Zenoss Developer’'s Guide
Version 2.3.3

February 19, 2009

Zenoss Developer’'s Guide

Version 2.3.3
Copyright © 2009 Zenoss, Inc.

All rights reserved. The Zenoss logo is aregistered trademark of Zenoss, Inc. Zenoss and Open Enterprise Management are trademarks of Zenoss,
Inc. inthe U.S. and other countries. Zenoss can be contacted at:

Zenoss, Inc.

275 West St. Suite 204

AnnapolisMD

21401

U.SA.

Flash is aregistered trademark of Adobe Systems Incorporated.
Javaisaregistered trademark of Sun Microsystems, Inc.

Linux is aregistered trademark of Linus Torvalds.

SNMP Informant is atrademark of Garth K. Williams (Informant Systems, Inc.).
Tomcat is atrademark of the Apache Software Foundation.

Windows is aregistered trademark of Microsoft Corporation in the United States and other countries.

All other companies and products mentioned are trademarks and property of their respective owners.

Table of Contents

I | g1 oo (0 oo o O PP PP TR TUPPPPI 1
Lo OVEIVIBIW oottt ettt ettt e et et e et e et e e et et e e s 1
0 I R Y/ o To = O TSP SPPPTTR 1
122, AVAIHEDIHTTY et e 1

L L 3, VOIS ittt 1
L.1.A. PEfOMMBNCE ..eieieiei ettt ettt e e et e e e b e e e e 1

1.2. Detailed ArChITECIUIEve ittt ettt ettt e e et e e et e e e e et e e e ena e aeens 2
U = g - Y PP UPTRUPTIN 2
L1.2.2. DAIA LAYEN ..ottt 2
1.2.3. Collection and Control SErViCE LAYEruuiiiiiiiieiiiii et 2

2. GEIING SEAMEA ittt ettt e et et et e e e 4
2.1. Working wWith the SOUrCE COOEuuiiiiiiiieeeei e ettt e e e 4
2.1.1. Getting the SOUrCE COUEuiiiiii ettt ettt e e e enens 4
2.1.2. Keeping up-to-date with your checked-0ut COOEccoevviiiiiiiiiiieiii e 5
2.1.3. GELING PAIChESoeeiiiiii e 5
214, Style GUILEIINES ...oeiiiii et 5
2.1.5. Generating DiffS fOr NBW FIXESccoouiniiiiiiiii e 7
2.1.6. SUDMITLING @ FIX oeeeeiiieiii ettt ettt e e et e et e e e 7

2.2. Development ToolChain REQUITEMENTSccoutuiiiiiii e 8
2,21, APPIIANCE ottt 8

2.3. Programming TECHNIGUESeuuueiiitieeeeiit ettt ettt e et ettt e e et e e et e e e e et e e eenba e eeees 10
2.3.1. Caling Methods USING REST ...ttt ettt 10
2.3.2. MISCElANEOUS NOESoetieiiiii ettt ettt e e e e e 14

2.4. zendmd: Command-line Access to the Device Management Database (DMD)cccoeeevvvnieeens 14
2.5. Programming DOCUMENEAIIONuiiiiieieiiiiii ettt et e e e e e eeeen s 16
25,0 PYLNON ettt e e een 16
2.5.2. ZENOSS APl oo 16
2.5.3. ONEr RESOUICES ...ttt ettt ettt ettt et e e et e e e et e e e e aa e 16
2.5.4. Contributing to the DOCUMENEALIONcccvtueiiiiiieeieii e 17

B ZENPACKS ...t e ettt e e e e et e e e et aae 18
3Ll OVEIVIBI ittt ettt e ettt e ettt e e et e e et e e b et e e h e et et e et et e e enb e aae 18
3.2, Creating @ ZENPECKccieiieeiii ettt 18
321 ZENPaCK NAIMES ...oei ittt et 18
3.2.2. SPeCifying DEPENTENCIESuuiiiiiiii ettt et 19
3.2.3. Locating ZenPack Source OULSIde Of ZENOSSc.vuuieiiiiiiieiiiiie e 19
3.2.4. Community ZenPack SUDVErSION ACCESScccuuuiiiiiiieeiiii e ettt eeeti e eeni e eeeniaeeees 19

3.3. ZenPack Structure and CONLENESiiieitiieeieii e et ettt e e ettt e e ettt e e e e a e e e eab e e eenba e eeens 19
3.4. Developing the ZENPaCKcoouuiiiiiiii e 22
3.4.1. BESE ZENPACK ClASScieiiiieiiiiiie ettt ettt et 22
3.4.2. Storing OBJectS iN the ZODBiiiiiiieieei e e 23
3.4.3. Providing DalaSOUrCe ClASSEScieeuuueiiiii ettt ettt e e e e e ene s 23
3.4.4. Performance Template Checklisto.uuiiiiiiiiiiii e 24
3.4.5. Providing BEIMONSoovuiiiiiii ettt e e 26
3.4.6. setuptools and the zenpackSUPPOITiieiiiii e 26

3.5. Building and Distributing ZeNPacKSccouuiiiiiiiieiiiiie et 26
3.5.1. Migrating DEtWEEN VEISIONScovuuiiiiiiieeiiii ettt ettt e e e e e e e e ennens 27
3.5.2. Converting older ZenPacks to ZenPack €905ccvvviiiiiiiiiiiiiiii e 27

3.6. Where to Get MOre INFOrMELIONoiiertiieiiii ettt ettt e e e et e e e enb e e ena e eees 27
4. ZENOSS DALBSIOMESieiiiit ettt 28
4.1. Zope Object Datalase (ZODB)uuuiiiiiiieiiii et 29
4.2. MySQL EVENE aLADESEceettieiiiiiieieei ettt ettt ettt e e e e e eaaas 30

Zenoss Developer’s Guide

4.2.1. Connecting t0 the Databaseccuuieiiiiiiiii e e e e e e aens 30
4.2.2. MYSQL iN B0 SECONGS ...cevvvneiiiiiiieeeiii e ettt s e e et e e eett s e e eett s e e eeatnaeeeeatnaeeeesenaeaaees 31

4.3. Python PIiCKIE FIIES ...ovniiiii i e e et e e e e e e e 32
4.4. ROUND-RODIN DEIADESEeeveiiieiiiie et e et e et e e e s 32
T V< | PPN 35
5.1. Understanding an EVENt ENEIY ..ooiiiiii e e e e e e e 35
oI N Y= o I == T o 35

5.2. SENAING 8N EVENE ...ouiiiiiiii e e 35
5.3. AddiNg aN EVENE ClaSS ...u.iiiiiiiiiiiii et e e e e e e e e e e 36
5.3.1. Add tO ZENEVENTCIBSSESiiiviiieiiiiiie ettt e e e et e e et eeeere s 37
5.3.2. Add the class to the impPort XIML ..o 37

RIS A V1Y € (=W g o | = (S @ o A 37

6. ZPrOPEITY M aNagBMIENT ..eueiiit it e e 39
30 o o [o = 4 e (0] o 1= 1 YN 39
6.1.1. Adding azProperty 10 @an EVENEooiiiiiiiii i 39
6.1.2. Adding a ZProperty 10 @ DEVICEcccuiiiiiiiiii e 39

6.2. Migrating the ZProperty COOEiiiuniiiiiiiiii e e e e e e e aa s 39
A D =Y o Y == == o PN 41
7.1. Adding Devices ProgramatiCallycc.ceiiiiiiiiiiiiiii e e 41
7.1.0. USING @ REST Call ..o 41
7.1.2. Using an XML-RPC Call from PythOncooiiiiiiiiiii e 41
7.1.3. XML-RPC AIDULES ...viiiiiiiieeeiis et e e e e 41

7.2. Editing Device INFOMMEtioNcc.uiiiiiieii e e e e e e e e et e et e e et e e sanees 42
7.2.1. USING @ REST Call ..o 42
7.2.2. Using an XML-RPC Call from PythOnccooiiiiiiiiiii e 42

7.3. DEEIING A DEBVICE ..iitiiiiii ittt e e e e e e et e e e et e e e et aaan s 43
7.3.1. USING @ REST Call ... e 43
7.3.2. Using an XML-RPC Call from PythOncoooiiiiiiiiiii e 43

7.4. Checking If A DEVICE EXISES ...uiiiiiiiiiiiii et e e e e e e et e e e eanas 43
7.4.0. USING @ REST Call ..o 44
7.4.2. Using an XML-RPC Call from PythOncoooiiiiiiiiii e 44

7.5. EXPOrting @ DEVICE LISt ..uiiiiiiiiii i e et e e e e e e e e e e e e et e e e e eaes 44
8. EXteNdiNg the MOooieiii e 45
8.1. Add aZenModel REGONSNIPiiviiiiici e 45
8.1.1. One-to-One (1:1) REAiONSNIPS ..ccvviiiiiieii e e e e 45

8.2. One-to-Many (L:N) RE@ONSNIPSiveeiiiiiii e 46
8.3. Many-to-Many (M:N) REl@tioNSNIPScovuiiiiiiiie e e e 47
8.3.1. One-to-Many (1:N) Container ReElationshiPsScccuveviiiiiiiiieiiieeiiie e, 49

8.4. ZeN0SS XML SChEIMA ..ouvuiiiiiii i e e ettt e e et e e e et e e e eabnaaaees 50
S 5t T o o] o S 53

S A o) o] o PPN 54

LS I G T o] o< 1 PP PEPPTPRN 55

LS I N o 0 7= Y PSPPI 56
84,5, TOMANYCONE L.ttt e e e e 57

S I G T (00 o= PP PTUPRPT 58
S 1o P 58

8.5, ZENOSS PEIMISSIONS .iiittiieiiiitie ettt e ettt e e et e e e e et eeeeattr e e e eate e e e eete s e eeeete s eeeeateaaeeentnaeeeees 59
8.5.1. Adding New PEMISSIONScccuuiiiiiiiiiiieii e e e e e e e e aeaas 59
8.5.2. Assigning Permissionsto aMethod ... 59
8.5.3. CheCKing LIiNKSouiiiiiiiiiii i e e e e e e e e aaa s 60

0. ZENOSS DBEIMONS ...ttt ettt et et e e e e et e e e a et et e e ea e e e e e ene 61
9.1. Twisted Network Programming OVENVIEWcciiuiiiiiieiiieeii e e e e et e e e e e e e eens 61
9.1.1. Understanding NJobs, Driver and DeferredListccooovviiiiiiiiiiiiiiiiecceece e, 61

9.2. ZeN0SS DAEMON OVEIVIEW ...iiviieeiiii e ettt e e et e e et e e e et e e e et e e e e et e e e e e et s e e e eat s e eeeatn s 66

Zenoss Developer’s Guide

9.3. zenhub: Daemon to ZODB MaNAgEMENTciuuieiiiieriieeiiieeei e s e et eeetr e e e st e eateeeneeenns 67
9.3.1. Daemon to ZODB MaNaQEeMENTiuuiiniiiieie e e e e e 68
9.3.2. Heartheats and Other EVENESiiiiiiiiii e 68
9.3.3. Pluggable DaEmON SEIVICESuciiiiiiiii et e e e e et e e e e aa s 68

9.4. ZenRender and GrapNSuiiiiiiiiii e 68

9.5. DevElOPiNg @ DABIMONiiii i e e e e e e e e e e e e et e e e e e e e e r e anas 69
9.5.1. Command-1iNE OPLIONSuiiiiieiiiieiiii e e e e e e e e e e e e et e e et e e e e e ean s 69
9.5.2. Add the Daemon Control SCIPtcoovniiiiii e e e eaaes 70
9.5.3. Setup ZenHUb COMMUNICAIONScivueiiiieiii e e e e e e e e e e e e eanns 70

10. Add @ PerfOrmance DBEIMONuuiiiiii ettt e ettt e e et e e e et e e e et e e e e et e e e e enennas 72

O @ = 4T PP 72

L0 B - = Y=o SO 72

10.3. Performance COIECIONciouiiieiiiii i e et e et e et eeeaae s 73

10.4. Creating a NEW CollECIONiiiiiiii e e e e e e et e et e e e e e eaes 74
O I O = {1 o (o PSRN 74
10.4.2. Getting @ LisSt Of DEVICES ...iuvuiiiiiiiiii i e e e e e e e aa e 75
L0 G = (vl 010 1 o) IR P 77
10.4.4. Collector's ZENHUD SEIVICEioiiiviiieiiiii e 78
10.4.5. MisCEllanous FUNCLIONSouuuiiiiiiiieee et e e e e 79
10.4.6. Collect the Performance Datacoveviuuiiieiiiiiiieiiiie e e e eeeees 79

o o Lo = W =T A B =Y o I o T 83

O = 4T PP 83

2 Ao (o I {0 T= I 1 1 = SRR 83

11.3. Add @ DEVICE OFJANIZEN ...civtiiiii e e e et e e e e e e e e e e e e e e et e e et e e et e e e aa e eaaeeeens 83

N O I Y oo L= 1= ST 84
11.4.1. Verify the SNMP connectivity and OIDScociiiieiiiiiiiiiecii e 85
11.4.2. ComMON SNIMP ISSUBSceiiiiiiiiiiiiei ettt e e e e e e et e e eennas 85
e T Y/ oo = 1= @ L= PR 86
11.4.4. Testing the MOGEIEriiii i e e e e e e e eeas 88

11.5. Create a Performance COIECLOruiiiiiiiiiei et 89
11.5.1. Performance Data Collector COUEoveiiiiiiieiiiiieeeii e e e e 89
11.5.2. Writing Your Own Command ParSerccocouiiiiiiiiiiiiiiiii e e e e e 90

11.6. Create the TEMPIAIEciii i e e e e e e e e e et e e eeaens 92
11.6.1. Create the DEASOUICEeieeeeieeiiiie et e ettt e et e et e e et e e e b e e e e eae s 92
11.6.2. Create @a Thresholdcouniiiii e 92
11.6.3. Create @ Graphioiiiii i 93

Y=o Y | PR 93

12, Extending the USer INtEITACteco.viiiii it e e e e e e e e e et e et e e eaneeeaas 94

12.1. Overview of the Zenoss Ul TEChNOIOGIEScc.vuiiiiiiiii i 94
12.1.1. HyperText Markup Language (HTML) ..o e 94
12.1.2. Cascading Style ShEEtS (CSS) ..uiiviniiiiiieiiii i e et e e e eeas 94
12.1.3. ZOPE 2, ZPT @N0 TAL ontiiiiii ittt e et e 94
12.1.4. ZPT and Macro Exapnsion for TAL (METAL) ...ooiiiiiiii e 95
12,15, JAVASCIIPL 1 AJAX it 95
12.1.6. JavaScript libraries: YUI and MochiKitc.ooiiiiiiiiiiiii e 95

12.2. Customizing the Navigation Barcooiiiiiiiiiiiici e e 96
1221 AdAiNG @ 1iNK ooneeec e 96
12.2.2. A SIMPIE HTML PAgE weuiiiiiieiii it e e e e e e et e e e e e e eens 96
12.2.3. A simple TAL and METAL PAJE ..ccuvniiiiiiii it e e et e e e et eaan e 97

2 RC T @0 o 41141 o I 1 2 T=T0 I o T 97

12.4. Zope 2 Page Templates, TAL and METAL and ZEN0SScccuvvviiieiiiieiiiieciie e eeiee e e 98
I T I T o~ SRR 100

12.5. Zope 3 VIiews EXPlaiNediiiiiiii e 101
1251, TRE ZOPE 2 WEY ceuniiiiieiiii e e ettt e e e e e e e e e et e e et e et eeaaeeeens 101

Zenoss Developer’s Guide

12.5.2. TRE ZOPE B WY couiiiiiiiiii ittt e e e e e e e e et e e et e et e e e e eaens 102

12.6. Other CUSIOMZIBLIONS ...vuieiieiiieteiiis ettt s e et e et s e et e e et e e e et s e e e et e e e e et e e e e et s 104
2 G T I Ao o] oo R "o SR 104

2 o o [g To =T T oo P 107

12.6.3. Adding a New Menu or MeNnU [tEMcovuiiiiiiiii e 109

12.6.4. Creating a Table Using ZenTableManagerccoeiviiiiiiiieiiiieiie e e 111

12.6.5. Creating an Editable Tabhleoiiiiiiii e 112

12.6.6. How to Save Properties viaan Edit SCreencoooviiiiiiiiii e 113

12.7. Creating a Dashboard POItIELooiiuiiiiiiii e e 115
12.7.1. Create @ ZENPACK ...vuuiiiiiiiii et 116

12.7.2. Write the Python back-end codecccoviiiiiiiiii e 117

12.7.3. Write the JavaSCript POrtIELccoiiiiiiiiii e 119

12.7.4. ReQISEr the POITIEL ... e e 124

T B = o 10 o o1 o TR o1 N 125

G T o= o o] 1 £ PP 126
G T Yo o [g To = W V= TV L= oo N 126

G T . 1 o1 N 127

13.3. Adding EXport BUtONS 10 REPOMSivvviiiiiieii e e e e e e e e e e e e 127

14. Migrating Zen0SS COOEiuuuiiiiiieiiiieiie e e e et e e e e e e e e e et e e e e et e e et e e et e e et e e e eeaanns 129
14.1. INtroduCtion aNd SEEPS .ivvuiiiiiiiii e e e e e 129

TA.2. HOW T WOIKS it e et et e e e et e e e et e e e e aan e 129

TA.3. WHEE YOU WIEITE L.iiiiiiiiiieiii e sttt e ettt e e et n e e e e et r e e e e st neeeeatnneeeeatnneaaes 129
14.3.1. IMPlEmMENE CULOVEN() wovneiiriiii et e e e e e e e e et e e e e aaas 130

S ¥ o] oo 1o TN O I TS 130

14.3.3. Testing and DeplOyMENto.uuiiiiiiiii e e e e aaas 130

ST 1= 1 o PP 132
15.1. ZENOSS UNIT TESES oovuiiiiiiiiiiiiiii e et e ettt e e et e e et e ettt r e e e et r e e e et s e e e et neeeaaenneeennnnns 132
IS0 0 O 1 1 oo [F o 1 o o PP 132

ST 7o (o Tox == A I =~] o 132

15.1.3. ZeN0SS TESE RUNNESceiiiiie e et e e e e e 133

15.1.4. Integrating With BUuildDOtooiiiiiiii e 138

15.1.5. Javascript TeSt FrameWOrKc..uiiiiiiiiii e e e e e 138

15.2. Functional User INterfate TESING .ovvuiiiriiiii i e e e e 138

IS T2 T 1 11 oo L1 o1 o o PP 138

15.2.2. Installing and RUNNINGoiiniiiiei e e e e e e e e eaes 138

15.3. Where to Get More INfOrmMationuiiiiiiiiei et e e e e 139

A. Event Datahase DICHIONAIYccvvniiiiieiii et e e e e e e e e e e e e e e e et e e et e e et e e et e e e e eaanas 140
B. TALES EXPIESSIONS ...iivuiiiitieiitetitetetiieettee ittt e eet e e st e e st ee st e e st e eeta e ean e stneeatnseeanaestnseeanneesnaees 141
2 I T 0o = 141
300 0 O o1 o 141

B.1.2. DNS fOrward 100KUD ...c.vuiiiiiiiiei et e e e e e e et e e e et e e ea e e aanes 141

B.1.3. DNS reverse I00KUD ...cvuiiiiiieiii it e e e e e e e e e eaes 141

B.L4, SMPWALK oo 141

B.2. TALES DeVICE AIBULES ...ooviiiiiiiii et e e 142

B.3. TALES Event AHMDULES ...cooviiiiiii e 143
L1075 144

Vi

List of Figures

1.1. Zenoss Detall€d ATCHITECIUIEiviieiii ittt e e e et e et e et e e e baeaaas 2
B B 7= = (0 (=N @< A/ 1= . 28
R o {{ B @ Y= /1= PPN 34
SR = a1 2 = 1] o) N 45
9.1. ZenHub, Daemon and the ZODBcuuiiiiiee e e 67
10.1. MOGEITNG OVEIVIEIW ...eiieiiii ettt ettt ettt e et e et e et e et e ea e e e e ena e e enaens 73
10.2. ComMPIEX THIESNOIASieeiiie ettt e ettt e e et e e et e e e eab e e eenta e eeens 76

Vii

List of Tables

11 DatarLayer DBEMONooiiiiiiiieii ettt et 2
1.2. Automated MOdeling DBEIMONScouuuiiiiiii ettt e et e ettt e ettt e e e e et e e e eenaaeeeees 3
1.3. Availability MONItOring DBEMONSoeiiiiiieiiiii ettt e et e et e e e e et e e e eeba e eeees 3
1.4. Event COIIECHION DBEIMONS ...couvuiiiiiiii ettt ittt ettt e e et e ettt e e et et e e et et e e et et e e e e et neeeentenaaeees 3
1.5. Performance MoNitoring DaBMONSuuiiiiiitiiiiii ettt et e e et e e e e e e ennans 3
1.6. Automated RESPONSE D@EMONSiiiiiieiiiii ettt ettt ettt ettt e ettt e et e b e et e b e e e eaa s 3
2.1. zendmd NameS and DESCIIPLIONSccvvvuieiiitiie ettt e et e e et e e es 16
7.1. XML-RPC Attributes and DESCITPLIONSciieieieiiiiiiee ettt et et r e e e e nae e enees 41
9.1. COMIMON DBEMON ClBSSESeieetii ittt ettt ettt ettt e ettt et e et et e et et e e e e eeeenea s 67
9.2. ZenReNder DEfAUIT URLSciiiiiieiiii ettt e e e e e e e e ene s 69
11.1. MOOEEr FUNCHIONS ...uieitti ettt ettt et e et e et et e et e b e e e et eeeena s 84
11.2. CommandParser HEIPEr ParSErScoouuuiiiiiiii ettt et e e et e e e e 92
12.1. Zenoss portal_skins directories and their DESCIIPLIONSveiiiiiieiiiiie e 98
15,1, TYPES OF TESING eeitiiiiiiti ettt ettt ettt ettt e e ettt e e et et e e et et e e e eebeaeeeenbnneeeenes 132
B.1. TALES DeVICe ALIITDULES ...ttt et e e e e et e e eebe e eees 142
B.2. TALES EVent ATIDULES . ..ooeiiiiii ettt e et e e et e 143

viii

Chapter 1. Introduction

1.1. Overview

The Zenoss system brings together many types of monitoring and management information. The information is
available through a standard web browser. In fact all aspects of the system are accessed though the web there is
no need to edit configuration files.

At ahigh level, Zenoss consists of four major parts:
1. Model

2. Avalilability

3. Events

4. Performance

1.1.1. Model

At the core of Zenossisthe Model. The standard model is a detailed description of all the devices Zenoss manages
and their relationship to your business or other important groupings. Because of the large amount of information in
the model there are several ways that information can be added. First isthrough auto discovery. Thisisthe primary
way that information is added to the model. Zenoss auto-discovery is very flexible and can use several different
transports. The model can also be populated though the web Ul or through Zenoss' external APIs. Version 2.0 adds
discovery locking which allows auto-discovered information to be overridden with manually added information.

The model is used to drive the monitoring elements of the Zenoss system which will be described throughout the
rest of this document.

1.1.2. Availability

Availahility monitoring consists of running tests against the I T infrastructure to determineif it is currently function-
ing properly. These test are typically run externally to the monitored system. Example tests include: ping, process,
and service tests.

1.1.3. Events

The Zenoss Event Management System is a consolidation of status information from all parts of the Zenoss system
as well as external systems. When a Zenoss monitoring daemon detects a failure or threshold breach events are
generated. Thisis similar to most other monitoring systems available. Zenoss does more in that it also takes event
import from other parts of the IT infrastructure. These include Syslog and SNMP Traps. It's one thing to bring the
eventsinto a single repository but an event management system must do more. As events are received Zenoss runs
them through a set of rules that augment the information they contain and integrate them with the model.

1.1.4. Performance

The Zenoss Performance Management System tracks important I T resource information as it changes over time.
This process is also known as data collection. It is critical to know how much disk space is available, what the
CPU load is and how long a web page takes to download. This system can collect information though SNMP,
custom scripts (ZenCommands) or XML-RPC. Performance information is integrated with the Zenoss Model so
that resource usage is shown in the context of other Zenoss information.

Introduction

1.2. Detailed Architecture

,—ZehOSS —\
Web User Interface (Zope)

Daemans f

Figure 1.1. Zenoss Detailed Architecture

1.2.1. User Layer

The User Layer is manifested as a Web Console/Portal (Zope). This layer consists of the Graphical User Interface
(GUI), which allows the user access to the following pieces of information:

Dashboard Events Locations
Devices Manufacturers Reports
Services Systems Users
Networks Groups Administration

The User Layer Interacts with the Data layer and translates the information for display in the GUI.

1.2.2. Data Layer

The Data layer is where all of the information about the monitored environment is stored. For more information
about how datais stored, see Chapter 4, Zenoss Datastores .

Table 1.1. Data-L ayer Daemon

Daemon Description

ZenHub Broker of information between the data layer and the collection daemons.

1.2.3. Collection and Control Service Layer

The servicesthat collect the dataand feed it to the Data L ayer come from the daemons associ ated with the Collection
and Control Services Layer. These daemons can be broken down into five distinct areas: Automated Modeling,

Introduction

Availability Monitoring, Event Collection, Performance Monitoring, or Automated Response. The daemons that
fall under each layer are detailed below.

Table 1.2. Automated M odeling Daemons

Daemon Description

Zendisc Zendiscisasubclass of zenmodeler and it goes out to discover new network resources.
It walks the routing table to discover the network topology and then pings all discov-
ered networksto find active IPs and devices.

ZenWinModeler ZenWinModeler is used for the auto-discovery of Windows Services (WMI) running
on awindows box.

ZenModeler ZenModeler is a configuration collection and configuration daemon. It is used for

high-performance, automated model population using SNMP, SSH, and Telnet to col-
lect itsinformation. Zenmodel er works against devices that have been loaded into the
DMD.

Table 1.3. Availability

Monitoring Daemons

Daemon Description

ZenPing ZenPing is the ping status monitoring (ICMP) for Zenoss. ZenPing does the high-
performance asynchronous testing of the ICMP status.

ZenWin ZenWin is used for Windows Service Monitoring (WMI).

ZenStatus ZenStatus performs active TCP connection testing of remote daemons.

ZenProcess ZenProcess enables process monitoring using SNMP host resources mib.

Table 1.4. Event Collection Daemons

Daemon Description

ZenSyslog ZenSyslog is collection of and classification of syslog events.

ZenEventlog ZenEventlog is used collect (WMI) event log events.

ZenTrap ZenTrap collects SNMP Traps. It receives traps and turns them into events.

Table 1.5. Performance M onitoring Daemons

Daemon Description

ZenPerfSNMP ZenPerf SNM P does the high performance asynchronous SNMP performance collec-
tion.

ZenPerfXMLRpc ZenPerfXMLRpc isused for XML RPC Collection.

ZenCommand ZenCommand is used for XML RPC Collection specificaly it allows the running of
Nagios and Cactii plug-ins on the local box or on remote boxes through SSH.

Table 1.6. Automated Response Daemons

Daemon

Description

ZenActions

ZenActionsis used for aerts (SMTP, SNPP and Maintenance Windows).

Chapter 2. Getting Started

2.1. Working with the Source Code
2.1.1. Getting the Source Code

If all that you would liketo do isbrowse through the source code, then you can just go to the Trac / Subversion page.

The version control system used by Zenossis Subversion [http://subversion.tigris.org/]. Subversion has excellent
documentation [http://svnbook.red-bean.com/] in the form of an O'Reilly [http://oreilly.com/] book. For the
moment, we'll just provide the minimum number of commands to get started.

The absolute latest version of Zenoss can be accessed directly through the Subversion repository. This code should
not be used for production purposes as there are changes actively being made which may not have been thoroughly
tested.

From a command-line prompt, go to a directory where you would like to see the source code be delivered. Here's
a sample command to get the source code:

$ svn co http://dev.zenoss. org/svn/trunk/Products

Thiswill create adirectory called Pr oduct s inthe current directory and checkout the source code. Thisrepository
is readable anonymously, so no credentials are required.

To see what other portions of the code are available, such as ZenPacks or support utilities, you can look using the
following Subversion command:

$ svn |Is http://dev.zenoss. org/svn/trunk

Other tools that can be used to view or checkout the source code for different platforms are available. See the
Subversion web site for more details.

2.1.1.1. Getting Subversion for the Appliance

The rPath [http://www.rpath.com/corp/] appliance does not ship with the svn binaries, but you can till obtain
them. First you will need to edit the/ et ¢/ conar yr c file and change thisline:

i nstal | Label Pat h zenoss- proj ect. zenoss. | oc@enoss: devel - 2. 3-beta

Change the above line to this (note that this should be al one line and has been modified to make it look better
in print):

i nstal | Label Pat h zenoss- proj ect. zenoss. | oc@enoss: devel - 2. 3-bet a
conary.rpath.com@pl:1

Now you should be able to obtain the subver si on package by using the conary update command:

[root @ocal host ~] conary update --resol ve subversion

http://subversion.tigris.org/
http://subversion.tigris.org/
http://svnbook.red-bean.com/
http://svnbook.red-bean.com/
http://svnbook.red-bean.com/
http://oreilly.com/
http://oreilly.com/
http://www.rpath.com/corp/
http://www.rpath.com/corp/

Getting Started

For more information about rPath commands, see their documentation wiki [http://wiki.rpath.com/wi-
ki/Main_Page]. There are also a set of blog entries Conary Uncorked [http://setefw.livejournal.com/6120.html]
has been put together by a dedicated rPath user that introduces some of the conary commands much more gently.

2.1.2. Keeping up-to-date with your checked-out code

The following command, issued from the base directory of where you checked out the Zenoss code, will update
all code from that directory and al subdirectories and bring it up to date with what is current in the Subversion
repository (and therefore apply al of the current patches to the code you checked out previously):

$ svn update

Note

If you have modified any code in this directory, these changes will be merged with the latest code
updates. If there are differences that Subversion cannot automatically resolve, svn will tell you that
thereisaproblem by showing the updated fileisin conflict (ie showing you a'C' beside the file when
you run svn status).

You can tell if you have modified any of the filesin the checked-out directory by typing the following:

$ svn status

If you are only interestd in modifying one file rather than everything, you can specify that onefile:

$ svn udpate fil enane

2.1.3. Getting Patches

For issue tracking, bug reports and linking patches to bug reports, Zenoss uses Trac [http://trac.edgewall.org/] to
manage issues. The Zenoss Trac server isfound here [http://dev.zenoss.com/trac/report].

You can click on the Search box on the top right-hand side and enter a search term to look for keywords in the
tickets. Thiswill then present you with the ability to search for changesets (ie Subversion revisions), trouble tickets,
or the Wiki.

Alternatively, from the start page you can click on the Custom Query which will allow you to view the results from
your customized query.

Once you have found a patch that applies to your system, you can use the zenpatch command in order to apply
them to your system. (As mentioned previoudly, if you use the svn update commands, you will already be at the
|atest patched level.)

$ zenpat ch revi si on_nunber

2.1.4. Style Guidelines

These following guidelines are targeted at Python files. HTML files, Zope Page Template (ZPT) files, shell scripts,
etc should adhere to these as much as is reasonable and conventional in those languages. Currently, we follow
Guido's Style Guide for Python Code [http://www.python.org/dev/peps/pep-0008/] which is detailed in PEP 8
(Python Enhancement Proposals).

Any style conventions that stray from PEP-8 should be annotated in this document.

http://wiki.rpath.com/wiki/Main_Page
http://wiki.rpath.com/wiki/Main_Page
http://wiki.rpath.com/wiki/Main_Page
http://setefw.livejournal.com/6120.html
http://setefw.livejournal.com/6120.html
http://trac.edgewall.org/
http://trac.edgewall.org/
http://dev.zenoss.com/trac/report
http://dev.zenoss.com/trac/report
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/

Getting Started

2.1.4.1. Docstrings

Every method and function definition within Zenoss should include a docstring. The docstring is usually composed
of two parts: the explanatory text and the doctest code. The explanation usually includes adescription of al or most
of the following aspects of the function:

* Thefunction's purpose

The context in which the function is usually called

« What parametersit expects

What it returns

* Any side effects of the function
This explanatory text should scale in size with the complexity and significance of the function.

The second part of the docstring isthe doctest section. Thisis composed of zendmd commands and expected output
from those commands. The commands are run as part of the testing process and output is compared to the output
lines. This code serves two primary purposes. First it is a working example of how the function should be called
and what it returns. Second it serves as abasic test to ensure the function is not horribly broken. Thisis not intended
as areplacement for unit tests. Thorough testing of boundary cases and unusual situations still belongsin unit tests
whereas the doctests are much simpler and more instructional in nature.

Docstrings begin on the line immediately following the function definition and are indented one level from the
definition. Thefirst and last lines of the docstring are three double quotes and anewline. One blank line separatesthe
description from the epydoc section. epydoc [http://epydoc.sourceforge.net/] can take sprecially formatted text in
the docstringsand usethem to create APl documentation. The Zenoss APl documentation [http://www.zenoss.com/
community/docs/zenoss-api-docs/] islocated on the Zenoss website and is updated every release.

Another blank line separates the epydoc section from the doctest section. The code for the function begins on the
line immediately following the docstring. Example:

def TruncateStrings(longStrings, maxLength):

http://epydoc.sourceforge.net/
http://epydoc.sourceforge.net/
http://www.zenoss.com/community/docs/zenoss-api-docs/
http://www.zenoss.com/community/docs/zenoss-api-docs/
http://www.zenoss.com/community/docs/zenoss-api-docs/

Getting Started

return [s[:maxLength] for s in |ongStrings]

The easiest way to create the doctest portion isfrom within zendmd. Except for the indentation, the docstring should
exactly match commands and output from a zendmd session.

Use the available epydoc fields [http://epydoc.sourceforge.net/manual-fields.html] where they are applicable.
Some of the useful common fields are:

Commonly-used epydoc fields

@param par am nane Describe the parameter

@typedat a_t ype Datatype of the parameter
@return Describe the return value
@rtype Datatype of the return value
@permission Zope permission that the method requires
@todo Todo for this method

Note

Within the description section of the docstring, you may use the string DEPRECATED on its own line
to denote that the method is deprecated.

2.1.5. Generating Diffs for new Fixes

Once you've determined how to fix something, or have found a way to add a feature, modify the source code in
your checkout directory. Oncethat's complete, we just need to generate a diff starting from the base of the checkout
directory.

To generate adiff of al filesin the current directory and all subdirectories:

$ svn diff >
mychanges. di f f

To produce a diff for just asinglefile:

$ svn diff
source_file
>

mychanges. di f f

2.1.6. Submitting a Fix

Zenoss accepts user contributions using the following procedure:

http://epydoc.sourceforge.net/manual-fields.html
http://epydoc.sourceforge.net/manual-fields.html

Getting Started

1. Completethe form [http://www.zenoss.com/zenoss forms/contribute?c=contribute] to allow Zenossto accept
your code.

2. Createaticketinour ticketing system [http://dev.zenoss.com/trac/wiki/HowToAddTicket].
3. Addthekeyword cont ri but e totheticket.

4. Attach your patch (in diff format) or code to the ticket.

Note

All contributions will be accepted under the terms of the Zenoss Contribution Agreement.

2.2. Development Toolchain Requirements

There are a number of other tools that are required to build Zenoss from source (aka a toolchain). Among them are
things such as a C compiler, the make command and other associated tools.

2.2.1. Appliance

The Zenoss appliance is based upon the rPath Linux 1 (r pl 1) distribution.

Troves(likethegcc toolchain) which are not available onthe Zenoss updaterepository server [update.zenoss.com]
are generally available from install labels such as:

conary.rpath. com@pl:1

The trove candy store is rBuilder Online [http://www.rpath.com/rbuilder]. It is strongly recommend getting an
account there since it provides a nice search capability for packages of interest. Plus there are forums for asking
appliance-specific questions.

For agcc toolchain, try this as the root user:

conary update --resol ve autoconf autonmake make which \
--install-1abel ="conary. rpath. com@pl : 1"

conary update --resolve gcc=conary.rpath.com@pl:1 \
--install-1abel ="conary. rpat h. com@ pl : devel "

Thebi nut i | s trove should already be on the box.

