
Solaris ZFS Administration Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 817–2271
September 2008

Copyright 2008 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. or its subsidiaries in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.
Legato NetWorker is a trademark or registered trademark of Legato Systems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2008 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java et Solaris sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc., ou ses filiales, aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou
des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture
développée par Sun Microsystems, Inc. Legato NetWorker is a trademark or registered trademark of Legato Systems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matière de contrôle des exportations et
peuvent être soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matière de contrôle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

080904@20795

Contents

Preface ...11

1 ZFS File System (Introduction) ..15
What's New in ZFS? ... 15

Using ZFS ACL Sets ... 16
ZFS Installation and Boot Support .. 16
Rolling Back a Dataset Without Unmounting ... 17
Using Cache Devices in Your ZFS Storage Pool ... 17
Enhancements to the zfs send Command ...18
ZFS Quotas and Reservations for File System Data Only ... 19
ZFS File System Properties for the Solaris CIFS Service .. 19
ZFS Storage Pool Properties ... 20
ZFS and File System Mirror Mounts .. 21
ZFS Command History Enhancements (zpool history) ..21
Upgrading ZFS File Systems (zfs upgrade) ...22
ZFS Delegated Administration ... 23
Setting Up Separate ZFS Logging Devices .. 23
Creating Intermediate ZFS Datasets .. 24
ZFS Hotplugging Enhancements ... 25
Recursively Renaming ZFS Snapshots (zfs rename -r) ..26
ZFS Boot Support on x86 Systems ... 26
GZIP Compression is Available for ZFS .. 27
Storing Multiple Copies of ZFS User Data .. 27
Improved zpool status Output ..28
ZFS and Solaris iSCSI Improvements .. 28
Sharing ZFS File System Enhancements ... 28
ZFS Command History (zpool history) ...29
ZFS Property Improvements .. 30

3

Displaying All ZFS File System Information .. 31
New zfs receive -F Option ...32
Recursive ZFS Snapshots .. 32
Double Parity RAID-Z (raidz2) .. 32
Hot Spares for ZFS Storage Pool Devices .. 32
Replacing a ZFS File System With a ZFS Clone (zfs promote) ..33
Upgrading ZFS Storage Pools (zpool upgrade) ...33
Using ZFS to Clone Non-Global Zones and Other Enhancements 33
ZFS Backup and Restore Commands are Renamed .. 34
Recovering Destroyed Storage Pools ... 34
ZFS is Integrated With Fault Manager .. 34
New zpool clear Command ...35
Compact NFSv4 ACL Format .. 35
File System Monitoring Tool (fsstat) ... 35
ZFS Web-Based Management .. 36

What Is ZFS? .. 37
ZFS Pooled Storage .. 37
Transactional Semantics ... 37
Checksums and Self-Healing Data ... 38
Unparalleled Scalability .. 38
ZFS Snapshots .. 38
Simplified Administration .. 39

ZFS Terminology ... 39
ZFS Component Naming Requirements .. 41

2 Getting Started With ZFS ...43
ZFS Hardware and Software Requirements and Recommendations .. 43
Creating a Basic ZFS File System ... 44
Creating a ZFS Storage Pool ... 45

▼ How to Identify Storage Requirements for Your ZFS Storage Pool 45
▼ How to Create a ZFS Storage Pool .. 45

Creating a ZFS File System Hierarchy ... 46
▼ How to Determine Your ZFS File System Hierarchy ... 47
▼ How to Create ZFS File Systems ... 47

Contents

Solaris ZFS Administration Guide • September 20084

3 ZFS and Traditional File System Differences ... 51
ZFS File System Granularity ... 51
ZFS Space Accounting .. 52

Out of Space Behavior ... 52
Mounting ZFS File Systems .. 53
Traditional Volume Management ... 53
New Solaris ACL Model .. 53

4 Installing and Booting a ZFS Root File System ... 55
Installing and Booting a ZFS Root File System (Overview) ... 55

ZFS Installation Features ... 56
Solaris Installation and Solaris Live Upgrade Requirements for ZFS Support 57

Installing a ZFS Root File System (Initial Installation) ... 58
Installing a ZFS Root File System (JumpStart Installation) .. 64

ZFS JumpStart Profile Examples .. 64
ZFS JumpStart Keywords .. 65
ZFS JumpStart Issues ... 67

Migrating a UFS root File System to a ZFS root File System (Solaris Live Upgrade) 67
Required Solaris Live Upgrade Patch Information .. 68
ZFS Solaris Live Upgrade Migration Issues .. 69
Using Solaris Live Upgrade to Migrate Zones .. 70
Using Solaris Live Upgrade to Migrate to a ZFS Root File System ... 71

ZFS Support for Swap and Dump Devices ... 78
Adjusting the Sizes of Your ZFS Swap and Dump Devices ... 78

Booting From a ZFS Root File System .. 79
Booting From a Alternate Disk in a Mirrored ZFS root Pool ... 80
Booting From a ZFS root File System on a SPARC Based System .. 81
Booting From a ZFS Root File System on an x86 Based System ... 82

5 Managing ZFS Storage Pools ...85
Components of a ZFS Storage Pool ... 85

Using Disks in a ZFS Storage Pool ... 85
Using Slices in a ZFS Storage Pool ... 87
Using Files in a ZFS Storage Pool ... 87

Replication Features of a ZFS Storage Pool .. 88

Contents

5

Mirrored Storage Pool Configuration ... 88
RAID-Z Storage Pool Configuration ... 88
Self-Healing Data in a Redundant Configuration .. 89
Dynamic Striping in a Storage Pool ... 89

Creating and Destroying ZFS Storage Pools .. 90
Creating a ZFS Storage Pool ... 90
Displaying Storage Pool Virtual Device Information .. 94
Handling ZFS Storage Pool Creation Errors ... 95
Destroying ZFS Storage Pools .. 98

Managing Devices in ZFS Storage Pools ... 99
Adding Devices to a Storage Pool ... 99
Attaching and Detaching Devices in a Storage Pool .. 104
Onlining and Offlining Devices in a Storage Pool .. 106
Clearing Storage Pool Devices .. 108
Replacing Devices in a Storage Pool .. 108
Designating Hot Spares in Your Storage Pool .. 110

Managing ZFS Storage Pool Properties .. 114
Querying ZFS Storage Pool Status ... 116

Displaying Basic ZFS Storage Pool Information .. 116
Viewing ZFS Storage Pool I/O Statistics ... 118
Determining the Health Status of ZFS Storage Pools .. 120

Migrating ZFS Storage Pools .. 123
Preparing for ZFS Storage Pool Migration .. 123
Exporting a ZFS Storage Pool ... 123
Determining Available Storage Pools to Import .. 124
Finding ZFS Storage Pools From Alternate Directories .. 126
Importing ZFS Storage Pools .. 127
Recovering Destroyed ZFS Storage Pools ... 128
Upgrading ZFS Storage Pools ... 130

6 Managing ZFS File Systems ..133
Creating and Destroying ZFS File Systems .. 134

Creating a ZFS File System .. 134
Destroying a ZFS File System ... 135
Renaming a ZFS File System ... 136

Contents

Solaris ZFS Administration Guide • September 20086

Introducing ZFS Properties .. 137
ZFS Read-Only Native Properties .. 144
Settable ZFS Native Properties ... 145
ZFS User Properties ... 149

Querying ZFS File System Information .. 150
Listing Basic ZFS Information .. 150
Creating Complex ZFS Queries ... 151

Managing ZFS Properties ... 152
Setting ZFS Properties ... 153
Inheriting ZFS Properties ... 153
Querying ZFS Properties ... 154

Mounting and Sharing ZFS File Systems .. 156
Managing ZFS Mount Points .. 157
Mounting ZFS File Systems .. 159
Using Temporary Mount Properties ... 160
Unmounting ZFS File Systems ... 160
Sharing and Unsharing ZFS File Systems ... 161
Sharing ZFS Files in a Solaris CIFS Environment .. 162

ZFS Quotas and Reservations .. 165
Setting Quotas on ZFS File Systems ... 165
Setting Reservations on ZFS File Systems ... 167

7 Working With ZFS Snapshots and Clones .. 169
Overview of ZFS Snapshots .. 169

Creating and Destroying ZFS Snapshots .. 170
Displaying and Accessing ZFS Snapshots ... 172
Rolling Back to a ZFS Snapshot .. 172

Overview of ZFS Clones ... 173
Creating a ZFS Clone ... 174
Destroying a ZFS Clone ... 174
Replacing a ZFS File System With a ZFS Clone .. 174

Sending and Receiving ZFS Data ... 176
Sending a ZFS Snapshot .. 177
Receiving a ZFS Snapshot ... 178
Sending and Receiving Complex ZFS Snapshot Streams .. 179

Contents

7

Saving ZFS Data With Other Backup Products .. 182

8 Using ACLs and Attributes to Protect ZFS Files .. 183
New Solaris ACL Model .. 183

Syntax Descriptions for Setting ACLs ... 184
ACL Inheritance ... 188
ACL Property Modes ... 189

Setting ACLs on ZFS Files ... 190
Setting and Displaying ACLs on ZFS Files in Verbose Format .. 192

Setting ACL Inheritance on ZFS Files in Verbose Format .. 199
Setting and Displaying ACLs on ZFS Files in Compact Format .. 209
Applying Special Attributes to ZFS Files ... 212

9 ZFS Delegated Administration ..215
Overview of ZFS Delegated Administration .. 215

Disabling ZFS Delegated Permissions ... 216
Delegating ZFS Permissions ... 216

Syntax Description for Delegating Permissions (zfs allow) .. 218
Removing ZFS Delegated Permissions (zfs unallow) ... 219

Using ZFS Delegated Administration ... 219
Displaying ZFS Delegated Permissions (Examples) .. 219
Delegating ZFS Permissions (Examples) .. 221
Removing ZFS Permissions (Examples) ... 226

10 ZFS Advanced Topics ...229
ZFS Volumes .. 229

Using a ZFS Volume as a Swap or Dump Device ... 230
Using a ZFS Volume as a Solaris iSCSI Target ... 231

Using ZFS on a Solaris System With Zones Installed .. 232
Adding ZFS File Systems to a Non-Global Zone .. 233
Delegating Datasets to a Non-Global Zone .. 233
Adding ZFS Volumes to a Non-Global Zone ... 234
Using ZFS Storage Pools Within a Zone ... 234
Managing ZFS Properties Within a Zone ... 235

Contents

Solaris ZFS Administration Guide • September 20088

Understanding the zoned Property ... 236
Using ZFS Alternate Root Pools .. 237

Creating ZFS Alternate Root Pools .. 237
Importing Alternate Root Pools ... 237

ZFS Rights Profiles .. 238

11 ZFS Troubleshooting and Data Recovery .. 239
ZFS Failure Modes ... 239

Missing Devices in a ZFS Storage Pool .. 240
Damaged Devices in a ZFS Storage Pool ... 240
Corrupted ZFS Data .. 240

Checking ZFS Data Integrity .. 241
Data Repair ... 241
Data Validation .. 241
Controlling ZFS Data Scrubbing ... 241

Identifying Problems in ZFS .. 243
Determining if Problems Exist in a ZFS Storage Pool ... 244
Reviewing zpool status Output .. 244
System Reporting of ZFS Error Messages ... 247

Repairing a Damaged ZFS Configuration .. 248
Repairing a Missing Device .. 248

Physically Reattaching the Device ... 249
Notifying ZFS of Device Availability ... 249

Repairing a Damaged Device ... 250
Determining the Type of Device Failure ... 250
Clearing Transient Errors ... 251
Replacing a Device in a ZFS Storage Pool ... 251

Repairing Damaged Data ... 257
Identifying the Type of Data Corruption .. 258
Repairing a Corrupted File or Directory ... 259
Repairing ZFS Storage Pool-Wide Damage .. 260

Repairing an Unbootable System .. 261

Index ... 263

Contents

9

10

Preface

The ZFS Administration Guide provides information about setting up and managing SolarisTM

ZFS file systems.

This guide contains information for both SPARC® based and x86 based systems.

Note – This Solaris release supports systems that use the SPARC and x86 families of processor
architectures: UltraSPARC®, SPARC64, AMD64, Pentium, and Xeon EM64T. The supported
systems appear in the Solaris 10 Hardware Compatibility List at
http://www.sun.com/bigadmin/hcl. This document cites any implementation differences
between the platform types.

In this document these x86 terms mean the following:

■ “x86” refers to the larger family of 64-bit and 32-bit x86 compatible products.
■ “x64” points out specific 64-bit information about AMD64 or EM64T systems.
■ “32-bit x86” points out specific 32-bit information about x86 based systems.

For supported systems, see the Solaris 10 Hardware Compatibility List.

Who Should Use This Book
This guide is intended for anyone who is interested in setting up and managing Solaris ZFS file
systems. Experience using the Solaris Operating System (OS) or another UNIX® version is
recommended.

How This Book Is Organized
The following table describes the chapters in this book.

11

http://www.sun.com/bigadmin/hcl

Chapter Description

Chapter 1, “ZFS File System
(Introduction)”

Provides an overview of ZFS and its features and benefits. It also covers some
basic concepts and terminology.

Chapter 2, “Getting Started
With ZFS”

Provides step-by-step instructions on setting up simple ZFS configurations
with simple pools and file systems. This chapter also provides the hardware
and software required to create ZFS file systems.

Chapter 3, “ZFS and
Traditional File System
Differences”

Identifies important features that make ZFS significantly different from
traditional file systems. Understanding these key differences will help reduce
confusion when using traditional tools to interact with ZFS.

Chapter 4, “Installing and
Booting a ZFS Root File
System”

Describes how to install and boot a ZFS file system. Migrating a UFS root file
system to a ZFS file system by using Solaris Live Upgrade is also covered.

Chapter 5, “Managing ZFS
Storage Pools”

Provides a detailed description of how to create and administer storage
pools.

Chapter 6, “Managing ZFS File
Systems”

Provides detailed information about managing ZFS file systems. Included are
such concepts as hierarchical file system layout, property inheritance, and
automatic mount point management and share interactions.

Chapter 7, “Working With ZFS
Snapshots and Clones”

Describes how to create and administer ZFS snapshots and clones.

Chapter 8, “Using ACLs and
Attributes to Protect ZFS Files”

Describes how to use access control lists (ACLs) to protect your ZFS files by
providing more granular permissions then the standard UNIX permissions.

Chapter 9, “ZFS Delegated
Administration”

Describes how to use ZFS delegated administration to allow non-privileged
users to perform ZFS administration tasks.

Chapter 10, “ZFS Advanced
Topics”

Provides information on using ZFS volumes, using ZFS on a Solaris system
with zones installed, and alternate root pools.

Chapter 11, “ZFS
Troubleshooting and Data
Recovery”

Describes how to identify ZFS failure modes and how to recover from them.
Steps for preventing failures are covered as well.

Related Books
Related information about general Solaris system administration topics can be found in the
following books:

■ Solaris System Administration: Basic Administration
■ Solaris System Administration: Advanced Administration
■ Solaris System Administration: Devices and File Systems
■ Solaris System Administration: Security Services
■ Solaris Volume Manager Administration Guide

Preface

Solaris ZFS Administration Guide • September 200812

Documentation, Support, and Training
The Sun web site provides information about the following additional resources:

■ Documentation (http://www.sun.com/documentation/)
■ Support (http://www.sun.com/support/)
■ Training (http://www.sun.com/training/)

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

TABLE P–1 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.

Shell Prompts in Command Examples
The following table shows the default UNIX system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

Preface

13

http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/

TABLE P–2 Shell Prompts

Shell Prompt

C shell machine_name%

C shell for superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell for superuser #

Preface

Solaris ZFS Administration Guide • September 200814

ZFS File System (Introduction)

This chapter provides an overview of the ZFS file system and its features and benefits. This
chapter also covers some basic terminology used throughout the rest of this book.

The following sections are provided in this chapter:

■ “What's New in ZFS?” on page 15
■ “What Is ZFS?” on page 37
■ “ZFS Terminology” on page 39
■ “ZFS Component Naming Requirements” on page 41

What's New in ZFS?
This section summarizes new features in the ZFS file system.

■ “Using ZFS ACL Sets” on page 16
■ “ZFS Installation and Boot Support” on page 16
■ “Rolling Back a Dataset Without Unmounting” on page 17
■ “Using Cache Devices in Your ZFS Storage Pool” on page 17
■ “Enhancements to the zfs send Command” on page 18
■ “ZFS Quotas and Reservations for File System Data Only” on page 19
■ “ZFS File System Properties for the Solaris CIFS Service” on page 19
■ “ZFS Storage Pool Properties” on page 20
■ “ZFS and File System Mirror Mounts” on page 21
■ “ZFS Command History Enhancements (zpool history)” on page 21
■ “Upgrading ZFS File Systems (zfs upgrade)” on page 22
■ “ZFS Delegated Administration” on page 23
■ “Setting Up Separate ZFS Logging Devices” on page 23
■ “Creating Intermediate ZFS Datasets” on page 24
■ “ZFS Hotplugging Enhancements” on page 25
■ “Recursively Renaming ZFS Snapshots (zfs rename -r)” on page 26
■ “ZFS Boot Support on x86 Systems” on page 26

1C H A P T E R 1

15

■ “GZIP Compression is Available for ZFS” on page 27
■ “Storing Multiple Copies of ZFS User Data” on page 27
■ “Improved zpool status Output” on page 28
■ “ZFS and Solaris iSCSI Improvements” on page 28
■ “Sharing ZFS File System Enhancements” on page 28
■ “ZFS Command History (zpool history)” on page 29
■ “ZFS Property Improvements” on page 30
■ “Displaying All ZFS File System Information” on page 31
■ “New zfs receive -F Option” on page 32
■ “Recursive ZFS Snapshots” on page 32
■ “Double Parity RAID-Z (raidz2)” on page 32
■ “Hot Spares for ZFS Storage Pool Devices” on page 32
■ “Replacing a ZFS File System With a ZFS Clone (zfs promote)” on page 33
■ “Upgrading ZFS Storage Pools (zpool upgrade)” on page 33
■ “Using ZFS to Clone Non-Global Zones and Other Enhancements” on page 33
■ “ZFS Backup and Restore Commands are Renamed” on page 34
■ “Recovering Destroyed Storage Pools” on page 34
■ “ZFS is Integrated With Fault Manager” on page 34
■ “New zpool clear Command” on page 35
■ “Compact NFSv4 ACL Format” on page 35
■ “File System Monitoring Tool (fsstat)” on page 35
■ “ZFS Web-Based Management” on page 36

Using ZFS ACL Sets
Solaris Express Community Edition, build 95: This release provides the ability to apply
NFSv4–style ACLS in sets, rather than apply different ACL permissions individually. The
following ACL sets are provided:

■ full_set = all permissions
■ modify_set = all permissions except write_acl and write_owner

■ read_set = read_data, read_attributes, read_xattr, and read_acl

■ write_set = write_data, append_data, write_attributes, and write_xattr

These ACL sets are prefined and cannot be modified.

For more information about using ACL sets, see Example 8–5.

ZFS Installation and Boot Support
Solaris Express Community Edition, build 90: This release provides the ability to install and
boot a ZFS root file system. You can use the initial installation option or the JumpStart feature
to install a ZFS root file system. Or, you can use the Live Upgrade feature to migrate a UFS root

What's New in ZFS?

Solaris ZFS Administration Guide • September 200816

file system to a ZFS root file system. ZFS support for swap and dump devices is also provided.
For more information, see Chapter 4, “Installing and Booting a ZFS Root File System.”

For a list of known issues with this release, go to the following site:

http://opensolaris.org/os/community/zfs/boot

Rolling Back a Dataset Without Unmounting
Solaris Express Community Edition, build 80: This release provides the ability to rollback a
dataset without unmounting it first. This feature means that zfs rollback -f option is no
longer needed to force an umount operation. The -f option is no longer supported, and is
ignored if specified.

Using Cache Devices in Your ZFS Storage Pool
Solaris Express Community Edition, build 78: In this Solaris release, you can create pool and
specify cache devices, which are used to cache storage pool data.

Cache devices provide an additional layer of caching between main memory and disk. Using
cache devices provide the greatest performance improvement for random read-workloads of
mostly static content.

One or more cache devices can specified when the pool is created. For example:

zpool create pool mirror c0t2d0 c0t4d0 cache c0t0d0

zpool status pool

pool: pool

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

pool ONLINE 0 0 0

mirror ONLINE 0 0 0

c0t2d0 ONLINE 0 0 0

c0t4d0 ONLINE 0 0 0

cache

c0t0d0 ONLINE 0 0 0

errors: No known data errors

After cache devices are added, they gradually fill with content from main memory. Depending
on the size of your cache device, it could take over an hour for them to fill. Capacity and reads
can be monitored by using the zpool iostat command as follows:

What's New in ZFS?

Chapter 1 • ZFS File System (Introduction) 17

http://opensolaris.org/os/community/zfs/boot

zpool iostat -v pool 5

Cache devices can be added or removed from the pool after the pool is created.

For more information, see “Creating a ZFS Storage Pool with Cache Devices” on page 93 and
Example 5–4.

Enhancements to the zfs send Command
Solaris Express Community Edition, build 77: This release includes the following
enhancements to the zfs send command.

■ Send all incremental streams from one snapshot to a cumulative snapshot. For example:

zfs list

NAME USED AVAIL REFER MOUNTPOINT

pool 428K 16.5G 20K /pool

pool/fs 71K 16.5G 21K /pool/fs

pool/fs@snapA 16K - 18.5K -

pool/fs@snapB 17K - 20K -

pool/fs@snapC 17K - 20.5K -

pool/fs@snapD 0 - 21K -

zfs send -I pool/fs@snapA pool/fs@snapD > /snaps/fs@combo

Send all incremental snapshots between fs@snapA to fs@snapD to fs@combo.
■ Send an incremental stream from the origin snapshot to create a clone. The original

snapshot must already exist on the receiving side to accept the incremental stream. For
example:

zfs send -I pool/fs@snap1 pool/clone@snapA > /snaps/fsclonesnap-I

.

.

zfs receive -F pool/clone < /snaps/fsclonesnap-I

■ Send a replication stream of all descendent file systems, up to the named snapshots. When
received, all properties, snapshots, descendent file systems, and clones are preserved. For
example:

zfs send -R pool/fs@snap > snaps/fs-R

For an extended example, see Example 7–1.
■ Send an incremental replication stream.

zfs send -R -[iI] @snapA pool/fs@snapD

For an extended example, see Example 7–1.

What's New in ZFS?

Solaris ZFS Administration Guide • September 200818

For more information, see “Sending and Receiving Complex ZFS Snapshot Streams” on
page 179.

ZFS Quotas and Reservations for File System Data
Only
Solaris Express Community Edition, build 77: In addition to the existing ZFS quota and
reservation features, this release includes dataset quotas and reservations that do not include
descendents, such as snapshots and clones, in the space consumption accounting.

■ The refquota property limits the amount of space a dataset can consume. This property
enforces a hard limit on the amount of space that can be used. This hard limit does not
include space used by descendents, such as snapshots and clones.

■ The refreservation property sets the minimum amount of space that is guaranteed to a
dataset, not including its descendents.

For example, you can set a 10 Gbyte refquota for studentA that sets a 10-Gbyte hard limit of
referenced space. For additional flexibility, you can set a 20-Gbyte quota that allows you to
manage studentA's snapshots.

zfs set refquota=10g tank/studentA

zfs set quota=20g tank/studentA

For more information, see “ZFS Quotas and Reservations” on page 165.

ZFS File System Properties for the Solaris CIFS Service
Solaris Express Community Edition, build 77: This release provides support for the SolarisTM

Common Internet File System (CIFS) service. This product provides the ability to share files
between Solaris and Windows or MacOS systems.

To facilitate sharing files between these systems by using the Solaris CIFS service, the following
new ZFS properties are provided:

■ Case sensitivity support (casesensitivity)
■ Non-blocking mandatory locks (nbmand)
■ SMB share support (sharesmb)
■ Unicode normalization support (normalization)
■ UTF-8 character set support (utf8only)

Currently, the sharesmb property is available to share ZFS files in the Solaris CIFS environment.
More ZFS CIFS-related properties will be available in an upcoming release. For information
about using the sharesmb property, see “Sharing ZFS Files in a Solaris CIFS Environment” on
page 162.

What's New in ZFS?

Chapter 1 • ZFS File System (Introduction) 19

In addition to the ZFS properties added for supporting the Solaris CIFS software product, the
vscan property is available for scanning ZFS files if you have a 3rd-party virus scanning engine.

ZFS Storage Pool Properties
Solaris Express Community Edition, build 77: ZFS storage pool properties were introduced in
an earlier release. This release provides for additional property information. For example:

zpool get all mpool

NAME PROPERTY VALUE SOURCE

mpool size 33.8G -

mpool used 5.76G -

mpool available 28.0G -

mpool capacity 17% -

mpool altroot - default

mpool health ONLINE -

mpool guid 2689713858991441653 -

mpool version 10 default

mpool bootfs mpool/ROOT/zfsBE local

mpool delegation on default

mpool autoreplace off default

mpool cachefile - default

mpool failmode continue local

For a description of these properties, see Table 5–1.

■ The cachefile property – Solaris Express Community Edition, build 77: This release
provides the cachefile property, which controls where pool configuration information is
cached. All pools in the cache are automatically imported when the system boots. However,
installation and clustering environments might need to cache this information in a different
location so that pools are not automatically imported.
You can set this property to cache pool configuration in a different location that can be
imported later by using the zpool import c command. For most ZFS configurations, this
property would not be used.
The cachefile property is not persistent and is not stored on disk. This property replaces
the temporary property that was used to indicate that pool information should not be
cached in previous Solaris releases.

■ The failmode property – Solaris Express Community Edition, build 77: This release
provides the failmode property for determining the behavior of a catastrophic pool failure
due to a loss of device connectivity or the failure of all devices in the pool. The failmode
property can be set to these values: wait, continue, or panic. The default value is wait,
which means you must reconnect the device or replace a failed device and clear the error
with the zpool clear command.

What's New in ZFS?

Solaris ZFS Administration Guide • September 200820

The failmode property is set like other settable ZFS properties, which can be set either
before or after the pool is created. For example:

zpool set failmode=continue tank

zpool get failmode tank

NAME PROPERTY VALUE SOURCE

tank failmode continue local

zpool create -o failmode=continue users mirror c0t1d0 c1t1d0

For a description of all ZFS pool properties, see Table 5–1.

ZFS and File System Mirror Mounts
Solaris Express Community Edition, build 77: In this Solaris release, NFSv4 mount
enhancements are provided to make ZFS file systems more accessible to NFS clients.

When file systems are created on the NFS server, the NFS client can automatically discover
these newly created file systems within their existing mount of a parent file system.

For example, if the server neo already shares the tank file system and client zee has it mounted,
/tank/baz is automatically visible on the client after it is created on the server.

zee# mount neo:/tank /mnt

zee# ls /mnt

baa bar

neo# zfs create tank/baz

zee% ls /mnt

baa bar baz

zee% ls /mnt/baz

file1 file2

ZFS Command History Enhancements (zpool
history)
Solaris Express Community Edition, build 69: The zpool history command has been
enhanced to provide the following new features:

■ ZFS file system event information is displayed. For example:

zpool history users

History for ’users’:

2008-07-10.09:43:05 zpool create users mirror c1t1d0 c1t2d0

What's New in ZFS?

Chapter 1 • ZFS File System (Introduction) 21

2008-07-10.09:43:48 zfs create users/home

2008-07-10.09:43:56 zfs create users/home/markm

2008-07-10.09:44:02 zfs create users/home/marks

2008-07-10.09:44:19 zfs snapshot -r users/home@yesterday

■ A -l option for displaying a long format that includes the user name, the hostname, and the
zone in which the operation was performed. For example:

zpool history -l users

History for ’users’:

2008-07-10.09:43:05 zpool create users mirror c1t1d0 c1t2d0 [user root on corona:global]

2008-07-10.09:43:13 zfs create users/marks [user root on corona:global]

2008-07-10.09:43:44 zfs destroy users/marks [user root on corona:global]

2008-07-10.09:43:48 zfs create users/home [user root on corona:global]

2008-07-10.09:43:56 zfs create users/home/markm [user root on corona:global]

2008-07-10.09:44:02 zfs create users/home/marks [user root on corona:global]

2008-07-11.10:44:19 zfs snapshot -r users/home@yesterday [user root on corona:global]

■ A -i option for displaying internal event information that can be used for diagnostic
purposes. For example:

zpool history -i users

History for ’users’:

2008-07-10.09:43:05 zpool create users mirror c1t1d0 c1t2d0

2008-07-10.09:43:13 [internal create txg:6] dataset = 21

2008-07-10.09:43:13 zfs create users/marks

2008-07-10.09:43:48 [internal create txg:12] dataset = 27

2008-07-10.09:43:48 zfs create users/home

2008-07-10.09:43:55 [internal create txg:14] dataset = 33

2008-07-10.09:43:56 zfs create users/home/markm

2008-07-10.09:44:02 [internal create txg:16] dataset = 39

2008-07-10.09:44:02 zfs create users/home/marks

2008-07-10.09:44:19 [internal snapshot txg:21] dataset = 42

2008-07-10.09:44:19 [internal snapshot txg:21] dataset = 44

2008-07-10.09:44:19 [internal snapshot txg:21] dataset = 46

2008-07-10.09:44:19 zfs snapshot -r users/home@yesterday

For more information about using the zpool history command, see “Identifying Problems in
ZFS” on page 243.

Upgrading ZFS File Systems (zfs upgrade)
Solaris Express Community Edition, build 69: The zfs upgrade command is included in this
release to provide future ZFS file system enhancements to existing file systems. ZFS storage
pools have a similar upgrade feature to provide pool enhancements to existing storage pools.

For example:

What's New in ZFS?

Solaris ZFS Administration Guide • September 200822

zfs upgrade

This system is currently running ZFS filesystem version 3.

All filesystems are formatted with the current version.

Note – File systems that are upgraded and any streams created from those upgraded file systems
by the zfs send command are not accessible on systems that are running older software
releases.

ZFS Delegated Administration
Solaris Express Community Edition, build 69: In this release, you can delegate fine-grained
permissions to perform ZFS administration tasks to non-privileged users.

You can use the zfs allow and zfs unallow commands to grant and remove permissions.

You can modify the ability to use delegated administration with the pool's delegation
property. For example:

zpool get delegation users

NAME PROPERTY VALUE SOURCE

users delegation on default

zpool set delegation=off users

zpool get delegation users

NAME PROPERTY VALUE SOURCE

users delegation off local

By default, the delegation property is enabled.

For more information, see Chapter 9, “ZFS Delegated Administration,” and zfs(1M).

Setting Up Separate ZFS Logging Devices
Solaris Express Community Edition, build 68: The ZFS intent log (ZIL) is provided to satisfy
POSIX requirements for synchronous transactions. For example, databases often require their
transactions to be on stable storage devices when returning from a system call. NFS and other
applications can also use fsync() to ensure data stability. By default, the ZIL is allocated from
blocks within the main storage pool. However, better performance might be possible by using
separate intent log devices in your ZFS storage pool, such as with NVRAM or a dedicated disk.

Log devices for the ZFS intent log are not related to database log files.

You can set up a ZFS logging device when the storage pool is created or after the pool is created.
For examples of setting up log devices, see “Creating a ZFS Storage Pool with Log Devices” on
page 93 and “Adding Devices to a Storage Pool” on page 99.

What's New in ZFS?

Chapter 1 • ZFS File System (Introduction) 23

http://docs.sun.com/doc/819-2240/zfs-1m?a=view

You can attach a log device to an existing log device to create a mirrored log device. This
operation is identical to attaching a device in a unmirrored storage pool.

Consider the following points when determining whether setting up a ZFS log device is
appropriate for your environment:

■ Any performance improvement seen by implementing a separate log device depends on the
device type, the hardware configuration of the pool, and the application workload. For
preliminary performance information, see this blog:
http://blogs.sun.com/perrin/entry/slog_blog_or_blogging_on

■ Log devices can be unreplicated or mirrored, but RAIDZ is not supported for log devices.
■ If a separate log device is not mirrored and the device that contains the log fails, storing log

blocks reverts to the storage pool.
■ Log devices can be added, replaced, attached, detached, and imported and exported as part

of the larger storage pool. Currently, log devices cannot be removed.
■ The minimum size of a log device is the same as the minimum size of each device in a pool,

which is 64 Mbytes. The amount of in-play data that might be stored on a log device is
relatively small. Log blocks are freed when the log transaction (system call) is committed.

■ The maximum size of a log device should be approximately 1/2 the size of physical memory
because that is the maximum amount of potential in-play data that can be stored. For
example, if a system has 16 Gbytes of physical memory, consider a maximum log device size
of 8 Gbytes.

Creating Intermediate ZFS Datasets
Solaris Express Community Edition, build 68: You can use the -p option with the zfs
create, zfs clone, and zfs rename commands to quickly create a non-existent intermediate
dataset, if it doesn't already exist.

For example, create ZFS datasets (users/area51) in the datab storage pool.

zfs list

NAME USED AVAIL REFER MOUNTPOINT

datab 106K 16.5G 18K /datab

zfs create -p -o compression=on datab/users/area51

If the intermediate dataset exists during the create operation, the operation completes
successfully.

Properties specified apply to the target dataset, not to the intermediate datasets. For example:

zfs get mountpoint,compression datab/users/area51

NAME PROPERTY VALUE SOURCE

What's New in ZFS?

Solaris ZFS Administration Guide • September 200824

http://blogs.sun.com/perrin/entry/slog_blog_or_blogging_on

datab/users/area51 mountpoint /datab/users/area51 default

datab/users/area51 compression on local

The intermediate dataset is created with the default mount point. Any additional properties are
disabled for the intermediate dataset. For example:

zfs get mountpoint,compression datab/users

NAME PROPERTY VALUE SOURCE

datab/users mountpoint /datab/users default

datab/users compression off default

For more information, see zfs(1M).

ZFS Hotplugging Enhancements
Solaris Express Community Edition, build 68: In this release, ZFS more effectively responds
to devices that are removed and provides a mechanism to automatically identify devices that are
inserted with the following enhancements:

■ You can replace an existing device with an equivalent device without having to use the
zpool replace command.

The autoreplace property controls automatic device replacement. If set to off, device
replacement must be initiated by the administrator by using the zpool replace command.
If set to on, any new device, found in the same physical location as a device that previously
belonged to the pool, is automatically formatted and replaced. The default behavior is off.

■ The storage pool state REMOVED is provided when a device or hot spare has been removed if
the device was physically removed while the system was running. A hot-spare device is
substituted for the removed device, if available.

■ If a device is removed and then inserted, the device is placed online. If a hot-spare was
activated when the device is re-inserted, the spare is removed when the online operation
completes.

■ Automatic detection when devices are removed or inserted is hardware-dependent and
might not be supported on all platforms. For example, USB devices are automatically
configured upon insertion. However, you might have to use the cfgadm -c configure
command to configure a SATA drive.

■ Hot spares are checked periodically to make sure they are online and available.

For more information, see zpool(1M).

What's New in ZFS?

Chapter 1 • ZFS File System (Introduction) 25

http://docs.sun.com/doc/819-2240/zfs-1m?a=view
http://docs.sun.com/doc/819-2240/zpool-1m?a=view

Recursively Renaming ZFS Snapshots (zfs rename -r)
Solaris Express Community Edition, build 63: You can recursively rename all descendent ZFS
snapshots by using the zfs rename -r command.

For example, snapshot a set of ZFS file systems.

zfs snapshot -r users/home@today

zfs list

NAME USED AVAIL REFER MOUNTPOINT

users 216K 16.5G 20K /users

users/home 76K 16.5G 22K /users/home

users/home@today 0 - 22K -

users/home/markm 18K 16.5G 18K /users/home/markm

users/home/markm@today 0 - 18K -

users/home/marks 18K 16.5G 18K /users/home/marks

users/home/marks@today 0 - 18K -

users/home/neil 18K 16.5G 18K /users/home/neil

users/home/neil@today 0 - 18K -

Then, rename the snapshots the following day.

zfs rename -r users/home@today @yesterday

zfs list

NAME USED AVAIL REFER MOUNTPOINT

users 216K 16.5G 20K /users

users/home 76K 16.5G 22K /users/home

users/home@yesterday 0 - 22K -

users/home/markm 18K 16.5G 18K /users/home/markm

users/home/markm@yesterday 0 - 18K -

users/home/marks 18K 16.5G 18K /users/home/marks

users/home/marks@yesterday 0 - 18K -

users/home/neil 18K 16.5G 18K /users/home/neil

users/home/neil@yesterday 0 - 18K -

Snapshots are the only dataset that can be renamed recursively.

For more information about snapshots, see “Overview of ZFS Snapshots” on page 169 and this
blog entry that describes how to create rolling snapshots:

http://blogs.sun.com/mmusante/entry/rolling_snapshots_made_easy

ZFS Boot Support on x86 Systems
Solaris Express Community Edition, build 62: In this Solaris release, support for booting a
ZFS file system is available on x86 systems. For more information, see:

http://www.opensolaris.org/os/community/zfs/boot

What's New in ZFS?

Solaris ZFS Administration Guide • September 200826

http://blogs.sun.com/mmusante/entry/rolling_snapshots_made_easy
http://www.opensolaris.org/os/community/zfs/boot

GZIP Compression is Available for ZFS
Solaris Express Community Edition, build 62: In this Solaris release, you can set gzip
compression on ZFS file systems in addition to lzjb compression. You can specify compression
as gzip, the default, or gzip-N, where N equals 1 through 9. For example:

zfs create -o compression=gzip users/home/snapshots

zfs get compression users/home/snapshots

NAME PROPERTY VALUE SOURCE

users/home/snapshots compression gzip local

zfs create -o compression=gzip-9 users/home/oldfiles

zfs get compression users/home/oldfiles

NAME PROPERTY VALUE SOURCE

users/home/oldfiles compression gzip-9 local

For more information about setting ZFS properties, see “Setting ZFS Properties” on page 153.

Storing Multiple Copies of ZFS User Data
Solaris Express Community Edition, build 61: As a reliability feature, ZFS file system
metadata is automatically stored multiple times across different disks, if possible. This feature is
known as ditto blocks.

In this Solaris release, you can specify that multiple copies of user data is also stored per file
system by using the zfs set copies command. For example:

zfs set copies=2 users/home

zfs get copies users/home

NAME PROPERTY VALUE SOURCE

users/home copies 2 local

Available values are 1, 2, or 3. The default value is 1. These copies are in addition to any
pool-level redundancy, such as in a mirrored or RAID-Z configuration.

The benefits of storing multiple copies of ZFS user data are as follows:

■ Improves data retention by allowing recovery from unrecoverable block read faults, such as
media faults (bit rot) for all ZFS configurations.

■ Provides data protection even in the case where only a single disk is available.
■ Allows you to select data protection policies on a per-file system basis, beyond the

capabilities of the storage pool.

Depending on the allocation of the ditto blocks in the storage pool, multiple copies might be
placed on a single disk. A subsequent full disk failure might cause all ditto blocks to be
unavailable.

What's New in ZFS?

Chapter 1 • ZFS File System (Introduction) 27

You might consider using ditto blocks when you accidentally create a non-redundant pool and
when you need to set data retention policies.

For a detailed description of how setting copies on a system with a single-disk pool or a
multiple-disk pool might impact overall data protection, see this blog:

http://blogs.sun.com/relling/entry/zfs_copies_and_data_protection

For more information about setting ZFS properties, see “Setting ZFS Properties” on page 153.

Improved zpool status Output
Solaris Express Community Edition, build 57: You can use the zpool status -v command to
display a list of files with persistent errors. Previously, you had to use the find -inum command
to identify the filenames from the list of displayed inodes.

For more information about displaying a list of files with persistent errors, see “Repairing a
Corrupted File or Directory” on page 259.

ZFS and Solaris iSCSI Improvements
Solaris Express Community Release, build 54: In this Solaris release, you can create a ZFS
volume as a Solaris iSCSI target device by setting the shareiscsi property on the ZFS volume.
This method is a convenient way to quickly set up a Solaris iSCSI target. For example:

zfs create -V 2g tank/volumes/v2

zfs set shareiscsi=on tank/volumes/v2

iscsitadm list target

Target: tank/volumes/v2

iSCSI Name: iqn.1986-03.com.sun:02:984fe301-c412-ccc1-cc80-cf9a72aa062a

Connections: 0

After the iSCSI target is created, set up the iSCSI initiator. For information about setting up a
Solaris iSCSI initiator, see Chapter 14, “Configuring Solaris iSCSI Targets and Initiators
(Tasks),” in System Administration Guide: Devices and File Systems.

For more information about managing a ZFS volume as an iSCSI target, see “Using a ZFS
Volume as a Solaris iSCSI Target” on page 231.

Sharing ZFS File System Enhancements
Solaris Express Community Release, build 53: In this Solaris release, the process of sharing file
systems has been improved. Although modifying system configuration files, such as

What's New in ZFS?

Solaris ZFS Administration Guide • September 200828

http://blogs.sun.com/relling/entry/zfs_copies_and_data_protection
http://docs.sun.com/doc/819-2723/fmvcd?a=view
http://docs.sun.com/doc/819-2723/fmvcd?a=view

/etc/dfs/dfstab, is unnecessary for sharing ZFS file systems, you can use the sharemgr
command to manage ZFS share properties. The sharemgr command enables you to set and
manage share properties on share groups. ZFS shares are automatically designated in the zfs
share group.

As in previous releases, you can set the ZFS sharenfs property on a ZFS file system to share a
ZFS file system. For example:

zfs set sharenfs=on tank/home

Or, you can use the new sharemgr add-share subcommand to share a ZFS file system in the zfs
share group. For example:

sharemgr add-share -s tank/data zfs

sharemgr show -vp zfs

zfs nfs=()

zfs/tank/data

/tank/data

/tank/data/1

/tank/data/2

/tank/data/3

Then, you can use the sharemgr command to manage ZFS shares. The following example shows
how to use sharemgr to set the nosuid property on the shared ZFS file systems. You must
preface ZFS share paths with a /zfs designation.

sharemgr set -P nfs -p nosuid=true zfs/tank/data

sharemgr show -vp zfs

zfs nfs=()

zfs/tank/data nfs=(nosuid="true")
/tank/data

/tank/data/1

/tank/data/2

/tank/data/3

For more information, see sharemgr(1M).

ZFS Command History (zpool history)
Solaris Express Community Release, build 51: In this Solaris release, ZFS automatically logs
successful zfs and zpool commands that modify pool state information. For example:

zpool history

History for ’newpool’:

2007-04-25.11:37:31 zpool create newpool mirror c0t8d0 c0t10d0

2007-04-25.11:37:46 zpool replace newpool c0t10d0 c0t9d0

What's New in ZFS?

Chapter 1 • ZFS File System (Introduction) 29

http://docs.sun.com/doc/819-2240/sharemgr-1m?a=view

2007-04-25.11:38:04 zpool attach newpool c0t9d0 c0t11d0

2007-04-25.11:38:09 zfs create newpool/user1

2007-04-25.11:38:15 zfs destroy newpool/user1

History for ’tank’:

2007-04-25.11:46:28 zpool create tank mirror c1t0d0 c2t0d0 mirror c3t0d0 c4t0d0

This features enables you or Sun support personnel to identify the exact set of ZFS commands
that was executed to troubleshoot an error scenario.

You can identify a specific storage pool with the zpool history command. For example:

zpool history newpool

History for ’newpool’:

2007-04-25.11:37:31 zpool create newpool mirror c0t8d0 c0t10d0

2007-04-25.11:37:46 zpool replace newpool c0t10d0 c0t9d0

2007-04-25.11:38:04 zpool attach newpool c0t9d0 c0t11d0

2007-04-25.11:38:09 zfs create newpool/user1

2007-04-25.11:38:15 zfs destroy newpool/user1

The features of the history log are as follows:

■ The log cannot be disabled.
■ The log is saved persistently on disk, which means the log is saved across system reboots.
■ The log is implemented as a ring buffer. The minimum size is 128 Kbytes. The maximum

size is 32 Mbytes.
■ For smaller pools, the maximum size is capped at 1% of the pool size, where size is

determined at pool creation time.
■ Requires no administration, which means tuning the size of the log or changing the location

of the log is unnecessary.

In this Solaris release, the zpool history command does not record user-ID, hostname, or
zone-name. For more information, see “ZFS Command History Enhancements (zpool
history)” on page 21.

For more information about troubleshooting ZFS problems, see “Identifying Problems in ZFS”
on page 243.

ZFS Property Improvements

ZFS xattrProperty
Solaris Express Community Release, build 56: You can use the xattr property to disable or
enable extended attributes for a specific ZFS file system. The default value is on. For a
description of ZFS properties, see “Introducing ZFS Properties” on page 137.

What's New in ZFS?

Solaris ZFS Administration Guide • September 200830

ZFS canmountProperty
Solaris Express Community Release, build 48: The new canmount property allows you to
specify whether a dataset can be mounted by using the zfs mount command. For more
information, see “The canmount Property” on page 146.

