic
"Map": a nested data structure that mimics the structure of the components within a device.

Add a Performance Daemon

73

Figure 10.1. Modeling Overview

For example, we can query the list of network interfaces on a device using SNMP. We will map that into a data
structure to mimic the path on the device:

 { 'os' : { 'interfaces' { 'eth0': { 'type': 'ethernetCsmacd',
 'speed': ... }
 { 'eth1': { 'type': 'ethernetCsmacd',
 'speed': ... }

These dictionaries of collected data are called DataMaps. There is a set of recursive functions that walk the maps
and apply the values to the device, creating components and setting values on them. In this way, a remote collector
can push updated configuration back to the central database without concern as to what the current configuration
is, and what exactly should be updated.

The Zenoss plugins are specialized to easily create these maps. Typically they consist of a single method pro-
cess() to transform SNMP query results into DataMaps. The plugin specifies the SNMP tables to be scanned,
and the process method is used to transform the results into DataMaps. Some plugins can test their applicability to a
specific device. For example, the plugin may only be appropriate if the device supports SNMPv2, or has a particular
agent OID. These plugins have a "test" method which is run before the plugin is used by the modeler.

SSH plugins, which are very much like SNMP plugins, transform output of various commands into datamaps. For
example, the output of the Unix df command is transformed into a map to create and update filesystem information.

10.3. Performance Collection
Modeling updates the object database model with information about what data to collect. As an example, if the
modeler detects three network interfaces, it creates slots for each network interface, and each of these slots is
referenced by an index. It is now up to the data collector to fill each of these slots with performance data.

When the performance collectors read their configuration, the devices are matched against templates, and each
template contains each datasources (ie what datapoints (such as SNMP OIDs) and their slot to collect) and thresholds.
In addition, any information necessary to read the performance data (eg zProperties that contain login information)
is retreived. This information is usually organized by device, and is loaded by the collector when it is started.

Add a Performance Daemon

74

When devices change configuration (and therefore change the peformance data that needs to be collected), the model
must be refreshed either with an explicit selection of Model Device on the device, or by the periodic runs of a
modeler (eg zenmodeler).

Connecting Collectors and Services

All collectors (and the modelers) are sub-classed from PBDaemon. PBDaemon will automatically connect
to zenhub and re-connect as needed. It provides an easy-to-use Event Service.

The configuration format and API for getting and updating any specific collector will depend on the Service
it uses. There are a few caveats about forwarding configuration to collectors:

1. Change notifications are very "bursty".

2. A sequence of updates in a burst will often update the same object many times.

3. The configuration for thousands of devices can take a long time to extract. The configuration should be
pushed or pulled incrementally.

Caveats 1 and 2 mean that we often delay sending updates by several seconds to reduce the number of changes
sent. Caveat 3 makes for complex exchanges between a service and the collector. There are classes to support
delayed evaluation of configuration (Procrastinator). There is support for determining the type of ob-
ject change: the deletion of a device, the update of a template, and the update of a monitor's configuration
(PerformanceConfig).

10.4. Creating a New Collector
For this section, we will contemplate a new collector that will collect ping performance data. We will want to create
a new DataSource type with several built-in DataPoints, such as Average Ping Time, and Fastest Ping Time.

10.4.1. Constructor
The following example is a simple network ping-performance collector. It relies on the availability of fping to
perform the actual ping test.

The class pingperf is derived from a base class that supports writing to RRD files. It is a also PBDaemon, which
means that it will connect to zenhub to fetch it's configs and post events. PingConfig is the module/class that will be
loaded in ZenHub to satisfy zenperf's configuration requests. We also configure reasonable default values for two
cycles: the time between configuration refreshes and the time between ping tests.

 def __init__(self):
 RRDDaemon.__init__(self, 'pingperf')
 self.devices = {} # device id -> ip address
 self.running = False

The constructor for this class calls the base's constructor, passing our name. We will need to hold the configuration
between cycles, so we initialize an empty configuration. If the ping testing takes longer than one configuration cycle,
we won't want to start a second test. We set a flag to note that we aren't running a ping test (yet).

When the base class is started, it attempts to connect to ZenHub and get remote references to the services is will
use. Most collectors have two services: EventService and a collector-specific service that scans the model for

Add a Performance Daemon

75

configuration. Our service will be PingConfig. After the service reference are loaded, the base class calls a
connected() method.

 def connected(self):
 def inner(driver):
 log.debug("fetching config")
 yield self.fetchConfig()
 driver.next()
 driveLater(self.configCycleInterval, inner)
 drive(inner).addCallbacks(self.pingDevices, self.errorStop)

This method uses a technique to serialize a callback chain. See the ZenUtils/Driver.py for details on how
this works. The effect is that the config is loaded with the fetchConfig() method, and the inner function is
called repeatedly after configCycleInterval seconds.

Once the inner function completes the first time, it either calls pingDevices() on success or errorStop()
on failure.

10.4.2. Getting a List of Devices
When the collector connects, and requests its config from the Service, the service will walk the list of all the devices
for that monitor, and extract out the ping DataSources:

def remote_getDevices(self):
 config = []
 monitor = self.dmd.Monitors.Performance._getOb(self.name)
 for dev in self.monitor.devices():
 for templ in dev.getRRDTemplates():
 dataSources = templ.getRRDDataSources('Ping')
 if dataSources:
 break
 else:
 continue
 config.append(
 (dev.id, # name of the device
 dev.getManageIp(), # the IP to ping
 dev.getThresholdInstances('Ping')
 # any thresholds on the ping
)
)

To make this configuration load incremental, the Service can send just the name of the devices to load, and then
the collector can use a different method to load the configuration of each device at a later time. For such a simple
configuration, it may not be worth the extra complexity.

When this code is placed into a class that is a sub-class of HubService, it can be loaded by name, when the collector
loads it services. PBDeamon will automatically connect you to this service, if the name of the service is provided
in the the class configuration.

The call to get this configuration in our new collector looks like this:

 d = self.getService('some.package.PingService').callRemote('getDevices')
 d.addCallback(self.startCollection)

Add a Performance Daemon

76

Note

1. PBDaemon has already connected you to the service some.package.PingService class.

2. getDevices becomes remote_getDevices in the hub.

3. The protocol for getting configurations is anything you like: you can control both sides of the
communications.

4. Requests and responses are asynchronous and will involve callback objects.

5. The communications are heavily dependent on the Prospective Broker (PB) library in Twisted.
Please refer to the Perspective Broker (PB) documentation [http://twistedmatrix.com/projects/
core/documentation/howto/pb-intro.html] for how the calls to remote objects work.

10.4.2.1. Thresholds

As each collector reads updated performance data it will evaluate any thresholds associated with those updates. The
classes representing those thresholds must be loaded before the thresholds may loaded evaluated. So, each collector
asks ZenHub for the names of all of the thresholds that can be monitored and imports them for future use.

The management of Thresholds within the collector is complex. There exists a class (Thresholds) to manage the
thresholds and transform performance updates into events.

10.4.2.1.1. Complex Thresholds

A complex threshold allows Zenoss to produce an event:

• when user time and system time is over 80%

• when value A is 80% of value B

• on a different RRD consolidation function from AVERAGE

• when a filesystem is X% full, and a critical event when it is Y% full

Figure 10.2. Complex Thresholds

http://twistedmatrix.com/projects/core/documentation/howto/pb-intro.html
http://twistedmatrix.com/projects/core/documentation/howto/pb-intro.html
http://twistedmatrix.com/projects/core/documentation/howto/pb-intro.html

Add a Performance Daemon

77

Thresholds are not “min/max value checkers” but “transformers of values into events”. As new values come in,
the Threshold will look at the value and determine if an event is warranted. Because of the inheritable template
mechanism, we have two separate tasks for Thresholds. The first is to represent the configuration for a threshold
within the template. A value like “80” in the case of “File System at 80% full” is part of the configuration. However,
when applied to a context, such as filesystem “C:\\” on device “WINXYZ” the value becomes “96000 blocks”.
The value “96000 blocks” needs to transfer from the Zenoss object model, to the collector, so that values can be
evaluated with the given context, without referring to the entire object model.

This leads us to separate thresholds into two components: one that hold the configuration and user intent, and an-
other that can travel as part of the collector configuration to the collector. This “Threshold with Context” object
is then executed when new values for datapoints are collected. The first type of threshold (for configuration) is
called ThresholdClass, and the second type, which evaluates a value with context is called a ThresholdIn-
stance. The Zenoss data model will load ThresholdClass classes from Zenoss and installed ZenPacks. These
objects are responsible for creating the ThresholdInstance objects that are sent via the collector configuration
for evaluation in the collector. Templates refer to derived versions of ThresholdClass, which when given a
context, create ThresholdInstance objects.

To reduce the effort when writing a performance collector, support classes are used to hold ThresholdIn-
stances and map updates to datapoints into threshold evaluation and event generation. The classes MinMax-
Threshold and MinMaxThresholdInstance replaced the previous Threshold and flattening mechanism
defined for datapoints and collectors in Zenoss version 2.0.X.

Presently, collectors are generally ignorant of context (device, or component), and almost certainly ignorant of
DataSources and DataPoints. They are given the parameters necessary to fetch a value and store it into an
RRD file. ThresholdsInstances wish to work on distinguished DataSource/DataPoint names within a
context. So, to map from RRD files back to Thresholds, we use the RRD filename. When a collector updates a
file, it notifies the Thresholds class (the utility class for all collectors to hold threshold information). This class
maintains a mapping of file names to Threshold and DataPoint. Eventually, it might be worth translating the
collectors so that they know about context and DataPoint.

Known Problems with Complex Thresholds

To send classes from Server to Client, the client has to expect and approve them. We will need to transfer the
list of approved ThresholdInstance sub-classes before a client can load those thresholds. The collector will
then have to approve and import these sub-classes at start-up.

10.4.3. fetchConfig()
Let's look at fetchConfig():

 def fetchConfig(self):
 'Get configuration values from ZenHub'
 def inner(driver):
 yield self.model().callRemote('getDefaultRRDCreateCommand')
 createCommand = driver.next()

 yield self.model().callRemote('propertyItems')
 self.setPropertyItems(driver.next())

 self.rrd = RRDUtil(createCommand, self.pingCycleInterval)

 yield self.model().callRemote('getThresholdClasses')
 self.remote_updateThresholdClasses(driver.next())

Add a Performance Daemon

78

 yield self.model().callRemote('getCollectorThresholds')
 self.rrdStats.config(self.options.monitor,
 self.name,
 driver.next(),
 createCommand)

 devices = []
 if self.options.device:
 devices = [self.options.device]
 yield self.model().callRemote('getDevices', devices)
 update = driver.next()
 if not isinstance(update, dict):
 log.error("getDevices returned: %r" % update)
 else:
 self.devices = update
 return drive(inner)

Here the same drive/inner technique is used to serialize a bunch of asynchronous remote method calls. The base class
provides a method called model() which returns a remote reference to the collector-specific configuration class. We
call several remote methods, most of which are inherited from a base ZenHub service class.

We must get the default RRD create command. Then we copy the collector properties, which provides updated
values for pingCycleInterval and configCycleInterval. In order to execute thresholds, we need to know the set of all
threshold classes and get them imported. After the threshold classes are installed, we have to get the thresholds for
this collector. These thresholds do not belong to the datapoints to be collected (ping response time), but for values
like "total cycle time" that are based on the collectors performance.

Finally we call the remote method getDevices() which returns a mapping of device id to IP address. We make
allowances for the simple one-device invocation:

pingperf -v 10 -d someDevice

10.4.4. Collector's ZenHub Service
Here's our ZenHub service:

from Products.ZenHub.services.PerformanceConfig import PerformanceConfig
class PingConfig(PerformanceConfig):
 """
 A very simple service for fetching device data
 """

 def getDeviceConfig(self, device):
 return (device.id, device.getManageIp())

 def sendDeviceConfig(self, listener, config):
 listener.callRemote('updateDevice', config)

 def remote_getDevices(self, devices):
 result = {}
 for d in self.config.getDevices():

Add a Performance Daemon

79

 if not devices or d.id in devices:
 result[d.id] = d.getManageIp()
 return result

Most of the implementation for this class is in the base class. The base class determines the devices affected when
database changes occur. It then uses the methods getDeviceConfig and sendDeviceConfig to figure out how to send
the changes to the collector.

10.4.5. Miscellanous Functions
Back to the collector, here are the methods that are called by ZenHub to update the collector with changes:

 def remote_deleteDevice(self, doomed):
 log.debug("Async delete device %s" % doomed)
 try:
 del self.devices[doomed]
 except KeyError:
 pass

 def remote_updateDevice(self, cfg):
 log.debug("Async config update for %s", cfg.name)
 d, ip = cfg
 self.devices[d] = ip

10.4.6. Collect the Performance Data
The only method left in our simple collector is to actually ping some devices, post the timings to a configuration
file, send any resulting events, and send a heartbeat.

 def pingDevices(self, ignored=None):
 def inner(driver):
 reactor.callLater(self.configCycleInterval, self.pingDevices)
 if not self.options.cycle:
 self.stop()
 if self.running:
 log.error("Ping is still running")
 return
 self.running = True

 log.debug("Pinging %s..." % (" ".join(self.devices.keys())[:100]))
 start = time.time()
 revMap = dict([(ip, d) for d, ip in self.devices.items()])
 fd, fname = mkstemp()
 fp = os.fdopen(fd, "w")
 log.debug("Writing devices to tempfile %s." % fname)
 fp.write('\n'.join(revMap.keys()) + '\n')
 fp.close()
 from twisted.internet.utils import getProcessOutput
 fping = os.path.join(os.path.dirname(__file__), "fping.sh")
 log.debug("starting %s" % fping)
 yield getProcessOutput(fping, (fname,))
 log.debug("fping returned: %s" % driver.next())
 for line in driver.next().split('\n'):

Add a Performance Daemon

80

 if not line: continue
 match = parseLine.match(line)
 if not match:
 log.debug("%s does not match expected output" % line)
 continue
 ip = match.group(IP)
 ms = float(match.group(MS))
 if not revMap.has_key(ip):
 continue
 device = revMap.pop(ip)
 path = 'Devices/%s/ping_time' % device
 ms = self.rrd.save(path, ms, 'GAUGE')
 for ev in self.thresholds.check(path, time.time(), ms):
 self.sendThresholdEvent(**ev)
 os.unlink(fname)
 self.heartbeat()
 cycle = self.pingCycleInterval
 self.rrdStats.gauge('devices', cycle, len(self.devices))
 self.rrdStats.gauge('down', cycle, len(revMap))
 self.rrdStats.gauge('cycleTime', cycle, time.time() - start)

 d = drive(inner)
 def clearRunning(arg):
 self.running = False
 if isinstance(arg, Failure):
 log.error("Error pinging devices: %s" % (arg,))
 return arg
 d.addBoth(clearRunning)
 return d

This is a long method, so let's take it in parts. Let's take everything outside of the inner() function:

def inner():
 #

 d = drive(inner)
 def clearRunning(arg):
 self.running = False
 if isinstance(arg, Failure):
 msg = "Error occurred in pingperf collection: %s" % (arg.value,)
 self.sendEvent(WARNING_EVENT, summary=msg)
 return arg
 self.running = True
 d.addBoth(clearRunning)
 return d

Again we are using the same drive/inner approach to serialize asynchronous calls. We also want to track the fact
that we are running the inner method so that we can detect cases where our collection cycle is taking too long. The
clearRunning() function is added to the callback chain to ensure that the running flag is reset however the inner
function completes. It was also a convenient place to report on any errors. Here's the definition of WARNING_EVENT
to remove any mystery about its value:

The following is a constant definition used to send an event if the collector has an error:

Add a Performance Daemon

81

WARNING_EVENT = dict(eventClass=Status_Ping,
 component="ping",
 device=socket.getfqdn(),
 severity=Warning)

The inner function does all the work:

 def inner(driver):
 reactor.callLater(self.configCycleInterval, self.pingDevices)
 if not self.options.cycle:
 self.stop()
 if self.running:
 log.error("Ping is still running")
 return

This bit of code controls the ping cycle. By starting the timer call chain immediately we are ensured to repeat the
call in the future even if an error occurs or the collection takes too long.

 log.debug("Pinging %s..." % (" ".join(self.devices.keys())[:100]))
 start = time.time()
 revMap = dict([(ip, d) for d, ip in self.devices.items()])
 fd, fname = mkstemp()
 fp = os.fdopen(fd, "w")
 log.debug("Writing devices to tempfile %s." % fname)
 fp.write('\n'.join(revMap.keys()) + '\n')
 fp.close()

Our implementation for pinging all the devices is farmed out to an external process (fping). So we write a config
file for fping (a list of IP addresses) into a temporary file. Next, we run fping and collect the results:

 from twisted.internet.utils import getProcessOutput
 fping = os.path.join(os.path.dirname(__file__), "fping.sh")
 log.debug("starting %s" % fping)
 yield getProcessOutput(fping, (fname,))
 log.debug("fping returned: %s" % driver.next())

The next loop parses each line of output using a regular expression:

 log.debug("fping returned: %s" % driver.next())
 for line in driver.next().split('\n'):
 if not line: continue
 match = parseLine.match(line)
 if not match:
 log.debug("%s does not match expected output" % line)
 continue
 ip = match.group(IP)
 ms = float(match.group(MS))
 if not revMap.has_key(ip):
 continue

When a match is found, we determine the device from the IP address and post the value to an RRD file:

 device = revMap.pop(ip)

Add a Performance Daemon

82

 path = 'Devices/%s/ping_time' % device
 ms = self.rrd.save(path, ms, 'GAUGE')

We use the resulting value (which may have been averaged in with other data from the RRD file) to check thresholds:

 for ev in self.thresholds.check(path, time.time(), ms):
 self.sendThresholdEvent(**ev)

Finally, we remove the temporary file, send a heartbeat, and report statistics on the total number of devices, the
devices that did not report, and the total time to process the device list.

 os.unlink(fname)
 self.heartbeat()
 cycle = self.pingCycleInterval
 self.rrdStats.gauge('devices', cycle, len(self.devices))
 self.rrdStats.gauge('down', cycle, len(revMap))
 self.rrdStats.gauge('cycleTime', cycle, time.time() - start)

83

Chapter 11. Adding a new Device Type
In this example we'll add platform support for AIX, which uses vendor extensions to store MIB data which Zenoss
doesn't understand. To simplify things a little, we'll say that our Zenoss server name is zenoss1

11.1. Overview
Adding support for a new platform can be broken down into a number of easily-defined steps:

• Add the platform-specific MIB to make it easier to find items to collect SNMP information and map numeric
OIDs to names.