An actual install sequence looked like the ouput below. If the- - i nf o switchisused, it ispossibleto seeif every-
thing is going to resolve nicely. And if you arereally paranoid, usethe- - t est flag which runsthrough the update
but does not commit the resullt.

conary update autoconf autonake nmake which --resolve --info \
--install-1abel ="conary. rpath. com@pl : 1"
Install autoconf(:data :doc :runtine)=2.59-7-0.1
Install automeke(:data :doc :runtine)=1.9.6-3-0.1
Install mAd(:runtine)=1.4.3-4-0.1
Install meke(:doc :locale :runtine)=3.80-7.2-1
Install which(:doc :runtine)=2.16-3-0.1

http://www.zenoss.com/zenoss_forms/contribute?c=contribute
http://www.zenoss.com/zenoss_forms/contribute?c=contribute
http://dev.zenoss.com/trac/wiki/HowToAddTicket
http://dev.zenoss.com/trac/wiki/HowToAddTicket
update.zenoss.com
update.zenoss.com
http://www.rpath.com/rbuilder
http://www.rpath.com/rbuilder

Getting Started

conary update autoconf autonake nmake which --resolve \
--install-1abel ="conary. rpath. com@pl : 1"

Including extra troves to resol ve dependenci es:
md:runtime=1.4.3-4-0.1

Appl yi ng update j ob:
Install autoconf(:data :doc :runtine)=2.59-7-0.1
Install automake(:data :doc :runtine)=1.9.6-3-0.1
Install md(:runtinme)=1.4.3-4-0.1
Install make(:doc :locale :runtinme)=3.80-7.2-1
Install which(:doc :runtinme)=2.16-3-0.1

conary update --info --resol ve gcc=conary.rpath.com@pl:1 \
--install-1abel ="conary. rpat h. com@ pl : devel "
Install gcc(:devel :devellib :doc :lib :locale :runtime)=3.4.4-9.4-1
Install |ibgcc(:devellib)=4.1.2-11-1[~!gcc. core]

conary update --resol ve gcc=conary.rpath. com@pl:1 \
--install-1abel ="conary. rpat h. com@ pl : devel "
Including extra troves to resol ve dependenci es:
|'i bgcc: devel |i b=4.1.2-11-1
Appl yi ng update j ob:
Install gcc(:devel :devellib :doc :lib :locale :runtime)=3.4.4-9.4-1
Install Iibgcc(:devellib)=4.1.2-11-1[~!gcc. core]

Generally try to find something on the rpl:1 branch name and do not mix rpl:2 stuff with the rpl:1 stuff. In some
cases, you may have to resort to pulling a trove from the rpl:devel branch if it cannot find it elsewhere. That's
what happened above when trying to resolve the | i bgcc dependency for the gcc trove. Adding the extra - -
i nstal | -1 abel optionwasnecessary sothat| i bgcc could befound. How could you know it wason rpl:devel ?
Go to rBuilder Online and search for that package and it should tell you.

If you want to see where the files for atrove actualy got installed:

conary g trove_nanme --|sl
[code]l# conary q gcc --1sl
| rwxr wxr wx 1 root root 3 2004-07-07 17:04:44 UTC /usr/bin/cc -> gcc

- FWKT - XT - X 1 root root 81452 2006-06-19 18:02: 30 UTC /usr/bin/gcc
- FWKT - XT - X 1 root root 16134 2005-10-15 07:22:42 UTC /usr/ bin/gccbug

Lastly, conary makes it relatively easy to run-away if you're not happy with a trove you've installed. Use conary
rblist to see what packages have been commited to the conary stack.

conary rblist | nore
r.3:

installed: gcc(:devel :devellib :doc :lib :locale :runtine)
conary.rpath.com@pl :1/3.4.4-9.4-1

installed: l|ibgcc(:devellib) conary.rpath.com@pl:devel/4.1.2-11-1

r.2:

Getting Started

installed: autoconf(:data :doc :runtinme) conary.rpath.com@pl:1/2.59-7-0.1
install ed: autonmake(:data :doc :runtinme) conary.rpath.com@pl:1/1.9.6-3-0.1
installed: mi(:runtine) conary.rpath.com@pl:1/1.4.3-4-0.1

r.1:
updat ed: info-raa-web(:user) products.rpath.com@path:raa-2/1-1.1-2 ->
1-1.3-2

Here is how you would remove the gcc trove that was just installed:

conary rb r.3

Appl yi ng update job:
Er ase gcc(:devel :devellib :doc :lib :locale :runtinme)=3.4.4-9.4-1
Er ase |'i bgcc(:devel lib)=4.1.2-11-1[~! gcc. core]

conary q gcc
gcc was not found

Be careful with what troves that you remove!

2.3. Programming Techniques
2.3.1. Calling Methods Using REST

REpresentational State Transfer (REST) is a method of marshalling data types and calling functions using HTTP.
Zope supports a number of different Remote Procedure Call (RPC) mechanisms, including REST.

This section describes some more advanced Zenoss concepts that we have encountered as the product has rolled
out. Some may be appropriate for your environment. Usually they require at least a little coding experience, but
they are really not that hard.

2.3.1.1. How To Call Methods Using REST

Zenosssweb interface will let you run any method of any object using asimple URL. Callswill be in the following
format:

http://USERNAVE ©@: PASSWORD @@/WY_ZENOSS_HOST ©: 8080/ PATH_TO_OBJECT @/ METHOD_NAME
0?ARG OG=VAL @

The user with the rights to view this information.
The user's password

Hostname or IP of your instance of Zenoss

The full path to the object you wish to access
The object's method you wish to run

A method's parameter name

A methods's parameter value

Q00060

Another example:

This example will give the most recent |oad average of a Linux server:
http://USERNAME:PASSWORD@MY_ZENOSS HOST:8080/zport/dmd/Devices/Server/Linux/devices/angel
0/getRRDV alue @?dsname ®=laloadInt5 |al_oadInt5 ®

10

Getting Started

Notice the following things about this URL :

O /zport/dmd/Devices/Server/Linux/devices/angel isthe full path to our object you want to access

O getRRDValueisthe method in the Device object we wish to run

® dsnameisaparameter to the getRRDValue method.

® laLoadint5 lal oadInt5 isthe value of dsname which isthe name of the data source we are interested in.

Watching the URLSs as you browse the web interface can give you a place to start searching.

2.3.1.2. Sending an Event

Events can be sent to Zenoss through the web interface as well as through using zensendevent, but also through
aprogrammetic interface.

2.3.1.2.1. Using a REST Call

Sending an event through arest call can be done by a simple web get. In this example we will use wget to send an
event. If you use wget don't for get to escape the "&" or wrap the URL in single quotes.

[zenos@zenoss $] wget 'http://admin:;zenoss@M Y HOST:8080/zport/dmd/ZenEventM anager/manage_addEvent?
device=MY DEVICE& component=MY COMPONENT& summary=MY SUMMARY & severity=4& eventclasssEVENTCLASS

2.3.1.2.2. Using XML-RPC

To send an event to Zenoss using XML-RPC you will first need to create a dictionary (in Perl a hash) that will
represent the event. Zenoss will need at a minimum the following fields:

Event fields

device the name of the device from which this event originates

component the sub-component of the device (for instance ethQ, http, etc)

summary the text message of the event

severity an integer between 0 and 5 with higher numbers being higher severity. Zerois clear.

Y ou can send an event to Zenoss via an interactive session with the Python interpreter as follows:

>>> fromxmrpclib inmport ServerProxy
>>> myurl =
>>> gserv = ServerProxy(nmyurl)
>>> evt = { : , : ,
. : , 14, : }
>>> gserv. sendEvent (evt)

See below for examplesin other languages.

2.3.1.2.3. Example Usage in Other Languages

Please note that we are a Python shop and may not be able to answer specific questions about XML-RPC clients
written in other languages.

2.3.1.2.3.1. Perl

Send an event via Perl using RPC::XML.::Client

11

Getting Started

require RPC.: XM;
require RPC: : XM.:: d i ent;

$serv = RPC.: XM.: : Cl i ent - >new();

Y%evt = (=> , => ,
=> , => 4) ;

$args = RPC.: XM.: : struct - >new %evt) ;

$serv->si nmpl e_r equest (, $args);

2.3.1.2.3.2. Ruby

Thisisan example of an Interactive Ruby (IRB) session (the returns have been omitted for the sake of clarity). Note,
however, that the Ruby standard library is under active development in general, and specifically, the XML-RPC lib
in Ruby is not stable. As of Feb 2007, thereisagreat deal of on-going discussion regarding XML-RPC in Ruby by
Ruby developers and contributors. The following is known to work in previous versions of Ruby:

require
url =)
server = XMLRPC. : d i ent.new2(url)

evt = { => , => ,
=> , => 4}
server. cal | (, evt)

2.3.1.2.3.3. PHP

<?php
i ncl ude()
function iflnCutBps($host, $port, $user, $pass, $device, $interface) {

$iflnCctets = ;
$ifQutCctets = ;

base url $url = '/zport/dnd/ Devices';
message $nsg = new xml rpcnsg(

$devi ce. .$interface. , array());
$xiflnCctets = new xm rpcVal ($iflnCctets);
$xi f Qut Cctets = new xm rpcVal ($i f Qut Octets);
$xi fCctets = new xm rpcVal (array($xi flnCctets, $xifCQutCctets),);
$neg- >addPar am($xi f Oct et s) ;

client $clt = new xm rpc_client($url, $host, S$port);
$clt->set Credential s($user, $pass);

get response $rsp = $clt->send($nsQ);

any error? if ($rsp->faultCode()) {

12

Getting Started

di e(.$rsp->faul tString().
)i}
convert to data structure $dst = xmlrpc_decode($rsp->serialize());
return(array(=>$dst [$i f I nCct et s] *8, =>$dst [$i f Qut Oct et s] *8)) ;

}

?>

2.3.1.2.3.4. Java

Thisexample usesthethe Apache XML-RPC library [http://ws.apache.org/xmlrpc/index.html] and Java 6 to send
an event to the Zenoss server.

Required j ar s on the classpath (all available from the Apache download):
e xmrpc-client-3.1.jar
e ws-commons-util-1.0.2.jar

e xm rpc-comon-3. 1. jar

i mport java. net. URL;
i mport java.util.HashMap;

i mport org.apache. xmrpc.client.Xm Rpcd ient;
i nport org.apache. xm rpc. client.Xm Rpcd i ent Confi gl npl ;

public class JavaRPCExanpl e {

public static void main(String[] args) throws Exception {
Xm Rpcd i ent Configlnpl config = new Xm Rpcd i ent Confi gl npl () ;

url =

confi g. set Server URL(new URL(url));
confi g. set Basi cUser Nang(ik
confi g. set Basi cPasswor d(ik

Xm RpcC ient client = new Xm Rpcd ient();
client.setConfig(config);

HashMap<Stri ng, Obj ect > paranms = new HashMap<Stri ng, Obj ect >();

par ans. put (,);

par ans. put (,);

par ans. put (,);

par ans. put (, 4);

par ans. put (,);

client.execut e(, hew oj ect[]{parans});

13

http://ws.apache.org/xmlrpc/index.html
http://ws.apache.org/xmlrpc/index.html

Getting Started

1}

2.3.2. Miscellaneous Notes

2.3.2.1. pkg_resources

Should one need to use pkg_r esour ces, it would normally be imported like this:

i nport pkg_resources

To avoid the mysterious warning

_xm pl us User War ni ng

usethefollowingi nport line:

i mport Products. ZenUtil s. PkgResour ces

2.4. zendmd: Command-line Access to the De-
vice Management Database (DMD)

Zenoss uses the Zope database (ZODB) to store its information. Since the ZODB is an Object-Oriented DataBase,
this is not organized by tables, rows and columns, but by objects. The object that Zenoss uses to store the basic
model of your network is in the Device Management Database (DM D) object.

Y ou can access the DMD through an interactive, programmable interpreter: zendmd. zendmd is the Python inter-
preter, with a handle to the database stored in the default namespace, and afew handy functions.

To start zendmd and see how the interpreter works, use the following commands:

These are all basic Python interpreter features. zendmd adds in a reference to the root of the object tree which is
known asdmd. Y ou can see thisroot namein the URL s used to refer to objects when using Zenoss from the browser.

Thereis abuilt-in function that can be used to find devices.

$ zendnmd

>>> print dnd

<Dat aRoot at /zport/dmd>

>>> find()

<Devi ce at /zport/dnd/ Devi ces/ Server/ Li nux/ devi ces/| ocal host .| ocal domai n>

Thef i nd() function also takes wildcards:

>>> find()
<Devi ce at /zport/dmd/ Devi ces/ Server/ Li nux/ devi ces/ | ocal host . | ocal donai n>

14

Getting Started

You can perform scripting at the command prompt. For example, we can count the number of interfaces on our
device:

Y ou can inspect the objects:

Y ou can perform low-level checks such as re-indexing all the objects:

>>> rei ndex()

Or check/repair relationships on all devices:

>>> for d in dnd. Devi ces. get SubDevi ces():
d. checkRel ati ons(repair=True)

Finally, after making changes you can commit them to the database:

>>> commit ()

or synch against the database and restore the old state to your interpreter, reverting any changes.

>>> synch()

Zendmd can be used to automate repetitive tasks. For example, you can enter in alarge list of devices. First, create
atext file containing the names of those devices:

$ cat >l ot sOF Devi ces. t xt
devi cel

nmyhost . nydomai n. com
host 2. mydomai n. com

D

Of course, the datacould comefrom aninventory list or other database. Then, you can usethe dmd to processthefile:

$ zendnd

for line in file():
d = dnd. Devi ces. Server. Li nux. creat el nstance(line.strip())
comm t ()

d. col | ect Devi ce()

Y ou can feed zendmd commands on stdin:

$ zendnd < AddDevi ces. py

Y ou can aso import scripts:

$ zendnd

15

Getting Started

i mport MyScripts
MyScri pts. | oadDevi ces(dnd)

If you want to create a stand-alone command, reading the $ZENHOVE/ ZenMbdel / zendnd. py fileis a good
Start.

The full List of zendmd names is described below.

Table 2.1. zendmd Names and Descriptions

zendmd Name Description
dmd Device Management Database, the root persistent object
app The Zope Application, the root of the database
zport Zenoss Portal, the portal that contains Zenoss
find() L ook up devices by name, and by address; supports wildcards
devices Equivalent to dmd.Devices
sync() Revert the objectsin zendmd back to the state in the ZODB
conmit () Push object changes to the persistent store
abort () Undo any object changes and refresh from persistent storage
me areference to the machine running zendmd, if it can be found
rei ndex() recreates the indexes against the objects
[ogi n() sets the security context of the given user
| ogout () removes any security context

2.5. Programming Documentation
2.5.1. Python

If you are new to Python here are afew resources to get you started:

e The officia Python documentation [http://docs.python.org/index.html] contains a tutorial and the reference
guide for the standard libraries that ship with Python. Note that Zenoss is currently constrained to using Python
2.4, so be careful when reading about different Python features.

» DivelInto Python [http://diveintopython.org/] is an excellent book if you are familiar with other programming
languages and contains lots of great examples.

2.5.2. Zenoss API

As mentioned previously, more detailed information is gathered using the epydoc documentation system, and the
results are in the Application Programming Interface (API) documentation [http://www.zenoss.com/communi-
ty/docs/zenoss-api-docs/].

2.5.3. Other Resources

Discussion regarding development of Zenoss takes place on the zenoss-dev mailing list and forums [http:/
forums.zenoss.com/viewforum.php?f=3].

16

http://docs.python.org/index.html
http://docs.python.org/index.html
http://diveintopython.org/
http://diveintopython.org/
http://www.zenoss.com/community/docs/zenoss-api-docs/
http://www.zenoss.com/community/docs/zenoss-api-docs/
http://www.zenoss.com/community/docs/zenoss-api-docs/
http://forums.zenoss.com/viewforum.php?f=3
http://forums.zenoss.com/viewforum.php?f=3
http://forums.zenoss.com/viewforum.php?f=3

Getting Started

2.5.4. Contributing to the Documentation

If you find errors or omissionsin the documentation, you can either submit aticket (see Section 2.1.6, “ Submitting
a Fix”) or send an email to docs@zenoss.com [mailto:docs@zenoss.com]. It's possible to contribute other
materia [http://www.zenoss.com/community/get-invol ved/how-to-contribute-web-content], too! That information
isavailable onthe Zenoss Wiki [http://www.zenoss.com/community/wiki].

17

mailto:docs@zenoss.com
mailto:docs@zenoss.com
http://www.zenoss.com/community/get-involved/how-to-contribute-web-content
http://www.zenoss.com/community/get-involved/how-to-contribute-web-content
http://www.zenoss.com/community/get-involved/how-to-contribute-web-content
http://www.zenoss.com/community/wiki
http://www.zenoss.com/community/wiki

Chapter 3. ZenPacks

3.1. Overview

A ZenPack is a package that adds new functionality to Zenoss. For basic information on ZenPacks see the Zenoss
Admin Guide section on ZenPacks. The following information pertains to the creation of more complex ZenPacks
that contain skins, Python classes, daemons, etc.

As of Zenoss 2.2 the ZenPack framework has switched to using Python Eggs [http://peak.telecommunity.com/
DevCenter/PythonEggs] as the packaging mechanism for ZenPacks. Python Eggs are the standard mechanism for
packaging and distributing code.

Note

The zenpack command should be used for installation and removal of ZenPacks, not the easy_install
command that is frequently used with non-ZenPack Python Eggs.

The use of dotted names for ZenPacks (see Section 3.2.1, “ZenPack Names” below) was also introduced in this
version. Zenoss 2.2 supportsinstallation and use of pre-2.2 ZenPacks, but all new ZenPacks are created in the new
format. This document relates to ZenPacks created in the new style. For documentation on ZenPacks predating
Zenoss 2.2 please see previous versions of this document and the Zenoss Admin Guide.

If you developed pre-2.2 ZenPacks and wish to convert them to Egg-style ZenPacks see the section below Sec-
tion 3.5.2, “ Converting older ZenPacks to ZenPack eggs’ .

3.2. Creating a ZenPack

ZenPacks can be created through the Zenoss user interface by using the Create ZenPack... menu item on the Zen-
Packs page. This creates the ZenPack on the filesystem at $ZENHOVE/ ZenPacks/ zenpacki d and installs
it into Zenoss.

3.2.1. ZenPack Names

ZenPack names consist of at least three strings joined by periods. The first of these strings is always "ZenPacks."
Each of these strings must start with a letter and contain only letters, numbers and underscores. The reason for this
naming scheme is that the ZenPack will setup namespaces in Python that reflect these names. There is a python
namespace called ZenPacks. Within that namespace are packages representing the second part of all the installed
ZenPack and so on. So for example if you have a ZenPack named ZenPacks. MyConpany. MyZenPack then
itisimportable in Python (and zendnd) as

i nport ZenPacks. MyConpany. MyZenPack

And adatasource class provided by this example might be accessed as

from ZenPacks. MyConpany. MyZenPack. dat asour ces. MyDat aSour ceC ass \
i nport MyDat aSour ced ass

The advantage of these namespaces is that they help prevent namespace conflicts between different
organizations authoring ZenPacks. So if a third party wants to develop an HTTP monitoring Zen-
Pack they could name it ZenPacks. Qur Conpany. Ht t pMoni t or and it would not conflict with the
ZenPacks. zenoss. Ht t pMoni t or Core ZenPack.

18

http://peak.telecommunity.com/DevCenter/PythonEggs
http://peak.telecommunity.com/DevCenter/PythonEggs
http://peak.telecommunity.com/DevCenter/PythonEggs

ZenPacks

3.2.2. Specifying Dependencies

The ZenPack Edit page alows you to specify versions of Zenoss that your ZenPack is compatible with as well as
dependencies on other ZenPacks. The first item in the Dependencies section of that page is the version of Zenoss
that isrequired. If that field is blank then your ZenPack will be installable under any version of Zenoss version 2.2
or later. If you enter a specific version number then the ZenPack will run only under that exact version of Zenoss,
thisis usually not desirable. The most typical verson requirement isto specify that the ZenPack is compatible with
any version of Zenoss equal to or greater than a specific version. The syntax for this is ">=X" where X is the
minimum version the ZenPack requires. For example, if a ZenPack requires Zenoss version 2.2.1 or greater the
version specification would be

>=2.2.1

Below the Zenoss version specification isalist of all other ZenPack eggs installed. Old-style (non-egg) ZenPacks
cannot be listed as dependencies and do not appear in this list. If your ZenPack requires another ZenPack to be
installed then check the checkbox to the left of the other ZenPack's name. Optionally you can also give a version
specification for each ZenPack you require.

3.2.3. Locating ZenPack Source Outside of Zenoss

For any non-trivial ZenPackswe recommend maintai ning the source code somewhere other than $ZENHOVE/ Zen-
Packs. There are a couple reasons for this:

 Performing a zenpack --remove deletes the ZenPack's directory from $ZENHOVE/ ZenPacks. If you do not
have the files copied in another location you can easily lose all or some of your work.

 |f your ZenPack source is maintained in a version control system it is frequently easier to keep the code within
alarger checkout directory elsewhere on the filesystem.

To move a ZenPack source directory out of $ZENHOVE/ ZenPacks you can simply copy the directory to
the new location then run install again using the - - I i nk option. This will remove the $ZENHOVE/ Zen-
Packs/ Your ZenPackl d directory.

cp -r $ZENHOVE/ ZenPacks/ Your ZenPackl d SomeCt her Di rect ory
zenpack --link --install SomeQ herDirectory/ Your ZenPackl d

3.2.4. Community ZenPack Subversion Access

Thereisa Community ZenPack development site [http://community.zenoss.org/trac-zenpacks/] for hosting Sub-
version source code control access to al contributed Community ZenPacks. Accounts will be granted by request
and offered to ZenPack contributors. The goal of this site is to encourage ZenPack development and open up im-
provements to all ZenPacks to a greater audience.

The Community ZenPack development site contains instructions for:
« working with Community ZenPacks from Subversion

« building and modifying ZenPacks

* converting old-style ZenPacks to Python Egg ZenPacks

3.3. ZenPack Structure and Contents

This section describes the files and directory structures that make up most ZenPacks. A more detailed source of
information about Python Eggs, entry points and other technical details of building eggsis found here [http://
peak.tel ecommunity.com/DevCenter/setuptool s]

19

http://community.zenoss.org/trac-zenpacks/
http://community.zenoss.org/trac-zenpacks/
http://peak.telecommunity.com/DevCenter/setuptools
http://peak.telecommunity.com/DevCenter/setuptools
http://peak.telecommunity.com/DevCenter/setuptools

ZenPacks

Note

The $ZENHOVE/ Pr oduct s/ ZenMbdel / ZenPackTenpl at e directory contains the template
files and directories used when Zenoss creates aZenPack. If you decide to change thesefiles, note that
these changes will not be preserved across upgrades.

A ZenPack has the concept of a namespace, so that multiple people or organizations can create similar
ZenPack names without their code colliding with each other. In this example, the name of the ZenPack is
ZenPacks. pkg. zpi d , where pkg isthe package name and zpi d isthe ZenPack id.

Inthe $ZENHOVE/ ZenPacks/ directory, youwill find thedirectory ZenPacks. pkg. zpi d withthefollowing
contents (abbreviated for clarity):

buil d
(1]

bui | d/ bdi st.|inux-i 686

build/lib

bui I d/1'i b/ ZenPacks

di st

(2]

di st/ ZenPacks. pkg. zpi d-versi on_i d- py2. 4. egg
| NSTALL. t xt

README. t xt

set up. py
(3]

ZenPacks
(4

ZenPacks/ __init__.py
ZenPacks/ pkg

ZenPacks/ pkg/ __init__.py
ZenPacks/ pkg/ zpi d

e

ZenPacks/ pkg/ zpid/ __init__.py
(6]

ZenPacks/ pkg/ zpi d/ daenons
(7]

ZenPacks/ pkg/ zpi d/ dat asour ces
(8]

ZenPacks/ pkg/ zpi d/ dat asources/ _init__.py
ZenPacks/ pkg/ zpid/1ib
(9]

ZenPacks/ pkg/ zpid/lib/__init__.py
ZenPacks/ pkg/ zpi d/ | i bexec

20

ZenPacks

[10]

ZenPacks/ pkg/ zpi d/ m grat e
®

ZenPacks/ pkg/ zpid/ mgrate/ __init__.py
ZenPacks/ pkg/ zpi d/ nodel er
®

ZenPacks/ pkg/ zpi d/ nodel er/ __init__. py
ZenPacks/ pkg/ zpi d/ nodel er/ pl ugi ns

ZenPacks/ pkg/ zpi d/ nodel er/ plugins/ __init__.py
ZenPacks/ pkg/ zpi d/ obj ect s

®

ZenPacks/ pkg/ zpi d/ obj ect s/ obj ect s. xm
ZenPacks/ pkg/ zpi d/ par ser s
®

ZenPacks/ pkg/ zpi d/ parsers/ __init__.py
ZenPacks/ pkg/ zpi d/ reports
®

ZenPacks/ pkg/ zpi d/ servi ces
®©

ZenPacks/ pkg/ zpi d/ services/ _init__.py
ZenPacks/ pkg/ zpi d/ ski ns
®

ZenPacks/ pkg/ zpi d/ ski ns/ ZenPacks. pkg. zpi d
ZenPacks. pkg. zpi d. egg-i nfo
®

ZenPacks. pkg. zpi d. egg-i nfo/ entry_poi nts. t xt
ZenPacks. pkg. zpi d. egg- i nf o/ nanespace_packages. t xt
ZenPacks. pkg. zpi d. egg- i nf o/ not - zi p- saf e

ZenPacks. pkg. zpi d. egg- i nf o/ PKG | NFO

ZenPacks. pkg. zpi d. egg- i nf o/ SOURCES. t xt

ZenPacks. pkg. zpi d. egg-i nfo/top_| evel . t xt

© Thisdirectory is created by Python when the ZenPack is exported to an egg file or when it isinstalled from
source. This directory can safely be deleted at any time if you wish and need not be kept within any version
control system.

® Thisdirectory is created when the ZenPack is exported to an egg file. The egg file isinitially created within
here then copied to the $ZENHOVE/ expor t directory. Thisdirectory can safely be deleted at any timeif you
wish and need not be kept within any version control system.

® Thisfile contains parameters for use by setuptools and distutils in creating eggs and doing source installs.
Zenoss creates an appropriateset up. py when aZenPack is created. ZenPack devel opers should usually edit
thisinformation through the ZenPack edit page within Zenoss rather than directly inthe set up. py file.

21

ZenPacks

Any time a ZenPack is saved or exported via the GUI Zenoss will modify certain values at the top of the
set up. py file. The lines that Zenoss modifies are clearly commented and segregated at the top of thefile.
If you wish to make changesto set up. py you can safely do so aslong as you leave those lines intact.

O Thisdirectory mirrors the dotted name structure of your ZenPack name. For example, if your ZenPack name
isZenPacks. MyConpany. MyZenPack then this directory will contain a directory named My Conpany
which will contain a MyZenPack directory. This last directory with the same name as the last part of your
ZenPack name is where most of the ZenPac code resides. The structure of that directory isvery similar to that
of previous non-egg ZenPacks.

©® Thisisthedirectory whose nameisthat of the last part of your dotted ZenPack name.

O Thisfile contains any code that needs to be executed when the ZenPack is loaded. Zenoss loads all installed

ZenPacks on startup. Typically thisfile contains afew lines that will register a skins directory if the ZenPack

provides one. Also, if this class contains a class hamed ZenPack then on installation Zenoss will create an

instance of that class rather than the base ZenPack class in the object database.

See below for more details on providing daemons in ZenPacks.

See below for more details on providing datasource classesin ZenPacks.

This directory is intended to hold any 3rd party modules or other code your ZenPack depends on. A module

named Foo in this directory would be imported with

009

i nport ZenPacks. MyConpany. MyZenPack. | i b. Foo

This directory isintended to hold plugins, such as Nagios-style or Cacti-style plugins.

See below for more details on migrating between versions of your ZenPack.

See below for more details on providing modeler pluginsin ZenPacks.

Database objects such as Device Classes and Performance Templates that are added to the ZenPack via the

GUI areexportedtoanobj ect s. xnl fileinthisdirectory. When the ZenPack isinstalled on another system

those objects will be copied into that object database.

This directory contains any command parsers provided by the ZenPack. See Section 11.5.2, “Writing Y our

Own Command Parser” section for more details.

This directory contains any report plugins provided by the ZenPack.

Zenoss daemons usually communicate with zenhub to retrieve their configuration, send events, and write

performance data. If a ZenPack provides a daemon then it typically will also provide a ZenHub service for

that daemon. See the section on ZenHub for further details.

® Thisdirectory contains any skins directories that should be added to Zope. Note that this contains directories
of skins, not the skin files themselves. If you include skins directories make surethat the__i nit __. py file
in the directory above skins is registering this directory. (The default i nit . py file provided in new
ZenPacks does this for you.)

® Thisdirectory contains files which describe the egg meta-data. Thisis created when the egg file is generated

or the ZenPack isinstalled from source. This directory can safely be deleted at any time if you wish and need

not be kept within any version control system.

06 66

e

6 60

Thisfile is updated every time a ZenPack is edited and saved. ZenPack developers should normally not edit
this#le manually.

3.4. Developing the ZenPack
3.4.1. Base ZenPack Class

$ZENHOVE/ Pr oduct s/ ZenMbdel / ZenPack. py contains the base ZenPack class. When a ZenPack isin-
stalled Zenossinspects Your ZenPackl d/ ZenPacks// LastPart Of Nane/ __init__. py toseeif
it contains a class named ZenPack. If it does then Zenoss instantiates it, otherwise Zenoss instantiates the base
ZenhMbdel . ZenPack. ZenPack class. That instance is then added to the dnd. ZenPackManager . packs
tree.

22

ZenPacks

There are severa attributes and methods of ZenPack that subclasses might be interested in overriding:

Interesting ZenPack properties and methods

packZProperties is amechanism for easily adding zPr oper t i es. packZPropertiesis alist
of tuples, with each tuple containing three stringsin this order:

* the name of the zProperty
« the default value of the zProperty
« thetype of the zProperty (‘string’, 'int', etc.)

Zenoss will automatically create these when the ZenPack is in-
stalled and remove them when the ZenPack is removed. See
ZenPacks. zenoss. MySql Moni t or for an example of this usage.

install (self, app) parais called when the ZenPack is installed. If you override this be sure to
call the inherited method within your code.

renove(sel f, app, is called when the ZenPack is removed. As with i nst al | (), make sure
| eavebj ect s) you call the inherited method if you override.

3.4.2. Storing Objects in the ZODB

ZenPacks can provide Python classesfor objectsthat will be stored in the object database. The most frequent example
of thisisDat aSour ce subclasses. When aZenPack isremoved those classes are no longer accessible so the objects
in the database are broken. (Zeo needs to have the appropriate Python class in order to unpickle an object from the
database.) In previous versions of Zenoss there was not an easy way to associate instances of a ZenPack-provided
class with the ZenPack that provided the class. As aresult ZenPack removal could easily cause broken objects to
remain in the database. If Zope had already |oaded a classinto the interpreter the objects in question might continue
to function until Zope was restarted, making diagnosis of such problems even more difficult.

In Zenoss 2.2 the ZenPackPer si st ance class ams to remedy this problem. Any Python class provid-
ed by a ZenPack should subclass the ZenModel . ZenPackPer si st ence. ZenPackPer si st ence class.
Zenoss maintains a catalog of all ZenPackPer si st ence instances in the database. When a ZenPack is re-
moved, the catalog is queried to determine which objects need to be deleted. Any ZenPack-provided Python
class that might be instantiated in the object database should subclass ZenPackPer si st ence and define
ZENPACKID in the class as the name of the ZenPack providing the class. For an example of this see the
ZenPacks. zenoss. MySqgl Moni t or. dat asour ces. MySqgl Moni t or Dat aSour ce ZenPack.

3.4.3. Providing DataSource classes

ZenPacks can provide new classes of Dat aSour ces by subclassing the
Zenhbdel . RRDDat aSour ce. RRDDat aSour ce class. If you include only one Dat aSour ce class per file,
name the modul es after the class the contain (ie MyDat aSour ce. py contains the class MyDat aSour ce), and
place those modules in the ZenPack's dat asour ces directory then they will automatically be discovered by
Zenoss. If you wish to customize this behavior take alook at the ZenPack. get Dat aSour ced asses() func-
tion. Seethe ZenPacks. zenoss. Ht t pMoni t or and ZenPacks. zenoss. MySqgl Moni t or ZenPacks for
examples of ZenPacks that provide custom Dat aSour ce classes.

When creating a custom Dat aSour ce class one of the first decisions you have to make is whether you want
zencommand to process these Dat aSour ces for you or whether you will provide a custom collector daemon to
process them. The zencommand daemon is a very versatile mechanism for executing arbitrary commands either

23

ZenPacks

on the Zenoss server or on the device being monitored, processing performance datareturned by the Dat aSour ce
and generating events in Zenoss as appropriate. zencommand expects the command it executes be compatible with
the Nagiosplug-in API [http://nagiosplug.sourceforge.net/devel oper-guidelines.html]. Specifically two aspects of
that API are of most importance:

Return code The command should exit with a return code of 0, 1, 2 or 3. See here [http://
nagiosplug.sourceforge.net/devel oper-guidelines.htmIi#AEN78] in the Nagios plug-in
API for more detail.

Performance data If the command returns performance data then that data can be pulled into Zenoss by
creating DataPoints with the same names used in the command output. See here [http:/
nagiosplug.sourceforge.net/devel oper-guidelines.htmlI#AEN203] in the Nagios plug-in
API for more detail.

If you want zencommand to handle instances of your custom Dat aSour ce class then several methods in RRD-
Dat aSour ce are of particular insterest:

get Descri ption(sel f) This returns a string describing the Dat aSour ce instance. This string is
displayed next to the DataSource on the RRDTemplate view page.

useZenCommand(sel f) Thedefault implementation returnsFal se. If you want to usezencommand
then override this method and return Tr ue.

get Cormand(sel f, con- This returns the string that is the command for zencommand to execute.

text, cnd=None) context is the device or component to be collected. If you need to evaluate
TALES expressions in the command to replace things like ${dev/id} and so
forth you can call the parent class's get Command() and pass your com-
mand as the cmd argument. (cmd will not be passed into your method, it
exists specifically for subclasses to pass their commands to the parent for
TALES evaluation.)

checkCommandPr efi x(sel f, Zenosswill check the string you return from get Conmand() to seeif it

context, cnd) is arelative or absolute path to a command. If the string starts with /' or '$'
then Zenoss assumesiit is absolute. Otherwise the zProperty zCommandPath
from the context is prepended to the cmd string. Y ou can override check-
CommandPr ef i x() if you wish to alter this behavior.

Make sure that your Dat aSour ce subclasses also subclass ZenPackPer si st ence and list it first among the
parent classes. See the section on ZenPackPer si st ence. py for more details.

3.4.4. Performance Template Checklist

Performance templates are one of the easiest places to make a real user experience difference when new features
are added to Zenoss. Spending a very small amount of time to get the templates right goes a long way towards
improving the overall user experience.

3.4.4.1. Data Sources

e Can your datasource be named better?

* Isit acommon metric that is being collected from other devices in another way? If so, name yours the same.
This makes global reporting much easier.

» camelCaseNames are the standard. Use them.

24

http://nagiosplug.sourceforge.net/developer-guidelines.html
http://nagiosplug.sourceforge.net/developer-guidelines.html
http://nagiosplug.sourceforge.net/developer-guidelines.html#AEN78
http://nagiosplug.sourceforge.net/developer-guidelines.html#AEN78
http://nagiosplug.sourceforge.net/developer-guidelines.html#AEN78
http://nagiosplug.sourceforge.net/developer-guidelines.html#AEN203
http://nagiosplug.sourceforge.net/developer-guidelines.html#AEN203
http://nagiosplug.sourceforge.net/developer-guidelines.html#AEN203

ZenPacks

» Never use absolute paths for COMMAND datasource command templates. This will end up causing problems on
one of the three platforms we deal with. Link your plugininto zenPat h(' | i bexec') instead.

3.4.4.2. Data Points

¢ Using a COUNTER? Y ou might want to think otherwise.

 Unnoticed counter rollovers can result in extremely skewed data.

» Using aDERI VE with aminimum of 0 will record unknown instead of wrong data.
 Enter the minimum and/or maximum possible values for the data point if you know them.

e Thisagain will allow unknown to be recorded instead of bad data.

3.4.4.3. Thresholds

* Don't include a number in your threshold's name.

» This makes people have to recreate the threshold if they want to changeit.

3.4.4.4. Graph Definitions

» Haveyou entered the units? Do it!
» Thiswill become the y-axis label and should be all lowercase.
 Always use the base units. Never kbps or MBs. bps or bytes are better.
¢ Do you know the minimum/maximum allowable values? Enter them!
« Common scenarios include percentage graphing with minimum 0 and maximum 100.
 Think about the order of your graph points. Does it make sense?

 Arethere other templates that show similar datato yours? If so, you should try hard to mimic their appearance
to create a consistent experience.

3.4.4.5. Graph Points

« Have you changed the legend? Do it!
* Adjust the format so that it makes sense.

e 5. 21 f %s isgood for values you want RRDTool to auto-scale.