ZFS User Properties
Solaris Express Community Release, build 48: In addition to the standard native properties
that can either export internal statistics or control ZFS file system behavior, ZFS supports user
properties. User properties have no effect on ZFS behavior, but you can use them to annotate
datasets with information that is meaningful in your environment.

For more information, see “ZFS User Properties” on page 149.

Setting Properties When Creating ZFS File Systems
Solaris Express Community Release, build 48: In this Solaris release, you can set properties
when you create a file system, in addition to setting properties after the file system is created.

The following examples illustrate equivalent syntax:

zfs create tank/home

zfs set mountpoint=/export/zfs tank/home

zfs set sharenfs=on tank/home

zfs set compression=on tank/home

zfs create -o mountpoint=/export/zfs -o sharenfs=on -o compression=on tank/home

Displaying All ZFS File System Information
Solaris Express Community Release, build 48: In this Solaris release, you can use various
forms of the zfs get command to display information about all datasets if you do not specify a
dataset or if you do not specify all. In previous releases, all dataset information was not
retreivable with the zfs get command.

For example:

zfs get -s local all

tank/home atime off local

tank/home/bonwick atime off local

tank/home/marks quota 50G local

What's New in ZFS?

Chapter 1 • ZFS File System (Introduction) 31

New zfs receive -F Option
Solaris Express Community Release, build 48: In this Solaris release, you can use the new -F

option to the zfs receive command to force a rollback of the file system to the most recent
snapshot before doing the receive. Using this option might be necessary when the file system is
modified between the time a rollback occurs and the receive is initiated.

For more information, see “Receiving a ZFS Snapshot” on page 178.

Recursive ZFS Snapshots
Solaris Express Community Release, build 43: When you use the zfs snapshot command to
create a file system snapshot, you can use the -r option to recursively create snapshots for all
descendent file systems. In addition, using the -r option recursively destroys all descendent
snapshots when a snapshot is destroyed.

Recursive ZFS snapshots are created quickly as one atomic operation. The snapshots are created
together (all at once) or not created at all. The benefit of atomic snapshots operations is that the
snapshot data is always taken at one consistent time, even across descendent file systems.

For more information, see “Creating and Destroying ZFS Snapshots” on page 170.

Double Parity RAID-Z (raidz2)
Solaris Express Community Release, build 42: A redundant RAID-Z configuration can now
have either single- or double-parity, which means that one or two device failures can be
sustained respectively, without any data loss. You can specify the raidz2 keyword for a
double-parity RAID-Z configuration. Or, you can specify the raidz or raidz1 keyword for a
single-parity RAID-Z configuration.

For more information, see “Creating RAID-Z Storage Pools” on page 91 or zpool(1M).

Hot Spares for ZFS Storage Pool Devices
Solaris Express Community Release, build 42: The ZFS hot spares feature enables you to
identify disks that could be used to replace a failed or faulted device in one or more storage
pools. Designating a device as a hot spare means that if an active device in the pool fails, the hot
spare automatically replaces the failed device. Or, you can manually replace a device in a storage
pool with a hot spare.

For more information, see “Designating Hot Spares in Your Storage Pool” on page 110 and
zpool(1M).

What's New in ZFS?

Solaris ZFS Administration Guide • September 200832

http://docs.sun.com/doc/819-2240/zpool-1m?a=view
http://docs.sun.com/doc/819-2240/zpool-1m?a=view

Replacing a ZFS File System With a ZFS Clone (zfs
promote)
Solaris Express Community Release, build 42: The zfs promote command enables you to
replace an existing ZFS file system with a clone of that file system. This feature is helpful when
you want to run tests on an alternative version of a file system and then, make that alternative
version of the file system the active file system.

For more information, see “Replacing a ZFS File System With a ZFS Clone” on page 174 and
zfs(1M).

Upgrading ZFS Storage Pools (zpool upgrade)
Solaris Express Community Release, build 39: You can upgrade your storage pools to a newer
version to take advantage of the latest features by using the zpool upgrade command. In
addition, the zpool status command has been modified to notify you when your pools are
running older versions.

For more information, see “Upgrading ZFS Storage Pools” on page 130 and zpool(1M).

If you want to use the ZFS Administration console on a system with a pool from a previous
Solaris release, make sure you upgrade your pools before using the ZFS Administration console.
To see if your pools need to be upgraded, use the zpool status command. For information
about the ZFS Administration console, see “ZFS Web-Based Management” on page 36.

Using ZFS to Clone Non-Global Zones and Other
Enhancements
Solaris Express Community Release, build 39: When the source zonepath and the target
zonepath both reside on ZFS and are in the same pool, zoneadm clone now automatically uses
the ZFS clone feature to clone a zone. This enhancement means that zoneadm clone will take a
ZFS snapshot of the source zonepath and set up the target zonepath. The snapshot is named
SUNWzoneX, where X is a unique ID used to distinguish between multiple snapshots. The
destination zone's zonepath is used to name the ZFS clone. A software inventory is performed
so that a snapshot used at a future time can be validated by the system. Note that you can still
specify that the ZFS zonepath be copied instead of the ZFS clone, if desired.

To clone a source zone multiple times, a new parameter added to zoneadm allows you to specify
that an existing snapshot should be used. The system validates that the existing snapshot is
usable on the target. Additionally, the zone install process now has the capability to detect when
a ZFS file system can be created for a zone, and the uninstall process can detect when a ZFS file
system in a zone can be destroyed. These steps are then performed automatically by the
zoneadm command.

What's New in ZFS?

Chapter 1 • ZFS File System (Introduction) 33

http://docs.sun.com/doc/819-2240/zfs-1m?a=view
http://docs.sun.com/doc/819-2240/zpool-1m?a=view

Keep the following points in mind when using ZFS on a system with Solaris containers installed:

■ Do not use the ZFS snapshot features to clone a zone
■ You can delegate or add a ZFS file system to a non-global zone. For more information, see

“Adding ZFS File Systems to a Non-Global Zone” on page 233 or “Delegating Datasets to a
Non-Global Zone” on page 233.

■ Do not use a ZFS file system for a global zone root path or a non-global zone root path in the
Solaris 10 releases. You can use ZFS as a zone root path in the Solaris Express releases, but
keep in mind that patching or upgrading these zones is not supported.

For more information, see System Administration Guide: Virtualization Using the Solaris
Operating System.

ZFS Backup and Restore Commands are Renamed
Solaris Express Community Release, build 38: In this Solaris release, the zfs backup and zfs

restore commands are renamed to zfs send and zfs receive to more accurately describe
their function. The function of these commands is to save and restore ZFS data stream
representations.

For more information about these commands, see “Sending and Receiving ZFS Data” on
page 176.

Recovering Destroyed Storage Pools
Solaris Express Community Release, build 37: This release includes the zpool import -D
command, which enables you to recover pools that were previously destroyed with the zpool
destroy command.

For more information, see “Recovering Destroyed ZFS Storage Pools” on page 128.

ZFS is Integrated With Fault Manager
Solaris Express Community Release, build 36: This release includes the integration of a ZFS
diagnostic engine that is capable of diagnosing and reporting pool failures and device failures.
Checksum, I/O, device, and pool errors associated with pool or device failures are also reported.

The diagnostic engine does not include predictive analysis of checksum and I/O errors, nor
does it include proactive actions based on fault analysis.

In the event of the ZFS failure, you might see a message similar to the following from fmd:

What's New in ZFS?

Solaris ZFS Administration Guide • September 200834

http://docs.sun.com/doc/819-2450
http://docs.sun.com/doc/819-2450

SUNW-MSG-ID: ZFS-8000-D3, TYPE: Fault, VER: 1, SEVERITY: Major

EVENT-TIME: Fri Mar 10 11:09:06 MST 2006

PLATFORM: SUNW,Ultra-60, CSN: -, HOSTNAME: neo

SOURCE: zfs-diagnosis, REV: 1.0

EVENT-ID: b55ee13b-cd74-4dff-8aff-ad575c372ef8

DESC: A ZFS device failed. Refer to http://sun.com/msg/ZFS-8000-D3 for more information.

AUTO-RESPONSE: No automated response will occur.

IMPACT: Fault tolerance of the pool may be compromised.

REC-ACTION: Run ’zpool status -x’ and replace the bad device.

By reviewing the recommended action, which will be to follow the more specific directions in
the zpool status command, you will be able to quickly identify and resolve the failure.

For an example of recovering from a reported ZFS problem, see “Repairing a Missing Device”
on page 248.

New zpool clear Command
Solaris Express Community Release, build 36: This release includes the zpool clear
command for clearing error counts associated with a device or the pool. Previously, error
counts were cleared when a device in a pool was brought online with the zpool online
command. For more information, see zpool(1M) and “Clearing Storage Pool Devices” on
page 108.

Compact NFSv4 ACL Format
Solaris Express Community Release, build 34: In this release, three NFSv4 ACL formats are
available: verbose, positional, and compact. The new compact and positional ACL formats are
available to set and display ACLs. You can use the chmod command to set all 3 ACL formats.
You can use the ls -V command to display compact and positional ACL formats and the ls -v
command to display verbose ACL formats.

For more information, see “Setting and Displaying ACLs on ZFS Files in Compact Format” on
page 209, chmod(1), and ls(1).

File System Monitoring Tool (fsstat)
Solaris Express Community Release, build 34: A new file system monitoring tool, fsstat, is
available to report file system operations. Activity can be reported by mount point or by file
system type. The following example shows general ZFS file system activity.

$ fsstat zfs

new name name attr attr lookup rddir read read write write

file remov chng get set ops ops ops bytes ops bytes

7.82M 5.92M 2.76M 1.02G 3.32M 5.60G 87.0M 363M 1.86T 20.9M 251G zfs

What's New in ZFS?

Chapter 1 • ZFS File System (Introduction) 35

http://docs.sun.com/doc/819-2240/zpool-1m?a=view
http://docs.sun.com/doc/819-2239/chmod-1?a=view
http://docs.sun.com/doc/819-2239/ls-1?a=view

For more information, see fsstat(1M).

ZFS Web-Based Management
Solaris Express Community Release, build 28: A web-based ZFS management tool is available
to perform many administrative actions. With this tool, you can perform the following tasks:

■ Create a new storage pool.
■ Add capacity to an existing pool.
■ Move (export) a storage pool to another system.
■ Import a previously exported storage pool to make it available on another system.
■ View information about storage pools.
■ Create a file system.
■ Create a volume.
■ Take a snapshot of a file system or a volume.
■ Roll back a file system to a previous snapshot.

You can access the ZFS Administration console through a secure web browser at the following
URL:

https://system-name:6789/zfs

If you type the appropriate URL and are unable to reach the ZFS Administration console, the
server might not be started. To start the server, run the following command:

/usr/sbin/smcwebserver start

If you want the server to run automatically when the system boots, run the following command:

/usr/sbin/smcwebserver enable

Note – You cannot use the Solaris Management Console (smc) to manage ZFS storage pools or
file systems.

What's New in ZFS?

Solaris ZFS Administration Guide • September 200836

http://docs.sun.com/doc/819-2240/fsstat-1m?a=view

What Is ZFS?
The Solaris ZFS file system is a revolutionary new file system that fundamentally changes the
way file systems are administered, with features and benefits not found in any other file system
available today. ZFS has been designed to be robust, scalable, and simple to administer.

ZFS Pooled Storage
ZFS uses the concept of storage pools to manage physical storage. Historically, file systems were
constructed on top of a single physical device. To address multiple devices and provide for data
redundancy, the concept of a volume manager was introduced to provide the image of a single
device so that file systems would not have to be modified to take advantage of multiple devices.
This design added another layer of complexity and ultimately prevented certain file system
advances, because the file system had no control over the physical placement of data on the
virtualized volumes.

ZFS eliminates the volume management altogether. Instead of forcing you to create virtualized
volumes, ZFS aggregates devices into a storage pool. The storage pool describes the physical
characteristics of the storage (device layout, data redundancy, and so on,) and acts as an
arbitrary data store from which file systems can be created. File systems are no longer
constrained to individual devices, allowing them to share space with all file systems in the pool.
You no longer need to predetermine the size of a file system, as file systems grow automatically
within the space allocated to the storage pool. When new storage is added, all file systems within
the pool can immediately use the additional space without additional work. In many ways, the
storage pool acts as a virtual memory system. When a memory DIMM is added to a system, the
operating system doesn't force you to invoke some commands to configure the memory and
assign it to individual processes. All processes on the system automatically use the additional
memory.

Transactional Semantics
ZFS is a transactional file system, which means that the file system state is always consistent on
disk. Traditional file systems overwrite data in place, which means that if the machine loses
power, for example, between the time a data block is allocated and when it is linked into a
directory, the file system will be left in an inconsistent state. Historically, this problem was
solved through the use of the fsck command. This command was responsible for going
through and verifying file system state, making an attempt to repair any inconsistencies in the
process. This problem caused great pain to administrators and was never guaranteed to fix all
possible problems. More recently, file systems have introduced the concept of journaling. The
journaling process records action in a separate journal, which can then be replayed safely if a
system crash occurs. This process introduces unnecessary overhead, because the data needs to
be written twice, and often results in a new set of problems, such as when the journal can't be
replayed properly.

What Is ZFS?

Chapter 1 • ZFS File System (Introduction) 37

With a transactional file system, data is managed using copy on write semantics. Data is never
overwritten, and any sequence of operations is either entirely committed or entirely ignored.
This mechanism means that the file system can never be corrupted through accidental loss of
power or a system crash. So, no need for a fsck equivalent exists. While the most recently
written pieces of data might be lost, the file system itself will always be consistent. In addition,
synchronous data (written using the O_DSYNC flag) is always guaranteed to be written before
returning, so it is never lost.

Checksums and Self-Healing Data
With ZFS, all data and metadata is checksummed using a user-selectable algorithm. Traditional
file systems that do provide checksumming have performed it on a per-block basis, out of
necessity due to the volume management layer and traditional file system design. The
traditional design means that certain failure modes, such as writing a complete block to an
incorrect location, can result in properly checksummed data that is actually incorrect. ZFS
checksums are stored in a way such that these failure modes are detected and can be recovered
from gracefully. All checksumming and data recovery is done at the file system layer, and is
transparent to applications.

In addition, ZFS provides for self-healing data. ZFS supports storage pools with varying levels of
data redundancy, including mirroring and a variation on RAID-5. When a bad data block is
detected, ZFS fetches the correct data from another redundant copy, and repairs the bad data,
replacing it with the good copy.

Unparalleled Scalability
ZFS has been designed from the ground up to be the most scalable file system, ever. The file
system itself is 128-bit, allowing for 256 quadrillion zettabytes of storage. All metadata is
allocated dynamically, so no need exists to pre-allocate inodes or otherwise limit the scalability
of the file system when it is first created. All the algorithms have been written with scalability in
mind. Directories can have up to 248 (256 trillion) entries, and no limit exists on the number of
file systems or number of files that can be contained within a file system.

ZFS Snapshots
A snapshot is a read-only copy of a file system or volume. Snapshots can be created quickly and
easily. Initially, snapshots consume no additional space within the pool.

As data within the active dataset changes, the snapshot consumes space by continuing to
reference the old data. As a result, the snapshot prevents the data from being freed back to the
pool.

What Is ZFS?

Solaris ZFS Administration Guide • September 200838

Simplified Administration
Most importantly, ZFS provides a greatly simplified administration model. Through the use of
hierarchical file system layout, property inheritance, and automanagement of mount points and
NFS share semantics, ZFS makes it easy to create and manage file systems without needing
multiple commands or editing configuration files. You can easily set quotas or reservations,
turn compression on or off, or manage mount points for numerous file systems with a single
command. Devices can be examined or repaired without having to understand a separate set of
volume manager commands. You can take an unlimited number of instantaneous snapshots of
file systems. You can backup and restore individual file systems.

ZFS manages file systems through a hierarchy that allows for this simplified management of
properties such as quotas, reservations, compression, and mount points. In this model, file
systems become the central point of control. File systems themselves are very cheap (equivalent
to a new directory), so you are encouraged to create a file system for each user, project,
workspace, and so on. This design allows you to define fine-grained management points.

ZFS Terminology
This section describes the basic terminology used throughout this book:

alternate boot environment A boot environment that has been created by the lucreate
command and possibly updated by the luupgrade command,
but it is not currently the active or primary boot environment.
The alternate boot environment (ABE) can be changed to the
primary boot environment (PBE) by running the luactivate
command.

checksum A 256-bit hash of the data in a file system block. The checksum
capability can range from the simple and fast fletcher2 (the
default) to cryptographically strong hashes such as SHA256.

clone A file system whose initial contents are identical to the contents
of a snapshot.

For information about clones, see “Overview of ZFS Clones” on
page 173.

dataset A generic name for the following ZFS entities: clones, file
systems, snapshots, or volumes.

Each dataset is identified by a unique name in the ZFS
namespace. Datasets are identified using the following format:

pool/path[@snapshot]

ZFS Terminology

Chapter 1 • ZFS File System (Introduction) 39

pool Identifies the name of the storage pool that
contains the dataset

path Is a slash-delimited path name for the dataset
object

snapshot Is an optional component that identifies a
snapshot of a dataset

For more information about datasets, see Chapter 6,
“Managing ZFS File Systems.”

default file systems The file systems that are created by default when using Live
upgrade to migrate from UFS to a ZFS root. The current set of
default file systems is:

/

/usr

/opt

/var

file system A ZFS dataset of type filesystem that is mounted within the
standard system namespace and behaves like other file systems.

For more information about file systems, see Chapter 6,
“Managing ZFS File Systems.”

mirror A virtual device that stores identical copies of data on two or
more disks. If any disk in a mirror fails, any other disk in that
mirror can provide the same data.

pool A logical group of devices describing the layout and physical
characteristics of the available storage. Space for datasets is
allocated from a pool.

For more information about storage pools, see Chapter 5,
“Managing ZFS Storage Pools.”

primary boot environment A boot environment that is used by lucreate to build the
alternate boot environment. By default, the primary boot
environment (PBE) is the current boot environment. This
default can be overridden by using the lucreate -s option.

RAID-Z A virtual device that stores data and parity on multiple disks,
similar to RAID-5. For more information about RAID-Z, see
“RAID-Z Storage Pool Configuration” on page 88.

resilvering The process of transferring data from one device to another
device is known as resilvering. For example, if a mirror

ZFS Terminology

Solaris ZFS Administration Guide • September 200840

component is replaced or taken offline, the data from the
up-to-date mirror component is copied to the newly restored
mirror component. This process is referred to as mirror
resynchronization in traditional volume management products.

For more information about ZFS resilvering, see “Viewing
Resilvering Status” on page 256.

shared file systems The set of file systems that are shared between the ABE and
PBE. This set includes file systems, such as /export, and the
area reserved for swap. Shared file systems might also contain
zone roots.

snapshot A read-only image of a file system or volume at a given point in
time.

For more information about snapshots, see “Overview of ZFS
Snapshots” on page 169.

virtual device A logical device in a pool, which can be a physical device, a file,
or a collection of devices.

For more information about virtual devices, see “Displaying
Storage Pool Virtual Device Information” on page 94.

volume A dataset used to emulate a physical device. For example, you
can create a ZFS volume as a swap device.

For more information about ZFS volumes, see “ZFS Volumes”
on page 229.

ZFS Component Naming Requirements
Each ZFS component must be named according to the following rules:

■ Empty components are not allowed.
■ Each component can only contain alphanumeric characters in addition to the following

four special characters:
■ Underscore (_)
■ Hyphen (-)
■ Colon (:)
■ Period (.)

■ Pool names must begin with a letter, except for the following restrictions:
■ The beginning sequence c[0-9] is not allowed

ZFS Component Naming Requirements

Chapter 1 • ZFS File System (Introduction) 41

■ The name log is reserved
■ A name that begins with mirror, raidz, or spare is not allowed because these name are

reserved.

In addition, pool names must not contain a percent sign (%)
■ Dataset names must begin with an alphanumeric character. Dataset names must not contain

a percent sign (%).

ZFS Component Naming Requirements

Solaris ZFS Administration Guide • September 200842

Getting Started With ZFS

This chapter provides step-by-step instructions on setting up simple ZFS configurations. By the
end of this chapter, you should have a basic idea of how the ZFS commands work, and should be
able to create simple pools and file systems. This chapter is not designed to be a comprehensive
overview and refers to later chapters for more detailed information.

The following sections are provided in this chapter:

■ “ZFS Hardware and Software Requirements and Recommendations” on page 43
■ “Creating a Basic ZFS File System” on page 44
■ “Creating a ZFS Storage Pool” on page 45
■ “Creating a ZFS File System Hierarchy” on page 46

ZFS Hardware and Software Requirements and
Recommendations

Make sure you review the following hardware and software requirements and
recommendations before attempting to use the ZFS software:

■ A SPARCTM or x86 system that is running the Solaris Express Community Edition, build 27
release.

■ The minimum disk size is 128 Mbytes. The minimum amount of disk space required for a
storage pool is approximately 64 Mbytes.

■ Currently, the minimum amount of memory recommended to install a Solaris system is 768
Mbytes. However, for good ZFS performance, at least one Gbyte or more of memory is
recommended.

■ If you create a mirrored disk configuration, multiple controllers are recommended.

2C H A P T E R 2

43

Creating a Basic ZFS File System
ZFS administration has been designed with simplicity in mind. Among the goals of the ZFS
design is to reduce the number of commands needed to create a usable file system. When you
create a new pool, a new ZFS file system is created and mounted automatically.

The following example illustrates how to create a simple mirrored storage pool named tank and
a ZFS file system named tank in one command. Assume that the whole disks /dev/dsk/c1t0d0
and /dev/dsk/c2t0d0 are available for use.

zpool create tank mirror c1t0d0 c2t0d0

For more information about redundant ZFS pool configurations, see “Replication Features of a
ZFS Storage Pool” on page 88.

The new ZFS file system, tank, can use as much of the disk space as needed, and is automatically
mounted at /tank.

mkfile 100m /tank/foo

df -h /tank

Filesystem size used avail capacity Mounted on

tank 80G 100M 80G 1% /tank

Within a pool, you will probably want to create additional file systems. File systems provide
points of administration that allow you to manage different sets of data within the same pool.

The following example illustrates how to create a file system named fs in the storage pool tank.

zfs create tank/fs

The new ZFS file system, tank/fs, can use as much of the disk space as needed, and is
automatically mounted at /tank/fs.

mkfile 100m /tank/fs/foo

df -h /tank/fs

Filesystem size used avail capacity Mounted on

tank/fs 80G 100M 80G 1% /tank/fs

In most cases, you will probably want to create and organize a hierarchy of file systems that
matches your organizational needs. For more information about creating a hierarchy of ZFS file
systems, see “Creating a ZFS File System Hierarchy” on page 46.

Creating a Basic ZFS File System

Solaris ZFS Administration Guide • September 200844

Creating a ZFS Storage Pool
The previous example illustrates the simplicity of ZFS. The remainder of this chapter
demonstrates a more complete example similar to what you would encounter in your
environment. The first tasks are to identify your storage requirements and create a storage pool.
The pool describes the physical characteristics of the storage and must be created before any file
systems are created.

▼ How to Identify Storage Requirements for Your ZFS
Storage Pool

Determine available devices.

Before creating a storage pool, you must determine which devices will store your data. These
devices must be disks of at least 128 Mbytes in size, and they must not be in use by other parts of
the operating system. The devices can be individual slices on a preformatted disk, or they can be
entire disks that ZFS formats as a single large slice.

For the storage example used in “How to Create a ZFS Storage Pool” on page 45, assume that
the whole disks /dev/dsk/c1t0d0 and /dev/dsk/c1t1d0 are available for use.

For more information about disks and how they are used and labeled, see “Using Disks in a ZFS
Storage Pool” on page 85.

Choose data replication.

ZFS supports multiple types of data replication, which determines what types of hardware
failures the pool can withstand. ZFS supports non-redundant (striped) configurations, as well
as mirroring and RAID-Z (a variation on RAID-5).

For the storage example used in “How to Create a ZFS Storage Pool” on page 45, basic
mirroring of two available disks is used.

For more information about ZFS replication features, see “Replication Features of a ZFS Storage
Pool” on page 88.

▼ How to Create a ZFS Storage Pool
Become root or assume an equivalent role with the appropriate ZFS rights profile.

For more information about the ZFS rights profiles, see “ZFS Rights Profiles” on page 238.

1

2

1

Creating a ZFS Storage Pool

Chapter 2 • Getting Started With ZFS 45

Pick a pool name.

The pool name is used to identify the storage pool when you are using the zpool or zfs
commands. Most systems require only a single pool, so you can pick any name that you prefer,
provided it satisfies the naming requirements outlined in “ZFS Component Naming
Requirements” on page 41.

Create the pool.

For example, create a mirrored pool that is named tank.
zpool create tank mirror c1t0d0 c1t1d0

If one or more devices contains another file system or is otherwise in use, the command cannot
create the pool.

For more information about creating storage pools, see “Creating a ZFS Storage Pool” on
page 90.

For more information about how device usage is determined, see “Detecting In-Use Devices”
on page 95.

View the results.

You can determine if your pool was successfully created by using the zpool list command.
zpool list

NAME SIZE USED AVAIL CAP HEALTH ALTROOT

tank 80G 137K 80G 0% ONLINE -

For more information about viewing pool status, see “Querying ZFS Storage Pool Status” on
page 116.

Creating a ZFS File System Hierarchy
After creating a storage pool to store your data, you can create your file system hierarchy.
Hierarchies are simple yet powerful mechanisms for organizing information. They are also very
familiar to anyone who has used a file system.

ZFS allows file systems to be organized into arbitrary hierarchies, where each file system has
only a single parent. The root of the hierarchy is always the pool name. ZFS leverages this
hierarchy by supporting property inheritance so that common properties can be set quickly and
easily on entire trees of file systems.

2

3

4

Creating a ZFS File System Hierarchy

Solaris ZFS Administration Guide • September 200846

▼ How to Determine Your ZFS File System Hierarchy
Pick the file system granularity.

ZFS file systems are the central point of administration. They are lightweight and can be created
easily. A good model to use is a file system per user or project, as this model allows properties,
snapshots, and backups to be controlled on a per-user or per-project basis.

Two ZFS file systems, bonwick and billm, are created in “How to Create ZFS File Systems” on
page 47.

For more information on managing file systems, see Chapter 6, “Managing ZFS File Systems.”

Group similar file systems.

ZFS allows file systems to be organized into hierarchies so that similar file systems can be
grouped. This model provides a central point of administration for controlling properties and
administering file systems. Similar file systems should be created under a common name.

For the example in “How to Create ZFS File Systems” on page 47, the two file systems are placed
under a file system named home.

Choose the file system properties.

Most file system characteristics are controlled by using simple properties. These properties
control a variety of behavior, including where the file systems are mounted, how they are
shared, if they use compression, and if any quotas are in effect.

For the example in “How to Create ZFS File Systems” on page 47, all home directories are
mounted at /export/zfs/user, are shared by using NFS, and with compression enabled. In
addition, a quota of 10 Gbytes on bonwick is enforced.

For more information about properties, see “Introducing ZFS Properties” on page 137.

▼ How to Create ZFS File Systems
Become root or assume an equivalent role with the appropriate ZFS rights profile.

For more information about the ZFS rights profiles, see “ZFS Rights Profiles” on page 238.

Create the desired hierarchy.

In this example, a file system that acts as a container for individual file systems is created.
zfs create tank/home

Next, individual file systems are grouped under the home file system in the pool tank.

1

2

3

1

2

Creating a ZFS File System Hierarchy

Chapter 2 • Getting Started With ZFS 47

Set the inherited properties.
After the file system hierarchy is established, set up any properties that should be shared among
all users:
zfs set mountpoint=/export/zfs tank/home

zfs set sharenfs=on tank/home

zfs set compression=on tank/home

zfs get compression tank/home

NAME PROPERTY VALUE SOURCE

tank/home compression on local

A new feature is available that enables you to set file system properties when the file system is
created. For example:

zfs create -o mountpoint=/export/zfs -o sharenfs=on -o compression=on tank/home

For more information about properties and property inheritance, see “Introducing ZFS
Properties” on page 137.

Create the individual file systems.
Note that the file systems could have been created and then the properties could have been
changed at the home level. All properties can be changed dynamically while file systems are in
use.
zfs create tank/home/bonwick

zfs create tank/home/billm

These file systems inherit their property settings from their parent, so they are automatically
mounted at /export/zfs/user and are NFS shared. You do not need to edit the /etc/vfstab or
/etc/dfs/dfstab file.

For more information about creating file systems, see “Creating a ZFS File System” on page 134.

For more information about mounting and sharing file systems, see “Mounting and Sharing
ZFS File Systems” on page 156.

Set the file system-specific properties.
In this example, user bonwick is assigned a quota of 10 Gbytes. This property places a limit on
the amount of space he can consume, regardless of how much space is available in the pool.
zfs set quota=10G tank/home/bonwick

View the results.
View available file system information by using the zfs list command:
zfs list

NAME USED AVAIL REFER MOUNTPOINT

tank 92.0K 67.0G 9.5K /tank

tank/home 24.0K 67.0G 8K /export/zfs

tank/home/billm 8K 67.0G 8K /export/zfs/billm

3

4

5

6

Creating a ZFS File System Hierarchy

Solaris ZFS Administration Guide • September 200848

tank/home/bonwick 8K 10.0G 8K /export/zfs/bonwick

Note that the user bonwick only has 10 Gbytes of space available, while the user billm can use
the full pool (67 Gbytes).

For more information about viewing file system status, see “Querying ZFS File System
Information” on page 150.

For more information about how space is used and calculated, see “ZFS Space Accounting” on
page 52.

Creating a ZFS File System Hierarchy

Chapter 2 • Getting Started With ZFS 49

50

ZFS and Traditional File System Differences

This chapter discusses some significant differences between ZFS and traditional file systems.
Understanding these key differences can help reduce confusion when using traditional tools to
interact with ZFS.

The following sections are provided in this chapter:

■ “ZFS File System Granularity” on page 51
■ “ZFS Space Accounting” on page 52
■ “Out of Space Behavior” on page 52
■ “Mounting ZFS File Systems” on page 53
■ “Traditional Volume Management” on page 53
■ “New Solaris ACL Model” on page 53

ZFS File System Granularity
Historically, file systems have been constrained to one device so that the file systems themselves
have been constrained to the size of the device. Creating and re-creating traditional file systems
because of size constraints are time-consuming and sometimes difficult. Traditional volume
management products helped manage this process.

Because ZFS file systems are not constrained to specific devices, they can be created easily and
quickly, similar to the way directories are created. ZFS file systems grow automatically within
the space allocated to the storage pool.

Instead of creating one file system, such as /export/home, to manage many user subdirectories,
you can create one file system per user. In addition, ZFS provides a file system hierarchy so that
you can easily set up and manage many file systems by applying properties that can be inherited
by file systems contained within the hierarchy.

For an example of creating a file system hierarchy, see “Creating a ZFS File System Hierarchy”
on page 46.

3C H A P T E R 3

51

ZFS Space Accounting
ZFS is based on a concept of pooled storage. Unlike typical file systems, which are mapped to
physical storage, all ZFS file systems in a pool share the available storage in the pool. So, the
available space reported by utilities such as df might change even when the file system is
inactive, as other file systems in the pool consume or release space. Note that the maximum file
system size can be limited by using quotas. For information about quotas, see “Setting Quotas
on ZFS File Systems” on page 165. Space can be guaranteed to a file system by using reservations.
For information about reservations, see “Setting Reservations on ZFS File Systems” on page 167.
This model is very similar to the NFS model, where multiple directories are mounted from the
same file system (consider /home).

All metadata in ZFS is allocated dynamically. Most other file systems pre-allocate much of their
metadata. As a result, an immediate space cost at file system creation for this metadata is
required. This behavior also means that the total number of files supported by the file systems is
predetermined. Because ZFS allocates its metadata as it needs it, no initial space cost is required,
and the number of files is limited only by the available space. The output from the df -g
command must be interpreted differently for ZFS than other file systems. The total files
reported is only an estimate based on the amount of storage that is available in the pool.

ZFS is a transactional file system. Most file system modifications are bundled into transaction
groups and committed to disk asynchronously. Until these modifications are committed to
disk, they are termed pending changes. The amount of space used, available, and referenced by a
file or file system does not consider pending changes. Pending changes are generally accounted
for within a few seconds. Even committing a change to disk by using fsync(3c) or O_SYNC does
not necessarily guarantee that the space usage information is updated immediately.

Out of Space Behavior
File system snapshots are inexpensive and easy to create in ZFS. Most likely, snapshots will be
common in most ZFS environments. For information about ZFS snapshots, see Chapter 7,
“Working With ZFS Snapshots and Clones.”

The presence of snapshots can cause some unexpected behavior when you attempt to free space.
Typically, given appropriate permissions, you can remove a file from a full file system, and this
action results in more space becoming available in the file system. However, if the file to be
removed exists in a snapshot of the file system, then no space is gained from the file deletion.
The blocks used by the file continue to be referenced from the snapshot.

As a result, the file deletion can consume more disk space, because a new version of the
directory needs to be created to reflect the new state of the namespace. This behavior means that
you can get an unexpected ENOSPC or EDQUOT when attempting to remove a file.

ZFS Space Accounting

Solaris ZFS Administration Guide • September 200852

Mounting ZFS File Systems
ZFS is designed to reduce complexity and ease administration. For example, with existing file
systems you must edit the /etc/vfstab file every time you add a new file system. ZFS has
eliminated this requirement by automatically mounting and unmounting file systems
according to the properties of the dataset. You do not need to manage ZFS entries in the
/etc/vfstab file.

For more information about mounting and sharing ZFS file systems, see “Mounting and
Sharing ZFS File Systems” on page 156.

Traditional Volume Management
As described in “ZFS Pooled Storage” on page 37, ZFS eliminates the need for a separate volume
manager. ZFS operates on raw devices, so it is possible to create a storage pool comprised of
logical volumes, either software or hardware. This configuration is not recommended, as ZFS
works best when it uses raw physical devices. Using logical volumes might sacrifice
performance, reliability, or both, and should be avoided.

New Solaris ACL Model
Previous versions of the Solaris OS supported an ACL implementation that was primarily based
on the POSIX ACL draft specification. The POSIX-draft based ACLs are used to protect UFS
files. A new ACL model that is based on the NFSv4 specification is used to protect ZFS files.

The main differences of the new Solaris ACL model are as follows:

■ Based on the NFSv4 specification and are similar to NT-style ACLs.
■ Much more granular set of access privileges.
■ Set and displayed with the chmod and ls commands rather than the setfacl and getfacl

commands.
■ Richer inheritance semantics for designating how access privileges are applied from

directory to subdirectories, and so on.

For more information about using ACLs with ZFS files, see Chapter 8, “Using ACLs and
Attributes to Protect ZFS Files.”

New Solaris ACL Model

Chapter 3 • ZFS and Traditional File System Differences 53

54

Installing and Booting a ZFS Root File System

This chapter describes how to install and boot a ZFS file system. Migrating a UFS root file
system to a ZFS file system by using Solaris Live Upgrade is also covered.

The following sections are provided in this chapter:

■ “Installing and Booting a ZFS Root File System (Overview)” on page 55
■ “Solaris Installation and Solaris Live Upgrade Requirements for ZFS Support” on page 57
■ “Installing a ZFS Root File System (Initial Installation)” on page 58
■ “Installing a ZFS Root File System (JumpStart Installation)” on page 64
■ “Migrating a UFS root File System to a ZFS root File System (Solaris Live Upgrade)” on

page 67
■ “ZFS Support for Swap and Dump Devices” on page 78
■ “Booting From a ZFS Root File System” on page 79

For up-to-date troubleshooting information, go to the following site:

http://www.solarisinternals.com/wiki/index.php/ZFS_Troubleshooting_Guide

Installing and Booting a ZFS Root File System (Overview)
In the SXCE, build 90 release, you can install and boot from a ZFS root file system in the
following ways:

■ You can perform an initial installation where ZFS is selected as the root file system.
■ You can use the Solaris Live Upgrade feature to migrate a UFS root file system to a ZFS root

file system. In addition, you can use Solaris Live Upgrade to perform the following tasks:
■ Create a new boot environment within an existing ZFS root pool
■ Create a new boot environment in a new ZFS root pool

■ Systems that already have ZFS root file systems can be bfu'd to SXCE, build 90, but bfu does
not convert the legacy mounts (of /, /var, and so on) to ZFS mounts. Backwards bfu to
releases that don't support ZFS boot is prohibited.

4C H A P T E R 4

55

http://www.solarisinternals.com/wiki/index.php/ZFS_Troubleshooting_Guide

We recommend that you reinstall your systems at some future time to achieve the standard
ZFS boot configuration provided in this release, which uses ZFS mounts, not legacy mounts.
However, the system continues to boot with legacy mounts, at least for now.

After a SPARC-based or an x86 based system is installed with a ZFS root file system or migrated
to a ZFS root file system, the system boots automatically from the ZFS root file system. For more
information about boot changes, see “Booting From a ZFS Root File System” on page 79.

ZFS Installation Features
The following ZFS installation features are provided in this Solaris release:
■ Using the Solaris interactive text installer, you can install a UFS or a ZFS root file system.

The default file system is still UFS for this Solaris release. You can access the interactive text
installer option in the following ways:
■ On SPARC based system, use the following syntax from the Solaris installation DVD:

ok boot cdrom - text

■ On SPARC based system, use the following syntax when booting from the network:

ok boot net - text

■ On an x86 based system, select the text-mode install option when presented.
■ Custom JumpStartTM features enable you to set up a profile to create a ZFS storage pool and

designate a bootable ZFS file system.
■ Using the Solaris Live Upgrade feature, you can migrate a UFS root file system to a ZFS root

file system. The lucreate and luactivate commands have been enhanced to support ZFS
pools and file systems. The lustatus and ludelete commands work as in previous Solaris
releases.

■ You can set up a mirrored ZFS root pool by selecting two disks during installation. Or, you
can attach or add additional disks after installation to create a mirrored ZFS root pool.

■ Swap and dump devices are automatically created on ZFS volumes in the ZFS root pool.

The following installation features are not provided in this release:
■ The GUI installation feature for installing a ZFS root file system is not currently available.
■ The SolarisTM Flash installation feature for installing a ZFS root file system is not currently

available.
■ You cannot use the standard upgrade program to upgrade your UFS root file system to a

ZFS root file system. If at least one bootable UFS slice exists, then the standard upgrade
option should be available. If a bootable ZFS pools exists and no bootable UFS slice exists,
then the only way to upgrade is to use Live Upgrade and not the standard upgrade program.
If both a bootable UFS slice and a bootable ZFS pool exist, then the standard upgrade option
should be available, but only the UFS slice should be available for upgrade.

Installing and Booting a ZFS Root File System (Overview)

Solaris ZFS Administration Guide • September 200856

Solaris Installation and Solaris Live Upgrade
Requirements for ZFS Support
Make sure the following requirements are met before attempting to install a system with a ZFS
root file system or attempting to migrate a UFS root file system to a ZFS root file system:

■ Solaris release information – The capability to install and boot from a ZFS root file system
is available in the SXCE, build 90 release. To use Solaris Live Upgrade to migrate to a ZFS
root file system, you must have installed the SXCE, build 90 release or you must have
upgraded to the SXCE, build 90 release. For a list of required Solaris Live Upgrade patches,
see “Required Solaris Live Upgrade Patch Information” on page 68.

■ ZFS storage pool considerations – You can create a new ZFS storage pool if you perform an
initial installation.

To use Solaris Live Upgrade to migrate a UFS root file system to a ZFS root file system, a ZFS
storage pool must exist before you use the lucreate operation. The ZFS storage pool must
be created with slices rather than whole disks to be upgradeable and bootable.

In addition, the ZFS storage pool that is intended to be the root pool must meet the following
requirements:

■ ZFS storage pool space requirements – The required minimum amount of available pool
space for a ZFS root file system is larger than for a UFS root file system because swap and
dump devices must be separate devices in a ZFS root environment. By default, swap and
dump devices are the same device in a UFS root file system.

When a system is installed or upgraded with a ZFS root file system, the size of the swap area
and the dump device are dependent upon the amount of physical memory. The minimum
amount of available pool space for a bootable ZFS root file system depends upon the amount
of physical memory, the disk space available, and the number of boot environments (BEs) to
be created.
■ 1 Gbyte of memory is recommended to install a ZFS root file system and for overall

better ZFS performance
■ At least 16 Gbytes of disk space is recommended. The space is consumed as follows:

■ Swap area and dump device – The default swap area is sized at half the size of
physical memory, but more than 2 Gbytes and no less than 512 Mbytes. The dump
device is sized at half the size of physical memory, but no more than 2 Gbytes and no
less than 512 Mbytes. You can adjust the sizes of your swap and device volumes
before, during, and after installation. For more information, see “Adjusting the Sizes
of Your ZFS Swap and Dump Devices” on page 78.

■ Boot environment (BE) – In addition to either new swap and dump space
requirements or adjusted swap and dump device sizes, a ZFS BE that is migrated
from a UFS BE needs approximately 6 Gbytes. Each ZFS BE that is cloned from

Installing and Booting a ZFS Root File System (Overview)

Chapter 4 • Installing and Booting a ZFS Root File System 57

another ZFS BE doesn't need additional disk space, but consider that the BE size
might increase when patches are applied. All ZFS BEs in the same root pool use the
same swap and dump devices.

For example, a system with 12 Gbytes of disk space might be too small for a bootable ZFS
environment because 2 Gbytes of disk space is needed for each swap and dump device
and approximately 6 Gbytes of disk space is needed for the ZFS BE that is migrated from
a UFS BE.

■ The pool must have an SMI label. This requirement should be met if the pool is created with
disk slices.

■ The pool must exist either on a disk slice or on disk slices that are mirrored, but not on a
RAID-Z configuration or on a nonredundant configuration of multiple disks. If you attempt
to use an unsupported pool configuration during a Live Upgrade migration, you will see a
message similar to the following:

ERROR: ZFS pool name does not support boot environments

■ On an x86 based system, the disk must contain an fdisk table.
■ Disks that are designated for booting in a ZFS root pool must be limited to 1 TB in size on

both SPARC based and x86 based systems.

Installing a ZFS Root File System (Initial Installation)
In this Solaris release, you can perform an initial installation by using the Solaris interactive text
installer to create a ZFS storage pool that contains a bootable ZFS root file system. If you have an
existing ZFS storage pool that you want to use for your ZFS root file system, then you must use
Solaris Live Upgrade to migrate your existing UFS root file system to a ZFS root file system in an
existing ZFS storage pool. For more information, see “Migrating a UFS root File System to a
ZFS root File System (Solaris Live Upgrade)” on page 67.

If you already have ZFS storage pools on the system, they are acknowledged by the following
message, but remain untouched, unless you select the disks in the existing pools to create the
new storage pool.

There are existing ZFS pools available on this system. However, they can only be upgraded

using the Live Upgrade tools. The following screens will only allow you to install a ZFS root system,

not upgrade one.

Before you begin the initial installation to create a ZFS storage pool, see “Solaris Installation and
Solaris Live Upgrade Requirements for ZFS Support” on page 57.

EXAMPLE 4–1 Initial Installation of a Bootable ZFS Root File System

The Solaris interactive text installation process is basically the same as previous Solaris releases,
except that you are prompted to create a UFS or ZFS root file system. UFS is the still the default

Installing a ZFS Root File System (Initial Installation)

Solaris ZFS Administration Guide • September 200858

EXAMPLE 4–1 Initial Installation of a Bootable ZFS Root File System (Continued)

file system in this release. If you select a ZFS root file system, you will be prompted to create a
ZFS storage pool. Installing a ZFS root file system involve the following steps:

1. Select the Solaris interactive installation method because a Solaris Flash installation is not
available to create a bootable ZFS root file system.
You can perform a standard upgrade to upgrade an existing bootable ZFS file system that is
running the SXCE, build 90 release, but you cannot use this option to create a new bootable
ZFS file system. You must use Solaris Live Upgrade to migrate to a ZFS root file system as
long as the current release, SXCE, build 90, is already installed. For more information about
migrating to a ZFS root file system, see “Migrating a UFS root File System to a ZFS root File
System (Solaris Live Upgrade)” on page 67.

2. If you want to create a ZFS root file system, select the ZFS option. For example:

Choose Filesystem Type

Select the filesystem to use for your Solaris installation

[] UFS

[X] ZFS

3. After you select the software to be installed, you are prompted to select the disks to create
your ZFS storage pool. This screen is similar as in previous Solaris releases, except for the
following text:

For ZFS, multiple disks will be configured as mirrors, so the disk you choose,

or the slice within the disk must exceed the Suggested Minimum value.

You can select the disk or disks to be used for your ZFS root pool. If you select two disks, a
mirrored two-disk configuration is set up for your root pool. Either a two-disk or three-disk
mirrored pool is optimal. If you have eight disks and you select all eight disks, those eight
disks are used for the root pool as one big mirror. This configuration is not optimal. If you
want to create a mirrored root pool with four two-disk mirrors, you should configure a
mirrored two-disk pool during the initial installation, and then use the zpool add
command to add the additional six disks after the installation completes. A RAID-Z pool
configuration for the root pool is not supported. For more information about configuring
ZFS storage pools, see “Replication Features of a ZFS Storage Pool” on page 88.