• Add a device organizer for the platform to create a tidy place to store platform-specific information.

• Create modelers to gather information which doesn't change all that often (eg network cards filesystem names)

• Create performance data collectors which will be used to gather current usage statistics (eg how full the filesystem
is now).

• Create templates which will be used to store the results from the data collectors and use the data for graphing.
This also allows us to set thresholds so that we can generate events when certain conditions are met (eg filesystem
is 95% full).

• Create event mappings to create reasonable responses to events coming from the devices. Additionally, if the new
device warrants it, create a new event organizer to manage new events.

Tip
If the data is collected through an API or network protocol that Zenoss doesn't natively support, it may
be necessary to create a daemon that understands that protocol. This daemon might allow Zenoss to
model, collect performance data and event information, and then store that information.

11.2. Add the MIB
MIBs are used by Zenoss as a way to convert trap output from numeric OIDs to named OIDs. Once you add the
MIB it should be easy to point your device's trapsink to the Zenoss server and from the Zenoss server convert the
traps into Zenoss events.

The AIX MIB which is stored in the /usr/lib/samples/snmp/aix.my MIB file on any AIX server. Copy
the MIB file to your Zenoss server and add it with the command:
zenmib run $ZENHOME/share/mibs/site/aix.my

Verify that the MIB is in the http://zenoss1:8080/zport/dmd/Mibs mangement page.

11.3. Add a Device organizer
If you wish to create a device organizer so that it's easy to differentiate between other types of devices and the type
that you're adding, feel free to do so. In the case of AIX, there are a couple of types of setups:

Generic AIX Definitions

Standalone This describes the case where the entire pSeries server is dedicated to running
one instance of AIX.

Adding a new Device Type

84

Logical PARtition (LPAR) Some AIX pSeries servers are capabale of running multiple instances of AIX.
An AIX instance (LPAR in IBM speak) is equivalent to a VMware image.

Frames AIX LPARs are hosted on physical hardware (ie a pSeries server), which
is referred to as a frame. These frames are capable of being run as either a
standalone server or as a bunch of LPARs. The frame is like a VMware host.

Virtual IO (VIO) Server A VIO server is a special LPAR that allows you to consolidate IO hardware
(eg Ethernet, Fibre Channel cards) and share virtualized hardware with oth-
er LPARs. This is one of the key technologies required in order to perform
VMotion-style activites for AIX LPARs.

A separate server (called a Hardware Management Console (HMC)) is used to manage standalone devices, frames
and LPARs (including VIO servers). The HMC is actually a Linux server with a custom configuration to support
AIX. In this example, we'll just add the AIX parts and ignore the HMC.

Add a device class for AIX in the /Devices/Server/AIX class. From the navigation bar at the left-hand side,
go to the Classes section and select Devices. Then click on Server, which shows you the Sub-Devices screen. From
the Sub-Devices table menu, select Add New Organizer. Provide an id (ie AIX) and click OK.

Under the newly created /Server/AIX organizer, create the LPAR class. Under that class, creata a VIO class.

In this newly created scheme, we're intending on putting standalone servers and frames in the /Server/AIX class,
any LPARs in the /Server/AIX/LPAR class, and any VIO servers (which are a special type of LPAR) under the
/Server/AIX/LPAR/VIO class. If we wanted to have each frame contain its own tab showing the LPARs that
it hosts, we would need to create new ZenModel objects (complete with relations), instatiate them at the base of
/Server/AIX and then write more ZPTs to handle our custom behaviours.

Another situation where we might be forced to write our own device class Python code is where we want to add
properties that don't exist in other devices. For instance, we may want to record whether or not a Fibre Channel device
supports N-Port ID Virtualization (NPIV). This extra property would need to be subclassed from the ZenModel
class and the object initialized from within our ZenPack's __init__.py file.

11.4. Create a Modeler
When you navigate to a particular host and from the page menu select ManageModel Device, that runs all of the as-
sociated modelers (which, confusingly enough, are set for a device through the MoreCollector Plugins menu item).
What we need to do is copy and customize an existing modeler plugin from $ZENHOME/Products/DataCol-
lector/plugins/zenoss/snmp and then add that plugin to our list of plugins that our platform's device class
will use.

We'll start with creating a Filesystem modeler plugin. We'll copy the HRFileSystemMap plugin and call our
plugin AIXFileSystemMap.py. Using the information in the MIB, we can find the place where it stores the
list of filesystems.

Table 11.1. Modeler Functions

Name Required? Description

condition() N Returns True or False to indicate whether or not to run the other functions

preprocess() N This will get called before the process() function

process() Y This is the actual function that processes any information retrieved from a
query and converts it into a format suitable for updating the device model.

Adding a new Device Type

85

11.4.1. Verify the SNMP connectivity and OIDs
First, verify that your server's SNMP daemon is functional and that you have the correct SNMP version and cre-
dentials. We'll assume that we're using SNMP version 1 and are using the public community, and that your new
host will allow connections from our Zenoss server.

Run the snmpwalk command from the Zenoss monitoring server
snmpwalk -v1 -c public myaixbox.example.com 1.3.6.1.4.1.2.6.191.1 | head

This produces a lot of output that we've truncated to save patience and space.

SNMPv2-SMI::enterprises.2.6.191.1.1.1.0 = INTEGER: 5
SNMPv2-SMI::enterprises.2.6.191.1.1.2.0 = ""
SNMPv2-SMI::enterprises.2.6.191.1.1.3.0 = INTEGER: 2
SNMPv2-SMI::enterprises.2.6.191.1.1.4.0 = Gauge32: 0
SNMPv2-SMI::enterprises.2.6.191.1.1.5.0 = INTEGER: 0
SNMPv2-SMI::enterprises.2.6.191.1.1.6.0 = INTEGER: 2
SNMPv2-SMI::enterprises.2.6.191.1.1.7.0 = STRING:
"The current used percentage 93 of the file system /mnt has gon"
SNMPv2-SMI::enterprises.2.6.191.1.1.9.0 = INTEGER: 0
SNMPv2-SMI::enterprises.2.6.191.1.1.10.0 = INTEGER: 0
SNMPv2-SMI::enterprises.2.6.191.1.1.11.0 = INTEGER: 0

If you don't see output like the above, nothing else will work. Find the issue and fix it.

Tip
The Zenoss community website has a ZenPack with a graphical MIB browser [http://
www.zenoss.com/community/projects/zenpacks/mib-browser] which might help for these steps.

11.4.2. Common SNMP Issues
Here's a list of some common reasons why snmpwalk may not return any data:

• The SNMP daemon on the remote system is not running

• The SNMP daemon on the remote system has different security credentials than what you're using (ie version 1
vs version 2c, wrong community name)

• The SNMP daemon on the remote system only allows connections from certain IP addresses or IP address ranges
and the Zenoss server doesn't meet that criteria.

• The SNMP daemon on the remote system only allows queries to certain portions of certain MIBs, and you have
specified something not allowed by that policy.

• The firewall(s) between the Zenoss server and the remote system do not allow UDP or SNMP traffic.

• The firewall on the Zenoss server does not allow UDP or SNMP traffic outbound or inbound.

• The firewall on the remote system does not allow UDP or SNMP traffic outbound or inbound.

As a first sanity check, try the snmpwalk command on the remote host. For example:
snmpwalk -v1 -c public localhost 1.3.6.1.4.1.2.6.191.1 | head

http://www.zenoss.com/community/projects/zenpacks/mib-browser
http://www.zenoss.com/community/projects/zenpacks/mib-browser
http://www.zenoss.com/community/projects/zenpacks/mib-browser

Adding a new Device Type

86

11.4.3. Modeler Code
Mulitple modelers for different components of a system can be created, or one huge modeler for everything can be
created. Smaller modelers are preferred for maintenance reasons. The following modeler is for the filesystems, and
would live in the modeler/plugins/ directory of your ZenPack.

Note
Python requires that __init__.py files be in both the modeler/ and the modeler/plugins/
directories. If they are missing your modeler will not load.

__doc__="""AIXFileSystemMap

This modeler determines the filesystems on the device and updates
appropriately. It is up to the performance template that must be
named 'Filesystems' to collect the actual performance data
(eg free/available blocks).
"""

import re

from Products.ZenUtils.Utils import unsigned
from Products.DataCollector.plugins.CollectorPlugin import SnmpPlugin, \
 GetTableMap
from Products.DataCollector.plugins.DataMaps import ObjectMap

class AIXFileSystemMap(SnmpPlugin):

 maptype = "FileSystemMap"
 compname = "os"
 relname = "filesystems"
 modname = "Products.ZenModel.FileSystem"
 deviceProperties = \
 SnmpPlugin.deviceProperties + ('zFileSystemMapIgnoreNames',)

 #
 # These column names are for the aixFsTable from the
 # /usr/samples/snmpd/aixmib.my MIB file located on your AIX hosts.
 # (It's in the bos.net.tcp.adt fileset.)
 #
 columns = {
 '.1': 'snmpindex', # aixFsIndex
 '.2': 'storageDevice', # aixFsName
 '.3': 'mount', # aixFsMountPoint
 '.4': 'type', # aixFsType
 '.5': 'totalBlocks', # aixFsSize - a value in MB

#
Comment out the following entries to reduce the amount
of stuff that we need to send. They are listed here
for reference and completeness.
#
'.6': 'aixFsFree',

Adding a new Device Type

87

'.7': 'aixFsNumINodes',
'.8': 'aixFsUsedInodes',
'.9': 'aixFsStatus',
'.10': 'aixFsExecution',
'.11': 'aixFsResultMsg',
 }

 snmpGetTableMaps = (
 GetTableMap('aixFsTable', '.1.3.6.1.4.1.2.6.191.6.2.1', columns),
)

 #
 # This table is included for reference
 #
 aixFsType = {
 1: 'jfs',
 2: 'jfs2',
 3: 'cdrfs',
 4: 'procfs',
 5: 'cachefs',
 6: 'autofs',
 7: 'afs',
 8: 'dfs',
 9: 'nfs',
 10: 'nfs3',
 11: 'other',
 }

 def process(self, device, results, log):
 """Gather data from the standard AIX snmpd + friends"""

 log.info('processing %s for device %s', self.name(), device.id)
 getdata, tabledata = results

 #
 # Gather the data using SNMP and just exit if there's an SNMP
 # issue. If we don't, the filesystem table in Zenoss will get
 # wiped out. Ouch!
 #
 fstable = tabledata.get("aixFsTable")
 if not fstable:
 log.warn('No SNMP response from %s for the %s plugin',
 device.id, self.name())
 log.warn("Data= %s", getdata)
 log.warn("Columns= %s", self.columns)
 return

 skipfsnames = getattr(device, 'zFileSystemMapIgnoreNames', None)
 maps = []
 rm = self.relMap()
 for fs in fstable.values():
 if not fs.has_key("totalBlocks"):
 continue # Ignore blank entries

Adding a new Device Type

88

 if not self.checkColumns(fs, self.columns, log):
 log.warn("Data= %s", getdata)
 log.warn("Columns= %s", self.columns)
 continue

 log.debug("Found %s", fs['mount'])
 #
 # Ensure that we only check on local disk
 # NB: it may make sense to report on AFS/DFS volumes....
 #
 fstype = self.aixFsType.get(fs['type'], None)
 if fstype not in ('jfs', 'jfs2'):
 continue

 if fs['totalBlocks'] > 0 and (not skipfsnames or \
 not re.search(skipfsnames,fs['mount'])):
 om = self.objectMap(fs)

 #
 # The internal id that Zenoss uses can be used in URLs,
 # while Unix filesystem names cannot.
 # Map to an URL-safe name.
 #
 om.id = self.prepId(om.mount)

 #
 # Map our MIB data to what Zenoss expects
 #
 om.blockSize = 1024**2; # ie MB

 rm.append(om)
 maps.append(rm)

 #
 # As a final sanity check, see if we found anything. If we
 # didn't find anything, that's probably an error so just return.
 #
 if len(maps) == 0:
 log.warn("No filesystems found by %s for %s",
 self.name(), device.id)
 return

 return maps

Note
Because this question occurs so often in the mailing lists, the following information bears repeating.
The function name required of any modeler is the process() function.

11.4.4. Testing the Modeler

To test your new modeler plugin, add it to the list of modeler plugins. From within the newly-created AIX device
class, click on MoreCollector Plugins to select the appropriate plugin, which should be in the list of items to add.

Adding a new Device Type

89

You can test your new plugin by using zenmodeler from the command-line.
zenmodeler run -d myaixbox.example.com -v 10

For testing purposes, you may want to add this and only this modeler plugin to one particular host and make it the
only plugin. Any syntax errors or exceptions will be visible so that you can hopefully debug them.

Once you're satisfied that everything is working correctly, verify everything by running the ManageModel Device
command and then examining the OS tab. If everything is correct, you'll see your list of filesystems in the Filesystems
area, but with unknown for everything except the total size of the filesystems. The actual usage numbers of the
filesystem is collected by a different mechanism -- a performance data collector.

Keep in mind that a modeler is run infrequently (eg once a day or once a week, depending on your settings), while
a performance data collector is run every five or ten minutes.

11.5. Create a Performance Collector
A performance data collector gathers the current statistics of items such as the amount of space used in a filesystem.
The data can be collected using either a script or an SNMP command. For our Filesystem data, we must create
a new data collector called Filesystem (this is a special name) that will return a property called usedBlocks
(another special name).

If your operating system's MIB provides a usedBlocks (or something named like that) value, then we can make
use of existing Zenoss infrastructure and just collect that data using SNMP. Otherwise, you need to create a script
to take the total size of the filesystem (ie totalBlocks) and subtract the freeBlocks value. Unfortunately, AIX only
provides freeBlocks, so we need to create a command.

With the Zenoss 2.4 release, we can also create a command parser to gather our performance information. This new
functionality allows you to write simple code to gather performance data and graph the results.

11.5.1. Performance Data Collector Code
Mulitple collectors for different components of a system can be created, or one huge collectors for everything can
be created. Smaller collectors are preferred for maintenance reasons. The following collector is for calculating
filesystem free space, and would live in the libexec/ directory of your ZenPack.

#!/usr/bin/env python

"""Gather used disk space statistics for AIX"""

import sys
import re
from subprocess import *

base_fs_table_oid= "1.3.6.1.4.1.2.6.191.6.2.1"

def process_disk_stats(device, community, totalBlocks_oid, freeBlocks_oid):
 """Gather OID info and sanitize it"""

 cmd= "snmpwalk -v1 -c %s -On %s %s %s" % (community, device, \
 totalBlocks_oid, freeBlocks_oid)
 proc= Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)

 #
 # Check to make sure that we don't have any hangups in

Adding a new Device Type

90

 # executing our smidump
 #
 if not proc.stdout:
 print "Couldn't open pipe to stdout for %s" % cmd
 return

 if not proc.stderr:
 print "Couldn't open pipe to stderr for %s" % cmd
 return

 (line1, line2)= proc.stdout.readlines()
 totalBlocks= line1.split()[-1]
 freeBlocks= line2.split()[-1]
 usedBlocks= totalBlocks - freeBlocks

 return totalBlocks, freeBlocks, usedBlocks

if __name__ == "__main__":
 if len(sys.argv) < 4:
 print "Need device, community and fs_index arguments!"
 sys.exit(1)

 (device, community, fs_index)= sys.argv[1:]

 totalBlocks_oid= ".".join(base_fs_table_oid, 5, fs_index)
 freeBlocks_oid= ".".join(base_fs_table_oid, 6, fs_index)

 totalBlocks, freeBlocks, usedBlocks= process_disk_stats(device, \
 community, totalBlocks_oid, freeBlocks_oid)
 print "totalBlocks:%s freeBlocks:%s usedBlocks:%s" % (totalBlocks, \
 freeBlocks, usedBlocks)
 sys.exit(0)

11.5.2. Writing Your Own Command Parser
zencommand may be used to execute commands on remote hosts using the SSH protocol. This provides secure and
flexible performance monitoring for Unix-style systems such as AIX, Solaris, OS X (Darwin) and Linux servers.

When the remote host has commands that show data in a format already understood by zencommand (such as Nagios
or Cacti plugins), zencommand can process the results and update the ZODB. However, if you are monitoring
servers that have not had these commands installed, you need to extend zencommand with new parsers to understand
the results.

The basic data flow for zencommand is this:

1. A collector starts zencommand with a collector name, like localhost or collector2.

2. zencommand contacts zenhub and loads the commands to be run against the devices for that configuration. The
command configuration includes details such as "use SSH" to run the command on the remote box and credentials
to allow access to the remote host. The command configuration also includes a specification for the parser to use
on the data that is returned by the command.

Adding a new Device Type

91

3. zencommand runs the command on the remote host, and when the command finishes, a parser is created and the
results are passed to the processResults() method of the parser. The processResults() method is
passed the command configuration fetched from ZenHub, and an object into which parsed results will be placed.
The parser is also used to copy any data needed by zencommand during the parsing.

4. zencommand takes the returned Python dictionary from the parser and updates the ZODB.

Consider the Unix df command. It can be used to determine free disk space on a device's file systems. Here's a
typical output format from Linux:

Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda6 57669700 34162636 20577616 63% /
/dev/sda7 71133144 28824804 38694924 43% /home
/dev/mmcblk1 3924476 536 3923940 1% /media/disk

The Zenoss data modeler (zenmodeler) will have created components under this device for the file systems. The
mapping of data to the component must use the mount point information. ZenHub must copy mount point informa-
tion from the model data stored in the ZODB into the configuration for this command. To know what data may be
needed for parsing, ZenHub creates the parser that will be used by zencommand, and calls the dataForParser()
method. Remember, this happens in ZenHub, and not zencommand, and it happens before any command is run.

The result of dataForParser() is a Python dictionary that is stored as data in the command configuration
passed to zencommand. When the parser is invoked in zencommand, it will have access to this information.

Note

• After the parser digests the results of running the command, it can produce performance information
and events.

• The result object is a simple Python class that contains two lists, one called values and the other
called events.

• The events item contains a dictionary of string to value mappings which are turned into events.
zencommand will update the event with the device name, but the rest of the fields (such as com-
ponent, severity, etc) are up to the parser to fill in.

• The values item is a list of two-element tuples. The first element is the datapoint, and the second
is a value, which is a Python number or None. None is always ignored.