* 96. 2| f 9®%is good for percentages.

* %j. Ol f isgood for four digit numbers with no decimal precision or scaling.
« Should you be using areas or lines?

 Linesaregood for most values.

» Areasare good for things that can be thought of as a volume or quantity.

¢ Does stacking the values to present a visual aggregate make sense?

25

ZenPacks

3.4.5. Providing daemons

ZenPacks can provide new performance collectors and event monitors. This is a somewhat complex undertaking,
so before deciding to write your own daemons make sure that zencommand and a custom Dat aSour ce class
won't fit your needs (see Section 3.4.3, “Providing DataSource classes’ above.) Any filein aZenPack'sdaenons
directory is symlinked in $ZENHOVE/ bi n when the ZenPack isinstalled. Also, the Zenoss script that controls the
core daemons will attempt to manage your daemon too. So a zenoss start, for example, will attempt to start your
daemon as well as the core daemons.

Custom daemons usualy subclass the ZenHub. PBDaenon. PBDaenon class. This class provides the basic
framework for communicating with zenhub. See the section "Writing a Zenoss Performance Collector” for more
details.

3.4.6. setuptools and the zenpacksupport

Zenoss requires a Python module called set upt ool s to create and install eggs. The set upt ool s module is
installed by the Zenossinstaller in the $ZENHOVE/ | i b/ pyt hon directory. Zenoss a so provides amodul e named
zenpacksupport which extends setuptools. The zenpacksupport class defines additional metadatathat is
written to and read from ZenPack eggs. Thismetadatais provided through additional optionspassedtotheset up()
call inaZenPack'sset up. py file. Those arguments are:

compatZenossVers This is the version specification representing the required Zenoss version from the
ZenPack's Edit page.
prevZenPackName This is the name of the old-style (non-egg) ZenPack that this ZenPack re-

places. If a ZenPack with this name is installed in Zenoss then it is upgrad-
ed and replaced when this ZenPack is installed. For example, if Htt pMoni -
tor isinstaled and then ZenPacks. zenoss. Ht t pMoni t or is installed (which
has prevZenPackName=HttpMonitor) then ZenPacks. zenoss. Ht t pMoni t or will
replace Htt pMonitor. All packable objects in the database that are includ-
ed in HtpMonitor will be added to ZenPacks. zenoss. Htt pMoni t or
instead. A migrate script is usually required to set class correct-
ly on instances of ZenPack-provided classes in the object database. The
ZenPacks. zenoss. Ht t pMoni t or ZenPack hasan exampleof thisinitsm gr at e
directory, inthe Convert H t pMoni t or Dat aSour ces. py file.

3.5. Building and Distributing ZenPacks

From your ZenPack's page in the GUI select the Export ZenPack... menu item to create an egg file. Thefileisfirst
created in your ZenPack'sdi st directory then copied to the $ZENHOVE/ expor t directory.

Y ou can optionally also download the egg fil e through your web browser when doing the export. As part of the export
process Zenoss exports database objects to the obj ect s/ obj ect s. xm filein your ZenPack source directory.
If you don't need to update the obj ect s. xm file you can create the egg from the command line instead

cd Your ZenPackDi rectory
pyt hon set up. py bdist_egg

This creates the egg file in the ZenPack's di st directory.

Users who install your egg file will not be able to edit the ZenPack or re-export it. These functions require the
set up. py file which is not usually distributed within the egg file itself. In most cases this is desirable because

26

ZenPacks

end-users should usually not be making changes and redistributing a different version of your ZenPack than the
one you developed.

There are times when you want to allow others to develop a ZenPack with you. In these cases you must provide
them with the entire source directory, not just an egg file.

3.5.1. Migrating between versions

Any time a ZenPack is installed Zenoss looks in the ZenPack's ni gr at e directory for steps whose ver-
sion is greater than or equal to the version of the ZenPack being installed. Migrate steps are classes that
subclass ZenModel . ZenPack. ZenPackM gr ati on. This mechanism allows zenpacks to modify items
in the object database that were created by previous versions of the ZenPack and need updating. The
ZenPacks. zenoss. MySqgl Moni t or Core ZenPack includes good examples of how migrate steps are written.

3.5.2. Converting older ZenPacks to ZenPack eggs

Zenoss 2.2 includes a new script called eggifyzenpack which automates much or all of the process of converting
apre-2.2 ZenPack to an egg ZenPack. The script isin $ZENHOVE/ bi n so is usually on the zenoss user's path
aready. The - - newi d option is required and specifies the new name of the ZenPack. (See the section above on
ZenPack names.) the sole positional argument to eggifyzenpack is the current name of the installed ZenPack to be
converted. Zeo must be running prior to invoking the script.

eggi fyzenpack --new d ZenPacks. MyConpany. MyZenPackNanme MyQ dZenPackNane

Thiswill create a ZenPack with the name given with - - newi d in $ZENHOVE/ ZenPacks. The old ZenPack that
was converted is uninstalled and removed from $ZENHOVE/ Pr oduct s. ZenPacks converted in this way have
PREV_ZENPACK_NAME intheir set up. py settothe name of the old ZenPack that they replace. When auser with
the old ZenPack installed installs the new egg ZenPack it will be processed as an upgrade and the older ZenPack
will be removed.

3.6. Where to Get More Information

Discussion regarding development of ZenPackstakes place onthe zenoss-zenpacksmailing list and forums [http://
forums.zenoss.com/viewforum.php?f=6].

27

http://forums.zenoss.com/viewforum.php?f=6
http://forums.zenoss.com/viewforum.php?f=6
http://forums.zenoss.com/viewforum.php?f=6

Chapter 4. Zenoss Datastores

There are afew datastores used by Zenoss:

Datastores

Z0ODB Object-oriented databse for Python objects

MySQL The Event database where event information is stored.

Picklefiles Python pickle files are used to cache information otherwise obtained from zenhub.
RRD files Round Robin Database that stores performance information.

ZenModel

LenRRL ; - Lentvents
Configuration

Time Series _ Database Event
Data : {CMDB} Records

Data Normalization

Figure4.1. Datastores Overview

28

Zenoss Datastores

4.1. Zope Object Database (ZODB)

The ZODB [http://wiki.zope.org/zope2/ZODB/FrontPage] is an object-oriented database used by Zope to store
Python objects and their states. For example, modelers maintain information about devices and their configuration
in the ZODB.

Zenoss uses ZEO, which isalayer between Zope and the ZODB. ZEO allows for multiple Zope servers to connect
to the same ZODB. The ZODB is started and stopped by zeoct | .

Note

ZODBs can be clustered using ZEO, but Zenoss Enterprise and Zenoss Professional customers should
contact Zenoss Inc technical support before investigating clustering.

Hereis asimple example of using transactionsin the ZODB:

i mport transaction

trans= transaction. get ()

Determ ne that bad things have happened
i f bad_t hi ng:
trans. abort ()
... any other cleanup required inside the function eg 'return’

Life is good!

NB: Usernane or programname -- it's just a text field
trans. set User ()
trans. not e()

trans. comm t ()

: Tip
Theset User () and not e() functions are responsible for creating entries that can be found under
the Modifications tab or menu-item.

There arerestrictions on what data can be stored, specifically datatypesthat can be pickled [http://docs.python.org/
library/pickle.html]. Basic Python data types such as strings, numbers, lists and dictionaries can be pickled, but
Python code objects cannot be pickled. In addition, files and sockets cannot be pickled.

Note

The ZODB cannot detect changes to mutable types like lists and dictionaries. In order for changes
to be detected, not only isconmi t () afterwards, but you must explicitly tell the ZODB about the
change by modifying aPer si st ent objects _p_changed attribute.

The following inmports shouldn't be required in Zenoss code
as it should already be taken care of for you. These are
included nerely to explicitly show the class dependenci es.
i nport ZODB

from Persi stence i nport Persistent

i mport transaction

29

http://wiki.zope.org/zope2/ZODB/FrontPage
http://wiki.zope.org/zope2/ZODB/FrontPage
http://docs.python.org/library/pickle.html
http://docs.python.org/library/pickle.html
http://docs.python.org/library/pickle.html

Zenoss Datastores

cl ass nyExanpl eCl ass(Persistent):

def __init_ (self):

self.nylist=[]

def addToMyList(self, listltem):

self.nylist.append(listltem)
sel f. _p_changed= True # Notify ZODB

transacti on.conmt ()

Asagenera rule, usecommi t () whenever you want other processes to have accessto your database changes. So
if adaemon is collecting and Zope needs to do something with the data, run conmi t () first from the daemon.

This should be enough information to get you started. See ZODB for Python Programmers [http://www.zope.org/
Documentation/ArticlesZODB1] for more details.

4.2. MySQL Event database

MySQL [http://www.mysqgl.com/] is an open-source relational database that Zenoss uses to store Zenoss events.
Configuration information about the MySQL database can be maintained by going to the Event Manager link from
the navigation bar when you are logged in as a user with ZenManager privileges.

Tip
1 MySQL-level performance tweaking can substantially improve Zenoss ability to handle events.

One tool that can be used to improve your database performance is MySQLTuner [http://
wiki.mysqgltuner.com/MySQL Tuner].

If you need a connection to the MySQL events database, here is how to retrieve a connection and how to put it
back into the pool.

DbConnect i onPool ishiddenandisaccessed through DbAccessBase. It followsthe Singleton design pattern,
soit'll only actually create one DbConnect i onPool . It extends the Python class Queue, so DbConnect i on-
Pool isalso asynchronized queue and should be thread-safe. DbAccessBase isextended by Event Manager -
Base>?, so if you have access to the ZenEvent Manager (located at / zpor t/ dnd/ ZenEvent Manager)
you'll have the ahility to get a database connection.

4.2.1. Connecting to the Database

First you'll need to get aninstance of ZenEvent Manager OR aninstance of aclassthat extendsDbAccessBase.
Within Zenoss, aZenEvent Manager should already be instantiated.

Next isthet ry block which should include ANY database calls. This is where you'll get a connection from the
pool withtheconnect () method. You may pass this around to other methods or create a cursor and make some

30

http://www.zope.org/Documentation/Articles/ZODB1
http://www.zope.org/Documentation/Articles/ZODB1
http://www.zope.org/Documentation/Articles/ZODB1
http://www.mysql.com/
http://www.mysql.com/
http://wiki.mysqltuner.com/MySQLTuner
http://wiki.mysqltuner.com/MySQLTuner
http://wiki.mysqltuner.com/MySQLTuner

Zenoss Datastores

database transactions. The t ry block MUST be completed with afi nal | y block that includes the cl ose()
method. You MUST pass the connection object to the cl ose() method. This will ensure that even if the code
withinthe t r y breaks, we are not |eaking database connections. If you create more than one connection (ie more
than one connect () cal inyour t ry block) you will need to have a corresponding cl ose() cal. Thereis
ALWAYS a one-to-one relationship between connect () andcl ose() cals.

Hereisablock of code that illustrates best practices for using the DbConnect i onPool

zem = sel f. dmd. ZenEvent Manager

try:

connl = zem connect ()
conn2 = zem connect ()
cursl = connl. cursor ()

;:ij-rsz = conn2. cursor ()
;#- ao wor k

;:ij-rs3 = connl. cursor ()
finally:

zem cl ose(connl)
zem cl ose(conn2)

Take alook at Event Manager Base. py for some examples of code using the DbConnect i onPool .

4.2.2. MySQL in 60 Seconds

To start an interactive session with MySQL, run the mysqgl asthe zenoss user. The following exampleis from a
default install of Zenoss where there is no password for the MySQL r oot user.

$ nysql -uroot

Wel cone to the MySQL nonitor. Commands end with ; or \g.
Your MySQL connection id is 17799

Server version: 5.0.45 Source distribution

Type 'help;' or '"\h' for help. Type '\c' to clear the buffer.

mysql >

Oncewe'velogged into MySQL., we can see the various databases and see the tablesthat are available. Theevent s
database is maintained by Zenoss.

mysqgl > show dat abases;

i nformati on_schema |
event s |
nysql |
t est |

31

Zenoss Datastores

4 rows in set (0.03 sec)

mysqgl > use events;

Readi ng table information for completion of table and col um nanes
You can turn off this feature to get a quicker startup with -A

Dat abase changed
mysqgl > show t abl es;

alert _state
det ai |

heart beat

hi st ory

| og
st at us

6 rows in set (0.00 sec)

From here we can determine what information is in what table. For instance, the | og table.

nmysql > descri be | og;

fmccococoss ffmccccoococo=oo fmoc==o frmo=== fbmccccococcsoocossoo fmoc==os +
| Field | Type | Null | Key | Default | Extra |
fmccococoss ffmccccoococo=oo fmoc==o frmo=== fbmccccococcsoocossoo fmoc==os +
evid	char (25)	NO	ML		
userNane	varchar(64)	YES		NULL	
ctine	tinmestanp	NO		CURRENT Tl MESTAMP	
text	text	YES		NULL	
fmccococoss ffmccccoococo=oo fmoc==o frmo=== fbmccccococcsoocossoo fmoc==os +
4 rows in set (0.00 sec)

4.3. Python Pickle Files

Python's native storage for storing data is called a Pickle. Pickle files are used by zenper f snnp for caching
configuration information gathered from zenhub. This is a perofrmance enhancement for dealing with startup
communications with zenhub, as larger sites with hundreds or more devices could experience enough of a delay
during initialization that Zenoss would have difficulty functioning until the configuration information had been
gathered. Every update from the Zenoss server (which isdealt with by zenhub) causes zenper f snnp to update
the pickle files.

The picklefiles are kept in the $ZENHOVE/ per f / Devi ces/ devi cenane/ directory, and are named col -
| ect or-config. pi ckl e. These picklefilesare only read during startup and are periodically recreated, soitis
safe to delete them, and it is not necessary to back them up.

4.4. Round-Robin Database

RRD [http://oss.oetiker.ch/rrdtool/] is used by Zenoss to store and graph performance collection data. These data
fileshave afixed format that is decided at their creation time, and record datapoints at set intervals. Thisdatais|later
consolidated into coarser time units (so as to reduce the total size of data files) and the RRD toolset also contains
code to create graphs.

32

http://oss.oetiker.ch/rrdtool/
http://oss.oetiker.ch/rrdtool/

Zenoss Datastores

A few other interesting facts:
» Zenossisagold-level sponsor of RRD

» The Renderserver sends RRD graphics to web browsers

33

Zenoss Datastores

Results of a Nagios-style performance command run by zencommand:

status message | data source=current value[unit];warn value;critical value;min;max

Round Robin Database (RRD)

SZENHOME /perf/Devi

s/appserver/APPappPerfTest.rrd

RRD Primary
Data Point (POP}

Data Source (DS): users

Min_value 0
Max_value
Type

Round Reobin Archives (RRA)

unlimiled‘//_/
GAUGE

GAUGE like a fuel gauge

COUNTER like an odometer (rolls over)
DERIVE uses the last and current value
ABSOLUTE just the value

COMPUTE data isn't stored, but computed

To record one day's worth of data points into
an RRA, where each datapoint is collected
every five minutes:

24 hrs * 60 mins/hr / 5 mins/collection cycle =

288 datapoint slots

Data Source (DS): app_ops

To collect data over a longer pericd of time
but with less accuracy requires Consolidation

Functions (CF).

Data Source {DS): app_pct_used

Each RRA stores a fixed amount of data
representing a fixed amount of time. A single
PDP is used to populate multiple RRAs.

Figure4.2. RRD Overview

Chapter 5. Events
5.1. Understanding an Event Entry

From aPython programming perspective, an event isessentially adictionary of keyword/value pairsthat gets passed
up to zenhub to be stored and parsed. A description of the standard fields used in Zenoss can be found in Ap-
pendix A, Event Database Dictionary .

From the user's perspective, the events can be found in either the Event Console or in the Events tab. To view an
event'sinformation, click on the magnifing glassicon in the event entry and it will display threetabs: Fields, Details
and Log.

Need screenshots here

The standard keyword and value pairs are presented to the user in the Fields tab of the event. Any non-standard
keyword/value pairs are presented in the Details tab. The Log tab is for post-processed events and so won't trouble
us for the moment.

5.1.1. Event Design

There are afew requirements for events:
« Event objects need to be persisted in the MySQL database.

* On queries from within Zope these queries must use the Zope security mechanisms to allow controlled access
to the data.

« Events must be constructable outside of a Zope framework as well.
To meet these requirements there are three types of event:
Event an event that lives outside of a Zope context and can go in and out of MySQL.

ZEvent event in aZope context inherits from Event and has a subset of its fields popul ated as defined
byresul t Fi el dsinaget Event Li st () query.

ZEvent Det ai | full event information (all fields, detail, and log)

5.2. Sending an Event

Events can be created through a number of different ways:

 from the command line (zensendevent)

through the user interface (Add Event)

by daemons which convert their messages into events (eg zentr ap)
 from daemons and programs which have detected error conditions
» From an external source using (for example) XML-RPC

Regardless of what program generates the event, or from which protocol the event is sent to Zenoss, the following
fields (at a minimum) should be specified:

35

Events

Event fields

device the name of the device from which this event originates
component the sub-component of the device (for instance ethO, http, etc)
summary the text message of the event

severity an integer between 0 and 5 with higher numbers being higher severity. Zero is clear. Note that for
Python code, that mappings to names are provided (see example below).

Here is an example using Python from within a program that connects to zenhub:

I nport severities (eg C ear, Debug, Info, Warning, Error Critical) and
sone event classes into our namespace
from Products. ZenEvent s. ZenEvent Cl asses i nport *

cl ass exanpl ed ass(PBDaenon) :
def exanpl efunc(self):

event = {}

event [1=

event []= Warni ng

event [1=

event [1=

sel f. sendEvent (event, device=)

Using XML-RPC in Python:

fromxmrpclib inport ServerProxy
myur| =
serv = ServerProxy(myurl)
evt = { : , : , : ,
14, :
}

serv. sendEvent (evt)

Tip

Some suggested non-standard fields for adding to your event are:

resolution Describe a method of fixing the situation that might have caused the event, or sug-
gest a course of action for diagnosing the condition.

explanation Describe in more detail the impact of this event on the computing environment.
For instance, does the condition which generates this event prevent a service from
starting or being monitored?

5.3. Adding an Event Class

Event classes can be added easily through the Ul. If you need to use an event class internally, however, you need
to make sure that class will always be available, which involves several more steps.

36

Events

5.3.1. Add to ZenEventClasses

Add adefinition of the name of your new event classto Pr oduct s/ ZenEvent s/ ZenEvent C asses:

M/ _New Cl ass =

Now your event class is centralized and can be imported wherever you need to useit, e.g.:

from Products. ZenEvent s. ZenEvent Cl asses i nport My _New O ass

i f thing.evclass == My_New_d ass:

5.3.2. Add the class to the import XML

Several event classes areimported from XML by zenload just after the ZODB is created. To include your new event
classin thisimport, add an <object> element describing it to Pr oduct s/ ZenModel / dat a/ event s. xm . Be
sure to nest it inside the classes that already exist, if appropriate. For example, if your new classis "/Status/New-
Class', you would add it inside the <object id="Status> that already exists:

<obj ect id='"Status' npdul e=' Products. ZenEvents. Event Cl ass' cl ass=' Event d ass'
>
<I--This event exists already -->

<obj ect id="NewCl ass' nodul e=' Products. ZenEvent s. Event Cl ass' cl ass=' Event Cl ass
>

<I--This is your new event -->
</ obj ect >

></ obj ect >

5.3.3. Write a migrate script

Now, since your code is no longer backwards-compatible, you need to add the new event class to databases
that have already been created by writing a migrate script. (See Chapter 14, Migrating Zenoss Code for more
detailed information). Create a new script in Pr oduct s/ ZenModel / mi gr at e with an unique name (here
newevent cl asses. py). Here'san example:

inport Mgrate

cl ass NewkEvent Cl asses(M grate. Step):
version = Mgrate. Version(1, 1, 0) # Replace this with the correct version
def cutover(self, dnd):
dnd. Event s. cr eat eOr gani zer ()
dnd. Event s. cr eat eOr gani zer () # Add nultiple new classes ijn the same |
dnd. ZenEvent Manager . bui | dRel at i ons()

37

Events

NewEvent C asses()

Next, add your migrate script to Pr oduct s/ ZenModel / migrate/ __init__. py:

i mport newevent cl asses

Now

zenm grate --dont-conmit

to make sure your classis created properly.

Once you're satisfied with your changes, make the changes permanent with zenmigr ate.

$ zennigrate

38

Chapter 6. zProperty Management

6.1. Adding a zProperty
6.1.1. Adding a zProperty to an Event

InEvent O ass. py...

def buil dZProperties(self):

edi ct = self. get DndRoot ()

edi ct._set Property()

edi ct._set Property(, -1, type=)

edi ct._set Property(, 10.01, type=

edi ct._set Property(, \
1, type=)

edi ct._set Property(, Fal se, type=

Adding a new property to the EventClass is as easy adding a new line to the buildZProperties method. Y ou need
to set anew property at the "Events' level.

6.1.2. Adding a zProperty to a Device

InDevi ced ass. py

def buil dDevi ceTr eeProperties(self):
devs= sel f. get DndRoot ()
devs. set Property(,)
devs. set Property(, -1, type=)
devs. set Property(, 10.01, type=)
devs. set Property(0 , \
], type=)
devs. set Property(, Fal se, type=)

Adding a new property to the DeviceClass is as easy adding a new line to the buildDeviceTreeProperties method.
Y ou need to set anew property at the "Devices' level.

6.2. Migrating the zProperty Code

Create anew filein $ZENHOVE/ Pr oduct s/ ZenMbdel / ni gr at e/ zNewPr operty. py

39

zProperty Management

i nmport Mgrate

cl ass zNewProperty(Mgrate. Step):
versi on= M grate. Version(1, 1, 0)

def cutover(self, dnd):

i f not dnd. Devi ces. hasProperty():
dnd. Devi ces. _set Property(,)
ZNewPr operty()

When azenmigrate is executed, this code will create the new zProperty for al Devices. Do not forget to update the
Migrate.Versionto your current working version. For moreinformation on migrating: seethe section on Chapter 14,
Migrating Zenoss Code .

40

Chapter 7. Device Management
7.1. Adding Devices Programatically

Devices can be added to Zenoss through the Ul but also through a programmatic interface. This how to will describe
adding a device using that interface.

7.1.1. Using a REST call

Adding a device through a rest call can be done by a ssmple web get. In this example we will use wget to add a
device. If you use wget don't forget to escape the "&" or wrap the URL in single quotes.

$ wget
"http://adm n: zenoss @WHGCST: 8080/ zport/ dnmd/ Devi ceLoader /| oadDevi ce\
?devi ceNane=NEWDEVI CE&devi cePat h=/ Ser ver/ Li nux'

Theresult of thiscommand will bethelog of auto-discovery and you canlook for the string"NEWDEV | CE loaded!"
to seeif it was successful. Possible failure messages are: "NEWDEVICE exists' and "no snmp found"

7.1.2. Using an XML-RPC Call from Python

Thisis an example of how to add a device using Python. Because XML-RPC can be used from any language feel
free to use your favorite. What is important here is the base URL in Ser ver Pr oxy, passing named parameters,
and calling | oadDevi ce onyour proxy object.

>>> from xm rpclib inport ServerProxy

>>> url =

>>> serv = ServerProxy(url)

>>> dev = { : , : }
>>> serv. | oadDevi ce(dev)

Y ou can check on the device with another XML-RPC call:

>>> fromxm rpclib i nport ServerProxy

>>> cp =

>>> ur| = % cp
>>> serv = ServerProxy(url)

>>> print serv.get Managel p()

7.1.3. XML-RPC Attributes

Table7.1. XML-RPC Attributes and Descriptions

XML-RPC Attributes Description
deviceName the name or |P of the device. If it's aname it must resolvein DNS
devicePath the device classwherethefirst "/" startsat "/Devices' like"/Server/Linux" the default

is"/Discovered”

tag the tag of the device

41

Device Management

XML-RPC Attributes

Description

serial Number

the serial number of the device

zSnmpCommunity

SNMP community to use during auto-discovery if noneis given the list zZSnmpCom-
munities will be used

zSnmpPort SNMP port to use default is 161

zSnmpVer SNMP version to use default v other valid values are v2

rackSlot the rack slot of the device.

productionState production state of the device default is 1000 (Production)

comments any comments about the device

hwManufacturer hardware manufacturer this must exist in the database before the device is added

hwProductName hardware product this must exist in the manufacturer object specified

osManufacturer OS manufacturer this must exist in the database before the device is added

osProductName OS product this must exist in the manufacturer object specified

locationPath path to the location of this device like "/Building/Floor" must exist before device is
added

groupPaths list of groupsfor this device multiple groups can be specified by repeating the attribute
in the url

systemPaths list of systems for this device multiple groups can be specified by repeating the at-
tribute in the url

statusMonitors list of status monitors (zenping) for this device default is"localhost"

performanceM onitor

performance monitor to use default is "localhost"

discoverProto

discovery protocol default is"snmp" other possible valueis"none"

7.2. Editing Device Information

Devices can be edited through the Ul but also through a programmatic interface. This how to will describe editing
deviceinfo using that interface.

7.2.1. Using a REST call

Editing device info through arest call can be done by a simple web get. In this example we will use wget to add a
device. If you use wget don't forget to escape the "&" or wrap the URL in single quotes.

$ wget

"http://adm n: zenoss @GWYHOST: 8080/ zpor t / dmd/ Devi ces/ \

Server/ Li nux/ devi ces/ MYDEVI CE/ manage_edi t Devi ce?seri al Nunber =MYSERI ALNUM

& ag=MYTAG

The result of this command will change the Serial Number to MYSERI ALNUMand the Tag to MYTAG for device,

MYDEVI CE.

7.2.2. Using an XML-RPC Call from Python

Thisis an example of how to edit device info using Python. Because XML-RPC can be used from any language
feel free to use your favorite. What is important here is the base URL in ServerProxy, passing named parameters,
and calling edi t Devi ce on your proxy object.

42

Device Management

>>> from xm rpclib inmport ServerProxy
>>> url =

>>> gserv = ServerProxy(url)
>>> serv. manage_edit Devi ce(,)

Hereisthe signature of manage_edi t Devi ce() from Devi ce. py

def manage_edit Devi ce(self, tag="", serial Number="",
zSnnpCommuni ty="", zSnnpPort=161, zSnnpVer = ,

rackSl ot =0, productionState=1000, conments="",

hwivanuf acturer="", hwProduct Nane="",

osManuf acturer="", osProduct Nane="",

| ocati onPat h="", groupPaths=[], systenPaths=[],

st at ushbni t or s=[], performanceMonitor= ,

priority=3, REQUEST=None):

7.3. Deleting A Device
Devices can be deleted through the Ul but also through a programmatic interface.

7.3.1. Using a REST call

Deleting a device through arest call can be done by a simple web get. In this example we will use wget to delete a
device. If you use wget don't forget to escape the "&" or wrap the URL in single quotes.

$ wget 'http://adm n: zenoss@AHOST: 8080/ zpor t / dnd/ Devi ces/ \
Server/ Li nux/ devi ces/ MYDEVI CE/ del et eDevi ce'

The result of this command will delete the device MYDEVI CE.

7.3.2. Using an XML-RPC Call from Python

Thisisan example of how to delete adevice using Python. Because XM L-RPC can be used from any language feel
free to use your favorite. What is important here is the base URL in ServerProxy, passing named parameters, and
calling del et eDevi ce on your proxy object.

>>> from xm rpclib inport ServerProxy

>>> cp =

>>> url = % cp
>>> gerv = ServerProxy(url)

>>> serv. del et eDevi ce()

7.4. Checking If A Device Exists

Devices can be checked for existence through the Ul but also through a programmatic interface. This how to will
describe how to check if a device exists using that interface.

43

Device Management

7.4.1. Using a REST call

Checking if adevice exists through arest call can be done by asimple web get. In this example we will use wget to
check of the existence of adevice. If you use wget don't for get to escapethe"&" or wrap the URL in single quotes.

$ wget 'http://adm n: zenoss@AWHOST: 8080/ zpor t / dnd/ Devi ces/ Ser ver\
/ Li nux/ devi ces/ MYDEVI CE'

If this command results with an exit code of 1 and a server response code of 404, then MYDEVI CE does not exist
in Zenoss. If this command results with an exit code of 0 and a server response code of 200, the MYDEVI CE does

exist in Zenoss.

7.4.2. Using an XML-RPC Call from Python

This is an example of how to check if a device exists using Python. Because XML-RPC can be used from any

language feel free to use your favorite. What isimportant here is the base URL in Ser ver Pr oxy.

>>> fromxm rpclib inport ServerProxy

>>> cp =

>>> url| = % cp
>>> gserv = ServerProxy(url)

>>> try:

>>> serv.getld()

>>> exi sts = True

>>> except:

>>> exi sts = Fal se

7.5. Exporting a Device List

Go to the ZMI
http://local host:8080/zport/dmd/Devices/manage

Make a script object called get MyDevi ceLi st () . Then put the following into the body of the script...

return [d.id for d in context.getSubDevices()]

Then cal it like this
http://local host:8080/zport/dmd/Devices/getMyDevicel ist

You can do all kinds of stuff thisway. Thiswill return all device |P addresses:

return [d.managelp for d in context.getSubDevices()]

Y ou get theidea. You can call this method form different parts of the tree to limit the list of devices.
http://local host:8080/zport/dmd/Devices/Server/Linux/getMyDevicel ist

Chapter 8. Extending the Model
8.1. Add a ZenModel Relationship

TheZenRel at i ons classalows Zope objects to form bi-directional relationships. There are four different types
of relationships possible:

ONE_TO ONE only one object at each end of the relationship
ONE_TO_MANY classic parent-child relation, not containment objects have different primary paths
ONE_TO _MANY_CONT standard Zope one-to-many containment relation (but bi-directional)

MANY_TO_ MANY many objects on both ends of relationship

I Implicitl IPersislentl m I(‘“

| [RoleManager] opyRelcortainet

RelationshipBase

RelationshipObjectManager

ToOneRelationship] [ToManyRelationship I IReIalionshipMana er

Figure8.1. ZenRelations

8.1.1. One-to-One (1:1) Relationships

Example of 1:1 Server to Admin Relationship

from Products. ZenRel ati ons. Rel Schema i nmport *
o
cl ass Server (Device):

_relations = (
(2]

(

45

Extending the Model

(3]
ToOne(ToOne, ,)
o
)1
) + Device. relations

cl ass Adm n(Test BaseCl ass):

relations = (
, ToOne(ToOne, ,)),

(o el

. N

The Server object isan example of aclassthat inherits from Device. According to thisrelationship there can be only
one Admin assigned to a Server and only one Server assigned to an Admin. Thisrelationship is created by:

Importing ToOne from Products.ZenRel ations.Rel Schema.

Appending atwo-item tuple to the _relations attribute

Thefirst item in the tupleisa"string" object which isthe local name

The second item in the tupleis a"Rel Schema object which represents the rel ationship to another class. Inthis
case the ToOne constructor creates/returns that "Rel Schema' object

(-~)

ToOne constructors takes three parameters;

» Thefirst parameter isa"type" object, "remoteType" which represents the relationship from another class.
The "type" should be of aclass derived from Rel Schema

» Thesecond parameter isa"string" object, “remoteClass' which isthe class name of therelative. In this case
it isagain a ToOne relationship.

e Thethird parameter isa"string" object, "remoteName" which the remote name of itself.
@ Appending acomplementary two item tuple to the _relations attribute in the relative class.

8.2. One-to-Many (1:N) Relationships

Thisisarea example which illustrates a one-to-many relationship between one L ocation and many Devices.

From Device.py

from Products. ZenRel ati ons. Rel Schema i nport *
cl ass Devi ce(ManagedEntity, Commandabl e):
event key= portal type = neta type =

defaul t _cat al og= #devi ce ZCat al og

rel ati onshi pManager Pat hRestri cti on =

46

Extending the Model

_relations = ManagedEntity. relations + (
(, ToOne(ToMany, ,)),
)

From Location.py

from Products. ZenRel ati ons. Rel Schema i nport *
(1]
cl ass Location(Devi ceOrgani zer):

Organi zer configuration
drmdRoot Narme =

portal type = neta_type = event _key =

rel ati ons

ol

= Devi ceOrgani zer. relations + (

ToMany(ToOne, .),

(~2 Q’“I

. N

According to thisrelationship there can be only one L ocation assigned to a Device but morethan one Device assigned
to aLocation. Thisrelationship is created by:

Importing ToOne and ToMany from Products.ZenRel ations.Rel Schema.

Appending atwo-item tuple to the _relations attribute

Thefirst item in the tupleis a"string" object which isthe local name

The second item in the tupleisa Rel Schena object which represents the relationship to another class.

(-~)

Rel Schema constructors takes three parameters:

» Thefirst parameter isa"type" object, "remoteType" which represents the relationship from ancther class.
The "type" should be of aclass derived from Rel Schema

* The second parameter isa"string" object, "remoteClass’ which isthe class name of the relative.
e Thethird parameter isa"string" object, "remoteName" which the remote name of itself.

Appending a complementary two item tuple to the _relations attribute in the relative class.

8.3. Many-to-Many (M:N) Relationships

Thisis area example from Devi ce. py which illustrates a many-to-many relationship between many Devices
and many Device Groups.

47

Extending the Model

1-‘-r;3m Product s. ZenRel ati ons. Rel Schema i nport *

cI ;ass Devi ce(ManagedEntity, Commandabl e):

é;/ént _key = portal _type = neta_type =

default catal og = #devi ce ZCat al og
rel ati onshi pManager Pat hRestri cti on =

_relations = ManagedEntity. relations + (

(, ToMany(ToMany, :),
)
From DeviceGroup.py

from Products. ZenRel ati ons. Rel Schema i nport *
cl ass Devi ceG oup(Devi ceOr gani zer):

Organi zer configuration
dndRoot Nane =

portal type = neta_type = event key =

_relations = DeviceOrgani zer. _relations + (
(, ToMany(ToMany, ,)),

)

According to this relationship there can be more than one Device assigned to a Device Group and more than one
Device Group assigned to a Device. This relationship is created by:

e Importing ToMany from Pr oduct s. ZenRel at i ons. Rel Schemna.
« Appending atwo-item tuple to the _relations attribute
e Thefirstiteminthetupleisa"string" object which isthelocal name

» TheseconditeminthetupleisaRel Schemna object which representsthe relationship to another class. In this
case the ToMany constructor creates/returns the Rel Scherra object.

The Rel Schenma constructors take three parameters

» Thefirst parameter is a"type" object, "remoteType" which represents the relationship from another class.
The "type" should be of a class derived from Rel Schenma

» The second parameter isa"string" object, "remoteClass’ which isthe class name of therelative. In this case
it isagain the ToMany relationship.

e Thethird parameter isa"string" object, "remoteName" which the remote name of itself.

48

Extending the Model

« Appending a complementary two-item tuple to the _relations attribute in the relative class.

8.3.1. One-to-Many (1:N) Container Relationships

Deviceto Hard Drives

Thisisarea example which illustrates a one-to-many relationship between one DeviceHW and many HardDrives
where a DeviceHW object contains HardDrives.

From DeviceHW.py...

from Products. ZenRel ati ons. Rel Schema i nport *
cl ass Devi ceHW Har dwar e) :
neta_type =

_relations = Hardware. relations + (
(, ToManyCont (ToOne, ,),
)

From HardDisk.py...

1.‘.r.om Product s. ZenRel ati ons. Rel Schema i nport *
cI .ass Har dDi sk(HAWConponent) :

.p.o.rtal _type = meta_type =

._.r.el ati ons = HWConponent. relations + (

(, ToOne(ToManyCont , ,)
)

According to thisrelationship there can be only one DeviceHW assigned to aHardDisk but more than one HardDisk
assigned to a DeviceHW. Thisrelationship is created by:

* Importing ToOne and ToManyCont from Pr oduct s. ZenRel ati ons. Rel Schena.

* Appending atwo item tuple of to the _relations attribute

o Thefirst item in the tupleisa"string" object which isthe local name

0 The second item in the tupleisaRel Schena object which represents the relationship to another class.
+ Rel Schema constructors takes three parameters

The first parameter is a "type" object, "remoteType" which represents the relationship from another class. The
"type" should be of a class derived from Rel Schema

The second parameter isa"string" object, "remoteClass’ which is the class name of the relative.

49

Extending the Model

The third parameter isa"string" object, "remoteName" which the remote name of itself.

* Appending a complementary 2 item tuple to the _relations attribute in the relative class.

Specifying the remoteClass in a Relationship

The remoteClass parameter can be specified in a releationship by two methods.

("admin”, ToOne(ToOne, "Admin", "server"))

In the example above"Admin" isthe remote class on the relationship. For thisto work properly the module " Admin”
must be in the python path and it must contain a class named "Admin".