4. After you have selected a disk or disks for your ZFS storage pool, you'll see a screen that
looks similar to the following is displayed:

Configure ZFS Settings

Specify the name of the pool to be created from the disk(s) you have chosen.

Also specify the name of the dataset to be created within the pool that is

Installing a ZFS Root File System (Initial Installation)

Chapter 4 • Installing and Booting a ZFS Root File System 59

EXAMPLE 4–1 Initial Installation of a Bootable ZFS Root File System (Continued)

to be used as the root directory for the filesystem.

ZFS Pool Name: rpool

ZFS Root Dataset Name: snv_95

Set ZFS Pool Size: 17270

(Pool size must be between 11061 MB and 17270 MB)

[X] Keep / and /var combined

[] Put /var on a separate dataset

At this screen, you can change the name of the ZFS pool, dataset name, and pool size by
moving the cursor control keys through the entries and replacing the default text value with
new text. Or, you can accept the default values. In addition, you can modify the way the /var
file system is created and mounted.

In this example, the root dataset name is changed to zfsnv_95.

ZFS Pool Name: rpool

ZFS Root Dataset Name: zfsnv_95

ZFS Pool Size (in MB): 34731

(Pool size must be between 6413 MB and 34731 MB)

5. You can change the installation profile at this final installation screen. For example:

Profile

The information shown below is your profile for installing Solaris software.

It reflects the choices you’ve made on previous screens.

==

Installation Option: Initial

Boot Device: c1t2d0

Root File System Type: ZFS

Client Services: None

Regions: North America

System Locale: C (C)

Software: Solaris 11, Entire Distribution

Pool Name: rpool

Boot Environment Name: zfsnv_95

Pool Size: 17270 MB

Devices in Pool: c1t2d0

Installing a ZFS Root File System (Initial Installation)

Solaris ZFS Administration Guide • September 200860

EXAMPLE 4–1 Initial Installation of a Bootable ZFS Root File System (Continued)

After the installation is complete, review the resulting ZFS storage pool and file system
information. For example:

zpool status

pool: rpool

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

rpool ONLINE 0 0 0

c1t2d0s0 ONLINE 0 0 0

errors: No known data errors

zfs list

NAME USED AVAIL REFER MOUNTPOINT

rpool 6.83G 9.66G 62K /rpool

rpool/ROOT 5.82G 9.66G 18K legacy

rpool/ROOT/zfsnv_95 5.82G 9.66G 5.82G

rpool/dump 512M 9.66G 512M -

rpool/export 38K 9.66G 20K /export

rpool/export/home 18K 9.66G 18K /export/home

rpool/swap 518M 9.66G 518M -

The ZFS root pool is a special kind of pool that requires no administration. The sample zfs
list output identifies the root pool components, such as the rpool/ROOT entries, which are not
accessible by default.

If you initially created your ZFS storage pool with one disk, you can convert it to a mirrored ZFS
configuration after the installation completes by using the zpool attach command to attach an
available disk. For example:

zpool attach rpool c1t2d0s0 c1t3d0s0

zpool status

pool: rpool

state: ONLINE

status: One or more devices is currently being resilvered. The pool will

continue to function, possibly in a degraded state.

action: Wait for the resilver to complete.

scrub: resilver in progress for 0h0m, 5.03% done, 0h13m to go

config:

NAME STATE READ WRITE CKSUM

rpool ONLINE 0 0 0

mirror ONLINE 0 0 0

c1t2d0s0 ONLINE 0 0 0

Installing a ZFS Root File System (Initial Installation)

Chapter 4 • Installing and Booting a ZFS Root File System 61

EXAMPLE 4–1 Initial Installation of a Bootable ZFS Root File System (Continued)

c1t3d0s0 ONLINE 0 0 0

errors: No known data errors

It will take some time to resilver the data to the new disk, but the pool is still available.

Until CR 6668666 is fixed, you will need to install the boot information on the additionally
attached disks by using the installboot or installgrub commands if you want to enable
booting on the other disks in the mirror. If you create a mirrored ZFS root pool with the initial
installation method, then this step is unnecessary. For more information about installing boot
information, see “Booting From a Alternate Disk in a Mirrored ZFS root Pool” on page 80.

For more information about adding or attaching disks, see “Managing Devices in ZFS Storage
Pools” on page 99.

If you want to create another ZFS boot environment (BE) in the same storage pool, you can use
the lucreate command. In the following example, a new BE named zfsnv_952BE is created.
The current BE is named zfsnv_95BE, displayed in the zfs list output, is not acknowledged in
the lustatus output until the new BE is created.

lustatus

ERROR: No boot environments are configured on this system

ERROR: cannot determine list of all boot environment names

If you create a new ZFS BE in the same pool, use syntax similar to the following:

lucreate -n zfsnv_952BE

Analyzing system configuration.

No name for current boot environment.

INFORMATION: The current boot environment is not named - assigning name <zfsnv_95BE>.

Current boot environment is named <zfsnv_95BE>.

Creating initial configuration for primary boot environment <zfsnv_95BE>.

The device </dev/dsk/c1t2d0s0> is not a root device for any boot environment; cannot get BE ID.

PBE configuration successful: PBE name <zfsnv_95BE> PBE Boot Device </dev/dsk/c1t2d0s0>.

Comparing source boot environment <zfsnv_95BE> file systems with the file

system(s) you specified for the new boot environment. Determining which

file systems should be in the new boot environment.

Updating boot environment description database on all BEs.

Updating system configuration files.

Creating configuration for boot environment <zfs0508BE>.

Source boot environment is <zfsnv_95BE>.

Creating boot environment <zfs0508BE>.

Cloning file systems from boot environment <zfsnv_95BE> to create boot environment <zfsnv_952BE>.

Creating snapshot for <rpool/ROOT/zfsnv_95BE> on <rpool/ROOT/zfsnv_95BE@zfsnv_952BE>.

Creating clone for <rpool/ROOT/zfsnv_95BE@zfsnv_952BE> on <rpool/ROOT/zfsnv_952BE>.

Setting canmount=noauto for </> in zone <global> on <rpool/ROOT/zfsnv_952BE>.

Installing a ZFS Root File System (Initial Installation)

Solaris ZFS Administration Guide • September 200862

EXAMPLE 4–1 Initial Installation of a Bootable ZFS Root File System (Continued)

Creating a ZFS BE within the same pool uses ZFS clone and snapshot features so the BE is
created instantly. For more details about using Solaris Live Upgrade for a ZFS root migration,
see “Migrating a UFS root File System to a ZFS root File System (Solaris Live Upgrade)” on
page 67.

Next, verify the new boot environments. For example:

lustatus

Boot Environment Is Active Active Can Copy

Name Complete Now On Reboot Delete Status

-------------------------- -------- ------ --------- ------ ----------

zfsnv_95 yes yes yes no -

zfsnv_952BE yes no no yes -

zfs list

NAME USED AVAIL REFER MOUNTPOINT

rpool 6.86G 9.63G 62K /rpool

rpool/ROOT 5.85G 9.63G 18K legacy

rpool/ROOT/zfsnv_95 5.85G 9.63G 5.85G

rpool/ROOT/zfsnv_95@zfsnv_952BE 112K - 5.85G -

rpool/ROOT/zfsnv_952BE 135K 9.63G 5.85G /tmp/.alt.luupdall.20340

rpool/dump 512M 9.63G 512M -

rpool/export 38K 9.63G 20K /export

rpool/export/home 18K 9.63G 18K /export/home

rpool/swap 518M 9.63G 518M -

If you want to boot from an alternate BE, use the luactivate command. Or, when booting a
SPARC based system, use the boot -L command to identify the available BEs when the boot
device contains a ZFS storage pool. When booting from an x86 based system, identify the BE to
be booted from the GRUB menu.

For example, on a SPARC based system, use the boot -L command to display a list of available
BEs. To boot from the new BE, zfsnv_952BE, select option 2. Then, type the displayed boot -Z

command.

ok boot -L

Rebooting with command: boot -L

Boot device: /pci@1f,0/pci@1/scsi@4,1/disk@2,0:a File and args: -L

1 zfsnv_95

2 zfsnv_952BE

Select environment to boot: [1 - 2]: 2

To boot the selected entry, invoke:

boot [<root-device>] -Z rpool/ROOT/zfsnv_952BE

Program terminated

ok boot -Z rpool/ROOT/zfsnv_952BE

Installing a ZFS Root File System (Initial Installation)

Chapter 4 • Installing and Booting a ZFS Root File System 63

EXAMPLE 4–1 Initial Installation of a Bootable ZFS Root File System (Continued)

For more information about booting a ZFS file system, see “Booting From a ZFS Root File
System” on page 79.

Installing a ZFS Root File System (JumpStart Installation)
You can create a JumpStart profile to install a ZFS root file system or a UFS root file system. If
the profile is set up to install a UFS root file system, all existing profile keywords work as in
previous Solaris releases.

A ZFS specific profile must contain the new pool keyword. The pool keyword installs a new
root pool and a new boot environment is created by default. You can provide the name of the
boot environment and can create a separate /var dataset with the bootenv installbe
keywords and bename and dataset options.

For general information about using JumpStart features, see Solaris Express Installation Guide:
Custom JumpStart and Advanced Installations.

ZFS JumpStart Profile Examples
This section provides examples of ZFS specific JumpStart profiles.

The following profile performs an initial installation specified with install_type initial-install
in a new pool, identified with pool newpool, whose size is automatically sized with the auto
keyword to the size of the specified disks. The swap area and dump device are automatically
sized with auto keyword based on half the size of physical memory up to 2 GBytes, in a
mirrored configuration of disks (with the mirror keyword and disks specified as c0t0d0 and
c0t1d0). Boot environment characteristics are set with the bootenv keyword to install a new BE
with the keyword installbe and a bename named sxce_xx is created.

install_type initial-install

pool newpool auto auto auto mirror c0t0d0s0 c0t1d0s0

bootenv installbe bename sxce-xx

The following profile performs an initial installation with keyword install_type initial-install
of the SUNWCall metacluster in a new pool called newpool, that is 80 Gbytes in size. This pool is
created with a 2-Gbyte swap volume and a 2-Gbyte dump volume, in a mirrored configuration
of any two available devices that are large enough to create an 80-Gbyte pool. If two such
devices aren't available, the installation fails. Boot environment characteristics are set with the
bootenv keyword to install a new BE with the keyword installbe and a bename named sxce-xx
is created.

Installing a ZFS Root File System (JumpStart Installation)

Solaris ZFS Administration Guide • September 200864

http://docs.sun.com/doc/819-2396
http://docs.sun.com/doc/819-2396

install_type initial-install

cluster SUNWCall

pool newpool 80g 2g 2g mirror any any

bootenv installbe bename sxce-xx

You can use the following profile or similar syntax to preserve existing UFS file systems on slice
1 and slice 3, for example.

filesys rootdisk.s1 existing ignore

filesys rootdisk.s3 existing ignore

pool rpool auto 2G 2G rootdisk.s0

You can use the following profile or similar syntax to create slice 1 and slice 3 for UFS file
systems, for example.

filesys rootdisk.s1 8196

filesys rootdisk.s3 8196

pool rpool auto 2G 2G rootdisk.s0

ZFS JumpStart Keywords
The following keywords are permitted in a ZFS specific profile:

auto Specifies the size of the slices for the pool, swap volume, or dump volume
automatically. The size of the disk is checked to verify that the minimum size can
be accommodated. If the minimize size can be accommodated, the largest possible
pool size is allocated, given the constraints, such as the size of the disks, preserved
slices, and so on.

For example, if you specify c0t0d0s0, the slice is created as large as possible if you
specify either the all or auto keywords. Or, you can specify a particular size for
the slice or swap or dump volume.

The auto keyword works similarly to the all keyword when used with a ZFS root
pool because pools don't have the concept of unused space.

bootenv This keyword identifies the boot environment characteristics.

The bootenv keyword already exists, but new options are defined. Use the
following bootenv keyword syntax to create a bootable ZFS root environment:

bootenv installbe bename BE-name [dataset mount-point]

installbe Creates a new BE that is identified by the bename option
and BE-name entry and installs it.

bename BE-name Identifies the BE-name to install.

Installing a ZFS Root File System (JumpStart Installation)

Chapter 4 • Installing and Booting a ZFS Root File System 65

If bename is not used with the pool keyword, then a
default BE is created.

dataset mount-point Use the optional dataset keyword to identify a /var
dataset that is separate from the root dataset. The
mount-point value is currently limited to /var. For
example, a bootenv syntax line for a separate /var
dataset would be similar to the following:

bootenv installbe bename zfsroot dataset /var

pool Defines the new root pool to be created. The following keyword syntax must be
provided:

poolname poolsize swapsize dumpsize vdevlist

poolname Identifies the name of the pool to be created. The pool is created
with the specified pool size and with the specified physical devices
(vdevs). The poolname option should not identify the name of an
existing pool or the existing pool is overwritten.

poolsize Specifies the size of the pool to be created. The value can be auto or
existing. The auto value means allocate the largest possible pool
size, given the constraints, such as size of the disks, preserved slices,
and so on. The existing value means the boundaries of existing
slices by that name are preserved and overwritten. The size is
assumed to be in Mbytes, unless specified by g (Gbytes).

swapsize Specifies the size of the swap volume to be created. The value can be
auto, which means the default swap size is used, or size, to specify a
size. The size is assumed to be in Mbytes, unless specified by g
(Gbytes).

dumpsize Specifies the size of the dump volume to be created. The value can be
auto, which means the default swap size is used, or size, to specify a
size. The size is assumed to be in Mbytes, unless specified by g
(Gbytes).

vdevlist Specifies one or more devices that are used to create the pool. The
format of the vdevlist is the same as the format of the zpool create
command. At this time, only mirrored configurations are supported
when multiple devices are specified. Devices in the vdevlist must be
slices for the root pool. The any string, means that the installation
software selects a suitable device.

You can mirror as many as disks you like, but the size of the pool
that is created is determined by the smallest of the specified disks.

Installing a ZFS Root File System (JumpStart Installation)

Solaris ZFS Administration Guide • September 200866

For more information about creating mirrored storage pools, see
“Mirrored Storage Pool Configuration” on page 88.

ZFS JumpStart Issues
Consider the following issues before starting a JumpStart installation of a bootable ZFS root file
system.

■ You cannot use an existing ZFS storage pool for a JumpStart installation to create a bootable
ZFS root file system. You must create a new ZFS storage pool with syntax similar to the
following:

pool rpool 20G 4G 4G c0t0d0s0

The complete pool keyword line is required because you cannot use an existing pool. For
example:

install_type initial_install

cluster SUNWCall

pool rpool 20G 4g 4g any

bootenv installbe bename newBE

■ You must create your pool with disk slices rather than whole disks as described in “Solaris
Installation and Solaris Live Upgrade Requirements for ZFS Support” on page 57. For
example, the bold syntax is not acceptable:

install_type initial_install

cluster SUNWCall

pool rpool all auto auto mirror c0t0d0 c0t1d0

bootenv installbe bename newBE

This bold syntax is acceptable:

install_type initial_install

cluster SUNWCall

pool rpool all auto auto mirror c0t0d0s0 c0t1d0s0

bootenv installbe bename newBE

Migrating a UFS root File System to a ZFS root File System
(Solaris Live Upgrade)

Previous Solaris Live Upgrade features are available and if related to UFS components, they
work as in previous Solaris releases.

Migrating a UFS root File System to a ZFS root File System (Solaris Live Upgrade)

Chapter 4 • Installing and Booting a ZFS Root File System 67

The following new features are available:

■ When you migrate your UFS root file system to a ZFS root file system, you must designate
an existing ZFS storage pool with the -p option.

■ If the UFS root file system has components on different slices, they are migrated to the ZFS
root pool.

■ On a system with a UFS root file system and zones installed, the zones are migrated if the
zone is in a non-shared file system as part of the UFS to ZFS migration. Or, the zone is
cloned when you are upgrading within the same ZFS pool. If the zone is in a shared UFS file
system, then those zones must be migrated as in previous Solaris releases.

■ Solaris Live Upgrade can use the ZFS snapshot and clone features when you are creating a
ZFS BE in the same pool. So, BE creation is much faster than previous Solaris releases.

For detailed information about Solaris installation and Solaris Live Upgrade features, see the
Solaris Express Installation Guide: Solaris Live Upgrade and Upgrade Planning.

The basic process for migrating a UFS root file system to a ZFS root file system is as follows:

■ Install the required Solaris Live Upgrade patches, if needed. For a list of patches, see
“Required Solaris Live Upgrade Patch Information” on page 68.

■ Install the SXCE, build 90 release or use the standard upgrade program to upgrade from a
previous SXCE release to the SXCE build 90 release on any supported SPARC based or x86
based system.

■ When you are running the SXCE, build 90 release, create a ZFS storage pool for your ZFS
root file system, if necessary.

■ Use Solaris Live Upgrade to migrate your UFS root file system to a ZFS root file system.
■ Activate your ZFS BE with the luactivate command.

For information about ZFS and Solaris Live Upgrade requirements, see “Solaris Installation and
Solaris Live Upgrade Requirements for ZFS Support” on page 57.

Required Solaris Live Upgrade Patch Information
For the SXCE, build 90 release, the compression of the install images is now unzipped with the
7zip utility. If you want to install the appropriate patches rather than upgrading or reinstalling
to build 90, you will need to apply the following patches for Solaris Live Upgrade to succeed
with the SXCE, build 90 release :

■ 137321-01 (Solaris 10 SPARC)
■ 137322-01 or later (Solaris 10 x86)
■ 137477-01 or later (Solaris 9 SPARC)
■ 137478-01 or later (Solaris 9 x86)

Migrating a UFS root File System to a ZFS root File System (Solaris Live Upgrade)

Solaris ZFS Administration Guide • September 200868

http://docs.sun.com/doc/819-2395

This chapter doesn't cover Solaris 10 issues, but if you are attempting to use Solaris Live
Upgrade from a Solaris 10 release to the Nevada, build 90 release, the Solaris 10 5/08 release has
had the 7zip utility since build 5. The patches listed above are only necessary if you are running
releases older than the Solaris 10 5/08 release.

If you want to Solaris Live Upgrade from a Solaris 10 system with zones installed, you also need
to apply the following additional cpio patches:

■ 127922-03 (Solaris 10 SPARC)
■ 127923-03 or later (Solaris 10 x86)

If you want to use Solaris Live Upgrade from Nevada builds before build 79, you must install the
SUNWp7zip package from the latest Nevada build.

ZFS Solaris Live Upgrade Migration Issues
Review the following list of issues before you use Solaris Live Upgrade to migrate your UFS root
file system to a ZFS root file system:

■ The Solaris installation GUI's standard-upgrade option is not available for migrating from a
UFS to a ZFS root file system. To migrate from a UFS file system, you must use Solaris Live
Upgrade.

■ You must create the ZFS storage pool that will be used for booting before the Solaris Live
Upgrade operation. In addition, due to current boot limitations, the ZFS root pool must be
created with slices instead of whole disks. For example:

zpool create rpool mirror c1t0d0s0 c1t1d0s0

Before you create the new pool, make sure that the disks to be used in the pool have an SMI
(VTOC) label instead of an EFI label. If the disk is relabeled with an SMI label, make sure
that the labeling process did not change the partitioning scheme. In most cases, the majority
of the disk's capacity should be in the slices that are intended for the root pool.

■ You cannot use Solaris Live Upgrade to create a UFS BE from a ZFS BE. If you migrate your
UFS BE to a ZFS BE and you retain your UFS BE, you can boot from either your UFS BE or
your ZFS BE.

■ Do not rename your ZFS BEs with the zfs rename command because the Solaris Live
Upgrade feature is unaware of the name change. Subsequent commands, such as ludelete,
will fail. In fact, do not rename your ZFS pools or file systems if you have existing BEs that
you want to continue to use.

■ Solaris Live Upgrade creates the datasets for the BE and ZFS volumes for the swap area and
dump device but does not account for any existing dataset property modifications. Thus, if
you want a dataset property enabled in the new BE, you must set the property before the
lucreate operation. For example:

Migrating a UFS root File System to a ZFS root File System (Solaris Live Upgrade)

Chapter 4 • Installing and Booting a ZFS Root File System 69

zfs set compression=on rpool/ROOT

■ When creating an alternative BE that is a clone of the primary BE, you cannot use the -f, -x,
-y, -Y, and -z options to include or exclude files from the primary BE. You can still use the
inclusion and exclusion option set in the following cases:

UFS -> UFS

UFS -> ZFS

ZFS -> ZFS (different pool)

■ Although you can use Solaris Live Upgrade to upgrade your UFS root file system to a ZFS
root file system, you cannot use Solaris Live Upgrade to upgrade non-root or shared file
systems.

■ If you are attempting to use Solaris Live Upgrade from a Solaris 10 release to the Nevada,
build 90 release, you might need to do steps similar to the following:

lucreate -n newBE -m /:cXdYsZ:ufs

luupgrade -n newBE -u -s </path/to/snv_90>

luactivate newBE

init 6

Using Solaris Live Upgrade to Migrate Zones
You can use the Solaris Live Upgrade feature to migrate your zones to a ZFS root file system.
The following zone migration scenarios are supported.

Pre-Migration Root File System/Zone Combination Post-Migration Root File System/Zone Combination

UFS root file system/UFS zone root UFS root file system/ZFS zone root

ZFS root file system/ZFS zone root

ZFS root file system/UFS zone root

UFS root file system/ZFS zone root ZFS root file system/ZFS zone root

UFS root file system/ZFS zone root

ZFS root file system/ZFS zone root ZFS root file system/ZFS zone root

If a zone exists in a non-shared file system, then the zone is automatically migrated when the
UFS root file system is migrated to a ZFS root file system. A zone within a ZFS BE is cloned
when upgrading a ZFS BE within the same ZFS pool. If the zone exists in a shared UFS file
system during the migration to a ZFS root file system, then you must upgrade the zone as in
previous Solaris releases. For more information, see Example 4–4.

Migrating a UFS root File System to a ZFS root File System (Solaris Live Upgrade)

Solaris ZFS Administration Guide • September 200870

For up-to-date information about migrating UFS and ZFS root file systems with zones installed,
go to the following site:

http://www.solarisinternals.com/wiki/index.php/ZFS_Troubleshooting_Guide

Using Solaris Live Upgrade to Migrate to a ZFS Root
File System
The following examples show how to migrate a UFS root file system to a ZFS root file system.

EXAMPLE 4–2 Using Solaris Live Upgrade to Migrate a UFS Root File System to a ZFS Root File System

The following example shows how to create a BE of a ZFS root file system from a UFS root file
system. The current BE, c1t2d0s0, containing a UFS root file system, is identified by the -c
option. The new BE, zfsnv_95BE, is identified by the -n option. A ZFS storage pool must exist
before the lucreate operation. The ZFS storage pool must be created with slices rather than
whole disks to be upgradeable and bootable.

zpool create mpool mirror c1t0d0s0 c1t1d0s0

lucreate -c ufsnv_95BE -n zfsnv_95BE -p mpool

Analyzing system configuration.

No name for current boot environment.

Current boot environment is named <ufsnv_95BE>.

Creating initial configuration for primary boot environment <zfsnv_95BE>.

The device </dev/dsk/c1t0d0s0> is not a root device for any boot environment; cannot get BE ID.

PBE configuration successful: PBE name <ufsnv_95BE> PBE Boot Device </dev/dsk/c0t0d0s0>.

Comparing source boot environment <ufsnv_95BE> file systems with the file

system(s) you specified for the new boot environment. Determining which

file systems should be in the new boot environment.

Updating boot environment description database on all BEs.

Updating system configuration files.

The device </dev/dsk/c1t0d0s0> is not a root device for any boot environment; cannot get BE ID.

Creating configuration for boot environment <zfsnv_95BE>.

Source boot environment is <ufsnv_95BE>.

Creating boot environment <zfsnv_95BE>.

Creating file systems on boot environment <zfsnv_95BE>.

Creating <zfs> file system for </> in zone <global> on <mpool/ROOT/zfsnv_95BE>.

Populating file systems on boot environment <zfsnv_95BE>.

Checking selection integrity.

Integrity check OK.

Populating contents of mount point </>.

Copying.

Creating shared file system mount points.

Creating compare databases for boot environment <zfsnv_95BE>.

Creating compare database for file system </>.

Updating compare databases on boot environment <zfsnv_95BE>.

Migrating a UFS root File System to a ZFS root File System (Solaris Live Upgrade)

Chapter 4 • Installing and Booting a ZFS Root File System 71

http://www.solarisinternals.com/wiki/index.php/ZFS_Troubleshooting_Guide

EXAMPLE 4–2 Using Solaris Live Upgrade to Migrate a UFS Root File System to a ZFS Root File System
(Continued)

Making boot environment <zfsnv_95BE> bootable.

Creating boot_archive for /.alt.tmp.b-7Tc.mnt

updating /.alt.tmp.b-7Tc.mnt/platform/sun4u/boot_archive

Population of boot environment <zfsnv_95BE> successful.

Creation of boot environment <zfsnv_95BE> successful.

After the lucreate operation completes, use the lustatus command to view the BE status. For
example:

lustatus

Boot Environment Is Active Active Can Copy

Name Complete Now On Reboot Delete Status

-------------------------- -------- ------ --------- ------ ----------

ufsnv_95BE yes yes yes no -

zfsnv_95BE yes no no yes -

Then, review the list of ZFS components. For example:

zfs list

NAME USED AVAIL REFER MOUNTPOINT

mpool 7.39G 9.10G 19K /mpool

mpool/ROOT 6.38G 9.10G 18K /mpool/ROOT

mpool/ROOT/zfsnv_95BE 6.38G 9.10G 6.38G /tmp/.alt.luupdall.11300

mpool/dump 517M 9.61G 16K -

mpool/swap 517M 9.61G 16K -

Next, use the luactivate command to activate the new ZFS BE. For example:

luactivate zfsBE

**

The target boot environment has been activated. It will be used when you

reboot. NOTE: You MUST NOT USE the reboot, halt, or uadmin commands. You

MUST USE either the init or the shutdown command when you reboot. If you

do not use either init or shutdown, the system will not boot using the

target BE.

**

In case of a failure while booting to the target BE, the following process

needs to be followed to fallback to the currently working boot environment:

1. Enter the PROM monitor (ok prompt).

2. Change the boot device back to the original boot environment by typing:

Migrating a UFS root File System to a ZFS root File System (Solaris Live Upgrade)

Solaris ZFS Administration Guide • September 200872

EXAMPLE 4–2 Using Solaris Live Upgrade to Migrate a UFS Root File System to a ZFS Root File System
(Continued)

setenv boot-device

/pci@8,600000/SUNW,qlc@4/fp@0,0/disk@w500000e010663bf1,0:a

3. Boot to the original boot environment by typing:

boot

**

Modifying boot archive service

Activation of boot environment <zfsnv_95BE> successful.

Next, reboot the system to the ZFS BE.

init 6

svc.startd: The system is coming down. Please wait.

svc.startd: 79 system services are now being stopped.

.

.

.

Confirm that the ZFS BE is active.

lustatus

Boot Environment Is Active Active Can Copy

Name Complete Now On Reboot Delete Status

-------------------------- -------- ------ --------- ------ ----------

ufsnv_95BE yes no no yes -

zfsnv_95BE yes yes yes no -

If you switch back to the UFS BE, then you will need to re-import any ZFS storage pools that
were created in the ZFS BE because they are not automatically available in the UFS BE. You will
see messages similar to the following when you switch back to the UFS BE.

luactivate ufsnv_95BE

WARNING: The following files have changed on both the current boot

environment <zfsnv_95BE> zone <global> and the boot environment to be activated <ufsnv_95BE>:

/etc/zfs/zpool.cache

INFORMATION: The files listed above are in conflict between the current

boot environment <zfsnv_95be> zone <global> and the boot environment to be

activated <ufsnv_95B>. These files will not be automatically synchronized

from the current boot environment <zfsnv_95BE> when boot environment

<ufsnv_95BE> is activated.

If the UFS BE is no longer required, you can remove it with the ludelete command.

Migrating a UFS root File System to a ZFS root File System (Solaris Live Upgrade)

Chapter 4 • Installing and Booting a ZFS Root File System 73

EXAMPLE 4–3 Using Solaris Live Upgrade to Create a ZFS BE From a ZFS BE

Creating a ZFS BE from a ZFS BE in the same pool is very quick because this operation uses ZFS
snapshot and clone features. If the current BE resides on the same ZFS pool mpool, for example,
the -p option is omitted.

If you have multiple ZFS BEs on a SPARC based system, you can use the boot -L command to
identify the available BEs and select a BE from which to boot by using the boot -Z command.
On an x86 based system, you can select a BE from the GRUB menu. For more information, see
Example 4–8.

lucreate -n zfsnv_952BE

Analyzing system configuration.

Comparing source boot environment <zfsnv_95BE> file systems with the file

system(s) you specified for the new boot environment. Determining which

file systems should be in the new boot environment.

Updating boot environment description database on all BEs.

Updating system configuration files.

Creating configuration for boot environment <zfsnv_952BE>.

Source boot environment is <zfsnv_95BE>.

Creating boot environment <zfsnv_952BE>.

Cloning file systems from boot environment <zfsnv_95BE> to create boot environment <zfsnv_952BE>.

Creating snapshot for <mpool/ROOT/zfsnv_95BE> on <mpool/ROOT/zfsnv_95BE@zfsnv_952BE>.

Creating clone for <mpool/ROOT/zfsnv_95BE@zfsnv_952BE> on <mpool/ROOT/zfsnv_952BE>.

Setting canmount=noauto for </> in zone <global> on <mpool/ROOT/zfsnv_952BE>.

Population of boot environment <zfsnv_952BE> successful.

Creation of boot environment <zfsnv_952BE> successful.

EXAMPLE 4–4 Migrating to a ZFS Root File System With Zones Installed

In the following example, the existing zone, ufszone, has its zone root in a UFS root file system.
The zone zfszone has its zone root in a ZFS file system in the existing ZFS storage pool, pool.
Solaris Live Upgrade is used to migrate the UFS BE, ufsBE, to a ZFS BE, zfsBE. The UFS-based
ufszone zone migrates to a new ZFS storage pool, mpool, that is created before the Solaris Live
Upgrade operation. The ZFS-based zone, zfszone, is cloned but retained in the ZFS pool pool
and migrated to the new zfsBE.

First, confirm the existing zones in the UFS environment.

zoneadm list -iv

zoneadm list -iv

ID NAME STATUS PATH BRAND IP

0 global running / native shared

- ufszone installed /zones native shared

- zfszone installed /pool/zones native shared

Then, start the migration operation. For example:

Migrating a UFS root File System to a ZFS root File System (Solaris Live Upgrade)

Solaris ZFS Administration Guide • September 200874

EXAMPLE 4–4 Migrating to a ZFS Root File System With Zones Installed (Continued)

zpool create mpool mirror c0t3d0s0 c0t4d0s0

lucreate -c ufsBE -n zfsBE -p mpool

Analyzing system configuration.

No name for current boot environment.

Current boot environment is named <ufsBE>.

Creating initial configuration for primary boot environment <ufsBE>.

The device </dev/dsk/c0t6d0s0> is not a root device for any boot environment; cannot get BE ID.

PBE configuration successful: PBE name <ufsBE> PBE Boot Device </dev/dsk/c0t6d0s0>.

Comparing source boot environment <ufsBE> file systems with the file

system(s) you specified for the new boot environment. Determining which

file systems should be in the new boot environment.

Updating boot environment description database on all BEs.

Updating system configuration files.

The device </dev/dsk/c0t3d0s0> is not a root device for any boot environment; cannot get BE ID.

Creating configuration for boot environment <zfsBE>.

Source boot environment is <ufsBE>.

Creating boot environment <zfsBE>.

Creating file systems on boot environment <zfsBE>.

Creating <zfs> file system for </> in zone <global> on <mpool/ROOT/zfsBE>.

Populating file systems on boot environment <zfsBE>.

Checking selection integrity.

Integrity check OK.

Populating contents of mount point </>.

Copying.

Creating shared file system mount points.

Creating snapshot for <pool/zones> on <pool/zones@zfsBE>.

Creating clone for <pool/zones@zfsBE> on <pool/zones-zfsBE>.

Copying root of zone <ufszone>.

Creating compare databases for boot environment <zfsBE>.

Creating compare database for file system </mpool/ROOT>.

Creating compare database for file system </>.

Making boot environment <zfsBE> bootable.

Creating boot_archive for /.alt.tmp.b-4hb.mnt

updating /.alt.tmp.b-4hb.mnt/platform/sun4u/boot_archive

Population of boot environment <zfsBE> successful.

Creation of boot environment <zfsBE> successful.

Next, check the status of the upgrade. For example:

lustatus

Boot Environment Is Active Active Can Copy

Name Complete Now On Reboot Delete Status

-------------------------- -------- ------ --------- ------ ----------

ufsBE yes yes yes no -

zfsBE yes no no yes -

Next, activate the ZFS BE and reboot the system. For example:

Migrating a UFS root File System to a ZFS root File System (Solaris Live Upgrade)

Chapter 4 • Installing and Booting a ZFS Root File System 75

EXAMPLE 4–4 Migrating to a ZFS Root File System With Zones Installed (Continued)

luactivate zfsBE

init 6

Finally, confirm the new BE and the status of the migrated zones. For example:

lustatus

Boot Environment Is Active Active Can Copy

Name Complete Now On Reboot Delete Status

-------------------------- -------- ------ --------- ------ ----------

ufsBE yes no no yes -

zfsBE yes yes yes no -

zfs list

NAME USED AVAIL REFER MOUNTPOINT

mpool 6.26G 27.0G 20.5K /mpool

mpool/ROOT 5.25G 27.0G 18K /mpool/ROOT

mpool/ROOT/zfsBE 5.25G 27.0G 5.25G /

mpool/dump 515M 27.0G 515M -

mpool/swap 513M 27.5G 16K -

pool 619M 32.6G 21K /pool

pool/zones 619M 32.6G 619M /pool/zones

pool/zones@zfsBE 214K - 619M -

pool/zones-zfsBE 217K 32.6G 619M /pool/zones-zfsBE

zoneadm list -iv

ID NAME STATUS PATH BRAND IP

0 global running / native shared

- zfszone installed /pool/zones-zfsBE native shared

- ufszone installed /zones native shared

EXAMPLE 4–5 Migrating a UFS/Solaris Volume Manager Configuration to a ZFS Root File System

The following example shows how to create a UFS BE from an existing Solaris Volume Manager
configuration. For example:

lucreate -n ufsBE -m /:/dev/md/dsk/d104:ufs

Then, create the ZFS BE. For example:

zpool create rpool c0t1d0s0

lucreate -n zfsBE -s ufsBE -p rpool

EXAMPLE 4–6 Upgrading Your ZFS BE (luupgrade)

You can upgrade your ZFS BE to a later build by using the luupgrade command. The following
example shows how to upgrade a ZFS BE from build 90 to build 91.

Migrating a UFS root File System to a ZFS root File System (Solaris Live Upgrade)

Solaris ZFS Administration Guide • September 200876

EXAMPLE 4–6 Upgrading Your ZFS BE (luupgrade) (Continued)

The basic process is:

■ Create an alternate BE with the lucreate command.
■ Activate and boot from the alternate BE.
■ Upgrade your primary ZFS BE with the luupgrade command.

luupgrade -n zfsBE -u -s /net/install/export/nv/combined.nvs_wos/91

51135 blocks

miniroot filesystem is <lofs>

Mounting miniroot at </net/install/export/nv/combined.nvs_wos/91/Solaris_11/Tools/Boot>

Validating the contents of the media </net/install/export/nv/combined.nvs_wos/91>.

The media is a standard Solaris media.

The media contains an operating system upgrade image.

The media contains <Solaris> version <11>.

Constructing upgrade profile to use.

Locating the operating system upgrade program.

Checking for existence of previously scheduled Live Upgrade requests.

Creating upgrade profile for BE <zfsBE>.

Determining packages to install or upgrade for BE <zfsBE>.

Performing the operating system upgrade of the BE <zfsBE>.

CAUTION: Interrupting this process may leave the boot environment unstable

or unbootable.

Upgrading Solaris: 100% completed

Installation of the packages from this media is complete.

Adding operating system patches to the BE <zfsBE>.

The operating system patch installation is complete.

INFORMATION: The file </var/sadm/system/logs/upgrade_log> on boot

environment <zfsBE> contains a log of the upgrade operation.

INFORMATION: The file </var/sadm/system/data/upgrade_cleanup> on boot

environment <zfsBE> contains a log of cleanup operations required.

INFORMATION: Review the files listed above. Remember that all of the files

are located on boot environment <zfsBE>. Before you activate boot

environment <zfsBE>, determine if any additional system maintenance is

required or if additional media of the software distribution must be

installed.

The Solaris upgrade of the boot environment <zfsBE> is complete.

Migrating a UFS root File System to a ZFS root File System (Solaris Live Upgrade)

Chapter 4 • Installing and Booting a ZFS Root File System 77

ZFS Support for Swap and Dump Devices
During an initial installation or a Solaris Live Upgrade from a UFS file system, a swap area is
created on a ZFS volume in the ZFS root pool. The swap area size is based on half the size of
physical memory, but no more than 2 Gbytes and no less than 512 Mbytes. For example:

swap -l

swapfile dev swaplo blocks free

/dev/zvol/dsk/mpool/swap 253,3 16 8257520 8257520

During an initial installation or a Solaris Live Upgrade from a UFS file system, a dump device is
created on a ZFS volume in the ZFS root pool. The dump device size is based on half the size of
physical memory, but no more than 2 Gbytes and no less than 512 Mbytes. The dump device
requires no administration after it is setup. For example:

dumpadm

Dump content: kernel pages

Dump device: /dev/zvol/dsk/mpool/dump (dedicated)

Savecore directory: /var/crash/t2000

Savecore enabled: yes

Consider the following issues when working with ZFS swap and dump devices:

■ Separate ZFS volumes must be used for the swap area and dump devices.
■ Currently, using a swap file on a ZFS file system is not supported.
■ Due to CR 6724860, you must run savecore manually to save a crash dump when using a

ZFS dump volume.
■ If you need to change your swap area or dump device after the system is installed or

upgraded, use the swap and dumpadm commands as in previous Solaris releases. For more
information, see Chapter 21, “Configuring Additional Swap Space (Tasks),” in System
Administration Guide: Devices and File Systems and Chapter 17, “Managing System Crash
Information (Tasks),” in System Administration Guide: Advanced Administration.

Adjusting the Sizes of Your ZFS Swap and Dump
Devices
Because of the differences in the way a ZFS root installation sizes swap and dump devices, you
might need to adjust the size of swap and dump devices before, during, or after installation.

■ You can adjust the size of your swap and dump volumes during an initial installation. For
more information, see Example 4–1.

■ You can create and size your swap and dump volumes before you do a Solaris Live Upgrade
operation. For example:

ZFS Support for Swap and Dump Devices

Solaris ZFS Administration Guide • September 200878

http://docs.sun.com/doc/819-2723/fsswap-14677?a=view
http://docs.sun.com/doc/819-2723/fsswap-14677?a=view
http://docs.sun.com/doc/819-2380/tscrashdumps-40145?a=view
http://docs.sun.com/doc/819-2380/tscrashdumps-40145?a=view

zpool create rpool mirror c0t0d0s0 c0t1d0s0

zfs create -V 2G rpool/dump

zfs create -V 2G rpool/swap

Solaris Live Upgrade does not resize existing swap and dump volumes.
■ You can reset the volsize property of the swap and dump devices after a system is installed.

For example:

zfs set volsize=2G rpool/dump

zfs get volsize rpool/dump

NAME PROPERTY VALUE SOURCE

rpool/dump volsize 2G -

■ You can adjust the size of the swap and dump volumes in a JumpStart profile by using
profile syntax similar to the following:

install_type initial_install

cluster SUNWCXall

pool rpool 16g 2g 2g c0t0d0s0

In this profile, the 2g and 2g entries set the size of the swap area and dump device as 2 Gbytes
and 2 Gbytes, respectively.

Booting From a ZFS Root File System
Both SPARC based and x86 based systems use the new style of booting with a boot archive,
which is a file system image that contains the files required for booting. When booting from a
ZFS root file system, the path names of both the archive and the kernel file are resolved in the
root file system that is selected for booting.

When the system is booted for installation, a RAM disk is used for the root file system during
the entire installation process, which eliminates the need for booting from removable media.

If you do an initial installation of the SXCE, build 90 release or use Solaris Live Upgrade to
migrate to a ZFS root file system in this release, you can boot from a ZFS root file system on both
a SPARC based or x86 based system.

Booting from a ZFS file system differs from booting from UFS file system because with ZFS, a
device specifier identifies a storage pool, not a single root file system. A storage pool can contain
multiple bootable datasets or ZFS root file systems. When booting from ZFS, you must specify a
boot device and a root file system within the pool that was identified by the boot device.

By default, the dataset selected for booting is the one identified by the pool's bootfs property.
This default selection can be overridden by specifying an alternate bootable dataset that is
included in the boot -Z command.

Booting From a ZFS Root File System

Chapter 4 • Installing and Booting a ZFS Root File System 79

Booting From a Alternate Disk in a Mirrored ZFS root
Pool
You can create a mirrored ZFS root pool when the system is installed, or you can attach a disk to
create a mirrored ZFS root pool after installation. Review the following known issues regarding
mirrored ZFS root pools:

■ CR 6704717 (fixed in build 95) – Do not place offline the primary disk in a mirrored ZFS
root configuration. If you do need to offline or detach a mirrored root disk for replacement,
then boot from another mirrored disk in the pool.

■ CR 6668666 – You must install the boot information on the additionally attached disks by
using the installboot or installgrub commands if you want to enable booting on the
other disks in the mirror. If you create a mirrored ZFS root pool with the initial installation
method, then this step is unnecessary. For example, if c0t1d0s0 was the second disk added
to the mirror, then the installboot or installgrub command would be as follows:

sparc# installboot -F zfs /usr/platform/‘uname -i‘/lib/fs/zfs/bootblk /dev/rdsk/c0t1d0s0

x86# installgrub /boot/grub/stage1 /boot/grub/stage2 /dev/rdsk/c0t1d0s0

You can boot from different devices in a mirrored ZFS root pool. Depending on the hardware
configuration, you might need to update the PROM or the BIOS to specify a different boot
device.

For example, you can boot from either disk (c1t0d0s0 or c1t1d0s0) in this pool.

zpool status

pool: rpool

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

rpool ONLINE 0 0 0

mirror ONLINE 0 0 0

c1t0d0s0 ONLINE 0 0 0

c1t1d0s0 ONLINE 0 0 0

On a SPARC based system, enter the alternate disk at the ok prompt.

ok boot /pci@7c0/pci@0/pci@1/pci@0,2/LSILogic,sas@2/disk@1

After the system is rebooted, confirm the active boot device. For example:

prtconf -vp | grep bootpath

bootpath: ’/pci@7c0/pci@0/pci@1/pci@0,2/LSILogic,sas@2/disk@1,0:a’

Booting From a ZFS Root File System

Solaris ZFS Administration Guide • September 200880

On an x86 based system, select an alternate disk in the mirrored ZFS root pool from the
appropriate BIOS menu.

Booting From a ZFS root File System on a SPARC Based
System
On an SPARC based system with multiple ZFS BEs, you can boot from any BE by using the
luactivate command or by using the boot -L command to display a list of BEs when the boot
device contains a ZFS storage pool.

During the installation and Solaris Live Upgrade process, the ZFS root file system is
automatically designated with the bootfs property.

Multiple bootable datasets can exist within a pool. By default, the bootable dataset entry in the
/pool-name/boot/menu.lst file is identified by the pool's bootfs property. However, a
menu.lstentry can contain a bootfs command, which specifies an alternate dataset in the pool.
In this way, the menu.lst file can contain entries for multiple root file systems within the pool.

When a system is installed with a ZFS root file system or migrated to a ZFS root file system, an
entry similar to the following is added to the menu.lst file:

title zfsnv_95

bootfs mpool/ROOT/zfsnv_95

When a new BE is created, the menu.lst file is updated. Until CR 6696226 is fixed, you must
update the menu.lst file manually after you activate the BE with the luactivate command.

On a SPARC based system, two new boot options are available:

■ You can use the boot -L command to display a list of bootable datasets within a ZFS pool.
Then, you can select one of the bootable datasets in the list. Detailed instructions for booting
that dataset are displayed. You can boot the selected dataset by following the instructions.
This option is only available when the boot device contains a ZFS storage pool.

■ Use the boot -Z dataset command to boot a specific ZFS dataset.

EXAMPLE 4–7 Booting From a Specific ZFS Boot Environment

If you have multiple ZFS BEs in a ZFS storage pool on your system's boot device, you can use the
luactivate command to specify a default BE.