• Every command run by zencommand comes with a list of datapoints that correspond to that com-
mand. In our df example, the datapoints may include percentUsed and blocksFree, along
with any thresholds or parser-specific data, such as mount point.

• Thresholds will be tested by zencommand, and threshold events automatically generated.

• The command's exit code is available at parse time, too.

Parsers will be available to Zenoss when they are placed in the $ZENHOME/Products/Zen-
RRD/parsers directory or in a ZenPack's $ZENHOME/ZenPacks.pkg.zpid-version_id-
py2.4.egg/Zenpacks/pkg/zpid/parsers directory. Each parser should be a sub-class of the
Products.ZenRRD.CommandParser.CommandParser class.

A command like df is a very common case. Unix commands will often emit easily-parsed, line-oriented records.
There are some useful subclasses of CommandParser that perform much of the parsing if you provide these
parsers with the right details, such as regular expressions. They are:

Adding a new Device Type

92

Table 11.2. CommandParser Helper Parsers

Name Description

componentScan-
ner

A regular expression that finds details about a component that can
be used to map back to the component known to the Zenoss model.
It must return a match named component using the Python regular
expression syntax ?P<component>

scanners An iterable list of regular expressions that will pull out numerical
values from the output of the command.

componentScan-
Value

The data to be copied to the data point needed to match the compo-
nent to the output results.

Let's examine what these values might be for our df command, and its example output.

1. For the componentScanner, we want to find the mount-point data and extract it, so that we can match the
Unix file separator ('/') to the component file system that has the id "_". We can use something like:
% (?P<component>/.*)$

2. For the scanners, we'll use a tuple of regular expressions to pull out the numerical values we want:
(r' (?P<availableBlocks>\d+) +(?P<percentUsed>\d+)%')

3. For the componentScanValue, we'll specify mount so that the mount point information is copied to the com-
mand configuration by ZenHub and matched against the component value parsed by the componentScan-
ner regular expression.

11.6. Create the Template
A performance template is essentially a wrapper around reading and manipulating the data from RRD database files.
The template has the same constraints as RRD. An example of a constraint is that if you decide that you wish to
change the collection frequency, or perform some funtion on returned data and store that computed value into the
RRD file, you need to remove the old RRD file and create a new one.

11.6.1. Create the DataSource

To create our new performance template, go to the AIX device class organizer and select MoreAll Templates. This
will take you to a screen which shows you the performance templates. From the menu, select Add Tempate... and
provide with an id of Filesystem (yes, there should already be one there, but from the /Devices/Server path).

Click on the newly created performance tempate and add in a nice description. Then, click in the Data Sources
menu and select the Add DataSource... itme to create the special usedBlocks datasource. If your operating system's
MIB provides a usedBlocks (or something named like that) value, then select a type of SNMP. Otherwise, you
need to create a script to take the total size of the filesystem (ie totalBlocks) and subtract the freeBlocks value.
Unfortunately, AIX only provides freeBlocks, so we needed to create a command like we did in the earlier section.

11.6.2. Create a Threshold

Defining a threshold on a datapoint does two things: it can be used to define a line on a graph showing the threshold
value and it can create an event when the threshold is passed and cleared. In this example for filesystems, we could
create a threshold that would alert us when we've gone past 95% utilization on a filesystem.

Adding a new Device Type

93

11.6.3. Create a Graph
From the device class (ie /Devices/Server/AIX), click on the Templates tab. Click on the template and go to
the Graph Definitions sub-menu. From that sub-menu, choose Add a Graph. You will be prompted for the name of
your new graph. Add the datapoints of interest to create a graph and then click on the 'save' button at the bottom of
the screen. Note that if you're interested in doing something more complicated than just adding datapoints, you'll
need to start browsing the RRDtool site [http://oss.oetiker.ch/rrdtool].

11.7. Map Events
If our new platform provides a reporting log that doesn't get passed into Zenoss, then we can write a daemon to
extract these messages and create events from these messages. As an example, AIX records certain low-level events
such as hardware issues and core dumps into a circular log. If we wanted to extract this information using a tool like
errpt, then we would need to write a daemon that is capable of recording the last time that we saw an event, log
into the AIX server and grab the errpt information and convert that entry into a Zenoss event.

Once we have events coming into Zenoss, we might become aware of certain peculiarities in our events such a
certain informational message actually indicates that any previous critical failures are over. In order to cut down
on the amount of false alarms, we should create an event mapping that would examine informational messages and
clear out any critical events.

http://oss.oetiker.ch/rrdtool
http://oss.oetiker.ch/rrdtool

94

Chapter 12. Extending the User
Interface
12.1. Overview of the Zenoss UI Technologies

The Zenoss user interface is built on top of Zope [http://www.zope.org/]. Zope provides a framework on which
progressively more sophisticated functionality can be built. (NB: As this introduction is necessarily brief, it should
not be treated as technically correct in every detail, but as being generally believable.) You can layer the user
interface using multiple technologies, as well as mix and match:

• HyperText Markup Language (HTML) [http://www.w3.org/]

• Cascading Style Sheets (CSS) [http://www.w3.org/Style/CSS/]

• Zope 2, Zope Page Templates (ZPT) and the Template Attribute Language (TAL)

• ZPT and Macro Exapnsion for TAL (METAL) [http://wiki.zope.org/ZPT/METALSpecification10]

• JavaScript / AJAX

• Yahoo User Interface (YUI) Library [http://developer.yahoo.com/yui/] and Mochikit [http://mochikit.com/]

12.1.1. HyperText Markup Language (HTML)
HTML is the most basic formatting language available on the Web, and some version of HTML is understood by
every web browser. HTML is in practice a sloppy variant of eXtensible Markup Language (XML) which divides
up a page into elements (ie tags such as title, head or h3) and content (ie the things that you actually care about).

Tip
If you are converting an existing web page, verify its sanity by using the free HTML validation service
[http://validator.w3.org/].

12.1.2. Cascading Style Sheets (CSS)
Web browsers take HTML and convert elements like h1 (heading at level 1) and convert them into what each
browser thinks is appropriate for that element. That 'each browser' part means that the way that the page displays is
different on each browser. Style sheets are a way for the web page designer to tell the browser that a certain element
should have a certain style. As an example the h1 element could be styled "Arial, 20pt, neon lime green and make
it blink". (Use the power responsibly! :)

The 'cascading' part of CSS means that stylesheets can build on each other. Practically, that means that the order in
which you load CSS information can lead to different results.

12.1.3. Zope 2, ZPT and TAL
Zope 2 [http://www.zope.org/] is essentially a web server with brains. The brains part are the Python programming
language and the object-oriented database (ZODB), which are used to create web pages in a structured way.

Note
There is a Zope 1 and also a Zope 3. Zope 1 is dead, and a large portion of the Zope community is
migrating to or has migrated from Zope 3. Zope 2 and Zope 3 are quite different, and a considerable

http://www.zope.org/
http://www.zope.org/
http://www.w3.org/
http://www.w3.org/
http://www.w3.org/Style/CSS/
http://www.w3.org/Style/CSS/
http://wiki.zope.org/ZPT/METALSpecification10
http://wiki.zope.org/ZPT/METALSpecification10
http://developer.yahoo.com/yui/
http://developer.yahoo.com/yui/
http://mochikit.com/
http://mochikit.com/
http://validator.w3.org/
http://validator.w3.org/
http://www.zope.org/
http://www.zope.org/

Extending the User Interface

95

amount of effort would be required in order to convert Zenoss to Zope 3. Keep it in mind when looking
at Zope material that you need Zope 2.

Zope Page Templates [http://www.zope.org/Documentation/Books/ZopeBook/2_6Edition/ZPT.stx] are in essence
HTML pages which are well-formed (ie not sloppy HTML where you only need to care about creating a starting
element) with extra XML attributes (ie the bits after the element name in-between the < and > characters). The extra
XML bits (attributes) are not a part of any HTML standard and are ignored by HTML editors, meaning that ZPT
pages live happily with HTML. These attributes and the programming functionality that they deliver are called the
Template Attribute Language (TAL).

The TAL attributes allow you, the web page creator, to add dynamic content using information from inside the Zope
database (ZODB). From a Zenoss perspective, this allows you to write a query that you can use to build a table,
or show different items depending on what objects or devices exist in a particular state. In other words, TAL is the
Zope way of accomplishing what you would normally need to do in a CGI inside of a plain web server like Apache.

It should be noted that inside of TAL it is also possible to use a restricted subset of Python. The restrictions include
not being able to load certain standard libraries, as well as operations like reading and writing to disk. This is done
intentionally for security reasons.

12.1.4. ZPT and Macro Exapnsion for TAL (METAL)

TAL is the programming language of Zope, allowing you to use parts of the database and programmatically work
with data. This is good, but because TAL is hidden away inside of HTML, there's no way to reuse blocks of HTML
and TAL for your site just by using TAL. In order to re-use chunks of HTML and TAL in an easy-to-use fashion.

12.1.5. JavaScript / AJAX

Let's get one thing out of the way: Java and JavaScript only share the 'Java' part, and that's only for marketing rea-
sons. Really. They're totally different. Technically, JavaScript is actually called ECMAScript [http://www.ecma-
international.org/publications/standards/Ecma-262.htm], but that's something that's much worse than JavaScript so
everyone calls it JavaScript.

JavaScript can be written directly on the web page inside of a script element anywhere in an HTML page, or it can
be stored on a server and accessed from a script element using the name specificed in the src attribute.

So what's the AJAX part? Originally, AJAX was shorthand for "Asynchronous JavaScript And XML", a set of
techniques for writing JavaScript. So AJAX is a state of mind rather than a standard. Generally, something is con-
sidered AJAX if it uses the JavaScript XMLHttpRequest() function to retrieve data from a server and presents
the returned XML document in a interactive way to the user.

12.1.6. JavaScript libraries: YUI and MochiKit

There are a number of classes to make life programming in JavaScript easier. The ones that are implemented in
Zenoss are:

Yahoo User Interface (YUI)
[http://developer.yahoo.com/yui/]

YUI is a collection of CSS templates and JavaScript utilities that create a
cross-browser-compatible toolkit. This is quite an achievement considering
the many issues with how each browser implements (or doesn't) different
features.

MochiKit [http://mochikit.com/] MochiKit provides a set of low-level facilities to perform GUI functions.

http://www.zope.org/Documentation/Books/ZopeBook/2_6Edition/ZPT.stx
http://www.zope.org/Documentation/Books/ZopeBook/2_6Edition/ZPT.stx
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://developer.yahoo.com/yui/
http://developer.yahoo.com/yui/
http://mochikit.com/
http://mochikit.com/

Extending the User Interface

96

12.2. Customizing the Navigation Bar
Note

This information is presented here because many people want to be able to customize the navigation
bar. However, there are two possible issues with modifying this ZPT page:

• It is possible that an upgrade or other operation will remove your modifications, so you will need
to perform them again. Saving the ZPT page in a ZenPack will allow you to save your changes, but
you will need to manage this ZenPack yourself.

• Zenoss may in the future completely change this code, and there will be no effort on Zenoss' part
to ensure that your changes are preserved.

Go to your Zenoss server with the following URL:
http://yourzenossserver:8080/zport/portal_skins/zenmodel/manage

12.2.1. Adding a link
Look for a file called leftPane. Click on the file and it will bring you to a screen which will show you the source
for the file. Click on the Customize button which will copy it to the http://yourzenossserver:8080/zport/portal_skins/
custom folder and open up the file. Make whatever changes you wish and then save the file. The save button is
down at the bottom of the page.

Tip
Zope looks for the customized version of web pages in the custom folder first, before any other pages
of the same name.

12.2.2. A simple HTML page
If all you need is a simple web page, go to the ZMI and add the page.
http://yourzenossserver:8080/zport/portal_skins/manage

This will bring you into the ZMI starting in the portal_skins folder. From here, beside the Add button (which
is near the top-right-hand side of the screen), select Page Template and then click on the Add button.

In the dialog screen that comes up, give your new page a name in the Id input box. We'll use helloWorld as the
name of our fist page. Then click on the Add and Edit button.

This should bring us to a text-editor web page. Delete everything that's in there and add the following:

<html>
<head>
<title>Hello World</title>
</head>
<body>
<h1>Hello world!</h1>
<p>My test page</p>
</body>
</html>

Click on the Save Changes button. Now try out our sample web page.

Extending the User Interface

97

http://yourzenossserver:8080/zport/helloWorld

This is just a plain old web page, with nothing fancy about it. Not really anything much to see here or get excited
about.

But... did you notice that where we saved our file has absolutely no relation to where in the path we can reference
our new page? That's a Zope thing. Since our page doesn't use any Zope features, we can put it anywhere. If we were
to use some of Zope's TAL we might need to be more concerned. The next section will illustrate this behaviour.

12.2.3. A simple TAL and METAL page
Using the same steps from the previous section, create a new Page Template called helloWorld2, which is the
new and improved (okay, maybe just different :) version of your first page. Add in the following:

<tal:block metal:use-macro="here/templates/macros/page1"
>

<tal:block metal:fill-slot="contentPane"
>

<h1>Hello world!</h1>
<p>My test page</p>
</tal:block>
</tal:block>

The /zport/portal_skins/zenmodel/templates file contains the METAL definitions used by Zenoss
pages. One of the page1, page2, or page3 macros will probably be a good start for what you want. Look through
the templates page to see how it's built. Our example above uses the page1 macro.

After you've saved the page, you can try it out:
http://yourzenossserver:8080/zport/dmd/helloWorld2

Now you can see your page within all of the Zenoss page elements. There's a navigation bar, the logo, the server
time, search bar and everything else. Now try the following URL
http://yourzenossserver:8080/zport/dmd/Devices/helloWorld2

Now the breadcrumb path showing that you are in the Devices part of Zenoss shows up. What happens now if
you go to the base of Zenoss?
http://yourzenossserver:8080/zport/helloWorld2

Oops! That didn't look good, you've got an error screen. If you look in the View Error Details part, you'll notice
that it's complaining about missing here/breadCrumbs. That's because the breadCrumbs function isn't on
every object, just some of them.

From this point forward is a matter of examining other pages, seeing where they run from and trying out new
things. The functions that Zenoss provides are written in Python, so you'll need to learn more Python in order to
take advantage of Zope. See the Section 12.4, “Zope 2 Page Templates, TAL and METAL and Zenoss” section
for more details.

12.3. Customizing the Logo
Here is how to change the logo that appears in Zenoss to a custom logo of your choosing:

Extending the User Interface

98

1. Go to http://yourzenoss:8080/zport/portal_skins/EnterpriseSkin/manage.

a. Click on zenterprise.css and then its Customize button

b. Find zent-img/zenoss-logo-enterprise.png in the stylesheet and change it to zenoss-lo-
go-enterprise.png

c. Save the Changes.

2. Go to http://yourzenoss:8080/zport/portal_skins/EnterpriseSkin/zent-img/manage

a. Click on zenoss-logo-enterprise.png and then its Customize button

b. Upload your replacement image. It should be 318x35 pixels in size.

12.4. Zope 2 Page Templates, TAL and METAL
and Zenoss

Templates live in layers which, due to Zope magic (aka [Definition: acquisition]), are available anywhere in the
object tree. As is the case with most templating languages, Zope templates are context-agnostic, meaning that they
may be used as views on any object. When the name of a template is called against a particular context, the skins
tool (/zport/portal_skins in Zenoss) will supply the appropriate template object, determined by the priority
of the layers -- given two templates with the same name, that in the higher priority layer will prevail. This allows
Zope products to override the templates of other products to provide different functionality. It can also result in total
confusion as to the source of a template as this process is in no way transparent.

Templates may be created in the ZODB, or they may live on the filesystem; the latter is preferable for all but the most
ad hoc situations. Typically, a Zope product that provides templates will register a skins directory, which will
include one or more layers. When the product is initialized, the layers it provides will be added to the skins tool under
whatever skin is specified. Zenoss has a single skin, so only the order of the layers determines template inheritance.

The Zenoss UI comprises several layers, mostly for the purposes of organization. The ZenModel and Zen-
Events products each have a folder (named zenmodel and zenevents, respectively), the ZenUtils product
has one (inexplicably located at ZenUtils/js), and the ZenWidgets product has two (zentablemanager
and zenui). zenmodel and zenevents generally contain templates applicable to classes provided by their
respective products. The zenui folder contains most of the dialog templates, nearly all of the CSS, JavaScript
(including the YUI library), image files and other templates that don't necessarily belong to a single product. The
zentablemanager layer provides resources related to ZenTableManager. The ZenUtils/js layer pro-
vides the MochiKit library and a few JavaScript utilities. Both the zentablemanager folder and the ZenU-
tils/js layer are legacies and shouldn't be modified. All new templates should go in one of the other three, and
all static browser resources should go in zenui.

Table 12.1. Zenoss portal_skins directories and their Descriptions

Directory Notes

zenmodel Contains the majority of the templates.

zenevents Event-specific templates.

zentablemanager Deprecated.

zenui Most of the dialog templates, nearly all of the CSS, JavaScript (including the YUI
library), image files and other templates that don't necessarily belong to a single prod-
uct.

Extending the User Interface

99

Directory Notes

ZenUtils/js Deprecated. This layer is actually not under portal_skins. The MochiKit library
and a few JavaScript utilities

Zope page templates are a combination of METAL, TAL and TALES, each of which is summarized more succinctly
than one familiar with them might expect here [http://www.owlfish.com/software/simpleTAL/tal-guide.html].

In short, METAL allows templates to define macros (which are essentially subtemplates that may be called by other
templates) and slots (which may be filled by other templates). For example, one wishing to have a title on all pages
might create the following base.pt:

<html metal:define-macro="base_template"
>
<head>
 <title>Zenoss: <tal:block metal:define-slot="subtitle"
>
 Default Subtitle</tal:block>
 </title>
</head>
<body>
 <tal:block metal:define-slot="content"
>Default Content</tal:block>
</body>
</html>

Then on a template that might be used to view an object, one could:

<tal:block metal:use-macro="here/base/macros/base_template"
>
<tal:block metal:fill-slot="subtitle"
>My Subtitle</tal:block>
 <tal:block metal:fill-slot="content"
>My Content</tal:block>
</tal:block>

This allows for relatively complex abstraction.

Zenoss has a base template providing several basic page types that include global CSS and JavaScript resources,
the basic page structure, and optionally the tab pane. This template is located at ZenModel/skins/zenmod-
el/templates.pt. When creating a new template, find another like it and copy the templates.pt macro
reference used there.