This behavior can be modified by using the attribute zenRelationsBaseM odule. For instance if Admin was located
in the path Products.ZenModel you could set zenRelationsBase = " Products.ZenModel". Now the remote classisin
the module Products.ZenModel . Admin and the class must be Named "Admin".

If you wish to put multiple classes into one module and use them in relations you can add the class name to the end
of the remoteClass value. For instance "Admin.Test" would access the module Admin with the class Test.

If the two classes in a relation are in a different packages then you can use the fully qualified path to the
class. For instance here are the definitions of two classes in different packages. Products.ZenWidgets.Menu and

Products.ZenM odel.DeviceOrgani zer.

In Products.ZenWidget.Menu.py

cl ass Menu(ZenMbdel RM :

_relations = (

(:
ToOne(ToManyCont ,
)

)

In Products.ZenModel .DeviceOrgai zer.py

cl ass Devi ceOrgani zer (ZenMdel RM :
_relations = (

(:
ToManyCont (ToOne,

),

8.4. Zenoss XML Schema

This XML schema describes the output of the zendump command.

‘<?xn1 version="1.0" encodi ng="UTF-8" ?>

50

Extending the Model

<xs:schema xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schenma"
>

<xs: el enent nanme="|ink"
>
<xs: conpl exType>
<xs:attribute name="objid" type="xs:string" use="required"
/>

</ xs: conpl exType>
</ xs: el ement >

<xs: el enent name="obj ect"

>
<xs: conpl exType>
<xs: choi ce>
<xs: el enent ref="object"
/>
<xs: el enent ref="property"
/>
<xs: el enent ref="tomany"
/>
<xs: el enent ref="tomanycont"
/>
<xs:el enent ref="toone"
/>
</ xs: choi ce>
<xs:attribute name="nodul e" type="xs: NMTCKEN' use="requi red"
/>
<xs:attribute name="cl ass" type="xs: NMTOKEN' use="required"
/>
<xs:attribute name="id" type="xs:string" use="required"
/>

</ xs: conpl exType>
</ xs: el ement >

<xs: el enent nanme="obj ects"
>
<xs: conpl exType>
<XS:sequence>
<xs: el enent ref="object"
/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >

<xs: el enent name="property"

>
<xs: conpl exType m xed="true"
>
<xs:attribute name="type" type="xs: NMTOKEN' use="required"
/>
<xs:attribute name="visible" use="optional"
>

<xs:si npl eType>

51

Extending the Model

<xs:restriction base="xs: NMTOKEN'

>
<xs:enunerati on val ue="True"
/>
</xs:restriction>
</ xs: si npl eType>
</ xs:attribute>
<xs:attribute name="node" type="xs:string" use="optional"
/>
<xs:attribute name="setter" type="xs: NMTCKEN' use="opti onal "
/>
<xs:attribute name="sel ect _vari abl e" use="optional "
>
<xs:si npl eType>
<xs:restriction base="xs: NMTOCKEN"
>
<xs:enuneration val ue="IlineTypes"
/>
<xs:enuneration val ue="rrdtypes"
/>
<xs:enuneration val ue="sourcet ypes"
/>
</xs:restriction>
</ xs: si npl eType>
</xs:attribute>
<xs:attribute name="id" type="xs: NMTOKEN' use="required"
/>

</ xs: conpl exType>
</ xs: el ement >

<xs: el enent name="t onany"

>
<xs: conpl exType>
<XS:sequence>
<xs:el enent ref="1ink"

/>

</ xs: sequence>

<xs:attribute name="id" type="xs: NMTOKEN' use="required"
/>

</ xs: conpl exType>
</ xs: el ement >

<xs: el enent nanme="t omanycont"

>
<xs: conpl exType>
<XsS:sequence>
<xs: el enent ref="object"” maxCccurs="unbounded"

/>

</ xs: sequence>

<xs:attribute name="id" type="xs: NMTOKEN' use="required"
/>

</ xs: conpl exType>
</ xs: el ement >

52

Extending the Model

</ xs: el enent >

</ xs: schena>

>
<xs: conpl exType>
<xs:attribute
/>
<xs:attribute
/>

<xs: el enrent nane="t oone"

nane="objid" type="xs:string" use="required

name="id" type="xs: NMTOKEN' use="required"

</ xs: conpl exType>

8.4.1. object

obj ect™

ref =" obj ect"
ref="property"
ref ="t omany"

ref ="t omanycont "

ref ="t oone"

nanme="nodul e" type="xs: NMTOKEN' use="required
name="cl ass" type="xs: NMTOKEN' use="requi red"

name="id" type="xs:string" use="required"

<xs: el enent nanme="
>
<xs: conpl exType>
<xs: choi ce>
<xs: el enent
/>
<xs: el enent
/>
<xs: el enent
/>
<xs: el enent
/>
<xs: el enent
/>
</ xs: choi ce>
<xs:attribute
/>
<xs:attribute
/>
<xs:attribute
/>
</ xs: conpl exType>
</ xs: el enent >

8.4.1.1. Example

>
>
</ property>

>

</ property>

Del ete Rul e W ndows.

<obj ect id='del et eActi onRul eW ndows' nodul e=' Products. ZenModel . ZenMenul t end
cl ass=' ZenMenul t end

<property type="text" id="description" node="w'

<property type="text" id="action" node="w'

di al og_del et eAct i onRul eW ndows

53

Extending the Model

<property type="bool ean" id="isglobal" node="w'
>

Tr ue

</ property>

<property type="lines" id="perm ssions" node="w'
>

(' Change Alerting Rules',)

</ property>

<property type="bool ean" id="isdial og" node="w'
>

Tr ue

</ property>

<property type="float" id="ordering" node="w'
>

80.0

</ property>

</ obj ect >

The object element is an XML representation of a Zope object. The example above is the XML representation of
aZenMenultem object.

8.4.1.2. Attributes

¢ id - theuniqueidentifier for the object instance
« class - the classname of the object instance

* module - the module in which this object's classis defined

8.4.1.3. Children

« object - an object may also have objects as children

* property - (see property element section below)

« tomany - (see tomany element section below)

« tomanycont - (see tomanycont element section below)

 toone - (see toone element section below)

8.4.2. objects

<xs: el enent nanme="obj ects"
>
<xs: conpl exType>
<XS:sequence>
<xs: el enent ref="object"
/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >

Extending the Model

8.4.2.1. Example

<obj ect s>
<obj ect id='del et eActi onRul eW ndows' nodul e=' Products. ZenModel . ZenMenul t e
cl ass=' ZenMenul t enf
>
<property type="text" id="description" node="w'
>
Del ete Rul e W ndows. ..
</ property>
</ obj ect >
</ obj ect s>

The object element is an XML representation of a Zope object. The example above is the XML representation of
aZenMenultem object.

8.4.2.2. Children

« object - the objects element may also have object as children

8.4.3. property

<xs: el enent nanme="property"
>
<xs: conpl exType m xed="true"
>
<xs:attribute name="type" type="xs: NMTOKEN' use="required"
/>
<xs:attribute name="visible" use="optional"
>
<xs:si npl eType>
<xs:restriction base="xs: NMTCKEN"
>
<xs:enunerati on val ue="True"
/>
</xs:restriction>
</ xs: si npl eType>
</ xs:attribute>
<xs:attribute name="node" type="xs:string" use="optional"
/>
<xs:attribute name="setter" type="xs: NMTCKEN' use="opti onal "
/>
<xs:attribute name="sel ect _vari abl e" use="optional"
>
<xs:si npl eType>
<xs:restriction base="xs: NMTOCKEN"
>
<xs:enuneration val ue="IlineTypes"
/>
<xs:enuneration val ue="rrdtypes"
/>

55

Extending the Model

<xs:enuneration val ue="sourcet ypes"
/>
</xs:restriction>
</ xs: si npl eType>
</ xs:attribute>
<xs:attribute name="id" type="xs: NMTOKEN' use="required"
/>
</ xs: conpl exType>
</ xs: el ement >>

8.4.3.1. Example

<property type="float" id="ordering" node="w'
>

80.0

</ property>

The property element represents a property of an object in Zope. The example above represents an "ordering
property of an object. The value of the "ordering" property is 80.0 and is of type float.

8.4.3.2. Attributes
* id - the unique identifier of this property
* type - the datatype of the property's value
« visible - an optional boolean, aflag used to display or hide the property
* mode - read/write permission of this property
« setter - the name of the method to set this property

« select variable - the name of the list which hold the possible values of this property

8.4.4. tomany

<xs: el enent nanme="t onmany"
>
<xs: conpl exType>
<XS:sequence>
<xs:el enent ref="1ink"
/>
</ xs: sequence>
<xs:attribute name="id" type="xs: NMTOKEN' use="required"
/>
</ xs: conpl exType>
</ xs: el ement >

8.4.4.1. Example

56

Extending the Model

<t omany i d=' devi ces'

>

<link objid="/zport/dnd/ Devi ces/ Server/Linux/devi ces/ MYDEVI CE
/>

</t omany>

The tomany element represent a ToManyRelationship object in Zope. The example above is of the "devices' to
many relationship on an object.

8.4.4.2. Attributes

* id - unique name of the to many relationship

8.4.4.3. Children

¢ link - (seelink element below) These links are the XML representations of the references to related objects

8.4.5. tomanycont

<xs: el enent nane="t onanycont"
>
<xs: conpl exType>
<XS:sequence>
<xs: el enent ref="object" maxCccurs="unbounded"
/>
</ xs: sequence>
<xs:attribute name="id" type="xs: NMTOKEN' use="required"
/>
</ xs: conpl exType>
</ xs: el ement >

8.4.5.1. Example

<t omanycont i d="instances’

>

<obj ect id='dropbear' nodul e=' Products. ZenEvents. Event Cl assl nst"'

cl ass=' Event Cl assl nst"'

>

<property type="string" id="eventC assKey" node="w'
>

dr opbear

</ property>

<property type="int" id="sequence" node="w'
>

1

</ property>

</t omanycont >

57

Extending the Model

8.4.5.2. Attributes

* id - the name of the to many cont relationship

8.4.5.3. Children

« object - the tomanycont element may have objects elements as children, these subobjects are the XML represen-
tations of these related objects

8.4.6. toone
<xs: el enent nanme="t oone"
” <xs: conpl exType>
<xs:attribute name="objid" type="xs:string" use="required"
o <xs:attribute name="id" type="xs: NMTOKEN' use="requi red"
/>

</ xs: conpl exType>
</ xs: el ement >

8.4.6.1. Example

<t oone id='"perfServer' objid="/zport/dnd/ Mnitors/Performance/l ocal host"
/>

The toone element represents a ToOneRel ationship on an object. The example above is atoone relationship named
"perfServer”. It represents a device's relationship to only one perfomance server "localhost"

8.4.6.2. Attributes

* id - the name of the toone relationship of an object

 objid - the path to the related object

8.4.7. link

<xs: el enent nanme="link"
>
<xs: conpl exType>
<xs:attribute name="objid" type="xs:string" use="required"
/>

</ xs: conpl exType>
</ xs: el ement >

8.4.7.1. Example

<link objid="/zport/dnd/ Devi ces/ Server/Linux/devi ces/ MYDEVI CE

58

Extending the Model

>

Thelink is areference to another object element rather than a new instance of an object element.

8.4.7.2. Attributes

 objid - isthe path to the object

8.5. Zenoss Permissions

In this example we'll be adding a new permission named "Example Permission"”, assigning it to a method, then
checking for that permission.

8.5.1. Adding New Permissions

1. Add the new permission to $ZENHOVE/ Pr oduct s/ ZenMbdel / ZenossSecurity. py

ZenossSecurity. py isafilewhere all the string constants for Zenoss permissions are held. By adding this
lineto ZenossSecurity. py weve made anew constant that will be used to assign to a method.

ZEN_EXAMPLE_PERM SSI ON=

2. Now that we have a "name" for the permission available, we should add the permission to Zope. In $ZEN-
HOVE/ Pr oduct s/ ZenModel / Zent i nal Port al . py thereisaclassnamed Por t al Gener at or . There
isamethod named set upPer ni ssi ons() definedin Port al Gener at or .

Here you'll see a group of calls to manage permissions. Add a new line to this method that adds your new
permission.

np(ZEN_EXAVMPLE_PERM SSI ON, [ZEN_MANAGER ROLE, MANAGER ROLE], 1)

The first parameter is the permission. In this example the permission being managed is
ZEN_EXAMPLE_PERMISSION. The second parameter is the list of default roles assigned to the permission.
Inthisexample ZEN_MANAGER_ROLE and MANAGER_ROLE are set as defaults. The third argument isthe
acquired flag. When the flag is set to true, the permissions will be acquired in addition to the ones specified.

3. To make your permission official you'll need to use this permission. Apply your newly added permission to a

method. See the next section on assigning permissions to a method. Y our permission must be delcared and used
by a method to make it a valid permission.

8.5.2. Assigning Permissions to a Method

1. Import your your new permission:

from Products. ZenModel . ZenossSecurity inmport *

2. Import ClassSecuritylnfo. In most cases we have set ClassSecuritylnfo to security

from AccessControl inport C assSecuritylnfo
security = O assSecuritylnfo()

3. Above the method definition add this line of code

59

Extending the Model

security. decl areProt ect ed(ZEN_EXAMPLE PERM SSI ON,)
def exampl eMet hod(sel f):

The first parameter to decl ar ePr ot ect ed() is the permission to be set on the method. In this case the
permission is ZEN_EXAMPLE_PERM SSI ON. The second parameter is the name of the method. In this case
the name of the method isexanpl eMet hod() .

8.5.3. Checking Links

1. To check permission on a object, call checkRenot ePer () .

sel f. checkRenot ePer n{ ZEN_EXAMPLE PERM SSI QN, f 00)

The first parameter is the permission to check. In this case the permission is ZEN EXAMPLE_PERM SSI ON.
The second parameter is the object being checked. In this case the name of the object isfoo. Thiscall will check
if foo hasthe ZEN_EXAMPLE_PERM SSI ON.

60

Chapter 9. Zenoss Daemons

9.1. Twisted Network Programming Overview

Zenossreliesheavily onthe Twisted network [http://twistedmatrix.com/trac/] Pythonlibraries. Twisted providesan
asynchronous, layered networking stack that isused by Zenossfor daemon communicationsaswell asfor contacting
devices. Themain Twisted documentation [http://twistedmatrix.com/trac/wiki/Documentation] can provideamore
detailed background.

One of the central conceptsin Twisted is not a multi-threaded design, but an asynchronous design. This means that
itisevent-driven (ie the next function to be called depends on what datais received) with co-operative multi-tasking
(ie abadly behaved function that sleeps or takes along time to execute can stall an entire application). The unit of
co-operative multi-tasking is a deferred object. A simplified overview is that a Twisted program starts a bunch of
deferred tasks and then waits for timers to expire and network events to happen.

Daemons communicate with ZenHub via Twisted Perspective Broker (PB) [http://twistedmatrix.com/projects/
core/documentation/howto/index.html], which is a library for transfering objects over the network. The most im-
portant PB concepts for our purposes are these:

* Methods that start withr enpt e _ are callable from the daemons.

» There arerestrictions on what type of objects can be passed back and forth between the service and the daemon.
Passing native Python typesis supported, as well as some support for more simple objects (classes without meth-
ods). Simple objecteds can be marked using the PB method pb. set Unj el | yabl eFor O ass() to help ac-
complish this goal.

Can we include the Twisted overview diagram (http://twistedmatrix.conmv/projects/core/documentation/how-
to/overview.html) here?

9.1.1. Understanding NJobs, Driver and DeferredList

Writing scalable, single-threaded communications servers requires an event-driven programming approach. Small,
simple 1/0 steps are connected by callbacks, rather than normal control flow. For example, instead of just sending a
reguest and waiting for the response you have to create the request, queue it for delivery, send it when the network
flow-control says it has space, wait for the response, reading it piecemeal, as it arrives, and then correlating it to
the sent message. Fortunately, we use a comprehensive library that performs many of these steps for us, so the
underlying steps are not as small. But, once you have queued your regquest, you must head back to the main event
loop so that 1/0 from many different parts of your application can complete in areactive manner. The fundamental
callback mechanismisthe Twisted library's Deferred. There are three common tasksthat our data collectors perform
in an asynchronous environment. They are:

1. Perform these tasks, in any order, and report to me when they are compl ete.
2. Perform thislong list of tasks, but do not do more than N of them at atime.

3. Perform a sequence of related activities in the correct order.

9.1.1.1. DeferredList

Lets say you need to perform I/O requests in parallel, and you don't care which finishes first, so long as they all
complete before the next step. For this problem, we gather up the deferreds from each step aswe initiate it, and we
hand them to a DeferredList. Once they have all fired (with callbacks or errbacks) the DeferredList will return alist
of the results, along with a boolean value indicating success or failure.

61

http://twistedmatrix.com/trac/
http://twistedmatrix.com/trac/
http://twistedmatrix.com/trac/wiki/Documentation
http://twistedmatrix.com/trac/wiki/Documentation
http://twistedmatrix.com/projects/core/documentation/howto/index.html
http://twistedmatrix.com/projects/core/documentation/howto/index.html
http://twistedmatrix.com/projects/core/documentation/howto/index.html

Zenoss Daemons

fromtw sted.internet.defer inport DeferredList

dl = taskl()
d2 = task2()
d3 = task3()

d = DeferredList([dl, d2, d3])
d. addCal | back(pri nt Resul ts)

def printResults(results):
for success, value in results:
i f success:
print , val ue
el se:
print , val ue

Each task runs in paralel, completing at its own pace. This approach is useful for knowing when a number of
unrelated requests have completed. For example, fetching the initial configuration may have severa requests that
are not interrelated. These may be done in parallel, so long as they al complete before collection begins.

9.1.1.2. NJobs

Each collector can overwhelm existing resources if it does not limit itself. For example, file descriptorsin a process
arenormally limited to approximately athousand. Unlessyou change the operating system's default it isnot possible
to talk to more than a thousand devices at one time if each requiresits own file descriptor. So, we normally wish to
atalk to as many as we can concurrently, but not so many that we run out of local resources. NJobs takes a callable
that takes a single argument and returns a deferred, and a sequence of items, along with avalue N, such that only
N of the callables are outstanding at each time.

from Products. ZenUils. NJobs i nport NJobs

jobs = NJobs(10, coll ectDevice, devices)
d = jobs.start ()
d. addCal | back(pri nt Resul ts):

def printResults(results):
for result in results:
print , results

The callable is called on the sequence list in the order given, but each call may complete out-of-order. Therefore,
the results may also have a different order than the input sequence. NJobs prevents us from having to write a built-
in limit to each type of asynchronous collector.

9.1.1.3. Driver

The most difficult to understand of the asynchronous tools that uses Deferredsis Dri ver . First let's understand
the basic problem. We have a sequence of asynchronous activities we want to link together, but each step requires
some intervening computation or organization. If the activities were synchronous, they might look like this:

config = readConfig()
sel f . updat eConfi g(confi g)
for d in self.config:

cl ear Status(d.id)

62

Zenoss Daemons

col | ect (sel f.config)
sendHear t beat ()

Each of these steps must be completed in order. Using just deferreds we might right something like this:

d = readConfi g()

d. addCal | back(updat eConfi g)

def clearStatuses(self):
d = DeferredList([clearStatus(d.id) for d in self.config])
d. addCal | back(col | ect)
d. addCal | back(heart beat)

d. addCal | back(cl ear St at uses)

The interleaving of synchronous calls (the for loop) and asynchronous calls twists the code around the callback
mechanism. There is a mechanism in Python that can be used to straighten out a convoluted sequence of actions to
produce a stream of results. Like a tokenizer, which usesyi el d to produce tokens as they have been discovered
in an input stream, Driver usesyi el d to produce deferreds as they come up. Driver consumes the deferreds and
resumes computation when they complete. So lets see what this code looks like when weyield a deferred whenever
we have one:

yi el d readConfi g()

sel f. updat eConfi g(results)

for d in self.config:
yield clearStatus(d.id)

yi el d sel f.config()

yi el d sendHeart beat ()

What remains is very much like the normal synchronous control flow, except the result from the deferreds are
missing. The valuer esul t s in the 2nd line of the example is a stand-in for some mechanism to get the results
of the last deferred that was returned by yi el d.

Here's the example in amore complete fragment:

from Products. ZenUtils.Driver inport drive
def cycl e(driver):
yi el d readConfi g()
sel f. updat eConfi g(driver.next())
for d in self.config:
yield clearStatus(d.id)
driver.next ()
yield self.config(); driver.next()
yi el d sendHeartbeat (); driver.next()
drive(cycle)

So, when we drive one of these deferred-generating-sequences, we get a reference to the driver. The driver keeps
the last value returned by a deferred result, so that it is available to theiterator. | know that construction is difficult
to understand... but understanding isnot necessary to use Dr i ver . If you have a sequence of code, where deferreds
keep cropping up and preventing your workflow from, well, flowing, you can use Dr i ver to make flow like the
synchronous version.

First, you need a generator which takes a single argument. If you don't have one, you can make one right in the
body of the function:

63

Zenoss Daemons

def f(a, b, c, d):
def inner(drive):
yield g(a, b, c, d)
drive. next ()
return drive(inner)

Next, just yield the deferreds as they come up, and get the result with dri ver. next (). It's good to call
driver. next () evenif youdon't usetheresult, because if the result was an exception, dri ver . next () will
throw the exception.

Finally, dr i ve returns adeferred, so be sureto perform callback handling on it. The callback value of the deferred
isthe last value from the last deferred.

drive(function).addBot h(sel f. handl eResul t)

9.1.1.4. A Simple Example

Thefollowing code is asimple example of the usage of a Twisted client / server code aswell asthe Zenossdr i v-
er () code.

#! [usr/bin/env python

fromtw sted. spread i nport pb

fromtw sted.internet inport reactor

i mport d obal s

from Products. ZenUtils.Driver inport drive

cl ass Server (pb. Root):

def __init_ (self, port):

reactor.listenTCP(port, pb.PBServerFactory(self))

def renote_add(self, x, y):

Zenoss Daemons

return x +y

class dient(object):

def __init__(self, port, nunbers, call back):

self.nunbers = [int(n) for n in nunbers]
self.clientFactory = pb. PBd i ent Fact ory()

drive(sel f.sum.addCal | back(cal | back)

react or. connect TCP(, port, self.clientFactory)

def sun(self, driver):

yi el d sel f.clientFactory. get Root Qbj ect ()
root = driver.next()
total = 0
for n in self.nunbers:
yi el d root. cal | Renot e(, total, n)
total = driver.next()

def mai n(nunbers):

65

Zenoss Daemons

port = 7691

Add the server to the reactor
Server (port)

def call back(total):

print total
reactor.stop()

Add the client to the reactor
Client(port, nunbers, call back)

reactor. run()

if __nane_ ==
i mport sys
if len(sys.argv) > 1:
mai n(sys. argv[1:])
el se:
pri nt % file

9.2. Zenoss Daemon Overview

There are afew general types of daemon typesin Zenoss.

Types of Daemonsfound in Zenoss

zenhub Each instance of zenhub opens a connection to the ZODB. All other daemons connect
to the hub in order to receive and transmit changes to the ZODB.

modeler daemons These daemons attempt to construct a model of devices and networks using Zenoss ob-
jects, and associ ate componentswith devicesto prepare for performance data collection.

collector daemons Collector daemons are concerned with gathering performance data for each of the mod-
eled components and storing the results in RRD files. The RRD data is always stored
locally to the host that runs the collector daemon.

event daemons An event daemon converts messages received from devices using whatever method the
device supports, and converts the messages into Zenoss events.

zenrender A render server takes a request for an RRD graph, renders the graphic and sends the
graphic back. A render server will be found where collectors run, as the collectors gen-
erate the RRD files.

66

Zenoss Daemons

Zenoss Enterprise users also have the option of using Distributed Collectors, which can create hubs and collectors
on different hosts in order to monitor devices. With Distributed Collectors there may be multiple zenhub daemons
(one per hub, naturally), and for a host with collector daemons there will also be arenderserver.

From a programming perspective, most daemons will choose one of the following classes:

Table 9.1. Common Daemon Classes

Class Features

CdBase logging and option parsing

ZenDaenon logging and option parsing, daemon

ZCndBase logging and option parsing, daemon, ZODB connection
PBDaenon logging and option parsing, daemon, PB communications

9.3. zenhub: Daemon to ZODB management

The zenhub daemon (aka the Hub or ZenHub) is a single-threaded and asynchronous daemon that provides the
following features:

¢ Connections between daemons and the ZODB for persistent object management (eg configuration loading).
Writes to the ZODB are synchronous operations.

» Connections between daemons and the MySQL event database for events and event management. Writes to
MySQL are synchronous operations.

« Connections between daemons and performance datain RRD files
¢ Pluggable Daemon Services
* User-interactive RRD graph fetching (eg renderserver functionality)

» Loading configuration

Conflguratuon

Collectors
Configuration
/
/J/ RRD Data
[Events
N\ /

\

ZODB @
Events
\/ RRD
Files

Figure 9.1. ZenHub, Daemon and the ZODB

\

TheHub (as of Zenossversion 2.3) can be split out some of itstasks by creating workers (aconfigurationfile option).
Requests from collectors are farmed out to the worker processes to spread out some of the load.

Zenoss Daemons

Note

Propagating configuration changes and fetching RRD Datais not pushed through workers! Thismeans
that large configuration downloads will still affect the user experience. Some sort of caching on the
daemon's side may be necessary for large sites.

9.3.1. Daemon to ZODB management

The zenhub daemon manages updates to the object database (ZODB) to any daemons that connect to zenhub
(in practice this means all Zenoss daemons). The Hub watches for changes to the ZODB database (eg the use of
theconmi t () function) and initiates change notifications to any affected daemons. zenhub also provides daemos
access to the object database for loading configuration items and posting events.

9.3.2. Heartbeats and other Events

Another management function that zenhub providesisthe ability to send notifications (ie Zenoss events). An event
will be provided from the daemon to the Hub which then stores the event in the event database (ie aMySQL table)
and then the event is processed according to any mappings that match the event. In this way an event generated by
an error condition can be cleared by another event.

Each daemon should post an event when it is shutdown, so that the consol eiskept informed of intentional shutdowns.
However, these events should be cleared by matching start events. Start/shutdown events should only be sent when
the server is daemon-ized.

Each daemon should post a periodic Hear t beat event. If a heartbeat event is not updated the Zenoss GUI will
indicate a problem with the daemon. Ideally, adaemon only sends a heartbeat event after each successful operating
cycle (eg performance data collection). It is not acceptable to just post events in a separate thread or timer unless
that thread also does some minimal testing for internal status and health.

If the daemon cannot talk to the Hub (eg zenhub is down) then events are queued up. When communications are
restored the queued events are then delivered.

9.3.3. Pluggable Daemon Services

To implement these features, zenhub has a collection of Services that it is willing to provide to other daemons.
A daemon will connect and request a particular Service. ZenHub will create that Service, and send future object
change notices to the Service, which in turn can decide how best to notify the daemon. Some daemons, such as
zenping, have avery simple configuration that doesn't change very often. Others, such as the zenperfsnmp, have
amuch more complex configuration that must be kept up-to-date with model changes.

Each Serviceisimplemented as a class that zenhub can import. Using Twisted's Perspective Broker (PB) facilities,
a daemon can request that the Hub perform some action (ie a class method) and return the results to the daemon,
and vice versa. In other words, the Service acts as the interface between the daemon and the Hub. The ser vi ces
directory in a ZenPack directory structure is where the Service classis kept.

9.4. ZenRender and Graphs

ZenRender provides accessto RRD files(and rrdtool) stored on aremote collector from auser'sbrowser, and allows
this even with firewalls. Zenrender can implement rendering methods via PB and HTTP.

ZenHub maintains a connection from zenrender, so an HTTP request to ZenHub and back through to the remote
zenrender isan option. zenrender can implement all the Render Ser ver methods viaHTTP requests, too.

68

Zenoss Daemons

Y ou can use the following default URL s to get a graph:

Table9.2. ZenRender Default URLS

nane: 8080/ zport/
Render Ser ver

Default URL Description
http:// The Zope RenderServer (original mechanism)
host -

host nane: 8091

http:// ZenHub, where collector is the name of the collector defined in the model. This port
zenoss: 8090/ number can only be changed by editing the Render hub service.

col I ector

http:// A direct reference to zenrender at the given hostname. The port number is config-

urable at each zenrender server.

9.5. Developing a Daemon

9.5.1. Command-line Options

Each daemon should support:

$ nydaenon start

This should deamon-ize the new daemon, running it forever in the background.

$ nydaenon stop

This should find the collector and stop it with a graceful shutdown.

$ nydaenon run

The new daemon should run for one cycle (if it has acycle), and should not daemon-ize and log to stderr.

Thankfully most of this infrastructure is taken care of for you. Should you require more command-line options,
here's how you should take advantage of the existing code:

from Product s. ZenHub. PBDaenon i nport PBDaenon
cl ass nycl ass(PBDaenon)

def buil dOptions(self):

PBDaenon. bui | dOpt i ons(sel f)

sel f. parser. add_opti on(,
dest = , action= , defaul t =Fal se,
hel p=)

69

Zenoss Daemons

The option formats are as specified in the Python opt parse library [http://docs.python.org/li-
brary/optparse.html].

Other features taken care of with the Zenoss daemon infrastructure is reading from configuration files, the - -
genconf flag (which produces a configuration file populated with all options, comments and default values) as
well asthe- - genxm t abl e flag (which produces a DocBook XML table showing command-line switches). As
other features can be added to the base class, if you follow this reccomendation there are more things your daemon
getsfor free.

Note

The code to alow commands to get command-line option values out of a config file in $ZEN-
HOVE/ et ¢/ currently can only set values on lower-case options. Please be aware of this when you
create new command-line options.

9.5.2. Add the Daemon Control Script

The daenons directory should contain afile with the name of your daemon (eg the one that should appear under
the Daemons tab under Settings). Thisfile is an executable shell script which should contain the following:

#! [usr/ bi n/ env bash
$ZENHOVE/ bi n/ zenf uncti ons

MYPATH="pyt hon -c "inport os.path; print os.path.real path('$0")""
THI SDI R="di r name $MYPATH

PRGHOVE="di r name $THI SDI R

PRGNAME=Nydaenon. py

CFCGFI LE=$CFGDI R/ mydaenon. conf

generic "$@

Of course, the PRGNANME and CFGFI LE variablesdon't necessarily need to be contain the same name as the daemon.
However, keeping the same name will certainly make things much less confusing.

The nydaenon. py fileisassumed to live at the base of the ZenPack.

9.5.3. Setup ZenHub Communications

The basics of daemon communications are these

Procedure 9.1. Daemon to ZenHub Commnication Steps

1. A daemon connectsto ZenHub. The raw mechanics of this are handled by the PBDaenon claseses so we don't
need to explicitly code anything to deal with this administrivia

2. The daemon requests specific Services by name from ZenHub. The Services are classes either already known
to ZenHub or classes providedintheser vi ces directory in aZenPack and areloaded by ZenHub at runtime.

3. Thedaemoncallsr enpt e_ methods on the Service objectsfrom ZenHub to receive configuration information
or perform other work.

4. The Services can aso call r enmot e_ methods on the daemon to provide updates, etc.

70

http://docs.python.org/library/optparse.html
http://docs.python.org/library/optparse.html
http://docs.python.org/library/optparse.html

Zenoss Daemons

9.5.3.1. Registering Services with the Hub

The ser vi ces directory needs to be created at the base directory of your ZenPack. Included in this directory is
the _init__.pyfile The _init__.py canbeempty, butit must exist or any service class files cannot be
loaded by zenhub.

zenhub imports Services (eg a daemon-to-Hub interface class) and the daemons can then use their own Service to
perform actions. Look for the example closest to your needs from the $ZENHOVE/ Pr oduct s/ ZenHub/ ser -
vi ces/ directory aswell as from other ZenPacks (eg HelloWorldZenPack, ZenIM X).

A basic Service class can be found in the Products. ZenHub. HubServi ce. HubServi ce
class. More complex daemons doing data collection may want to subclass
Pr oduct s. ZenHub. Per f or manceConfi g. Per f or manceConf i g instead to take advantage of some ad-
ditional infrastructure there.

71

Chapter 10. Add a Performance
Daemon

10.1. Overview

Zenoss is designed to be an extensible platform for integrating new performance collectors. Basically, this should
be a simple matter of getting the list of devices and sending/receiving data over the network to collect new values.
Essentially, thisiswhat every collector does.

Each collector should post values to RRD files and execute thresholds against those updates. The Python class
RRDUt i | supports writing values to RRD files. The Python class Thr eshol ds will simplify the execution of
thresholds on each RRD update.

Data collection needs to work in awide variety of networking infrastructures, so it needs to have acceptabl e perfor-
mance in light of high latency wide-area networks. Collectors should intentionally interleave requests to multiple
devices to reduce the overall time necessary to walk the list of devices. Collectors should not overload a single
device by sending multiple outstanding requests to that device.

In order to debug collection, the collector should be capable of logging detailed debugging output at each step
of collection, as well as posting events about collection failure. In particular, logging raw values and errors from
devices helps find errors in post-processing. Any performance information about total devices collected, or total
collect time should be posted at the informational level (above debug).

Since the collectors are generally going to run long-term, cached values and other stored and pre-computed values
should be periodically purged in order to synchronize the collectors' state with the real world, as well to eliminate
possible memory leaks.

If the collector monitors device components as well as whole devices, it may be necessary to load the device con-
figuration information in an incremental way. If it takes 30 minutes to gather the configuration information, this
is simply too slow and unresponsive. The collector should load its configuration information incrementaly, per-
forming collection against those devices it knows about. It can cache the configuration information persistently to
provide alarger "initial set" of configuration upon start-up.

Many collectors benefit from "pre-failing" their devices. They get the list of devices presently marked down by the
ping tester, and they skip those devices during collection. This eliminates unnecessary longer delays as collectors
run against devices that are just unreachable.

10.2. DataMaps

Zenoss divides data collection into two parts: modeling, and performance collection. During the modeling, or dis-
cover step, the external world is sampled through a series of plug-ins. The result of the discovery step is a generic
"Map": anested data structure that mimics the structure of the components within a device.

72

Add a Performance Daemon

/ ZenModeler

Modeler Plug-ins
‘interface” “service disk

-
<frack Changes |

ransports
SNMP/,/_SISI-H ‘/)Telnet/' WMI 7‘

/ Web server
: § o
s 5>>(«—{_apache |
Database server
mysal_|—» G601 <821 application
/eth0 etho /
e — [
| Y) ewemssmm

Figure 10.1. Modeling Overview

For example, we can query the list of network interfaces on a device using SNMP. We will map that into a data
structure to mimic the path on the device:

{ os : { { - : ,
{ : { "type': ,

These dictionaries of collected data are called Dat aMaps. Thereis a set of recursive functions that walk the maps
and apply the values to the device, creating components and setting values on them. In this way, a remote collector
can push updated configuration back to the central database without concern as to what the current configuration
is, and what exactly should be updated.

The Zenoss plugins are specialized to easily create these maps. Typically they consist of a single method pr o-
cess() totransform SNMP query resultsinto Dat aMaps. The plugin specifies the SNMP tables to be scanned,
and the process method is used to transform the resultsinto DataM aps. Some plugins can test their applicability to a
specific device. For example, the plugin may only be appropriate if the device supports SNMPv2, or has aparticular
agent OID. These plugins have a "test" method which is run before the plugin is used by the modeler.

SSH plugins, which are very much like SNMP plugins, transform output of various commands into datamaps. For
example, the output of the Unix df command istransformed into amap to create and update filesystem information.

10.3. Performance Collection

Modeling updates the object database model with information about what data to collect. As an example, if the
modeler detects three network interfaces, it creates sl ot s for each network interface, and each of these dlotsis
referenced by an index. It is now up to the data collector to fill each of these dlots with performance data.

When the performance collectors read their configuration, the devices are matched against templates, and each
template contains each datasources (iewhat datapoints (such as SNMP Ol Ds) and their slot to collect) and threshol ds.
In addition, any information necessary to read the performance data (eg zProperties that contain login information)
isretreived. Thisinformation is usually organized by device, and is |oaded by the collector when it is started.

73

Add a Performance Daemon

When devices change configuration (and therefore change the peformance datathat needsto be collected), the model
must be refreshed either with an explicit selection of Model Device on the device, or by the periodic runs of a
modeler (eg zennodel er).

Connecting Collectors and Services

All collectors (and the modelers) are sub-classed from PBDaenon. PBDaenon will automatically connect
to zenhub and re-connect as needed. It provides an easy-to-use Event Service.

The configuration format and API for getting and updating any specific collector will depend on the Service
it uses. There are afew caveats about forwarding configuration to collectors:

1. Change notifications are very "bursty".
2. A sequence of updatesin a burst will often update the same object many times.