For example, the following ZFS BEs are available as described by the lustatus output:

lustatus

Boot Environment Is Active Active Can Copy

Name Complete Now On Reboot Delete Status

Booting From a ZFS Root File System

Chapter 4 • Installing and Booting a ZFS Root File System 81

EXAMPLE 4–7 Booting From a Specific ZFS Boot Environment (Continued)

-------------------------- -------- ------ --------- ------ ----------

zfsnv_95BE yes yes yes no -

zfsnv_952BE yes no no yes -

If you have multiple ZFS BEs on your SPARC based system, you can use the boot -L command.
For example:

ok boot -L

Rebooting with command: boot -L

Boot device: /pci@1f,0/pci@1/scsi@4,1/disk@2,0:a File and args: -L

1 zfsnv_95BE

2 zfsnv_952BE

Select environment to boot: [1 - 2]: 2

To boot the selected entry, invoke:

boot [<root-device>] -Z mpool/ROOT/zfsnv_95BE

Program terminated

ok boot -Z mpool/ROOT/zfsnv_95BE

EXAMPLE 4–8 SPARC: Booting a ZFS File System in Failsafe Mode

On a SPARC based system, you can boot from the failsafe archive located in /platform/‘uname
-i‘/failsafe as follows. For example:

ok boot -F failsafe

If you want to boot a failsafe archive from a particular ZFS bootable dataset, use syntax similar
to the following:

ok boot -Z mpool/ROOT/zfsnv_95BE -F failsafe

Booting From a ZFS Root File System on an x86 Based
System
The following entries are added to the /pool-name/boot/grub/menu.lst file during the
installation process or Solaris Live Upgrade operation to boot ZFS automatically:

title Solaris Express Community Edition zfsnv_95BE X86

bootfs mpool/ROOT/zfsnv_95BE

findroot (pool_mpool,0,a)

kernel$ /platform/i86pc/kernel/$ISADIR/unix -B $ZFS-BOOTFS

module$ /platform/i86pc/$ISADIR/boot_archive

Booting From a ZFS Root File System

Solaris ZFS Administration Guide • September 200882

If the device identified by GRUB as the boot device contains a ZFS storage pool, the menu.lst
file is used to create the GRUB menu.

On an x86 based system with multiple ZFS BEs, you can select a BE from the GRUB menu. If the
root file system corresponding to this menu entry is a ZFS dataset, the following option is
added.

-B $ZFS-BOOTFS

EXAMPLE 4–9 x86: Booting a ZFS File System

When booting from a ZFS file system, the root device is specified by the boot -B $ZFS-BOOTFS
parameter on either the kernel or module line in the GRUB menu entry. This value, similar to
all parameters specified by the -B option, is passed by GRUB to the kernel. For example:

title Solaris Express Community Edition zfsnv_95BE X86

findroot (pool_mpool,0,a)

bootfs mpool/ROOT/zfsnv_95BE

kernel$ /platform/i86pc/kernel/$ISADIR/unix -B $ZFS-BOOTFS

module$ /platform/i86pc/$ISADIR/boot_archive

EXAMPLE 4–10 x86: Booting a ZFS File System in Failsafe Mode

The x86 failsafe archive is /boot/x86.miniroot-safe and can be booted by selecting the Solaris
failsafe entry from the GRUB menu. For example:

title zfsnv_95BE failsafe

findroot (pool_mpool,0,a)

bootfs mpool/ROOT/zfsnv_95BE

kernel /boot/platform/i86pc/kernel/unix -s -B console=ttyb

module /boot/x86.miniroot-safe

Booting From a ZFS Root File System

Chapter 4 • Installing and Booting a ZFS Root File System 83

84

Managing ZFS Storage Pools

This chapter describes how to create and administer ZFS storage pools.

The following sections are provided in this chapter:

■ “Components of a ZFS Storage Pool” on page 85
■ “Creating and Destroying ZFS Storage Pools” on page 90
■ “Managing Devices in ZFS Storage Pools” on page 99
■ “Managing ZFS Storage Pool Properties” on page 114
■ “Querying ZFS Storage Pool Status” on page 116
■ “Migrating ZFS Storage Pools” on page 123
■ “Upgrading ZFS Storage Pools” on page 130

Components of a ZFS Storage Pool
The following sections provide detailed information about the following storage pool
components:

■ “Using Disks in a ZFS Storage Pool” on page 85
■ “Using Slices in a ZFS Storage Pool” on page 87
■ “Using Files in a ZFS Storage Pool” on page 87

Using Disks in a ZFS Storage Pool
The most basic element of a storage pool is a piece of physical storage. Physical storage can be
any block device of at least 128 Mbytes in size. Typically, this device is a hard drive that is visible
to the system in the /dev/dsk directory.

A storage device can be a whole disk (c1t0d0) or an individual slice (c0t0d0s7). The
recommended mode of operation is to use an entire disk, in which case the disk does not need

5C H A P T E R 5

85

to be specially formatted. ZFS formats the disk using an EFI label to contain a single, large slice.
When used in this way, the partition table that is displayed by the format command appears
similar to the following:

Current partition table (original):

Total disk sectors available: 71670953 + 16384 (reserved sectors)

Part Tag Flag First Sector Size Last Sector

0 usr wm 34 34.18GB 71670953

1 unassigned wm 0 0 0

2 unassigned wm 0 0 0

3 unassigned wm 0 0 0

4 unassigned wm 0 0 0

5 unassigned wm 0 0 0

6 unassigned wm 0 0 0

7 unassigned wm 0 0 0

8 reserved wm 71670954 8.00MB 71687337

To use whole disks, the disks must be named using the standard Solaris convention, such as
/dev/dsk/cXtXdXsX. Some third-party drivers use a different naming convention or place disks
in a location other than the /dev/dsk directory. To use these disks, you must manually label the
disk and provide a slice to ZFS.

ZFS applies an EFI label when you create a storage pool with whole disks.

Disks can be specified by using either the full path, such as /dev/dsk/c1t0d0, or a shorthand
name that consists of the device name within the /dev/dsk directory, such as c1t0d0. For
example, the following are valid disk names:
■ c1t0d0

■ /dev/dsk/c1t0d0

■ c0t0d6s2

■ /dev/foo/disk

Using whole physical disks is the simplest way to create ZFS storage pools. ZFS configurations
become progressively more complex, from management, reliability, and performance
perspectives, when you build pools from disk slices, LUNs in hardware RAID arrays, or
volumes presented by software-based volume managers. The following considerations might
help you determine how to configure ZFS with other hardware or software storage solutions:
■ If you construct ZFS configurations on top of LUNs from hardware RAID arrays, you need

to understand the relationship between ZFS redundancy features and the redundancy
features offered by the array. Certain configurations might provide adequate redundancy
and performance, but other configurations might not.

■ You can construct logical devices for ZFS using volumes presented by software-based
volume managers, such as SolarisTM Volume Manager (SVM) or Veritas Volume Manager
(VxVM). However, these configurations are not recommended. While ZFS functions
properly on such devices, less-than-optimal performance might be the result.

Components of a ZFS Storage Pool

Solaris ZFS Administration Guide • September 200886

For additional information about storage pool recommendations, see the ZFS best practices
site:

http://www.solarisinternals.com/wiki/index.php/ZFS_Best_Practices_Guide

Disks are identified both by their path and by their device ID, if available. This method allows
devices to be reconfigured on a system without having to update any ZFS state. If a disk is
switched between controller 1 and controller 2, ZFS uses the device ID to detect that the disk
has moved and should now be accessed using controller 2. The device ID is unique to the drive's
firmware. While unlikely, some firmware updates have been known to change device IDs. If this
situation happens, ZFS can still access the device by path and update the stored device ID
automatically. If you inadvertently change both the path and the ID of the device, then export
and re-import the pool in order to use it.

Using Slices in a ZFS Storage Pool
Disks can be labeled with a traditional Solaris VTOC label when you create a storage pool with a
disk slice.

For a bootable ZFS root pool, the disks in the pool must contain slices. The simplest
configuration would be to put the entire disk capacity in slice 0 and use that slice for the root
pool.

If you are consider using slices for a ZFS storage pool that is not a bootable ZFS root pool, then
review the following conditions when using slices might be necessary:

■ The device name is nonstandard.
■ A single disk is shared between ZFS and another file system, such as UFS.
■ A disk is used as a swap or a dump device.

Using Files in a ZFS Storage Pool
ZFS also allows you to use UFS files as virtual devices in your storage pool. This feature is aimed
primarily at testing and enabling simple experimentation, not for production use. The reason is
that any use of files relies on the underlying file system for consistency. If you create a ZFS
pool backed by files on a UFS file system, then you are implicitly relying on UFS to guarantee
correctness and synchronous semantics.

However, files can be quite useful when you are first trying out ZFS or experimenting with more
complicated layouts when not enough physical devices are present. All files must be specified as
complete paths and must be at least 64 Mbytes in size. If a file is moved or renamed, the pool
must be exported and re-imported in order to use it, as no device ID is associated with files by
which they can be located.

Components of a ZFS Storage Pool

Chapter 5 • Managing ZFS Storage Pools 87

http://www.solarisinternals.com/wiki/index.php/ZFS_Best_Practices_Guide

Replication Features of a ZFS Storage Pool
ZFS provides data redundancy, as well as self-healing properties, in a mirrored and a RAID-Z
configuration.

■ “Mirrored Storage Pool Configuration” on page 88
■ “RAID-Z Storage Pool Configuration” on page 88
■ “Self-Healing Data in a Redundant Configuration” on page 89
■ “Dynamic Striping in a Storage Pool” on page 89

Mirrored Storage Pool Configuration
A mirrored storage pool configuration requires at least two disks, preferably on separate
controllers. Many disks can be used in a mirrored configuration. In addition, you can create
more than one mirror in each pool. Conceptually, a simple mirrored configuration would look
similar to the following:

mirror c1t0d0 c2t0d0

Conceptually, a more complex mirrored configuration would look similar to the following:

mirror c1t0d0 c2t0d0 c3t0d0 mirror c4t0d0 c5t0d0 c6t0d0

For information about creating a mirrored storage pool, see “Creating a Mirrored Storage Pool”
on page 91.

RAID-Z Storage Pool Configuration
In addition to a mirrored storage pool configuration, ZFS provides a RAID-Z configuration
with either single or double parity fault tolerance. Single-parity RAID-Z is similar to RAID-5.
Double-parity RAID-Z is similar to RAID-6.

All traditional RAID-5-like algorithms (RAID-4. RAID-5. RAID-6, RDP, and EVEN-ODD, for
example) suffer from a problem known as the “RAID-5 write hole.” If only part of a RAID-5
stripe is written, and power is lost before all blocks have made it to disk, the parity will remain
out of sync with the data, and therefore useless, forever (unless a subsequent full-stripe write
overwrites it). In RAID-Z, ZFS uses variable-width RAID stripes so that all writes are full-stripe
writes. This design is only possible because ZFS integrates file system and device management
in such a way that the file system's metadata has enough information about the underlying data
redundancy model to handle variable-width RAID stripes. RAID-Z is the world's first
software-only solution to the RAID-5 write hole.

A RAID-Z configuration with N disks of size X with P parity disks can hold approximately
(N-P)*X bytes and can withstand P device(s) failing before data integrity is compromised. You
need at least two disks for a single-parity RAID-Z configuration and at least three disks for a

Replication Features of a ZFS Storage Pool

Solaris ZFS Administration Guide • September 200888

double-parity RAID-Z configuration. For example, if you have three disks in a single-parity
RAID-Z configuration, parity data occupies space equal to one of the three disks. Otherwise, no
special hardware is required to create a RAID-Z configuration.

Conceptually, a RAID-Z configuration with three disks would look similar to the following:

raidz c1t0d0 c2t0d0 c3t0d0

A more complex conceptual RAID-Z configuration would look similar to the following:

raidz c1t0d0 c2t0d0 c3t0d0 c4t0d0 c5t0d0 c6t0d0 c7t0d0 raidz c8t0d0 c9t0d0 c10t0d0 c11t0d0

c12t0d0 c13t0d0 c14t0d0

If you are creating a RAID-Z configuration with many disks, as in this example, a RAID-Z
configuration with 14 disks is better split into a two 7-disk groupings. RAID-Z configurations
with single-digit groupings of disks should perform better.

For information about creating a RAID-Z storage pool, see “Creating RAID-Z Storage Pools”
on page 91.

For more information about choosing between a mirrored configuration or a RAID-Z
configuration based on performance and space considerations, see the following blog:

http://blogs.sun.com/roller/page/roch?entry=when_to_and_not_to

For additional information on RAID-Z storage pool recommendations, see the ZFS best
practices site:

http://www.solarisinternals.com/wiki/index.php/ZFS_Best_Practices_Guide

Self-Healing Data in a Redundant Configuration
ZFS provides for self-healing data in a mirrored or RAID-Z configuration.

When a bad data block is detected, not only does ZFS fetch the correct data from another
redundant copy, but it also repairs the bad data by replacing it with the good copy.

Dynamic Striping in a Storage Pool
For each virtual device that is added to the pool, ZFS dynamically stripes data across all available
devices. The decision about where to place data is done at write time, so no fixed width stripes
are created at allocation time.

When virtual devices are added to a pool, ZFS gradually allocates data to the new device in
order to maintain performance and space allocation policies. Each virtual device can also be a

Replication Features of a ZFS Storage Pool

Chapter 5 • Managing ZFS Storage Pools 89

http://blogs.sun.com/roller/page/roch?entry=when_to_and_not_to
http://www.solarisinternals.com/wiki/index.php/ZFS_Best_Practices_Guide

mirror or a RAID-Z device that contains other disk devices or files. This configuration allows
for flexibility in controlling the fault characteristics of your pool. For example, you could create
the following configurations out of 4 disks:
■ Four disks using dynamic striping
■ One four-way RAID-Z configuration
■ Two two-way mirrors using dynamic striping

While ZFS supports combining different types of virtual devices within the same pool, this
practice is not recommended. For example, you can create a pool with a two-way mirror and a
three-way RAID-Z configuration. However, your fault tolerance is as good as your worst virtual
device, RAID-Z in this case. The recommended practice is to use top-level virtual devices of the
same type with the same redundancy level in each device.

Creating and Destroying ZFS Storage Pools
The following sections describe different scenarios for creating and destroying ZFS storage
pools.
■ “Creating a ZFS Storage Pool” on page 90
■ “Handling ZFS Storage Pool Creation Errors” on page 95
■ “Destroying ZFS Storage Pools” on page 98
■ “Displaying Storage Pool Virtual Device Information” on page 94

By design, creating and destroying pools is fast and easy. However, be cautious when doing
these operations. Although checks are performed to prevent using devices known to be in use in
a new pool, ZFS cannot always know when a device is already in use. Destroying a pool is even
easier. Use zpool destroy with caution. This is a simple command with significant
consequences.

Creating a ZFS Storage Pool
To create a storage pool, use the zpool create command. This command takes a pool name
and any number of virtual devices as arguments. The pool name must satisfy the naming
conventions outlined in “ZFS Component Naming Requirements” on page 41.

Creating a Basic Storage Pool
The following command creates a new pool named tank that consists of the disks c1t0d0 and
c1t1d0:

zpool create tank c1t0d0 c1t1d0

These whole disks are found in the /dev/dsk directory and are labelled appropriately by ZFS to
contain a single, large slice. Data is dynamically striped across both disks.

Creating and Destroying ZFS Storage Pools

Solaris ZFS Administration Guide • September 200890

Creating a Mirrored Storage Pool
To create a mirrored pool, use the mirror keyword, followed by any number of storage devices
that will comprise the mirror. Multiple mirrors can be specified by repeating the mirror
keyword on the command line. The following command creates a pool with two, two-way
mirrors:

zpool create tank mirror c1d0 c2d0 mirror c3d0 c4d0

The second mirror keyword indicates that a new top-level virtual device is being specified. Data
is dynamically striped across both mirrors, with data being redundant between each disk
appropriately.

For more information about recommended mirrored configurations, see the following site:

http://www.solarisinternals.com/wiki/index.php/ZFS_Best_Practices_Guide

Currently, the following operations are supported on a ZFS mirrored configuration:

■ Adding another set of disks for an additional top-level vdev to an existing mirrored
configuration. For more information, see “Adding Devices to a Storage Pool” on page 99.

■ Attaching additional disks to an existing mirrored configuration. Or, attaching additional
disks to a non-replicated configuration to create a mirrored configuration. For more
information, see “Attaching and Detaching Devices in a Storage Pool” on page 104.

■ Replace a disk or disks in an existing mirrored configuration as long as the replacement
disks are greater than or equal to the device to be replaced. For more information, see
“Replacing Devices in a Storage Pool” on page 108.

■ Detach a disk or disk in a mirrored configuration as long as the remaining devices provide
adequate redundancy for the configuration. For more information, see “Attaching and
Detaching Devices in a Storage Pool” on page 104.

Currently, the following operations are not supported on a mirrored configuration:

■ You cannot outright remove a device from a mirrored storage pool. An RFE is filed for this
feature.

■ You cannot split or break a mirror for backup purposes. An RFE is filed for this feature.

Creating RAID-Z Storage Pools
Creating a single-parity RAID-Z pool is identical to creating a mirrored pool, except that the
raidz or raidz1 keyword is used instead of mirror. The following example shows how to create
a pool with a single RAID-Z device that consists of five disks:

zpool create tank raidz c1t0d0 c2t0d0 c3t0d0 c4t0d0 /dev/dsk/c5t0d0

This example demonstrates that disks can be specified by using their full paths. The
/dev/dsk/c5t0d0 device is identical to the c5t0d0 device.

Creating and Destroying ZFS Storage Pools

Chapter 5 • Managing ZFS Storage Pools 91

http://www.solarisinternals.com/wiki/index.php/ZFS_Best_Practices_Guide

A similar configuration could be created with disk slices. For example:

zpool create tank raidz c1t0d0s0 c2t0d0s0 c3t0d0s0 c4t0d0s0 c5t0d0s0

However, the disks must be preformatted to have an appropriately sized slice zero.

You can create a double-parity RAID-Z configuration by using the raidz2 keyword when the
pool is created. For example:

zpool create tank raidz2 c1t0d0 c2t0d0 c3t0d0

zpool status -v tank

pool: tank

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

raidz2 ONLINE 0 0 0

c1t0d0 ONLINE 0 0 0

c2t0d0 ONLINE 0 0 0

c3t0d0 ONLINE 0 0 0

errors: No known data errors

Currently, the following operations are supported on a ZFS RAID-Z configuration:

■ Add another set of disks for an additional top-level vdev to an existing RAID-Z
configuration. For more information, see “Adding Devices to a Storage Pool” on page 99.

■ Replace a disk or disks in an existing RAID-Z configuration as long as the replacement disks
are greater than or equal to the device to be replaced. For more information, see “Replacing
Devices in a Storage Pool” on page 108.

Currently, the following operations are not supported on a RAID-Z configuration:

■ Attach an additional disk to an existing RAID-Z configuration.
■ Detach a disk from a RAID-Z configuration.
■ You cannot outright remove a device from a RAID-Z configuration. An RFE is filed for this

feature.

For more information about a RAID-Z configuration, see “RAID-Z Storage Pool
Configuration” on page 88.

Creating and Destroying ZFS Storage Pools

Solaris ZFS Administration Guide • September 200892

Creating a ZFS Storage Pool with Log Devices
By default, the ZIL is allocated from blocks within the main pool. However, better performance
might be possible by using separate intent log devices, such as NVRAM or a dedicated disk. For
more information about ZFS log devices, see “Setting Up Separate ZFS Logging Devices” on
page 23.

You can set up a ZFS logging device when the storage pool is created or after the pool is created.

For example, create a mirrored storage pool with mirrored log devices.

zpool create datap mirror c1t1d0 c1t2d0 mirror c1t3d0 c1t4d0 log mirror c1t5d0 c1t8d0

zpool status

pool: datap

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

datap ONLINE 0 0 0

mirror ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

c1t2d0 ONLINE 0 0 0

mirror ONLINE 0 0 0

c1t3d0 ONLINE 0 0 0

c1t4d0 ONLINE 0 0 0

logs ONLINE 0 0 0

mirror ONLINE 0 0 0

c1t5d0 ONLINE 0 0 0

c1t8d0 ONLINE 0 0 0

errors: No known data errors

Creating a ZFS Storage Pool with Cache Devices
You can create a storage pool with cache devices to cache storage pool data. For example:

zpool create tank mirror c2t0d0 c2t1d0 c2t3d0 cache c2t5d0 c2t8d0

zpool status tank

pool: tank

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror ONLINE 0 0 0

c2t0d0 ONLINE 0 0 0

Creating and Destroying ZFS Storage Pools

Chapter 5 • Managing ZFS Storage Pools 93

c2t1d0 ONLINE 0 0 0

c2t3d0 ONLINE 0 0 0

cache

c2t5d0 ONLINE 0 0 0

c2t8d0 ONLINE 0 0 0

Review the following points when considering whether to create a ZFS storage pool with cache
devices:

■ Using cache devices provide the greatest performance improvement for random
read-workloads of mostly static content.

■ Capacity and reads can be monitored by using the zpool iostat command.
■ Single or multiple cache devices can be added when the pool is created or added and

removed after the pool is created. For more information, see Example 5–4.
■ Cache devices cannot be mirrored or be part of a RAID-Z configuration.
■ If a read error is encountered on a cache device, that read I/O is reissued to the original

storage pool device, which might be part of a mirrored or RAID-Z configuration. The
content of the cache devices is considered volatile, as is the case with other system caches.

Displaying Storage Pool Virtual Device Information
Each storage pool is comprised of one or more virtual devices. A virtual device is an internal
representation of the storage pool that describes the layout of physical storage and its fault
characteristics. As such, a virtual device represents the disk devices or files that are used to
create the storage pool. A pool can have any number of virtual devices at the top of the
configuration, known as a root vdev.

Two root or top-level virtual devices provide data redundancy: mirror and RAID-Z virtual
devices. These virtual devices consist of disks, disk slices, or files. A spare is a special vdev that
keeps track of available hot spares for a pool.

The following example shows how to create a pool that consists of two root vdevs, each a mirror
of two disks.

zpool create tank mirror c1d0 c2d0 mirror c3d0 c4d0

The following example shows how to create pool that consists of one root vdev of 4 disks.

zpool create mypool raidz2 c1d0 c2d0 c3d0 c4d0

You can add another root vdev to this pool by using the zpool add command. For example:

zpool add mypool raidz2 c2d0 c3d0 c4d0 c5d0

Creating and Destroying ZFS Storage Pools

Solaris ZFS Administration Guide • September 200894

Disks, disk slices, or files that are used in non-redundant pools function as top-level virtual
devices themselves. Storage pools typically contain multiple top-level virtual devices. ZFS
dynamically stripes data among all of the top-level virtual devices in a pool.

Virtual devices and the physical devices that are contained in a ZFS storage pool are displayed
with the zpool status command. For example:

zpool status tank

pool: tank

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror ONLINE 0 0 0

c0t1d0 ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

mirror ONLINE 0 0 0

c0t2d0 ONLINE 0 0 0

c1t2d0 ONLINE 0 0 0

mirror ONLINE 0 0 0

c0t3d0 ONLINE 0 0 0

c1t3d0 ONLINE 0 0 0

Handling ZFS Storage Pool Creation Errors
Pool creation errors can occur for many reasons. Some of these reasons are obvious, such as
when a specified device doesn't exist, while other reasons are more subtle.

Detecting In-Use Devices
Before formatting a device, ZFS first determines if the disk is in-use by ZFS or some other part
of the operating system. If the disk is in use, you might see errors such as the following:

zpool create tank c1t0d0 c1t1d0

invalid vdev specification

use ’-f’ to override the following errors:

/dev/dsk/c1t0d0s0 is currently mounted on /. Please see umount(1M).

/dev/dsk/c1t0d0s1 is currently mounted on swap. Please see swap(1M).

/dev/dsk/c1t1d0s0 is part of active ZFS pool zeepool. Please see zpool(1M).

Some of these errors can be overridden by using the -f option, but most errors cannot. The
following uses cannot be overridden by using the -f option, and you must manually correct
them:

Creating and Destroying ZFS Storage Pools

Chapter 5 • Managing ZFS Storage Pools 95

Mounted file system The disk or one of its slices contains a file system that is currently
mounted. To correct this error, use the umount command.

File system in /etc/vfstab The disk contains a file system that is listed in the /etc/vfstab
file, but the file system is not currently mounted. To correct this
error, remove or comment out the line in the /etc/vfstab file.

Dedicated dump device The disk is in use as the dedicated dump device for the system. To
correct this error, use the dumpadm command.

Part of a ZFS pool The disk or file is part of an active ZFS storage pool. To correct
this error, use the zpool destroy command to destroy the other
pool, if it is no longer needed. Or, use the zpool detach
command to detach the disk from the other pool. You can only
detach a disk from a mirrored storage pool.

The following in-use checks serve as helpful warnings and can be overridden by using the -f
option to create the pool:

Contains a file system The disk contains a known file system, though it is not mounted
and doesn't appear to be in use.

Part of volume The disk is part of an SVM volume.

Live upgrade The disk is in use as an alternate boot environment for Solaris
Live Upgrade.

Part of exported ZFS pool The disk is part of a storage pool that has been exported or
manually removed from a system. In the latter case, the pool is
reported as potentially active, as the disk might or might
not be a network-attached drive in use by another system. Be
cautious when overriding a potentially active pool.

The following example demonstrates how the -f option is used:

zpool create tank c1t0d0

invalid vdev specification

use ’-f’ to override the following errors:

/dev/dsk/c1t0d0s0 contains a ufs filesystem.

zpool create -f tank c1t0d0

Ideally, correct the errors rather than use the -f option.

Creating and Destroying ZFS Storage Pools

Solaris ZFS Administration Guide • September 200896

Mismatched Replication Levels
Creating pools with virtual devices of different replication levels is not recommended. The
zpool command tries to prevent you from accidentally creating a pool with mismatched levels
of redundancy. If you try to create a pool with such a configuration, you see errors similar to the
following:

zpool create tank c1t0d0 mirror c2t0d0 c3t0d0

invalid vdev specification

use ’-f’ to override the following errors:

mismatched replication level: both disk and mirror vdevs are present

zpool create tank mirror c1t0d0 c2t0d0 mirror c3t0d0 c4t0d0 c5t0d0

invalid vdev specification

use ’-f’ to override the following errors:

mismatched replication level: 2-way mirror and 3-way mirror vdevs are present

You can override these errors with the -f option, though this practice is not recommended. The
command also warns you about creating a mirrored or RAID-Z pool using devices of different
sizes. While this configuration is allowed, mismatched levels of redundancy result in unused
space on the larger device, and requires the -f option to override the warning.

Doing a Dry Run of Storage Pool Creation
Because creating a pool can fail unexpectedly in different ways, and because formatting disks is
such a potentially harmful action, the zpool create command has an additional option, -n,
which simulates creating the pool without actually writing to the device. This option performs
the device in-use checking and replication level validation, and reports any errors in the
process. If no errors are found, you see output similar to the following:

zpool create -n tank mirror c1t0d0 c1t1d0

would create ’tank’ with the following layout:

tank

mirror

c1t0d0

c1t1d0

Some errors cannot be detected without actually creating the pool. The most common example
is specifying the same device twice in the same configuration. This error cannot be reliably
detected without writing the data itself, so the create -n command can report success and yet
fail to create the pool when run for real.

Default Mount Point for Storage Pools
When a pool is created, the default mount point for the root dataset is /pool-name. This
directory must either not exist or be empty. If the directory does not exist, it is automatically

Creating and Destroying ZFS Storage Pools

Chapter 5 • Managing ZFS Storage Pools 97

created. If the directory is empty, the root dataset is mounted on top of the existing directory.
To create a pool with a different default mount point, use the -m option of the zpool create
command:

zpool create home c1t0d0

default mountpoint ’/home’ exists and is not empty

use ’-m’ option to specify a different default

zpool create -m /export/zfs home c1t0d0

zpool create home c1t0d0

default mountpoint ’/home’ exists and is not empty

use ’-m’ option to provide a different default

zpool create -m /export/zfs home c1t0d0

This command creates a new pool home and the home dataset with a mount point of
/export/zfs.

For more information about mount points, see “Managing ZFS Mount Points” on page 157.

Destroying ZFS Storage Pools
Pools are destroyed by using the zpool destroy command. This command destroys the pool
even if it contains mounted datasets.

zpool destroy tank

Caution – Be very careful when you destroy a pool. Make sure you are destroying the right pool
and you always have copies of your data. If you accidentally destroy the wrong pool, you can
attempt to recover the pool. For more information, see “Recovering Destroyed ZFS Storage
Pools” on page 128.

Destroying a Pool With Faulted Devices
The act of destroying a pool requires that data be written to disk to indicate that the pool is no
longer valid. This state information prevents the devices from showing up as a potential pool
when you perform an import. If one or more devices are unavailable, the pool can still be
destroyed. However, the necessary state information won't be written to these damaged devices.

These devices, when suitably repaired, are reported as potentially active when you create a new
pool, and appear as valid devices when you search for pools to import. If a pool has enough
faulted devices such that the pool itself is faulted (meaning that a top-level virtual device is

Creating and Destroying ZFS Storage Pools

Solaris ZFS Administration Guide • September 200898

faulted), then the command prints a warning and cannot complete without the -f option. This
option is necessary because the pool cannot be opened, so whether data is stored there or not is
unknown. For example:

zpool destroy tank

cannot destroy ’tank’: pool is faulted

use ’-f’ to force destruction anyway

zpool destroy -f tank

For more information about pool and device health, see “Determining the Health Status of ZFS
Storage Pools” on page 120.

For more information about importing pools, see “Importing ZFS Storage Pools” on page 127.

Managing Devices in ZFS Storage Pools
Most of the basic information regarding devices is covered in “Components of a ZFS Storage
Pool” on page 85. Once a pool has been created, you can perform several tasks to manage the
physical devices within the pool.

■ “Adding Devices to a Storage Pool” on page 99
■ “Attaching and Detaching Devices in a Storage Pool” on page 104
■ “Onlining and Offlining Devices in a Storage Pool” on page 106
■ “Clearing Storage Pool Devices” on page 108
■ “Replacing Devices in a Storage Pool” on page 108
■ “Designating Hot Spares in Your Storage Pool” on page 110

Adding Devices to a Storage Pool
You can dynamically add space to a pool by adding a new top-level virtual device. This space is
immediately available to all datasets within the pool. To add a new virtual device to a pool, use
the zpool add command. For example:

zpool add zeepool mirror c2t1d0 c2t2d0

The format for specifying the virtual devices is the same as for the zpool create command, and
the same rules apply. Devices are checked to determine if they are in use, and the command
cannot change the level of redundancy without the -f option. The command also supports the
-n option so that you can perform a dry run. For example:

zpool add -n zeepool mirror c3t1d0 c3t2d0

would update ’zeepool’ to the following configuration:

zeepool

Managing Devices in ZFS Storage Pools

Chapter 5 • Managing ZFS Storage Pools 99

mirror

c1t0d0

c1t1d0

mirror

c2t1d0

c2t2d0

mirror

c3t1d0

c3t2d0

This command syntax would add mirrored devices c3t1d0 and c3t2d0 to zeepool's existing
configuration.

For more information about how virtual device validation is done, see “Detecting In-Use
Devices” on page 95.

EXAMPLE 5–1 Adding Disks to a Mirrored ZFS Configuration

In the following example, another mirror is added to an existing mirrored ZFS configuration on
a Sun Fire x4500 system.

zpool status tank

pool: tank

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror ONLINE 0 0 0

c0t1d0 ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

mirror ONLINE 0 0 0

c0t2d0 ONLINE 0 0 0

c1t2d0 ONLINE 0 0 0

errors: No known data errors

zpool add tank mirror c0t3d0 c1t3d0

zpool status tank

pool: tank

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror ONLINE 0 0 0

Managing Devices in ZFS Storage Pools

Solaris ZFS Administration Guide • September 2008100

EXAMPLE 5–1 Adding Disks to a Mirrored ZFS Configuration (Continued)

c0t1d0 ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

mirror ONLINE 0 0 0

c0t2d0 ONLINE 0 0 0

c1t2d0 ONLINE 0 0 0

mirror ONLINE 0 0 0

c0t3d0 ONLINE 0 0 0

c1t3d0 ONLINE 0 0 0

errors: No known data errors

EXAMPLE 5–2 Adding Disks to a RAID-Z Configuration

Additional disks can be added similarly to a RAID-Z configuration. The following example
shows how to convert a storage pool with one RAID–Z device comprised of 3 disks to a storage
pool with two RAID-Z devices comprised of 3 disks.

zpool status

pool: rpool

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

rpool ONLINE 0 0 0

raidz1 ONLINE 0 0 0

c1t2d0 ONLINE 0 0 0

c1t3d0 ONLINE 0 0 0

c1t4d0 ONLINE 0 0 0

errors: No known data errors

zpool add rpool raidz c2t2d0 c2t3d0 c2t4d0

zpool status

pool: rpool

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

rpool ONLINE 0 0 0

raidz1 ONLINE 0 0 0

c1t2d0 ONLINE 0 0 0

c1t3d0 ONLINE 0 0 0

c1t4d0 ONLINE 0 0 0

raidz1 ONLINE 0 0 0

c2t2d0 ONLINE 0 0 0

Managing Devices in ZFS Storage Pools

Chapter 5 • Managing ZFS Storage Pools 101

EXAMPLE 5–2 Adding Disks to a RAID-Z Configuration (Continued)

c2t3d0 ONLINE 0 0 0

c2t4d0 ONLINE 0 0 0

errors: No known data errors

EXAMPLE 5–3 Adding a Mirrored Log Device to a ZFS Storage Pool

The following example shows how to add a mirrored log device to mirrored storage pool.For
more information about using log devices in your storage pool, see “Setting Up Separate ZFS
Logging Devices” on page 23.

zpool status newpool

pool: newpool

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

newpool ONLINE 0 0 0

mirror ONLINE 0 0 0

c1t9d0 ONLINE 0 0 0

c1t10d0 ONLINE 0 0 0

errors: No known data errors

zpool add newpool log mirror c1t11d0 c1t12d0

zpool status newpool

pool: newpool

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

newpool ONLINE 0 0 0

mirror ONLINE 0 0 0

c1t9d0 ONLINE 0 0 0

c1t10d0 ONLINE 0 0 0

logs ONLINE 0 0 0

mirror ONLINE 0 0 0

c1t11d0 ONLINE 0 0 0

c1t12d0 ONLINE 0 0 0

errors: No known data errors

Managing Devices in ZFS Storage Pools

Solaris ZFS Administration Guide • September 2008102

EXAMPLE 5–3 Adding a Mirrored Log Device to a ZFS Storage Pool (Continued)

You can attach a log device to an existing log device to create a mirrored log device. This
operation is identical to attaching a device in a unmirrored storage pool.

EXAMPLE 5–4 Adding and Removing Cache Devices to Your ZFS Storage Pool

You can add and remove cache devices to your ZFS storage pool.

Use the zpool add command to add cache devices. For example:

zpool add tank cache c2t5d0 c2t8d0

zpool status tank

pool: tank

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror ONLINE 0 0 0

c2t0d0 ONLINE 0 0 0

c2t1d0 ONLINE 0 0 0

c2t3d0 ONLINE 0 0 0

cache

c2t5d0 ONLINE 0 0 0

c2t8d0 ONLINE 0 0 0

errors: No known data errors

Cache devices cannot be mirrored or be part of a RAID-Z configuration.

Use the zpool remove command to remove cache devices. For example:

zpool remove tank c2t5d0 c2t8d0

zpool status tank

pool: tank

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror ONLINE 0 0 0

c2t0d0 ONLINE 0 0 0

c2t1d0 ONLINE 0 0 0

Managing Devices in ZFS Storage Pools

Chapter 5 • Managing ZFS Storage Pools 103

EXAMPLE 5–4 Adding and Removing Cache Devices to Your ZFS Storage Pool (Continued)

c2t3d0 ONLINE 0 0 0

errors: No known data errors

Currently, the zpool remove command only supports removing hot spares and cache devices.
Devices that are part of the main mirrored pool configuration can be removed by using the
zpool detach command. Non-redundant and RAID-Z devices cannot be removed from a pool.

For more information about using cache devices in a ZFS storage pool, see “Creating a ZFS
Storage Pool with Cache Devices” on page 93.

Attaching and Detaching Devices in a Storage Pool
In addition to the zpool add command, you can use the zpool attach command to add a new
device to an existing mirrored or non-mirrored device.

EXAMPLE 5–5 Converting a Two-Way Mirrored Storage Pool to a Three-way Mirrored Storage Pool

In this example, zeepool is an existing two-way mirror that is transformed to a three-way
mirror by attaching c2t1d0, the new device, to the existing device, c1t1d0.

zpool status

pool: zeepool

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

zeepool ONLINE 0 0 0

mirror ONLINE 0 0 0

c0t1d0 ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

errors: No known data errors

zpool attach zeepool c1t1d0 c2t1d0

zpool status

pool: zeepool

state: ONLINE

scrub: resilver completed after 0h2m with 0 errors on Thu Aug 28 09:50:11 2008

config:

NAME STATE READ WRITE CKSUM

zeepool ONLINE 0 0 0

mirror ONLINE 0 0 0

c0t1d0 ONLINE 0 0 0

Managing Devices in ZFS Storage Pools

Solaris ZFS Administration Guide • September 2008104

EXAMPLE 5–5 Converting a Two-Way Mirrored Storage Pool to a Three-way Mirrored Storage Pool
(Continued)

c1t1d0 ONLINE 0 0 0

c2t1d0 ONLINE 0 0 0

If the existing device is part of a two-way mirror, attaching the new device, creates a three-way
mirror, and so on. In either case, the new device begins to resilver immediately.

EXAMPLE 5–6 Converting a Non-Redundant ZFS Storage Pool to a Mirrored ZFS Storage Pool

In addition, you can convert a non-redundant storage pool into a redundant storage pool by
using the zpool attach command. For example:

zpool create tank c0t1d0

zpool status

pool: tank

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

c0t1d0 ONLINE 0 0 0

errors: No known data errors

zpool attach tank c0t1d0 c1t1d0

zpool status

pool: tank

state: ONLINE

scrub: resilver completed after 0h2m with 0 errors on Thu Aug 28 09:54:11 2008

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror ONLINE 0 0 0

c0t1d0 ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

You can use the zpool detach command to detach a device from a mirrored storage pool. For
example:

zpool detach zeepool c2t1d0

However, this operation is refused if there are no other valid replicas of the data. For example:

zpool detach newpool c1t2d0

cannot detach c1t2d0: only applicable to mirror and replacing vdevs

Managing Devices in ZFS Storage Pools

Chapter 5 • Managing ZFS Storage Pools 105

Onlining and Offlining Devices in a Storage Pool
ZFS allows individual devices to be taken offline or brought online. When hardware is
unreliable or not functioning properly, ZFS continues to read or write data to the device,
assuming the condition is only temporary. If the condition is not temporary, it is possible to
instruct ZFS to ignore the device by bringing it offline. ZFS does not send any requests to an
offlined device.

Note – Devices do not need to be taken offline in order to replace them.

You can use the offline command when you need to temporarily disconnect storage. For
example, if you need to physically disconnect an array from one set of Fibre Channel switches
and connect the array to a different set, you could take the LUNs offline from the array that was
used in ZFS storage pools. After the array was reconnected and operational on the new set of
switches, you could then bring the same LUNs online. Data that had been added to the storage
pools while the LUNs were offline would resilver to the LUNs after they were brought back
online.

This scenario is possible assuming that the systems in question see the storage once it is
attached to the new switches, possibly through different controllers than before, and your pools
are set up as RAID-Z or mirrored configurations.

Taking a Device Offline
You can take a device offline by using the zpool offline command. The device can be
specified by path or by short name, if the device is a disk. For example:

zpool offline tank c1t0d0

bringing device c1t0d0 offline

Keep the following points in mind when taking a device offline:

■ You cannot take a pool offline to the point where it becomes faulted. For example, you
cannot take offline two devices out of a RAID-Z configuration, nor can you take offline a
top-level virtual device.

zpool offline tank c1t0d0

cannot offline c1t0d0: no valid replicas

■ By default, the offline state is persistent. The device remains offline when the system is
rebooted.
To temporarily take a device offline, use the zpool offline -t option. For example:

Managing Devices in ZFS Storage Pools

Solaris ZFS Administration Guide • September 2008106

zpool offline -t tank c1t0d0

bringing device ’c1t0d0’ offline

When the system is rebooted, this device is automatically returned to the ONLINE state.
■ When a device is taken offline, it is not detached from the storage pool. If you attempt to use

the offlined device in another pool, even after the original pool is destroyed, you will see a
message similar to the following:

device is part of exported or potentially active ZFS pool. Please see zpool(1M)

If you want to use the offlined device in another storage pool after destroying the original
storage pool, first bring the device back online, then destroy the original storage pool.

Another way to use a device from another storage pool if you want to keep the original
storage pool is to replace the existing device in the original storage pool with another
comparable device. For information about replacing devices, see “Replacing Devices in a
Storage Pool” on page 108.

Offlined devices show up in the OFFLINE state when you query pool status. For information
about querying pool status, see “Querying ZFS Storage Pool Status” on page 116.

For more information on device health, see “Determining the Health Status of ZFS Storage
Pools” on page 120.

Bringing a Device Online
Once a device is taken offline, it can be restored by using the zpool online command:

zpool online tank c1t0d0

bringing device c1t0d0 online

When a device is brought online, any data that has been written to the pool is resynchronized to
the newly available device. Note that you cannot use device onlining to replace a disk. If you
offline a device, replace the drive, and try to bring it online, it remains in the faulted state.

If you attempt to online a faulted device, a message similar to the following is displayed from
fmd:

zpool online tank c1t0d0

Bringing device c1t0d0 online

#

SUNW-MSG-ID: ZFS-8000-D3, TYPE: Fault, VER: 1, SEVERITY: Major

EVENT-TIME: Thu Aug 31 11:13:59 MDT 2006

PLATFORM: SUNW,Ultra-60, CSN: -, HOSTNAME: neo

SOURCE: zfs-diagnosis, REV: 1.0

EVENT-ID: e11d8245-d76a-e152-80c6-e63763ed7e4f

Managing Devices in ZFS Storage Pools

Chapter 5 • Managing ZFS Storage Pools 107

DESC: A ZFS device failed. Refer to http://sun.com/msg/ZFS-8000-D3 for more information.

AUTO-RESPONSE: No automated response will occur.

IMPACT: Fault tolerance of the pool may be compromised.

REC-ACTION: Run ’zpool status -x’ and replace the bad device.

For more information on replacing a faulted device, see “Repairing a Missing Device” on
page 248.

Clearing Storage Pool Devices
If a device is taken offline due to a failure that causes errors to be listed in the zpool status
output, you can clear the error counts with the zpool clear command.

If specified with no arguments, this command clears all device errors within the pool. For
example:

zpool clear tank

If one or more devices are specified, this command only clear errors associated with the
specified devices. For example:

zpool clear tank c1t0d0

For more information on clearing zpool errors, see “Clearing Transient Errors” on page 251.

Replacing Devices in a Storage Pool
You can replace a device in a storage pool by using the zpool replace command.

If you are physically replacing a device with another device in the same location in a redundant
pool, then you only need identify the replaced device. ZFS recognizes that it is a different disk in
the same location. For example, to replace a failed disk (c1t1d0) by removing the disk and
replacing it in the same location, use the syntax similar to the following:

zpool replace tank c1t1d0

If you are replacing a device in a non-redundant storage pool that contains only one device, you
will need to specify both devices. For example:

zpool replace tank c1t1d0 c1t2d0

Managing Devices in ZFS Storage Pools

Solaris ZFS Administration Guide • September 2008108

The basic steps for replacing a disk are:

■ Offline the disk, if necessary, with the zpool offline command.
■ Remove the disk to be replaced.
■ Insert the replacement disk.
■ Run the zpool replace command. For example:

zpool replace tank c1t1d0

■ Put the disk back online with the zpool online command.

On some systems, such as the Sun Fire x4500, you must unconfigure a disk before you take it
offline. If you are just replacing a disk in the same slot position on this system, then you can just
run the zpool replace command as identified above.

For an example of replacing a disk on this system, see Example 11–1.

Keep the following considerations in mind when replacing devices in a ZFS storage pool:

■ If you set the pool property autoreplace to on, then any new device, found in the same
physical location as a device that previously belonged to the pool, is automatically formatted
and replaced without using the zpool replace command. This feature might not be
available on all hardware types.

■ The replacement device must be greater than or equal to the minimum size of all the devices
in a mirrored or RAID-Z configuration.

■ If the replacement device is larger, the pool capacity is increased when the replacement is
complete. Currently, you must export and import the pool to see the expanded capacity. For
example:

zpool list tank

NAME SIZE USED AVAIL CAP HEALTH ALTROOT

tank 16.8G 94K 16.7G 0% ONLINE -

zpool replace tank c0t0d0 c0t4d0

zpool list tank

NAME SIZE USED AVAIL CAP HEALTH ALTROOT

tank 16.8G 112K 16.7G 0% ONLINE -

zpool export tank

zpool import tank

zpool list tank

NAME SIZE USED AVAIL CAP HEALTH ALTROOT

tank 33.9G 114K 33.9G 0% ONLINE -

For more information about exporting and importing pools, see “Migrating ZFS Storage
Pools” on page 123.