TAL comprises a set of attributes for page elements allowing for iteration loops, dynamic attribute mutation, and
other dynamic content. The above resource will summarize these more fully.

TALES allows access to the template's namespace. Some useful properties available on all templates:

Commonly-used Zope Properties in ZPT

here the context object

http://www.owlfish.com/software/simpleTAL/tal-guide.html
http://www.owlfish.com/software/simpleTAL/tal-guide.html

Extending the User Interface

100

container the folder containing the context object

template the template object

root the portal object (zport)

user the current authenticated user object

request the current HttpRequest object

portal_url the base URL of the portal (eg http://localhost:8080/zport)

TALES accepts paths (e.g. here/id) which it resolves into object properties. It will attempt to resolve the final
path element as a key index, a key name, an attribute, or a callable. For example, if mydict is a dictionary on the
context, here/mydict/mykey will return mydict[mykey]. If getSomething() is a method on the context, here/
getSomething will return the result of that method. However, if python:here.getSomething() returns
a dictionary, one cannot do here/getSomething/mykey.

The path resolution is fairly limited -- for example, one cannot pass arguments to methods. In case
something more complex is needed, one can use python: followed by arbitrary Python code. For ex-
ample, python:here.mydict[mykey] will return the same thing as here/mydict/mykey, while
python:here.getSomething(template.id) is not possible using a path. The previous paragraph's
impossible here/getSomething/mykey can be resolved this way: python:here.getSomething()
[mykey].

Finally, if one wishes to generate a string, one may prepend the argument with string:. Everything after that will be
treated as a string, unless contained within ${}, in which case it will be evaluated as a TALES path. For example:

<span tal:content='string:The name of this
 template is ${template/id}'
/>

12.4.1. Tips
• ZPT ignores everything inside a script element, although it does not ignore TAL defined on the element itself.

This can make dynamic JavaScript problematic. One way around this, however, is like this:

 <script tal:content="string:
 var templateId = '${template/id}';
 "
>
</script>

This is obviously unwieldy, especially in the case of several levels of nested quotes, but it at least allows JavaScript
access to the template's namespace.

• Slots on macros are not inherited unless specifically defined. For example, if one has a template base.pt:

 <tal:block metal:define-macro="base"
>
 My Base Template
 <span metal:define-slot="content"
>Default Content
 </tal:block>

Extending the User Interface

101

from which one wishes to create a more specific base template, plaintext.pt:

 <tal:block metal:define-macro="plaintext"
>
 <style>body{font-family:Courier,monospace}</style>
 <tal:block metal:use-macro="here/base/macros/base"
/>
 </tal:block>

templates calling here/plaintext/macros/plaintext will not be able to fill here/base/macros/base's 'content' slot.
One must chain the slots, defining a plaintext content slot inside the fill of base's content slot:

 <tal:block metal:define-macro="plaintext"
>
 <style>body{font-family:Courier,monospace}</style>
 <tal:block metal:use-macro="here/base/macros/base"
>

 <tal:block metal:fill-slot="content"
>
 <tal:block metal:define-slot="content"
>
 </tal:block>
 </tal:block>

 </tal:block>
 </tal:block>

• Thanks to Zope's magical acquisition, templates can be treated as methods on objects. If an object may be viewed
at /zport/dmd/object/mytemplate, then calling object.mytemplate() in a Python file will return
the HTML that template generates. In this case, however, there's no request object, so templates that ask for one
will throw an error. This is both a blessing and a curse; many man-hours have been wasted searching for methods
that do not exist.

• Generally, unless a specific tag is required, use <tal:block> for purely logical structures, as it will produce no
side effects (whereas using <div> could easily do so).

12.5. Zope 3 Views Explained
In an effort to decouple the model layer from the UI layer, we've taken to implementing Zope 3 views in Zenoss.
So far, we've just done the JSON-providing methods that feed the portlets, event console, etc., but ideally we would
like to move the entire application to this style.

Let's say you're adding a new screen to Zenoss. This screen shows a list of components under a Device and their
event pills (the actual worth of this screen is both nonexistent and irrelevant). Here's how you'd do it, the old way
and the new way.

12.5.1. The Zope 2 Way
1. Add a method to the relevant class that assembles and delivers your data. In this case, you'd probably add

a method to the Products.ZenModel.Device.Device class that walks components under self and

Extending the User Interface

102

generates an event pill for each. We'll call it getComponentList. If your method should logically be broken
up into several methods, for organization or otherwise, you'll add those to the class as well, or find a way to
use nested functions.

2. Create a page template that calls the method and renders the data. Your template would be, say, Zen-
Model/skins/zenmodel/viewDeviceComponents.pt. Surrounding the content block, you'd have
something like:

<tal:block tal:define="componentdata here/getComponentList"
>...</tal:block>

3. Link to your template. Either by adding a tab to the Device class, or by dropping a link in another template,
you're going to point to a URL that describes a Device instance and your template:

<a tal:attributes="href string:${here/absolute_url_path}/viewDeviceComponents"
>
 Component List

And you're done! Now, here are the problems with this approach:

• You've added a method used only for the UI layer to a class in the model layer, which leads to bloated classes
and a terrible time reading dir().

• Another developer will have a difficult time figuring out why the method is there, unless they grep templates
for a call.

• There's nothing identifying the template as being applicable to a particular class or group of classes.

• If your method is applicable to another class, or if you want your template to apply to different kinds of objects,
you either need to define the same method on the other classes, or create a mixin and modify your classes to
inherit from it. In the first case, you've got to (remember to) update methods in two places if changes are ever
desired. In the second case, you add to the already terrible Zope class inheritance tree (plus, where do you draw
the line? Should we really have forty-seven mixins for a class if only the UI demands it?).

• Calling your template on another object will get you a traceback. Not a 404, a traceback.

12.5.2. The Zope 3 Way
1. Create a BrowserView class to contain logic and load the template. Instead of inflating model classes with

view methods, make yourself a BrowserView, which will adapt the context to add logic you need to render
the template. That is, when a view is the result of traversal, the view class will be instantiated, passing the
context into the constructor (it will be available on the view instance as self.context; the request object will
be self.request).

You'll put something like this in ZenModel/browser/DeviceViews.py (browser is a convention):

from Products.Five.browser import BrowserView
from Products.Five.pagetemplatefile import ViewPageTemplateFile

class ComponentListView(BrowserView):

Extending the User Interface

103

 __call__ = ViewPageTemplateFile('viewDeviceComponents.pt')

 def getComponentList(self):
 ... do things with self.context and self.request ...

BrowserViews are called when they're the result of a traversal, so that's your hook. ViewPageTemplate-
File() is a callable, so the assignment is fine. If, instead of rendering a template, you just wanted to return
some text (for example, JSON), you could do:

from Products.Five.browser import BrowserView
from Products.Five.pagetemplatefile import ViewPageTemplateFile

class ComponentListView(BrowserView):

 def __call__(self):
 ... do things with self.context and self.request ...
 return results

2. Create a page template that calls the method and renders the data. This is the same as the Zope 2 way, except
for one key difference: view is now a global, and that's how you can access your custom method (here is still
available and still refers to the context, just as before).

 <tal:block tal:define="componentdata view/getComponentList"
>
 ...
 </tal:block>

Another difference is that you don't render the template by traversing to a template against a context; instead,
you traverse to a BrowserView, which knows which template to use. This is great, especially when you want
to use the same template for radically different contexts; as long as you have two BrowserViews that know
how to provide the methods the template wants, you're good.

3. Wire everything up with ZCML. This is where most people start scoffing. It's okay. It actually makes sense.

So you have a view, but you don't have a way to call that view; there isn't a URL that will resolve to an instance
of your BrowserView. To fix that, you register the view.

When Zope starts up, it looks inside every Product for a file called configure.zcml. In Zenoss, most
Products don't have one (though some do now). You can do a bunch of stuff with these, but we're going to
ignore everything except registration of views.

You would, in this case, modify Products/ZenModel/browser/configure.zcml (because De-
vice is in ZenModel; it doesn't actually matter where you register the view, but you should try to keep
Products pluggable), adding the registration of your view:

 <browser:page
 for="Products.ZenModel.Device.Device"
 name="componentlist"
 class=".DeviceViews.ComponentListView"
 permission="zope2.View"

Extending the User Interface

104

 />

Notice that your view is defined as being applicable only to instances of the Device class. Were you to attempt
to call componentlist against an IpInterface instance, for example, you'd get a 404 -- not so if com-
ponentlist were a mere template. Also notice the relative import in the class attribute; .DeviceViews
will look for the DeviceViews module in the current package, that is, ZenModel.browser.

So, the whole request workflow progresses thusly:

1. Someone asks for /zport/dmd/Devices/devices/mydevice/componentlist

2. Zope resolves mydevice; that's the context in which it'll attempt to resolve componentlist

3. Zope attempts to resolve componentlist as an attribute of mydevice, then a method of mydevice, then
a dictionary key of mydevice, then starts looking up registered views.

4. We find a view in the ZCML. Does it match?

name="componentlist": Check.

Context class="Products.ZenModel.Device.Device": Check.

We want the view DeviceViews.ComponentListView.

5. Zope makes sure the user has zope2.View in this context. We'll assume they do; if not, kicked out to login
screen.

6. Zope instantiates ComponentListView(mydevice), then calls it, which renders the template file.

7. The template is rendered, using view and here, and returned as the response.

So much better! No bloated classes; no ridiculous class inheritance; great code organization. Define a method in
one place, then adapt objects to provide it, instead of modifying many classes with the same method. If you want to
see the screens available for a Device, just go look in the ZCML -- no need to remember which page templates are
applicable to which objects. Also, you can adapt many different objects for the same template with different views.

There are a few other things that could be mentioned, but they all require a discussion of interfaces, which will
deferred to a later section. Briefly, the Zope Component Architecture, and its aspect-oriented approach, saves a lot
of hackery. Also it's the rules now.

12.6. Other Customziations

12.6.1. Adding Tabs
This section will show how to add a new tab in Zenoss or modify existing one by means of ZenPack or zendmd.

A tab in Zenoss is an object property that resides within the following structure:

 factory_type_information = (
 {
 'immediate_view' : 'deviceOrganizerStatus',
 'actions' :
 (
 { 'id' : 'status'

Extending the User Interface

105

 , 'name' : 'Status'
 , 'action' : 'deviceOrganizerStatus'
 , 'permissions' : (permissions.view,)
 },
)
 },
)

For example, tabs in the Locations screen are created from the Python class definition

Location(DeviceOrganizer, ZenPackable)

which resides in the module Location.py in the $ZENPATH/Products/ZenModel directory.

Zenoss works with class instances which are created runtime by Zope. These objects are packed within database
which is called ZODB. If you want to modify some object properties you should connect to ZODB and get the
object first, modify it and save your changes.

The following example shows the procedure for adding a new tab to Locations screen. This code is executed from
__init__.py of an example ZenPack.

import Globals
import transaction
import os.path

skinsDir = os.path.join(os.path.dirname(__file__), 'skins')
from Products.CMFCore.DirectoryView import registerDirectory
if os.path.isdir(skinsDir):
 registerDirectory(skinsDir, globals())

from AccessControl import Permissions as permissions
from Products.ZenModel.ZenPack import ZenPackBase
from Products.ZenUtils.Utils import zenPath
from Products.ZenModel.ZenossSecurity import *
from Products.ZenUtils.ZenScriptBase import ZenScriptBase

class ZenPack(ZenPackBase):
 olMapTab = { 'id' : 'olgeomaptab'
 , 'name' : 'OpenLayers Map'
 , 'action' : 'OLGeoMapTab'
 , 'permissions' : (permissions.view,)
 }

 def _registerOLMapTab(self, app):
 # Register new tab in locations
 dmdloc = self.getDmdRoot('Locations')
 finfo = dmdloc.factory_type_information
 actions = list(finfo[0]['actions'])
 for i in range(len(actions)):
 if(self.olMapTab['id'] in actions[i].values()):
 return
 actions.append(self.olMapTab)
 finfo[0]['actions'] = tuple(actions)

Extending the User Interface

106

 dmdloc.factory_type_information = finfo
 transaction.commit()

 def _unregisterOLMapTab(self, app):
 dmdloc = self.getDmdRoot('Locations')
 finfo = dmdloc.factory_type_information
 actions = list(finfo[0]['actions'])
 for i in range(len(actions)):
 if(self.olMapTab['id'] in actions[i].values()):
 actions.remove(actions[i])
 finfo[0]['actions'] = tuple(actions)
 dmdloc.factory_type_information = finfo
 transaction.commit()

 def install(self, app):
 ZenPackBase.install(self, app)
 self._registerOLMapTab(app)

 def upgrade(self, app):
 ZenPackBase.upgrade(self, app)
 self._registerOLMapTab(app)

 def remove(self, app, junk):
 ZenPackBase.remove(self, app, junk)
 zpm = app.zport.ZenPortletManager
 self._unregisterOLMapTab(app)

The class method _registerOLMapTab(self, app) registers the modified property of object Locations
, which resides in /zport/dmd/Locations in the ZODB.

The function getDmdRoot('Locations') returns the class instance of class Location which is in Zope-
DB. Next we get the dictionary of its factory_type_information property. Modify this, so that a new dictionary
defining the tab is appended to it. The tab structure is defined in olMapTab dictionary. The id field is the identi-
fication name of this tab. You can put any string here. The name field is the string that is shown on your new
tab, action points to the template that is executed when you click on the tab and should be accessible in Zope.
The permissions field is default permissions for zenoss user to execute the template this tab points to. This line
dmdloc.factory_type_information = finfo is very important because Zope won't detect any change
to the persistent object and transaction.commit() won't save any modifications to the object. The rule here
is that commit() saves only modifications of object that executes its setattr() method.

Of course every step shown above can be done manually within the zendmd prompt. The following session shows
adding new tab to Locations in zendmd:

zenoss@db-server:/home/geonick$ zendmd
Welcome to zenoss dmd command shell!
use zhelp() to list commands
>>> from AccessControl import Permissions as permissions
>>> locobj = dmd.getDmdRoot('Locations')
>>> locobj
<Location at /zport/dmd/Locations>
>>> finfo = locobj.factory_type_information
>>> finfo
({'immediate_view': 'deviceOrganizerStatus',
'actions': ({'action': 'deviceOrganizerStatus',

Extending the User Interface

107

'id': 'status', 'name': 'Status', 'permissions': ('View',)},
{'action': 'viewEvents', 'id': 'events',
'name': 'Events', 'permissions': ('View',)},
{'action': 'deviceOrganizerManage', 'id': 'manage', 'name'
: 'Administration', 'permissions': ('Manage DMD',)},
{'action': 'locationGeoMap', 'id': 'geomap', 'name
: 'Map', 'permissions': ('View',)})},)
>>> actions = list(finfo[0]['actions'])
>>> olMapTab = {'id': 'olgeomaptab', 'name': 'OpenLayers Map',
'action': 'OLGeoMapTab','permissions': (permissions.view,)}
>>> for i in range(len(actions)):
... if(olMapTab['id'] in actions[i].values()):
... break
...
>>> actions.append(olMapTab)
>>> finfo[0]['actions'] = tuple(actions)
>>> locobj.factory_type_information = finfo
>>> locobj.factory_type_information
({'immediate_view': 'deviceOrganizerStatus', 'actions': (
{'action': 'deviceOrganizerStatus',
'id': 'status', 'name': 'Status', 'permissions': ('View',)},
{'action': 'viewEvents',
'id': 'events', 'name': 'Events', 'permissions': ('View',)},
{'action': 'deviceOrganizerManage',
'id': 'manage', 'name': 'Administration', 'permissions': ('Manage DMD',)},
{'action': 'locationGeoMap',
'id': 'geomap', 'name': 'Map', 'permissions': ('View',)},
{'action': 'OLGeoMapTab', 'permissions': ('View',),
'id': 'olgeomaptab', 'name': 'OpenLayers Map'})},)
>>>commit()

After commit() the new tab should be in Locations. Don't forget to provide the template file.

Submitted by Nikolai Georgiev

12.6.2. Adding a Dialog
The dialog container exists on every page in Zenoss; it's a DIV element with the id attribute of dialog. Loading a
dialog performs two actions:

1. Fetching (via an XHR) HTML to display inside the dialog container

2. Showing the dialog container. These can be accomplished by calling the show() method on the dialog container,
passing the event and an URL that will return the contents:

 $('dialog').show(this.event, 'dialog_MyDialog')

The dialog can then be hidden with, predictably, $('dialog').hide(). Since dialogs are almost always loaded via
clicking on a menu item, menu items whose isdialog attribute is True will generate the JavaScript to show the
dialog automatically. See the Section 12.6.3, “Adding a New Menu or Menu Item” section of this guide for
more information.'

As for the dialog box contents themselves, any valid HTML will do, but certain conventions exist. Dialogs should
have a header:

Extending the User Interface

108

 <h2>Perform Action</h2>

Dialogs should also provide a cancel button:

 <input id="dialog_cancel" type="button" value="Cancel"
 onclick="$('dialog').hide()"
/>

The main wrinkle with dialogs occurs in the area of form submission. Some dialogs are self-contained, and can
carry their own form that is created and submitted just like any other form. Other dialogs, however, submit forms
that exist elsewhere on the page -- for example, dialogs that perform actions against multiple rows checked in a
table. These dialogs may use the submit_form method on the dialog container, which submits the form surrounding
the menu item that caused the dialog to be loaded to the url passed in to the method. Thus for a table surrounded
by a <form> and containing several checkboxes, dialogs loaded by menu items in the table's menu may submit the
table's form to a url by providing a button:

 <input type="submit" name="doAction:method" value="Do It"
 tal:attributes="onclick string:
 $('dialog').submit_form('${here/absolute_url_path}')"
/>

See the section on Section 12.1.3, “Zope 2, ZPT and TAL” for more information about tal:attributes and the
${here/absolute_url_path} syntax.

Finally, dialogs that create objects should validate the desired id before submitting. A method on the dialog container
called submit_form_and_check(), which accepts the same parameters as submit_form() (URL), will
do this. It requires:

1. A text box with the id 'new_id', the value of which will be checked

2. A hidden input field with the id checkValidIdPath, with a value containing the path in which the id should be
valid (for example, creating a device under /zport/dmd/Devices will require checking that no other devices
in /zport/dmd/Devices has the same id, so the value of checkValidIdPath should be "/zport/dmd/
Devices". here/getPrimaryUrlPath works well for most cases).