3. The configuration for thousands of devices can take along time to extract. The configuration should be
pushed or pulled incrementally.

Caveats 1 and 2 mean that we often delay sending updates by several secondsto reduce the number of changes
sent. Caveat 3 makes for complex exchanges between a service and the collector. There are classes to support
delayed evaluation of configuration (Pr ocr ast i nat or). There is support for determining the type of ob-
ject change: the deletion of a device, the update of a template, and the update of a monitor's configuration
(Per f or manceConfi g).

10.4. Creating a New Collector

For this section, wewill contemplate anew collector that will collect ping performance data. We will want to create
anew DataSource type with several built-in DataPoints, such as Average Ping Time, and Fastest Ping Time.

10.4.1. Constructor

The following example is a simple network ping-performance collector. It relies on the availability of fping to
perform the actual ping test.

The class pingperf is derived from a base class that supports writing to RRD files. It is a also PBDaemon, which
meansthat it will connect to zenhub to fetch it's configs and post events. PingConfig isthe module/class that will be
loaded in ZenHub to satisfy zenperf's configuration requests. We aso configure reasonable default values for two
cycles: the time between configuration refreshes and the time between ping tests.

def __init_ (self):
RRDDaenmon. __init__ (self,)
sel f.devices = {} # device id -> ip address
sel f.running = Fal se

The constructor for this class calls the base's constructor, passing our name. We will need to hold the configuration
between cycles, so weinitialize an empty configuration. If the ping testing takeslonger than one configuration cycle,
we won't want to start a second test. We set aflag to note that we aren't running a ping test (yet).

When the base class is started, it attempts to connect to ZenHub and get remote references to the services is will
use. Most collectors have two services: Event Ser vi ce and a collector-specific service that scans the model for

74

Add a Performance Daemon

configuration. Our service will be Pi ngConf i g. After the service reference are loaded, the base class calls a
connect ed() method.

def connected(self):
def inner(driver):
| og. debug()
yi el d sel f.fetchConfig()
driver.next ()
drivelLater(self.configCyclelnterval, inner)
drive(inner).addCal | backs(sel f.pi ngDevi ces, self.errorStop)

This method uses a technique to serialize a callback chain. Seethe ZenUt i | s/ Dri ver . py for details on how
this works. The effect is that the config is loaded with the f et chConfi g() method, and the inner function is
called repeatedly after configCyclelnterval seconds.

Once the inner function compl etes the first time, it either calls pi ngDevi ces() on successor error St op()
on failure.

10.4.2. Getting a List of Devices

When the collector connects, and requests its config from the Service, the service will walk thelist of all the devices
for that monitor, and extract out the ping DataSources:

def renote_get Devi ces(sel f):
config = []
moni tor = sel f.dnd. Monitors. Performance. get Gb(sel f. nane)
for dev in self.nonitor. devices():
for tenpl in dev.get RRDTenpl ates():

dat aSour ces = tenpl . get RRDDat aSour ces()
i f dataSources:
br eak
el se:
conti nue
confi g. append(
(dev.id, # name of the device
dev. get Managel p(), # the IP to ping
dev. get Thr eshol dl nst ances()

any threshol ds on the ping

)
)

To make this configuration load incremental, the Service can send just the name of the devices to load, and then
the collector can use a different method to load the configuration of each device at a later time. For such asimple
configuration, it may not be worth the extra complexity.

When this code is placed into a class that is a sub-class of HubService, it can be loaded by name, when the collector
loads it services. PBDeamon will automatically connect you to this service, if the name of the service is provided
in the the class configuration.

The call to get this configuration in our new collector looks like this:

d = sel f.get Service(). cal | Renot e()
d. addCal | back(sel f.start Col | ecti on)

75

Add a Performance Daemon

Note

1. PBDaenon has already connected you to the service sone. package. Pi ngSer vi ce class.
2. get Devi ces becomesr enot e_get Devi ces inthe hub.

3. The protocol for getting configurations is anything you like: you can control both sides of the
communications.

4. Requests and responses are asynchronous and will involve callback objects.

5. The communications are heavily dependent on the Prospective Broker (PB) library in Twisted.
Please refer to the Perspective Broker (PB) documentation [http://twistedmatrix.com/projects/
core/documentation/howto/pb-intro.html] for how the calls to remote objects work.

10.4.2.1. Thresholds

As each collector reads updated performance datait will evaluate any thresholds associated with those updates. The
classes representing those thresholds must be |oaded before the thresholds may |oaded evaluated. So, each collector
asks ZenHub for the names of all of the thresholds that can be monitored and imports them for future use.

The management of Thresholdswithin the collector iscomplex. Thereexistsaclass (Thr eshol ds) to managethe
thresholds and transform performance updates into events.

10.4.2.1.1. Complex Thresholds
A complex threshold allows Zenoss to produce an event:
« when user time and system time is over 80%
« when value A is 80% of value B
 on adifferent RRD consolidation function from AVERAGE

« when afilesystem is X% full, and acritical event whenitisY % full

Threshold
Classes,

Threshold
\‘i/wﬁ' Performance

Zenoss Collectors
Object Model

Events

Event
Database
1\—_—4_/

Figure 10.2. Complex Thresholds

76

http://twistedmatrix.com/projects/core/documentation/howto/pb-intro.html
http://twistedmatrix.com/projects/core/documentation/howto/pb-intro.html
http://twistedmatrix.com/projects/core/documentation/howto/pb-intro.html

Add a Performance Daemon

Thresholds are not “min/max value checkers’ but “transformers of values into events’. As new vaues come in,
the Threshold will look at the value and determine if an event is warranted. Because of the inheritable template
mechanism, we have two separate tasks for Thresholds. The first is to represent the configuration for a threshold
within thetemplate. A valuelike“80” in the case of “File System at 80% full” is part of the configuration. However,
when applied to a context, such as filesystem “C:\\" on device “WINXYZ" the value becomes “96000 blocks’.
The value “96000 blocks’ needs to transfer from the Zenoss object model, to the collector, so that values can be
evaluated with the given context, without referring to the entire object model.

This leads us to separate thresholds into two components: one that hold the configuration and user intent, and an-
other that can travel as part of the collector configuration to the collector. This “Threshold with Context” object
is then executed when new values for datapoints are collected. The first type of threshold (for configuration) is
called Thr eshol dC ass, and the second type, which evaluates avalue with context iscalled aThr eshol dl n-

st ance. The Zenoss datamodel will load Thr eshol dd ass classesfrom Zenossand installed ZenPacks. These
objectsareresponsiblefor creating the Thr eshol dl nst ance objectsthat are sent viathe collector configuration
for evaluation in the collector. Templates refer to derived versions of Thr eshol dC ass, which when given a
context, create Thr eshol dI nst ance objects.

To reduce the effort when writing a performance collector, support classes are used to hold Thr eshol dI n-
st ances and map updates to datapoints into threshold evaluation and event generation. The classes M nMax-
Thr eshol d and M nMaxThr eshol dl nst ance replaced the previous Thr eshol d and flattening mechanism
defined for datapoints and collectorsin Zenoss version 2.0.X.

Presently, collectors are generally ignorant of context (device, or component), and almost certainly ignorant of
Dat aSour ces and Dat aPoi nt s. They are given the parameters necessary to fetch a value and store it into an
RRD file. Thr eshol dsl nst ances wish to work on distinguished Dat aSour ce/Dat aPoi nt nameswithin a
context. So, to map from RRD files back to Thr eshol ds, we use the RRD filename. When a collector updates a
file, it notifiesthe Thr eshol ds class (the utility classfor al collectors to hold threshold information). This class
maintains a mapping of file namesto Thr eshol d and Dat aPoi nt . Eventually, it might be worth trandlating the
collectors so that they know about context and Dat aPoi nt .

Known Problems with Complex Thresholds
To send classes from Server to Client, the client has to expect and approve them. We will need to transfer the

list of approved Thresholdlnstance sub-classes before a client can load those thresholds. The collector will
then have to approve and import these sub-classes at start-up.

10.4.3. f et chConfi g()

Let'slook at f et chConfi g():

def fetchConfig(self):
def inner(driver):
yi el d sel f.nodel (). cal | Renot e()
creat eCommand = driver. next ()

yi el d sel f.nodel (). cal | Renot e()
sel f.setPropertyltens(driver.next())

self.rrd = RRDUtI | (creat eCommand, sel f. pingCycl el nterval)

yi el d sel f.nodel (). cal | Renot e()
sel f.renot e_updat eThr eshol dCl asses(dri ver. next())

7

Add a Performance Daemon

yi el d sel f.nodel (). cal | Renot e()
self.rrdStats. config(self.options. nonitor,
sel f. name,

driver.next(),
cr eat eCommuand)

devices = []
if self.options.device:
devices = [sel f.options. devi ce]
yi el d sel f.nodel (). cal | Renot e(, devi ces)
update = driver.next()
if not isinstance(update, dict):
| og. error(% updat e)
el se:
sel f.devi ces = update
return drive(inner)

Herethe samedrive/inner techniqueis used to serialize abunch of asynchronousremote method calls. The base class
provides amethod called model () which returns aremote reference to the collector-specific configuration class. We
call severa remote methods, most of which are inherited from a base ZenHub service class.

We must get the default RRD create command. Then we copy the collector properties, which provides updated
valuesfor pingCyclelnterval and configCyclelnterval. In order to execute thresholds, we need to know the set of all
threshold classes and get them imported. After the threshold classes are installed, we have to get the thresholds for
this collector. These thresholds do not belong to the datapoints to be collected (ping response time), but for values
like "total cycletime" that are based on the collectors performance.

Finally we call the remote method get Devi ces() which returnsamapping of deviceid to |P address. We make
alowances for the simple one-device invocation:

pi ngperf -v 10 -d someDevi ce

10.4.4. Collector's ZenHub Service

Here's our ZenHub service:

from Products. ZenHub. servi ces. Perf or manceConfi g i nport PerformanceConfig
cl ass Pi ngConfi g(PerformanceConfi g):

def get Devi ceConfi g(sel f, device):
return (device.id, device.getManagel p())

def sendDevi ceConfig(self, |istener, config):
|'i stener. cal | Renot e(, config)

def renote_get Devi ces(sel f, devices):
result = {}
for d in self.config.getDevices():

78

Add a Performance Daemon

if not devices or d.id in devices:
result[d.id] = d.get Managel p()
return result

Most of the implementation for this class is in the base class. The base class determines the devices affected when
database changes occur. It then uses the methods getDeviceConfig and sendDeviceConfig to figure out how to send
the changes to the collector.

10.4.5. Miscellanous Functions

Back to the collector, here are the methods that are called by ZenHub to update the collector with changes:

def renote_del et eDevi ce(sel f, dooned):
| 0og. debug(% dooned)
try:
del sel f. devi ces[doomned]
except KeyError:
pass

def renote_updat eDevice(self, cfg):

| 0og. debug(, cfg.nane)
d, ip=cfg
sel f.devices[d] =ip

10.4.6. Collect the Performance Data

The only method left in our simple collector is to actually ping some devices, post the timings to a configuration
file, send any resulting events, and send a heartbeat.

def pingDevices(self, ignored=None):
def inner(driver):
reactor.call Later(sel f.configCyclelnterval, self.pingDevices)
if not self.options.cycle:
sel f.stop()
if self.running:
| og. error()
return
sel f.running = True

| og. debug(% (.join(sel f.devices.keys())[:100]))
start = time.time()

revMap = dict([(ip, d) for d, ip in self.devices.itenms()])

fd, fname = nkstenp()

fp = os.fdopen(fd,)

| og. debug(% f name)
fp.wite(.join(revMap. keys()) +)

fp.cl ose()

fromtwi sted.internet.utils inport getProcessQutput

fping = os.path.join(os.path.dirnane(_ file_),)
| og. debug(% f pi ng)

yi el d get ProcessQut put (fpi ng, (fnane,))

| og. debug(% driver.next())

for line in driver.next().split():

79

Add a Performance Daemon

if not line: continue
mat ch = par seLi ne. mat ch(li ne)
if not match
| og. debug(% 11 ne)
conti nue
mat ch. group(| P)
fl oat (mat ch. gr oup(M5))
not revMap. has_key(ip):
conti nue
devi ce = revMap. pop(i p)
path = % devi ce
ms = self.rrd. save(path, ns,
for ev in self.threshol ds. check(path, tine.tine(), ns):
sel f. sendThr eshol dEvent (**ev)
os. unl i nk(f name)
sel f. heart beat ()
cycle = self.pingCyclelnterva

ip
ns
i f

sel f.rrdStats. gauge(, cycle, len(self.devices))
sel f.rrdStats. gauge(, cycle, len(reviap))
sel f.rrdStats. gauge(, cycle, time.time() - start)

d = drive(inner)
def cl earRunni ng(arg):
sel f.running = Fal se
if isinstance(arg, Failure):
| og. error(% (arg,))
return arg
d. addBot h(cl ear Runni ng)
return d

Thisisalong method, so let'stakeit in parts. Let's take everything outside of thei nner () function:

def inner():
...

d = drive(inner)
def cl earRunni ng(arg):
sel f.runni ng = Fal se
if isinstance(arg, Failure):
nmsg = % (arg. val ue
sel f . sendEvent (WARNI NG_EVENT, summar y=nsg)
return arg
sel f.running = True
d. addBot h(cl ear Runni ng)
return d

Again we are using the same drive/inner approach to serialize asynchronous calls. We also want to track the fact
that we are running the inner method so that we can detect cases where our collection cycle istaking too long. The
cl ear Runni ng() functionisadded to the callback chain to ensurethat the running flag isreset however theinner
function completes. It was also aconvenient placeto report onany errors. Here'sthedefinition of WARNI NG_EVENT
to remove any mystery about its value:

The following is a constant definition used to send an event if the collector has an error:

80

Add a Performance Daemon

WARNI NG_EVENT = di ct (event Cl ass=St at us_Pi ng,
component = ,
devi ce=socket . get f gdn(),
severit y=War ni ng)

The inner function does al the work:

def inner(driver):
reactor.call Later(sel f.configCyclelnterval, self.pingDevices)
if not self.options.cycle:
sel f.stop()
i f self.running:
| og. error()
return

This bit of code controls the ping cycle. By starting the timer call chain immediately we are ensured to repeat the
call in the future even if an error occurs or the collection takes too long.

| og. debug(% (.join(sel f.devices. keys())[:100]))
start = tinme.time()

revMap = dict([(ip, d) for d, ip in self.devices.itens()])

fd, fname = nkstenp()

fp = os.fdopen(fd,)

| og. debug(% f nane)
fp.wite(.join(revMap. keys()) +)

fp.cl ose()

Our implementation for pinging all the devices is farmed out to an external process (fping). So we write a config
filefor fping (alist of IP addresses) into atemporary file. Next, we run fping and collect the results:

fromtwisted.internet.utils inport getProcessQutput

fping = os.path.join(os.path.dirnane(__file_),)
| og. debug(% f pi ng)

yi el d get ProcessQut put (fpi ng, (fnane,))

| og. debug(% driver.next())

The next loop parses each line of output using a regular expression:

| og. debug(% driver.next())
for line in driver.next().split():
if not line: continue
mat ch = parselLi ne. mat ch(li ne)
if not match
| og. debug(% | i ne)
conti nue
ip = match. group(Il P)
nms = float (match. group(VS))
if not revMap. has_key(ip):
conti nue

When a match is found, we determine the device from the I P address and post the value to an RRD file:

devi ce = revMap. pop(i p)

81

Add a Performance Daemon

path = % devi ce
ms = self.rrd. save(path, ns,)

We usetheresulting val ue (which may have been averaged in with other datafrom the RRD fil€) to check thresholds:

for ev in self.threshol ds. check(path, tine.tine(), ns):
sel f. sendThr eshol dEvent (**ev)

Finally, we remove the temporary file, send a heartbeat, and report statistics on the total number of devices, the
devicesthat did not report, and the total time to process the device list.

os. unl i nk(f nane)
sel f. heart beat ()
cycl e = sel f. pi ngCycl el nt erval

sel f.rrdSt ats. gauge(, cycle, len(self.devices))
sel f.rrdSt ats. gauge(, cycle, len(reviap))
sel f.rrdSt ats. gauge(, cycle, tinme.tine() - start)

82

Chapter 11. Adding a new Device Type

In this example we'll add platform support for AlX, which uses vendor extensions to store MIB data which Zenoss
doesn't understand. To simplify things alittle, we'll say that our Zenoss server name is zenossl

11.1. Overview

Adding support for a new platform can be broken down into a number of easily-defined steps:

¢ Add the platform-specific MIB to make it easier to find items to collect SNMP information and map numeric
OIDsto names.

« Add adevice organizer for the platform to create atidy place to store platform-specific information.
» Create modelers to gather information which doesn't change all that often (eg network cards filesystem names)

« Create performance data collectorswhich will be used to gather current usage statistics (eg how full thefilesystem
isnow).

» Create templates which will be used to store the results from the data collectors and use the data for graphing.
Thisalso alows usto set thresholds so that we can generate events when certain conditions are met (eg filesystem
is95% full).

 Create event mappingsto create reasonabl e responses to events coming from the devices. Additionally, if the new
device warrants it, create a new event organizer to manage new events.

Tip

1| If the datais collected through an API or network protocol that Zenoss doesn't natively support, it may
be necessary to create a daemon that understands that protocol. This daemon might allow Zenoss to
model, collect performance data and event information, and then store that information.

11.2. Add the MIB

MIBs are used by Zenoss as a way to convert trap output from numeric OIDs to named OIDs. Once you add the
MIB it should be easy to point your device's trapsink to the Zenoss server and from the Zenoss server convert the
traps into Zenoss events.

The AIX MIB whichisstoredinthe/ usr/1i b/ sanpl es/ snnp/ ai x. my MIB file on any AlX server. Copy
the MIB file to your Zenoss server and add it with the command:
zenmib run $ZENHOM E/shar emibg/site/aix.my

Verify that the MIB isin the http://zenoss1:8080/zport/dmd/Mibs mangement page.

11.3. Add a Device organizer

If you wish to create a device organizer so that it's easy to differentiate between other types of devices and the type
that you're adding, feel free to do so. In the case of AlX, there are a couple of types of setups:

Generic Al X Definitions

Standalone Thisdescribesthe case where the entire pSeries server isdedicated to running
one instance of AlX.

83

Adding anew Device Type

Logica PARtition (LPAR) Some Al X pSeriesserversare capabal e of running multipleinstancesof AlX.
An AlX instance (LPAR in IBM speak) is equivalent to a VMware image.

Frames AlIX LPARs are hosted on physical hardware (ie a pSeries server), which
is referred to as a frame. These frames are capable of being run as either a
standalone server or asabunch of LPARs. The frameislike aVMware host.

Virtual 10 (VIO) Server A VIO server isa special LPAR that allows you to consolidate |O hardware
(eg Ethernet, Fibre Channel cards) and share virtualized hardware with oth-
er LPARs. Thisis one of the key technologies required in order to perform
VMoation-style activites for AIX LPARs.

A separate server (called a Hardware Management Console (HMC)) is used to manage standal one devices, frames
and LPARSs (including VIO servers). The HMC is actually a Linux server with a custom configuration to support
AlX. Inthis example, well just add the AIX parts and ignore the HMC.

Add adevice classfor AlX inthe/ Devi ces/ Ser ver / Al X class. From the navigation bar at the left-hand side,
go to the Classes section and select Devices. Then click on Server, which shows you the Sub-Devices screen. From
the Sub-Devices table menu, select Add New Organizer. Provide anid (ie Al X) and click OK.

Under the newly created / Ser ver / Al X organizer, create the LPAR class. Under that class, creataa VI Oclass.

Inthisnewly created scheme, we'reintending on putting standalone serversand framesinthe/ Ser ver / Al Xclass,
any LPARsinthe/ Ser ver/ Al X/ LPARCclass, and any V10 servers (which are aspecial type of LPAR) under the
/ Server/ Al X/ LPAR/ VI Oclass. If we wanted to have each frame contain its own tab showing the LPARS that
it hosts, we would need to create new ZenMbdel objects (complete with relations), instatiate them at the base of
/ Server/ Al Xand then write more ZPTs to handle our custom behaviours.

Another situation where we might be forced to write our own device class Python code is where we want to add
propertiesthat don't exist in other devices. For instance, we may want to record whether or not aFibre Channel device
supports N-Port ID Virtualization (NPIV). This extra property would need to be subclassed from the ZenhMbdel
class and the object initialized from within our ZenPack's__i nit __. py file

11.4. Create a Modeler

When you navigate to a particular host and from the page menu select ManageModel Device, that runsal of the as-
sociated model ers (which, confusingly enough, are set for a device through the MoreCollector Plugins menu item).
What we need to do is copy and customize an existing modeler plugin from $ZENHOVE/ Pr oduct s/ Dat aCol -
| ect or/ pl ugi ns/ zenoss/ snnp and then add that plugin to our list of pluginsthat our platform's device class
will use.

Welll start with creating aFi | esyst emmodeler plugin. We'll copy the HRFi | eSyst enivap plugin and call our

plugin Al XFi | eSyst envap. py. Using the information in the MIB, we can find the place where it stores the
list of filesystems.

Table11.1. Modeler Functions

Name Required? | Description

condition() N Returns Tr ue or Fal se toindicate whether or not to run the other functions

preprocess() N Thiswill get called beforethe pr ocess() function

process() Y This is the actual function that processes any information retrieved from a
query and convertsit into aformat suitable for updating the device model.

Adding anew Device Type

11.4.1. Verify the SNMP connectivity and OIDs

First, verify that your server's SNMP daemon is functional and that you have the correct SNMP version and cre-
dentials. We'll assume that we're using SNMP version 1 and are using the publ i ¢ community, and that your new
host will alow connections from our Zenoss server.

Run the snmpwalk command from the Zenoss monitoring server
snmpwalk -v1 -c public myaixbox.example.com 1.3.6.1.4.1.2.6.191.1 | head

This produces alot of output that we've truncated to save patience and space.

SNVPvV2- SM :
SNVPvV2- SM :
SNVPvV2- SM :
SNVPvV2- SM :
SNVPvV2- SM :
SNVPvV2- SM :
SNVPvV2- SM :
"The current

senterpri
senterpri
senterpri
senterpri
senterpri
senterpri
senterpri

Ses.
Ses.
Ses.
Ses.
Ses.
Ses.
Ses.

2

DD
oo W oWl

6

. 191.
. 191.
. 191.
. 191.
. 191.
. 191.
191.

used percentage 93

SNWPv2-SM : :enterprises. 2.6.191.
SNWPv2-SM : :enterprises. 2.6.191.
SNWPv2-SM : :enterprises. 2.6.191.

1
1
1
1
1
1.
1
(0]
1
1
1

f

e N e N N

B R

| NTEGER:
| NTEGER:
Gauge32:
| NTEGER:
| NTEGER:
. STRI NG
e file system/mt has gon”
.0 I NTEGER: O

0. I NTEGER: O

1. I NTEGER: O

o1

[cNeoNoNoNeNeNo)
NOON

1
2
3
4
5
. 6.
7
th
.9
.1
.1

0 =
0 =

If you don't see output like the above, nothing else will work. Find the issue and fix it.

: Tip
1| The Zenoss community website has a ZenPack with a graphica MIB browser [http://
WWW.zenoss.com/community/projects/zenpacks/mib-browser] which might help for these steps.

11.4.2. Common SNMP Issues

Here's alist of some common reasons why snmpwalk may not return any data:

¢ The SNMP daemon on the remote system is not running

* The SNMP daemon on the remote system has different security credentials than what you're using (ie version 1

VS Version 2c, wrong community name)

¢ The SNMP daemon on the remote system only allows connections from certain | P addresses or | P address ranges
and the Zenoss server doesn't meet that criteria.

* The SNMP daemon on the remote system only allows queries to certain portions of certain MIBs, and you have
specified something not allowed by that policy.

* Thefirewall(s) between the Zenoss server and the remote system do not allow UDP or SNMP traffic.

* Thefirewall on the Zenoss server does not allow UDP or SNMP traffic outbound or inbound.

» Thefirewall on the remote system does not allow UDP or SNMP traffic outbound or inbound.

As afirst sanity check, try the snmpwalk command on the remote host. For example:
snmpwalk -v1 -c public localhost 1.3.6.1.4.1.2.6.191.1 | head

85

http://www.zenoss.com/community/projects/zenpacks/mib-browser
http://www.zenoss.com/community/projects/zenpacks/mib-browser
http://www.zenoss.com/community/projects/zenpacks/mib-browser

Adding anew Device Type

11.4.3. Modeler Code

Mulitple modelers for different components of a system can be created, or one huge modeler for everything can be
created. Smaller modelers are preferred for maintenance reasons. The following modeler isfor the filesystems, and
would liveinthe nodel er/ pl ugi ns/ directory of your ZenPack.

Note

Pythonrequiresthat __i nit __. py filesbeinboththenodel er/ andtherodel er/ pl ugi ns/
directories. If they are missing your modeler will not load.

inport re

from Products. ZenUtils. Uils inport unsigned

from Products. Dat aCol | ect or. pl ugi ns. Col | ect or Pl ugi n i nport SnnpPl ugi n, \
Get Tabl eMap

from Products. Dat aCol | ect or. pl ugi ns. Dat aMaps i nport OCbj ect Map

cl ass Al XFi | eSyst emVap(SnnpPl ugi n) :

mapt ype =
conmpnanme =
rel nane =
nmodnane =
devi ceProperties = \
SnnpPl ugi n. devi ceProperties + ()

#
These columm nanes are for the ai xFsTable fromthe
[usr/sanpl es/snnpd/ ai xmib.nmy MB file | ocated on your Al X hosts.
(It's in the bos.net.tcp.adt fileset.)
#
colums = {
: , # ai xFsl ndex
, # ai xFsNanme
, # ai xFsMount Poi nt
, # ai xFsType
, # aixFsSize - a value in MB

#

Conment out the followi ng entries to reduce the anount
of stuff that we need to send. They are |listed here
for reference and conpl et eness.

#

'.6': 'aixFsFree',

86

Adding anew Device Type

HoHOHH R

", 7': "ai xFsNunl Nodes'

'.8 : '"al xFsUsedl nodes'
'.9': "alxFsStatus'
'.10': "aixFsExecution'
".11': ' aixFsResult Msg',
}
snnpGet Tabl eMaps = (
Get Tabl eMap(, , colums),
)
#
This table is included for reference
#
ai xFsType = {
1: ,
2: ,
3: ,
4: ,
5: ,
6: ,
7. ,
8: ,
9: ,
10: ,
11: ,
}
def process(self, device, results, |o0g):
| 0g. i nf o(, self.name(), device.id)

getdata, tabledata = results

if there's an SNWVP

#
Gather the data using SNMP and just exit
issue. If we don't, the filesystemtable in Zenoss will get
w ped out. CQuch
#
fstabl e = tabl edat a. get ()
if not fstable:
| 0og. war n(
device.id, self.nane())
| 0og. war n(, getdata)
| 0og. war n(, self.colums)
return

ski pf snanes = getattr(devi ce,
maps = []
rm= self.rel Map()
for fs in fstable.val ues():
if not fs.has_key():
continue # lgnore blank entrie

, None)

87

Adding anew Device Type

if not self.checkColums(fs, self.colums, |o0g):

| 0og. war n(, getdata)
| 0og. war n(, self.colums)
conti nue

| 0og. debug(, fs[1)

#

Ensure that we only check on | ocal disk
NB: it may make sense to report on AFS/ DFS vol unes.. ..

#

fstype = self.ai xFsType. get(fs]], None)

if fstype not in (, :
conti nue

if fs] > 0 and (not skipfsnanmes or \
not re.search(skipfsnanes, fs] 1)):

om = sel f. obj ect Map(fs)

#

The internal id that Zenoss uses can be used in URLS,
while Unix fil esystem names cannot.

Map to an URL-safe nane.

#

omid = self.prepld(om nount)

#

Map our M B data to what Zenoss expects
#

om bl ockSi ze = 1024**2; # ie MB

rm append(on)
maps. append(rm

#
As a final sanity check, see if we found anything. If we

didn't find anything, that's probably an error so just return.
#

i

f len(maps) ==
| 0og. war n(,
sel f. name(), device.id)
return

return maps

Note

Because this question occurs so often in the mailing lists, the following information bears repeating.
The function name reguired of any modeler isthe pr ocess() function.

11.4.4. Testing the Modeler

To test your new modeler plugin, add it to the list of modeler plugins. From within the newly-created Al X device
class, click on MoreCollector Pluginsto select the appropriate plugin, which should be in the list of items to add.

88

Adding anew Device Type

Y ou can test your new plugin by using zenmodeler from the command-line.
zenmodeler run -d myaixbox.example.com -v 10

For testing purposes, you may want to add this and only this modeler plugin to one particular host and make it the
only plugin. Any syntax errors or exceptions will be visible so that you can hopefully debug them.

Once you're satisfied that everything is working correctly, verify everything by running the ManageModel Device
command and then examining the OStab. If everythingiscorrect, you'll seeyour list of filesystemsin the Filesystems
area, but with unknown for everything except the total size of the filesystems. The actual usage numbers of the
filesystem is collected by a different mechanism -- a performance data collector.

Keep in mind that amodeler is run infrequently (eg once aday or once aweek, depending on your settings), while
a performance data collector is run every five or ten minutes.

11.5. Create a Performance Collector

A performance data collector gathers the current statistics of items such as the amount of space used in afilesystem.
The data can be collected using either a script or an SNMP command. For our Fi | esyst emdata, we must create
a new data collector called Fi | esyst em(thisis a special name) that will return a property called usedBlocks
(another specia name).

If your operating system's MIB provides a usedBlocks (or something named like that) value, then we can make
use of existing Zenoss infrastructure and just collect that data using SNMP. Otherwise, you need to create a script
to take the total size of the filesystem (ie totalBlocks) and subtract the freeBlocks value. Unfortunately, AIX only
provides freeBlocks, so we need to create a command.

With the Zenoss 2.4 rel ease, we can al so create acommand parser to gather our performance information. This new
functionality allows you to write simple code to gather performance data and graph the results.

11.5.1. Performance Data Collector Code

Mulitple collectors for different components of a system can be created, or one huge collectors for everything can
be created. Smaller collectors are preferred for maintenance reasons. The following collector is for calculating
filesystem free space, and would liveinthel i bexec/ directory of your ZenPack.

#! [usr/ bi n/ env python

i mport sys
import re
from subprocess i nmport *

base fs tabl e oid=
def process_di sk _stats(device, comunity, total Bl ocks oid, freeBlocks oid):
cnmd= % (community, device, \
tot al Bl ocks_oi d, freeBl ocks _oid)

proc= Popen(cnd, shell=True, stdout=PlIPE, stderr=PlPE)

#
Check to nmke sure that we don't have any hangups in

89

Adding anew Device Type

executing our sm dunp

#

if not proc.stdout:
pri nt % cnd
return

if not proc.stderr:
pri nt % cnd
return

(I'inel, line2)= proc.stdout.readlines()

total Bl ocks= linel.split()[-1]

freeBl ocks= line2.split()[-1]

usedBl ocks= total Bl ocks - freeBl ocks

return total Bl ocks, freeBl ocks, usedBl ocks

if __nane_ == :

if len(sys.argv) < 4:
pri nt
sys.exit(1)

(device, comunity, fs_index)= sys.argv[1l:]

t ot al Bl ocks_oi d= .join(base fs table oid, 5, fs_index)

freeBl ocks_oi d= .join(base fs table oid, 6, fs_index)

t ot al Bl ocks, freeBl ocks, usedBl ocks= process_di sk_stats(device, \
community, total Bl ocks_oid, freeBl ocks oid)

pri nt % (total Bl ocks, \
freeBl ocks, usedBl ocks)

sys. exit(0)

11.5.2. Writing Your Own Command Parser

zencommand may be used to execute commands on remote hosts using the SSH protocol. This provides secure and
flexible performance monitoring for Unix-style systems such as Al X, Solaris, OS X (Darwin) and Linux servers.

When theremote host has commandsthat show datain aformat already understood by zencommand (such asNagios
or Cacti plugins), zencommand can process the results and update the ZODB. However, if you are monitoring
serversthat have not had these commandsinstalled, you need to extend zencommand with new parsersto understand
the results.

The basic data flow for zencommand is this:
1. A collector starts zencommand with a collector name, likel ocal host or col | ect or 2.

2. zencommand contacts zenhub and |oads the commands to be run against the devicesfor that configuration. The
command configuration includesdetails such as"use SSH" to run the command on the remote box and credentials
to allow accessto the remote host. The command configuration also includes a specification for the parser to use
on the data that is returned by the command.

90

Adding anew Device Type

3. zencommand runs the command on the remote host, and when the command finishes, a parser is created and the
results are passed to the pr ocessResul t s() method of the parser. The pr ocessResul t s() method is
passed the command configuration fetched from ZenHub, and an object into which parsed resultswill be placed.
The parser is also used to copy any data needed by zencommand during the parsing.

4. zencommand takes the returned Python dictionary from the parser and updates the ZODB.

Consider the Unix df command. It can be used to determine free disk space on a device's file systems. Here's a
typical output format from Linux:

Fi | esystem 1K- bl ocks Used Avail abl e Use% Mount ed on
/ dev/ sda6 57669700 34162636 20577616 63%/

/ dev/ sda7 71133144 28824804 38694924 43% / hone

/ dev/ mchbl k1 3924476 536 3923940 1%/ nedi a/ di sk

The Zenoss data modeler (zenmodeler) will have created components under this device for the file systems. The
mapping of data to the component must use the mount point information. ZenHub must copy mount point informa-
tion from the model data stored in the ZODB into the configuration for this command. To know what data may be
needed for parsing, ZenHub createsthe parser that will be used by zencommand, and callsthedat aFor Par ser ()
method. Remember, this happensin ZenHub, and not zencommand, and it happens before any command is run.

The result of dat aFor Par ser () isa Python dictionary that is stored as dat a in the command configuration
passed to zencommand. When the parser isinvoked in zencommand, it will have access to this information.

Note

 After the parser digeststhe results of running the command, it can produce performance information
and events.

» Theresult object isa simple Python class that contains two lists, one called val ues and the other
caledevent s.

* Theevent s item contains a dictionary of string to value mappings which are turned into events.
zencommand will update the event with the device name, but the rest of the fields (such as com-
ponent, severity, etc) are up to the parser to fill in.

e Theval ues itemisalist of two-element tuples. Thefirst element isthe datapoint, and the second
isavalue, which isaPython number or None. None is always ignored.

» Every command run by zencommand comes with alist of datapoints that correspond to that com-
mand. In our df example, the datapoints may include per cent Used and bl ocksFr ee, along
with any thresholds or parser-specific data, such as mount point.

» Thresholds will be tested by zencommand, and threshold events automatically generated.
e The command's exit code is available at parse time, too.

Parsers will be available to Zenoss when they are placed in the $ZENHOVE/ Product s/ Zen-
RRD/ parsers directory or in a ZenPack's $ZENHOVE/ ZenPacks. pkg. zpi d-version_id-
py2. 4. egg/ Zenpacks/ pkg/ zpi d/ par sers directory. Each parser should be a sub-class of the
Product s. ZenRRD. CommandPar ser . ConmandPar ser class.

A command like df is a very common case. Unix commands will often emit easily-parsed, line-oriented records.
There are some useful subclasses of ConmandPar ser that perform much of the parsing if you provide these
parsers with the right details, such as regular expressions. They are:

91

Adding anew Device Type

Table 11.2. CormandPar ser Helper Parsers

Name Description
conponent Scan- |A regular expression that finds details about a component that can
ner be used to map back to the component known to the Zenoss model .

It must return amatch named conponent using the Python regular
expression syntax ?P<conponent >

scanners An iterable list of regular expressions that will pull out numerical
values from the output of the command.

conponent Scan- |The datato be copied to the data point needed to match the compo-
Val ue nent to the output results.

L et's examine what these values might be for our df command, and its example output.

1. For the conponent Scanner , we want to find the mount-point data and extract it, so that we can match the
Unix file separator (/') to the component file system that hastheid"_". We can use something like:
% (?P<conponent >/ . *) $

2. Forthescanner s, well use atuple of regular expressionsto pull out the numerical values we want:
(r' (7?P<avail abl eBl ocks>\d+) +(?P<percent Used>\d+)%)

3. Fortheconponent ScanVal ue, well specify nount sothat the mount point information is copied to the com-
mand configuration by ZenHub and matched against the conponent value parsed by the conponent Scan-
ner regular expression.

11.6. Create the Template

A performancetemplateis essentially awrapper around reading and manipul ating the datafrom RRD database files.
The template has the same constraints as RRD. An example of a constraint is that if you decide that you wish to
change the collection frequency, or perform some funtion on returned data and store that computed value into the
RRD file, you need to remove the old RRD file and create a new one.