Managing Devices in ZFS Storage Pools

Chapter 5 • Managing ZFS Storage Pools 109

■ Currently, when growing the size of an existing LUN that is part of a storage pool, you must
also perform the export and import steps to see the expanded disk capacity.

■ Replacing many disks in a large pool is time consuming due to resilvering the data onto the
new disks. In addition, you might consider running the zpool scrub command between
disk replacements to ensure that the replacement devices are operational and the data is
written correctly.

For more information about replacing devices, see “Repairing a Missing Device” on page 248
and “Repairing a Damaged Device” on page 250.

Designating Hot Spares in Your Storage Pool
The hot spares feature enables you to identify disks that could be used to replace a failed or
faulted device in one or more storage pools. Designating a device as a hot spare means that the
device is not an active device in a pool, but if an active device in the pool fails, the hot spare
automatically replaces the failed device.

Devices can be designated as hot spares in the following ways:

■ When the pool is created with the zpool create command
■ After the pool is created with the zpool add command
■ Hot spare devices can be shared between multiple pools

Designate devices as hot spares when the pool is created. For example:

zpool create zeepool mirror c1t1d0 c2t1d0 spare c1t2d0 c2t2d0

zpool status zeepool

pool: zeepool

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

zeepool ONLINE 0 0 0

mirror ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

c2t1d0 ONLINE 0 0 0

spares

c1t2d0 AVAIL

c2t2d0 AVAIL

Designate hot spares by adding them to a pool after the pool is created. For example:

zpool add zeepool spare c1t3d0 c2t3d0

zpool status zeepool

Managing Devices in ZFS Storage Pools

Solaris ZFS Administration Guide • September 2008110

pool: zeepool

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

zeepool ONLINE 0 0 0

mirror ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

c2t1d0 ONLINE 0 0 0

spares

c1t3d0 AVAIL

c2t3d0 AVAIL

Multiple pools can share devices that are designated as hot spares. For example:

zpool create zeepool mirror c1t1d0 c2t1d0 spare c1t2d0 c2t2d0

zpool create tank raidz c3t1d0 c4t1d0 spare c1t2d0 c2t2d0

Hot spares can be removed from a storage pool by using the zpool remove command. For
example:

zpool remove zeepool c1t2d0

zpool status zeepool

pool: zeepool

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

zeepool ONLINE 0 0 0

mirror ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

c2t1d0 ONLINE 0 0 0

spares

c1t3d0 AVAIL

A hot spare cannot be removed if it is currently used by the storage pool.

Keep the following points in mind when using ZFS hot spares:

■ Currently, the zpool remove command can only be used to remove hot spares and cache
devices.

■ Add a disk as a spare that is equal to or larger than the size of the largest disk in the pool.
Adding a smaller disk as a spare to a pool is allowed. However, when the smaller spare disk is
activated, either automatically or with the zpool replace command, the operation fails
with an error similar to the following:

Managing Devices in ZFS Storage Pools

Chapter 5 • Managing ZFS Storage Pools 111

cannot replace disk3 with disk4: device is too small

■ You can share a hot spare between pools. However, you cannot export a pool with an in-use
shared spare unless you use the zpool export -f (force) option. This behavior prevents the
potential data corruption scenario of exporting a pool with an in-use shared spare and
another pool attempts to use the shared spare from the exported pool. If you export a pool
with an in-use shared spare by using the -f option, be aware that this operation might lead
to data corruption if another pool attempts to activate the in-use shared spare.

Activating and Deactivating Hot Spares in Your Storage Pool
Hot spares are activated in the following ways:

■ Manually replacement – Replace a failed device in a storage pool with a hot spare by using
the zpool replace command.

■ Automatic replacement – When a fault is received, an FMA agent examines the pool to see if
it has any available hot spares. If so, it replaces the faulted device with an available spare.
If a hot spare that is currently in use fails, the agent detaches the spare and thereby cancels
the replacement. The agent then attempts to replace the device with another hot spare, if one
is available. This feature is currently limited by the fact that the ZFS diagnosis engine only
emits faults when a device disappears from the system.
If you physically replace a failed device with an active spare, you can reactivate the original,
but replaced device by using the zpool detach command to detach the spare. If you set the
autoreplace pool property to on, the spare is automatically detached back to the spare pool
when the new device is inserted and the online operation completes.

Manually replace a device with a hot spare by using the zpool replace command. For example:

zpool replace zeepool c2t1d0 c2t3d0

zpool status zeepool

pool: zeepool

state: ONLINE

scrub: resilver completed after 0h0m with 0 errors on Thu Aug 28 09:41:49 2008

config:

NAME STATE READ WRITE CKSUM

zeepool ONLINE 0 0 0

mirror ONLINE 0 0 0

c1t2d0 ONLINE 0 0 0

spare ONLINE 0 0 0

c2t1d0 ONLINE 0 0 0

c2t3d0 ONLINE 0 0 0

spares

c1t3d0 AVAIL

c2t3d0 INUSE currently in use

Managing Devices in ZFS Storage Pools

Solaris ZFS Administration Guide • September 2008112

errors: No known data errors

A faulted device is automatically replaced if a hot spare is available. For example:

zpool status -x

pool: zeepool

state: DEGRADED

status: One or more devices could not be opened. Sufficient replicas exist for

the pool to continue functioning in a degraded state.

action: Attach the missing device and online it using ’zpool online’.

see: http://www.sun.com/msg/ZFS-8000-D3

scrub: resilver completed after 0h12m with 0 errors on Thu Aug 28 09:29:43 2008

config:

NAME STATE READ WRITE CKSUM

zeepool DEGRADED 0 0 0

mirror DEGRADED 0 0 0

c1t2d0 ONLINE 0 0 0

spare DEGRADED 0 0 0

c2t1d0 UNAVAIL 0 0 0 cannot open

c2t3d0 ONLINE 0 0 0

spares

c1t3d0 AVAIL

c2t3d0 INUSE currently in use

errors: No known data errors

Currently, three ways to deactivate hot spares are available:

■ Canceling the hot spare by removing it from the storage pool
■ Replacing the original device with a hot spare
■ Permanently swapping in the hot spare

After the faulted device is replaced, use the zpool detach command to return the hot spare
back to the spare set. For example:

zpool detach zeepool c2t3d0

zpool status zeepool

pool: zeepool

state: ONLINE

scrub: resilver completed with 0 errors on Fri Jun 2 13:58:35 2006

config:

NAME STATE READ WRITE CKSUM

zeepool ONLINE 0 0 0

mirror ONLINE 0 0 0

c1t2d0 ONLINE 0 0 0

Managing Devices in ZFS Storage Pools

Chapter 5 • Managing ZFS Storage Pools 113

c2t1d0 ONLINE 0 0 0

spares

c1t3d0 AVAIL

c2t3d0 AVAIL

errors: No known data errors

Managing ZFS Storage Pool Properties
You can use the zpool get command to display pool property information. For example:

zpool get all mpool

NAME PROPERTY VALUE SOURCE

mpool size 33.8G -

mpool used 5.91G -

mpool available 27.8G -

mpool capacity 17% -

mpool altroot - default

mpool health ONLINE -

mpool guid 2689713858991441653 -

mpool version 10 default

mpool bootfs mpool/ROOT/zfs2BE local

mpool delegation on default

mpool autoreplace on local

mpool cachefile - default

mpool failmode continue local

Storage pool properties can be set with the zpool set command. For example:

zpool set autoreplace=on mpool

zpool get autoreplace mpool

NAME PROPERTY VALUE SOURCE

mpool autoreplace on default

TABLE 5–1 ZFS Pool Property Descriptions

Property Name Type Default Value Description

altroot String off Identifies an alternate root directory. If set, this directory is
prepended to any mount points within the pool. This property
can be used when examining an unknown pool, if the mount
points cannot be trusted, or in an alternate boot environment,
where the typical paths are not valid.

Managing ZFS Storage Pool Properties

Solaris ZFS Administration Guide • September 2008114

TABLE 5–1 ZFS Pool Property Descriptions (Continued)
Property Name Type Default Value Description

available Number N/A Read-only value that identifies the amount of storage that is
available within the pool.

This property can also be referred to by its shortened column
name, avail.

autoreplace Boolean off Controls automatic device replacement. If set to off, device
replacement must be initiated by the administrator by using
the zpool replace command. If set to on, any new device,
found in the same physical location as a device that previously
belonged to the pool, is automatically formatted and replaced.
The default behavior is off. This property can also be referred
to by its shortened column name, replace.

bootfs Boolean N/A Identifies the default bootable dataset for the root pool. This
property is expected to be set mainly by the installation and
upgrade programs.

capacity Number N/A Read-only value that identifies the percentage of pool space
used.

This property can also be referred to by its shortened column
name, cap.

delegation Boolean on Controls whether a non-privileged user can be granted access
permissions that are defined for the dataset. For more
information, see Chapter 9, “ZFS Delegated Administration.”

failmode String wait Controls the system behavior in the event of catastrophic pool
failure. This condition is typically a result of a loss of
connectivity to the underlying storage device(s) or a failure of
all devices within the pool. The behavior of such an event is
determined by one of the following values:
■ wait – blocks all I/O access until the device connectivity is

restored and the errors are cleared by using the zpool
clear command. This is the default behavior.

■ continue – returns EIO to any new write I/O requests, but
allows reads to any of the remaining healthy devices. Any
write requests that have yet to be committed to disk would
be blocked. After the device is reconnected or replaced, the
errors must be cleared with the zpool clear command.

■ panic – prints out a message to the console and generates
a system crash dump.

guid String N/A Read-only property that identifies the unique identifier for the
pool.

Managing ZFS Storage Pool Properties

Chapter 5 • Managing ZFS Storage Pools 115

TABLE 5–1 ZFS Pool Property Descriptions (Continued)
Property Name Type Default Value Description

health String N/A Read-only property that identifies the current health of the
pool, as either ONLINE, DEGRADED, FAULTED, OFFLINE,
REMOVED, or UNAVAIL.

size Number N/A Read-only property that identifies the total size of the storage
pool.

used Number N/A Read-only property that identifies the amount of storage space
used within the pool.

version Number N/A Identifies the current on-disk version of the pool. The value of
this property can be increased, but never decreased. The
preferred method of updating pools is with the zpool upgrade
command, although this property can be used when a specific
version is needed for backwards compatibility. This property
can be set to any number between 1 and the current version
reported by the zpool upgrade -v command. The current
value is an alias for the latest supported version.

Querying ZFS Storage Pool Status
The zpool list command provides a number of ways to request information regarding pool
status. The information available generally falls into three categories: basic usage information,
I/O statistics, and health status. All three types of storage pool information are covered in this
section.

■ “Displaying Basic ZFS Storage Pool Information” on page 116
■ “Viewing ZFS Storage Pool I/O Statistics” on page 118
■ “Determining the Health Status of ZFS Storage Pools” on page 120

Displaying Basic ZFS Storage Pool Information
You can use the zpool list command to display basic information about pools.

Listing Information About All Storage Pools
With no arguments, the command displays all the fields for all pools on the system. For
example:

zpool list

NAME SIZE USED AVAIL CAP HEALTH ALTROOT

tank 80.0G 22.3G 47.7G 28% ONLINE -

dozer 1.2T 384G 816G 32% ONLINE -

Querying ZFS Storage Pool Status

Solaris ZFS Administration Guide • September 2008116

This output displays the following information:

NAME The name of the pool.

SIZE The total size of the pool, equal to the sum of the size of all top-level virtual
devices.

USED The amount of space allocated by all datasets and internal metadata. Note
that this amount is different from the amount of space as reported at the file
system level.

For more information about determining available file system space, see
“ZFS Space Accounting” on page 52.

AVAILABLE The amount of unallocated space in the pool.

CAPACITY (CAP) The amount of space used, expressed as a percentage of total space.

HEALTH The current health status of the pool.

For more information about pool health, see “Determining the Health
Status of ZFS Storage Pools” on page 120.

ALTROOT The alternate root of the pool, if any.

For more information about alternate root pools, see “Using ZFS Alternate
Root Pools” on page 237.

You can also gather statistics for a specific pool by specifying the pool name. For example:

zpool list tank

NAME SIZE USED AVAIL CAP HEALTH ALTROOT

tank 80.0G 22.3G 47.7G 28% ONLINE -

Listing Specific Storage Pool Statistics
Specific statistics can be requested by using the -o option. This option allows for custom reports
or a quick way to list pertinent information. For example, to list only the name and size of each
pool, you use the following syntax:

zpool list -o name,size

NAME SIZE

tank 80.0G

dozer 1.2T

The column names correspond to the properties that are listed in “Listing Information About
All Storage Pools” on page 116.

Querying ZFS Storage Pool Status

Chapter 5 • Managing ZFS Storage Pools 117

Scripting ZFS Storage Pool Output
The default output for the zpool list command is designed for readability, and is not easy to
use as part of a shell script. To aid programmatic uses of the command, the -H option can be
used to suppress the column headings and separate fields by tabs, rather than by spaces. For
example, to request a simple list of all pool names on the system:

zpool list -Ho name

tank

dozer

Here is another example:

zpool list -H -o name,size

tank 80.0G

dozer 1.2T

Viewing ZFS Storage Pool I/O Statistics
To request I/O statistics for a pool or specific virtual devices, use the zpool iostat command.
Similar to the iostat command, this command can display a static snapshot of all I/O activity
so far, as well as updated statistics for every specified interval. The following statistics are
reported:

USED CAPACITY The amount of data currently stored in the pool or device. This figure
differs from the amount of space available to actual file systems by a
small amount due to internal implementation details.

For more information about the difference between pool space and
dataset space, see “ZFS Space Accounting” on page 52.

AVAILABLE CAPACITY The amount of space available in the pool or device. As with the used
statistic, this amount differs from the amount of space available to
datasets by a small margin.

READ OPERATIONS The number of read I/O operations sent to the pool or device,
including metadata requests.

WRITE OPERATIONS The number of write I/O operations sent to the pool or device.

READ BANDWIDTH The bandwidth of all read operations (including metadata),
expressed as units per second.

WRITE BANDWIDTH The bandwidth of all write operations, expressed as units per second.

Querying ZFS Storage Pool Status

Solaris ZFS Administration Guide • September 2008118

Listing Pool-Wide Statistics
With no options, the zpool iostat command displays the accumulated statistics since boot for
all pools on the system. For example:

zpool iostat

capacity operations bandwidth

pool used avail read write read write

---------- ----- ----- ----- ----- ----- -----

tank 100G 20.0G 1.2M 102K 1.2M 3.45K

dozer 12.3G 67.7G 132K 15.2K 32.1K 1.20K

Because these statistics are cumulative since boot, bandwidth might appear low if the pool is
relatively idle. You can request a more accurate view of current bandwidth usage by specifying
an interval. For example:

zpool iostat tank 2

capacity operations bandwidth

pool used avail read write read write

---------- ----- ----- ----- ----- ----- -----

tank 100G 20.0G 1.2M 102K 1.2M 3.45K

tank 100G 20.0G 134 0 1.34K 0

tank 100G 20.0G 94 342 1.06K 4.1M

In this example, the command displays usage statistics only for the pool tank every two seconds
until you type Ctrl-C. Alternately, you can specify an additional count parameter, which causes
the command to terminate after the specified number of iterations. For example, zpool iostat
2 3 would print a summary every two seconds for three iterations, for a total of six seconds. If
there is a single pool, then the statistics are displayed on consecutive lines. If more than one pool
exists, then an additional dashed line delineates each iteration to provide visual separation.

Listing Virtual Device Statistics
In addition to pool-wide I/O statistics, the zpool iostat command can display statistics for
specific virtual devices. This command can be used to identify abnormally slow devices, or
simply to observe the distribution of I/O generated by ZFS. To request the complete virtual
device layout as well as all I/O statistics, use the zpool iostat -v command. For example:

zpool iostat -v

capacity operations bandwidth

tank used avail read write read write

---------- ----- ----- ----- ----- ----- -----

mirror 20.4G 59.6G 0 22 0 6.00K

c1t0d0 - - 1 295 11.2K 148K

c1t1d0 - - 1 299 11.2K 148K

---------- ----- ----- ----- ----- ----- -----

Querying ZFS Storage Pool Status

Chapter 5 • Managing ZFS Storage Pools 119

total 24.5K 149M 0 22 0 6.00K

Note two important things when viewing I/O statistics on a virtual device basis:

■ First, space usage is only available for top-level virtual devices. The way in which space is
allocated among mirror and RAID-Z virtual devices is particular to the implementation and
not easily expressed as a single number.

■ Second, the numbers might not add up exactly as you would expect them to. In particular,
operations across RAID-Z and mirrored devices will not be exactly equal. This difference is
particularly noticeable immediately after a pool is created, as a significant amount of I/O is
done directly to the disks as part of pool creation that is not accounted for at the mirror level.
Over time, these numbers should gradually equalize, although broken, unresponsive, or
offlined devices can affect this symmetry as well.

You can use the same set of options (interval and count) when examining virtual device
statistics.

Determining the Health Status of ZFS Storage Pools
ZFS provides an integrated method of examining pool and device health. The health of a pool is
determined from the state of all its devices. This state information is displayed by using the
zpool status command. In addition, potential pool and device failures are reported by fmd
and are displayed on the system console and the /var/adm/messages file. This section describes
how to determine pool and device health. This chapter does not document how to repair or
recover from unhealthy pools. For more information on troubleshooting and data recovery, see
Chapter 11, “ZFS Troubleshooting and Data Recovery.”

Each device can fall into one of the following states:

ONLINE The device is in normal working order. While some transient errors might
still occur, the device is otherwise in working order.

DEGRADED The virtual device has experienced failure but is still able to function. This
state is most common when a mirror or RAID-Z device has lost one or more
constituent devices. The fault tolerance of the pool might be compromised, as
a subsequent fault in another device might be unrecoverable.

FAULTED The virtual device is completely inaccessible. This status typically indicates
total failure of the device, such that ZFS is incapable of sending or receiving
data from it. If a top-level virtual device is in this state, then the pool is
completely inaccessible.

OFFLINE The virtual device has been explicitly taken offline by the administrator.

Querying ZFS Storage Pool Status

Solaris ZFS Administration Guide • September 2008120

UNAVAILABLE The device or virtual device cannot be opened. In some cases, pools with
UNAVAILABLE devices appear in DEGRADED mode. If a top-level virtual device is
unavailable, then nothing in the pool can be accessed.

REMOVED The device was physically removed while the system was running. Device
removal detection is hardware-dependent and might not be supported on all
platforms.

The health of a pool is determined from the health of all its top-level virtual devices. If all virtual
devices are ONLINE, then the pool is also ONLINE. If any one of the virtual devices is DEGRADED or
UNAVAILABLE, then the pool is also DEGRADED. If a top-level virtual device is FAULTED or OFFLINE,
then the pool is also FAULTED. A pool in the faulted state is completely inaccessible. No data can
be recovered until the necessary devices are attached or repaired. A pool in the degraded state
continues to run, but you might not achieve the same level of data redundancy or data
throughput than if the pool were online.

Basic Storage Pool Health Status
The simplest way to request a quick overview of pool health status is to use the zpool status
command:

zpool status -x

all pools are healthy

Specific pools can be examined by specifying a pool name to the command. Any pool that is not
in the ONLINE state should be investigated for potential problems, as described in the next
section.

Detailed Health Status
You can request a more detailed health summary by using the -v option. For example:

zpool status -v tank

pool: tank

state: DEGRADED

status: One or more devices could not be opened. Sufficient replicas exist

for the pool to continue functioning in a degraded state.

action: Attach the missing device and online it using ’zpool online’.

see: http://www.sun.com/msg/ZFS-8000-2Q

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tank DEGRADED 0 0 0

mirror DEGRADED 0 0 0

c1t0d0 FAULTED 0 0 0 cannot open

Querying ZFS Storage Pool Status

Chapter 5 • Managing ZFS Storage Pools 121

c1t1d0 ONLINE 0 0 0

errors: No known data errors

This output displays a complete description of why the pool is in its current state, including a
readable description of the problem and a link to a knowledge article for more information.
Each knowledge article provides up-to-date information on the best way to recover from your
current problem. Using the detailed configuration information, you should be able to
determine which device is damaged and how to repair the pool.

In the above example, the faulted device should be replaced. After the device is replaced, use the
zpool online command to bring the device back online. For example:

zpool online tank c1t0d0

Bringing device c1t0d0 online

zpool status -x

all pools are healthy

If a pool has an offlined device, the command output identifies the problem pool. For example:

zpool status -x

pool: tank

state: DEGRADED

status: One or more devices has been taken offline by the adminstrator.

Sufficient replicas exist for the pool to continue functioning in a

degraded state.

action: Online the device using ’zpool online’ or replace the device with

’zpool replace’.

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tank DEGRADED 0 0 0

mirror DEGRADED 0 0 0

c1t0d0 ONLINE 0 0 0

c1t1d0 OFFLINE 0 0 0

errors: No known data errors

The READ and WRITE columns provides a count of I/O errors seen on the device, while the CKSUM
column provides a count of uncorrectable checksum errors that occurred on the device. Both of
these error counts likely indicate potential device failure, and some corrective action is needed.
If non-zero errors are reported for a top-level virtual device, portions of your data might have
become inaccessible. The errors count identifies any known data errors.

In the example output above, the offlined device is not causing data errors.

Querying ZFS Storage Pool Status

Solaris ZFS Administration Guide • September 2008122

For more information about diagnosing and repairing faulted pools and data, see Chapter 11,
“ZFS Troubleshooting and Data Recovery.”

Migrating ZFS Storage Pools
Occasionally, you might need to move a storage pool between machines. To do so, the storage
devices must be disconnected from the original machine and reconnected to the destination
machine. This task can be accomplished by physically recabling the devices, or by using
multiported devices such as the devices on a SAN. ZFS enables you to export the pool from one
machine and import it on the destination machine, even if the machines are of different
endianness. For information about replicating or migrating file systems between different
storage pools, which might reside on different machines, see “Sending and Receiving ZFS Data”
on page 176.

■ “Preparing for ZFS Storage Pool Migration” on page 123
■ “Exporting a ZFS Storage Pool” on page 123
■ “Determining Available Storage Pools to Import” on page 124
■ “Finding ZFS Storage Pools From Alternate Directories” on page 126
■ “Importing ZFS Storage Pools” on page 127
■ “Recovering Destroyed ZFS Storage Pools” on page 128
■ “Upgrading ZFS Storage Pools” on page 130

Preparing for ZFS Storage Pool Migration
Storage pools should be explicitly exported to indicate that they are ready to be migrated. This
operation flushes any unwritten data to disk, writes data to the disk indicating that the export
was done, and removes all knowledge of the pool from the system.

If you do not explicitly export the pool, but instead remove the disks manually, you can still
import the resulting pool on another system. However, you might lose the last few seconds of
data transactions, and the pool will appear faulted on the original machine because the devices
are no longer present. By default, the destination machine refuses to import a pool that has not
been explicitly exported. This condition is necessary to prevent accidentally importing an active
pool that consists of network attached storage that is still in use on another system.

Exporting a ZFS Storage Pool
To export a pool, use the zpool export command. For example:

zpool export tank

Migrating ZFS Storage Pools

Chapter 5 • Managing ZFS Storage Pools 123

Once this command is executed, the pool tank is no longer visible on the system. The command
attempts to unmount any mounted file systems within the pool before continuing. If any of the
file systems fail to unmount, you can forcefully unmount them by using the -f option. For
example:

zpool export tank

cannot unmount ’/export/home/eschrock’: Device busy

zpool export -f tank

If devices are unavailable at the time of export, the disks cannot be specified as cleanly exported.
If one of these devices is later attached to a system without any of the working devices, it appears
as “potentially active.” If ZFS volumes are in use in the pool, the pool cannot be exported, even
with the -f option. To export a pool with an ZFS volume, first make sure that all consumers of
the volume are no longer active.

For more information about ZFS volumes, see “ZFS Volumes” on page 229.

Determining Available Storage Pools to Import
Once the pool has been removed from the system (either through export or by forcefully
removing the devices), attach the devices to the target system. Although ZFS can handle some
situations in which only a portion of the devices is available, all devices within the pool must be
moved between the systems. The devices do not necessarily have to be attached under the same
device name. ZFS detects any moved or renamed devices, and adjusts the configuration
appropriately. To discover available pools, run the zpool import command with no options.
For example:

zpool import

pool: tank

id: 3778921145927357706

state: ONLINE

action: The pool can be imported using its name or numeric identifier.

config:

tank ONLINE

mirror ONLINE

c1t0d0 ONLINE

c1t1d0 ONLINE

In this example, the pool tank is available to be imported on the target system. Each pool is
identified by a name as well as a unique numeric identifier. If multiple pools available to import
have the same name, you can use the numeric identifier to distinguish between them.

Similar to the zpool status command, the zpool import command refers to a knowledge
article available on the web with the most up-to-date information regarding repair procedures

Migrating ZFS Storage Pools

Solaris ZFS Administration Guide • September 2008124

for a problem that is preventing a pool from being imported. In this case, the user can force the
pool to be imported. However, importing a pool that is currently in use by another system over
a storage network can result in data corruption and panics as both systems attempt to write to
the same storage. If some devices in the pool are not available but enough redundancy is
available to have a usable pool, the pool appears in the DEGRADED state. For example:

zpool import

pool: tank

id: 3778921145927357706

state: DEGRADED

status: One or more devices are missing from the system.

action: The pool can be imported despite missing or damaged devices. The

fault tolerance of the pool may be compromised if imported.

see: http://www.sun.com/msg/ZFS-8000-2Q

config:

tank DEGRADED

mirror DEGRADED

c1t0d0 UNAVAIL cannot open

c1t1d0 ONLINE

In this example, the first disk is damaged or missing, though you can still import the pool
because the mirrored data is still accessible. If too many faulted or missing devices are present,
the pool cannot be imported. For example:

zpool import

pool: dozer

id: 12090808386336829175

state: FAULTED

action: The pool cannot be imported. Attach the missing

devices and try again.

see: http://www.sun.com/msg/ZFS-8000-6X

config:

raidz FAULTED

c1t0d0 ONLINE

c1t1d0 FAULTED

c1t2d0 ONLINE

c1t3d0 FAULTED

In this example, two disks are missing from a RAID-Z virtual device, which means that
sufficient redundant data is not available to reconstruct the pool. In some cases, not enough
devices are present to determine the complete configuration. In this case, ZFS doesn't know
what other devices were part of the pool, though ZFS does report as much information as
possible about the situation. For example:

Migrating ZFS Storage Pools

Chapter 5 • Managing ZFS Storage Pools 125

zpool import

pool: dozer

id: 12090808386336829175

state: FAULTED

status: One or more devices are missing from the system.

action: The pool cannot be imported. Attach the missing

devices and try again.

see: http://www.sun.com/msg/ZFS-8000-6X

config:

dozer FAULTED missing device

raidz ONLINE

c1t0d0 ONLINE

c1t1d0 ONLINE

c1t2d0 ONLINE

c1t3d0 ONLINE

Additional devices are known to be part of this pool, though their

exact configuration cannot be determined.

Finding ZFS Storage Pools From Alternate Directories
By default, the zpool import command only searches devices within the /dev/dsk directory. If
devices exist in another directory, or you are using pools backed by files, you must use the -d
option to search different directories. For example:

zpool create dozer mirror /file/a /file/b

zpool export dozer

zpool import -d /file

pool: dozer

id: 10952414725867935582

state: ONLINE

action: The pool can be imported using its name or numeric identifier.

config:

dozer ONLINE

mirror ONLINE

/file/a ONLINE

/file/b ONLINE

zpool import -d /file dozer

If devices exist in multiple directories, you can specify multiple -d options.

Migrating ZFS Storage Pools

Solaris ZFS Administration Guide • September 2008126

Importing ZFS Storage Pools
Once a pool has been identified for import, you can import it by specifying the name of the pool
or its numeric identifier as an argument to the zpool import command. For example:

zpool import tank

If multiple available pools have the same name, you can specify which pool to import using the
numeric identifier. For example:

zpool import

pool: dozer

id: 2704475622193776801

state: ONLINE

action: The pool can be imported using its name or numeric identifier.

config:

dozer ONLINE

c1t9d0 ONLINE

pool: dozer

id: 6223921996155991199

state: ONLINE

action: The pool can be imported using its name or numeric identifier.

config:

dozer ONLINE

c1t8d0 ONLINE

zpool import dozer

cannot import ’dozer’: more than one matching pool

import by numeric ID instead

zpool import 6223921996155991199

If the pool name conflicts with an existing pool name, you can import the pool under a different
name. For example:

zpool import dozer zeepool

This command imports the exported pool dozer using the new name zeepool. If the pool was
not cleanly exported, ZFS requires the -f flag to prevent users from accidentally importing a
pool that is still in use on another system. For example:

zpool import dozer

cannot import ’dozer’: pool may be in use on another system

use ’-f’ to import anyway

zpool import -f dozer

Migrating ZFS Storage Pools

Chapter 5 • Managing ZFS Storage Pools 127

Pools can also be imported under an alternate root by using the -R option. For more
information on alternate root pools, see “Using ZFS Alternate Root Pools” on page 237.

Recovering Destroyed ZFS Storage Pools
You can use the zpool import -D command to recover a storage pool that has been destroyed.
For example:

zpool destroy tank

zpool import -D

pool: tank

id: 3778921145927357706

state: ONLINE (DESTROYED)

action: The pool can be imported using its name or numeric identifier. The

pool was destroyed, but can be imported using the ’-Df’ flags.

config:

tank ONLINE

mirror ONLINE

c1t0d0 ONLINE

c1t1d0 ONLINE

In the above zpool import output, you can identify this pool as the destroyed pool because of
the following state information:

state: ONLINE (DESTROYED)

To recover the destroyed pool, issue the zpool import -D command again with the pool to be
recovered and the -f option. For example:

zpool import -Df tank

zpool status tank

pool: tank

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror ONLINE 0 0 0

c1t0d0 ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

errors: No known data errors

Migrating ZFS Storage Pools

Solaris ZFS Administration Guide • September 2008128

If one of the devices in the destroyed pool is faulted or unavailable, you might be able to recover
the destroyed pool anyway. In this scenario, import the degraded pool and then attempt to fix
the device failure. For example:

zpool destroy dozer

zpool import -D

pool: dozer

id:

state: DEGRADED (DESTROYED)

status: One or more devices are missing from the system.

action: The pool can be imported despite missing or damaged devices. The

fault tolerance of the pool may be compromised if imported. The

pool was destroyed, but can be imported using the ’-Df’ flags.

see: http://www.sun.com/msg/ZFS-8000-2Q

config:

dozer DEGRADED

raidz ONLINE

c1t0d0 ONLINE

c1t1d0 ONLINE

c1t2d0 UNAVAIL cannot open

c1t3d0 ONLINE

zpool import -Df dozer

zpool status -x

pool: dozer

state: DEGRADED

status: One or more devices could not be opened. Sufficient replicas exist for

the pool to continue functioning in a degraded state.

action: Attach the missing device and online it using ’zpool online’.

see: http://www.sun.com/msg/ZFS-8000-D3

scrub: resilver completed after 0h0m with 0 errors on Thu Aug 28 10:01:48 2008

config:

NAME STATE READ WRITE CKSUM

dozer DEGRADED 0 0 0

raidz ONLINE 0 0 0

c1t0d0 ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

c1t2d0 UNAVAIL 0 0 0 cannot open

c1t3d0 ONLINE 0 0 0

errors: No known data errors

zpool online dozer c1t2d0

Bringing device c1t2d0 online

zpool status -x

all pools are healthy

Migrating ZFS Storage Pools

Chapter 5 • Managing ZFS Storage Pools 129

Upgrading ZFS Storage Pools
If you have ZFS storage pools from a previous Solaris release, such as the Solaris 10 6/06 release,
you can upgrade your pools with the zpool upgrade command to take advantage of the pool
features in the Solaris 10 11/06 release. In addition, the zpool status command has been
modified to notify you when your pools are running older versions. For example:

zpool status

pool: test

state: ONLINE

status: The pool is formatted using an older on-disk format. The pool can

still be used, but some features are unavailable.

action: Upgrade the pool using ’zpool upgrade’. Once this is done, the

pool will no longer be accessible on older software versions.

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

test ONLINE 0 0 0

c1t27d0 ONLINE 0 0 0

errors: No known data errors

You can use the following syntax to identify additional information about a particular version
and supported releases.

zpool upgrade -v

This system is currently running ZFS version 3.

The following versions are supported:

VER DESCRIPTION

--- --

1 Initial ZFS version

2 Ditto blocks (replicated metadata)

3 Hot spares and double parity RAID-Z

For more information on a particular version, including supported releases, see:

http://www.opensolaris.org/os/community/zfs/version/N

Where ’N’ is the version number.

Then, you can run the zpool upgrade command to upgrade all of your pools. For example:

zpool upgrade -a

Migrating ZFS Storage Pools

Solaris ZFS Administration Guide • September 2008130

Note – If you upgrade your pools to the latest version, they will not be accessible on systems that
run older ZFS versions.

Migrating ZFS Storage Pools

Chapter 5 • Managing ZFS Storage Pools 131

132

Managing ZFS File Systems

This chapter provides detailed information about managing SolarisTM ZFS file systems.
Concepts such as hierarchical file system layout, property inheritance, and automatic mount
point management and share interactions are included in this chapter.

A ZFS file system is built on top of a storage pool. File systems can be dynamically created and
destroyed without requiring you to allocate or format any underlying space. Because file
systems are so lightweight and because they are the central point of administration in ZFS, you
are likely to create many of them.

ZFS file systems are administered by using the zfs command. The zfs command provides a set
of subcommands that perform specific operations on file systems. This chapter describes these
subcommands in detail. Snapshots, volumes, and clones are also managed by using this
command, but these features are only covered briefly in this chapter. For detailed information
about snapshots and clones, see Chapter 7, “Working With ZFS Snapshots and Clones.” For
detailed information about emulated volumes, see “ZFS Volumes” on page 229.

Note – The term dataset is used in this chapter as a generic term to refer to a file system,
snapshot, clone, or volume.

The following sections are provided in this chapter:

■ “Creating and Destroying ZFS File Systems” on page 134
■ “Introducing ZFS Properties” on page 137
■ “Querying ZFS File System Information” on page 150
■ “Managing ZFS Properties” on page 152
■ “Mounting and Sharing ZFS File Systems” on page 156
■ “ZFS Quotas and Reservations” on page 165
■ “Sending and Receiving ZFS Data” on page 176

6C H A P T E R 6

133

Creating and Destroying ZFS File Systems
ZFS file systems can be created and destroyed by using the zfs create and zfs destroy

commands.

■ “Creating a ZFS File System” on page 134
■ “Destroying a ZFS File System” on page 135
■ “Renaming a ZFS File System” on page 136

Creating a ZFS File System
ZFS file systems are created by using the zfs create command. The create subcommand
takes a single argument: the name of the file system to create. The file system name is specified
as a path name starting from the name of the pool:

pool-name/[filesystem-name/]filesystem-name

The pool name and initial file system names in the path identify the location in the hierarchy
where the new file system will be created. All the intermediate file system names must already
exist in the pool. The last name in the path identifies the name of the file system to be created.
The file system name must satisfy the naming conventions defined in “ZFS Component
Naming Requirements” on page 41.

In the following example, a file system named bonwick is created in the tank/home file system.

zfs create tank/home/bonwick

ZFS automatically mounts the newly created file system if it is created successfully. By default,
file systems are mounted as /dataset, using the path provided for the file system name in the
create subcommand. In this example, the newly created bonwick file system is at
/tank/home/bonwick. For more information about automanaged mount points, see “Managing
ZFS Mount Points” on page 157.

For more information about the zfs create command, see zfs(1M).

You can set file system properties when the file system is created.

In the following example, a mount point of /export/zfs is specified and is created for the
tank/home file system.

zfs create -o mountpoint=/export/zfs tank/home

For more information about file system properties, see “Introducing ZFS Properties” on
page 137.

Creating and Destroying ZFS File Systems

Solaris ZFS Administration Guide • September 2008134

http://docs.sun.com/doc/819-2240/zfs-1m?a=view

Destroying a ZFS File System
To destroy a ZFS file system, use the zfs destroy command. The destroyed file system is
automatically unmounted and unshared. For more information about automatically managed
mounts or automatically managed shares, see “Automatic Mount Points” on page 157.

In the following example, the tabriz file system is destroyed.

zfs destroy tank/home/tabriz

Caution – No confirmation prompt appears with the destroy subcommand. Use it with extreme
caution.

If the file system to be destroyed is busy and so cannot be unmounted, the zfs destroy
command fails. To destroy an active file system, use the -f option. Use this option with caution
as it can unmount, unshare, and destroy active file systems, causing unexpected application
behavior.

zfs destroy tank/home/ahrens

cannot unmount ’tank/home/ahrens’: Device busy

zfs destroy -f tank/home/ahrens

The zfs destroy command also fails if a file system has children. To recursively destroy a file
system and all its descendents, use the -r option. Note that a recursive destroy also destroys
snapshots so use this option with caution.

zfs destroy tank/ws

cannot destroy ’tank/ws’: filesystem has children

use ’-r’ to destroy the following datasets:

tank/ws/billm

tank/ws/bonwick

tank/ws/maybee

zfs destroy -r tank/ws

If the file system to be destroyed has indirect dependents, even the recursive destroy command
described above fails. To force the destruction of all dependents, including cloned file systems
outside the target hierarchy, the -R option must be used. Use extreme caution with this option.

zfs destroy -r tank/home/schrock

cannot destroy ’tank/home/schrock’: filesystem has dependent clones

use ’-R’ to destroy the following datasets:

tank/clones/schrock-clone

zfs destroy -R tank/home/schrock

Creating and Destroying ZFS File Systems

Chapter 6 • Managing ZFS File Systems 135

Caution – No confirmation prompt appears with the -f, -r, or -R options so use these options
carefully.

For more information about snapshots and clones, see Chapter 7, “Working With ZFS
Snapshots and Clones.”

Renaming a ZFS File System
File systems can be renamed by using the zfs rename command. Using the rename
subcommand can perform the following operations:

■ Change the name of a file system
■ Relocate the file system to a new location within the ZFS hierarchy
■ Change the name of a file system and relocate it with the ZFS hierarchy

The following example uses the rename subcommand to do a simple rename of a file system:

zfs rename tank/home/kustarz tank/home/kustarz_old

This example renames the kustarz file system to kustarz_old.

The following example shows how to use zfs rename to relocate a file system.

zfs rename tank/home/maybee tank/ws/maybee

In this example, the maybee file system is relocated from tank/home to tank/ws. When you
relocate a file system through rename, the new location must be within the same pool and it
must have enough space to hold this new file system. If the new location does not have enough
space, possibly because it has reached its quota, the rename will fail.

For more information about quotas, see “ZFS Quotas and Reservations” on page 165.

The rename operation attempts an unmount/remount sequence for the file system and any
descendent file systems. The rename fails if the operation is unable to unmount an active file
system. If this problem occurs, you will need to force unmount the file system.

For information about renaming snapshots, see “Renaming ZFS Snapshots” on page 171.

Creating and Destroying ZFS File Systems

Solaris ZFS Administration Guide • September 2008136

Introducing ZFS Properties
Properties are the main mechanism that you use to control the behavior of file systems,
volumes, snapshots, and clones. Unless stated otherwise, the properties defined in the section
apply to all the dataset types.

■ “ZFS Read-Only Native Properties” on page 144
■ “Settable ZFS Native Properties” on page 145
■ “ZFS User Properties” on page 149

Properties are divided into two types, native properties and user defined properties. Native
properties either export internal statistics or control ZFS file system behavior. In addition,
native properties are either settable or read-only. User properties have no effect on ZFS file
system behavior, but you can use them to annotate datasets in a way that is meaningful in your
environment. For more information on user properties, see “ZFS User Properties” on page 149.

Most settable properties are also inheritable. An inheritable property is a property that, when
set on a parent, is propagated down to all of its descendents.

All inheritable properties have an associated source. The source indicates how a property was
obtained. The source of a property can have the following values:

local A local source indicates that the property was explicitly set
on the dataset by using the zfs set command as described
in “Setting ZFS Properties” on page 153.

inherited from dataset-name A value of inherited from dataset-name means that the
property was inherited from the named ancestor.

default A value of default means that the property setting was not
inherited or set locally. This source is a result of no ancestor
having the property as source local.

The following table identifies both read-only and settable native ZFS file system properties.
Read-only native properties are identified as such. All other native properties listed in this table
are settable. For information about user properties, see “ZFS User Properties” on page 149.

TABLE 6–1 ZFS Native Property Descriptions

Property Name Type Default Value Description

aclinherit String secure Controls how ACL entries are inherited when files and
directories are created. The values are discard, noallow,
secure, and passthrough. For a description of these values,
see “ACL Property Modes” on page 189.

Introducing ZFS Properties

Chapter 6 • Managing ZFS File Systems 137

TABLE 6–1 ZFS Native Property Descriptions (Continued)
Property Name Type Default Value Description

aclmode String groupmask Controls how an ACL entry is modified during a chmod
operation. The values are discard, groupmask, and
passthrough. For a description of these values, see “ACL
Property Modes” on page 189.

atime Boolean on Controls whether the access time for files is updated when they
are read. Turning this property off avoids producing write
traffic when reading files and can result in significant
performance gains, though it might confuse mailers and other
similar utilities.

available Number N/A Read-only property that identifies the amount of space
available to the dataset and all its children, assuming no other
activity in the pool. Because space is shared within a pool,
available space can be limited by various factors including
physical pool size, quotas, reservations, or other datasets
within the pool.

This property can also be referenced by its shortened column
name, avail.

For more information about space accounting, see “ZFS Space
Accounting” on page 52.

canmount Boolean on Controls whether the given file system can be mounted with
the zfs mount command. This property can be set on any file
system and the property itself is not inheritable. However,
when this property is set to off, a mountpoint can be inherited
to descendent file systems, but the file system itself is never
mounted.

When the noauto option is set, a dataset can only be mounted
and unmounted explicitly. The dataset is not mounted
automatically when the dataset is created or imported, nor is it
mounted by the zfs mount-a command or unmounted by the
zfs unmount-a command.

For more information, see “The canmount Property” on
page 146.

Introducing ZFS Properties

Solaris ZFS Administration Guide • September 2008138

TABLE 6–1 ZFS Native Property Descriptions (Continued)
Property Name Type Default Value Description

casesensitivity String sensitive This property indicates whether the file name matching
algorithm used by the file system should be casesensitive,
caseinsensitive, or allow a combination of both styles of
matching (mixed). The default value for this property is
sensitive. Traditionally, UNIX and POSIX file systems have
case-sensitive file names.

The mixed value for this property indicates the file system can
support requests for both case-sensitive and case-insensitive
matching behavior. Currently, case-insensitive matching
behavior on a file system that supports mixed behavior is
limited to the Solaris CIFS server product. For more
information about using the mixed value, see “The
casesensitivity Property” on page 147.

Regardless of the casesensitivity property setting, the file
system preserves the case of the name specified to create a file.
This property cannot be changed after the file system is
created.

checksum String on Controls the checksum used to verify data integrity. The
default value is on, which automatically selects an appropriate
algorithm, currently fletcher2. The values are on, off,
fletcher2, fletcher4, and sha256. A value of off disables
integrity checking on user data. A value of off is not
recommended.

compression String off Enables or disables compression for this dataset. The values
are on, off, and lzjb, gzip, or gzip-N. Currently, setting this
property to lzjb, gzip, or gzip-N has the same effect as
setting this property to on. The default value is off. Enabling
compression on a file system with existing data only
compresses new data. Existing data remains uncompressed.

This property can also be referred to by its shortened column
name, compress.

compressratio Number N/A Read-only property that identifies the compression ratio
achieved for this dataset, expressed as a multiplier.
Compression can be turned on by running zfs set

compression=on dataset.

Calculated from the logical size of all files and the amount of
referenced physical data. Includes explicit savings through the
use of the compression property.

Introducing ZFS Properties

Chapter 6 • Managing ZFS File Systems 139

TABLE 6–1 ZFS Native Property Descriptions (Continued)
Property Name Type Default Value Description

copies Number 1 Sets the number of copies of user data per file system. Available
values are 1, 2 or 3. These copies are in addition to any
pool-level redundancy. Space used by multiple copies of user
data is charged to the corresponding file and dataset and
counts against quotas and reservations. In addition, the used
property is updated when multiple copies are enabled.
Consider setting this property when the file system is created
because changing this property on an existing file system only
affects newly written data.

creation String N/A Read-only property that identifies the date and time that this
dataset was created.

devices Boolean on Controls the ability to open device files in the file system.

exec Boolean on Controls whether programs within this file system are allowed
to be executed. Also, when set to off, mmap(2) calls with
PROT_EXEC are disallowed.

mounted boolean N/A Read-only property that indicates whether this file system,
clone, or snapshot is currently mounted. This property does
not apply to volumes. Value can be either yes or no.

mountpoint String N/A Controls the mount point used for this file system. When the
mountpoint property is changed for a file system, the file
system and any children that inherit the mount point are
unmounted. If the new value is legacy, then they remain
unmounted. Otherwise, they are automatically remounted in
the new location if the property was previously legacy or
none, or if they were mounted before the property was
changed. In addition, any shared file systems are unshared and
shared in the new location.