3. An element with the id errmsg into which the error message from the validation method, if any, will be put

For example, a generic object creation dialog:

 <h2>Create Object</h2>
 <span id="errmsg" style="color:red;"
>

 ID:
 <input id="new_id" name="id"
/>
 <input type="hidden" id="checkValidIdPath"
 tal:attributes="value here/getPrimaryUrlPath"
/>

 <input tal:attributes="onclick string:
 return $$('dialog').submit_form_and_check('${here/getPrimaryUrlPath}')"

Extending the User Interface

109

 id="dialog_submit"
 type="submit"
 value="Create"
 name="createObject:method"
/>
 <input id="dialog_cancel" type="button" value="Cancel"
 onclick="$('dialog').hide()"
/>

These examples will cover most cases; generally, a good idea is to look at other dialog templates that contain similar
elements or perform similar actions.

12.6.3. Adding a New Menu or Menu Item
Classes that inherit from the ZenMenuable mixin have a method called getMenus, which traverses up the object's
path aggregating ZenMenuItem objects owned by its ancestors. These objects comprise an action to be executed,
a human-readable description, and various attributes restricting the objects to which the item is applicable.

For example, imagine basic menus exist on dmd and dmd.Devices:

 dmd
 More (menu)
 See more... (menu item)
 Do more...
 Manage
 Manage object...
 dmd.Devices
 More
 See more...
 Do less...

A call to dmd.Devices.getMenus() will return:

 More
 See more... (from dmd.Devices)
 Do more... (from dmd)
 Do less... (from dmd.Devices)
 Manage
 Manage object... (from dmd)

As you can see, menu items inherit their ancestors' unless they define their own, which override when their ancestors'
conflict.

In theory, all ZenMenuables (which includes nearly all objects in Zenoss) may own menu items; in practice, all
but a few menus live on /zport/dmd.

Adding a new menu item is fairly straightforward. Because menu items are persistent objects, modifications must
happen in a migrate script (or be included as XML in a ZenPack). The method ZenMenuable.buildMenus()
accepts a dictionary of menus, each of which is a list of dictionaries representing the attributes of menu items.
Instructions on writing migrate scripts can be found elsewhere in this guide.

1. Find the id of the menu to which you wish to add items. The simplest way to do this is to locate the menu_ids
definition on the page template that renders the menu. Tables will have a single menu id. The page menu may

Extending the User Interface

110

have several, which will be rendered as submenus. The TopLevel menu is a special case; it appears in the page
menu, but its items are rendered as siblings of the other menus.

2. If activating the menu item will require a dialog, create one. See the Section 12.6.2, “Adding a Dialog” section
of this guide for more info.

3. Determine the objects for which the menu item should be visible. Menu items will use several criteria for deter-
mining whether to apply:

• allowed_classes: A list of strings of class names for which the menu item should be rendered.

• banned_classes: A list of strings of class names for which the menu item should not be rendered.

• banned_ids: A list of strings of object ids for which the menu item should not be rendered.

• isglobal: Whether the menu item should be inherited by children of the menu item's owner.

• permissions: The permissions the current user must have for the context in order for the item to render.

4. Figure out the action the menu item will perform. If it's a dialog, then the action is the name of the dialog template,
and the isdialog attribute of the menu item should be True. If it's a regular link, the action should be the URL
or "javascript:" you would normally have as the href attribute of an anchor.

5. Now build the dictionary. It should look like this, where MenuId is the menu from step 1:

 menus = { 'MenuId': [
 { 'id': 'myUniqueId',
 'description': 'Perform My Action...',
 'action': 'dialog_myAction',
 'isdialog': True,
 'allowed_classes': ('MyGoodClass',),
 'banned_classes': ('MyBadClass',),
 'banned_ids': ('Devices',),
 'ordering': 50.0,
 'permissions': (ZenossSecurity.ZEN_COMMON,)
 },
]}

'ordering' is a float determining the item's relative position in the menu. Greater numbers mean the item will be
placed higher. Also notice that it's almost certainly pointless to set both allowed_classes and banned_classes; it
was done here only as an example. The permission ZEN_COMMON is a standard Zenoss permission -- see the
Section 8.5, “Zenoss Permissions” section of this guide for more information.

If you have more menu items in the same menu, you can add them to that list; if you have more menus, you can
create more keys in the menus dictionary.

6. Finally, use the dmd.buildMenus() method to create the MenuItems:

 dmd.buildMenus(menus)

Extending the User Interface

111

12.6.4. Creating a Table Using ZenTableManager
ZenTableManager is a Zope product that helps manage and display large sets of tabular data. It allows for column
sorting, breaking down the set into pages, and filtering of elements in the table.

Here's a sample of a table listing all devices under the current object along with their IPs. First we set up the form
that will deal with our navigation form elements:

...
<form method="post" tal:attributes="action here/absolute_url_path"
 name="[MYFORM]"
>
<script type="text/javascript"
 src="/zport/portal_skins/zenmodel/submitViaEnter.js"
>
</script>

Next, we set up our table, defining the objects we want to list (in this case, here/devices/getSubDevicesGen). We
then pass those objects, along with a unique tableName, to ZenTableManager, which will return a batch of those
objects of the right size (for paging purposes):

<table class="zentable"
tal:define="objects here/devices/getSubDevicesGen;
tableName string:myDeviceTable;
batch python:here.ZenTableManager.getBatch(tableName, objects)"
tal:condition="python:batch or
here.ZenTableManager.getTableState(tableName, 'filter')"
>

Next, a table header and a couple of hidden fields:

<tr>
<th class="tabletitle" colspan="2"
> <!--Colspan will of course change with the number of fields you show-->
My Devices
</th>
</tr>
<input type='hidden' name='tableName' tal:attributes='value tableName'
 />
<input type='hidden' name='zenScreenName' tal:attributes='value template/id'
 />

Now we add the rows that describe our devices. First we need to set up the column headers so that they'll be
clickable for sorting. For that, we use ZenTableManager.getTableHeader(tableName, fieldName,
fieldTitle, sortRule="cmp").

<tbody>

Extending the User Interface

112

<tr>
<!--We want to sort by names using case-insensitive comparison-->
<th tal:replace="structure python:here.ZenTableManager.getTableHeader(
tableName, 'primarySortKey', 'Name', 'nocase')"
>name</th>
<!--Default sortRule is fine for IP sorting-->
<th tal:replace="structure python:here.ZenTableManager.getTableHeader(
tableName, 'getDeviceIp', 'IP')"
>ip</th>
</tr>

Now the data themselves. In order to have our rows alternate colors, we'll use the useful TALES attribute odd,
which is True for every other item in a tal:repeat loop.

<tal:block tal:repeat="device batch"
>
<tr tal:define="odd repeat/device/odd"
tal:attributes="class python:test(odd, 'odd', 'even')"
>
<td class="tablevalues"
>
<a class="tablevalues" href="href"
tal:attributes="href device/getDeviceUrl"
tal:content="device/id"
>device

</td>
<td class="tablevalues"
tal:content="device/getDeviceIp"
>ip</td>
</tr>
</tal:block>
</tbody>

Finally, let's add the navigation tools we need and close off our tags.

<tr>
<td colspan="2" class="tableheader"
>
<span metal:use-macro="here/zenTableNavigation/macros/navbodypagedevice"
 />
</td>
</tr>

</table>
</form>

12.6.5. Creating an Editable Table
But what if you want to be able to edit devices from this table? The process is simple. First, you add a checkbox
to the first column of your device list:

Extending the User Interface

113

<td class="tablevalues" align="left"
>
<!--Now add your checkbox, defining the list of devices as "deviceNames"-->
<input tal:condition="here/editableDeviceList"
type="checkbox" name="deviceNames:list"
tal:attributes="value device/getRelationshipManagerId"
/>
<!--Then the first column contents as above-->
<a...>device
</td>

Now that we can choose devices from the list, we need the controls to edit them. In this case, we'll use a macro
defining controls that allow a device to be moved to a different device class. Just add the macro call to the end
of your table:

...
</tr>
<!--Add controls here-->
<tal:block tal:condition="here/editableDeviceList"
tal:define="numColumns string:5"
> <!--This macro includes the <tr> tag, so we need to pass it colspan-->
<span metal:use-macro="here/deviceListMacro/macros/deviceControl"
 />
</tal:block>

</table>
</form>

12.6.6. How to Save Properties via an Edit Screen
Creating a new Edit Form.

Add form input fields

Add a boolean type:

...
<select class="tablevalues"
tal:attributes="name MyBooleanProperty:boolean"
>
<option tal:repeat="boolProp python:(True,False)" tal:content="boolProp"
tal:attributes="value boolProp;
 selected python:boolProp==here.getMyBooleanProperty()"
/>
</select>
...

This block of code creates a select dropdown with two options: True and False. The select dropdown is pre-
populated with the value returned by getMyBooleanProperty(). The value of this form field will be stored
in the attribute MyBooleanProperty.

Extending the User Interface

114

Add a text box type:

...
<textarea class="tablevalues" rows='5' cols="33"
tal:attributes="name MyTextProperty:text"
tal:content="here/getMyTextProperty"
>
</textarea>
...

This block of code creates a text box.The text box is prepopulated with the string value returned by getMy-
TextBoxProperty(). The value of this form field will be stored in the attribute MyTextBoxProperty.

Add a text type:

...
<input class="tablevalues" type="text" size="40"
tal:attributes="value here/getMyStringProperty; name MyStringProperty"
/>
...

This block of code creates a text field. The text field is prepopulated with the string value returned by getMyS-
tringProperty(). The value of this form field will be stored in the attribute MyStringProperty.

Add a select dropdown type:

...
<select class="tablevalues"
tal:attributes="name MySelectProperty"
>
<option tal:repeat="propOption here/getMySelectPropertyOptions"
tal:content="propOption"
tal:attributes="value propOption;
 selected python:propOption==getMySelectProperty()"
 />
</select>
...

This block of code creates a select dropdown where the option value and displayed option string are the same. A
list of option values are returned by getMySelectPropertyOptions. The select dropdown is pre-populated
by the value in getMySelectProperty. The value of this form field will be stored in the attribute MySelectProperty.

...
<select class="tablevalues"
tal:attributes="name MySelectProperty:int"
>
<option tal:repeat="propOptionTuple here/getMySelectPropertyOptionTuples"
tal:content="python:propOptionTuple[0]"
tal:attributes="value propOptionTuple[1];

Extending the User Interface

115

 selected python:propOptionTuple[1]==getMySelectProperty()"
 />
</select>
...

This block of code creates a select dropdown where the option value is an integer and displayed option is a string.
A list of tuples containing the option values and displayed option string are returned by getMySelectProper-
tyOptionTuples. The select dropdown is pre-populated by the value in getMySelectProperty. The value of this
form field will be stored in the attribute MySelectProperty.

Add the form action

...
<form id='MyForm' method="post" tal:attributes="action here/absolute_url_path"
>
...

The form action should be set to a function (i.e. here/absolute_url_path) that returns the path to the object
being edited.

...
<input class="tableheader" type="submit"
name="saveProperties:method" value=" Save "
 />
...

This submit button name will be in the format saveProperties:method. saveProperties is the method
name that will be executed when the submit button is clicked.

Add the save() method

...
def saveProperties(self, REQUEST=None):
 """Save all Properties found in the REQUEST.form object. """
 for name, value in REQUEST.form.items():
 if getattr(self, name, None) != value:
 self.setProperty(name, value)

 return self.callZenScreen(REQUEST)
...

Create a saveProperty() method in the effective object.

12.7. Creating a Dashboard Portlet
There are just a few distinct steps to creating a custom dashboard portlet:

• Create the ZenPack as a container to hold everything

• Write the Python code that will define the back-end data methods

Extending the User Interface

116

• Write the JavaScript code defining the portlet

• Testing the new ZenPack

This tutorial will walk through examples of each of these in the creation of a simple portlet that provides a table
listing links to reports under a given ReportClass.

12.7.1. Create a ZenPack
First, set up the directory structure by going into Zenoss, and from the navigation bar, go to the Settings area. From
here, click on the ZenPacks tab and from the page menu select the Create a ZenPack... menu item.

For the sake of our example, we'll use the name ZenPacks.myexample.portlet as the name for our
new ZenPack. When we take a look at the ZenPack from the filesystem level in the $ZENHOME/Zen-
Packs/ZenPacks.myexample.portlet/Zenpacks/myexample/portlet , directory, we should see
the following

ReportListPortletPack/
__init__.py
ReportListPortlet.js

Next, add the following Python code to __init__.py:

import Globals
import os.path

skinsDir= os.path.join(os.path.dirname(__file__), 'skins')
from Products.CMFCore.DirectoryView import registerDirectory
if os.path.isdir(skinsDir):
 registerDirectory("skins", globals())

This satisfies the ZenPack requirements for the skins directory.

The skins directory is required, although you won't be using it in this portlet. Normally it contains Zope templates
specific to your ZenPack.

The __init__.py is a requirement for Python modules (of which Zope products, and by extension ZenPacks, are
a type). When the ZenPack is loaded on Zenoss startup, code in __init__.py will be run. This is where you'll
place the back-end functions so that your portlet gets attached to the Zenoss portal object and made available to
the portlet front-end.

Finally, you'll need to make a ZenPack object so that you can hook into installation, upgrade and removal methods,
as well as to register and unregister your portlet. Add the following code into __init__.py:

from Products.ZenModel.ZenPack import ZenPackBase

class ZenPack(ZenPackBase):
 """
 Portlet ZenPack class
 """

Extending the User Interface

117

 def install(self, app):
 """
 Initial installation of the ZenPack
 """
 ZenPackBase.install(self, app)

 def upgrade(self, app):
 """
 Upgrading the ZenPack procedures
 """
 ZenPackBase.upgrade(self, app)

 def remove(self, app, leaveObjects=False):
 """
 Remove the ZenPack from Zenoss
 """
 # NB: As of Zenoss 2.2, this function now takes three arguments.
 ZenPackBase.remove(self, app, leaveObjects)

As you can see, nothing special has been done yet; that will come later.

12.7.2. Write the Python back-end code
Since the ReportListPortlet will present its information as tabular data, you'll be using the JavaScript YUI
library's TableDatasource on the front-end (more about that in the next section). That datasource accepts data
as a JSON object with the following structure:

 {
 'columns': ['Column1', 'Column2'],
 'data': [
 {
 'Column1':'row 1 value',
 'Column2':'another row 1 value'
 },
 {
 'Column1':'row 2 value',
 'Column2':'another row 2 value'

 }
]
 }

Thus you need a method in Zenoss to structure your list of reports accordingly and serialize it as JSON. You then
need to place that method in Zenoss so that it's accessible to the browser via an ordinary HTTP request. This method
should accept a path to a ReportClass whose reports are to be listed.

Here's the final method (we'll go through it piece by piece in a moment):

 import simplejson

 def getJSONReportList(self, path='/Device Reports'):

Extending the User Interface

118

 """
 Given a report class path, returns a list of links to child
 reports in a format suitable for a TableDatasource.
 """

 # This function will be monkey-patched onto zport, so
 # references to self should be taken as referring to zport

 # Add the base path to the path given
 path = '/zport/dmd/Reports/' + path.strip('/')

 # Create the empty structure of the response object
 response = { 'columns': ['Report'], 'data': [] }

 # Retrieve the ReportClass object for the path given. If
 # nothing can be found, return an empty response
 try:
 reportClass = self.dmd.unrestrictedTraverse(path)
 except KeyError:
 return simplejson.dumps(response)

 # Get the list of reports under the class as (url, title) pairs
 reports = reportClass.reports()
 reportpairs = [(r.absolute_url_path(), r.id) for r in reports]

 # Iterate over the reports, create links, and append them to
 # the response object
 for url, title in reportpairs:
 link = "%s" % (url, title)
 row = { 'Report': link }
 response['data'].append(row)

 # Serialize the response and return it
 return simplejson.dumps(response)

 # Monkey-patch onto zport
 from Products.ZenModel.ZentinelPortal import ZentinelPortal
 ZentinelPortal.getJSONReportList = getJSONReportList

This function will be defined in __init__.py.

First, you'll need simplejson to serialize the response:

 import simplejson

That's it for the method. This should now be in __init__.py. Next, set up the monkey-patch by importing
zport's class:

 from Products.ZenModel.ZentinelPortal import ZentinelPortal

Then set your function as a class method:

 ZentinelPortal.getJSONReportList = getJSONReportList

Extending the User Interface

119

And that's it! Now this method is accessible wherever zport is; for example, via HTTP:

http://myzenoss:8080/zport/getJSONReportList?path=Device%20Reports

12.7.3. Write the JavaScript Portlet
Zenoss portlets rely on elements of both the MochiKit and Yahoo! UI JavaScript libraries. JavaScript is a proto-
type-based language, not a class-based language; as a result, innumerable efforts have been made to create class-like
JavaScript objects. Zenoss is no exception. It does not use YUI's class-like objects, but instead its own constructor,
based on the Prototype library's Class, that allows simple subclassing.

Similarly, Zenoss uses its own Datasource object that wraps around YUI's DataSource component; this allows
for the use of datasource subclassing, as well as simple JSON serialization.

As a result of using these custom components, creating a new Portlet is fairly straightforward. Each portlet must
have a corresponding Datasource, which handles communication with the server.

The ReportListPortlet will use the predefined TableDatasource, so no separate datasource class definition is
needed. See $ZENHOME/Products/ZenWidgets/ZenossPortlets/GoogleMapsPortlet.js for an
example of a customized datasource.