11.6.1. Create the DataSource

To create our new performance template, go to the AIX device class organizer and select MoreAll Templates. This
will take you to a screen which shows you the performance templates. From the menu, select Add Tempate... and
provide with an id of Filesystem (yes, there should already be one there, but from the/ Devi ces/ Ser ver path).

Click on the newly created performance tempate and add in a nice description. Then, click in the Data Sources
menu and select the Add DataSource... itme to create the specia usedBlocks datasource. If your operating system's
MIB provides a usedBlocks (or something named like that) value, then select a type of SNMP. Otherwise, you
need to create a script to take the total size of the filesystem (ie totalBlocks) and subtract the freeBlocks value.
Unfortunately, AIX only provides freeBlocks, so we needed to create a command like we did in the earlier section.

11.6.2. Create a Threshold

Defining athreshold on adatapoint does two things: it can be used to define aline on a graph showing the threshold
value and it can create an event when the threshold is passed and cleared. In this example for filesystems, we could
create a threshold that would aert us when we've gone past 95% utilization on a filesystem.

92

Adding anew Device Type

11.6.3. Create a Graph

From the deviceclass(ie/ Devi ces/ Ser ver / Al X), click on the Templatestab. Click on the template and go to
the Graph Definitions sub-menu. From that sub-menu, choose Add a Graph. Y ou will be prompted for the name of
your new graph. Add the datapoints of interest to create a graph and then click on the 'save' button at the bottom of
the screen. Note that if you're interested in doing something more complicated than just adding datapoints, you'll
need to start browsing the RRDtool site [http://o0ss.oetiker.ch/rrdtool].

11.7. Map Events

If our new platform provides a reporting log that doesn't get passed into Zenoss, then we can write a daemon to
extract these messages and create events from these messages. Asan example, Al X records certain low-level events
such as hardware issues and core dumpsinto acircular log. If we wanted to extract thisinformation using atool like
errpt, then we would need to write a daemon that is capable of recording the last time that we saw an event, log
into the AIX server and grab the errpt information and convert that entry into a Zenoss event.

Once we have events coming into Zenoss, we might become aware of certain peculiarities in our events such a
certain informational message actually indicates that any previous critical failures are over. In order to cut down
on the amount of false alarms, we should create an event mapping that would examine informational messages and
clear out any critical events.

93

http://oss.oetiker.ch/rrdtool
http://oss.oetiker.ch/rrdtool

Chapter 12. Extending the User
Interface

12.1. Overview of the Zenoss Ul Technologies

The Zenoss user interface is built on top of Zope [http://www.zope.org/]. Zope provides a framework on which
progressively more sophisticated functionality can be built. (NB: Asthisintroduction is necessarily brief, it should
not be treated as technically correct in every detail, but as being generally believable.) You can layer the user
interface using multiple technologies, as well as mix and match:

e HyperText Markup Language (HTML) [http://www.w3.0rg/]

« Cascading Style Sheets (CSS) [http://www.w3.0rg/Style/CSY]

e Zope 2, Zope Page Templates (ZPT) and the Template Attribute Language (TAL)

e ZPT and Macro Exapnsion for TAL (METAL) [http://wiki.zope.org/ZPT/METAL Specification10]
e JavaScript / AJAX

¢ Yahoo User Interface (YUI) Library [http://developer.yahoo.com/yui/] and Mochikit [http://mochikit.com/]

12.1.1. HyperText Markup Language (HTML)

HTML is the most basic formatting language available on the Web, and some version of HTML is understood by
every web browser. HTML isin practice a sloppy variant of exXtensible Markup Language (XML) which divides
up a page into elements (ie tags such astitle, head or h3) and content (ie the things that you actually care about).

: Tip
If you are converting an existing web page, verify its sanity by using thefree HTML validation service
[http://validator.w3.org/].

12.1.2. Cascading Style Sheets (CSS)

Web browsers take HTML and convert elements like hl (heading at level 1) and convert them into what each
browser thinks is appropriate for that element. That 'each browser' part means that the way that the page displaysis
different on each browser. Style sheets are away for the web page designer to tell the browser that a certain element
should have a certain style. As an example the hl element could be styled "Arial, 20pt, neon lime green and make
it blink". (Use the power responsibly! :)

The 'cascading' part of CSS means that stylesheets can build on each other. Practically, that means that the order in
which you load CSS information can lead to different results.

12.1.3. Zope 2, ZPT and TAL

Zope?2 [http://www.zope.org/] isessentially aweb server with brains. The brains part are the Python programming
language and the object-oriented database (ZODB), which are used to create web pages in a structured way.

Note

Thereisa Zope 1 and aso a Zope 3. Zope 1 is dead, and a large portion of the Zope community is
migrating to or has migrated from Zope 3. Zope 2 and Zope 3 are quite different, and a considerable

94

http://www.zope.org/
http://www.zope.org/
http://www.w3.org/
http://www.w3.org/
http://www.w3.org/Style/CSS/
http://www.w3.org/Style/CSS/
http://wiki.zope.org/ZPT/METALSpecification10
http://wiki.zope.org/ZPT/METALSpecification10
http://developer.yahoo.com/yui/
http://developer.yahoo.com/yui/
http://mochikit.com/
http://mochikit.com/
http://validator.w3.org/
http://validator.w3.org/
http://www.zope.org/
http://www.zope.org/

Extending the User Interface

amount of effort would be required in order to convert Zenossto Zope 3. Keep it in mind when looking
at Zope material that you need Zope 2.

Zope Page Templates [http://www.zope.org/Documentation/Books/ZopeBook/2_6Edition/ZPT .stx] arein essence
HTML pages which are well-formed (ie not sloppy HTML where you only need to care about creating a starting
element) with extra XML attributes (ie the bits after the el ement name in-between the < and > characters). The extra
XML bits (attributes) are not a part of any HTML standard and are ignored by HTML editors, meaning that ZPT
pages live happily with HTML. These attributes and the programming functionality that they deliver are called the
Template Attribute Language (TAL).

The TAL attributes allow you, the web page creator, to add dynamic content using information from inside the Zope
database (ZODB). From a Zenoss perspective, this allows you to write a query that you can use to build a table,
or show different items depending on what objects or devices exist in a particular state. In other words, TAL isthe
Zope way of accomplishing what you would normally need to doin a CGlI inside of a plain web server like Apache.

It should be noted that inside of TAL it is also possible to use arestricted subset of Python. The restrictions include
not being able to load certain standard libraries, as well as operations like reading and writing to disk. Thisis done
intentionally for security reasons.

12.1.4. ZPT and Macro Exapnsion for TAL (METAL)

TAL isthe programming language of Zope, allowing you to use parts of the database and programmatically work
with data. Thisisgood, but because TAL ishidden away inside of HTML, there's no way to reuse blocks of HTML
and TAL for your site just by using TAL. In order to re-use chunks of HTML and TAL in an easy-to-use fashion.

12.1.5. JavaScript / AJAX

Let's get one thing out of the way: Java and JavaScript only share the ‘Java part, and that's only for marketing rea-
sons. Redlly. They're totally different. Technically, JavaScript is actually called ECMAScript [http://www.ecma-
internati onal .org/publications/standards/Ecma-262.htm], but that's something that's much worse than JavaScript so
everyone cals it JavaScript.

JavaScript can be written directly on the web page inside of a script el ement anywherein an HTML page, or it can
be stored on a server and accessed from a script el ement using the name specificed in the src attribute.

So what's the AJAX part? Originaly, AJAX was shorthand for "Asynchronous JavaScript And XML", a set of
techniques for writing JavaScript. So AJAX is a state of mind rather than a standard. Generally, something is con-
sidered AJAX if it usesthe JavaScript XMLHt t pRequest () function to retrieve datafrom a server and presents
the returned XML document in ainteractive way to the user.

12.1.6. JavaScript libraries: YUl and MochiKit

There are a number of classes to make life programming in JavaScript easier. The ones that are implemented in
Zenoss are;

Y ahoo User Interface (Y UI) YUI is a collection of CSS templates and JavaScript utilities that create a

[http://devel oper.yahoo.com/yui/] cross-browser-compatible toolkit. This is quite an achievement considering
the many issues with how each browser implements (or doesn't) different
features.

MochiKit [http://mochikit.com/] MochiKit provides a set of low-level facilities to perform GUI functions.

95

http://www.zope.org/Documentation/Books/ZopeBook/2_6Edition/ZPT.stx
http://www.zope.org/Documentation/Books/ZopeBook/2_6Edition/ZPT.stx
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://developer.yahoo.com/yui/
http://developer.yahoo.com/yui/
http://mochikit.com/
http://mochikit.com/

Extending the User Interface

12.2. Customizing the Navigation Bar

Note

Thisinformation is presented here because many people want to be able to customize the navigation
bar. However, there are two possible issues with modifying this ZPT page:

 Itispossible that an upgrade or other operation will remove your modifications, so you will need
to perform them again. Saving the ZPT page in a ZenPack will allow you to save your changes, but
you will need to manage this ZenPack yourself.

« Zenoss may in the future completely change this code, and there will be no effort on Zenoss' part
to ensure that your changes are preserved.

Go to your Zenoss server with the following URL:
http://yourzenossserver:8080/zport/portal _sking/zenmodel/manage

12.2.1. Adding a link

Look for afilecalled| ef t Pane. Click on thefileand it will bring you to a screen which will show you the source
for thefile. Click on the Customize button which will copy it to the http://yourzenossserver:8080/zport/portal_sking/
custom folder and open up the file. Make whatever changes you wish and then save the file. The save button is
down at the bottom of the page.

: Tip
Zopelooksfor the customized version of web pagesinthe cust omfolder first, before any other pages
of the same name.

12.2.2. A simple HTML page

If al you need is a simple web page, go to the ZMI and add the page.
http://yourzenossserver:8080/zport/portal_sking/manage

Thiswill bring you into the ZMI starting inthe por t al _ski ns folder. From here, beside the Add button (which
is near the top-right-hand side of the screen), select Page Template and then click on the Add button.

In the dialog screen that comes up, give your new page aname in the Id input box. We'll use hel | oWér | d asthe
name of our fist page. Then click on the Add and Edit button.

This should bring us to a text-editor web page. Delete everything that's in there and add the following:

<ht m >

<head>

<title>Hello World</title>
</ head>

<body>

<hl>Hel | o worl d! </ hl>
<p>My test page</p>

</ body>

</ htnl >

Click on the Save Changes button. Now try out our sample web page.

96

Extending the User Interface

http://yourzenossserver:8080/zport/helloWorld

Thisisjust aplain old web page, with nothing fancy about it. Not really anything much to see here or get excited
about.

But... did you notice that where we saved our file has absolutely no relation to where in the path we can reference

our new page? That'saZope thing. Since our page doesn't use any Zope features, we can put it anywhere. If wewere
to use some of Zope's TAL we might need to be more concerned. The next section will illustrate this behaviour.

12.2.3. A simple TAL and METAL page

Using the same steps from the previous section, create a new Page Template called hel | oWor | d2, which isthe
new and improved (okay, maybe just different :) version of your first page. Add in the following:

<tal : bl ock netal: use-macro="here/tenpl at es/ macr os/ pagel"
>

<tal :block nmetal :fill-sl ot="content Pane"
>

<hl>Hel | o worl d! </ hl>
<p>My test page</p>
</tal:bl ock>

</tal:bl ock>

The/ zport/portal _skins/zennodel /tenpl at es file containsthe METAL definitions used by Zenoss
pages. Oneof thepagel, page2, or page3 macroswill probably be agood start for what you want. Look through
thet enpl at es page to see how it's built. Our example above usesthe pagel macro.

After you've saved the page, you can try it out:
http://yourzenossserver:8080/zport/dmd/helloWorld2

Now you can see your page within all of the Zenoss page elements. There's a navigation bar, the logo, the server
time, search bar and everything else. Now try the following URL
http://yourzenossserver:8080/zport/dmd/Devices/helloWorld2

Now the breadcrumb path showing that you are in the Devi ces part of Zenoss shows up. What happens now if
you go to the base of Zenoss?
http://yourzenossserver:8080/zport/hellowWorld2

Oops! That didn't look good, you've got an error screen. If you look in the View Error Details part, you'll notice
that it's complaining about missing her e/ br eadCr unbs. That's because the br eadCr unbs function isn't on
every object, just some of them.

From this point forward is a matter of examining other pages, seeing where they run from and trying out new
things. The functions that Zenoss provides are written in Python, so you'll need to learn more Python in order to
take advantage of Zope. See the Section 12.4, “Zope 2 Page Templates, TAL and METAL and Zenoss” section
for more details.

12.3. Customizing the Logo

Here is how to change the logo that appearsin Zenoss to a custom logo of your choosing:

97

Extending the User Interface

1. Go to http://yourzenoss:8080/zport/portal_skins/EnterpriseSkin/manage.
a. Clickonzent er pri se. css and then its Customize button

b. Find zent - i ng/ zenoss-1 ogo- ent er pri se. png in the stylesheet and change it to zenoss- | o-
go-enterprise. png

c. Savethe Changes.
2. Go to http:/lyourzenoss.8080/zport/portal _skins/EnterpriseSkin/zent-img/manage
a. Clickonzenoss- | ogo-ent er pri se. png and then its Customize button

b. Upload your replacement image. It should be 318x35 pixelsin size.

12.4. Zope 2 Page Templates, TAL and METAL
and Zenoss

Templates live in layers which, due to Zope magic (aka [Definition: acquisition]), are available anywhere in the
object tree. Asisthe case with most templating languages, Zope templates are context-agnostic, meaning that they
may be used as views on any object. When the name of atemplate is called against a particular context, the skins
tool (/ zpor t/ port al _ski ns inZenoss) will supply the appropriate template object, determined by the priority
of the layers -- given two templates with the same name, that in the higher priority layer will prevail. This alows
Zope productsto override the templates of other productsto provide different functionality. It can also result in total
confusion as to the source of atemplate as this processisin no way transparent.

Templates may be created inthe ZODB, or they may live on thefilesystem; thelatter is preferablefor al but the most
ad hoc situations. Typically, a Zope product that provides templates will register a ski ns directory, which will
include one or morelayers. When the product isinitialized, thelayersit provideswill be added to the skinstool under
whatever skin is specified. Zenoss has asingle skin, so only the order of the layers determines template inheritance.

The Zenoss Ul comprises severa layers, mostly for the purposes of organization. The ZenMbdel and Zen-
Event s products each have afolder (named zennodel andzenevent s, respectively), theZenUt i | s product
has one (inexplicably located at ZenUt i | s/ j s), and the ZenW dget s product hastwo (zent abl emanager
and zenui). zennodel and zenevent s generally contain templates applicable to classes provided by their
respective products. The zenui folder contains most of the dialog templates, nearly al of the CSS, JavaScript
(including the Y Ul library), image files and other templates that don't necessarily belong to a single product. The
zent abl emanager layer provides resources related to ZenTabl eManager . The ZenUti | s/ | s layer pro-
vides the MochiKit library and a few JavaScript utilities. Both the zent abl emanager folder and the ZenU-
til s/js layer arelegacies and shouldn't be modified. All new templates should go in one of the other three, and
al static browser resources should goin zenui .

Table12.1. Zenosspor t al _ski ns directoriesand their Descriptions

Directory Notes

zennodel Contains the majority of the templates.

zenevent s Event-specific templates.

zent abl emanager Deprecated.

zenui Most of the dialog templates, nearly al of the CSS, JavaScript (including the Y UI
library), image files and other templates that don't necessarily belong to asingle prod-
uct.

98

Extending the User Interface

Directory Notes

ZenWtils/js Deprecated. Thislayer is actually not under por t al _ski ns. The MochiKit library
and afew JavaScript utilities

Zope pagetemplatesareacombination of METAL, TAL and TALES, each of which is summarized more succinctly
than one familiar with them might expect here [http://www.owlfish.com/software/simpleTAL/tal-guide.html].

In short, METAL allowstemplates to define macros (which are essentially subtemplates that may be called by other
templates) and slots (which may be filled by other templates). For example, one wishing to have atitle on all pages
might create the following base.pt:

<html netal : defi ne- macr o="base_t enpl at e"

>
<head>

<title>Zenoss: <tal:block netal:define-slot="subtitle"
>

Default Subtitle</tal:block>

</title>
</ head>
<body>

<tal : bl ock netal : define-sl ot="content"
>Def ault Content</tal: bl ock>
</ body>
</ htm >

Then on atemplate that might be used to view an object, one could:

<tal : bl ock netal : use-nmacro="her e/ base/ macr os/ base_tenpl ate
>

<tal :block netal :fill-slot="subtitle"
>My Subtitle</tal: bl ock>
<tal :block netal :fill-slot="content"

>My Content</tal: bl ock>
</tal: bl ock>

Thisalowsfor relatively complex abstraction.

Zenoss has a base template providing several basic page types that include global CSS and JavaScript resources,
the basic page structure, and optionally the tab pane. This template is located at ZenMbdel / ski ns/ zennmod-
el / t enpl at es. pt . When creating a new template, find another like it and copy the t enpl at es. pt macro
reference used there.

TAL comprises a set of attributes for page elements allowing for iteration loops, dynamic attribute mutation, and
other dynamic content. The above resource will summarize these more fully.

TALES allows access to the template's namespace. Some useful properties available on all templates:

Commonly-used Zope Propertiesin ZPT

here the context object

99

http://www.owlfish.com/software/simpleTAL/tal-guide.html
http://www.owlfish.com/software/simpleTAL/tal-guide.html

Extending the User Interface

container the folder containing the context object

template the templ ate object

root the portal object (zport)

user the current authenticated user object

request the current HttpRequest object

portal _url the base URL of the portal (eghtt p: // | ocal host : 8080/ zport)

TALES accepts paths (e.g. her e/ i d) which it resolves into object properties. It will attempt to resolve the final
path element as a key index, a key name, an attribute, or a callable. For example, if mydict is a dictionary on the
context, here/mydict/mykey will return mydict[mykey]. If get Sorret hi ng() isamethod on the context, her e/
get Somet hi ng will return the result of that method. However, if pyt hon: her e. get Sonet hi ng() returns
adictionary, one cannot do her e/ get Sorret hi ng/ nykey.

The path resolution is fairly limited -- for example, one cannot pass arguments to methods. In case
something more complex is needed, one can use python: followed by arbitrary Python code. For ex-
ample, pyt hon: here. nydi ct [nykey] will return the same thing as her e/ nydi ct/ mykey, while
pyt hon: her e. get Sonet hi ng(tenpl ate. i d) is not possible using a path. The previous paragraph's
impossible her e/ get Sorret hi ng/ nykey can be resolved this way: pyt hon: her e. get Sonet hi ng()
[nykey] .

Finally, if one wishesto generate a string, one may prepend the argument with string:. Everything after that will be
treated as a string, unless contained within ${}, in which case it will be evaluated as a TALES path. For example:

<span tal:content='string: The nane of this
tenplate is ${tenplate/id}’
/>

12.4.1. Tips

e ZPT ignores everything inside a script element, although it does not ignore TAL defined on the element itself.
This can make dynamic JavaScript problematic. One way around this, however, islikethis;

<script tal:content="string:
var tenplateld = '${tenplate/id}";

>
</script>

Thisisobviously unwieldy, especially inthe case of several levelsof nested quotes, but it at |east all ows JavaScript
access to the template's namespace.

» Slots on macros are not inherited unless specifically defined. For example, if one has atemplate base. pt :

<t al : bl ock netal : defi ne- racr o="base"

My Base Tenpl ate
<span netal : defi ne-sl ot ="cont ent"
>Def aul t Cont ent </ span>
</tal : bl ock>

100

Extending the User Interface

from which one wishes to create a more specific base template, plaintext.pt:

<tal : bl ock netal : define-nmacro="pl ai nt ext"

<styl e>body{font-fam |y: Couri er, nonospace} </ styl e>
<t al : bl ock netal :use-macro="her e/ base/ macr os/ base"
/>
</tal: bl ock>

templates calling here/plaintext/macros/plaintext will not be able to fill here/base/macros/base's 'content’ slot.
One must chain the slots, defining a plaintext content slot inside the fill of base's content slot:

<tal : bl ock netal: define-nmacro="pl ai nt ext"

>

<styl e>body{font-fam |y: Couri er, nonospace} </ styl e>

<t al : bl ock netal :use-macro="her e/ base/ macr os/ base"
>

<tal :block netal :fill-slot="content"
>
<tal : bl ock netal :define-sl ot="content"

>

</tal: bl ock>
</tal: bl ock>

</tal: bl ock>
</tal: bl ock>

« Thanksto Zope's magical acquisition, templates can be treated as methods on objects. If an object may be viewed
at/ zport/ dnd/ obj ect/ nyt enpl at e, thencallingobj ect . myt enpl at e() inaPythonfilewill return
the HTML that template generates. In this case, however, there's no request object, so templates that ask for one
will throw an error. Thisis both ablessing and a curse; many man-hours have been wasted searching for methods
that do not exist.

e Generaly, unless a specific tag is required, use <tal:block> for purely logical structures, as it will produce no
side effects (whereas using <div> could easily do so).

12.5. Zope 3 Views Explained

In an effort to decouple the model layer from the Ul layer, we've taken to implementing Zope 3 views in Zenoss.
So far, we've just done the JSON-providing methods that feed the portlets, event console, etc., but ideally we would
like to move the entire application to this style.

Let's say you're adding a new screen to Zenoss. This screen shows a list of components under a Device and their
event pills (the actual worth of this screen is both nonexistent and irrelevant). Here's how you'd do it, the old way
and the new way.

12.5.1. The Zope 2 Way

1. Add a method to the relevant class that assembles and delivers your data. In this case, you'd probably add
a method to the Pr oduct s. ZenModel . Devi ce. Devi ce class that walks components under self and

101

Extending the User Interface

generatesan event pill for each. Well call it get Conponent Li st . If your method should logically be broken
up into several methods, for organization or otherwise, you'll add those to the class as well, or find away to
use nested functions.

2. Create a page template that calls the method and renders the data. Your template would be, say, Zen-
Model / ski ns/ zennodel / vi ewDevi ceConponent s. pt . Surrounding the content block, you'd have
something like:

<tal : bl ock tal:define="conponentdata here/get ConponentLi st"
>...</tal: bl ock>

3. Link to your template. Either by adding a tab to the Device class, or by dropping a link in another template,
you're going to point to a URL that describes a Device instance and your template:

<a tal:attributes="href string: ${here/ absol ute url path}/vi enDevi ceConponent s"
>

Conponent List

And you're done! Now, here are the problems with this approach:

« You've added a method used only for the Ul layer to a class in the model layer, which leads to bloated classes
and aterribletimereading di r () .

* Another developer will have a difficult time figuring out why the method is there, unless they grep templates
for acall.

« There's nothing identifying the template as being applicable to a particular class or group of classes.

« If your method is applicable to another class, or if you want your template to apply to different kinds of objects,
you either need to define the same method on the other classes, or create a mixin and modify your classes to
inherit from it. In the first case, you've got to (remember to) update methods in two places if changes are ever
desired. In the second case, you add to the already terrible Zope class inheritance tree (plus, where do you draw
the line? Should we really have forty-seven mixins for aclassif only the Ul demandsit?).

 Calling your template on another object will get you atraceback. Not a 404, a traceback.

12.5.2. The Zope 3 Way

1. CreateaBr owser Vi ewclassto contain logic and load the template. Instead of inflating model classes with
vi ewmethods, make yourself aBr owser Vi ew, which will adapt the context to add logic you need to render
the template. That is, when a view is the result of traversal, the view class will be instantiated, passing the
context into the constructor (it will be available on the view instance as self.context; the request object will
besel f.request).

You'll put something like thisin ZenModel / br owser / Devi ceVi ews. py (br owser isaconvention):

from Products. Fi ve. browser inport BrowserVi ew
from Products. Fi ve. pagetenpl atefil e i nport ViewPageTenpl ateFil e

cl ass Conponent Li st Vi ew(Br owser Vi ew) :

102

Extending the User Interface

_call__ = ViewPageTenpl at eFi | e()

def get Conponent Li st (sel f):
do things with sel f.context and self.request

Br owser Vi ews arecalled whenthey'retheresult of atraversal, sothat'syour hook. Vi ewPageTenpl at e-
Fi | e() isacalable, sothe assignment isfine. If, instead of rendering a template, you just wanted to return
some text (for example, JISON), you could do:

from Products. Fi ve. browser inport BrowserVi ew
from Products. Fi ve. pagetenpl atefile inport ViewPageTenpl ateFile

cl ass Conmponent Li st Vi ew(Browser Vi ew) :
def _ _call__(self):

do things with sel f.context and sel f.request
return results

Create a page template that calls the method and renders the data. This is the same as the Zope 2 way, except
for one key difference: vi ewisnow aglobal, and that's how you can access your custom method (hereis still
available and still refers to the context, just as before).

<tal : bl ock tal:define="conponentdata vi ew get Conponent Li st"

</tal: bl ock>

Another difference isthat you don't render the template by traversing to a template against a context; instead,
youtraversetoaBr owser Vi ew, which knowswhich template to use. Thisisgreat, especially when you want
to use the same template for radically different contexts; aslong as you have two Br owser Vi ews that know
how to provide the methods the template wants, you're good.

Wire everything up with ZCML. Thisis where most people start scoffing. It's okay. It actually makes sense.

So you have aview, but you don't have away to call that view; thereisn't aURL that will resolveto aninstance
of your Br owser Vi ew. To fix that, you register the view.

When Zope starts up, it looks inside every Pr oduct for afile called confi gure. zcm . In Zenoss, most
Products don't have one (though some do now). Y ou can do a bunch of stuff with these, but we're going to
ignore everything except registration of views.

You would, in this case, modify Pr oduct s/ ZenMbdel / br owser/ confi gure. zcm (because De-
Vi ce isin Zenhbdel ; it doesn't actually matter where you register the view, but you should try to keep
Pr oduct s pluggable), adding the registration of your view:

<br owser : page
f or="Product s. ZenModel . Devi ce. Devi ce"
nane="conponent | i st"
cl ass=". Devi ceVi ews. Conponent Li st Vi ew'
per mi ssi on="zope2. Vi ew'

103

Extending the User Interface

/>

Noticethat your view isdefined asbeing applicable only to instances of theDevi ce class. Wereyouto attempt
tocal conponent | i st againstan| pl nt er f ace instance, for example, you'd get a404 -- not so if com
ponent | i st were ameretemplate. Also notice the relative import in the class attribute; . Devi ceVi ews
will look for the Devi ceVi ews modulein the current package, that is, ZenModel . br owser .

So, the whole request workflow progresses thusly:
1. Someoneasksfor/ zport/ dnd/ Devi ces/ devi ces/ nmydevi ce/ conponent | i st
2. Zoperesolvesmydevi ce; that'sthe context in which it'll attempt to resolve conponent | i st

3. Zope attemptsto resolve conponent | i st asan attribute of mydevi ce, then amethod of nydevi ce, then
adictionary key of mydevi ce, then startslooking up registered views.

4. Wefind aview inthe ZCML. Does it match?
nane="conponent | i st": Check.
Cont ext cl ass="Products. ZenModel . Devi ce. Devi ce": Check.
We want the view Devi ceVi ews. Conponent Li st Vi ew.

5. Zope makes sure the user has zope2. Vi ewin this context. We'll assume they do; if not, kicked out to login
screen.

6. Zopeinstantiates Conponent Li st Vi ewm nydevi ce), then callsit, which renders the template file.

7. Thetemplate is rendered, using vi ewand her e, and returned as the response.

So much better! No bloated classes; no ridiculous class inheritance; great code organization. Define a method in
one place, then adapt objectsto provideit, instead of modifying many classes with the same method. If you want to
see the screens available for a Device, just go look in the ZCML -- no need to remember which page templates are
applicable to which objects. Also, you can adapt many different objects for the same template with different views.
There are a few other things that could be mentioned, but they all require a discussion of interfaces, which will

deferred to alater section. Briefly, the Zope Component Architecture, and its aspect-oriented approach, saves alot
of hackery. Also it's the rules now.

12.6. Other Customaziations
12.6.1. Adding Tabs

This section will show how to add a new tab in Zenoss or modify existing one by means of ZenPack or zendmd.

A tabin Zenossis an object property that resides within the following structure:

factory type information = (

104

Extending the User Interface

] : (perm ssions. view,)

For example, tabsinthe Locat i ons screen are created from the Python class definition

Locat i on(Devi ceOrgani zer, ZenPackabl e)

which residesin the module Locat i on. py inthe $ZENPATH Pr oduct s/ ZenMbdel directory.

Zenoss works with class instances which are created runtime by Zope. These objects are packed within database
which is called ZODB. If you want to modify some object properties you should connect to ZODB and get the
object first, modify it and save your changes.

The following example shows the procedure for adding a new tab to Locations screen. This code is executed from
__init__. py of an example ZenPack.

i mport 4 obal s
i mport transaction
i mport os.path

skinsDir = os.path.join(os.path.dirnane(_ file_),)
from Products. CMFCore. DirectoryView i nport registerDirectory
if os.path.isdir(skinsDir):

registerDirectory(skinsDir, globals())

from AccessControl inport Perm ssions as perm Ssions
from Products. ZenModel . ZenPack i nport ZenPackBase
fromProducts. ZenUils.Uils inmport zenPath

from Product s. ZenModel . ZenossSecurity inmport *

from Products. ZenUtils. ZenScri pt Base i nport ZenScri pt Base

cl ass ZenPack(ZenPackBase) :
ol MapTab = {

] : (perm ssions. view,)

}

def _registerO.MapTab(sel f, app):
Register new tab in | ocations

dmdl oc = sel f. get DrdRoot ()
finfo = dmdl oc. factory type_information
actions = list(finfo[O]][1)
for i in range(len(actions)):
i f(self.ol MapTab]] in actions[i].values()):
return
actions. append(sel f. ol MapTab)
finfo[O] [] = tuple(actions)

105

Extending the User Interface

dndl oc. factory_type_ information = finfo
transacti on.conmt ()

def _unregi sterO.MapTab(sel f, app):

dnmdl oc = sel f. get DrdRoot ()
finfo = dmdl oc. factory type_information
actions = list(finfo[O]][1)
for i in range(len(actions)):
i f(self.ol MapTab]] in actions[i].values()):
actions. renove(actions[i])
finfo[O] [] = tuple(actions)

dndl oc. factory_type information = finfo
transacti on.conmt ()

def install(self, app):
ZenPackBase. i nstal | (sel f, app)
sel f. _register OLMapTab(app)

def upgrade(sel f, app):
ZenPackBase. upgr ade(sel f, app)
sel f. _register OLMapTab(app)

def renove(self, app, junk):
ZenPackBase. r enove(sel f, app, junk)
zpm = app. zport. ZenPort| et Manager
sel f. _unregi st er OLMapTab(app)

Theclassmethod _r egi st er O_LMapTab(sel f, app) registersthe modified property of object Locat i ons
, Whichresidesin/ zpor t/ dnd/ Locat i ons inthe ZODB.

The function get DnmdRoot (' Locat i ons') returns the class instance of class Locat i on which isin Zope-
DB. Next we get the dictionary of its factory type information property. Modify this, so that a new dictionary
defining the tab is appended to it. The tab structure is defined in olMapTab dictionary. The id field is the identi-
fication name of this tab. You can put any string here. The name field is the string that is shown on your new
tab, action points to the template that is executed when you click on the tab and should be accessible in Zope.
The permissions field is default permissions for zenoss user to execute the template this tab points to. This line
dnmdl oc. factory _type_ information = finfoisveryimportant because Zope won't detect any change
to the persistent object andt r ansact i on. conmi t () won't save any modifications to the object. The rule here
isthat conm t () savesonly modifications of object that executesitsset at t r () method.

Of course every step shown above can be done manually within the zendmd prompt. The following session shows
adding new tabto Locat i ons inzendmd:

zenoss@lb- server: / hone/ geoni ck$ zendnd

Wl conme to zenoss dnd command shel |!

use zhelp() to |ist commands

>>> from AccessControl inport Perm ssions as perm ssions

>>> | ocobj = dnd. get DrdRoot ()

>>> | ocobj

<Location at /zport/dmd/Locati ons>

>>> finfo = | ocobj.factory type_ information

>>> finfo

({ : ,
G : ,

106

Extending the User Interface

£) (’)}1

{ , :

: (D}
{ , : :
: ; (D
{ :] :)
: : - (D)
>>> actions = list(finfo[O]][1)

>>> ol MapTab = { ;) :)
. (permi ssions.view,)}

>>> for i in range(len(actions)):
i f (ol MapTab]] in actions[i].values()):
br eak

>>> acti ons. append(ol MapTab)

>>> finfo[O] [] = tuple(actions)
>>> | ocobj .factory type information = finfo
>>> | ocobj . factory_type_information

({ : e 2 A
{ : ,

: , : , (Y
{ ,

i) 1 (7)}7

{ ,

: , : . (Y
{ : ,

: , : , s Y
{ : , C(5)5

: e : bl

>>>commi t ()

After comi t () the new tab should be in Locations. Don't forget to provide the template file.

Submitted by Nikolai Georgiev

12.6.2. Adding a Dialog

The dialog container exists on every page in Zenoss; it's a DIV element with the id attribute of dialog. Loading a
dialog performstwo actions:

1. Fetching (viaan XHR) HTML to display inside the dialog container

2. Showing the dial og container. These can be accomplished by callingtheshow() method on the dialog container,
passing the event and an URL that will return the contents:

$('dialog').shomthis.event, 'dialog MyD alog')

The dialog can then be hidden with, predictably, $('dialog’).hide(). Since dialogs are aimost always loaded via
clicking on a menu item, menu items whose isdial og attribute is Tr ue will generate the JavaScript to show the
dialog automatically. See the Section 12.6.3, “Adding a New Menu or Menu Item” section of this guide for
more information.'

Asfor the dialog box contents themselves, any valid HTML will do, but certain conventions exist. Dialogs should
have a header:

107

Extending the User Interface

<h2>Per f or m Acti on</ h2>

Dialogs should also provide a cancel button:

<i nput id="dial og_cancel" type="button" val ue="Cancel "
onclick="$("'dialog').hide()"
/>

The main wrinkle with dialogs occurs in the area of form submission. Some dialogs are self-contained, and can
carry their own form that is created and submitted just like any other form. Other dialogs, however, submit forms
that exist elsewhere on the page -- for example, dialogs that perform actions against multiple rows checked in a
table. These dialogs may use the submit_form method on the dialog container, which submits the form surrounding
the menu item that caused the dialog to be loaded to the url passed in to the method. Thus for a table surrounded
by a<form> and containing several checkboxes, dialogs loaded by menu items in the table's menu may submit the
table'sform to a url by providing a button:

<i nput type="submt" nanme="doAction: net hod" value="Do It"
tal:attributes="onclick string:

$(' dialog').submt_form(' ${here/absolute_ url_path}')"
/>

See the section on Section 12.1.3, “Zope 2, ZPT and TAL” for more information about tal:attributes and the
${ here/ absol ute_url _pat h} syntax.

Finally, dialogsthat create objects should validate the desired id before submitting. A method on the dial og contai ner
called subm t _f orm and_check(), which accepts the same parameters as submi t _f or m() (URL), will
do this. It requires:

1. A text box with theid 'new_id', the value of which will be checked

2. A hidden input field with the id checkValidldPath, with a value containing the path in which the id should be
valid (for example, creating adeviceunder / zpor t / dnd/ Devi ces will require checking that no other devices
in/zport/dnd/ Devi ces has the same id, so the value of checkValidldPath should be "/ zport / dmd/
Devi ces". her e/ get Pri maryUr | Pat h workswell for most cases).

3. An element with the id errmsg into which the error message from the validation method, if any, will be put

For example, a generic object creation dialog:

<h2>Creat e bj ect </ h2>
<span id="errmsg" style="color:red;"

>
</ span>

| D.
<i nput id="new_id" name="id"
/>
<i nput type="hi dden" id="checkVali dl dPath"
tal:attributes="val ue here/getPrimaryUrl Pat h"
/>

<input tal:attributes="onclick string:
return $$('dialog').subnmt _formand check(' ${here/getPrinmaryUrl Pat h}'

108

Extending the User Interface

i d="di al og_subm t"
type="subm t"
val ue="Cr eat e"
nane="cr eat e(bj ect : met hod"
/>
<i nput id="dial og_cancel " type="button" val ue="Cancel "
onclick="$("'dialog").hide()"

/>

These exampleswill cover most cases; generally, agood ideaisto look at other dialog templatesthat contain similar
elements or perform similar actions.

12.6.3. Adding a New Menu or Menu Item

Classes that inherit from the ZenMenuable mixin have a method called getMenus, which traverses up the object's
path aggregating ZenMenul t emobjects owned by its ancestors. These objects comprise an action to be executed,
a human-readabl e description, and various attributes restricting the objects to which the item is applicable.