For more information about using this property, see
“Managing ZFS Mount Points” on page 157.

nbmand Boolean off Controls whether the file system should be mounted with
nbmand (Non-blocking mandatory) locks. This property is for
CIFS clients only. Changes to this property only take effect
when the file system is unmounted and remounted.

Introducing ZFS Properties

Solaris ZFS Administration Guide • September 2008140

TABLE 6–1 ZFS Native Property Descriptions (Continued)
Property Name Type Default Value Description

normalization String None This property indicates whether a file system should perform a
unicode normalization of file names whenever two file names
are compared, and which normalization algorithm should be
used. File names are always stored unmodified, names are
normalized as part of any comparison process. If this property
is set to a legal value other than none, and the utf8only
property was left unspecified, the utf8only property is
automatically set to on. The default value of the
normalization property is none. This property cannot be
changed after the file system is created.

origin String N/A Read-only property for cloned file systems or volumes that
identifies the snapshot from which the clone was created. The
origin cannot be destroyed (even with the -r or -f options) as
long as a clone exists.

Non-cloned file systems have an origin of none.

quota Number
(or none)

none Limits the amount of space a dataset and its descendents can
consume. This property enforces a hard limit on the amount of
space used, including all space consumed by descendents,
including file systems and snapshots. Setting a quota on a
descendent of a dataset that already has a quota does not
override the ancestor's quota, but rather imposes an additional
limit. Quotas cannot be set on volumes, as the volsize
property acts as an implicit quota.

For information about setting quotas, see “Setting Quotas on
ZFS File Systems” on page 165.

readonly Boolean off Controls whether this dataset can be modified. When set to on,
no modifications can be made to the dataset.

This property can also be referred to by its shortened column
name, rdonly.

recordsize Number 128K Specifies a suggested block size for files in the file system.

This property can also be referred to by its shortened column
name, recsize. For a detailed description, see “The
recordsize Property” on page 148.

Introducing ZFS Properties

Chapter 6 • Managing ZFS File Systems 141

TABLE 6–1 ZFS Native Property Descriptions (Continued)
Property Name Type Default Value Description

referenced Number N/A Read-only property that identifies the amount of data
accessible by this dataset, which might or might not be shared
with other datasets in the pool.

When a snapshot or clone is created, it initially references the
same amount of space as the file system or snapshot it was
created from, because its contents are identical.

This property can also be referred to by its shortened column
name, refer.

refquota Number
(or none)

none Sets the amount of space that a dataset can consume. This
property enforces a hard limit on the amount of space used.
This hard limit does not include space used by descendents,
such as snapshots and clones.

refreservation Number
(or none)

none Sets the minimum amount of space that is guaranteed to a
dataset, not including descendents, such as snapshots and
clones. When the amount of space that is used is below this
value, the dataset is treated as if it were taking up the amount
of space specified by refreservation. The refreservation
reservation is accounted for in the parent datasets' space used,
and counts against the parent datasets' quotas and
reservations.

If refreservation is set, a snapshot is only allowed if enough
free pool space is available outside of this reservation to
accommodate the current number of referenced bytes in the
dataset.

This property can also be referred to by its shortened column
name, refreserv.

reservation Number
(or none)

none The minimum amount of space guaranteed to a dataset and its
descendents. When the amount of space used is below this
value, the dataset is treated as if it were using the amount of
space specified by its reservation. Reservations are accounted
for in the parent datasets' space used, and count against the
parent datasets' quotas and reservations.

This property can also be referred to by its shortened column
name, reserv.

For more information, see “Setting Reservations on ZFS File
Systems” on page 167.

setuid Boolean on Controls whether the setuid bit is honored in the file system.

Introducing ZFS Properties

Solaris ZFS Administration Guide • September 2008142

TABLE 6–1 ZFS Native Property Descriptions (Continued)
Property Name Type Default Value Description

sharenfs String off Controls whether the file system is available over NFS, and
what options are used. If set to on, the zfs share command is
invoked with no options. Otherwise, the zfs share command
is invoked with options equivalent to the contents of this
property. If set to off, the file system is managed by using the
legacy share and unshare commands and the dfstab file.

For more information on sharing ZFS file systems, see
“Sharing and Unsharing ZFS File Systems” on page 161.

sharesmb String off Controls whether the file system is shared by using the Solaris
CIFS service, and what options are to be used. A file system
with the sharesmb property set to off is managed through
traditional tools, such as the sharemgr command. Otherwise,
the file system is automatically shared and unshared by using
the zfs share and zfs unshare commands.

If the property is set to on, the sharemgr command is invoked
with no options. Otherwise, the sharemgr command is
invoked with options that are equivalent to the contents of this
property.

snapdir String hidden Controls whether the .zfs directory is hidden or visible in the
root of the file system. For more information on using
snapshots, see “Overview of ZFS Snapshots” on page 169.

type String N/A Read-only property that identifies the dataset type as
filesystem (file system or clone), volume, or snapshot.

used Number N/A Read-only property that identifies the amount of space
consumed by the dataset and all its descendents.

For a detailed description, see “The used Property” on
page 145.

utf8only Boolean Off This property indicates whether a file system should reject file
names that include characters that are not present in the
UTF-8 character code set. If this property is explicitly set to
off, the normalization property must either not be explicitly
set or be set to none. The default value for the utf8only
property is off. This property cannot be changed after the file
system is created.

volsize Number N/A For volumes, specifies the logical size of the volume.

For a detailed description, see “The volsize Property” on
page 148.

Introducing ZFS Properties

Chapter 6 • Managing ZFS File Systems 143

TABLE 6–1 ZFS Native Property Descriptions (Continued)
Property Name Type Default Value Description

volblocksize Number 8 Kbytes For volumes, specifies the block size of the volume. The block
size cannot be changed once the volume has been written, so
set the block size at volume creation time. The default block
size for volumes is 8 Kbytes. Any power of 2 from 512 bytes to
128 Kbytes is valid.

This property can also be referred to by its shortened column
name, volblock.

vscan Boolean Off Controls whether regular files should be scanned for viruses
when a file is opened and closed. In addition to enabling this
property, a virus scanning service must also be enabled for
virus scanning to occur if you have third-party virus scanning
software. The default value is off.

zoned Boolean N/A Indicates whether this dataset has been added to a non-global
zone. If this property is set, then the mount point is not
honored in the global zone, and ZFS cannot mount such a file
system when requested. When a zone is first installed, this
property is set for any added file systems.

For more information about using ZFS with zones installed,
see “Using ZFS on a Solaris System With Zones Installed” on
page 232.

xattr Boolean on Indicates whether extended attributes are enabled or disabled
for this file system. The default value is on.

ZFS Read-Only Native Properties
Read-only native properties are properties that can be retrieved but cannot be set. Read-only
native properties are not inherited. Some native properties are specific to a particular type of
dataset. In such cases, the particular dataset type is mentioned in the description in Table 6–1.

The read-only native properties are listed here and are described in Table 6–1.

■ available

■ creation

■ mounted

■ origin

■ compressratio

■ referenced

■ type

■ used

Introducing ZFS Properties

Solaris ZFS Administration Guide • September 2008144

For detailed information, see “The used Property” on page 145.

For more information on space accounting, including the used, referenced, and available

properties, see “ZFS Space Accounting” on page 52.

The usedProperty
The amount of space consumed by this dataset and all its descendents. This value is checked
against the dataset's quota and reservation. The space used does not include the dataset's
reservation, but does consider the reservation of any descendent datasets. The amount of space
that a dataset consumes from its parent, as well as the amount of space that is freed if the dataset
is recursively destroyed, is the greater of its space used and its reservation.

When snapshots are created, their space is initially shared between the snapshot and the file
system, and possibly with previous snapshots. As the file system changes, space that was
previously shared becomes unique to the snapshot, and counted in the snapshot's space used.
The space that is used by a snapshot accounts for its unique data. Additionally, deleting
snapshots can increase the amount of space unique to (and used by) other snapshots. For more
information about snapshots and space issues, see “Out of Space Behavior” on page 52.

The amount of space used, available, or referenced does not take into account pending changes.
Pending changes are generally accounted for within a few seconds. Committing a change to a
disk using fsync(3c) or O_SYNC does not necessarily guarantee that the space usage
information will be updated immediately.

Settable ZFS Native Properties
Settable native properties are properties whose values can be both retrieved and set. Settable
native properties are set by using the zfs set command, as described in “Setting ZFS
Properties” on page 153 or by using the zfs create command as described in “Creating a ZFS
File System” on page 134. With the exceptions of quotas and reservations, settable native
properties are inherited. For more information about quotas and reservations, see “ZFS Quotas
and Reservations” on page 165.

Some settable native properties are specific to a particular type of dataset. In such cases, the
particular dataset type is mentioned in the description in Table 6–1. If not specifically
mentioned, a property applies to all dataset types: file systems, volumes, clones, and snapshots.

The settable properties are listed here and are described in Table 6–1.

■ aclinherit

For a detailed description, see “ACL Property Modes” on page 189.
■ aclmode

For a detailed description, see “ACL Property Modes” on page 189.

Introducing ZFS Properties

Chapter 6 • Managing ZFS File Systems 145

■ atime

■ canmount

■ casesensitivity

■ checksum

■ compression

■ copies

■ devices

■ exec

■ mountpoint

■ nbmand

■ normalization

■ quota

■ readonly

■ recordsize

For a detailed description, see “The recordsize Property” on page 148.
■ refquota

■ refreservation

■ reservation

■ sharenfs

■ sharesmb

■ setuid

■ snapdir

■ vscan

■ utf8only

■ volsize

For a detailed description, see “The volsize Property” on page 148.
■ volblocksize

■ zoned

The canmountProperty
If this property is set to off, the file system cannot be mounted by using the zfs mount or zfs
mount -a commands. Setting this property is similar to setting the mountpoint property to none,
except that the dataset still has a normal mountpoint property that can be inherited. For
example, you can set this property to off, establish inheritable properties for descendent file
systems, but the file system itself is never mounted nor it is accessible to users. In this case, the

Introducing ZFS Properties

Solaris ZFS Administration Guide • September 2008146

parent file system with this property set to off is serving as a container so that you can set
attributes on the container, but the container itself is never accessible.

In the following example, userpool is created and the canmount property is set to off. Mount
points for descendent user file systems are set to one common mount point, /export/home.
Properties that are set on the parent file system are inherited by descendent file systems, but the
parent file system itself is never mounted.

zpool create userpool mirror c0t5d0 c1t6d0

zfs set canmount=off userpool

zfs set mountpoint=/export/home userpool

zfs set compression=on userpool

zfs create userpool/user1

zfs create userpool/user2

zfs list -r userpool

NAME USED AVAIL REFER MOUNTPOINT

userpool 140K 8.24G 24.5K /export/home

userpool/user1 24.5K 8.24G 24.5K /export/home/user1

userpool/user2 24.5K 8.24G 24.5K /export/home/user2

Setting the canmount property to noauto means that the dataset can only be mounted explicitly,
not automatically. This setting is used by the Solaris upgrade software so that only those
datasets belonging to the active boot environment (BE) are mounted at boot time.

The casesensitivityProperty
This property indicates whether the file name matching algorithm used by the file system
should be casesensitive, caseinsensitive, or allow a combination of both styles of matching
(mixed).

When a case-insensitive matching request is made of a mixed sensitivity file system, the
behavior is generally the same as would be expected of a purely case-insensitive file system. The
difference is that a mixed sensitivity file system might contain directories with multiple names
that are unique from a case-sensitive perspective, but not unique from the case-insensitive
perspective.

For example, a directory might contain files foo, Foo, and FOO. If a request is made to
case-insensitively match any of the possible forms of foo, (for example foo, FOO, FoO, fOo, and
so on) one of the three existing files is chosen as the match by the matching algorithm. Exactly
which file the algorithm chooses as a match is not guaranteed, but what is guaranteed is that the
same file is chosen as a match for any of the forms of foo. The file chosen as a case-insensitive
match for foo, FOO, foO, Foo, and so on, is always the same, so long as the directory remains
unchanged.

The utf8only, normalization, and casesensitivity properties also provide new permissions
that can be assigned to non-privileged users by using ZFS delegated administration. For more
information, see “Delegating ZFS Permissions” on page 216.

Introducing ZFS Properties

Chapter 6 • Managing ZFS File Systems 147

The recordsizeProperty
Specifies a suggested block size for files in the file system.

This property is designed solely for use with database workloads that access files in fixed-size
records. ZFS automatically adjust block sizes according to internal algorithms optimized for
typical access patterns. For databases that create very large files but access the files in small
random chunks, these algorithms may be suboptimal. Specifying a recordsize greater than or
equal to the record size of the database can result in significant performance gains. Use of this
property for general purpose file systems is strongly discouraged, and may adversely affect
performance. The size specified must be a power of two greater than or equal to 512 and less
than or equal to 128 Kbytes. Changing the file system's recordsize only affects files created
afterward. Existing files are unaffected.

This property can also be referred to by its shortened column name, recsize.

The sharesmbProperty
This property enables sharing of ZFS file systems with the Solaris CIFS service, and identifies
options to be used.

Because SMB shares requires a resource name, a unique resource name is constructed from the
dataset name. The constructed name is a copy of the dataset name except that the characters in
the dataset name, which would be illegal in the resource name, are replaced with underscore (_)
characters. A pseudo property name is also supported that allows you to replace the dataset
name with a specific name. The specific name is then used to replace the prefix dataset in the
case of inheritance.

For example, if the dataset, data/home/john, is set to name=john, then data/home/john has a
resource name of john. If a child dataset of data/home/john/backups exists, it has a resource
name of john_backups. When the sharesmb property is changed for a dataset, the dataset and
any children inheriting the property are re-shared with the new options, only if the property
was previously set to off, or if they were shared before the property was changed. If the new
property is set to off, the file systems are unshared.

For examples of using the sharesmb property, see “Sharing ZFS Files in a Solaris CIFS
Environment” on page 162.

The volsizeProperty
The logical size of the volume. By default, creating a volume establishes a reservation for the
same amount. Any changes to volsize are reflected in an equivalent change to the reservation.
These checks are used to prevent unexpected behavior for users. A volume that contains less
space than it claims is available can result in undefined behavior or data corruption, depending
on how the volume is used. These effects can also occur when the volume size is changed while
it is in use, particularly when you shrink the size. Extreme care should be used when adjusting
the volume size.

Introducing ZFS Properties

Solaris ZFS Administration Guide • September 2008148

Though not recommended, you can create a sparse volume by specifying the -s flag to zfs

create -V, or by changing the reservation once the volume has been created. A sparse volume is
defined as a volume where the reservation is not equal to the volume size. For a sparse volume,
changes to volsize are not reflected in the reservation.

For more information about using volumes, see “ZFS Volumes” on page 229.

ZFS User Properties
In addition to the standard native properties, ZFS supports arbitrary user properties. User
properties have no effect on ZFS behavior, but you can use them to annotate datasets with
information that is meaningful in your environment.

User property names must conform to the following characteristics:
■ Contain a colon (':') character to distinguish them from native properties.
■ Contain lowercase letters, numbers, and the following punctuation characters: ':', '+','.', '_'.
■ Maximum user property name is 256 characters.

The expected convention is that the property name is divided into the following two
components but this namespace is not enforced by ZFS:

module:property

When making programmatic use of user properties, use a reversed DNS domain name for the
module component of property names to reduce the chance that two independently-developed
packages will use the same property name for different purposes. Property names that begin
with "com.sun." are reserved for use by Sun Microsystems.

The values of user properties have the following characteristics:
■ Arbitrary strings that are always inherited and are never validated.
■ Maximum user property value is 1024 characters.

For example:

zfs set dept:users=finance userpool/user1

zfs set dept:users=general userpool/user2

zfs set dept:users=itops userpool/user3

All of the commands that operate on properties, such as zfs list, zfs get, zfs set, and so on,
can be used to manipulate both native properties and user properties.

For example:

zfs get -r dept:users userpool

NAME PROPERTY VALUE SOURCE

userpool dept:users all local

Introducing ZFS Properties

Chapter 6 • Managing ZFS File Systems 149

userpool/user1 dept:users finance local

userpool/user2 dept:users general local

userpool/user3 dept:users itops local

To clear a user property, use the zfs inherit command. For example:

zfs inherit -r dept:users userpool

If the property is not defined in any parent dataset, it is removed entirely.

Querying ZFS File System Information
The zfs list command provides an extensible mechanism for viewing and querying dataset
information. Both basic and complex queries are explained in this section.

Listing Basic ZFS Information
You can list basic dataset information by using the zfs list command with no options. This
command displays the names of all datasets on the system including their used, available,
referenced, and mountpoint properties. For more information about these properties, see
“Introducing ZFS Properties” on page 137.

For example:

zfs list

NAME USED AVAIL REFER MOUNTPOINT

pool 476K 16.5G 21K /pool

pool/clone 18K 16.5G 18K /pool/clone

pool/home 296K 16.5G 19K /pool/home

pool/home/marks 277K 16.5G 277K /pool/home/marks

pool/home/marks@snap 0 - 277K -

pool/test 18K 16.5G 18K /test

You can also use this command to display specific datasets by providing the dataset name on the
command line. Additionally, use the -r option to recursively display all descendents of that
dataset. For example:

zfs list -r pool/home/marks

NAME USED AVAIL REFER MOUNTPOINT

pool/home/marks 277K 16.5G 277K /pool/home/marks

pool/home/marks@snap 0 - 277K -

You use zfs list command with absolute pathnames for datasets, snapshots, and volumes. For
example:

Querying ZFS File System Information

Solaris ZFS Administration Guide • September 2008150

zfs list /pool/home/marks

NAME USED AVAIL REFER MOUNTPOINT

pool/home/marks 277K 16.5G 277K /pool/home/marks

The following example shows how to display tank/home/chua and all of its descendent datasets.

zfs list -r tank/home/chua

NAME USED AVAIL REFER MOUNTPOINT

tank/home/chua 26.0K 4.81G 10.0K /tank/home/chua

tank/home/chua/projects 16K 4.81G 9.0K /tank/home/chua/projects

tank/home/chua/projects/fs1 8K 4.81G 8K /tank/home/chua/projects/fs1

tank/home/chua/projects/fs2 8K 4.81G 8K /tank/home/chua/projects/fs2

For additional information about the zfs list command, see zfs(1M).

Creating Complex ZFS Queries
The zfs list output can be customized by using of the -o, -f, and -H options.

You can customize property value output by using the -o option and a comma-separated list of
desired properties. Supply any dataset property as a valid value. For a list of all supported
dataset properties, see “Introducing ZFS Properties” on page 137. In addition to the properties
defined there, the -o option list can also contain the literal name to indicate that the output
should include the name of the dataset.

The following example uses zfs list to display the dataset name, along with the sharenfs and
mountpoint properties.

zfs list -o name,sharenfs,mountpoint

NAME SHARENFS MOUNTPOINT

tank off /tank

tank/home on /tank/home

tank/home/ahrens on /tank/home/ahrens

tank/home/bonwick on /tank/home/bonwick

tank/home/chua on /tank/home/chua

tank/home/eschrock on legacy

tank/home/moore on /tank/home/moore

tank/home/tabriz ro /tank/home/tabriz

You can use the -t option to specify the types of datasets to display. The valid types are
described in the following table.

Querying ZFS File System Information

Chapter 6 • Managing ZFS File Systems 151

http://docs.sun.com/doc/819-2240/zfs-1m?a=view

TABLE 6–2 Types of ZFS Datasets

Type Description

filesystem File systems and clones

volume Volumes

snapshot Snapshots

The -t options takes a comma-separated list of the types of datasets to be displayed. The
following example uses the -t and -o options simultaneously to show the name and used

property for all file systems:

zfs list -t filesystem -o name,used

NAME USED

pool 476K

pool/clone 18K

pool/home 296K

pool/home/marks 277K

pool/test 18K

You can use the -H option to omit the zfs list header from the generated output. With the -H
option, all white space is output as tabs. This option can be useful when you need parseable
output, for example, when scripting. The following example shows the output generated from
using the zfs list command with the -H option:

zfs list -H -o name

pool

pool/clone

pool/home

pool/home/marks

pool/home/marks@snap

pool/test

Managing ZFS Properties
Dataset properties are managed through the zfs command's set, inherit, and get

subcommands.

■ “Setting ZFS Properties” on page 153
■ “Inheriting ZFS Properties” on page 153
■ “Querying ZFS Properties” on page 154

Managing ZFS Properties

Solaris ZFS Administration Guide • September 2008152

Setting ZFS Properties
You can use the zfs set command to modify any settable dataset property. Or, you can use the
zfs create command to set properties when the dataset is created. For a list of settable dataset
properties, see “Settable ZFS Native Properties” on page 145. The zfs set command takes a
property/value sequence in the format of property=value and a dataset name.

The following example sets the atime property to off for tank/home. Only one property can be
set or modified during each zfs set invocation.

zfs set atime=off tank/home

In addition, any file system property can be set when the file system is created. For example:

zfs create -o atime=off tank/home

You can specify numeric properties by using the following easy to understand suffixes (in order
of magnitude): BKMGTPEZ. Any of these suffixes can be followed by an optional b, indicating
bytes, with the exception of the B suffix, which already indicates bytes. The following four
invocations of zfs set are equivalent numeric expressions indicating that the quota property
be set to the value of 50 Gbytes on the tank/home/marks file system:

zfs set quota=50G tank/home/marks

zfs set quota=50g tank/home/marks

zfs set quota=50GB tank/home/marks

zfs set quota=50gb tank/home/marks

Values of non-numeric properties are case-sensitive and must be lowercase, with the exception
of mountpoint and sharenfs. The values of these properties can have mixed upper and lower
case letters.

For more information about the zfs set command, see zfs(1M).

Inheriting ZFS Properties
All settable properties, with the exception of quotas and reservations, inherit their value from
their parent, unless a quota or reservation is explicitly set on the child. If no ancestor has an
explicit value set for an inherited property, the default value for the property is used. You can
use the zfs inherit command to clear a property setting, thus causing the setting to be
inherited from the parent.

The following example uses the zfs set command to turn on compression for the
tank/home/bonwick file system. Then, zfs inherit is used to unset the compression property,
thus causing the property to inherit the default setting of off. Because neither home nor tank
have the compression property set locally, the default value is used. If both had compression on,
the value set in the most immediate ancestor would be used (home in this example).

Managing ZFS Properties

Chapter 6 • Managing ZFS File Systems 153

http://docs.sun.com/doc/819-2240/zfs-1m?a=view

zfs set compression=on tank/home/bonwick

zfs get -r compression tank

NAME PROPERTY VALUE SOURCE

tank compression off default

tank/home compression off default

tank/home/bonwick compression on local

zfs inherit compression tank/home/bonwick

zfs get -r compression tank

NAME PROPERTY VALUE SOURCE

tank compression off default

tank/home compression off default

tank/home/bonwick compression off default

The inherit subcommand is applied recursively when the -r option is specified. In the
following example, the command causes the value for the compression property to be inherited
by tank/home and any descendents it might have.

zfs inherit -r compression tank/home

Note – Be aware that the use of the -r option clears the current property setting for all
descendent datasets.

For more information about the zfs command, see zfs(1M).

Querying ZFS Properties
The simplest way to query property values is by using the zfs list command. For more
information, see “Listing Basic ZFS Information” on page 150. However, for complicated
queries and for scripting, use the zfs get command to provide more detailed information in a
customized format.

You can use the zfs get command to retrieve any dataset property. The following example
shows how to retrieve a single property on a dataset:

zfs get checksum tank/ws

NAME PROPERTY VALUE SOURCE

tank/ws checksum on default

The fourth column, SOURCE, indicates where this property value has been set. The following
table defines the meaning of the possible source values.

Managing ZFS Properties

Solaris ZFS Administration Guide • September 2008154

http://docs.sun.com/doc/819-2240/zfs-1m?a=view

TABLE 6–3 Possible SOURCE Values (zfs get)

Source Value Description

default This property was never explicitly set for this dataset or any of its
ancestors. The default value for this property is being used.

inherited from dataset-name This property value is being inherited from the parent as specified by
dataset-name.

local This property value was explicitly set for this dataset by using zfs set.

temporary This property value was set by using the zfs mount -o option and is
only valid for the lifetime of the mount. For more information about
temporary mount point properties, see “Using Temporary Mount
Properties” on page 160.

- (none) This property is a read-only property. Its value is generated by ZFS.

You can use the special keyword all to retrieve all dataset properties. The following examples
use the all keyword to retrieve all existing dataset properties:

The -s option to zfs get enables you to specify, by source type, the properties to display. This
option takes a comma-separated list indicating the desired source types. Only properties with
the specified source type are displayed. The valid source types are local, default, inherited,
temporary, and none. The following example shows all properties that have been locally set on
pool.

zfs get -s local all pool

NAME PROPERTY VALUE SOURCE

pool compression on local

Any of the above options can be combined with the -r option to recursively display the
specified properties on all children of the specified dataset. In the following example, all
temporary properties on all datasets within tank are recursively displayed:

zfs get -r -s temporary all tank

NAME PROPERTY VALUE SOURCE

tank/home atime off temporary

tank/home/bonwick atime off temporary

tank/home/marks atime off temporary

A recent feature enables you to make queries with the zfs get command without specifying a
target file system, which means it operates on all pools or file systems. For example:

zfs get -s local all

tank/home atime off local

tank/home/bonwick atime off local

tank/home/marks quota 50G local

Managing ZFS Properties

Chapter 6 • Managing ZFS File Systems 155

For more information about the zfs get command, see zfs(1M).

Querying ZFS Properties for Scripting
The zfs get command supports the -H and -o options, which are designed for scripting. The
-H option indicates that any header information should be omitted and that all white space be
replaced with a tab. Uniform white space allows for easily parseable data. You can use the -o
option to customize the output. This option takes a comma-separated list of values to be output.
All properties defined in “Introducing ZFS Properties” on page 137, along with the literals name,
value, property and source can be supplied in the -o list.

The following example shows how to retrieve a single value by using the -H and -o options of
zfs get.

zfs get -H -o value compression tank/home

on

The -p option reports numeric values as their exact values. For example, 1 Mbyte would be
reported as 1000000. This option can be used as follows:

zfs get -H -o value -p used tank/home

182983742

You can use the -r option along with any of the above options to recursively retrieve the
requested values for all descendents. The following example uses the -r, -o, and -H options to
retrieve the dataset name and the value of the used property for export/home and its
descendents, while omitting any header output:

zfs get -H -o name,value -r used export/home

export/home 5.57G

export/home/marks 1.43G

export/home/maybee 2.15G

Mounting and Sharing ZFS File Systems
This section describes how mount points and shared file systems are managed in ZFS.

■ “Managing ZFS Mount Points” on page 157
■ “Mounting ZFS File Systems” on page 159
■ “Using Temporary Mount Properties” on page 160
■ “Unmounting ZFS File Systems” on page 160
■ “Sharing and Unsharing ZFS File Systems” on page 161

Mounting and Sharing ZFS File Systems

Solaris ZFS Administration Guide • September 2008156

http://docs.sun.com/doc/819-2240/zfs-1m?a=view

Managing ZFS Mount Points
By default, all ZFS file systems are mounted by ZFS at boot by using the Service Management
Facility 's (SMF)svc://system/filesystem/local service. File systems are mounted under
/path, where path is the name of the file system.

You can override the default mount point by setting the mountpoint property to a specific path
by using the zfs set command. ZFS automatically creates this mount point, if needed, and
automatically mounts this file system when the zfs mount -a command is invoked, without
requiring you to edit the /etc/vfstab file.

The mountpoint property is inherited. For example, if pool/home has mountpoint set to
/export/stuff, then pool/home/user inherits /export/stuff/user for its mountpoint
property.

The mountpoint property can be set to none to prevent the file system from being mounted. In
addition, the canmount property is available for determining whether a file system can be
mounted. For more information about the canmount property, see “The canmount Property” on
page 146.

If desired, file systems can also be explicitly managed through legacy mount interfaces by setting
the mountpoint property to legacy by using zfs set. Doing so prevents ZFS from
automatically mounting and managing this file system. Legacy tools including the mount and
umount commands, and the /etc/vfstab file must be used instead. For more information about
legacy mounts, see “Legacy Mount Points” on page 158.

When changing mount point management strategies, the following behaviors apply:

■ Automatic mount point behavior
■ Legacy mount point behavior

Automatic Mount Points
■ When changing from legacy or none, ZFS automatically mounts the file system.
■ If ZFS is currently managing the file system but it is currently unmounted, and the

mountpoint property is changed, the file system remains unmounted.

You can also set the default mount point for the root dataset at creation time by using zpool
create's -m option. For more information about creating pools, see “Creating a ZFS Storage
Pool” on page 90.

Any dataset whose mountpoint property is not legacy is managed by ZFS. In the following
example, a dataset is created whose mount point is automatically managed by ZFS.

zfs create pool/filesystem

zfs get mountpoint pool/filesystem

NAME PROPERTY VALUE SOURCE

Mounting and Sharing ZFS File Systems

Chapter 6 • Managing ZFS File Systems 157

pool/filesystem mountpoint /pool/filesystem default

zfs get mounted pool/filesystem

NAME PROPERTY VALUE SOURCE

pool/filesystem mounted yes -

You can also explicitly set the mountpoint property as shown in the following example:

zfs set mountpoint=/mnt pool/filesystem

zfs get mountpoint pool/filesystem

NAME PROPERTY VALUE SOURCE

pool/filesystem mountpoint /mnt local

zfs get mounted pool/filesystem

NAME PROPERTY VALUE SOURCE

pool/filesystem mounted yes -

When the mountpoint property is changed, the file system is automatically unmounted from
the old mount point and remounted to the new mount point. Mount point directories are
created as needed. If ZFS is unable to unmount a file system due to it being active, an error is
reported and a forced manual unmount is necessary.

Legacy Mount Points
You can manage ZFS file systems with legacy tools by setting the mountpoint property to
legacy. Legacy file systems must be managed through the mount and umount commands and
the /etc/vfstab file. ZFS does not automatically mount legacy file systems on boot, and the
ZFS mount and umount command do not operate on datasets of this type. The following
examples show how to set up and manage a ZFS dataset in legacy mode:

zfs set mountpoint=legacy tank/home/eschrock

mount -F zfs tank/home/eschrock /mnt

In addition, you must mount them by creating entries in the /etc/vfstab file. Otherwise, the
system/filesystem/local service enters maintenance mode when the system boots.

To automatically mount a legacy file system on boot, you must add an entry to the /etc/vfstab
file. The following example shows what the entry in the /etc/vfstab file might look like:

#device device mount FS fsck mount mount

#to mount to fsck point type pass at boot options

#

tank/home/eschrock - /mnt zfs - yes -

Note that the device to fsck and fsck pass entries are set to -. This syntax is because the
fsck command is not applicable to ZFS file systems. For more information regarding data
integrity and the lack of need for fsck in ZFS, see “Transactional Semantics” on page 37.

Mounting and Sharing ZFS File Systems

Solaris ZFS Administration Guide • September 2008158

Mounting ZFS File Systems
ZFS automatically mounts file systems when file systems are created or when the system boots.
Use of the zfs mount command is necessary only when changing mount options or explicitly
mounting or unmounting file systems.

The zfs mount command with no arguments shows all currently mounted file systems that are
managed by ZFS. Legacy managed mount points are not displayed. For example:

zfs mount

tank /tank

tank/home /tank/home

tank/home/bonwick /tank/home/bonwick

tank/ws /tank/ws

You can use the -a option to mount all ZFS managed file systems. Legacy managed file systems
are not mounted. For example:

zfs mount -a

By default, ZFS does not allow mounting on top of a nonempty directory. To force a mount on
top of a nonempty directory, you must use the -O option. For example:

zfs mount tank/home/lalt

cannot mount ’/export/home/lalt’: directory is not empty

use legacy mountpoint to allow this behavior, or use the -O flag

zfs mount -O tank/home/lalt

Legacy mount points must be managed through legacy tools. An attempt to use ZFS tools
results in an error. For example:

zfs mount pool/home/billm

cannot mount ’pool/home/billm’: legacy mountpoint

use mount(1M) to mount this filesystem

mount -F zfs tank/home/billm

When a file system is mounted, it uses a set of mount options based on the property values
associated with the dataset. The correlation between properties and mount options is as follows:

Property Mount Options

devices devices/nodevices

exec exec/noexec

readonly ro/rw

setuid setuid/nosetuid

The mount option nosuid is an alias for nodevices,nosetuid.

Mounting and Sharing ZFS File Systems

Chapter 6 • Managing ZFS File Systems 159

You can use the NFSv4 mirror mount features to help you better manage NFS-mounted ZFS
home directories. For a description of mirror mounts, see “ZFS and File System Mirror
Mounts” on page 21.

Using Temporary Mount Properties
If any of the above options are set explicitly by using the-o option with the zfs mount
command, the associated property value is temporarily overridden. These property values are
reported as temporary by the zfs get command and revert back to their original settings when
the file system is unmounted. If a property value is changed while the dataset is mounted, the
change takes effect immediately, overriding any temporary setting.

In the following example, the read-only mount option is temporarily set on the
tank/home/perrin file system:

zfs mount -o ro tank/home/perrin

In this example, the file system is assumed to be unmounted. To temporarily change a property
on a file system that is currently mounted, you must use the special remount option. In the
following example, the atime property is temporarily changed to off for a file system that is
currently mounted:

zfs mount -o remount,noatime tank/home/perrin

zfs get atime tank/home/perrin

NAME PROPERTY VALUE SOURCE

tank/home/perrin atime off temporary

For more information about the zfs mount command, see zfs(1M).

Unmounting ZFS File Systems
You can unmount file systems by using the zfs unmount subcommand. The unmount command
can take either the mount point or the file system name as arguments.

In the following example, a file system is unmounted by file system name:

zfs unmount tank/home/tabriz

In the following example, the file system is unmounted by mount point:

zfs unmount /export/home/tabriz

Mounting and Sharing ZFS File Systems

Solaris ZFS Administration Guide • September 2008160

http://docs.sun.com/doc/819-2240/zfs-1m?a=view

The unmount command fails if the file system is active or busy. To forceably unmount a file
system, you can use the -f option. Be cautious when forceably unmounting a file system, if its
contents are actively being used. Unpredictable application behavior can result.

zfs unmount tank/home/eschrock

cannot unmount ’/export/home/eschrock’: Device busy

zfs unmount -f tank/home/eschrock

To provide for backwards compatibility, the legacy umount command can be used to unmount
ZFS file systems. For example:

umount /export/home/bob

For more information about the zfs umount command, see zfs(1M).

Sharing and Unsharing ZFS File Systems
Similar to mount points, ZFS can automatically share file systems by using the sharenfs
property. Using this method, you do not have to modify the /etc/dfs/dfstab file when a new
file system is added. The sharenfs property is a comma-separated list of options to pass to the
share command. The special value on is an alias for the default share options, which are
read/write permissions for anyone. The special value off indicates that the file system is not
managed by ZFS and can be shared through traditional means, such as the /etc/dfs/dfstab
file. All file systems whose sharenfs property is not off are shared during boot.

Controlling Share Semantics
By default, all file systems are unshared. To share a new file system, use zfs set syntax similar
to the following:

zfs set sharenfs=on tank/home/eschrock

The property is inherited, and file systems are automatically shared on creation if their inherited
property is not off. For example:

zfs set sharenfs=on tank/home

zfs create tank/home/bricker

zfs create tank/home/tabriz

zfs set sharenfs=ro tank/home/tabriz

Both tank/home/bricker and tank/home/tabriz are initially shared writable because they
inherit the sharenfs property from tank/home. Once the property is set to ro (readonly),
tank/home/tabriz is shared read-only regardless of the sharenfs property that is set for
tank/home.

Mounting and Sharing ZFS File Systems

Chapter 6 • Managing ZFS File Systems 161

http://docs.sun.com/doc/819-2240/zfs-1m?a=view

Unsharing ZFS File Systems
While most file systems are automatically shared and unshared during boot, creation, and
destruction, file systems sometimes need to be explicitly unshared. To do so, use the zfs
unshare command. For example:

zfs unshare tank/home/tabriz

This command unshares the tank/home/tabriz file system. To unshare all ZFS file systems on
the system, you need to use the -a option.

zfs unshare -a

Sharing ZFS File Systems
Most of the time the automatic behavior of ZFS, sharing on boot and creation, is sufficient for
normal operation. If, for some reason, you unshare a file system, you can share it again by using
the zfs share command. For example:

zfs share tank/home/tabriz

You can also share all ZFS file systems on the system by using the -a option.

zfs share -a

Legacy Share Behavior
If the sharenfs property is off, then ZFS does not attempt to share or unshare the file system at
any time. This setting enables you to administer through traditional means such as the
/etc/dfs/dfstab file.

Unlike the traditional mount command, the traditional share and unshare commands can still
function on ZFS file systems. As a result, you can manually share a file system with options that
are different from the settings of the sharenfs property. This administrative model is
discouraged. Choose to either manage NFS shares completely through ZFS or completely
through the /etc/dfs/dfstab file. The ZFS administrative model is designed to be simpler and
less work than the traditional model. However, in some cases, you might still want to control file
system sharing behavior through the familiar model.

Sharing ZFS Files in a Solaris CIFS Environment
The sharesmb property is provided to share ZFS files by using the Solaris CIFS software
product. When this property is set on a ZFS file system, these shares are visible to CIFS client

Mounting and Sharing ZFS File Systems

Solaris ZFS Administration Guide • September 2008162

systems. For more information about using the CIFS software product, see the System
Administration Guide: Windows Interoperability.

For a detailed description of the sharesmb property, see “The sharesmb Property” on page 148.

EXAMPLE 6–1 Example—Sharing ZFS File Systems (sharesmb)

In this example, a ZFS file system sandbox/fs1 is created and shared with the sharesmb
property. If necessary, enable the SMB services.

svcadm enable -r smb/server

svcadm: svc:/milestone/network depends on svc:/network/physical, which has multiple instances.

svcs | grep smb

online 10:47:15 svc:/network/smb/server:default

zpool create sandbox mirror c0t2d0 c0t4d0

zfs create sandbox/fs1

zfs set sharesmb=on sandbox/fs1

The sharesmb property is set for sandbox/fs1 and its descendents.

Verify that the file system was shared. For example:

sharemgr show -vp

default nfs=()

zfs nfs=()

zfs/sandbox/fs1 smb=()

sandbox_fs1=/sandbox/fs1

A default SMB resource name, sandbox_fs1, is assigned automatically.

In this example, another file system is created, sandbox/fs2, and shared with a resource name,
myshare.

zfs create sandbox/fs2

zfs set sharesmb=name=myshare sandbox/fs2

sharemgr show -vp

default nfs=()

zfs nfs=()

zfs/sandbox/fs1 smb=()

sandbox_fs1=/sandbox/fs1

zfs/sandbox/fs2 smb=()

myshare=/sandbox/fs2

The sandbox/fs2/fs2_sub1 file system is created and is automatically shared. The inherited
resource name is myshare_fs2_sub1.

Mounting and Sharing ZFS File Systems

Chapter 6 • Managing ZFS File Systems 163

EXAMPLE 6–1 Example—Sharing ZFS File Systems (sharesmb) (Continued)

zfs create sandbox/fs2/fs2_sub1

sharemgr show -vp

default nfs=()

zfs nfs=()

zfs/sandbox/fs1 smb=()

sandbox_fs1=/sandbox/fs1

zfs/sandbox/fs2 smb=()

myshare=/sandbox/fs2

myshare_fs2_sub1=/sandbox/fs2/fs2_sub1

Disable SMB sharing for sandbox/fs2 and its descendents.

zfs set sharesmb=off sandbox/fs2

sharemgr show -vp

default nfs=()

zfs nfs=()

zfs/sandbox/fs1 smb=()

sandbox_fs1=/sandbox/fs1

In this example, the sharesmb property is set on the pool's top-level file system. The descendent
file systems are automatically shared.

zpool create sandbox mirror c0t2d0 c0t4d0

zfs set sharesmb=on sandbox

zfs create sandbox/fs1

zfs create sandbox/fs2

The top-level file system has a resource name of sandbox, but the descendents have their dataset
name appended to the resource name.

sharemgr show -vp

default nfs=()

zfs nfs=()

zfs/sandbox smb=()

sandbox=/sandbox

sandbox_fs1=/sandbox/fs1 smb=()

sandbox_fs2=/sandbox/fs2 smb=()

Mounting and Sharing ZFS File Systems

Solaris ZFS Administration Guide • September 2008164

ZFS Quotas and Reservations
ZFS supports quotas and reservations at the file system level. You can use the quota property to
set a limit on the amount of space a file system can use. In addition, you can use the
reservation property to guarantee that some amount of space is available to a file system. Both
properties apply to the dataset they are set on and all descendents of that dataset.

That is, if a quota is set on the tank/home dataset, the total amount of space used by tank/home
and all of its descendents cannot exceed the quota. Similarly, if tank/home is given a reservation,
tank/home and all of its descendents draw from that reservation. The amount of space used by a
dataset and all of its descendents is reported by the used property.

In addition to the quota and reservation property, the refquota and refreservation

properties are available to manage file system space without accounting for space consumed by
descendents, such as snapshots and clones.

Consider the following points to determine which quota and reservations features might better
manage your file systems:

■ The quota and reservation properties are convenient for managing space consumed by
datasets.

■ The refquota and refreservation properties are appropriate for managing space
consumed by datasets and snapshots.

■ Setting refquota or refreservation higher than quota or reservation has no effect. If you
set the quota or refquota properties, operations that try to exceed either value fail. It is
possible to a exceed a quota that is greater than refquota. If some snapshot blocks are
dirtied, you might actually exceed the quota before you exceed the refquota.

For more information, see the examples below.

Setting Quotas on ZFS File Systems
ZFS quotas can be set and displayed by using the zfs set and zfs get commands. In the
following example, a quota of 10 Gbytes is set on tank/home/bonwick.

zfs set quota=10G tank/home/bonwick

zfs get quota tank/home/bonwick

NAME PROPERTY VALUE SOURCE

tank/home/bonwick quota 10.0G local

ZFS quotas also impact the output of the zfs list and df commands. For example:

zfs list

NAME USED AVAIL REFER MOUNTPOINT

ZFS Quotas and Reservations

Chapter 6 • Managing ZFS File Systems 165

tank/home 16.5K 33.5G 8.50K /export/home

tank/home/bonwick 15.0K 10.0G 8.50K /export/home/bonwick

tank/home/bonwick/ws 6.50K 10.0G 8.50K /export/home/bonwick/ws

df -h /export/home/bonwick

Filesystem size used avail capacity Mounted on

tank/home/bonwick 10G 8K 10G 1% /export/home/bonwick

Note that although tank/home has 33.5 Gbytes of space available, tank/home/bonwick and
tank/home/bonwick/ws only have 10 Gbytes of space available, due to the quota on
tank/home/bonwick.

You cannot set a quota to an amount less than is currently being used by a dataset. For example:

zfs set quota=10K tank/home/bonwick

cannot set quota for ’tank/home/bonwick’: size is less than current used or

reserved space

You can set a refquota on a dataset that limits the amount of space that the dataset can
consume. This hard limit does not include space that is consumed by snapshots and clones. For
example:

zfs set refquota=10g students/studentA

zfs list

NAME USED AVAIL REFER MOUNTPOINT

profs 106K 33.2G 18K /profs

students 57.7M 33.2G 19K /students

students/studentA 57.5M 9.94G 57.5M /students/studentA

zfs snapshot students/studentA@today

zfs list

NAME USED AVAIL REFER MOUNTPOINT

profs 106K 33.2G 18K /profs

students 57.7M 33.2G 19K /students

students/studentA 57.5M 9.94G 57.5M /students/studentA

students/studentA@today 0 - 57.5M -

For additional convenience, you can set another quota on a dataset to help manage the space
that is consumed by snapshots. For example:

zfs set quota=20g students/studentA

zfs list

NAME USED AVAIL REFER MOUNTPOINT

profs 106K 33.2G 18K /profs

students 57.7M 33.2G 19K /students

students/studentA 57.5M 9.94G 57.5M /students/studentA

students/studentA@today 0 - 57.5M -

ZFS Quotas and Reservations

Solaris ZFS Administration Guide • September 2008166

In this scenario, studentA can bump into the refquota (10 Gbytes) hard limit and remove files
to recover even if snapshots exist.