The global YAHOO object defines a namespace; YAHOO.zenoss is where all custom Zenoss components are stored.
The complete portlet definition, which should be placed in ReportListPortlet.js, follows. As before, we'll
go over it step by step in a moment.

 var ReportListPortlet = YAHOO.zenoss.Subclass.create(
 YAHOO.zenoss.portlet.Portlet);

 ReportListPortlet.prototype = {

 // Define the class name for serialization
 __class__:"YAHOO.zenoss.portlet.ReportListPortlet",

 // __init__ is run on instantiation (feature of Class object)
 __init__: function(args) {

 // args comprises the attributes of this portlet, restored
 // from serialization. Take them if they're defined,
 // otherwise provide sensible defaults.
 args = args || {};
 id = 'id' in args? args.id : getUID('ReportList');
 title = 'title' in args? args.title: "Reports";
 bodyHeight = 'bodyHeight' in args? args.bodyHeight:200;

 // You don't need a refresh time for this portlet. In case
 // someone wants one, it's available, but default is 0
 refreshTime = 'refreshTime' in args? args.refreshTime: 0;

 // The datasource has already been restored from
 // serialization, but if not make a new one.
 datasource = 'datasource' in args? args.datasource :
 new YAHOO.zenoss.portlet.TableDatasource({

 // Query string will never be that long, so GET

Extending the User Interface

120

 // is appropriate here
 method:'GET',

 // Here's where you call the back end method
 url:'/zport/getJSONReportList',

 // Set up the path argument and set a default ReportClass
 queryArguments: {'path':'/Device Reports'}
 });

 // Call Portlet's __init__ method with your new args
 this.superclass.__init__(
 {id:id,
 title:title,
 datasource:datasource,
 refreshTime: refreshTime,
 bodyHeight: bodyHeight
 }
);

 // Create the settings pane for the portlet
 this.buildSettingsPane();
 },

 // buildSettingsPane creates the DOM elements that populate the
 // settings pane.
 buildSettingsPane: function() {

 // settingsSlot is the div that holds the elements
 var s = this.settingsSlot;

 // Make a function that, given a string, creates an option
 // element that is either selected or not based on the
 // settings you've already got.
 var getopt = method(this, function(x) {
 opts = {'value':x};
 path = this.datasource.queryArguments.path;
 if (path==x) opts['selected']=true;
 return OPTION(opts, x); });

 // Create the select element
 this.pathselect = SELECT(null, null);

 // A function to create the option elements from a list of
 // strings
 var createOptions = method(this, function(jsondoc) {
 forEach(jsondoc, method(this, function(x) {
 opt = getopt(x);
 appendChildNodes(this.pathselect, opt);
 }));
 });

 // Wrap these elements in a DIV with the right CSS class,

Extending the User Interface

121

 // and give it a label, so it looks pretty
 mycontrol = DIV({'class':'portlet-settings-control'}, [
 DIV({'class':'control-label'}, 'Report Class'),
 this.pathselect
]);

 // Put the thing in the settings pane
 appendChildNodes(s, mycontrol);

 // Go get the strings that will populate your select element.
 d = loadJSONDoc('/zport/dmd/Reports/getOrganizerNames');
 d.addCallback(method(this, createOptions));
 },

 // submitSettings puts the current values of the elements in
 // the settingsPane into their proper places.
 submitSettings: function(e, settings) {

 // Get your ReportClass value and put it in the datasource
 var mypath = this.pathselect.value;
 this.datasource.queryArguments.path = mypath;

 // Call Portlet's submitSettings
 this.superclass.submitSettings(e, {'queryArguments':
 {'path': mypath}
 });
 }
 }
 YAHOO.zenoss.portlet.ReportListPortlet = ReportListPortlet;

The dashboard template loads all the dependencies for portlets, including the two important ones:
YAHOO.zenoss.Subclass and YAHOO.zenoss.portlet.Portlet.

First, create your ReportListPortlet as a subclass of YAHOO.zenoss.portlet.Portlet (which is de-
fined in $ZENHOME/Products/ZenWidgets/skins/zenui/javascript/portlet.js, if you care
to look at its code):

 var ReportListPortlet = YAHOO.zenoss.Subclass.create(
 YAHOO.zenoss.portlet.Portlet);

Most of the Portlet class's options are fine here; you'll be adding a select element to the settings pane, to
select the base report class, and defining a TableDatasource, to get data from your server-side method.
To customize the subclass, modify the prototype object of the portlet. When ReportListPortlet is
called as a constructor, the attributes of Portlet's prototype are copied to ReportListPortlet, ex-
cept for those that ReportListPortlet has defined itself. Portlet's prototype is also made available as
ReportListPortlet.superclass.

 ReportListPortlet.prototype = {

The __class__ attribute will be used when the portlet is restored from serialization. It points to the correct code, so
define it as the eventual place of your Portlet in the YAHOO.zenoss namespace.

 __class__:"YAHOO.zenoss.portlet.ReportListPortlet",

Extending the User Interface

122

The __init__ method is called when a ReportListPortlet is created (a feature of
YAHOO.zenoss.Class). The entity that restores portlets from saved settings will pass in an object containing
those settings as attributes, so you'll need to go through those, making any changes necessary and supplying defaults
if settings don't exist.

 __init__: function(args) {

 args = args || {};
 id = 'id' in args? args.id : getUID('ReportList');
 title = 'title' in args? args.title: "Reports";
 bodyHeight = 'bodyHeight' in args? args.bodyHeight:200;
 refreshTime = 'refreshTime' in args? args.refreshTime: 0;

In the process of iterating over settings, the method will come across the datasource. If it doesn't exist yet, you'll
need to create one. Since these are tabular data, you'll use TableDatasource.

 datasource = 'datasource' in args? args.datasource :
 new YAHOO.zenoss.portlet.TableDatasource({

 method:'GET',

Set the datasource's url to the path to the method on zport that you wrote previously:

 url:'/zport/getJSONReportList',

And set up the arguments that get passed to that method, providing a default:

 this.superclass.__init__(
 {id:id,
 title:title,
 datasource:datasource,
 refreshTime: refreshTime,
 bodyHeight: bodyHeight
 }
);

Since you're going to have a modified settings pane, containing the select element by which the base ReportClass
is chosen, you'll need to call a method to add that to the default elements.

 this.buildSettingsPane();
 },

Now write that method, since you've finished the initialization.

 buildSettingsPane: function() {

Portlet.settingsSlot is the reference to the div element that contains the settings pane.

 var s = this.settingsSlot;

Since your settings pane will include a select element, you'll need to create options to be chosen, using MochiKit's
OPTION(); also, you want the select element to show the current value. This function will accept a string repre-
senting an existing ReportClass and build an option element, setting it as selected if it matches the current value.

Extending the User Interface

123

 var getopt = method(this, function(x) {
 opts = {'value':x};
 path = this.datasource.queryArguments.path;
 if (path==x) opts['selected']=true;
 return OPTION(opts, x); });

Now create the select element to hold the options, again using MochiKit's SELECT():

 this.pathselect = SELECT(null, null);

Set up the function that accepts a list of strings and iterates over them, turning them into options and appending
them to your select element:

 var createOptions = method(this, function(jsondoc) {
 forEach(jsondoc, method(this, function(x) {
 opt = getopt(x[0]);
 appendChildNodes(this.pathselect, opt);
 }));
 });

Now put the (currently empty) select element into a div with the proper CSS class defined, so that it will organize
itself properly in the settings pane, and have a label:

 mycontrol = DIV({'class':'portlet-settings-control'}, [
 DIV({'class':'control-label'}, 'Report Class'),
 this.pathselect
]);

 appendChildNodes(s, mycontrol);

Finally, you're ready to get the data for all of your option elements. You'll use MochiKit's handy loadJSONDoc(),
which accepts a URL, fires off an XHR, parses the response text as JSON, and returns a JavaScript object, with
which you'll call back to your option-building method:

 d = loadJSONDoc('/zport/dmd/Reports/getOrganizerNames');
 d.addCallback(method(this, createOptions));
 },

Lastly, you need to hook into the method that saves changed settings, so it will include your ReportClass string:

 submitSettings: function(e, settings) {

 var mypath = this.pathselect.value;
 this.datasource.queryArguments.path = mypath;

 // Call Portlet's submitSettings
 this.superclass.submitSettings(e, {'queryArguments':
 {'path': mypath}
 });
 }
 }

All that's left is to assign the ReportListPortlet constructor to the YAHOO.zenoss namespace:

Extending the User Interface

124

 YAHOO.zenoss.portlet.ReportListPortlet = ReportListPortlet;

12.7.4. Register the portlet
Now you need to tell Zenoss about the portlet and assign permissions. Open up __init__.py again, and add the
following Python code to the top:

from Products.ZenModel.ZenossSecurity import ZEN_COMMON
from Products.ZenUtils.Utils import zenPath

Next, modify the ZenPack class you defined way back in step 1. Since upgrading and installing the portlet will
amount to the same thing, create a method on your ZenPack class to cover those steps:

def _registerReportListPortlet(self, app):
 zpm = app.zport.ZenPortletManager
 portletsrc = zenPath('Products', 'ReportListPortletPack',
 'ReportListPortlet.js')
 zpm.register_portlet(
 sourcepath=portletsrc,
 id='ReportListPortlet',
 title='Report List',
 permission=ZEN_COMMON)

That method will let ZenPortletManager, the object on zport that, unsurprisingly, manages portlets, know
about the portlet source code. The zenPath() function is a utility that joins strings together to create a filesystem
path under $ZENHOME -- in this case, pointing to the directory where your ZenPack will be installed. When regis-
tering a portlet, you provide an id, a title, and the permissions for the portlet (as this portlet should be visible to
everyone, ZEN_COMMON is the appropriate permission).

Now you can modify your install(), upgrade() and remove() methods:

def install(self, app):
 ZenPackBase.install(self, app)
 self._registerReportListPortlet(app)

def upgrade(self, app):
 ZenPackBase.upgrade(self, app)
 self._registerReportListPortlet(app)

def remove(self, app):
 ZenPackBase.remove(self, app) zpm =
 app.zport.ZenPortletManager
 zpm.unregister_portlet('ReportListPortlet')

Save and exit. You can test your ZenPack at this point by navigating to the parent directory of ReportList-
PortletPack and running:

zenpack --install ReportListPortletPack

Extending the User Interface

125

Load up the Zenoss UI in your browser and click Add Portlet on your dashboard. Make sure the Report List portlet
appears as an option. If so, add one and check that you can change the base ReportClass. Also make sure it
shows reports.

Now all that's left is to export the ZenPack from Zenoss. From the ZenPacks tab under Settings, click on your
new ZenPack. From the page menu, select the Export ZenPack... menu item. That will create a new egg file called
ZenPacks.myexample.portlet.egg. Distribute away!

12.8. Debugging Tips
There are quite a number of components used in order to create the Zenoss interface, and it can be quite a challenge
to understand what's happening and how to fix issues. The following are a list of some simple debugging tips:

• Use page templates rather than full HTML pages whenever possible. There are a number of dependencies between
CSS, JavaScript and other components, and doing it the hard way can be really hard. Trying to do things the hard
way in a cross-browser fashion is exceptionally difficult. As a side benefit, using the page templates means that
your pages will benefit from any improvements in the base product.

• Run FireFox version 3.x or better, and examine the Error Console to find out what JavaScript errors are occurring.
There will be tons of CSS issues coming from different CSS pages (it's annoying, but not fatal), but you can
safely ignore them.

• The Firefox Error Console will not tell you if Firefox wasn't able to find or load a JavaScript file (ie the path
you've specified in your web page to get to the JavaScript file is incorrect). In order to determine if Zope was
given a path to a filename that it couldn't find, you'll need to go into Zope's ZMI, go to the error log (eg http://
yourzenossserver:8080/error_log/manage) and remove all of the error log filters. After you do that, retry the
operation and you can see what files Zope wasn't able to find and fix the paths in your page.

126

Chapter 13. Reports
13.1. Adding a New Report

Zenoss reports are simply HTML pages that use TALES markup. For a more thorough discussion, see Chapter 12,
Extending the User Interface .
Adding a report through the ZMI is currently not working as advertised in this section and needs to be fixed.

New pages can be created using the Zope Management Interface (ZMI) interface. Navigate to this url on your Zenoss
server:
http://yourzenossserver:8080/zport/dmd/Reports

You can add a report at this point in the Reports tree by adding "/manage" to the URL in your browser:
http://yourzenossserver:8080/zport/dmd/Reports/manage

Here you can select Report from the menu on the right, and add a new Report. Name it "test" and save it. After
you see your new "test" report, leave the ZMI by selecting the "test" object, and then selecting the Test tab at the
top of the page.

You will then see a sample page:

Reports

This is Page Template test.

If we use some TALES templates, we can get a test page that has the Zenoss look and feel. Navigate back to our
test page under the ZMI:
http://localhost:8080/zport/dmd/Reports/test/manage

Now change the text to this:

<tal:block metal:use-macro="here/reportMacros/macros/exportableReport"
>
<tal:block metal:fill-slot="report"
>
<tal:block metal:use-macro="here/templates/macros/page1"
>
<tal:block metal:fill-slot="breadCrumbPane"
>
<span metal:use-macro="here/miscmacros/macros/reportBreadCrumbsList"
/>
</tal:block>
<tal:block metal:fill-slot="contentPane"
>
<h1>Reports</h1>
This is Page Template <i tal:content='here/title_or_id'
/>.
</tal:block>
</tal:block>
</tal:block>

Reports

127

</tal:block>

The meat of a report goes here:

<tal:block metal:fill-slot="contentPane"
>

...

</tal:block>

Typically, a list of records is pulled from the database, summarized, and then shown in a table using the TALES
markup.

Although you can make changes and save them using the web interface, it is a cumbersome editor. It is simpler to
make the changes to an external file and reload it. If you store your file in the $ZENHOME/Products/ZenRe-
ports/reports directory, you can load it in with the ReportLoader?:

$ cd $ZENHOME/Products/ZenReports

$ python ReportLoader.py --force

13.2. Plugins
Reports are often summaries which are not tied to a particular object. Instead of adding code to objects to make them
available in the page template, you can put the python code for a report in the $ZENHOME/Products/ZenRe-
ports/plugin directory.

You can execute a plugin using this tal:block:

<tal:block tal:define="
objects python:here.ReportServer.plugin('cpu', here.REQUEST);
"

...

</tal:block>

Plugins are executed every time a report is run, and do not require a Zope restart to get pick up changes. With help
from the ZenReports? Plugin module, you can even test the reports from the command line. This further reduces
the number of times that Zope is used as a development environment.

See the examples in the plugins directory.

13.3. Adding Export Buttons to Reports
Adding an Export All button to a report is fairly straightforward. The overall format of the report markup looks
something like this:

Reports

128

<tal:block tal:define="
objects python:here.ZenUsers.getAllThingsForReport();
objects python: (hasattr(request, 'doExport') and list(objects)) or objects;
tableName string: thisIsTheTableName;
batch python:here.ZenTableManager.getBatch(tableName,objects,
sortedHeader='getUserid');
exportFields python:['getUserid', 'id', 'delay',
'enabled', 'nextActiveNice', 'nextDurationNice',
'repeatNice', 'where'];
"
>
<tal:block metal:use-macro="here/reportMacros/macros/exportableReport"
>
<tal:block metal:fill-slot="report"
>

The normal report markup goes here

</tal:block>
</tal:block>
</tal:block

The first definition is a call to some method that retrieves the objects for the report. This might be a list, tuple or
an iterable class.

If we are doing an export then we need this to be a list, so the second tal:define line makes sure we have a list
in the event that we are doing an export. It's good to not do this if we are not doing an export. Large reports might
run into performance issues if an iterable is converted to a list unnecessarily.

tablename is defined here for use by the getBatch() call that follows.

exportFields is a list of data to be included in the export. These can be attribute names or names of methods
to call. See DataRoot.writeExportRows() for more details on what can be included in this list.

Within the <tal:block metal:fill-slot="report"></tal:block> block goes the report markup
you would use when not including the export functionality.

Note
If the Export All button is mysteriously not doing anything you may need to be using zenTableNav-
igation/macros/navtool rather than zenTableNavigation/macros/navbody in your report. The former
includes the <form> tag, the latter does not. If you are not providing a <form> tag then you need to
use navtool so the export button is within a form.

129

Chapter 14. Migrating Zenoss Code
Note
This section is not intended for ZenPack writers but for people modifying the core code (eg files under
the $ZENHOME/Products/ directory). If you are migrating code in a ZenPack, see Section 3.5.1,
“Migrating between versions” .

14.1. Introduction and Steps
If you have added new functionality to Zenoss that will break backwards compatibility, you need to provide code
for your version that will allow users to upgrade without breakage.

Here's a breakdown of everything you will need to do in order to create your migration code and move your new
code into production:

1. Create your code in the $ZENHOME/Products/ZenModel/migrate/migrate package directory.

2. Add an import statement to __init__.py

3. Run zenmigrate --dont-commit iteratively to test

14.2. How It Works
The first place to look is in Products/ZenModel/migrate. For starters, examine the code in
migrate.Migrate and note the Step class - this is what you will subclass when writing your migration code.
The migrate.Migrate.Migration.main() method is what is called from the zenmigrate.py script
and is what fires off the whole process.

To further understand the process, note the global variable allSteps: this is appended to every time Migrate.Step
is instantiated.

But, you ask, how does my code get into allSteps?

Once your migration code is complete, you will do a couple things: add your file to the migrate directory and then add
an import statement to migrate/__init__.py. When migrate.Migrate is imported in the zenmigrate.py
script, the __init__.py code is run. Each module imported by this file has a class that gets instantiated at the end
of its module (see the Migrate.Step.__init__() method). It is through this mechanism that each custom
migration module in the migrate directory is added to allSteps (sorted by name and version number).

When migrate.Migrate.main() is called, allSteps is iterated and checks are performed to see if each
migration step needs to be run or not. main() calls cutover(), which calls migrate(), and this is where the
actual work of migration occurs, where your code gets executed.

14.3. What You Write
As noted, your migration code will subclass migrate.Migrate.Step. You can stub your migration file out
like this:

__doc__='''My migration code'''

Migrating Zenoss Code

130

from Acquisition import aq_base

import Migrate

class MyMigrateCode(Migrate.Step):
 version = Migrate.Version(1, 1, 0)
 # The above needs to be updated to the appropriate version
 # ie a version above the previously-released version of Zenoss

 def cutover(self, dmd):
 pass

MyMigrateCode()

You will need to do the following to this code:

1. Fill in the doc string

2. Update the version passed to Migrate.Version

3. Update the cutover() method with actual code

4. Add any supporting code you might need that doesn't strictly belong in cutover()

14.3.1. Implement cutover()
Implementation is very straight-forward: you get the dmd object passed into the cutover() method, thus giving
you access to nearly every part of Zenoss. The only thing you don't have direct access to is the portal object. But
you can easily get that by calling dmd.getPhysicalRoot().

Implementation details are 100% dependent upon what part of Zenoss you are migrating -- if you look at the current
migration scripts (in trunk), you will get a good sense of the diversity as well as many examples from which to work.

Changes made to the ZODB database (dmd and associated objects hierarchies) are committed back to the database
unless the --dont-commit flag is passed to zenmigrate. The --dont-commit lets the developer repeatedly
run a script and debug without making permanent changes to the database. If your migrate script makes changes
outside of the Zope database it should probably implement Step.revert() to undo any changes it has made.