For example, imagine basic menus exist on dnd and dnd. Devi ces:

dnd
Mor e (menu)
See nore. .. (menu item
Do nore. ..
Manage
Manage object. ..
dnd. Devi ces
Mor e
See nore. ..
Do |ess...

A cal todnd. Devi ces. get Menus() will return:

Mor e
See nore. .. (from dnd. Devi ces)
Do nore. .. (from dnd)
Do |l ess... (from dnd. Devi ces)
Manage
Manage object... (from dnd)

Asyou can see, menu itemsinherit their ancestors unlessthey definetheir own, which override when their ancestors
conflict.

In theory, al ZenMenuabl es (whichincludes nearly all objectsin Zenoss) may own menu items; in practice, all
but a few menus live on /zport/dmd.

Adding a new menu item is fairly straightforward. Because menu items are persistent objects, modifications must
happen in amigrate script (or beincluded as XML in a ZenPack). The method ZenMenuabl e. bui | dMenus()

accepts a dictionary of menus, each of which is alist of dictionaries representing the attributes of menu items.
Instructions on writing migrate scripts can be found el sewhere in this guide.

1. Find the id of the menu to which you wish to add items. The simplest way to do thisis to locate the menu_ids
definition on the page template that renders the menu. Tables will have a single menu id. The page menu may

109

Extending the User Interface

have several, which will be rendered as submenus. The TopLevel menu is a special case; it appears in the page
menu, but itsitems are rendered as siblings of the other menus.

2. If activating the menu item will require adialog, create one. Seethe Section 12.6.2, “Adding aDialog” section
of this guide for more info.

3. Determine the objects for which the menu item should be visible. Menu items will use several criteriafor deter-
mining whether to apply:
» alowed classes: A list of strings of class names for which the menu item should be rendered.

» banned_classes: A list of strings of class names for which the menu item should not be rendered.

» banned_ids: A list of strings of object ids for which the menu item should not be rendered.

isglobal: Whether the menu item should be inherited by children of the menu item's owner.

» permissions. The permissions the current user must have for the context in order for the item to render.

4. Figureout the action the menuitemwill perform. If it'sadialog, then the action isthe name of the dial og templ ate,
and the isdialog attribute of the menu item should be Tr ue. If it's aregular link, the action should be the URL
or "javascript:" you would normally have as the href attribute of an anchor.

5. Now build the dictionary. It should look like this, where Menuld is the menu from step 1.

menus = { 0
{ ' :
True,
D E
D E
D E
50. 0,
(ZenossSecurity. ZEN COVWON,)
Ji -
1}

‘ordering' is afloat determining the item's relative position in the menu. Greater numbers mean the item will be
placed higher. Also notice that it's almost certainly pointless to set both allowed classes and banned_classes; it
was done here only as an example. The permission ZEN_COVMON is a standard Zenoss permission -- see the
Section 8.5, “Zenoss Permissions” section of this guide for more information.

If you have more menu items in the same menu, you can add them to that list; if you have more menus, you can
create more keys in the menus dictionary.

6. Finally, usethedmnd. bui | dMenus() method to create the Menul t ens:

dnd. bui | dMenus(nenus)

110

Extending the User Interface

12.6.4. Creating a Table Using ZenTableManager

ZenTableManager is a Zope product that helps manage and display large sets of tabular data. It alows for column
sorting, breaking down the set into pages, and filtering of elementsin the table.

Here's a sample of atable listing all devices under the current object along with their IPs. First we set up the form
that will deal with our navigation form elements:

<form nmet hod="post" tal:attributes="action here/absol ute url _ path"
name="[MYfFORM "
>
<script type="text/javascript"
src="/zport/portal skins/zennodel /subnitViaEnter.js"
>
</script>

Next, we set up our table, defining the objects we want to list (in this case, here/devices/getSubDevicesGen). We
then pass those objects, along with a unique tableName, to ZenTableManager, which will return a batch of those
objects of the right size (for paging purposes):

<t abl e cl ass="zent abl e"

tal : defi ne="obj ects here/devices/get SubDevi cesCen;

tabl eNane string: myDevi ceTabl e;

bat ch pyt hon: her e. ZenTabl eManager . get Bat ch(t abl eNane, objects)"
tal : condition="python: batch or

her e. ZenTabl eManager . get Tabl eSt at e(t abl eNane, 'filter')"

>

Next, atable header and a couple of hidden fields:

<tr>

<th class="tabletitle" col span="2"

> <! --Col span will of course change with the nunber of fields you show ->
My Devi ces

</th>

</[tr>

<i nput type='hidden' nane='tabl eNane' tal:attributes='val ue tabl eNane'
/>

<i nput type='hidden' nane='zenScreenNanme' tal:attributes="value tenplate/id
/>

Now we add the rows that describe our devices. First we need to set up the column headers so that they'll be
clickablefor sorting. For that, weuseZenTabl eManager . get Tabl eHeader (t abl eNane, fi el dNane,
fieldTitle, sortRule="cnp").

<t body>

111

Extending the User Interface

<tr>

<I--We want to sort by names using case-insensitive conparison-->

<th tal:replace="structure python: here.ZenTabl eManager . get Tabl eHeader (
tabl eNanme, 'primarySortKey', 'Nane', 'nocase')"

>nane</t h>

<I--Default sortRule is fine for IP sorting-->

<th tal:replace="structure python: here.ZenTabl eManager . get Tabl eHeader (
tabl eNane, 'getDevicelp', "IP)"

>i p</th>

</[tr>

Now the data themselves. In order to have our rows aternate colors, well use the useful TALES attribute odd,
which is Truefor every otheriteminat al : r epeat loop.

<tal : bl ock tal:repeat="device batch"

>

<tr tal:define="odd repeat/device/ odd"
tal:attributes="class python:test(odd, 'odd', 'even')"
>

<td cl ass="t abl eval ues"

>

<a cl ass="t abl eval ues" href="href"
tal:attributes="href devicel/getDeviceUrl"
tal : content ="device/id"

>devi ce

</ a>

</td>

<td cl ass="t abl eval ues"

tal : cont ent ="devi ce/ get Devi cel p"
>jp</td>

</[tr>

</tal:bl ock>

</t body>

Finally, let's add the navigation tools we need and close off our tags.

<tr>

<td col span="2" cl ass="t abl eheader"

>

<span net al : use- macr o="her e/ zenTabl eNavi gati on/ macr os/ navbodypagedevi ce"
/>

</td>

</[tr>

</t abl e>
</forne

12.6.5. Creating an Editable Table

But what if you want to be able to edit devices from this table? The process is simple. First, you add a checkbox
to the first column of your devicelist:

112

Extending the User Interface

<td class="tabl eval ues" align="left"

>

<I--Now add your checkbox, defining the Iist of devices as "devi ceNanes"-->
<input tal:condition="here/editabl eDevicelList"

t ype="checkbox" nane="devi ceNanes:|ist"

tal :attributes="val ue devi ce/ get Rel ati onshi pManager | d"

/>

<I--Then the first colum contents as above-->

<a...>devi ce</ a>

</td>

Now that we can choose devices from the list, we need the controls to edit them. In this case, welll use a macro
defining controls that allow a device to be moved to a different device class. Just add the macro call to the end
of your table:

</[tr>
<l--Add controls here-->
<tal : bl ock tal:condition="here/editabl eDevi celLi st"
tal : defi ne="nunCol utms string: 5"
> <I--This macro includes the <tr> tag, so we need to pass it col span-->
<span met al : use- macr o="her e/ devi celLi st Macr o/ macr os/ devi ceCont rol "
/>
</tal: bl ock>

</t abl e>
</fornp

12.6.6. How to Save Properties via an Edit Screen

Creating a new Edit Form.
Add form input fields

Add aboolean type:

<sel ect class="tabl eval ues"
tal :attribut es="nane MyBool eanProperty: bool ean"
>
<option tal:repeat="bool Prop python: (True, Fal se)" tal:content="hbool Prop
tal:attributes="val ue bool Prop;
sel ect ed pyt hon: bool Prop==her e. get MyBool eanPr operty()"

/>
</ sel ect >

This block of code creates a select dropdown with two options: Tr ue and Fal se. The select dropdown is pre-
populated with the value returned by get MyBool eanPr opert y() . The value of this form field will be stored
in the attribute MyBooleanProperty.

113

Extending the User Interface

Add atext box type:

<textarea cl ass="t abl eval ues" rows='5" col s="33"
tal:attributes="nane MyTextProperty:text"

tal : content ="her e/ get MyText Property"

>

</t ext ar ea>

This block of code creates a text box.The text box is prepopulated with the string value returned by get My-
Text BoxPr opert y() . Thevaue of thisform field will be stored in the attribute My TextBoxProperty.

Add atext type:

<i nput class="tabl eval ues" type="text" size="40"
tal:attributes="val ue here/ get MyStri ngProperty; nane M/StringProperty"
/>

This block of code creates atext field. The text field is prepopulated with the string value returned by get My S-
tringProperty(). Thevaue of thisform field will be stored in the attribute MyStringProperty.

Add a select dropdown type:

<sel ect class="tabl eval ues"
tal:attributes="nane MySel ect Property"
>
<option tal:repeat="propOpti on here/get M/Sel ect PropertyOptions"
tal : content="propOption"
tal:attributes="val ue propOption;
sel ect ed python: propOpti on==get MySel ect Property()"

/>

</ sel ect >

This block of code creates a select dropdown where the option value and displayed option string are the same. A
list of option values are returned by get MySel ect Pr opert yOpt i ons. The select dropdown is pre-popul ated
by the value in getMySelectProperty. The value of thisform field will be stored in the attribute MySelectProperty.

<sel ect class="tabl eval ues”

tal :attributes="name MySel ect Property:int"

>

<option tal:repeat="propOptionTupl e here/ get M/Sel ect PropertyOpti onTupl es”
tal : cont ent =" pyt hon: propOpti onTupl e[0] "

tal :attributes="val ue propOpti onTupl e[1] ;

114

Extending the User Interface

sel ect ed python: propOpti onTupl e[1] ==get MySel ect Property()"
/>
</ sel ect >

This block of code creates a select dropdown where the option value is an integer and displayed option is a string.
A list of tuples containing the option values and displayed option string are returned by get MySel ect Pr oper -
t yOpti onTupl es. The select dropdown is pre-popul ated by the value in getMySelectProperty. The value of this
form field will be stored in the attribute MySel ectProperty.

Add the form action

<formid=" MyFormi method="post" tal:attributes="action here/absolute url_ path"
>

Theform action should be set to afunction (i.e. her e/ absol ut e_ur | _pat h) that returnsthe path to the object
being edited.

<i nput class="tabl eheader" type="submt"
nane="saveProperties: net hod" val ue=" Save "
/>

This submit button name will be in the format savePr oper ti es: net hod. savePr operti es isthe method
name that will be executed when the submit button is clicked.

Addthesave() method

def saveProperties(self, REQUEST=None):
for name, value in REQUEST.formitens():
if getattr(self, name, None) != val ue:
sel f.set Property(nane, val ue)

return self.call ZenScr een(REQUEST)

CreateasavePr opert y() method in the effective object.

12.7. Creating a Dashboard Portlet

There arejust afew distinct steps to creating a custom dashboard portlet:
 Create the ZenPack as a container to hold everything

» Write the Python code that will define the back-end data methods

115

Extending the User Interface

» Write the JavaScript code defining the portlet
¢ Testing the new ZenPack

This tutorial will walk through examples of each of these in the creation of a simple portlet that provides a table
listing links to reports under agiven Report C ass.

12.7.1. Create a ZenPack

First, set up the directory structure by going into Zenoss, and from the navigation bar, go to the Settings area. From
here, click on the ZenPacks tab and from the page menu select the Create a ZenPack... menu item.

For the sake of our example, welll use the name ZenPacks. myexanpl e. portl et as the name for our
new ZenPack. When we take a look at the ZenPack from the filesystem level in the $ZENHOVE/ Zen-
Packs/ ZenPacks. nyexanpl e. portl et/ Zenpacks/ myexanpl e/ port| et ,directory, weshouldsee
the following

Report Li st Port| et Pack/

_init__.py
ReportListPortlet.js

Next, add the following Python codeto __init__.py:

i nport d obal s
i mport os.path

skinsDir= os.path.join(os.path.dirnanme(__file),)
from Products. CMFCore. DirectoryView i nport registerDirectory
if os.path.isdir(skinsDir):

regi sterDirectory(, global s())

This satisfies the ZenPack regquirements for the ski ns directory.

Theski ns directory isrequired, although you won't be using it in this portlet. Normally it contains Zope templates
specific to your ZenPack.

The__init__ . pyisarequirement for Python modules (of which Zope products, and by extension ZenPacks, are
atype). When the ZenPack is loaded on Zenoss startup, codein __i nit __. py will be run. Thisis where you'll
place the back-end functions so that your portlet gets attached to the Zenoss portal object and made available to
the portlet front-end.

Finally, you'll need to make a ZenPack object so that you can hook into installation, upgrade and removal methods,
aswell asto register and unregister your portlet. Add the following codeinto __init . py:

from Product s. ZenModel . ZenPack i nport ZenPackBase

cl ass ZenPack(ZenPackBase) :

116

Extending the User Interface

def install(self, app):

ZenPackBase. i nstal | (sel f, app)

def upgrade(sel f, app):

ZenPackBase. upgr ade(sel f, app)

def renove(self, app, |eaveObjects=False):

NB: As of Zenoss 2.2, this function now takes three argunents.
ZenPackBase. renove(sel f, app, |eavebjects)

Asyou can see, nothing special has been done yet; that will come later.

12.7.2. Write the Python back-end code

Sincethe Report Li st Port | et will present itsinformation as tabular data, you'll be using the JavaScript Y Ul
library's Tabl eDat asour ce on the front-end (more about that in the next section). That datasource accepts data
as a JSON object with the following structure:

{

}

Thus you need a method in Zenoss to structure your list of reports accordingly and serialize it as JSON. Y ou then
need to place that method in Zenoss so that it's accessible to the browser viaan ordinary HT TP request. This method
should accept apath to aRepor t G ass whose reports are to be listed.

Here's the final method (we'll go through it piece by piece in amoment):

i mport sinplejson

def get JSONReportList(self, path=):

117

Extending the User Interface

This function will be nonkey-patched onto zport, so
references to self should be taken as referring to zport

Add the base path to the path given
path = + path.strip()

Create the enpty structure of the response object
response = { | 1, c[1 1}

Retrieve the ReportC ass object for the path given. If
not hing can be found, return an enpty response
try:

reportC ass = sel f.dnd. unrestrictedTraver se(pat h)
except KeyError:

return sinpl ej son. dunps(response)

Get the list of reports under the class as (url, title) pairs
reports = reportC ass.reports()
reportpairs = [(r.absolute url_path(), r.id) for r in reports]

Ilterate over the reports, create |inks, and append themto
the response object
for url, title in reportpairs:

link = % (url, title)
row = { : link }
response|] . append(row)

Serialize the response and return it
return sinpl ej son. dunps(response)

Monkey-patch onto zport
from Products. ZenMbdel . Zenti nel Portal inport Zentinel Portal
Zentinel Portal . get JSONReportLi st = get JSONReport Li st

Thisfunction will bedefinedin__init__. py.

First, you'll need si npl ej son to serialize the response:

i mport sinpl ej son

That's it for the method. This should now bein __init__ . py. Next, set up the monkey-patch by importing
zport 'sclass:

from Products. ZenMbdel . Zenti nel Portal inport Zentinel Portal

Then set your function as a class method:

Zenti nel Portal . get JSONReport Li st = get JSONReport Li st

118

Extending the User Interface

And that'sit! Now this method is accessible wherever zport is; for example, viaHTTP:

http://myzenoss:8080/zport/getJISONReportL ist?path=Device%20Reports

12.7.3. Write the JavaScript Portlet

Zenoss portlets rely on elements of both the MochiKit and Y ahoo! Ul JavaScript libraries. JavaScript is a proto-
type-based language, not a class-based language; as aresult, innumerabl e efforts have been madeto create class-like
JavaScript objects. Zenossis no exception. It does not use Y Ul's class-like objects, but instead its own constructor,
based on the Pr ot ot ype library's Class, that allows simple subclassing.

Similarly, Zenossusesitsown Dat asour ce object that wrapsaround Y Ul'sDat aSour ce component; thisallows
for the use of datasource subclassing, aswell as simple JSON serialization.

Asaresult of using these custom components, creating anew Por t | et isfairly straightforward. Each portlet must
have a corresponding Dat asour ce, which handles communication with the server.

The ReportListPortlet will use the predefined Tabl eDat asour ce, so no separate datasource class definition is
needed. See $ZENHOME/ Pr oduct s/ ZenW dget s/ ZenossPor t | et s/ Googl eMapsPortl et.j s foran
example of a customized datasource.

Theglobal YAHOOOobj ect definesanamespace; YAHOO. zenoss iswhereall custom Zenosscomponentsare stored.
The complete portlet definition, which should be placed in Repor t Li st Port | et . j s, follows. Asbefore, welll
go over it step by step in amoment.

var ReportlListPortlet = YAHOO. zenoss. Subcl ass. cr eat e(
YAHOO. zenoss. portlet. Portlet);

ReportListPortlet.prototype = {

/] Define the class nane for serialization
__class__: ,

[/ __init__ is run on instantiation (feature of Cl ass object)
_init__: function(args) {

/1l args conprises the attributes of this portlet, restored
/[l fromserialization. Take themif they' re defined,
[/l otherwi se provide sensible defaults.

args = args || {};

id = in args? args.id : getU X);
title = in args? args.title: ;

bodyHei ght = in args? args. bodyHei ght: 200;

/'l You don't need a refresh tinme for this portlet. In case
/'l someone wants one, it's available, but default is O
refreshTime = in args? args.refreshTi ne: O;

/'l The datasource has al ready been restored from

[l serialization, but if not nake a new one.

dat asource = in args? args. datasource :
new YAHOO. zenoss. port| et. Tabl eDat asour ce({

/[l Query string will never be that |ong, so GET

119

Extending the User Interface

}

/[l is appropriate here
met hod: ,

/'l Here's where you call the back end net hod
url : ,

/[l Set up the path argunent and set a default ReportdC ass

quer yArgunments: { }
1)
/[l Call Portlet's _init__ nethod with your new args
this.superclass. __init_ (
{id:id,

title:title,
dat asour ce: dat asour ce,
refreshTi me: refreshTi ne,
bodyHei ght: bodyHei ght
}
)

[/l Create the settings pane for the portlet
thi s. buil dSetti ngsPane();

[l buil dSettingsPane creates the DOM el enents that popul ate the
/] settings pane
bui | dSetti ngsPane: function() {

[/l settingsSlot is the div that holds the el ements
var s = this.settingsSlot;

/1 Make a function that, given a string, creates an option
/1l elenment that is either selected or not based on the

/'l settings you' ve already got.

var getopt = nethod(this, function(x) {

opts = { 4
path = this. datasource. quer yAr gunent s. pat h;
i f (path==x) opts]] =true;

return OPTI ON(opts, x); });

/] Create the sel ect el enment
thi s. pathsel ect = SELECT(null, null);

/1l A function to create the option elenents froma |ist of
[l strings
var createOptions = nmethod(this, function(jsondoc) {
for Each(j sondoc, nethod(this, function(x) {
opt = getopt(x);
appendChi | dNodes(t hi s. pat hsel ect, opt);
IODF
1)

/1 Wap these elenents in a DIV with the right CSS cl ass,

120

Extending the User Interface

/[l and give it a label, so it |ooks pretty

mycontrol = DI V({ : oo
DI V({ : H)
t hi s. pat hsel ect

1):

/[l Put the thing in the settings pane
appendChi | dNodes(s, mycontrol);

/Il Go get the strings that will popul ate your sel ect el enent.
d = | oadJSONDoc();
d. addCal | back(net hod(t hi s, createOptions));

}

/1l submtSettings puts the current values of the elenents in
[/l the settingsPane into their proper places.
subm t Settings: function(e, settings) {

[/l Get your ReportCl ass value and put it in the datasource
var nypath = this. pathsel ect. val ue;
t hi s. dat asour ce. quer yAr gunent s. path = nypat h;

[l Call Portlet's submtSettings
thi s. supercl ass. subm t Settings(e, {

{ . nypat h}
1)

}
}
YAHOO. zenoss. portl et. ReportListPortl et = ReportlListPortlet;

The dashboard template loads all the dependencies for portlets, including the two important ones:
YAHQQO. zenoss. Subcl ass and YAHOO. zenoss. portl et. Portl et .

First, create your Repor t Li st Port | et asasubclassof YAHOO. zenoss. portlet. Portl et (whichisde
fined in $ZENHOVE/ Pr oduct s/ ZenW dget s/ ski ns/ zenui / j avascri pt/portlet.|s, if you care
tolook at its code):

var ReportlListPortlet = YAHOO. zenoss. Subcl ass. cr eat e(
YAHOO. zenoss. portlet. Portlet);

Most of the Portlet class's options are fine here; you'll be adding a select element to the settings pane, to
select the base report class, and defining a Tabl eDat asour ce, to get data from your server-side method.
To customize the subclass, modify the prototype object of the portlet. When ReportLi stPortlet is
called as a constructor, the attributes of Port| et's prototype are copied to ReportLi st Portl et, ex-
cept for those that Report Li st Port | et has defined itself. Port | et 's prototype is also made available as
Report Li st Portl et. supercl ass.

ReportListPortlet. prototype = {

The__class _ attribute will be used when the portlet is restored from serialization. It points to the correct code, so
define it as the eventual place of your Portlet in the YAHOO. zenoss namespace.

__class__:

121

Extending the User Interface

The __init__ method is cadled when a ReportListPortlet is creaed (a feature of
YAHQQO. zenoss. O ass). The entity that restores portlets from saved settings will pass in an object containing
those settings as attributes, so you'll need to go through those, making any changes necessary and supplying defaults
if settings don't exist.

_init__: function(args) {
args = args || {};
id = in args? args.id : getU X)
title = in args? args.title: ;
bodyHei ght = in args? args. bodyHei ght: 200;
refreshTime = in args? args.refreshTi ne: O;

In the process of iterating over settings, the method will come across the datasource. If it doesn't exist yet, you'll
need to create one. Since these are tabular data, you'll use Tabl eDat asour ce.

dat asource = in args? args. datasource :
new YAHOO. zenoss. port | et. Tabl eDat asour ce({

met hod: ,

Set the datasource's url to the path to the method on zport that you wrote previously:

url : ,

And set up the arguments that get passed to that method, providing a default:

this.superclass. __init_ (
{id:id,
title:title,
dat asour ce: dat asour ce,
refreshTi me: refreshTi ne,
bodyHei ght : bodyHei ght
}
)

Sinceyou're going to have amodified settings pane, containing the select element by whichthebaseReport O ass
is chosen, you'll need to call a method to add that to the default elements.

this. buil dSettingsPane();
}1

Now write that method, since you've finished the initialization.

bui | dSetti ngsPane: function() {

Portlet.settingsSlot is the reference to the div element that contains the settings pane.

var s = this.settingsSlot;

Since your settings pane will include a select element, you'll need to create options to be chosen, using MochiKit's
OPTI ON() ; aso, you want the select element to show the current value. This function will accept a string repre-
senting an existing Repor t A ass and build an option element, setting it as selected if it matchesthe current val ue.

122

Extending the User Interface

var getopt = nethod(this, function(x) {

opts = { i X}
pat h = this. datasource. queryArgunents. pat h;
i f (path==x) opts]] =true;

return OPTION(opts, X); });

Now create the select element to hold the options, again using MochiKit's SELECT() :

this. pathsel ect = SELECT(null, null);

Set up the function that accepts a list of strings and iterates over them, turning them into options and appending
them to your select element:

var createQptions = nmethod(this, function(jsondoc) {
for Each(j sondoc, nethod(this, function(x) {
opt = getopt(x[0]);
appendChi | dNodes(t hi s. pat hsel ect, opt);
IODF
Dk

Now put the (currently empty) select element into a div with the proper CSS class defined, so that it will organize
itself properly in the settings pane, and have alabel:

mycontrol = DI V({ : bod
DI V({ : },),

t hi s. pat hsel ect

1)

appendChi | dNodes(s, mycontrol);

Finally, you'reready to get the datafor all of your option elements. Y ou'll use MochiKit'shandy | oadJ SONDoc(),
which accepts a URL, fires off an XHR, parses the response text as JSON, and returns a JavaScript object, with
which you'll call back to your option-building method:

d = | oadJSONDoc(),
d. addCal | back(net hod(thi s, createOptions));

b

Lastly, you need to hook into the method that saves changed settings, so it will include your Repor t O ass string:

submit Settings: function(e, settings) {

var mypath = this. pathsel ect. val ue;
t hi s. dat asour ce. quer yAr gunents. path = nypat h;

[l Call Portlet's submtSettings

this. supercl ass. subnmitSettings(e, {
{ : mypat h}

1)

}

All that's left isto assign the Repor t Li st Port | et constructor to the YAHOO. zenoss namespace:

123

Extending the User Interface

YAHOO. zenoss. portl et. ReportListPortlet = ReportlListPortlet;

12.7.4. Register the portlet

Now you need to tell Zenoss about the portlet and assign permissions. Openup__i ni t __. py again, and add the
following Python code to the top:

from Product s. ZenModel . ZenossSecurity i nport ZEN COMVON
fromProducts. ZenUils.Uils inmport zenPath

Next, modify the ZenPack class you defined way back in step 1. Since upgrading and installing the portlet will
amount to the same thing, create a method on your ZenPack class to cover those steps:

def _registerReportListPortlet(self, app):
zpm = app. zport. ZenPort| et Manager
portletsrc = zenPat h(, ,

zpmregi ster_portlet(
sour cepat h=portl et src,
i d=
title= ,
per m ssi on=ZEN_COVMON)

That method will let ZenPor t | et Manager , the object on zpor t that, unsurprisingly, manages portlets, know
about the portlet source code. ThezenPat h() functionisautility that joins strings together to create afilesystem
path under $ZENHOVME -- in this case, pointing to the directory where your ZenPack will be installed. When regis-
tering a portlet, you provide an id, a title, and the permissions for the portlet (as this portlet should be visible to
everyone, ZEN COMMON is the appropriate permission).

Now you can modify your i nst al | (), upgrade() andr enove() methods:

def install(self, app):
ZenPackBase. i nstal | (sel f, app)
sel f. registerReportlListPortlet(app)

def upgrade(sel f, app):
ZenPackBase. upgr ade(sel f, app)
sel f. registerReportListPortlet(app)

def renove(self, app):
ZenPackBase. r enove(sel f, app) zpm =
app. zport. ZenPort | et Manager
zpm unr egi ster_portl et ()

Save and exit. You can test your ZenPack at this point by navigating to the parent directory of Report Li st -
Por t | et Pack and running:

zenpack --install ReportlListPortl et Pack

124

Extending the User Interface

Load up the Zenoss Ul in your browser and click Add Portlet on your dashboard. Make sure the Report List portlet
appears as an option. If so, add one and check that you can change the base Repor t Cl ass. Also make sure it
shows reports.

Now all that's Ieft is to export the ZenPack from Zenoss. From the ZenPacks tab under Settings, click on your
new ZenPack. From the page menu, select the Export ZenPack... menu item. That will create anew egg file called
ZenPacks. nyexanpl e. port| et. egg. Distribute away!

12.8. Debugging Tips

There are quite anumber of components used in order to create the Zenoss interface, and it can be quite achallenge
to understand what's happening and how to fix issues. The following are alist of some simple debugging tips:

* Usepagetemplatesrather than full HTML pageswhenever possible. There areanumber of dependencies between
CSS, JavaScript and other components, and doing it the hard way can be really hard. Trying to do things the hard
way in across-browser fashion is exceptionally difficult. As a side benefit, using the page templates means that
your pages will benefit from any improvements in the base product.

» Run FireFox version 3.x or better, and examine the Error Consoleto find out what JavaScript errors are occurring.
There will be tons of CSS issues coming from different CSS pages (it's annoying, but not fatal), but you can
safely ignore them.

e The Firefox Error Console will not tell you if Firefox wasn't able to find or load a JavaScript file (ie the path
you've specified in your web page to get to the JavaScript file is incorrect). In order to determine if Zope was
given a path to a filename that it couldn't find, you'll need to go into Zope's ZMl, go to the error log (eg http://
yourzenossserver:8080/error_log/manage) and remove al of the error log filters. After you do that, retry the
operation and you can see what files Zope wasn't able to find and fix the paths in your page.

125

Chapter 13. Reports
13.1. Adding a New Report

Zenoss reports are simply HTML pages that use TALES markup. For amore thorough discussion, see Chapter 12,
Extending the User Interface .
Adding a report through the ZMI is currently not working as advertised in this section and needs to be fixed.

New pages can be created using the Zope Management Interface (ZMI) interface. Navigate to thisurl onyour Zenoss
server:
http://yourzenossserver:8080/zport/dmd/Reports

You can add areport at this point in the Reports tree by adding "/manage” to the URL in your browser:
http://yourzenossserver:8080/zport/dmd/Reportsmanage

Here you can select Report from the menu on the right, and add a new Report. Name it "test" and save it. After
you see your new "test" report, leave the ZMI by selecting the "test" object, and then selecting the Test tab at the
top of the page.

Y ou will then see a sample page:

Reports

This is Page Tenpl ate test.

If we use some TALES templates, we can get a test page that has the Zenoss ook and feel. Navigate back to our
test page under the ZMl:
http://local host:8080/zport/dmd/Reports/test/manage

Now change the text to this:

<tal : bl ock met al : use-macr o="her e/ r eport Macr os/ macr os/ export abl eReport"
>

<tal:block nmetal:fill-slot="report"

>

<tal : bl ock met al : use- macr o="her e/ t enpl at es/ nacr os/ pagel”
>

<tal : bl ock netal :fill-slot="breadCrunbPane"

>

<span mnet al : use- macr o="her e/ m scrmacr os/ macr os/ r epor t Br eadCr unbsLi st "
/>

</tal : bl ock>

<tal : bl ock netal :fill-slot="contentPane"

>

<hl>Report s</ hl>

This is Page Tenplate <i tal:content="here/title or_id
/>.

</tal : bl ock>

</tal : bl ock>

</tal : bl ock>

126

Reports

</tal:bl ock>

The meat of areport goes here:

<tal:block nmetal :fill-sl ot="content Pane"
>

</tal: bl ock>

Typically, alist of recordsis pulled from the database, summarized, and then shown in a table using the TALES
markup.

Although you can make changes and save them using the web interface, it is a cumbersome editor. It is simpler to
make the changes to an external file and reload it. If you store your file in the $ZENHOVE/ Pr oduct s/ ZenRe-
ports/reports directory, you can load it in with the ReportL oader?:

$ cd $ZENHOVE/ Pr oduct s/ ZenReport s

$ python ReportlLoader.py --force

13.2. Plugins

Reports are often summarieswhich are not tied to aparticular object. Instead of adding code to objectsto make them
available in the page template, you can put the python code for areport in the $ZENHOVE/ Pr oduct s/ ZenRe-
port s/ pl ugi n directory.

Y ou can execute a plugin using thistal:block:

<tal : bl ock tal:define="
obj ects python: here. Report Server. plugi n(' cpu', here. REQUEST);

</tal : bl ock>

Plugins are executed every time areport is run, and do not require a Zope restart to get pick up changes. With help
from the ZenReports? Plugin module, you can even test the reports from the command line. This further reduces
the number of times that Zope is used as a devel opment environment.

See the examplesin the plugins directory.

13.3. Adding Export Buttons to Reports

Adding an Export All button to a report is fairly straightforward. The overall format of the report markup looks
something like this:

127

Reports

<tal : bl ock tal:define="

obj ects python: here. ZenUsers. get Al | Thi ngsFor Report ();

obj ects python: (hasattr(request, 'doExport') and |ist(objects)) or objects;
tabl eNanme string: thislsTheTabl eNaneg;

bat ch pyt hon: her e. ZenTabl eManager . get Bat ch(t abl eNane, obj ect s,

sort edHeader =' get Useri d') ;

exportFields python:['getUserid , 'id , 'delay',
"enabl ed', 'nextActiveNi ce', 'nextDurationN ce',
‘"repeatNice', 'where'];

>

<tal : bl ock metal : use-macro="her e/ report Macr os/ nacr os/ export abl eReport"
>

<tal :block netal :fill-slot="report"

>

The normal report markup goes here

</tal: bl ock>
</tal: bl ock>
</tal: bl ock

The first definition is a call to some method that retrieves the objects for the report. This might be alist, tuple or
an iterable class.

If we are doing an export then we need thisto be alist, so thesecondt al : def i ne line makes sure we have alist
in the event that we are doing an export. It's good to not do this if we are not doing an export. Large reports might
runinto performanceissuesif an iterable is converted to alist unnecessarily.

t abl enane is defined here for use by the get Bat ch() call that follows.

export Fi el ds isalist of datato be included in the export. These can be attribute names or names of methods
tocall. See Dat aRoot . wri t eExport Rows() for more details on what can be included in thislist.

Withinthe<t al : bl ock nmetal :fill-slot="report"></tal: bl ock> bl ock goesthereport markup
you would use when not including the export functionality.

Note

If the Export All button is mysteriously not doing anything you may need to be using zenTableNav-
igation/macros/navtool rather than zenTableNavigation/macros/navbody in your report. The former
includes the <form> tag, the latter does not. If you are not providing a <form> tag then you need to
use navtool so the export button iswithin aform.

128

Chapter 14. Migrating Zenoss Code

Note

This section is not intended for ZenPack writers but for people modifying the core code (eg files under
the $ZENHOVE/ Pr oduct s/ directory). If you are migrating code in a ZenPack, see Section 3.5.1,
“Migrating between versions” .

14.1. Introduction and Steps

If you have added new functionality to Zenoss that will break backwards compatibility, you need to provide code
for your version that will allow users to upgrade without breakage.

Here's a breakdown of everything you will need to do in order to create your migration code and move your new
code into production:

1. Create your code in the $ZENHOVE/ Pr oduct s/ ZenModel / mi gr at e/ m gr at e package directory.
2. Add animport statementto __init__. py

3. Run zenmigrate --dont-commit iteratively to test

14.2. How It Works

The first place to look is in Products/Zenhodel / m grate. For starters, examine the code in
m grat e. M gr at e and note the St ep class - thisis what you will subclass when writing your migration code.
Them grate. M grate. M grati on. mai n() method iswhat is called from the zenni gr at e. py script
and is what fires off the whole process.

To further understand the process, notethe global variableal | St eps: thisisappended to every time Migrate.Step
isinstantiated.

But, you ask, how does my codegetintoal | St eps?

Onceyour migration codeiscomplete, you will do acouplethings: add your fileto the migratedirectory and then add
an import statementtomi grate/ __init__ . py. When migrate. Migrate isimported in the zenmi gr at e. py
script, the__i ni t __. py codeisrun. Each moduleimported by thisfile hasaclassthat getsinstantiated at the end
of its module (seethe M grate. Step. __init__ () method). It isthrough this mechanism that each custom
migration module in the migrate directory isadded to al | St eps (sorted by name and version number).

When i grate. M grate. mai n() iscaled, al | St eps isiterated and checks are performed to see if each
migration step needsto be run or not. mai n() calscut over () ,whichcallsmi grat e(), and thisiswhere the
actual work of migration occurs, where your code gets executed.

14.3. What You Write

As noted, your migration code will subclass mi gr at e. M gr at e. St ep. You can stub your migration file out
like this:

129

Migrating Zenoss Code

from Acqui sition inport aqg_base
import Mgrate

cl ass MyM gr at eCode(M grate. Step):
version = Mgrate. Version(1, 1, 0)
The above needs to be updated to the appropriate version
ie a version above the previously-rel eased version of Zenoss

def cutover(self, dnd):
pass

M/M gr at eCode()

Y ou will need to do the following to this code:

1. Fill inthe doc string

2. Update the version passed to Migrate.Version

3. Updatethe cut over () method with actual code

4. Add any supporting code you might need that doesn't strictly belongin cut over ()

14.3.1. Implement cutover()

Implementation is very straight-forward: you get the dmd object passed into the cut over () method, thus giving
you access to nearly every part of Zenoss. The only thing you don't have direct access to is the portal object. But
you can easily get that by calling dnd. get Physi cal Root ().

Implementation details are 100% dependent upon what part of Zenoss you are migrating -- if you look at the current
migration scripts (in trunk), you will get agood sense of the diversity aswell as many examples from which to work.

Changes made to the ZODB database (dmd and associated objects hierarchies) are committed back to the database
unlessthe - - dont - conmi t flag is passed to zenmigrate. The - - dont - conmi t lets the developer repeatedly
run a script and debug without making permanent changes to the database. If your migrate script makes changes
outside of the Zope database it should probably implement St ep. r evert () toundo any changesit has made.