In the above example, the smaller of the two quotas (10 Gbytes versus 20 Gbytes) is displayed in
the zfs list output. To see the value of both quotas, use the zfs get command. For example:

zfs get refquota,quota students/studentA

NAME PROPERTY VALUE SOURCE

students/studentA refquota 10G local

students/studentA quota 20G local

Setting Reservations on ZFS File Systems
A ZFS reservation is an allocation of space from the pool that is guaranteed to be available to a
dataset. As such, you cannot reserve space for a dataset if that space is not currently available in
the pool. The total amount of all outstanding unconsumed reservations cannot exceed the
amount of unused space in the pool. ZFS reservations can be set and displayed by using the zfs
set and zfs get commands. For example:

zfs set reservation=5G tank/home/moore

zfs get reservation tank/home/moore

NAME PROPERTY VALUE SOURCE

tank/home/moore reservation 5.00G local

ZFS reservations can affect the output of the zfs list command. For example:

zfs list

NAME USED AVAIL REFER MOUNTPOINT

tank/home 5.00G 33.5G 8.50K /export/home

tank/home/moore 15.0K 10.0G 8.50K /export/home/moore

Note that tank/home is using 5 Gbytes of space, although the total amount of space referred to
by tank/home and its descendents is much less than 5 Gbytes. The used space reflects the space
reserved for tank/home/moore. Reservations are considered in the used space of the parent
dataset and do count against its quota, reservation, or both.

zfs set quota=5G pool/filesystem

zfs set reservation=10G pool/filesystem/user1

cannot set reservation for ’pool/filesystem/user1’: size is greater than

available space

A dataset can use more space than its reservation, as long as space is available in the pool that is
unreserved and the dataset's current usage is below its quota. A dataset cannot consume space
that has been reserved for another dataset.

ZFS Quotas and Reservations

Chapter 6 • Managing ZFS File Systems 167

Reservations are not cumulative. That is, a second invocation of zfs set to set a reservation
does not add its reservation to the existing reservation. Rather, the second reservation replaces
the first reservation.

zfs set reservation=10G tank/home/moore

zfs set reservation=5G tank/home/moore

zfs get reservation tank/home/moore

NAME PROPERTY VALUE SOURCE

tank/home/moore reservation 5.00G local

You can set a refreservation to guarantee space for a dataset that does not include space
consumed by snapshots and clones. The refreservation reservation is accounted for in the
parent datasets' space used, and counts against the parent datasets' quotas and reservations. For
example:

zfs set refreservation=10g profs/prof1

zfs list

NAME USED AVAIL REFER MOUNTPOINT

profs 10.0G 23.2G 19K /profs

profs/prof1 10G 33.2G 18K /profs/prof1

You can also set a reservation on the same dataset to guarantee dataset space and snapshot
space. For example:

zfs set reservation=20g profs/prof1

zfs list

NAME USED AVAIL REFER MOUNTPOINT

profs 20.0G 13.2G 19K /profs

profs/prof1 10G 33.2G 18K /profs/prof1

Regular reservations are accounted for in the parent's used space.

In the above example, the smaller of the two quotas (10 Gbytes versus 20 Gbytes) is displayed in
the zfs list output. To see the value of both quotas, use the zfs get command. For example:

zfs get reservation,refreserv profs/prof1

NAME PROPERTY VALUE SOURCE

profs/prof1 reservation 20G local

profs/prof1 refreservation 10G local

If refreservation is set, a snapshot is only allowed if enough free pool space exists outside of
this reservation to accommodate the current number of referenced bytes in the dataset.

ZFS Quotas and Reservations

Solaris ZFS Administration Guide • September 2008168

Working With ZFS Snapshots and Clones

This chapter describes how to create and manage ZFS snapshots and clones. Information about
saving snapshots is also provided in this chapter.

The following sections are provided in this chapter:

■ “Overview of ZFS Snapshots” on page 169
■ “Creating and Destroying ZFS Snapshots” on page 170
■ “Displaying and Accessing ZFS Snapshots” on page 172
■ “Rolling Back to a ZFS Snapshot” on page 172
■ “Overview of ZFS Clones” on page 173
■ “Creating a ZFS Clone” on page 174
■ “Destroying a ZFS Clone” on page 174
■ “Sending and Receiving ZFS Data” on page 176

Overview of ZFS Snapshots
A snapshot is a read-only copy of a file system or volume. Snapshots can be created almost
instantly, and initially consume no additional disk space within the pool. However, as data
within the active dataset changes, the snapshot consumes disk space by continuing to reference
the old data and so prevents the space from being freed.

ZFS snapshots include the following features:

■ Persist across system reboots.
■ The theoretical maximum number of snapshots is 264.
■ Use no separate backing store. Snapshots consume disk space directly from the same storage

pool as the file system from which they were created.
■ Recursive snapshots are created quickly as one atomic operation. The snapshots are created

together (all at once) or not created at all. The benefit of atomic snapshots operations is that
the snapshot data is always taken at one consistent time, even across descendent file systems.

7C H A P T E R 7

169

Snapshots of volumes cannot be accessed directly, but they can be cloned, backed up, rolled
back to, and so on. For information about backing up a ZFS snapshot, see “Sending and
Receiving ZFS Data” on page 176.

Creating and Destroying ZFS Snapshots
Snapshots are created by using the zfs snapshot command, which takes as its only argument
the name of the snapshot to create. The snapshot name is specified as follows:

filesystem@snapname
volume@snapname

The snapshot name must satisfy the naming conventions defined in “ZFS Component Naming
Requirements” on page 41.

In the following example, a snapshot of tank/home/ahrens that is named friday is created.

zfs snapshot tank/home/ahrens@friday

You can create snapshots for all descendent file systems by using the -r option. For example:

zfs snapshot -r tank/home@now

zfs list -t snapshot

NAME USED AVAIL REFER MOUNTPOINT

tank/home@now 0 - 29.5K -

tank/home/ahrens@now 0 - 2.15M -

tank/home/anne@now 0 - 1.89M -

tank/home/bob@now 0 - 1.89M -

tank/home/cindys@now 0 - 2.15M -

Snapshots have no modifiable properties. Nor can dataset properties be applied to a snapshot.

zfs set compression=on tank/home/ahrens@tuesday

cannot set compression property for ’tank/home/ahrens@tuesday’: snapshot

properties cannot be modified

Snapshots are destroyed by using the zfs destroy command. For example:

zfs destroy tank/home/ahrens@friday

A dataset cannot be destroyed if snapshots of the dataset exist. For example:

zfs destroy tank/home/ahrens

cannot destroy ’tank/home/ahrens’: filesystem has children

use ’-r’ to destroy the following datasets:

tank/home/ahrens@tuesday

tank/home/ahrens@wednesday

tank/home/ahrens@thursday

Overview of ZFS Snapshots

Solaris ZFS Administration Guide • September 2008170

In addition, if clones have been created from a snapshot, then they must be destroyed before the
snapshot can be destroyed.

For more information about the destroy subcommand, see “Destroying a ZFS File System” on
page 135.

Renaming ZFS Snapshots
You can rename snapshots but they must be renamed within the pool and dataset from which
they were created. For example:

zfs rename tank/home/cindys@083006 tank/home/cindys@today

In addition, the following shortcut syntax provides equivalent snapshot renaming syntax as the
example above.

zfs rename tank/home/cindys@083006 today

The following snapshot rename operation is not supported because the target pool and file
system name are different from the pool and file system where the snapshot was created.

zfs rename tank/home/cindys@today pool/home/cindys@saturday

cannot rename to ’pool/home/cindys@today’: snapshots must be part of same

dataset

You can recursively rename snapshots with the zfs rename -r command. For example:

zfs list

NAME USED AVAIL REFER MOUNTPOINT

users 270K 16.5G 22K /users

users/home 76K 16.5G 22K /users/home

users/home@yesterday 0 - 22K -

users/home/markm 18K 16.5G 18K /users/home/markm

users/home/markm@yesterday 0 - 18K -

users/home/marks 18K 16.5G 18K /users/home/marks

users/home/marks@yesterday 0 - 18K -

users/home/neil 18K 16.5G 18K /users/home/neil

users/home/neil@yesterday 0 - 18K -

zfs rename -r users/home@yesterday @2daysago

zfs list -r users/home

NAME USED AVAIL REFER MOUNTPOINT

users/home 76K 16.5G 22K /users/home

users/home@2daysago 0 - 22K -

users/home/markm 18K 16.5G 18K /users/home/markm

users/home/markm@2daysago 0 - 18K -

users/home/marks 18K 16.5G 18K /users/home/marks

users/home/marks@2daysago 0 - 18K -

users/home/neil 18K 16.5G 18K /users/home/neil

users/home/neil@2daysago 0 - 18K -

Overview of ZFS Snapshots

Chapter 7 • Working With ZFS Snapshots and Clones 171

Displaying and Accessing ZFS Snapshots
Snapshots of file systems are accessible in the .zfs/snapshot directory within the root of the
containing file system. For example, if tank/home/ahrens is mounted on /home/ahrens, then
the tank/home/ahrens@thursday snapshot data is accessible in the
/home/ahrens/.zfs/snapshot/thursday directory.

ls /tank/home/ahrens/.zfs/snapshot

tuesday wednesday thursday

You can list snapshots as follows:

zfs list -t snapshot

NAME USED AVAIL REFER MOUNTPOINT

pool/home/anne@monday 0 - 780K -

pool/home/bob@monday 0 - 1.01M -

tank/home/ahrens@tuesday 8.50K - 780K -

tank/home/ahrens@wednesday 8.50K - 1.01M -

tank/home/ahrens@thursday 0 - 1.77M -

tank/home/cindys@today 8.50K - 524K -

You can list snapshots that were created for a particular file system as follows:

zfs list -r -t snapshot -o name,creation tank/home

NAME CREATION

tank/home@now Wed Aug 27 16:35 2008

tank/home/ahrens@tuesday Wed Aug 27 16:35 2008

tank/home/ahrens@wednesday Wed Aug 27 16:35 2008

tank/home/ahrens@thursday Wed Aug 27 16:36 2008

tank/home/cindys@now Wed Aug 27 16:37 2008

Snapshot Space Accounting
When a snapshot is created, its space is initially shared between the snapshot and the file system,
and possibly with previous snapshots. As the file system changes, space that was previously
shared becomes unique to the snapshot, and thus is counted in the snapshot's used property.
Additionally, deleting snapshots can increase the amount of space unique to (and thus used by)
other snapshots.

A snapshot's space referenced property is the same as the file system's was when the snapshot
was created.

Rolling Back to a ZFS Snapshot
The zfs rollback command can be used to discard all changes made since a specific snapshot.
The file system reverts to its state at the time the snapshot was taken. By default, the command
cannot roll back to a snapshot other than the most recent snapshot.

Overview of ZFS Snapshots

Solaris ZFS Administration Guide • September 2008172

To roll back to an earlier snapshot, all intermediate snapshots must be destroyed. You can
destroy earlier snapshots by specifying the -r option.

If clones of any intermediate snapshots exist, the -R option must be specified to destroy the
clones as well.

Note – The file system that you want to roll back must be unmounted and remounted, if it is
currently mounted. If the file system cannot be unmounted, the rollback fails. The -f option
forces the file system to be unmounted, if necessary.

In the following example, the tank/home/ahrens file system is rolled back to the tuesday
snapshot:

zfs rollback tank/home/ahrens@tuesday

cannot rollback to ’tank/home/ahrens@tuesday’: more recent snapshots exist

use ’-r’ to force deletion of the following snapshots:

tank/home/ahrens@wednesday

tank/home/ahrens@thursday

zfs rollback -r tank/home/ahrens@tuesday

In the above example, the wednesday and thursday snapshots are removed because you rolled
back to the previous tuesday snapshot.

zfs list -r -t snapshot -o name,creation tank/home/ahrens

NAME CREATION

tank/home/ahrens@tuesday Wed Aug 27 16:35 2008

Overview of ZFS Clones
A clone is a writable volume or file system whose initial contents are the same as the dataset
from which it was created. As with snapshots, creating a clone is nearly instantaneous, and
initially consumes no additional disk space. In addition, you can snapshot a clone.

■ “Creating a ZFS Clone” on page 174
■ “Destroying a ZFS Clone” on page 174
■ “Replacing a ZFS File System With a ZFS Clone” on page 174

Clones can only be created from a snapshot. When a snapshot is cloned, an implicit dependency
is created between the clone and snapshot. Even though the clone is created somewhere else in
the dataset hierarchy, the original snapshot cannot be destroyed as long as the clone exists. The
origin property exposes this dependency, and the zfs destroy command lists any such
dependencies, if they exist.

Overview of ZFS Clones

Chapter 7 • Working With ZFS Snapshots and Clones 173

Clones do not inherit the properties of the dataset from which it was created. Use the zfs get
and zfs set commands to view and change the properties of a cloned dataset. For more
information about setting ZFS dataset properties, see “Setting ZFS Properties” on page 153.

Because a clone initially shares all its disk space with the original snapshot, its used property is
initially zero. As changes are made to the clone, it uses more space. The used property of the
original snapshot does not consider the disk space consumed by the clone.

Creating a ZFS Clone
To create a clone, use the zfs clone command, specifying the snapshot from which to create
the clone, and the name of the new file system or volume. The new file system or volume can be
located anywhere in the ZFS hierarchy. The type of the new dataset (for example, file system or
volume) is the same type as the snapshot from which the clone was created. You cannot create
clone of a file system in a pool that is different from where the original file system snapshot
resides.

In the following example, a new clone named tank/home/ahrens/bug123 with the same initial
contents as the snapshot tank/ws/gate@yesterday is created.

zfs snapshot tank/ws/gate@yesterday

zfs clone tank/ws/gate@yesterday tank/home/ahrens/bug123

In the following example, a cloned workspace is created from the projects/newproject@today
snapshot for a temporary user as projects/teamA/tempuser. Then, properties are set on the
cloned workspace.

zfs snapshot projects/newproject@today

zfs clone projects/newproject@today projects/teamA/tempuser

zfs set sharenfs=on projects/teamA/tempuser

zfs set quota=5G projects/teamA/tempuser

Destroying a ZFS Clone
ZFS clones are destroyed by using the zfs destroy command. For example:

zfs destroy tank/home/ahrens/bug123

Clones must be destroyed before the parent snapshot can be destroyed.

Replacing a ZFS File System With a ZFS Clone
You can use the zfs promote command to replace an active ZFS file system with a clone of that
file system. This feature facilitates the ability to clone and replace file systems so that the origin
file system becomes the clone of the specified file system. In addition, this feature makes it

Overview of ZFS Clones

Solaris ZFS Administration Guide • September 2008174

possible to destroy the file system from which the clone was originally created. Without clone
promotion, you cannot destroy an origin file system of active clones. For more information
about destroying clones, see “Destroying a ZFS Clone” on page 174.

In the following example, the tank/test/productA file system is cloned and then the clone file
system, tank/test/productAbeta, becomes the tank/test/productA file system.

zfs create tank/test

zfs create tank/test/productA

zfs snapshot tank/test/productA@today

zfs clone tank/test/productA@today tank/test/productAbeta

zfs list -r tank/test

NAME USED AVAIL REFER MOUNTPOINT

tank/test 314K 8.24G 25.5K /tank/test

tank/test/productA 288K 8.24G 288K /tank/test/productA

tank/test/productA@today 0 - 288K -

tank/test/productAbeta 0 8.24G 288K /tank/test/productAbeta

zfs promote tank/test/productAbeta

zfs list -r tank/test

NAME USED AVAIL REFER MOUNTPOINT

tank/test 316K 8.24G 27.5K /tank/test

tank/test/productA 0 8.24G 288K /tank/test/productA

tank/test/productAbeta 288K 8.24G 288K /tank/test/productAbeta

tank/test/productAbeta@today 0 - 288K -

In the above zfs list output, you can see that the space accounting of the original productA
file system has been replaced with the productAbeta file system.

Complete the clone replacement process by renaming the file systems. For example:

zfs rename tank/test/productA tank/test/productAlegacy

zfs rename tank/test/productAbeta tank/test/productA

zfs list -r tank/test

NAME USED AVAIL REFER MOUNTPOINT

tank/test 316K 8.24G 27.5K /tank/test

tank/test/productA 288K 8.24G 288K /tank/test/productA

tank/test/productA@today 0 - 288K -

tank/test/productAlegacy 0 8.24G 288K /tank/test/productAlegacy

Optionally, you can remove the legacy file system. For example:

zfs destroy tank/test/productAlegacy

Overview of ZFS Clones

Chapter 7 • Working With ZFS Snapshots and Clones 175

Sending and Receiving ZFS Data
The zfs send command creates a stream representation of a snapshot that is written to
standard output. By default, a full stream is generated. You can redirect the output to a file or to
a different system. The zfs receive command creates a snapshot whose contents are specified
in the stream that is provided on standard input. If a full stream is received, a new file system is
created as well. You can send ZFS snapshot data and receive ZFS snapshot data and file systems
with these commands. See the examples in the next section.

■ “Sending a ZFS Snapshot” on page 177
■ “Receiving a ZFS Snapshot” on page 178
■ “Remote Replication of ZFS Data” on page 181
■ “Saving ZFS Data With Other Backup Products” on page 182

The following backup solutions for saving ZFS data are available:

■ Enterprise backup products – If you need the following features then consider a enterprise
backup solution:
■ Per-file restoration
■ Backup media verification
■ media management

■ File system snapshots and rolling back snapshots – Use the zfs snapshot and zfs

rollback commands if you want to easily create a copy of a file system and revert back to a
previous file system version, if necessary. For example, if you want to restore a file or files
from a previous version of a file system, you could use this solution.

For more information about creating and rolling back to a snapshot, see “Overview of ZFS
Snapshots” on page 169.

■ Saving snapshots – Use the zfs send and zfs receive commands to send and receive a
ZFS snapshot. You can save incremental changes between snapshots, but you cannot restore
files individually. You must restore the entire file system snapshot. These commands do not
provide a complete backup solution for saving your ZFS data.

■ Remote replication – Use the zfs send and zfs receive commands when you want to
copy a file system from one system to another. This process is different from a traditional
volume management product that might mirror devices across a WAN. No special
configuration or hardware is required. The advantage of replicating a ZFS file system is that
you can re-create a file system on a storage pool on another system, and specify different
levels of configuration for the newly created pool, such as RAID-Z, but with identical file
system data.

■ Archive utilities – Save ZFS data with archive utilities such as tar, cpio, and pax or
third-party backup products.

Sending and Receiving ZFS Data

Solaris ZFS Administration Guide • September 2008176

Sending a ZFS Snapshot
You can use the zfs send command to send a copy of a snapshot and receive the snapshot in
another pool on the same system or in another pool on a different system that is used to store
backup data. For example, to send the snapshot on a different pool on the same system, use
syntax similar to the following:

zfs send tank/data@snap1 | zfs recv spool/ds01

If you are sending the snapshot stream to a different system, pipe the zfs send output through
the ssh command. For example:

host1# zfs send tank/dana@snap1 | ssh host2 zfs recv newtank/dana

When sending a full stream, the destination file system must not exist.

You can send incremental data by using the zfs send -i option. For example:

host1# zfs send -i tank/dana@snap1 tank/dana@snap2 | ssh host2 zfs recv newtank/dana

Note that the first argument is the earlier snapshot (snap1) and the second argument (snap2) is
the later snapshot. In this case, the newtank/dana file system must exist for the incremental
receive to be successful.

The incremental snap1 source can be specified as the last component of the snapshot name.
This shortcut means you only have to specify the name after the @ sign for snap1, which is
assumed to be from the same file system as snap2. For example:

host1# zfs send -i snap1 tank/dana@snap2 > ssh host2 zfs recv newtank/dana

This syntax is equivalent to the above example of the incremental syntax.

The following message is displayed if you attempt to generate an incremental stream from a
different file system snapshot1:

cannot send ’pool/fs@name’: not an earlier snapshot from the same fs

If you need to store many copies, you might consider compressing a ZFS snapshot stream
representation with the gzip command. For example:

zfs send pool/fs@snap | gzip > backupfile.gz

Sending and Receiving ZFS Data

Chapter 7 • Working With ZFS Snapshots and Clones 177

Receiving a ZFS Snapshot
Keep the following key points in mind when you receive a file system snapshot:

■ The snapshot and the file system are received.
■ The file system and all descendent file systems are unmounted.
■ The file systems are inaccessible while they are being received.
■ The original file system to be received must not exist while it is being transferred.
■ If a conflicting file system name exists, zfs rename can be used to rename the file system.

For example:

zfs send tank/gozer@0830 > /bkups/gozer.083006

zfs receive tank/gozer2@today < /bkups/gozer.083006

zfs rename tank/gozer tank/gozer.old

zfs rename tank/gozer2 tank/gozer

You can use zfs recv as an alias for the zfs receive command.

If you make a change to the destination file system and you want to do another incremental
send of a snapshot, you must first rollback the receiving file system.

For example, if you make a change to the file system as follows:

host2# rm newtank/dana/file.1

And you do an incremental send of tank/dana@snap3, you must first rollback the receiving file
system to receive the new incremental snapshot. You can eliminate the rollback step by using
the -F option. For example:

host1# zfs send -i tank/dana@snap2 tank/dana@snap3 | ssh host2 zfs recv -F newtank/dana

When you receive an incremental snapshot, the destination file system must already exist.

If you make changes to the file system and you do not rollback the receiving file system to
receive the new incremental snapshot or you do not use the -F option, you will see the following
message:

host1# zfs send -i tank/dana@snap4 tank/dana@snap5 | ssh host2 zfs recv newtank/dana

cannot receive: destination has been modified since most recent snapshot

The following checks are performed before the -F option is successful:

■ If the most recent snapshot doesn't match the incremental source, neither the rollback nor
the receive is completed, and an error message is returned.

Sending and Receiving ZFS Data

Solaris ZFS Administration Guide • September 2008178

■ If you accidentally provide the name of different file system that doesn't match the
incremental source to the zfs receive command, neither the rollback nor the receive is
completed, and the following error message is returned.

cannot send ’pool/fs@name’: not an earlier snapshot from the same fs

Sending and Receiving Complex ZFS Snapshot
Streams
This section describes how to use the zfs send -I and -R options to send and receive more
complex snapshot streams.

Keep the following points in mind when sending and receiving ZFS snapshot streams:
■ Use the zfs send -I option to send all incremental streams from one snapshot to a

cumulative snapshot. Or, use this option to send an incremental stream from the origin
snapshot to create a clone. The original snapshot must already exist on the receiving side to
accept the incremental stream.

■ Use the zfs send -R option to send a replication stream of all descendent file systems. When
received, all properties, snapshots, descendent file systems, and clones are preserved.

■ Or use both options to send an incremental replication stream.
■ Changes to properties and snapshot and file system renames and destroys are preserved.
■ If zfs recv -F is not specified when receiving the replication stream, dataset destroys

are ignored. The zfs recv -F syntax in this case also retains its rollback if necessary
meaning.

■ As with other (non zfs send -R) -i or -I cases, if -I is used, all snapshots between
snapA and snapD are sent. If -i is used, only snapD (for all descendents) are sent.

■ To receive any of these new types of zfs send streams, the receiving system must be
running a software version capable of sending them. The stream version is incremented.
However, you can access streams from older pool versions by using a newer software
version. For example, you can send and receive streams created with the newer options to
and from a version 3 pool. But, you must be running recent software to receive a stream sent
with the newer options.

EXAMPLE 7–1 Examples—Sending and Receiving Complex ZFS Snapshot Streams

A group of incremental snapshots can be combined into one snapshot by using the zfs send -I
option. For example:

zfs send -I pool/fs@snapA pool/fs@snapD > /snaps/fs@all-I

Remove snapshots B, C, and D.

Sending and Receiving ZFS Data

Chapter 7 • Working With ZFS Snapshots and Clones 179

EXAMPLE 7–1 Examples—Sending and Receiving Complex ZFS Snapshot Streams (Continued)

zfs destroy pool/fs@snapB

zfs destroy pool/fs@snapC

zfs destroy pool/fs@snapD

Receive the combined snapshot.

zfs receive -d -F pool/fs < /snaps/fs@all-I

zfs list

NAME USED AVAIL REFER MOUNTPOINT

pool 428K 16.5G 20K /pool

pool/fs 71K 16.5G 21K /pool/fs

pool/fs@snapA 16K - 18.5K -

pool/fs@snapB 17K - 20K -

pool/fs@snapC 17K - 20.5K -

pool/fs@snapD 0 - 21K -

You can also use the zfs send -I command to combine a snapshot and a clone snapshot to
create a combined dataset. For example:

zfs create pool/fs

zfs snapshot pool/fs@snap1

zfs clone pool/fs@snap1 pool/clone

zfs snapshot pool/clone@snapA

zfs send -I pool/fs@snap1 pool/clone@snapA > /snaps/fsclonesnap-I

zfs destroy pool/clone@snapA

zfs destroy pool/clone

zfs receive -F pool/clone < /snaps/fsclonesnap-I

Use the zfs send -R command to replicate a ZFS file system and all descendent file systems, up
to the named snapshot. When received, all properties, snapshots, descendent file systems, and
clones are preserved.

In the following example, snapshots are created of user file systems. One replication stream is
created of all user snapshots. Then, the original file systems and snapshots are destroyed and
recovered.

zfs snapshot -r users@today

zfs list

NAME USED AVAIL REFER MOUNTPOINT

users 187K 33.2G 22K /users

users@today 0 - 22K -

users/user1 18K 33.2G 18K /users/user1

users/user1@today 0 - 18K -

users/user2 18K 33.2G 18K /users/user2

users/user2@today 0 - 18K -

users/user3 18K 33.2G 18K /users/user3

Sending and Receiving ZFS Data

Solaris ZFS Administration Guide • September 2008180

EXAMPLE 7–1 Examples—Sending and Receiving Complex ZFS Snapshot Streams (Continued)

users/user3@today 0 - 18K -

zfs send -R users@today > /snaps/users-R

zfs destroy -r users

zfs receive -F -d users < /snaps/users-R

zfs list

NAME USED AVAIL REFER MOUNTPOINT

users 196K 33.2G 22K /users

users@today 0 - 22K -

users/user1 18K 33.2G 18K /users/user1

users/user1@today 0 - 18K -

users/user2 18K 33.2G 18K /users/user2

users/user2@today 0 - 18K -

users/user3 18K 33.2G 18K /users/user3

users/user3@today 0 - 18K -

You can use the zfs send -R command to replicate the users dataset and its descendents and
send the replicated stream to another pool, users2.

zfs create users2 mirror c0t1d0 c1t1d0

zfs receive -F -d users2 < /snaps/users-R

zfs list

NAME USED AVAIL REFER MOUNTPOINT

users 224K 33.2G 22K /users

users@today 0 - 22K -

users/user1 33K 33.2G 18K /users/user1

users/user1@today 15K - 18K -

users/user2 18K 33.2G 18K /users/user2

users/user2@today 0 - 18K -

users/user3 18K 33.2G 18K /users/user3

users/user3@today 0 - 18K -

users2 188K 16.5G 22K /users2

users2@today 0 - 22K -

users2/user1 18K 16.5G 18K /users2/user1

users2/user1@today 0 - 18K -

users2/user2 18K 16.5G 18K /users2/user2

users2/user2@today 0 - 18K -

users2/user3 18K 16.5G 18K /users2/user3

users2/user3@today 0 - 18K -

Remote Replication of ZFS Data
You can use the zfs send and zfs recv commands to remotely copy a snapshot stream
representation from one system to another system. For example:

zfs send tank/cindy@today | ssh newsys zfs recv sandbox/restfs@today

Sending and Receiving ZFS Data

Chapter 7 • Working With ZFS Snapshots and Clones 181

This command sends the tank/cindy@today snapshot data and receives it into the
sandbox/restfs file system and also creates a restfs@today snapshot on the newsys system. In
this example, the user has been configured to use ssh on the remote system.

Saving ZFS Data With Other Backup Products
In addition to the zfs send and zfs receive commands, you can also use archive utilities,
such as the tar and cpio commands, to save ZFS files. All of these utilities save and restore ZFS
file attributes and ACLs. Check the appropriate options for both the tar and cpio commands.

For up-to-date information about issues with ZFS and third-party backup products, please see
the or the ZFS FAQ, here:

http://opensolaris.org/os/community/zfs/faq/#backupsoftware

Sending and Receiving ZFS Data

Solaris ZFS Administration Guide • September 2008182

http://opensolaris.org/os/community/zfs/faq/#backupsoftware

Using ACLs and Attributes to Protect ZFS Files

This chapter provides information about using access control lists (ACLs) to protect your ZFS
files by providing more granular permissions than the standard UNIX permissions.

The following sections are provided in this chapter:

■ “New Solaris ACL Model” on page 183
■ “Setting ACLs on ZFS Files” on page 190
■ “Setting and Displaying ACLs on ZFS Files in Verbose Format” on page 192
■ “Setting and Displaying ACLs on ZFS Files in Compact Format” on page 209
■ “Applying Special Attributes to ZFS Files” on page 212

New Solaris ACL Model
Recent previous versions of Solaris supported an ACL implementation that was primarily based
on the POSIX-draft ACL specification. The POSIX-draft based ACLs are used to protect UFS
files and are translated by versions of NFS prior to NFSv4.

With the introduction of NFSv4, a new ACL model fully supports the interoperability that
NFSv4 offers between UNIX and non-UNIX clients. The new ACL implementation, as defined
in the NFSv4 specification, provides much richer semantics that are based on NT-style ACLs.

The main differences of the new ACL model are as follows:

■ Based on the NFSv4 specification and similar to NT-style ACLs.
■ Provide much more granular set of access privileges. For more information, see Table 8–2.
■ Set and displayed with the chmod and ls commands rather than the setfacl and getfacl

commands.
■ Provide richer inheritance semantics for designating how access privileges are applied from

directory to subdirectories, and so on. For more information, see “ACL Inheritance” on
page 188.

8C H A P T E R 8

183

Both ACL models provide more fine-grained access control than is available with the standard
file permissions. Much like POSIX-draft ACLs, the new ACLs are composed of multiple Access
Control Entries (ACEs).

POSIX-draft style ACLs use a single entry to define what permissions are allowed and what
permissions are denied. The new ACL model has two types of ACEs that affect access checking:
ALLOW and DENY. As such, you cannot infer from any single ACE that defines a set of permissions
whether or not the permissions that weren't defined in that ACE are allowed or denied.

Translation between NFSv4-style ACLs and POSIX-draft ACLs is as follows:

■ If you use any ACL-aware utility, such as the cp, mv, tar, cpio, or rcp commands, to transfer
UFS files with ACLs to a ZFS file system, the POSIX-draft ACLs are translated into the
equivalent NFSv4-style ACLs.

■ Some NFSv4-style ACLs are translated to POSIX-draft ACLs. You see a message similar to
the following if an NFSv4–style ACL isn't translated to a POSIX-draft ACL:

cp -p filea /var/tmp

cp: failed to set acl entries on /var/tmp/filea

■ If you create a UFS tar or cpio archive with the preserve ACL option (tar -p or cpio -P) on
a system that runs a current Solaris release, you will lose the ACLs when the archive is
extracted on a system that runs a previous Solaris release.
All of the files are extracted with the correct file modes, but the ACL entries are ignored.

■ You can use the ufsrestore command to restore data into a ZFS file system. If the original
data includes POSIX-style ACLs, they are converted to NFSv4-style ACLs.

■ If you attempt to set an NFSv4-style ACL on a UFS file, you see a message similar to the
following:

chmod: ERROR: ACL type’s are different

■ If you attempt to set a POSIX-style ACL on a ZFS file, you will see messages similar to the
following:

getfacl filea

File system doesn’t support aclent_t style ACL’s.

See acl(5) for more information on Solaris ACL support.

For information about other limitations with ACLs and backup products, see “Saving ZFS Data
With Other Backup Products” on page 182.

Syntax Descriptions for Setting ACLs
Two basic ACL formats are provided as follows:

Syntax for Setting Trivial ACLs

New Solaris ACL Model

Solaris ZFS Administration Guide • September 2008184

chmod [options] A[index]{+|=}owner@ |group@

|everyone@:access-permissions/...[:inheritance-flags]:deny | allow file

chmod [options] A-owner@, group@,

everyone@:access-permissions/...[:inheritance-flags]:deny | allow file ...

chmod [options] A[index]- file

Syntax for Setting Non-Trivial ACLs

chmod [options]

A[index]{+|=}user|group:name:access-permissions/...[:inheritance-flags]:deny | allow file

chmod [options] A-user|group:name:access-permissions/...[:inheritance-flags]:deny |

allow file ...

chmod [options] A[index]- file

owner@, group@, everyone@
Identifies the ACL-entry-type for trivial ACL syntax. For a description of ACL-entry-types,
see Table 8–1.

user or group:ACL-entry-ID=username or groupname
Identifies the ACL-entry-type for explicit ACL syntax. The user and group ACL-entry-type
must also contain the ACL-entry-ID, username or groupname. For a description of
ACL-entry-types, see Table 8–1.

access-permissions/.../
Identifies the access permissions that are granted or denied. For a description of ACL access
privileges, see Table 8–2.

inheritance-flags
Identifies an optional list of ACL inheritance flags. For a description of the ACL inheritance
flags, see Table 8–3.

deny | allow
Identifies whether the access permissions are granted or denied.

In the following example, the ACL-entry-ID value is not relevant.

group@:write_data/append_data/execute:deny

The following example includes an ACL-entry-ID because a specific user (ACL-entry-type) is
included in the ACL.

0:user:gozer:list_directory/read_data/execute:allow

When an ACL entry is displayed, it looks similar to the following:

2:group@:write_data/append_data/execute:deny

New Solaris ACL Model

Chapter 8 • Using ACLs and Attributes to Protect ZFS Files 185

The 2 or the index-ID designation in this example identifies the ACL entry in the larger ACL,
which might have multiple entries for owner, specific UIDs, group, and everyone. You can
specify the index-ID with the chmod command to identify which part of the ACL you want to
modify. For example, you can identify index ID 3 as A3 to the chmod command, similar to the
following:

chmod A3=user:venkman:read_acl:allow filename

ACL entry types, which are the ACL representations of owner, group, and other, are described
in the following table.

TABLE 8–1 ACL Entry Types

ACL Entry Type Description

owner@ Specifies the access granted to the owner of the object.

group@ Specifies the access granted to the owning group of the object.

everyone@ Specifies the access granted to any user or group that does not match any other ACL
entry.

user With a user name, specifies the access granted to an additional user of the object.
Must include the ACL-entry-ID, which contains a username or userID. If the value is
not a valid numeric UID or username, the ACL entry type is invalid.

group With a group name, specifies the access granted to an additional group of the object.
Must include the ACL-entry-ID, which contains a groupname or groupID. If the
value is not a valid numeric GID or groupname, the ACL entry type is invalid.

ACL access privileges are described in the following table.

TABLE 8–2 ACL Access Privileges

Access Privilege
Compact Access
Privilege Description

add_file w Permission to add a new file to a directory.

add_subdirectory p On a directory, permission to create a subdirectory.

append_data p Placeholder. Not currently implemented.

delete d Permission to delete a file.

delete_child D Permission to delete a file or directory within a directory.

execute x Permission to execute a file or search the contents of a directory.

list_directory r Permission to list the contents of a directory.

New Solaris ACL Model

Solaris ZFS Administration Guide • September 2008186

TABLE 8–2 ACL Access Privileges (Continued)

Access Privilege
Compact Access
Privilege Description

read_acl c Permission to read the ACL (ls).

read_attributes a Permission to read basic attributes (non-ACLs) of a file. Think of
basic attributes as the stat level attributes. Allowing this access mask
bit means the entity can execute ls(1) and stat(2).

read_data r Permission to read the contents of the file.

read_xattr R Permission to read the extended attributes of a file or perform a
lookup in the file's extended attributes directory.

synchronize s Placeholder. Not currently implemented.

write_xattr W Permission to create extended attributes or write to the extended
attributes directory.

Granting this permission to a user means that the user can create an
extended attribute directory for a file. The attribute file's
permissions control the user's access to the attribute.

write_data w Permission to modify or replace the contents of a file.

write_attributes A Permission to change the times associated with a file or directory to
an arbitrary value.

write_acl C Permission to write the ACL or the ability to modify the ACL by
using the chmod command.

write_owner o Permission to change the file's owner or group. Or, the ability to
execute the chown or chgrp commands on the file.

Permission to take ownership of a file or permission to change the
group ownership of the file to a group of which the user is a
member. If you want to change the file or group ownership to an
arbitrary user or group, then the PRIV_FILE_CHOWN privilege is
required.

ZFS ACL Sets
The following ACL combinations can be applied in an ACL set rather than setting individual
permissions separately. The following ACL sets are available.

ACL Set Name Included ACL Permissions

full_set All permissions

modify_set all permissions except write_acl and write_owner

read_set read_data, read_attributes, read_xattr, and read_acl

New Solaris ACL Model

Chapter 8 • Using ACLs and Attributes to Protect ZFS Files 187

ACL Set Name Included ACL Permissions

write_set write_data, append_data, write_attributes, and
write_xattr

These ACL sets are prefined and cannot be modified.

ACL Inheritance
The purpose of using ACL inheritance is so that a newly created file or directory can inherit the
ACLs they are intended to inherit, but without disregarding the existing permission bits on the
parent directory.

By default, ACLs are not propagated. If you set an non-trivial ACL on a directory, it is not
inherited to any subsequent directory. You must specify the inheritance of an ACL on a file or
directory.

The optional inheritance flags are described in the following table.

TABLE 8–3 ACL Inheritance Flags

Inheritance Flag
Compact Inheritance
Flag Description

file_inherit f Only inherit the ACL from the parent directory to the
directory's files.

dir_inherit d Only inherit the ACL from the parent directory to the
directory's subdirectories.

inherit_only i Inherit the ACL from the parent directory but applies only to
newly created files or subdirectories and not the directory itself.
This flag requires the file_inherit flag, the dir_inherit flag,
or both, to indicate what to inherit.

no_propagate n Only inherit the ACL from the parent directory to the first-level
contents of the directory, not the second-level or subsequent
contents. This flag requires the file_inherit flag, the
dir_inherit flag, or both, to indicate what to inherit.

- N/A No permission granted.

Currently, the following flags are only applicable to a CIFS client or server.

successful_access S Indicates whether an alarm or audit record should be initiated
upon a successful access. This flag is used with audit or alarm
ACE types.

New Solaris ACL Model

Solaris ZFS Administration Guide • September 2008188

TABLE 8–3 ACL Inheritance Flags (Continued)

Inheritance Flag
Compact Inheritance
Flag Description

failed_access F Indicates whether an alarm or audit record should be initiated
when an access fails. This flag is used with audit or alarm ACE
types.

inherited I Indicates that an ACE was inherited.

In addition, you can set a default ACL inheritance policy on the file system that is more strict or
less strict by using the aclinherit file system property. For more information, see the next
section.

ACL Property Modes
The ZFS file system includes two property modes related to ACLs:
■ aclinherit – This property determines the behavior of ACL inheritance. Values include

the following:
■ discard – For new objects, no ACL entries are inherited when a file or directory is

created. The ACL on the file or directory is equal to the permission mode of the file or
directory.

■ noallow – For new objects, only inheritable ACL entries that have an access type of deny
are inherited.

■ restricted – For new objects, the write_owner and write_acl permissions are
removed when an ACL entry is inherited.

■ passthrough – When property value is set to passthrough, files are created with a mode
determined by the inheritable ACEs. If no inheritable ACEs exist that affect the mode,
then the mode is set in accordance to the requested mode from the application.

The default mode for the aclinherit is restricted.
■ aclmode – This property modifies ACL behavior when a file is initially created or whenever a

file or directory's mode is modified by the chmod command. Values include the following:
■ discard – All ACL entries are removed except for the entries needed to define the mode

of the file or directory.
■ groupmask – User or group ACL permissions are reduced so that they are no greater

than the group permission bits, unless it is a user entry that has the same UID as the
owner of the file or directory. Then, the ACL permissions are reduced so that they are no
greater than owner permission bits.

■ passthrough – During a chmod operation, ACEs other than owner@, group@, or
everyone@ are not modified in any way. ACEs with owner@, group@, or everyone@ are
disabled to set the file mode as requested by the chmod operation.

New Solaris ACL Model

Chapter 8 • Using ACLs and Attributes to Protect ZFS Files 189

The default mode for the aclmode property is groupmask.

Setting ACLs on ZFS Files
As implemented with ZFS, ACLs are composed of an array of ACL entries. ZFS provides a pure
ACL model, where all files have an ACL. Typically, the ACL is trivial in that it only represents
the traditional UNIX owner/group/other entries.

ZFS files still have permission bits and a mode, but these values are more of a cache of what the
ACL represents. As such, if you change the permissions of the file, the file's ACL is updated
accordingly. In addition, if you remove an non-trivial ACL that granted a user access to a file or
directory, that user could still have access to the file or directory because of the file or directory's
permission bits that grant access to group or everyone. All access control decisions are governed
by the permissions represented in a file or directory's ACL.

The primary rules of ACL access on a ZFS file are as follows:

■ ZFS processes ACL entries in the order they are listed in the ACL, from the top down.
■ Only ACL entries that have a “who” that matches the requester of the access are processed.
■ Once an allow permission has been granted, it cannot be denied by a subsequent ACL deny

entry in the same ACL permission set.
■ The owner of the file is granted the write_acl permission unconditionally, even if the

permission is explicitly denied. Otherwise, any permission left unspecified is denied.
In the cases of deny permissions or when an access permission is missing, the privilege
subsystem determines what access request is granted for the owner of the file or for
superuser. This mechanism prevents owners of files from getting locked out of their files and
enables superuser to modify files for recovery purposes.

If you set an non-trivial ACL on a directory, the ACL is not automatically inherited by the
directory's children. If you set an non-trivial ACL and you want it inherited to the directory's
children, you have to use the ACL inheritance flags. For more information, see Table 8–3 and
“Setting ACL Inheritance on ZFS Files in Verbose Format” on page 199.

When you create a new file and depending on the umask value, a default trivial ACL, similar to
the following, is applied:

$ ls -v file.1

-r--r--r-- 1 root root 206663 May 4 11:52 file.1

0:owner@:write_data/append_data/execute:deny

1:owner@:read_data/write_xattr/write_attributes/write_acl/write_owner

:allow

2:group@:write_data/append_data/execute:deny

3:group@:read_data:allow

4:everyone@:write_data/append_data/write_xattr/execute/write_attributes

Setting ACLs on ZFS Files

Solaris ZFS Administration Guide • September 2008190

/write_acl/write_owner:deny

5:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

Note that each user category (owner@, group@, everyone@) in this example has two ACL entries.
One entry for deny permissions, and one entry is for allow permissions.

A description of this file ACL is as follows:

0:owner@ The owner is denied write and execute permissions to the file
(write_data/append_data/execute:deny).

1:owner@ The owner can read and modify the contents of the file
(read_data/write_data/append_data). The owner can also modify the file's
attributes such as timestamps, extended attributes, and ACLs
(write_xattr/write_attributes /write_acl). In addition, the owner can
modify the ownership of the file (write_owner:allow)

2:group@ The group is denied modify and execute permissions to the file
(write_data/append_data/execute:deny).

3:group@ The group is granted read permissions to the file (read_data:allow).

4:everyone@ Everyone who is not user or group is denied permission to execute or modify
the contents of the file and to modify any attributes of the file
(write_data/append_data/write_xattr/execute/
write_attributes/write_acl/write_owner:deny).

5:everyone@ Everyone who is not user or group is granted read permissions to the file, and
the file's attributes (read_data/read_xattr/read_attributes/read_acl/
synchronize:allow). The synchronize access permission is not currently
implemented.

When a new directory is created and depending on the umask value, a default directory ACL is
similar to the following:

$ ls -dv dir.1

drwxr-xr-x 2 root root 2 Feb 23 10:37 dir.1

0:owner@::deny

1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl

/write_owner:allow

2:group@:add_file/write_data/add_subdirectory/append_data:deny

3:group@:list_directory/read_data/execute:allow

4:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny

5:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

Setting ACLs on ZFS Files

Chapter 8 • Using ACLs and Attributes to Protect ZFS Files 191

A description of this directory ACL is as follows:

0:owner@ The owner deny list is empty for the directory (::deny).

1:owner@ The owner can read and modify the directory contents
(list_directory/read_data/add_file/write_data/
add_subdirectory/append_data), search the contents (execute), and
modify the file's attributes such as timestamps, extended attributes, and ACLs
(write_xattr/write_attributes/write_acl). In addition, the owner can
modify the ownership of the directory (write_owner:allow).

2:group@ The group cannot add to or modify the directory contents
(add_file/write_data/add_subdirectory/append_data
:deny).

3:group@ The group can list and read the directory contents. In addition, the group has
execute permission to search the directory contents
(list_directory/read_data/execute:allow).

4:everyone@ Everyone who is not user or group is denied permission to add to or modify
the contents of the directory
(add_file/write_data/add_subdirectory/append_data). In addition, the
permission to modify any attributes of the directory is denied.
(write_xattr/write_attributes/write_acl/write_owner:deny).