14.3.2. Supporting Code
Supporting code is just modularization. If you're going to be using a function (or method) more than once, just break
it out of the cutover() method. This will make maintenance easier and will allow those who come after you to
see the intent of the migration code more quickly.

14.3.3. Testing and Deployment
Once your code meets with your approval (and that of the Zenoss development team), you are free to name
it something appropriate and save it to Products/ZenModel/migrate. Upon adding your migration mod-
ule, you must now edit Products/ZenModel/migrate/__init__.py so that it gets imported when
zenmigrate.py is run.

After adding your script (and after every change you make to your new script), be sure to run zenmigrate run. Here
are some things you can do to help ensure quality:

Migrating Zenoss Code

131

1. Load Zenoss in a web browser, and navigate to the part of the application that was impacted by your migration
script

2. Look at the log files for error output

3. Load up zendmd from the command line and make sure that no errors are generated when using the part of the
API impacted by the change

After someone reviews the changes, your migration code is ready for deployment.

132

Chapter 15. Testing
15.1. Zenoss Unit Tests

15.1.1. Introduction
There are different types of test strategies which attempt to determine changes in behavior and errors.

Table 15.1. Types of Testing

Test Type Description

Python doctest Simple tests in the documentation for a function.

Unit Tests Test functions in a module together using the runtests command.

Functional Testing Try to test the software as the user would use the software. Selenium is used to test
multiple web browsers to simulate actual use.

Load Testing Attempts to determine how many operations the system is capable of performing with
the provided configuration.

15.1.2. doctest Testing
A handy feature of Python is the ability to include simple tests in the docstring for a function [http://
docs.python.org/library/doctest.html]. This allows the programmer to see some of the normal cases and boundary
conditions, but it also allows the programmer to run sanity checks on the the function by running the Python doctest
utilities.

First, a complete sample file (blue.py) to illustrate:

import os
from exceptions import ValueError

def myfunc(a, b):
 """
 Determine if a likes b.

 >>> myfunc(0, 0)
 True
 >>> myfunc(0, 1)
 False

 # Comments in-between tests should be separated with an extra line,
 # otherwise doctest will notify you of an error.
 # This should raise an exception
 >>> myfunc(0, "bad")
 Traceback (most recent call last):
 ValueError: Argument is bad
 """
 if a == "bad" or b == "bad":
 raise ValueError("Argument is bad")

http://docs.python.org/library/doctest.html
http://docs.python.org/library/doctest.html
http://docs.python.org/library/doctest.html

Testing

133

 return a == b

if __name__ == "__main__":
 import doctest
 doctest.testmod()

Now we can test our module by running Python with the -v flag:

$ python blue.py -v
Trying:
 myfunc(0, 0)
Expecting:
 True
ok
Trying:
 myfunc(0, 1)
Expecting:
 False
ok
1 items had no tests:
 __main__
1 items passed all tests:
 2 tests in __main__.myfunc
2 tests in 2 items.
2 passed and 0 failed.
Test passed.

Note

The -v flag gets passed to your program, not to Python!

15.1.3. Zenoss' Test Runner
Zenoss has a Zope product, ZenTestRunner, whose sole purpose it to run a specific group of tests. We did this in
order to avoid running all the tests in the Products directory if you only want to run tests on a specific portion
of Zenoss.

Note

Do NOT run unit tests on a production server!

Some of the tests are destructive in nature (eg 'delete all events') and are intended to be used only on
a development server.

All of our examples should be run as the zenoss user. If you really want to run all of the tests:

$ runtests -t unit

Tip

If you are running a Selenium server, then you can use runtests to run the unit tests and the Selenium
tests. To run the Selenium tests on there own:

Testing

134

$ runtests -t selenium

To run all of the ZenModel tests:

runtests ZenModel

All that is required by developers is that they add tests into the tests directory that has a __init__.py contained
inside that directory.

1. Run the existing tests to make sure that you know what to expect:

runtests -t unit

2. Go to the tests directory inside of the directory with the classes you want tested:

cd $ZENHOME/Products/ZenModel/tests

3. Copy one of the existing tests to a name reflecting the product for which you are adding tests:

cp testZenModel.py
 testZenNewProduct.py

Note

Your new test script must contain the prefix test in the filename. So testmytest.py will
work, but not mytest or mytest.py.

4. Change the import line in the new file to reflect the new product name:

from Products import ZenNewProduct as product

5. Save and quit, then run the test suites to make sure everything is passing:

$ runtests -t unit ZenModel

Note

Follow the same procedures as above for ZenPacks, with the following differences:

• Make sure that your ZenPack has the tests directory in it (eg $ZENHOME/Zen-
Packs/ZenPacks.org.zpname-version info.egg/ZenPacks/org/zpname/
tests), containing an __init__.py file and your new test script.

• The runtests doesn't currently understand Python Egg-style namespaces, so only the last part of the
ZenPack name is used. For example, if our ZenPack's name was ZenPacks.org.zpname

$ runtests -t unit zpname

15.1.3.1. An Example Unit Test

This first unit test deliberately has an error it, but we'll show what happens and how we can make it better.

Testing

135

from xmlrpclib import ServerProxy
from Products.ZenTestCase.BaseTestCase import BaseTestCase

class TestXmlRpc(BaseTestCase):

 def setUp(self):
 self.baseUrl = 'http://admin:zenoss@NotExistServer:8080/zport/dmd/'
 self.testdev = 'xmlrpc_testdevice'

 def testSendEvent(self):
 serv = ServerProxy(self.baseUrl + 'ZenEventManager')
 evt = {
 'device':'xmlrpcTestDevice',
 'component':'eth0',
 'summary':'eth0 is down',
 'severity':4,
 'eventClass':'/Net'
 }
 serv.sendEvent(evt)

def test_suite():
 from unittest import TestSuite, makeSuite
 suite = TestSuite()
 suite.addTest(makeSuite(TestXmlRpc))
 return suite

First, notice that our test has to fail as the server that we're trying to reach (NotExistServer) doesn't exist. Here's
the output when we run it from the command-line.

 $ runtests -t unit -n testXMLRPC ZenModel
Running tests via: /opt/zenoss/bin/python /opt/zenoss/bin/test.py -v
--config-file /opt/zenoss/etc/zope.conf --libdir /opt/zenoss/Products/ZenModel
 testXMLRPC
Running unit tests at level 1
Running unit tests from /opt/zenoss/Products/ZenModel
Parsing /opt/zenoss/etc/zope.conf
E
==
ERROR: testSendEvent (tests.testXMLRPC.TestXmlRpc)
--
Traceback (most recent call last):
 File "/opt/zenoss/lib/python/Testing/ZopeTestCase/profiler.py", line 98,
 in __call__
 testMethod()
 File "/opt/zenoss/Products/ZenModel/tests/testXMLRPC.py", line 34,
 in testSendEvent
 serv.sendEvent(evt)
 File "/opt/zenoss/lib/python2.4/xmlrpclib.py", line 1153, in __call__
 return self.__send(self.__name, args)
 File "/opt/zenoss/lib/python2.4/xmlrpclib.py", line 1440, in __request
 verbose=self.__verbose

Testing

136

 File "/opt/zenoss/lib/python2.4/xmlrpclib.py", line 1186, in request
 self.send_content(h, request_body)
 File "/opt/zenoss/lib/python2.4/xmlrpclib.py", line 1300, in send_content
 connection.endheaders()
 File "/opt/zenoss/lib/python2.4/httplib.py", line 798, in endheaders
 self._send_output()
 File "/opt/zenoss/lib/python2.4/httplib.py", line 679, in _send_output
 self.send(msg)
 File "/opt/zenoss/lib/python2.4/httplib.py", line 646, in send
 self.connect()
 File "/opt/zenoss/lib/python2.4/httplib.py", line 614, in connect
 socket.SOCK_STREAM):
gaierror: (-2, 'Name or service not known')

--
Ran 1 test in 0.007s

FAILED (errors=1)

While that does tell us that we do have a problem (Name or service not known), it's a lot of output for
one problem. And the note at the bottom that tells us that we have errors (ie in our tests scripts) rather than failures
(ie issues in our code). If this happens if every test that fails to trap exceptions or conditions generated this much
output (there are over 140 unit tests in ZenModel alone!) we'd be drowned in a sea of output!

An improved example:

import traceback
from xmlrpclib import ServerProxy
from Products.ZenTestCase.BaseTestCase import BaseTestCase

class TestXmlRpc(BaseTestCase):
 "Test basic XML-RPC services against our Zenoss server"

 def setUp(self):
 self.baseUrl = 'http://admin:zenoss@localhost:8080/zport/dmd/'
 self.testdev = 'xmlrpc_testdevice'

 def testSendEvent(self):
 "Send an XML-RPC event"
 serv = ServerProxy(self.baseUrl + 'ZenEventManager')
 evt = {
 'device':'xmlrpcTestDevice',
 'component':'eth0',
 'summary':'eth0 is down',
 'severity':4,
 'eventClass':'/Net'
 }

 try:
 serv.sendEvent(evt)
 except:
 msg= traceback.format_exc(limit=0)
 self.fail(msg)

Testing

137

def test_suite():
 from unittest import TestSuite, makeSuite
 suite = TestSuite()
 suite.addTest(makeSuite(TestXmlRpc))
 return suite

This time the output looks like this:

$ runtests -t unit -n testXMLRPC ZenModel
Running tests via: /opt/zenoss/bin/python /opt/zenoss/bin/test.py -v
--config-file /opt/zenoss/etc/zope.conf --libdir /opt/zenoss/Products/ZenModel
 testXMLRPC
Running unit tests at level 1
Running unit tests from /opt/zenoss/Products/ZenModel
Parsing /opt/zenoss/etc/zope.conf
F
==
FAIL: Send an XML-RPC event
--
Traceback (most recent call last):
 File "/opt/zenoss/lib/python/Testing/ZopeTestCase/profiler.py", line 98,
 in __call__
 testMethod()
 File "/opt/zenoss/Products/ZenModel/tests/testXMLRPC.py", line 41,
 in testSendEvent
 self.fail(msg)
 File "/opt/zenoss/lib/python2.4/unittest.py", line 301, in fail
 raise self.failureException, msg
AssertionError: Traceback (most recent call last):
gaierror: (-2, 'Name or service not known')

--
Ran 1 test in 0.004s

FAILED (failures=1)

Here are the differences, from the top down:

• We have a nicer description of what the test is testing (Send an XML-RPC event).

• The output is (slightly) shorter but still provides us with the underlying eror message that we need to know. The
more levels of stack in the funtion, the greater the savings.

• We see that we have one failure condition detected, as opposed to an error in our unit test.

Note

To get the above example to work, change the Zenoss server in the URL to be the localhost server.

Testing

138

15.1.4. Integrating With Buildbot
The Buildbot [http://buildbot.net/trac] program is a Python-based build and test system used at Zenoss Inc in
order to perform nightly builds of the various architectures, run unit tests and sanity check the code with PyFlakes
[http://divmod.org/trac/wiki/DivmodPyflakes].

Note
The Buildbot configuration is not visible outside of Zenoss Inc, and so this section is for curiousity
purposes only.

15.1.5. Javascript Test Framework
YUI includes a full unit test framework. Most of the specifics [http://developer.yahoo.com/yui/yuitest/] are best
explained by them.

Zenoss-specific tests should all be located in $ZENHOME/Products/ZenWidgets/skins/zenui/
javascript/tests directory. Each test script should then be registered in the getLoader() function in
zenoss-core.js, using the naming scheme test_description .

These tests may then be run on any page using the runtests() function. For example, the dashboard tests should
be registered as test_dashboard, and can then be run as:

runtests('dashboard')

This will pop up a logger window that will print test results.

An example test script has been provided. Please see:

• $ZENHOME/Products/ZenWidgets/skins/zenui/javascript/tests/ test_example.js

• $ZENHOME/Products/ZenWidgets/skins/zenui/javascript/zenoss-core.js

Also run in the JavaScript console of your browser:

runtests('example')

15.2. Functional User Interface Testing

15.2.1. Introduction
Functional testing refers to testing of the task-oriented features (aka functions) as opposed to the much lower-level
unit-tests. A good unit test will tell you if a piece of code is working within specifications, while a good functional
test will tell you if the entire program works as expected for a particular task.

15.2.2. Installing and Running
Selenium [http://selenium.openqa.org/] is a suite of tools used to create tests and record their results. These regres-
sion tests are intended to be run against multiple different browsers in order to verify the targeted web application.

15.2.2.1. Installing and Configuring Mac OS X

Selenium uses FireFox by default, so you need to make sure that firefox-bin is in your search path:

http://buildbot.net/trac
http://buildbot.net/trac
http://divmod.org/trac/wiki/DivmodPyflakes
http://divmod.org/trac/wiki/DivmodPyflakes
http://developer.yahoo.com/yui/yuitest/
http://developer.yahoo.com/yui/yuitest/
http://selenium.openqa.org/
http://selenium.openqa.org/

Testing

139

which firefox-bin

If that returns nothing, then you need to add the path to firefox-bin to PATH. For example:

export
 PATH=$PATH:/Applications/Internet/Firefox.app/Contents/MacOS/

The actual Selenium tests are found in the $ZENHOME/Products/ZenUITests/tests/selenium/ direc-
tory.

15.3. Where to Get More Information
Discussion regarding testing takes place on the zenoss-testing mailing list and forums [http://forums.zenoss.com/
viewforum.php?f=7].

http://forums.zenoss.com/viewforum.php?f=7
http://forums.zenoss.com/viewforum.php?f=7
http://forums.zenoss.com/viewforum.php?f=7

140

Appendix A. Event Database Dictionary
Event Field Description

dedupid events will deduplicate based on the value of this field.
by default: device, component, eventClass, eventKey,
severity

device name of device

component name of component (like eth0, httpd, etc)

eclass eventClass (if not specified maybe added by rule process
if this fails will be /Unknown)

eventKey if a component needs further deduplication specification
this field maybe used

summary message text truncated at 150 characters

message full message text

severity number from 0 to 5

eventState state of event 0 = new, 1 = acknowledged, 2 = suppressed

eventClassKey key by which rules processing begins. Often equal to
component.

eventGroup logical group of event source (syslog, ping, nteventlog
etc)

stateChange last time event changed automatically updated

firstTime unix timestamp when event is received.

lastTime last time an event was received

count number of times an event has repeated

prodState prodState of the device context

suppid id of event that suppressed this event

manager fqdn of the collector from which this event came

agent collector name from which event came (zensyslog, zen-
trap, etc)

DeviceClass device class from device context

Location device location from device context

Systems device systems from device context separated by |

DeviceGroups device systems from device context separated by |

ipAddress ip from which event came

facility syslog facility of this is syslog event

priority syslog priority of this is syslog event

ntevid nt event id if this is nt eventlog event.

141

Appendix B. TALES Expressions
TALES is syntax you can use to retrieve values call methods on Zenoss objects. Several fields in Zenoss accept
TALES syntax, including command templates, event mapping transforms, user commands, event commands, zProp-
erties, zLinks. and others.

Commands (those associated with devices as well as those associated with events) can use TALES expressions
to incorporate data from the related devices and/or events. TALES is a syntax for specifying expressions that let
you access the attributes of certain objects such as a device or an event in Zenoss. For additional documentation
on TALES syntax please see the TALES [http://www.zope.org/Documentation/Books/ZopeBook/2_6Edition/
AppendixC.stx] section in the Zope book.

Depending on the context you may have access to a device and/or an event. Below is a list of the attributes and
methods you may wish to use on device and event objects. The syntax for accessing device attributes and methods is
${dev/attributename}, so for example to get the manageIp of a device you would use ${dev/manageIp}. For events,
the syntax is ${evt/attributename}

B.1. Examples

B.1.1. ping
A command to ping a device might look like this. The ${..} is a TALES expression to get the manageIp value for
the device.

 ping -c 10 ${dev/manageIp}

B.1.2. DNS forward lookup
Assuming that the ${device/id} is a resolvable name

 host ${device/id}

B.1.3. DNS reverse lookup

 host ${device/manageIp}

B.1.4. snmpwalk

 snmpwalk -v1 -c${device/zSnmpCommunity} ${here/manageIp} system

zProperties are also available for devices and events using the same syntax as above.

To use these expressions effectively you need to know which objects, attributes and methods are available to you
in which contexts. Usually there is a dev and/or device which allows you access the device in a particular context.

http://www.zope.org/Documentation/Books/ZopeBook/2_6Edition/AppendixC.stx
http://www.zope.org/Documentation/Books/ZopeBook/2_6Edition/AppendixC.stx
http://www.zope.org/Documentation/Books/ZopeBook/2_6Edition/AppendixC.stx

TALES Expressions

142

Contexts related to a particular event usually have evt and/or event defined. Some available attributes for each of
these classes are listed below. List items with parenthesis after them are methods and much have the parenthesis
included in the TALES expression to function correctly.

B.2. TALES Device Attributes
Table B.1. TALES Device Attributes

 Device Attribute Description

getId The primary means of identifying a device within Zenoss

getManageIp The IP address used to contact the device in most situations

productionState The production status of the device: Production, Pre Production, Test, Main-
tenance or Decommisioned. This attribute is a numeric value, use getPro-
ductionStateString for a textual representation.

getProductionStateString Returns a textual representation of the productionState

snmpAgent The agent returned from SNMP collection

snmpDescr The description returned by the SNMP agent

snmpOid The oid returned by the SNMP agent

snmpContact The contact returned by the SNMP agent

snmpSysName The system name returned by the SNMP agent

snmpLocation The location returned by the SNMP agent

snmpLastCollection When snmp collection was last performed on the device. This is a DateTime
object.

getSnmpLastCollectionString Textual representation of snmpLastCollection

rackSlot The slot name/number in the rack where this physical device is installed

comments User entered comments regarding the device

priority A numeric value: 0 (Trivial), 1 (Lowest), 2 (Low), 3 (Normal), 4 (High), 5
(Highest)

getPriorityString A textual representation of the priority

getHWManufacturerName Name of the manufacturer of this hardware

getHWProductName Name of this physical product

getHWProductKey Used to associate this device with a hardware product class

getOSManufacturerName Name of the manufacturer of this device's operating system

getOSProductName Name of the operating system running on this device

getOSProductKey Used to associate the operating system with a software product class

getHWSerialNumber Serial number for this physical device

getLocationName Name of the Location assigned to this device

getLocationLink Link to the Zenoss page for the assigned Location

getSystemNames A list of names of the Systems this device is associated with

getDeviceGroupNames A list of names of the Groups this device is associated with

getOsVersion Version of the operating system running on this device

getLastChangeString When the last change was made to this device

TALES Expressions

143

 Device Attribute Description

getLastPollSnmpUpTime Uptime returned from snmp

uptimeStr Textual representation of the snmp uptime for this device

getPingStatusString Textual representation of the ping status of the device

getSnmpStatusString Textual representation of the SNMP status of the device

B.3. TALES Event Attributes
Table B.2. TALES Event Attributes

TALES Event Attribute Description

dedupid A key used to correlate duplicate events

evid A unique id for the event

device The id of the associated device, if applicable

ipAddress The IP Address of the associated device, if applicable

component The component of the associated device, if applicable

eventClass The event class associated with this device

eventGroup logical group of event source (syslog, ping, nteventlog etc)

eventKey The eventKey is the primary criteria for mapping events into event classes

facility The Unix syslog facility if this is a syslog event

severity One of 0 (Clear), 1 (Debug), 2 (Info), 3 (Warning), 4 (Error) or 5 (Critical)

priority syslog priority of this is syslog event

summary Text description of the event

stateChange When the mysql record for this event was last modified

firstTime The first time this event was seen

lastTime The last time this event was seen and its count incremented

count Number of times this event has been seen

prodState prodState of the device context

manager Fully-qualified domain name of the collector from which this event came

agent collector name from which event came (zensyslog, zentrap, etc)

zProperties are also available for devices and events using the same syntax as above.