14.3.2. Supporting Code

Supporting codeisjust modularization. If you're going to be using afunction (or method) more than once, just break
it out of the cut over () method. Thiswill make maintenance easier and will allow those who come after you to
see the intent of the migration code more quickly.

14.3.3. Testing and Deployment

Once your code meets with your approval (and that of the Zenoss development team), you are free to name
it something appropriate and save it to Pr oduct s/ ZenModel / m gr at e. Upon adding your migration mod-
ule, you must now edit Product s/ ZenModel / migrate/ __init__.py so that it gets imported when
zenmi grat e. py isrun.

After adding your script (and after every change you make to your new script), be sure to run zenmigrate run. Here
are some things you can do to help ensure quality:

130

Migrating Zenoss Code

1. Load Zenoss in aweb browser, and navigate to the part of the application that was impacted by your migration
script

2. Look at thelog files for error output

3. Load up zendmd from the command line and make sure that no errors are generated when using the part of the
APl impacted by the change

After someone reviews the changes, your migration code is ready for deployment.

131

Chapter 15. Testing

15.1. Zenoss Unit Tests
15.1.1. Introduction

There are different types of test strategies which attempt to determine changes in behavior and errors.

Table 15.1. Types of Testing

Test Type Description

Python doctest Simple testsin the documentation for a function.

Unit Tests Test functions in amodule together using the runtests command.

Functional Testing Try to test the software as the user would use the software. Selenium is used to test

multiple web browsers to simulate actual use.

Load Testing Attemptsto determine how many operations the system is capable of performing with
the provided configuration.

15.1.2. doctest Testing

A handy feature of Python is the ability to include simple tests in the docstring for a function [http://
docs.python.org/library/doctest.html]. This allows the programmer to see some of the normal cases and boundary
conditions, but it also allows the programmer to run sanity checks on the the function by running the Python doctest
utilities.

First, acomplete samplefile (bl ue. py) toillustrate:

i mport os
from exceptions inport Val ueError

def nyfunc(a, b):

if a== or b == :
rai se Val ueError ()

132

http://docs.python.org/library/doctest.html
http://docs.python.org/library/doctest.html
http://docs.python.org/library/doctest.html

Testing

return a ==

if __nane_ ==
i mport doct est
doct est . test nod()

Now we can test our module by running Python with the - v flag:

$ pyt hon bl ue.py -v

Tryi ng:
myfunc(0, 0)
Expecti ng:
Tr ue
ok
Tryi ng:
myfunc(0, 1)
Expecti ng:
Fal se
ok
1 items had no tests:
__main

1l itens passed all tests:
2 tests in _main__.nyfunc
2 tests in 2 itens.
2 passed and 0 fail ed.
Test passed.

Note

The - v flag gets passed to your program, not to Python!

15.1.3. Zenoss' Test Runner

Zenoss has a Zope product, ZenTestRunner, whose sole purpose it to run a specific group of tests. We did thisin
order to avoid running al the testsin the Pr oduct s directory if you only want to run tests on a specific portion
of Zenoss.

Note

Do NOT run unit tests on a production server!

Some of the tests are destructive in nature (eg 'delete all events) and are intended to be used only on
adevelopment server.

All of our examples should be run asthezenoss user. If you really want to run all of the tests:

$ runtests -t unit

. Tip

If you are running a Selenium server, then you can use runtests to run the unit tests and the Selenium
tests. To run the Selenium tests on there own:

133

Testing

$ runtests -t sel eni um

Torun al of the ZenModel tests;
runtests ZenM odel

All that isrequired by developersisthat they add testsintothet est s directorythathasa__i nit __. py contained
inside that directory.

1. Run the existing tests to make sure that you know what to expect:

runtests -t unit

2. Gotothet est s directory inside of the directory with the classes you want tested:

cd $ZENHOVE/ Pr oduct s/ ZenModel /t est s

3. Copy one of the existing tests to a name reflecting the product for which you are adding tests:

cp testZenModel . py
t est ZenNewPr oduct . py

Note

Your new test script must contain the prefix t est in the filename. So t est myt est . py will
work, but not myt est or nyt est . py.

4. Changethei nport lineinthe new fileto reflect the new product name:

from Products inport ZenNewProduct as product

5. Save and quit, then run the test suites to make sure everything is passing:

$ runtests -t unit ZenModel

Note

Follow the same procedures as above for ZenPacks, with the following differences:

* Make sure that your ZenPack has the tests directory in it (eg $ZENHOVE/ Zen-
Packs/ ZenPacks. or g. zpnane- ver si on i nf 0. egg/ ZenPacks/ or g/ zpnane/
tests), containingan__init__ . py fileand your new test script.

* Theruntestsdoesn't currently understand Python Egg-style namespaces, so only thelast part of the
ZenPack nameis used. For example, if our ZenPack's name was ZenPacks. or g. zpnane

$ runtests -t unit zpnane

15.1.3.1. An Example Unit Test

Thisfirst unit test deliberately has an error it, but we'll show what happens and how we can make it better.

134

Testing

fromxmrpclib inmport ServerProxy
from Product s. ZenTest Case. BaseTest Case i nport BaseTest Case

cl ass Test Xm Rpc(BaseTest Case) :
def set Up(self):

sel f. baselr |
sel f.testdev

def testSendEvent (self):

serv = ServerProxy(self.baseUl +)
evt = {

14,
}

serv. sendEvent (evt)

def test suite():
fromunittest inport TestSuite, nakeSuite
suite = TestSuite()
sui t e. addTest (nmakeSui t e(Test Xm Rpc))
return suite

First, noticethat our test hasto fail asthe server that we'retryingto reach (Not Exi st Ser ver) doesn't exist. Here's
the output when we run it from the command-line.

$ runtests -t unit -n test XM.RPC ZenModel
Runni ng tests via: /opt/zenoss/bin/python /opt/zenoss/bin/test.py -v
--config-file /opt/zenoss/etc/zope.conf --libdir /opt/zenoss/Products/ZenMde
t est XMLRPC
Running unit tests at level 1
Running unit tests from/opt/zenoss/ Product s/ ZenModel
Par si ng / opt/zenoss/ et c/ zope. conf

ERROR: testSendEvent (tests.test XMLRPC. Test Xm Rpc)

Traceback (nost recent call |ast):
File "/opt/zenoss/|i b/ python/Testing/ ZopeTest Case/ profiler.py", |ine 98,
in _call__
t est Met hod()
File "/opt/zenoss/ Products/ZenMdel / tests/test XML.RPC. py", |ine 34,

in testSendEvent
serv. sendEvent (evt)

File "/opt/zenoss/|ib/python2. 4/ xm rpclib.py", line 1153, in __call__
return self. send(self.__nane, args)
File "/opt/zenoss/lib/python2. 4/ xm rpclib.py", line 1440, in __request

ver bose=sel f. _verbose

135

Testing

File "/opt/zenoss/|ib/python2.4/xmrpclib.py”, line 1186, in request
sel f.send_content (h, request_body)

File "/opt/zenoss/|ib/python2.4/xmrpclib.py”, line 1300, in send_content
connecti on. endheader s()

File "/opt/zenoss/|ib/python2.4/httplib.py", Iine 798, in endheaders
sel f. _send_out put ()

File "/opt/zenoss/|ib/python2.4/httplib.py", line 679, in _send_out put
sel f. send(nsQ)

File "/opt/zenoss/|ib/python2.4/httplib.py", |ine 646, in send
sel f. connect ()

File "/opt/zenoss/|ib/python2.4/httplib.py", line 614, in connect

socket . SOCK_STREAM) :
gaierror: (-2, 'Name or service not known')

Ran 1 test in 0.007s

FAI LED (errors=1)

While that does tell us that we do have a problem (Nane or servi ce not known),it'salot of output for
one problem. And the note at the bottom that tells us that we have errors (ie in our tests scripts) rather than failures
(ieissuesin our code). If this happens if every test that fails to trap exceptions or conditions generated this much
output (there are over 140 unit testsin ZenModel aone!) we'd be drowned in a sea of output!

An improved example:

i mport traceback
fromxmrpclib inport ServerProxy
from Products. ZenTest Case. BaseTest Case i nport BaseTest Case

cl ass Test Xm Rpc(BaseTest Case) :
def setUp(self):

sel f. baselr |
sel f.testdev

def test SendEvent (self):

serv = ServerProxy(self.baseUl +)
evt = {
14,
}
try:

serv. sendEvent (evt)

except :
msg= traceback. f ormat _exc(!li m t=0)
self.fail(nmsg)

136

Testing

def test _suite():
fromunittest inport TestSuite, nakeSuite
suite = TestSuite()
sui t e. addTest (nakeSui t e(Test Xm Rpc))
return suite

Thistime the output looks like this:

$ runtests -t unit -n test XML.RPC ZenMbdel

Runni ng tests via: /opt/zenoss/bin/python /opt/zenoss/bin/test.py -v

--config-file /opt/zenoss/etc/zope.conf --libdir /opt/zenoss/Products/Zenhde
test XMLRPC

Running unit tests at level 1

Running unit tests from/opt/zenoss/ Product s/ ZenModel

Par si ng / opt/zenoss/ et c/ zope. conf

Traceback (most recent call last):
File "/opt/zenoss/|ib/python/Testing/ ZopeTest Case/ profiler.py", |line 98,
in _call_
t est Met hod()
File "/opt/zenoss/ Product s/ ZenMbdel /tests/test XM.RPC. py", |ine 41,

i n testSendEvent
self.fail(nmsg)
File "/opt/zenoss/|ib/python2.4/unittest.py", line 301, in fail
rai se self.failureException, mnsg
AssertionError: Traceback (nmost recent call last):
gaierror: (-2, 'Name or service not known')

Ran 1 test in 0.004s

FAI LED (fail ures=1)

Here are the differences, from the top down:
< We have anicer description of what the test istesting (Send an XM.- RPC event).

e Theoutput is (slightly) shorter but still provides us with the underlying eror message that we need to know. The
more levels of stack in the funtion, the greater the savings.

« We see that we have one failure condition detected, as opposed to an error in our unit test.

Note

To get the above example to work, change the Zenoss server inthe URL to bethel ocal host server.

137

Testing

15.1.4. Integrating With Buildbot

The Buildbot [http://buildbot.net/trac] program is a Python-based build and test system used at Zenoss Inc in
order to perform nightly builds of the various architectures, run unit tests and sanity check the code with PyFlakes
[http://divmod.org/trac/wiki/DivmodPyflakes].

Note

TheBui | dbot configuration isnot visible outside of Zenoss Inc, and so this section isfor curiousity
purposes only.

15.1.5. Javascript Test Framework

Y Ul includes afull unit test framework. Most of the specifics [http://developer.yahoo.com/yui/yuitest/] are best
explained by them.

Zenoss-specific tests should al be located in $ZENHOVE/ Pr oduct s/ ZenW dget s/ ski ns/ zenui /
javascri pt/tests directory. Each test script should then be registered in the get Loader () function in
Zenoss- core. j s, using the naming schemet est _descri ption .

These tests may then berun on any page using ther unt est s() function. For example, the dashboard tests should
beregistered ast est _dashboar d, and can then berun as:

runt est s()

Thiswill pop up alogger window that will print test results.

An example test script has been provided. Please see:

e $ZENHOVE/ Pr oduct s/ ZenW dget s/ ski ns/ zenui / j avascript/tests/ test_exanple.js
o $ZENHOVE/ Pr oduct s/ ZenW dget s/ ski ns/ zenui / j avascri pt/ zenoss-core.js

Also run in the JavaScript console of your browser:

runt est s()

15.2. Functional User Interface Testing
15.2.1. Introduction

Functional testing refersto testing of the task-oriented features (aka functions) as opposed to the much lower-level
unit-tests. A good unit test will tell you if a piece of code isworking within specifications, while a good functional
test will tell you if the entire program works as expected for a particular task.

15.2.2. Installing and Running

Selenium [http://selenium.openga.org/] isasuite of tools used to create tests and record their results. These regres-
sion tests are intended to be run against multiple different browsersin order to verify the targeted web application.

15.2.2.1. Installing and Configuring Mac OS X

Sel eni umusesFi r eFox by default, so you need to make surethat f i r ef ox- bi n isinyour search path:

138

http://buildbot.net/trac
http://buildbot.net/trac
http://divmod.org/trac/wiki/DivmodPyflakes
http://divmod.org/trac/wiki/DivmodPyflakes
http://developer.yahoo.com/yui/yuitest/
http://developer.yahoo.com/yui/yuitest/
http://selenium.openqa.org/
http://selenium.openqa.org/

Testing

whi ch firefox-bin

If that returns nothing, then you need to add the pathto f i r ef ox- bi n to PATH. For example:

export
PATH=$PATH: / Appl i cati ons/ | nt er net/ Fi r ef ox. app/ Cont ent s/ MacCS/

The actual Selenium tests are found in the $ZENHOVE/ Pr oduct s/ ZenUl Test s/ t est s/ sel eni um direc-
tory.

15.3. Where to Get More Information

Discussion regarding testing takes place on the zenoss-testing mailing list and forums [http://forums.zenoss.com/
viewforum.php?f=7].

139

http://forums.zenoss.com/viewforum.php?f=7
http://forums.zenoss.com/viewforum.php?f=7
http://forums.zenoss.com/viewforum.php?f=7

Appendix A. Event Database Dictionary

Event Field Description

dedupid events will deduplicate based on the value of this field.
by default: device, component, eventClass, eventKey,
severity

device name of device

component name of component (like ethO, httpd, etc)

eclass eventClass (if not specified maybe added by rule process
if thisfailswill be /Unknown)

eventKey if acomponent needs further deduplication specification
this field maybe used

summary message text truncated at 150 characters

message full message text

severity number from0to 5

eventState state of event 0 = new, 1 = acknowledged, 2 = suppressed

eventClassK ey key by which rules processing begins. Often equal to
component.

eventGroup logical group of event source (syslog, ping, nteventlog
etc)

stateChange last time event changed automatically updated

firstTime unix timestamp when event is received.

lastTime last time an event was received

count number of times an event has repeated

prodState prodState of the device context

suppid id of event that suppressed this event

manager fgdn of the collector from which this event came

agent collector name from which event came (zensyslog, zen-
trap, etc)

DeviceClass device class from device context

Location device location from device context

Systems device systems from device context separated by |

DeviceGroups

device systems from device context separated by |

ipAddress ip from which event came

facility syslog facility of thisis syslog event

priority syslog priority of thisis syslog event
ntevid nt event id if thisis nt eventlog event.

140

Appendix B. TALES Expressions

TALES is syntax you can use to retrieve values call methods on Zenoss objects. Several fields in Zenoss accept
TALES syntax, including command templates, event mapping transforms, user commands, event commands, zProp-
erties, zLinks. and others.

Commands (those associated with devices as well as those associated with events) can use TALES expressions
to incorporate data from the related devices and/or events. TALES is a syntax for specifying expressions that let
you access the attributes of certain objects such as a device or an event in Zenoss. For additional documentation
on TALES syntax please see the TALES [http://www.zope.org/Documentation/Books/ZopeBook/2_6Edition/
AppendixC.stx] section in the Zope book.

Depending on the context you may have access to a device and/or an event. Below is a list of the attributes and
methods you may wish to use on device and event objects. The syntax for accessing device attributes and methodsis

${ dev/attributename} , so for example to get the managel p of adevice you would use ${ dev/managel p} . For events,
the syntax is ${ evt/attributename}

B.1. Examples
B.1.1. ping

A command to ping a device might look like this. The ${..} isa TALES expression to get the managelp value for
the device.

pi ng -c 10 ${dev/ managel p}

B.1.2. DNS forward lookup

Assuming that the ${ device/id} is aresolvable name

host ${devi ce/i d}

B.1.3. DNS reverse lookup

host ${devi ce/ managel p}

B.1.4. snmpwalk

snmpwal k -v1 -c${devi ce/ zSnmpCommuni ty} ${her e/ managel p} system

zProperties are also available for devices and events using the same syntax as above.

To use these expressions effectively you need to know which objects, attributes and methods are available to you
in which contexts. Usually there is a dev and/or device which allows you access the device in a particular context.

141

http://www.zope.org/Documentation/Books/ZopeBook/2_6Edition/AppendixC.stx
http://www.zope.org/Documentation/Books/ZopeBook/2_6Edition/AppendixC.stx
http://www.zope.org/Documentation/Books/ZopeBook/2_6Edition/AppendixC.stx

TALES Expressions

Contexts related to a particular event usually have evt and/or event defined. Some available attributes for each of
these classes are listed below. List items with parenthesis after them are methods and much have the parenthesis
included in the TALES expression to function correctly.

B.2. TALES Device Attributes

TableB.1. TALES Device Attributes

Device Attribute Description
getld The primary means of identifying a device within Zenoss
getManagelp The IP address used to contact the device in most situations

productionState

The production status of the device: Production, Pre Production, Test, Main-
tenance or Decommisioned. This attribute is a numeric value, use getPro-
ductionStateString for a textual representation.

getProductionStateString

Returns atextual representation of the productionState

snmpAgent

The agent returned from SNMP collection

snmpDescr The description returned by the SNMP agent
snmpOid The oid returned by the SNM P agent
snmpContact The contact returned by the SNM P agent
snmpSysName The system name returned by the SNMP agent
snmpLocation The location returned by the SNMP agent

snmpLastCollection

When snmp collection was | ast performed on the device. ThisisaDateTime
object.

getSnmpL astCollectionString

Textual representation of snmpL astCollection

rackSlot

The slot name/number in the rack where this physical deviceisinstalled

comments

User entered comments regarding the device

priority

A numeric value: O (Trivial), 1 (Lowest), 2 (Low), 3 (Normal), 4 (High), 5
(Highest)

getPriorityString

A textual representation of the priority

getHWManufacturerName Name of the manufacturer of this hardware

getHWProductName Name of this physical product

getHWProductK ey Used to associate this device with a hardware product class
getOSManufacturerName Name of the manufacturer of this device's operating system
getOSProductName Name of the operating system running on this device
getOSProductK ey Used to associate the operating system with a software product class
getHW Serial Number Serial number for this physical device

getL ocationName Name of the Location assigned to this device

getLocationLink Link to the Zenoss page for the assigned Location

getSystemNames A list of names of the Systems this deviceis associated with

getDeviceGroupNames

A list of names of the Groups this device is associated with

getOsVersion

Version of the operating system running on this device

getL astChangeString

When the last change was made to this device

142

TALES Expressions

Device Attribute

Description

getL astPoll SnmpUpTime

Uptime returned from snmp

uptimeStr

Textual representation of the snmp uptime for this device

getPingStatusString

Textual representation of the ping status of the device

getSnmpStatusString

Textual representation of the SNMP status of the device

B.3. TALES Event Attributes

TableB.2. TALES Event Attributes

TALESEvent Attribute Description

dedupid A key used to correlate duplicate events

evid A uniqueid for the event

device The id of the associated device, if applicable

ipAddress The IP Address of the associated device, if applicable

component The component of the associated device, if applicable

eventClass The event class associated with this device

eventGroup logical group of event source (syslog, ping, nteventlog etc)

eventKey The eventKey isthe primary criteria for mapping events into event classes
facility The Unix syslog facility if thisis a syslog event

severity One of 0 (Clear), 1 (Debug), 2 (Info), 3 (Warning), 4 (Error) or 5 (Critical)
priority syslog priority of thisis syslog event

summary Text description of the event

stateChange When the mysgl record for this event was last modified

firstTime Thefirst time this event was seen

lastTime The last time this event was seen and its count incremented

count Number of times this event has been seen

prodState prodState of the device context

manager Fully-qualified domain name of the collector from which this event came
agent collector name from which event came (zensyslog, zentrap, €etc)

zProperties are also available for devices and events using the same syntax as above.

143

Glossary

Zenoss Glossary

This glossary should be useful for users who need a reference for the occasiona clarification as well as developers
who need an explicit and detailed understanding of terms varying contexts.

Daemon

Data Collection

Device

Device Management Database

Event

GPL

ICMP

In Unix, adaemon is a computer program that runs in the background rather than
under thedirect control of auser. Systemsoften start (or "launch™) daemons at boot
time: they often serve the function of responding to network requests, hardware
activity, or other programs by performing some task. Daemons can also configure
hardware (like devfsd on some Linux systems), run scheduled tasks (like cron),
and perform avariety of other tasks.

These are the terms related to the data collection process. The Zope product re-
sponsible for this areas of Zenossis the DataCollector

Collecting - the process of obtaining information from networked resources, de-
vices, hosts and their operating systems.

Callector Client - since the information obtained during the Collecting process are
networked resources, we need clients to to connect to these resources and thisis
what the Collector Client does. Each client usually wraps some amount of low-
er-level Twisted Python networking code.

Data Collector - thisisthe zenmodeler, the brains behind Collecting.

Data Map - after networked resource data is collected, it needs to be parsed and
presented to the Zenoss system. This parsed data is stored in a Data Map and is
used to keep track of changes in networked resources.

Plugins - plugins for Data Collection tell the Collector Clients what information
to get from the networked resources.

A deviceisdefined as aZenoss code abstraction for acombination of anetworked
resources hardware and that hardware's operating system. Any piece of hardware
attached to anetwork you want to monitor using Zenoss. These can include: print-
ers, servers, routers, and switches among others.

The DMD isan object inside of the ZODB where Zenoss storesdevice and network
configuration information.

An event can be defined as "a significant change in state or any action or occur-
rence detected by a program. Events can be user actions, such as clicking amouse
button or pressing akey, or system occurrences, such as running out of memory.
State changes for objects can create also create events.

The GNU General Public License (GNU GPL or simply GPL) is a widely used
free software license.

Short for Internet Control Message Protocol, an extension to the I nternet Protocol
(IP) defined by RFC 792. ICMP supports packets containing error, control, and
informational messages. The PING command, for example, uses ICMP to test an
Internet connection.

144

Glossary

Management Information Base

Modeling

Object Identifier

RRDTemplate

Severity

Simple Network Management
Protocol

SNMP Walk

sudo

A management information base (MIB) is atype of database used to manage the
devicesin acommunications network. It comprisesacollection of objectsina(vir-
tual) database used to manage entities (such as routers and switches) in anetwork.
Objects in the MIB are defined using a subset of Abstract Syntax Notation One
(ASN.1) called "Structure of Management Information Version 2 (SMIv2)" RFC
2578.The software that performs the parsing is an MIB compiler. The databaseis
hierarchical (tree structured) and entries are addressed through object identifiers.
Internet documentation RFCs discuss MIBs, notably RFC 1155, "Structure and
Identification of Management Information for TCP/IP based internets’, and its
two companions, RFC 1213, "Management Information Base for Network Man-
agement of TCP/IP-based internets’, and RFC 1157, "A Simple Network Man-
agement Protocol”.

A model isthe collection of code abstractions (python objects) that represents ac-
tual networked resources. Modeling (creating a model of @) a piece of hardware
inyour system consists of gathering all of that date possible about that device and
creating a device profile based upon that data. This model can be supplemented
by hand entered data that is of particular use in creating a more accurate profile
(model) of the device. This information can also be re-used to assist in the mod-
eling of hardware producing similar data.

In the context of SNMP, consists of the object identifier for an object in a Man-
agement Information Base (MIB).

The top level performance configuration object is an RRDTemplate. RRDTem-
plates define the data sources to collect, any thresholds and how the data sources
should be graphed. RRDTemplates are defined in the PerfConf tab of any device
tree object or on the collected object itself.

Levelsof Severity ishow eventswithin the Zenoss System are classified. Thescale
isasfollows: Color = Severity Red = Critical Orange = Error Y ellow = Warning
Blue = Information Grey = Debug

A set of protocols for managing complex networks. The first versions of SNMP
were developed in the early 80s. SNMP works by sending messages, called pro-
tocol dataunits (PDUS), to different parts of anetwork. SNMP-compliant devices,
called agents, store data about themselves in Management Information Bases
(MIBs) and return this data to the SNMP requesters.

Zenoss supports SNMPv1 fully throughout the product asthisisthe most common
protocol used in the industry.

The operation performed using SNMP to gather information about a specific de-
vice.

sudo (substitute user [or superuser] do), pronounced like sudo in sudoku, isapro-
gramin Unix, Linux, and similar operating systems such asMac OS X that allows
users to run programs with the security privileges of another user (normally the
system's superuser) in a secure manner. Users must confirm their identity to sudo
by supplying their password before running the target program. Once authentica-
tion hastaken place, and if /etc/sudoersfileis configured to give the user accessto
the command requested, then the system allowsthe command, but logsit. InaGUI
environment, graphical frontends such as kdesu and gksudo are used to launch ad-
ministrator-only applications like the Synaptic Package Manager. Ubuntu Linux
iswell-known for forcing all administrative access to be done via sudo — the root

145

Glossary

Virtual Appliance

VMware — Virtua Machine
ware

ZEO

Zope Configuration Manage-
ment Language

Zope Management Interface

Zope Object DataBase

password is disabled by default, but can be enabled via the passwd tool. Mac OS
X also uses sudo for tasks such as Software Update. The configuration file /etc/
sudoers specifies which users can run which commands, and on which machines.
Because sudo is very particular about the format of this configuration file, and
errors could cause serious problems, editing should always be done with the pro-
vided visudo or sudoedit tool, which checks for correctness before saving.

A virtua appliance is a minimalist virtual machine image designed to run under
VMware, providing network applications such as webservers. Virtual appliances
are asubset of the broader class of software appliances. Like software appliances,
virtual appliances are aimed to eliminate the installation, configuration and main-
tenance costs associated with running complex stacks of software. A key concept
that differentiatesavirtual appliance from avirtual machineisthat avirtual appli-
anceis afully pre-installed and pre-configured application and operating system
environment whereas a virtual machine is, by itself, without software Typically a
virtual appliance will have aweb interface to configure the inner workings of the
appliance. A virtua appliance is usually built to host a single application, and so
represents a new way of deploying network applications. See also VMware.

VMware refers to the computer and operating-system instance that executes the
VMware Workstation process as the host machine, and identifies instances of op-
erating systems (or of virtual appliances) running inside avirtual machine as guest
virtual machines. Like an emulator, VMware Workstation provides a completely
virtualized set of hardware to the guest operating system — for example, regard-
less of make and model of the physical network adapter, the guest machinewill see
an AMD PCnet network adapter. VMware virtualizesall deviceswithin the virtual
environment, including the video adapter, network adapter, and hard disk adapters.
It also provides pass-through drivers for USB, serial, and parallel devices.

ZEO isalayer between Zope and the ZODB, and allows multiple Zope serversto
share the same ZODB. zenhub (the Zenoss Hub) attaches to the ZODB through
ZEO.

ZCML isan XML filethat containsinformation about configuring Zope and Zope
Products (such as Zenoss).

The ZMI refers to the user interface provided by the Zope system to create and
manage Zope products (Zenoss being a Zope product). The ZMI on a Zenoss sys-
tem can be accessed by going to the URL of your Zenoss server and adding the
name nmanage to the end. For example, http://yourzenossserver:8080/zport/man-

age

The ZODB is the Object-Oriented DataBase (OODB) used by Zope. The OODB
part meansthat datais not stored in terms of tables, rows and columns, but instead
as objects.

146

	Zenoss Developer’s Guide
	Table of Contents
	Chapter 1. Introduction
	1.1. Overview
	1.1.1. Model
	1.1.2. Availability
	1.1.3. Events
	1.1.4. Performance

	1.2. Detailed Architecture
	1.2.1. User Layer
	1.2.2. Data Layer
	1.2.3. Collection and Control Service Layer

	Chapter 2. Getting Started
	2.1. Working with the Source Code
	2.1.1. Getting the Source Code
	2.1.1.1. Getting Subversion for the Appliance

	2.1.2. Keeping up-to-date with your checked-out code
	2.1.3. Getting Patches
	2.1.4. Style Guidelines
	2.1.4.1. Docstrings

	2.1.5. Generating Diffs for new Fixes
	2.1.6. Submitting a Fix

	2.2. Development Toolchain Requirements
	2.2.1. Appliance

	2.3. Programming Techniques
	2.3.1. Calling Methods Using REST
	2.3.1.1. How To Call Methods Using REST
	2.3.1.2. Sending an Event
	2.3.1.2.1. Using a REST Call
	2.3.1.2.2. Using XML-RPC
	2.3.1.2.3. Example Usage in Other Languages
	2.3.1.2.3.1. Perl
	2.3.1.2.3.2. Ruby
	2.3.1.2.3.3. PHP
	2.3.1.2.3.4. Java

	2.3.2. Miscellaneous Notes
	2.3.2.1. pkg_resources

	2.4. zendmd: Command-line Access to the Device Management Database (DMD)
	2.5. Programming Documentation
	2.5.1. Python
	2.5.2. Zenoss API
	2.5.3. Other Resources
	2.5.4. Contributing to the Documentation

	Chapter 3. ZenPacks
	3.1. Overview
	3.2. Creating a ZenPack
	3.2.1. ZenPack Names
	3.2.2. Specifying Dependencies
	3.2.3. Locating ZenPack Source Outside of Zenoss
	3.2.4. Community ZenPack Subversion Access

	3.3. ZenPack Structure and Contents
	3.4. Developing the ZenPack
	3.4.1. Base ZenPack Class
	3.4.2. Storing Objects in the ZODB
	3.4.3. Providing DataSource classes
	3.4.4. Performance Template Checklist
	3.4.4.1. Data Sources
	3.4.4.2. Data Points
	3.4.4.3. Thresholds
	3.4.4.4. Graph Definitions
	3.4.4.5. Graph Points

	3.4.5. Providing daemons
	3.4.6. setuptools and the zenpacksupport

	3.5. Building and Distributing ZenPacks
	3.5.1. Migrating between versions
	3.5.2. Converting older ZenPacks to ZenPack eggs

	3.6. Where to Get More Information

	Chapter 4. Zenoss Datastores
	4.1. Zope Object Database (ZODB)
	4.2. MySQL Event database
	4.2.1. Connecting to the Database
	4.2.2. MySQL in 60 Seconds

	4.3. Python Pickle Files
	4.4. Round-Robin Database

	Chapter 5. Events
	5.1. Understanding an Event Entry
	5.1.1. Event Design

	5.2. Sending an Event
	5.3. Adding an Event Class
	5.3.1. Add to ZenEventClasses
	5.3.2. Add the class to the import XML
	5.3.3. Write a migrate script

	Chapter 6. zProperty Management
	6.1. Adding a zProperty
	6.1.1. Adding a zProperty to an Event
	6.1.2. Adding a zProperty to a Device

	6.2. Migrating the zProperty Code

	Chapter 7. Device Management
	7.1. Adding Devices Programatically
	7.1.1. Using a REST call
	7.1.2. Using an XML-RPC Call from Python
	7.1.3. XML-RPC Attributes

	7.2. Editing Device Information
	7.2.1. Using a REST call
	7.2.2. Using an XML-RPC Call from Python

	7.3. Deleting A Device
	7.3.1. Using a REST call
	7.3.2. Using an XML-RPC Call from Python

	7.4. Checking If A Device Exists
	7.4.1. Using a REST call
	7.4.2. Using an XML-RPC Call from Python

	7.5. Exporting a Device List

	Chapter 8. Extending the Model
	8.1. Add a ZenModel Relationship
	8.1.1. One-to-One (1:1) Relationships

	8.2. One-to-Many (1:N) Relationships
	8.3. Many-to-Many (M:N) Relationships
	8.3.1. One-to-Many (1:N) Container Relationships

	8.4. Zenoss XML Schema
	8.4.1. object
	8.4.1.1. Example
	8.4.1.2. Attributes
	8.4.1.3. Children

	8.4.2. objects
	8.4.2.1. Example
	8.4.2.2. Children

	8.4.3. property
	8.4.3.1. Example
	8.4.3.2. Attributes

	8.4.4. tomany
	8.4.4.1. Example
	8.4.4.2. Attributes
	8.4.4.3. Children

	8.4.5. tomanycont
	8.4.5.1. Example
	8.4.5.2. Attributes
	8.4.5.3. Children

	8.4.6. toone
	8.4.6.1. Example
	8.4.6.2. Attributes

	8.4.7. link
	8.4.7.1. Example
	8.4.7.2. Attributes

	8.5. Zenoss Permissions
	8.5.1. Adding New Permissions
	8.5.2. Assigning Permissions to a Method
	8.5.3. Checking Links

	Chapter 9. Zenoss Daemons
	9.1. Twisted Network Programming Overview
	9.1.1. Understanding NJobs, Driver and DeferredList
	9.1.1.1. DeferredList
	9.1.1.2. NJobs
	9.1.1.3. Driver
	9.1.1.4. A Simple Example

	9.2. Zenoss Daemon Overview
	9.3. zenhub: Daemon to ZODB management
	9.3.1. Daemon to ZODB management
	9.3.2. Heartbeats and other Events
	9.3.3. Pluggable Daemon Services

	9.4. ZenRender and Graphs
	9.5. Developing a Daemon
	9.5.1. Command-line Options
	9.5.2. Add the Daemon Control Script
	9.5.3. Setup ZenHub Communications
	9.5.3.1. Registering Services with the Hub

	Chapter 10. Add a Performance Daemon
	10.1. Overview
	10.2. DataMaps
	10.3. Performance Collection
	10.4. Creating a New Collector
	10.4.1. Constructor
	10.4.2. Getting a List of Devices
	10.4.2.1. Thresholds
	10.4.2.1.1. Complex Thresholds

	10.4.3. fetchConfig()
	10.4.4. Collector's ZenHub Service
	10.4.5. Miscellanous Functions
	10.4.6. Collect the Performance Data

	Chapter 11. Adding a new Device Type
	11.1. Overview
	11.2. Add the MIB
	11.3. Add a Device organizer
	11.4. Create a Modeler
	11.4.1. Verify the SNMP connectivity and OIDs
	11.4.2. Common SNMP Issues
	11.4.3. Modeler Code
	11.4.4. Testing the Modeler

	11.5. Create a Performance Collector
	11.5.1. Performance Data Collector Code
	11.5.2. Writing Your Own Command Parser

	11.6. Create the Template
	11.6.1. Create the DataSource
	11.6.2. Create a Threshold
	11.6.3. Create a Graph

	11.7. Map Events

	Chapter 12. Extending the User Interface
	12.1. Overview of the Zenoss UI Technologies
	12.1.1. HyperText Markup Language (HTML)
	12.1.2. Cascading Style Sheets (CSS)
	12.1.3. Zope 2, ZPT and TAL
	12.1.4. ZPT and Macro Exapnsion for TAL (METAL)
	12.1.5. JavaScript / AJAX
	12.1.6. JavaScript libraries: YUI and MochiKit

	12.2. Customizing the Navigation Bar
	12.2.1. Adding a link
	12.2.2. A simple HTML page
	12.2.3. A simple TAL and METAL page

	12.3. Customizing the Logo
	12.4. Zope 2 Page Templates, TAL and METAL and Zenoss
	12.4.1. Tips

	12.5. Zope 3 Views Explained
	12.5.1. The Zope 2 Way
	12.5.2. The Zope 3 Way

	12.6. Other Customziations
	12.6.1. Adding Tabs
	12.6.2. Adding a Dialog
	12.6.3. Adding a New Menu or Menu Item
	12.6.4. Creating a Table Using ZenTableManager
	12.6.5. Creating an Editable Table
	12.6.6. How to Save Properties via an Edit Screen

	12.7. Creating a Dashboard Portlet
	12.7.1. Create a ZenPack
	12.7.2. Write the Python back-end code
	12.7.3. Write the JavaScript Portlet
	12.7.4. Register the portlet

	12.8. Debugging Tips

	Chapter 13. Reports
	13.1. Adding a New Report
	13.2. Plugins
	13.3. Adding Export Buttons to Reports

	Chapter 14. Migrating Zenoss Code
	14.1. Introduction and Steps
	14.2. How It Works
	14.3. What You Write
	14.3.1. Implement cutover()
	14.3.2. Supporting Code
	14.3.3. Testing and Deployment

	Chapter 15. Testing
	15.1. Zenoss Unit Tests
	15.1.1. Introduction
	15.1.2. doctest Testing
	15.1.3. Zenoss' Test Runner
	15.1.3.1. An Example Unit Test

	15.1.4. Integrating With Buildbot
	15.1.5. Javascript Test Framework

	15.2. Functional User Interface Testing
	15.2.1. Introduction
	15.2.2. Installing and Running
	15.2.2.1. Installing and Configuring Mac OS X

	15.3. Where to Get More Information

	Appendix A. Event Database Dictionary
	Appendix B. TALES Expressions
	B.1. Examples
	B.1.1. ping
	B.1.2. DNS forward lookup
	B.1.3. DNS reverse lookup
	B.1.4. snmpwalk

	B.2. TALES Device Attributes
	B.3. TALES Event Attributes

	Glossary