144

Glossary
Zenoss Glossary
This glossary should be useful for users who need a reference for the occasional clarification as well as developers
who need an explicit and detailed understanding of terms varying contexts.

Daemon In Unix, a daemon is a computer program that runs in the background rather than
under the direct control of a user. Systems often start (or "launch") daemons at boot
time: they often serve the function of responding to network requests, hardware
activity, or other programs by performing some task. Daemons can also configure
hardware (like devfsd on some Linux systems), run scheduled tasks (like cron),
and perform a variety of other tasks.

Data Collection These are the terms related to the data collection process. The Zope product re-
sponsible for this areas of Zenoss is the DataCollector

Collecting - the process of obtaining information from networked resources, de-
vices, hosts and their operating systems.

Collector Client - since the information obtained during the Collecting process are
networked resources, we need clients to to connect to these resources and this is
what the Collector Client does. Each client usually wraps some amount of low-
er-level Twisted Python networking code.

Data Collector - this is the zenmodeler, the brains behind Collecting.

Data Map - after networked resource data is collected, it needs to be parsed and
presented to the Zenoss system. This parsed data is stored in a Data Map and is
used to keep track of changes in networked resources.

Plugins - plugins for Data Collection tell the Collector Clients what information
to get from the networked resources.

Device A device is defined as a Zenoss code abstraction for a combination of a networked
resources hardware and that hardware's operating system. Any piece of hardware
attached to a network you want to monitor using Zenoss. These can include: print-
ers, servers, routers, and switches among others.

Device Management Database The DMD is an object inside of the ZODB where Zenoss stores device and network
configuration information.

Event An event can be defined as "a significant change in state or any action or occur-
rence detected by a program. Events can be user actions, such as clicking a mouse
button or pressing a key, or system occurrences, such as running out of memory.
State changes for objects can create also create events.

GPL The GNU General Public License (GNU GPL or simply GPL) is a widely used
free software license.

ICMP Short for Internet Control Message Protocol, an extension to the Internet Protocol
(IP) defined by RFC 792. ICMP supports packets containing error, control, and
informational messages. The PING command, for example, uses ICMP to test an
Internet connection.

Glossary

145

Management Information Base A management information base (MIB) is a type of database used to manage the
devices in a communications network. It comprises a collection of objects in a (vir-
tual) database used to manage entities (such as routers and switches) in a network.
Objects in the MIB are defined using a subset of Abstract Syntax Notation One
(ASN.1) called "Structure of Management Information Version 2 (SMIv2)" RFC
2578.The software that performs the parsing is an MIB compiler. The database is
hierarchical (tree structured) and entries are addressed through object identifiers.
Internet documentation RFCs discuss MIBs, notably RFC 1155, "Structure and
Identification of Management Information for TCP/IP based internets", and its
two companions, RFC 1213, "Management Information Base for Network Man-
agement of TCP/IP-based internets", and RFC 1157, "A Simple Network Man-
agement Protocol".

Modeling A model is the collection of code abstractions (python objects) that represents ac-
tual networked resources. Modeling (creating a model of a) a piece of hardware
in your system consists of gathering all of that date possible about that device and
creating a device profile based upon that data. This model can be supplemented
by hand entered data that is of particular use in creating a more accurate profile
(model) of the device. This information can also be re-used to assist in the mod-
eling of hardware producing similar data.

Object Identifier In the context of SNMP, consists of the object identifier for an object in a Man-
agement Information Base (MIB).

RRDTemplate The top level performance configuration object is an RRDTemplate. RRDTem-
plates define the data sources to collect, any thresholds and how the data sources
should be graphed. RRDTemplates are defined in the PerfConf tab of any device
tree object or on the collected object itself.

Severity Levels of Severity is how events within the Zenoss System are classified. The scale
is as follows: Color = Severity Red = Critical Orange = Error Yellow = Warning
Blue = Information Grey = Debug

Simple Network Management
Protocol

A set of protocols for managing complex networks. The first versions of SNMP
were developed in the early 80s. SNMP works by sending messages, called pro-
tocol data units (PDUs), to different parts of a network. SNMP-compliant devices,
called agents, store data about themselves in Management Information Bases
(MIBs) and return this data to the SNMP requesters.

Zenoss supports SNMP v1 fully throughout the product as this is the most common
protocol used in the industry.

SNMP Walk The operation performed using SNMP to gather information about a specific de-
vice.

sudo sudo (substitute user [or superuser] do), pronounced like sudo in sudoku, is a pro-
gram in Unix, Linux, and similar operating systems such as Mac OS X that allows
users to run programs with the security privileges of another user (normally the
system's superuser) in a secure manner. Users must confirm their identity to sudo
by supplying their password before running the target program. Once authentica-
tion has taken place, and if /etc/sudoers file is configured to give the user access to
the command requested, then the system allows the command, but logs it. In a GUI
environment, graphical frontends such as kdesu and gksudo are used to launch ad-
ministrator-only applications like the Synaptic Package Manager. Ubuntu Linux
is well-known for forcing all administrative access to be done via sudo – the root

Glossary

146

password is disabled by default, but can be enabled via the passwd tool. Mac OS
X also uses sudo for tasks such as Software Update. The configuration file /etc/
sudoers specifies which users can run which commands, and on which machines.
Because sudo is very particular about the format of this configuration file, and
errors could cause serious problems, editing should always be done with the pro-
vided visudo or sudoedit tool, which checks for correctness before saving.

Virtual Appliance A virtual appliance is a minimalist virtual machine image designed to run under
VMware, providing network applications such as webservers. Virtual appliances
are a subset of the broader class of software appliances. Like software appliances,
virtual appliances are aimed to eliminate the installation, configuration and main-
tenance costs associated with running complex stacks of software. A key concept
that differentiates a virtual appliance from a virtual machine is that a virtual appli-
ance is a fully pre-installed and pre-configured application and operating system
environment whereas a virtual machine is, by itself, without software Typically a
virtual appliance will have a web interface to configure the inner workings of the
appliance. A virtual appliance is usually built to host a single application, and so
represents a new way of deploying network applications. See also VMware.

VMware – Virtual Machine
ware

VMware refers to the computer and operating-system instance that executes the
VMware Workstation process as the host machine, and identifies instances of op-
erating systems (or of virtual appliances) running inside a virtual machine as guest
virtual machines. Like an emulator, VMware Workstation provides a completely
virtualized set of hardware to the guest operating system — for example, regard-
less of make and model of the physical network adapter, the guest machine will see
an AMD PCnet network adapter. VMware virtualizes all devices within the virtual
environment, including the video adapter, network adapter, and hard disk adapters.
It also provides pass-through drivers for USB, serial, and parallel devices.

ZEO ZEO is a layer between Zope and the ZODB, and allows multiple Zope servers to
share the same ZODB. zenhub (the Zenoss Hub) attaches to the ZODB through
ZEO.

Zope Configuration Manage-
ment Language

ZCML is an XML file that contains information about configuring Zope and Zope
Products (such as Zenoss).

Zope Management Interface The ZMI refers to the user interface provided by the Zope system to create and
manage Zope products (Zenoss being a Zope product). The ZMI on a Zenoss sys-
tem can be accessed by going to the URL of your Zenoss server and adding the
name manage to the end. For example, http://yourzenossserver:8080/zport/man-
age

Zope Object DataBase The ZODB is the Object-Oriented DataBase (OODB) used by Zope. The OODB
part means that data is not stored in terms of tables, rows and columns, but instead
as objects.

	Zenoss Developer’s Guide
	Table of Contents
	Chapter 1. Introduction
	1.1. Overview
	1.1.1. Model
	1.1.2. Availability
	1.1.3. Events
	1.1.4. Performance

	1.2. Detailed Architecture
	1.2.1. User Layer
	1.2.2. Data Layer
	1.2.3. Collection and Control Service Layer

	Chapter 2. Getting Started
	2.1. Working with the Source Code
	2.1.1. Getting the Source Code
	2.1.1.1. Getting Subversion for the Appliance

	2.1.2. Keeping up-to-date with your checked-out code
	2.1.3. Getting Patches
	2.1.4. Style Guidelines
	2.1.4.1. Docstrings

	2.1.5. Generating Diffs for new Fixes
	2.1.6. Submitting a Fix

	2.2. Development Toolchain Requirements
	2.2.1. Appliance

	2.3. Programming Techniques
	2.3.1. Calling Methods Using REST
	2.3.1.1. How To Call Methods Using REST
	2.3.1.2. Sending an Event
	2.3.1.2.1. Using a REST Call
	2.3.1.2.2. Using XML-RPC
	2.3.1.2.3. Example Usage in Other Languages
	2.3.1.2.3.1. Perl
	2.3.1.2.3.2. Ruby
	2.3.1.2.3.3. PHP
	2.3.1.2.3.4. Java

	2.3.2. Miscellaneous Notes
	2.3.2.1. pkg_resources

	2.4. zendmd: Command-line Access to the Device Management Database (DMD)
	2.5. Programming Documentation
	2.5.1. Python
	2.5.2. Zenoss API
	2.5.3. Other Resources
	2.5.4. Contributing to the Documentation

	Chapter 3. ZenPacks
	3.1. Overview
	3.2. Creating a ZenPack
	3.2.1. ZenPack Names
	3.2.2. Specifying Dependencies
	3.2.3. Locating ZenPack Source Outside of Zenoss
	3.2.4. Community ZenPack Subversion Access

	3.3. ZenPack Structure and Contents
	3.4. Developing the ZenPack
	3.4.1. Base ZenPack Class
	3.4.2. Storing Objects in the ZODB
	3.4.3. Providing DataSource classes
	3.4.4. Performance Template Checklist
	3.4.4.1. Data Sources
	3.4.4.2. Data Points
	3.4.4.3. Thresholds
	3.4.4.4. Graph Definitions
	3.4.4.5. Graph Points

	3.4.5. Providing daemons
	3.4.6. setuptools and the zenpacksupport

	3.5. Building and Distributing ZenPacks
	3.5.1. Migrating between versions
	3.5.2. Converting older ZenPacks to ZenPack eggs

	3.6. Where to Get More Information

	Chapter 4. Zenoss Datastores
	4.1. Zope Object Database (ZODB)
	4.2. MySQL Event database
	4.2.1. Connecting to the Database
	4.2.2. MySQL in 60 Seconds

	4.3. Python Pickle Files
	4.4. Round-Robin Database

	Chapter 5. Events
	5.1. Understanding an Event Entry
	5.1.1. Event Design

	5.2. Sending an Event
	5.3. Adding an Event Class
	5.3.1. Add to ZenEventClasses
	5.3.2. Add the class to the import XML
	5.3.3. Write a migrate script

	Chapter 6. zProperty Management
	6.1. Adding a zProperty
	6.1.1. Adding a zProperty to an Event
	6.1.2. Adding a zProperty to a Device

	6.2. Migrating the zProperty Code

	Chapter 7. Device Management
	7.1. Adding Devices Programatically
	7.1.1. Using a REST call
	7.1.2. Using an XML-RPC Call from Python
	7.1.3. XML-RPC Attributes

	7.2. Editing Device Information
	7.2.1. Using a REST call
	7.2.2. Using an XML-RPC Call from Python

	7.3. Deleting A Device
	7.3.1. Using a REST call
	7.3.2. Using an XML-RPC Call from Python

	7.4. Checking If A Device Exists
	7.4.1. Using a REST call
	7.4.2. Using an XML-RPC Call from Python

	7.5. Exporting a Device List

	Chapter 8. Extending the Model
	8.1. Add a ZenModel Relationship
	8.1.1. One-to-One (1:1) Relationships

	8.2. One-to-Many (1:N) Relationships
	8.3. Many-to-Many (M:N) Relationships
	8.3.1. One-to-Many (1:N) Container Relationships

	8.4. Zenoss XML Schema
	8.4.1. object
	8.4.1.1. Example
	8.4.1.2. Attributes
	8.4.1.3. Children

	8.4.2. objects
	8.4.2.1. Example
	8.4.2.2. Children

	8.4.3. property
	8.4.3.1. Example
	8.4.3.2. Attributes

	8.4.4. tomany
	8.4.4.1. Example
	8.4.4.2. Attributes
	8.4.4.3. Children

	8.4.5. tomanycont
	8.4.5.1. Example
	8.4.5.2. Attributes
	8.4.5.3. Children

	8.4.6. toone
	8.4.6.1. Example
	8.4.6.2. Attributes

	8.4.7. link
	8.4.7.1. Example
	8.4.7.2. Attributes

	8.5. Zenoss Permissions
	8.5.1. Adding New Permissions
	8.5.2. Assigning Permissions to a Method
	8.5.3. Checking Links

	Chapter 9. Zenoss Daemons
	9.1. Twisted Network Programming Overview
	9.1.1. Understanding NJobs, Driver and DeferredList
	9.1.1.1. DeferredList
	9.1.1.2. NJobs
	9.1.1.3. Driver
	9.1.1.4. A Simple Example

	9.2. Zenoss Daemon Overview
	9.3. zenhub: Daemon to ZODB management
	9.3.1. Daemon to ZODB management
	9.3.2. Heartbeats and other Events
	9.3.3. Pluggable Daemon Services

	9.4. ZenRender and Graphs
	9.5. Developing a Daemon
	9.5.1. Command-line Options
	9.5.2. Add the Daemon Control Script
	9.5.3. Setup ZenHub Communications
	9.5.3.1. Registering Services with the Hub

	Chapter 10. Add a Performance Daemon
	10.1. Overview
	10.2. DataMaps
	10.3. Performance Collection
	10.4. Creating a New Collector
	10.4.1. Constructor
	10.4.2. Getting a List of Devices
	10.4.2.1. Thresholds
	10.4.2.1.1. Complex Thresholds

	10.4.3. fetchConfig()
	10.4.4. Collector's ZenHub Service
	10.4.5. Miscellanous Functions
	10.4.6. Collect the Performance Data

	Chapter 11. Adding a new Device Type
	11.1. Overview
	11.2. Add the MIB
	11.3. Add a Device organizer
	11.4. Create a Modeler
	11.4.1. Verify the SNMP connectivity and OIDs
	11.4.2. Common SNMP Issues
	11.4.3. Modeler Code
	11.4.4. Testing the Modeler

	11.5. Create a Performance Collector
	11.5.1. Performance Data Collector Code
	11.5.2. Writing Your Own Command Parser

	11.6. Create the Template
	11.6.1. Create the DataSource
	11.6.2. Create a Threshold
	11.6.3. Create a Graph

	11.7. Map Events

	Chapter 12. Extending the User Interface
	12.1. Overview of the Zenoss UI Technologies
	12.1.1. HyperText Markup Language (HTML)
	12.1.2. Cascading Style Sheets (CSS)
	12.1.3. Zope 2, ZPT and TAL
	12.1.4. ZPT and Macro Exapnsion for TAL (METAL)
	12.1.5. JavaScript / AJAX
	12.1.6. JavaScript libraries: YUI and MochiKit

	12.2. Customizing the Navigation Bar
	12.2.1. Adding a link
	12.2.2. A simple HTML page
	12.2.3. A simple TAL and METAL page

	12.3. Customizing the Logo
	12.4. Zope 2 Page Templates, TAL and METAL and Zenoss
	12.4.1. Tips

	12.5. Zope 3 Views Explained
	12.5.1. The Zope 2 Way
	12.5.2. The Zope 3 Way

	12.6. Other Customziations
	12.6.1. Adding Tabs
	12.6.2. Adding a Dialog
	12.6.3. Adding a New Menu or Menu Item
	12.6.4. Creating a Table Using ZenTableManager
	12.6.5. Creating an Editable Table
	12.6.6. How to Save Properties via an Edit Screen

	12.7. Creating a Dashboard Portlet
	12.7.1. Create a ZenPack
	12.7.2. Write the Python back-end code
	12.7.3. Write the JavaScript Portlet
	12.7.4. Register the portlet

	12.8. Debugging Tips

	Chapter 13. Reports
	13.1. Adding a New Report
	13.2. Plugins
	13.3. Adding Export Buttons to Reports

	Chapter 14. Migrating Zenoss Code
	14.1. Introduction and Steps
	14.2. How It Works
	14.3. What You Write
	14.3.1. Implement cutover()
	14.3.2. Supporting Code
	14.3.3. Testing and Deployment

	Chapter 15. Testing
	15.1. Zenoss Unit Tests
	15.1.1. Introduction
	15.1.2. doctest Testing
	15.1.3. Zenoss' Test Runner
	15.1.3.1. An Example Unit Test

	15.1.4. Integrating With Buildbot
	15.1.5. Javascript Test Framework

	15.2. Functional User Interface Testing
	15.2.1. Introduction
	15.2.2. Installing and Running
	15.2.2.1. Installing and Configuring Mac OS X

	15.3. Where to Get More Information

	Appendix A. Event Database Dictionary
	Appendix B. TALES Expressions
	B.1. Examples
	B.1.1. ping
	B.1.2. DNS forward lookup
	B.1.3. DNS reverse lookup
	B.1.4. snmpwalk

	B.2. TALES Device Attributes
	B.3. TALES Event Attributes

	Glossary