5:everyone@ Everyone who is not user or group is granted read and execute permissions to
the directory contents and the directory's attributes
(list_directory/read_data/read_xattr/execute/read_
attributes/read_acl/synchronize:allow). The synchronize access
permission is not currently implemented.

Setting and Displaying ACLs on ZFS Files in Verbose Format
You can use the chmod command to modify ACLs on ZFS files. The following chmod syntax for
modifying ACLs uses acl-specification to identify the format of the ACL. For a description of
acl-specification, see “Syntax Descriptions for Setting ACLs” on page 184.

■ Adding ACL entries
■ Adding an ACL entry for a user

% chmod A+acl-specification filename

■ Adding an ACL entry by index-ID

% chmod Aindex-ID+acl-specification filename

Setting and Displaying ACLs on ZFS Files in Verbose Format

Solaris ZFS Administration Guide • September 2008192

This syntax inserts the new ACL entry at the specified index-ID location.
■ Replacing an ACL entry

% chmod A=acl-specification filename

% chmod Aindex-ID=acl-specification filename

■ Removing ACL entries
■ Removing an ACL entry by index-ID

% chmod Aindex-ID- filename

■ Removing an ACL entry by user

% chmod A-acl-specification filename

■ Removing all non-trivial ACEs from a file

% chmod A- filename

Verbose ACL information is displayed by using the ls -v command. For example:

ls -v file.1

-rw-r--r-- 1 root root 206663 Feb 16 11:00 file.1

0:owner@:execute:deny

1:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow

2:group@:write_data/append_data/execute:deny

3:group@:read_data:allow

4:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny

5:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

For information about using the compact ACL format, see “Setting and Displaying ACLs on
ZFS Files in Compact Format” on page 209.

EXAMPLE 8–1 Modifying Trivial ACLs on ZFS Files

This section provides examples of setting and displaying trivial ACLs.

In the following example, a trivial ACL exists on file.1:

ls -v file.1

-rw-r--r-- 1 root root 206663 Feb 16 11:00 file.1

0:owner@:execute:deny

1:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow

Setting and Displaying ACLs on ZFS Files in Verbose Format

Chapter 8 • Using ACLs and Attributes to Protect ZFS Files 193

EXAMPLE 8–1 Modifying Trivial ACLs on ZFS Files (Continued)

2:group@:write_data/append_data/execute:deny

3:group@:read_data:allow

4:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny

5:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

In the following example, write_data permissions are granted for group@.

chmod A2=group@:append_data/execute:deny file.1

chmod A3=group@:read_data/write_data:allow file.1

ls -v file.1

-rw-rw-r-- 1 root root 206663 May 3 16:36 file.1

0:owner@:execute:deny

1:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow

2:group@:append_data/execute:deny

3:group@:read_data/write_data:allow

4:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny

5:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

In the following example, permissions on file.1 are set back to 644.

chmod 644 file.1

ls -v file.1

-rw-r--r-- 1 root root 206663 May 3 16:36 file.1

0:owner@:execute:deny

1:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow

2:group@:write_data/append_data/execute:deny

3:group@:read_data:allow

4:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny

5:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

EXAMPLE 8–2 Setting Non-Trivial ACLs on ZFS Files

This section provides examples of setting and displaying non-trivial ACLs.

In the following example, read_data/execute permissions are added for the user gozer on the
test.dir directory.

Setting and Displaying ACLs on ZFS Files in Verbose Format

Solaris ZFS Administration Guide • September 2008194

EXAMPLE 8–2 Setting Non-Trivial ACLs on ZFS Files (Continued)

chmod A+user:gozer:read_data/execute:allow test.dir

ls -dv test.dir

drwxr-xr-x+ 2 root root 2 Feb 16 11:12 test.dir

0:user:gozer:list_directory/read_data/execute:allow

1:owner@::deny

2:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl

/write_owner:allow

3:group@:add_file/write_data/add_subdirectory/append_data:deny

4:group@:list_directory/read_data/execute:allow

5:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny

6:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

In the following example, read_data/execute permissions are removed for user gozer.

chmod A0- test.dir

ls -dv test.dir

drwxr-xr-x 2 root root 2 Feb 16 11:12 test.dir

0:owner@::deny

1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl

/write_owner:allow

2:group@:add_file/write_data/add_subdirectory/append_data:deny

3:group@:list_directory/read_data/execute:allow

4:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny

5:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

EXAMPLE 8–3 ACL Interaction With Permissions on ZFS Files

These ACL examples illustrate the interaction between setting ACLs and then changing the file
or directory's permission bits.

In the following example, a trivial ACL exists on file.2:

ls -v file.2

-rw-r--r-- 1 root root 2703 Feb 16 11:16 file.2

0:owner@:execute:deny

1:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow

2:group@:write_data/append_data/execute:deny

Setting and Displaying ACLs on ZFS Files in Verbose Format

Chapter 8 • Using ACLs and Attributes to Protect ZFS Files 195

EXAMPLE 8–3 ACL Interaction With Permissions on ZFS Files (Continued)

3:group@:read_data:allow

4:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny

5:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

In the following example, ACL allow permissions are removed from everyone@.

chmod A5- file.2

ls -v file.2

-rw-r----- 1 root root 2703 Feb 16 11:16 file.2

0:owner@:execute:deny

1:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow

2:group@:write_data/append_data/execute:deny

3:group@:read_data:allow

4:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny

In this output, the file's permission bits are reset from 655 to 650. Read permissions for
everyone@ have been effectively removed from the file's permissions bits when the ACL allow
permissions are removed for everyone@.

In the following example, the existing ACL is replaced with read_data/write_data

permissions for everyone@.

chmod A=everyone@:read_data/write_data:allow file.3

ls -v file.3

-rw-rw-rw-+ 1 root root 1532 Feb 16 11:18 file.3

0:everyone@:read_data/write_data:allow

In this output, the chmod syntax effectively replaces the existing ACL with
read_data/write_data:allow permissions to read/write permissions for owner, group, and
everyone@. In this model, everyone@ specifies access to any user or group. Since no owner@ or
group@ ACL entry exists to override the permissions for owner and group, the permission bits
are set to 666.

In the following example, the existing ACL is replaced with read permissions for user gozer.

chmod A=user:gozer:read_data:allow file.3

ls -v file.3

----------+ 1 root root 1532 Feb 16 11:18 file.3

0:user:gozer:read_data:allow

Setting and Displaying ACLs on ZFS Files in Verbose Format

Solaris ZFS Administration Guide • September 2008196

EXAMPLE 8–3 ACL Interaction With Permissions on ZFS Files (Continued)

In this output, the file permissions are computed to be 000 because no ACL entries exist for
owner@, group@, or everyone@, which represent the traditional permission components of a file.
The owner of the file can resolve this problem by resetting the permissions (and the ACL) as
follows:

chmod 655 file.3

ls -v file.3

-rw-r-xr-x+ 1 root root 0 Mar 8 13:24 file.3

0:user:gozer::deny

1:user:gozer:read_data:allow

2:owner@:execute:deny

3:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow

4:group@:write_data/append_data:deny

5:group@:read_data/execute:allow

6:everyone@:write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:deny

7:everyone@:read_data/read_xattr/execute/read_attributes/read_acl

/synchronize:allow

EXAMPLE 8–4 Restoring Trivial ACLs on ZFS Files

You can use the chmod command to remove all non-trivial ACLs on a file or directory.

In the following example, two non-trivial ACEs exist on test5.dir.

ls -dv test5.dir

drwxr-xr-x+ 2 root root 2 Feb 16 11:23 test5.dir

0:user:gozer:read_data:file_inherit:deny

1:user:lp:read_data:file_inherit:deny

2:owner@::deny

3:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl

/write_owner:allow

4:group@:add_file/write_data/add_subdirectory/append_data:deny

5:group@:list_directory/read_data/execute:allow

6:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny

7:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

In the following example, the non-trivial ACLs for users gozer and lp are removed. The
remaining ACL contains the six default values for owner@, group@, and everyone@.

Setting and Displaying ACLs on ZFS Files in Verbose Format

Chapter 8 • Using ACLs and Attributes to Protect ZFS Files 197

EXAMPLE 8–4 Restoring Trivial ACLs on ZFS Files (Continued)

chmod A- test5.dir

ls -dv test5.dir

drwxr-xr-x 2 root root 2 Feb 16 11:23 test5.dir

0:owner@::deny

1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl

/write_owner:allow

2:group@:add_file/write_data/add_subdirectory/append_data:deny

3:group@:list_directory/read_data/execute:allow

4:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny

5:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

EXAMPLE 8–5 Applying an ACL Set to ZFS Files

ACL sets are available so that you do not have to apply ACL permissions separately. For a
description of ACL sets, see “ZFS ACL Sets” on page 187.

For example, you can apply the write_set as follows:

chmod A+user:otto:read_set:allow file.1

ls -v file.1

-r--r--r--+ 1 root root 206674 Aug 1 13:18 file.1

0:user:otto:read_data/read_xattr/read_attributes/read_acl:allow

1:owner@:write_data/append_data/execute:deny

2:owner@:read_data/write_xattr/write_attributes/write_acl/write_owner

:allow

3:group@:write_data/append_data/execute:deny

4:group@:read_data:allow

5:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny

6:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

You can apply the write_set and read_set as follows:

chmod A+user:otto:read_set/write_set:allow file.2

ls -v file.2

-r--r--r--+ 1 root root 206674 Aug 1 13:19 file.2

0:user:otto:read_data/write_data/append_data/read_xattr/write_xattr

/read_attributes/write_attributes/read_acl:allow

1:owner@:write_data/append_data/execute:deny

2:owner@:read_data/write_xattr/write_attributes/write_acl/write_owner

Setting and Displaying ACLs on ZFS Files in Verbose Format

Solaris ZFS Administration Guide • September 2008198

EXAMPLE 8–5 Applying an ACL Set to ZFS Files (Continued)

:allow

3:group@:write_data/append_data/execute:deny

4:group@:read_data:allow

5:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny

6:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

Setting ACL Inheritance on ZFS Files in Verbose Format
You can determine how ACLs are inherited or not inherited on files and directories. By default,
ACLs are not propagated. If you set an non-trivial ACL on a directory, the ACL is not inherited
by any subsequent directory. You must specify the inheritance of an ACL on a file or directory.

In addition, two ACL properties are provided that can be set globally on file systems:
aclinherit and aclmode. By default, aclinherit is set to restricted and aclmode is set to
groupmask.

For more information, see “ACL Inheritance” on page 188.

EXAMPLE 8–6 Granting Default ACL Inheritance

By default, ACLs are not propagated through a directory structure.

In the following example, a non-trivial ACE of read_data/write_data/execute is applied for
user gozer on test.dir.

chmod A+user:gozer:read_data/write_data/execute:allow test.dir

ls -dv test.dir

0:user:gozer:list_directory/read_data/add_file/write_data/execute:allow

1:owner@::deny

2:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl

/write_owner:allow

3:group@:add_file/write_data/add_subdirectory/append_data:deny

4:group@:list_directory/read_data/execute:allow

5:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny

6:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

Setting and Displaying ACLs on ZFS Files in Verbose Format

Chapter 8 • Using ACLs and Attributes to Protect ZFS Files 199

EXAMPLE 8–6 Granting Default ACL Inheritance (Continued)

If a test.dir subdirectory is created, the ACE for user gozer is not propagated. User gozer
would only have access to sub.dir if the permissions on sub.dir granted him access as the file
owner, group member, or everyone@.

mkdir test.dir/sub.dir

ls -dv test.dir/sub.dir

drwxr-xr-x 2 root root 2 Jun 20 14:37 test.dir/sub.dir

0:owner@::deny

1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl

/write_owner:allow

2:group@:add_file/write_data/add_subdirectory/append_data:deny

3:group@:list_directory/read_data/execute:allow

4:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny

5:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

EXAMPLE 8–7 Granting ACL Inheritance on Files and Directories

This series of examples identify the file and directory ACEs that are applied when the
file_inherit flag is set.

In the following example, read_data/write_data permissions are added for files in the
test.dir directory for user gozer so that he has read access on any newly created files.

chmod A+user:gozer:read_data/write_data:file_inherit:allow test2.dir

ls -dv test2.dir

drwxr-xr-x+ 2 root root 2 Jun 20 14:38 test2.dir

0:user:gozer:read_data/write_data:file_inherit:allow

1:owner@::deny

2:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl

/write_owner:allow

3:group@:add_file/write_data/add_subdirectory/append_data:deny

4:group@:list_directory/read_data/execute:allow

5:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny

6:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

In the following example, user gozer's permissions are applied on the newly created
test2.dir/file.2 file. The ACL inheritance granted, read_data:file_inherit:allow,
means user gozer can read the contents of any newly created file.

Setting and Displaying ACLs on ZFS Files in Verbose Format

Solaris ZFS Administration Guide • September 2008200

EXAMPLE 8–7 Granting ACL Inheritance on Files and Directories (Continued)

touch test2.dir/file.2

ls -v test2.dir/file.2

-rw-r--r--+ 1 root root 0 Jun 20 14:39 test2.dir/file.2

0:user:gozer:write_data:deny

1:user:gozer:read_data/write_data:allow

2:owner@:execute:deny

3:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow

4:group@:write_data/append_data/execute:deny

5:group@:read_data:allow

6:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny

7:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

Because the aclmode for this file is set to the default mode, groupmask, user gozer does not have
write_data permission on file.2 because the group permission of the file does not allow it.

Note the inherit_only permission, which is applied when the file_inherit or dir_inherit
flags are set, is used to propagate the ACL through the directory structure. As such, user gozer is
only granted or denied permission from everyone@ permissions unless he is the owner of the
file or a member of the owning group of the file. For example:

mkdir test2.dir/subdir.2

ls -dv test2.dir/subdir.2

drwxr-xr-x+ 2 root root 2 Jun 20 14:40 test2.dir/subdir.2

0:user:gozer:list_directory/read_data/add_file/write_data:file_inherit

/inherit_only:allow

1:owner@::deny

2:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl

/write_owner:allow

3:group@:add_file/write_data/add_subdirectory/append_data:deny

4:group@:list_directory/read_data/execute:allow

5:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny

6:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

The following series of examples identify the file and directory ACLs that are applied when both
the file_inherit and dir_inherit flags are set.

In the following example, user gozer is granted read, write, and execute permissions that are
inherited for newly created files and directories.

Setting and Displaying ACLs on ZFS Files in Verbose Format

Chapter 8 • Using ACLs and Attributes to Protect ZFS Files 201

EXAMPLE 8–7 Granting ACL Inheritance on Files and Directories (Continued)

chmod A+user:gozer:read_data/write_data/execute:file_inherit/dir_inherit:allow

test3.dir

ls -dv test3.dir

drwxr-xr-x+ 2 root root 2 Jun 20 14:41 test3.dir

0:user:gozer:list_directory/read_data/add_file/write_data/execute

:file_inherit/dir_inherit:allow

1:owner@::deny

2:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl

/write_owner:allow

3:group@:add_file/write_data/add_subdirectory/append_data:deny

4:group@:list_directory/read_data/execute:allow

5:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny

6:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

The inherited text in the output below is an informational message that indicates that the ACE
is inherited.

touch test3.dir/file.3

ls -v test3.dir/file.3

-rw-r--r--+ 1 root root 0 Jun 20 14:44 test3.dir/file.3

0:user:gozer:write_data/execute:deny

1:user:gozer:read_data/write_data/execute:inherited:allow

2:owner@:execute:deny

3:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow

4:group@:write_data/append_data/execute:deny

5:group@:read_data:allow

6:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny

7:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

mkdir test3.dir/subdir.1

ls -dv test3.dir/subdir.1

drwxr-xr-x+ 2 root root 2 Jun 20 14:45 test3.dir/subdir.1

0:user:gozer:list_directory/read_data/add_file/write_data/execute

:file_inherit/dir_inherit/inherit_only/inherited:allow

1:user:gozer:add_file/write_data:deny

2:user:gozer:list_directory/read_data/add_file/write_data/execute

:inherited:allow

3:owner@::deny

4:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

Setting and Displaying ACLs on ZFS Files in Verbose Format

Solaris ZFS Administration Guide • September 2008202

EXAMPLE 8–7 Granting ACL Inheritance on Files and Directories (Continued)

/append_data/write_xattr/execute/write_attributes/write_acl

/write_owner:allow

5:group@:add_file/write_data/add_subdirectory/append_data:deny

6:group@:list_directory/read_data/execute:allow

7:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny

8:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

In these examples, because the permission bits of the parent directory for group@ and
everyone@ deny write and execute permissions, user gozer is denied write and execute
permissions. The default aclmode property is restricted, which means that write_data and
execute permissions are not inherited.

In the following example, user gozer is granted read, write, and execute permissions that are
inherited for newly created files, but are not propagated to subsequent contents of the directory.

chmod A+user:gozer:read_data/write_data/execute:file_inherit/no_propagate:allow

test4.dir

ls -dv test4.dir

drwxr-xr-x+ 2 root root 2 Jun 20 14:46 test4.dir

0:user:gozer:list_directory/read_data/add_file/write_data/execute

:file_inherit/no_propagate:allow

1:owner@::deny

2:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl

/write_owner:allow

3:group@:add_file/write_data/add_subdirectory/append_data:deny

4:group@:list_directory/read_data/execute:allow

5:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny

6:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

As the following example illustrates, when a new subdirectory is created, user gozer's
read_data/write_data/execute permission for files are not propagated to the new sub4.dir

directory.

mkdir test4.dir/sub4.dir

ls -dv test4.dir/sub4.dir

drwxr-xr-x 2 root root 2 Jun 20 15:14 test4.dir/sub4.dir

0:owner@::deny

1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl

/write_owner:allow

Setting and Displaying ACLs on ZFS Files in Verbose Format

Chapter 8 • Using ACLs and Attributes to Protect ZFS Files 203

EXAMPLE 8–7 Granting ACL Inheritance on Files and Directories (Continued)

2:group@:add_file/write_data/add_subdirectory/append_data:deny

3:group@:list_directory/read_data/execute:allow

4:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny

5:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

As the following example illustrates, gozer's read_data/write_data/execute permission for
files is propagated to the newly created file.

touch test4.dir/file.4

ls -v test4.dir/file.4

-rw-r--r--+ 1 root root 0 Jun 20 15:15 test4.dir/file.4

0:user:gozer:write_data/execute:deny

1:user:gozer:read_data/write_data/execute:inherited:allow

2:owner@:execute:deny

3:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow

4:group@:write_data/append_data/execute:deny

5:group@:read_data:allow

6:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny

7:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

EXAMPLE 8–8 ACL Inheritance With ACL Mode Set to Passthrough

If the aclmode property on the tank/cindy file system is set to passthrough, then user gozer
would inherit the ACL applied on test4.dir for the newly created file.4 as follows:

zfs set aclmode=passthrough tank/cindy

touch test4.dir/file.4

ls -v test4.dir/file.4

-rw-r--r--+ 1 root root 0 Jun 20 15:19 test4.dir/file.4

0:user:gozer:write_data/execute:deny

1:user:gozer:read_data/write_data/execute:inherited:allow

2:owner@:execute:deny

3:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow

4:group@:write_data/append_data/execute:deny

5:group@:read_data:allow

6:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny

Setting and Displaying ACLs on ZFS Files in Verbose Format

Solaris ZFS Administration Guide • September 2008204

EXAMPLE 8–8 ACL Inheritance With ACL Mode Set to Passthrough (Continued)

7:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

This output illustrates that the
read_data/write_data/execute:allow:file_inherit/dir_inherit ACL that was set on
the parent directory, test4.dir, is passed through to user gozer.

EXAMPLE 8–9 ACL Inheritance With ACL Mode Set to Discard

If the aclmode property on a file system is set to discard, then ACLs can potentially be
discarded when the permission bits on a directory change. For example:

zfs set aclmode=discard tank/cindy

chmod A+user:gozer:read_data/write_data/execute:dir_inherit:allow test5.dir

ls -dv test5.dir

drwxr-xr-x+ 2 root root 2 Feb 16 11:23 test5.dir

0:user:gozer:list_directory/read_data/add_file/write_data/execute

:dir_inherit:allow

1:owner@::deny

2:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl

/write_owner:allow

3:group@:add_file/write_data/add_subdirectory/append_data:deny

4:group@:list_directory/read_data/execute:allow

5:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny

6:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

zfs set aclmode=discard tank/cindy

chmod A+user:gozer:read_data/write_data/execute:dir_inherit:allow test5.dir

ls -dv test5.dir

drwxr-xr-x+ 2 root root 2 Jun 20 15:21 test5.dir

0:user:gozer:list_directory/read_data/add_file/write_data/execute

:dir_inherit:allow

1:owner@::deny

2:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl

/write_owner:allow

3:group@:add_file/write_data/add_subdirectory/append_data:deny

4:group@:list_directory/read_data/execute:allow

5:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny

Setting and Displaying ACLs on ZFS Files in Verbose Format

Chapter 8 • Using ACLs and Attributes to Protect ZFS Files 205

EXAMPLE 8–9 ACL Inheritance With ACL Mode Set to Discard (Continued)

6:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

If, at a later time, you decide to tighten the permission bits on a directory, the non-trivial ACL is
discarded. For example:

chmod 744 test5.dir

ls -dv test5.dir

drwxr--r-- 2 root root 2 Jun 20 15:21 test5.dir

0:owner@::deny

1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl

/write_owner:allow

2:group@:add_file/write_data/add_subdirectory/append_data/execute:deny

3:group@:list_directory/read_data:allow

4:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/execute/write_attributes/write_acl/write_owner:deny

5:everyone@:list_directory/read_data/read_xattr/read_attributes/read_acl

/synchronize:allow

EXAMPLE 8–10 ACL Inheritance With ACL Inherit Mode Set to Noallow

In the following example, two non-trivial ACLs with file inheritance are set. One ACL allows
read_data permission, and one ACL denies read_data permission. This example also
illustrates how you can specify two ACEs in the same chmod command.

zfs set aclinherit=noallow tank/cindy

chmod A+user:gozer:read_data:file_inherit:deny,user:lp:read_data:file_inherit:allow

test6.dir

ls -dv test6.dir

drwxr-xr-x+ 2 root root 2 Jun 20 15:24 test6.dir

0:user:gozer:read_data:file_inherit:deny

1:user:lp:read_data:file_inherit:allow

2:owner@::deny

3:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl

/write_owner:allow

4:group@:add_file/write_data/add_subdirectory/append_data:deny

5:group@:list_directory/read_data/execute:allow

6:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny

7:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

Setting and Displaying ACLs on ZFS Files in Verbose Format

Solaris ZFS Administration Guide • September 2008206

EXAMPLE 8–10 ACL Inheritance With ACL Inherit Mode Set to Noallow (Continued)

As the following example shows, when a new file is created, the ACL that allows read_data
permission is discarded.

touch test6.dir/file.6

ls -v test6.dir/file.6

-rw-r--r-- 1 root root 0 Jun 20 15:25 test6.dir/file.6

0:owner@:execute:deny

1:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow

2:group@:write_data/append_data/execute:deny

3:group@:read_data:allow

4:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny

5:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

EXAMPLE 8–11 ACL Inheritance With ACL Inherit Mode Set to Passthrough

A file system that has the aclinherit property set to passthrough inherits all inheritable ACL
entries without any modifications made to the ACL entries when they are inherited. When this
property is set to passthrough, files are created with a permission mode that is determined by
the inheritable ACEs. If no inheritable ACEs exist that affect the permission mode, then the
permission mode is set in accordance to the requested mode from the application.

The following examples use compact ACL syntax to show how to inherit permission bits by
setting aclinherit mode to passthrough.

In this example, an ACL is set on test1.dir to force inheritance. The syntax creates an owner@,
group@, and everyone@ ACL entry for newly created files. Newly created directories inherit an
@owner, group@, and everyone@ ACL entry. Additionally, directories inherit 6 other ACEs that
propagate the ACEs to newly created directories and files.

zfs set aclinherit=passthrough tank/cindys

pwd

/tank/cindys

mkdir test1.dir

chmod A=owner@:rwxpcCosRrWaAdD:fd:allow,group@:rwxp:fd:allow,everyone@::fd:allow

test1.dir

ls -Vd test1.dir

drwxrwx---+ 2 root root 2 Jun 20 15:26 test1.dir

owner@:rwxpdDaARWcCos:fd-----:allow

group@:rwxp----------:fd-----:allow

everyone@:--------------:fd-----:allow

Setting and Displaying ACLs on ZFS Files in Verbose Format

Chapter 8 • Using ACLs and Attributes to Protect ZFS Files 207

EXAMPLE 8–11 ACL Inheritance With ACL Inherit Mode Set to Passthrough (Continued)

chmod A=owner@:rwxpcCosRrWaAdD:fd:allow,group@:rwxp:fd:allow,everyone@::fd:allow

test1.dir

ls -Vd test1.dir

drwxrwx---+ 2 root root 2 Jul 29 10:56 test1.dir

owner@:rwxpdDaARWcCos:fd----:allow

group@:rwxp----------:fd----:allow

everyone@:--------------:fd----:allow

In this example, a newly create file inherits the ACL that was specified to be inherited to newly
created files.

cd test1.dir

touch file.1

ls -V file.1

-rwxrwx---+ 1 root root 0 Jun 23 09:38 file.1

owner@:rwxpdDaARWcCos:------I:allow

group@:rwxp----------:------I:allow

everyone@:--------------:------I:allow

In this example, a newly created directory inherits both ACEs that control access to this
directory as well as ACEs for future propagation to children of the newly created directory.

mkdir subdir.1

ls -dV subdir.1

drwxrwx---+ 2 root root 2 Jun 23 09:41 subdir.1

owner@:rwxpdDaARWcCos:fdi---I:allow

owner@:rwxpdDaARWcCos:------I:allow

group@:rwxp----------:fdi---I:allow

group@:rwxp----------:------I:allow

everyone@:--------------:fdi---I:allow

everyone@:--------------:------I:allow

The -di-- and f-i--- entries are for propagating inheritance and are not considered during
access control. In this example, a file is created with a trivial ACL in another directory where
inherited ACEs are not present.

cd /tank/cindys

mkdir test2.dir

cd test2.dir

touch file.2

ls -V file.2

-rw-r--r-- 1 root root 0 Jun 23 09:50 file.2

owner@:--x-----------:------:deny

owner@:rw-p---A-W-Co-:------:allow

group@:-wxp----------:------:deny

Setting and Displaying ACLs on ZFS Files in Verbose Format

Solaris ZFS Administration Guide • September 2008208

EXAMPLE 8–11 ACL Inheritance With ACL Inherit Mode Set to Passthrough (Continued)

group@:r-------------:------:allow

everyone@:-wxp---A-W-Co-:------:deny

everyone@:r-----a-R-c--s:------:allow

Setting and Displaying ACLs on ZFS Files in Compact Format
You can set and display permissions on ZFS files in a compact format that uses 14 unique letters
to represent the permissions. The letters that represent the compact permissions are listed in
Table 8–2 and Table 8–3.

You can display compact ACL listings for files and directories by using the ls -V command. For
example:

ls -V file.1

-rw-r--r-- 1 root root 206674 Jul 29 10:27 file.1

owner@:--x-----------:-------:deny

owner@:rw-p---A-W-Co-:-------:allow

group@:-wxp----------:-------:deny

group@:r-------------:-------:allow

everyone@:-wxp---A-W-Co-:-------:deny

everyone@:r-----a-R-c--s:-------:allow

The compact ACL output is described as follows:

owner@ The owner is denied execute permissions to the file (x=execute).

owner@ The owner can read and modify the contents of the file
(rw=read_data/write_data), (p=append_data). The owner can also modify
the file's attributes such as timestamps, extended attributes, and ACLs
(A=write_xattr, W=write_attributes, C=write_acl). In addition, the owner
can modify the ownership of the file (o=write_owner).

group@ The group is denied modify and execute permissions to the file (write_data,
p=append_data, and x=execute).

group@ The group is granted read permissions to the file (r=read_data).

everyone@ Everyone who is not user or group is denied permission to execute or modify the
contents of the file, and to modify any attributes of the file (w=write_data,
x=execute, p=append_data, A=write_xattr, W=write_attributes,
C=write_acl, and o=write_owner).

everyone@ Everyone who is not user or group is granted read permissions to the file and the
file's attributes (r=read_data, a=append_data, R=read_xattr, c=read_acl,
and s=synchronize). The synchronize access permission is not currently

Setting and Displaying ACLs on ZFS Files in Compact Format

Chapter 8 • Using ACLs and Attributes to Protect ZFS Files 209

implemented.

Compact ACL format provides the following advantages over verbose ACL format:

■ Permissions can be specified as positional arguments to the chmod command.
■ The hyphen (-) characters, which identify no permissions, can be removed and only the

required letters need to be specified.
■ Both permissions and inheritance flags are set in the same fashion.

For information about using the verbose ACL format, see “Setting and Displaying ACLs on ZFS
Files in Verbose Format” on page 192.

EXAMPLE 8–12 Setting and Displaying ACLs in Compact Format

In the following example, a trivial ACL exists on file.1:

ls -V file.1

-rw-r--r-- 1 root root 206674 Jul 29 10:27 file.1

owner@:--x-----------:-------:deny

owner@:rw-p---A-W-Co-:-------:allow

group@:-wxp----------:-------:deny

group@:r-------------:-------:allow

everyone@:-wxp---A-W-Co-:-------:deny

everyone@:r-----a-R-c--s:-------:allow

In this example, read_data/execute permissions are added for the user gozer on file.1.

chmod A+user:gozer:rx:allow file.1

ls -V file.1

-rw-r--r--+ 1 root root 206674 Jul 29 10:27 file.1

user:gozer:r-x-----------:-------:allow

owner@:--x-----------:-------:deny

owner@:rw-p---A-W-Co-:-------:allow

group@:-wxp----------:-------:deny

group@:r-------------:-------:allow

everyone@:-wxp---A-W-Co-:-------:deny

everyone@:r-----a-R-c--s:-------:allow

Another way to add the same permissions for user gozer is to insert a new ACL at a specific
position, 4, for example. As such, the existing ACLs at positions 4–6 are pushed down. For
example:

chmod A4+user:gozer:rx:allow file.1

ls -V file.1

-rw-r--r--+ 1 root root 206674 Jul 29 10:27 file.1

user:gozer:r-x-----------:-------:allow

owner@:--x-----------:-------:deny

Setting and Displaying ACLs on ZFS Files in Compact Format

Solaris ZFS Administration Guide • September 2008210

EXAMPLE 8–12 Setting and Displaying ACLs in Compact Format (Continued)

owner@:rw-p---A-W-Co-:-------:allow

group@:-wxp----------:-------:deny

user:gozer:r-x-----------:-------:allow

group@:r-------------:-------:allow

everyone@:-wxp---A-W-Co-:-------:deny

everyone@:r-----a-R-c--s:-------:allow

In the following example, user gozer is granted read, write, and execute permissions that are
inherited for newly created files and directories by using the compact ACL format.

chmod A+user:gozer:rwx:fd:allow dir.2

ls -dV dir.2

drwxr-xr-x+ 2 root root 2 Jul 29 10:44 dir.2

user:gozer:rwx-----------:fd-----:allow

owner@:--------------:-------:deny

owner@:rwxp---A-W-Co-:-------:allow

group@:-w-p----------:-------:deny

group@:r-x-----------:-------:allow

everyone@:-w-p---A-W-Co-:-------:deny

everyone@:r-x---a-R-c--s:-------:allow

You can also cut and paste permissions and inheritance flags from the ls -V output into the
compact chmod format. For example, to duplicate the permissions and inheritance flags on
dir.1 for user gozer to user cindys on dir.2, copy and paste the permission and inheritance
flags (rwx-----------:f------:allow) into your chmod command. For example:

chmod A+user:cindys:rwx-----------:fd----:allow dir.2

ls -dV dir.2

drwxr-xr-x+ 2 root root 2 Jul 29 10:44 dir.2

user:cindys:rwx-----------:fd-----:allow

user:gozer:rwx-----------:fd-----:allow

owner@:--------------:-------:deny

owner@:rwxp---A-W-Co-:-------:allow

group@:-w-p----------:-------:deny

group@:r-x-----------:-------:allow

everyone@:-w-p---A-W-Co-:-------:deny

everyone@:r-x---a-R-c--s:-------:allow

Setting and Displaying ACLs on ZFS Files in Compact Format

Chapter 8 • Using ACLs and Attributes to Protect ZFS Files 211

Applying Special Attributes to ZFS Files
The following examples show how to apply and display special attributes, such as immutability
or read-only access, to ZFS files.

For more information about displaying and applying special attributes, see ls(1) and chmod(1).

EXAMPLE 8–13 Apply Immutability to a ZFS File

Use the following syntax to make a file immutable:

chmod S+ci file.1

echo this >>file.1

file.2: cannot create

rm file.1

rm: file.1: override protection 644 (yes/no)? yes

rm: file.1 not removed: Not owner

You can display special attributes on ZFS files by using the following syntax:

ls -l/c file.1

-rw-r--r-- 1 root root 206674 Jul 31 10:52 file.1

{A-----im--}

Use the following syntax to remove file immutability:

chmod S-ci file.1

ls -l/c file.1

-rw-r--r--+ 1 root root 206674 Jul 29 10:27 file.1

{A------m--}

rm file.1

EXAMPLE 8–14 Apply Read-Only Access to a ZFS File

The following example shows how to apply read-only access to a ZFS file.

chmod S+cR file.2

echo this >>file.2

file.2: cannot create

EXAMPLE 8–15 Displaying and Removing ZFS File Attributes

You can display all special attributes with the following syntax:

Applying Special Attributes to ZFS Files

Solaris ZFS Administration Guide • September 2008212

http://docs.sun.com/doc/819-2239/ls-1?a=view
http://docs.sun.com/doc/819-2239/chmod-1?a=view

EXAMPLE 8–15 Displaying and Removing ZFS File Attributes (Continued)

ls -l/v file.3

-r--r--r-- 1 root root 206674 Jul 31 11:30 file.3

{archive,nohidden,noreadonly,nosystem,noappendonly,nonodump,immutable,

av_modified,noav_quarantined,nonounlink}

chmod S+cR file.3

ls -l/v file.3

-r--r--r-- 1 root root 206674 Jul 31 11:30 file.3

{archive,nohidden,readonly,nosystem,noappendonly,nonodump,immutable,

av_modified,noav_quarantined,nonounlink}

Some of these attributes only apply in a CIFS environment.

You can clear all attributes on a file. For example:

chmod S-a file.3

ls -l/v file.3

-r--r--r-- 1 root root 206674 Jul 31 11:30 file.3

{noarchive,nohidden,noreadonly,nosystem,noappendonly,nonodump,noimmutable,

noav_modified,noav_quarantined,nonounlink}

Applying Special Attributes to ZFS Files

Chapter 8 • Using ACLs and Attributes to Protect ZFS Files 213

214

ZFS Delegated Administration

This chapter describes how to use delegated administration to allow non-privileged users to
perform ZFS administration tasks.

■ “Overview of ZFS Delegated Administration” on page 215
■ “Delegating ZFS Permissions” on page 216
■ “Displaying ZFS Delegated Permissions (Examples)” on page 219
■ “Delegating ZFS Permissions (Examples)” on page 221
■ “Removing ZFS Permissions (Examples)” on page 226

Overview of ZFS Delegated Administration
This feature enables you to distribute refined permissions to specific users, groups, or everyone.
Two types of delegated permissions are supported:

■ Individual permissions can be explicitly specified such as create, destroy, mount, snapshot,
and so on.

■ Groups of permissions called permission sets can be defined. A permission set can later be
updated and all of the consumers of the set automatically acquire the change. Permission
sets begin with the @ letter and are limited to 64 characters in length. After the @ character,
the remaining characters in the set name have the same restrictions as normal ZFS file
system names.

ZFS delegated administration provides similar features to the RBAC security model. The ZFS
delegation model provides the following advantages for administering ZFS storage pools and
file systems:

■ Permissions follow the ZFS storage pool when the pool is migrated.
■ Provides dynamic inheritance so that you can control how the permissions propagate

through the file systems.
■ Can be configured so that only the creator of a file system can destroy that file system.

9C H A P T E R 9

215

■ You can distribute permissions to specific file systems. Newly created file systems can
automatically pick up permissions.

■ This model provides simple NFS administration. For example, a user with explicit
permissions could create a snapshot over NFS in the appropriate .zfs/snapshot directory.

Consider using delegated administration for distributing ZFS tasks. For information about
using RBAC to manage general Solaris administration tasks, see Part III, “Roles, Rights Profiles,
and Privileges,” in System Administration Guide: Security Services.

Disabling ZFS Delegated Permissions
You can enable or disable delegated administration by setting the pool's delegation property.
For example:

zpool get delegation users

NAME PROPERTY VALUE SOURCE

users delegation on default

zpool set delegation=off users

zpool get delegation users

NAME PROPERTY VALUE SOURCE

users delegation off local

By default, the delegation property is enabled.

Delegating ZFS Permissions
You can use the zfs allow command to grant permissions on ZFS datasets to non-root users in
the following ways:

■ Individual permissions can be granted to a user, group, or everyone.
■ Groups of individual permissions can be granted as a permission set to a user, group, or

everyone.
■ Permissions can be granted either locally to the current dataset only or to all descendents of

the current dataset.

The following table describes the operations that can be delegated and any dependent
permissions that are required to perform the delegated operations.

Delegating ZFS Permissions

Solaris ZFS Administration Guide • September 2008216

http://docs.sun.com/doc/819-3321/prbactm-1?a=view
http://docs.sun.com/doc/819-3321/prbactm-1?a=view

Permission (Subcommand) Description Dependencies

allow The ability to grant permissions that you
have to another user.

Must also have the permission that is being
allowed.

clone The ability to clone any of the dataset's
snapshots.

Must also have the create ability and the
mount ability in the origin file system.

create The ability to create descendent datasets. Must also have the mount ability.

destroy The ability to destroy a dataset. Must also have the mount ability.

mount The ability to mount and unmount a
dataset, and create and destroy volume
device links.

promote The ability to promote a clone to a
dataset.

Must also have the mount ability and
promote ability in the origin file system.

receive The ability to create descendent file
system with the zfs receive command.

Must also have the mount ability and the
create ability.

rename The ability to rename a dataset. Must also have the create ability and the
mount ability in the new parent.

rollback The ability to rollback a snapshot. Must also have the mount ability.

send The ability to send a snapshot stream.

share The ability to share and unshare a
dataset.

snapshot The ability to take a snapshot of a
dataset.

In addition, you can delegate the following ZFS properties to non-root users:

■ aclinherit

■ aclmode

■ atime

■ canmount

■ casesensitivity

■ checksum

■ compression

■ copies

■ devices

■ exec

■ mountpoint

■ nbmand

■ normalization

■ quota

Delegating ZFS Permissions

Chapter 9 • ZFS Delegated Administration 217

■ readonly

■ recordsize

■ refquota

■ refreservation

■ reservation

■ setuid

■ shareiscsi

■ sharenfs

■ sharesmb

■ snapdir

■ userprop

■ utf8only

■ version

■ volsize

■ vscan

■ xattr

■ zoned

Some of these properties can be set only at dataset creation time. For a description of these
properties, see “Introducing ZFS Properties” on page 137.

Syntax Description for Delegating Permissions (zfs
allow)
The zfs allow syntax is as follows:

zfs allow -[ldugecs] everyone|user|group[,,...] perm|@setname,...] filesystem| volume

The following zfs allow syntax (in bold) identifies to whom the permissions are delegated:

zfs allow [-uge]|user|group|everyone [,...] filesystem | volume

Multiple entities can be specified as a comma-separated list. If no -uge options are specified,
then the argument is interpreted preferentially as the keyword everyone, then as a user name,
and lastly, as a group name. To specify a user or group named “everyone,” use the -u or -g
option. To specify a group with the same name as a user, use the -g option. The -c option grants
create-time permissions.

The following zfs allow syntax (in bold) identifies how permissions and permission sets are
specified:

zfs allow [-s] ... perm|@setname [,...] filesystem | volume

Multiple permissions can be specified as a comma-separated list. Permission names are the
same as ZFS subcommands and properties. For more information, see the preceding section.

Delegating ZFS Permissions

Solaris ZFS Administration Guide • September 2008218

Permissions can be aggregated into permission sets and are identified by the -s option.
Permission sets can be used by other zfs allow commands for the specified file system and its
descendents. Permission sets are evaluated dynamically, so changes to a set are immediately
updated. Permission sets follow the same naming conventions as ZFS file systems, but the name
must begin with an at sign (@) and can be no more than 64 characters in length.

The following zfs allow syntax (in bold) identifies how the permissions are delegated:

zfs allow [-ld] filesystem | volume

The -l option indicates that the permission is allowed for the specified dataset and not its
descendents, unless the -d option is also specified. The -d option indicates that the permission
is allowed for the descendent datasets and not for this dataset, unless the -l option is also
specified. If neither of the -ld options are specified, then the permissions are allowed for the file
system or volume and all of its descendents.

Removing ZFS Delegated Permissions (zfs unallow)
You can remove previously granted permissions with the zfs unallow command.

For example, assume you delegated create, destroy, mount, and snapshot permissions as
follows:

zfs allow cindys create,destroy,mount,snapshot tank/cindys

zfs allow tank/cindys

Local+Descendent permissions on (tank/cindys)

user cindys create,destroy,mount,snapshot

To remove these permissions, you would need to use syntax similar to the following:

zfs unallow cindys tank/cindys

zfs allow tank/cindys

Using ZFS Delegated Administration
This section provides examples of displaying and delegating ZFS delegated permissions.

Displaying ZFS Delegated Permissions (Examples)
You can use the following command to display permissions:

zfs allow dataset

Using ZFS Delegated Administration

Chapter 9 • ZFS Delegated Administration 219

This command displays permissions that are set or allowed on this dataset. The output contains
the following components:
■ Permissions sets
■ Specific permissions or create-time permissions
■ Local dataset
■ Local and descendent datasets
■ Descendent datasets only

EXAMPLE 9–1 Displaying Basic Delegated Administration Permissions

The following output in this example indicates that user cindys has permissions to create,
destroy, mount, snapshot in the tank/cindys file system.

zfs allow tank/cindys

Local+Descendent permissions on (tank/cindys)

user cindys create,destroy,mount,snapshot

EXAMPLE 9–2 Displaying Complex Delegated Administration Permissions

The output in this example indicates the following permissions on the pool/fred and pool file
systems.

For the pool/fred file system:
■ Two permission sets are defined:

■ @eng (create, destroy, snapshot, mount, clone, promote, rename)
■ @simple (create, mount)

■ Create-time permissions are set for the @eng permission set and the mountpoint property.
Create-time means that after a dataset set is created, the @eng permission set and the
mountpoint property are granted.

■ User tom is granted the @eng permission set, and user joe is granted create, destroy, and
mount permissions for local file systems.

■ User fred is granted the @basic permission set, and share and rename permissions for the
local and descendent file systems.

■ User barney and the staff group are granted the @basic permission set for descendent file
systems only.

For the pool file system:

■ The permission set @simple (create, destroy, mount) is defined.
■ The group staff is granted the @simple permission set on the local file system.

Here is the output for this example:

Using ZFS Delegated Administration

Solaris ZFS Administration Guide • September 2008220

EXAMPLE 9–2 Displaying Complex Delegated Administration Permissions (Continued)

$ zfs allow pool/fred

--

Permission sets on (pool/fred)

@eng create,destroy,snapshot,mount,clone,promote,rename

@simple create,mount

Create time permissions on (pool/fred)

@eng,mountpoint

Local permissions on (pool/fred)

user tom @eng

user joe create,destroy,mount

Local+Descendent permissions on (pool/fred)

user fred @basic,share,rename

Descendent permissions on (pool/fred)

user barney @basic

group staff @basic

--

Permission sets on (pool)

@simple create,destroy,mount

Local permissions on (pool)

group staff @simple

--

Delegating ZFS Permissions (Examples)

EXAMPLE 9–3 Delegating Permissions to an Individual User

When you provide create and mount permissions to an individual user, you need to make sure
that the user has permissions on the underlying mount point.

For example, to give user marks create and mount permissions on tank, set the permissions
first:

chmod A+user:marks:add_subdirectory:fd:allow /tank

Then, use the zfs allow command to grant create, destroy, and mount permissions. For
example:

zfs allow marks create,destroy,mount tank

Now user marks can create his own file systems in the tank file system. For example:

su marks

marks$ zfs create tank/marks

marks$ ^D

Using ZFS Delegated Administration

Chapter 9 • ZFS Delegated Administration 221

EXAMPLE 9–3 Delegating Permissions to an Individual User (Continued)

su lp

$ zfs create tank/lp

cannot create ’tank/lp’: permission denied

EXAMPLE 9–4 Delegating Create and Destroy Permissions to a Group

The following example shows how to set up a file system so that anyone in the staff group can
create and mount file systems in the tank file system, as well as to destroy their own file systems.
However, staff group members cannot destroy anyone else's file systems.

zfs allow staff create,mount tank

zfs allow -c create,destroy tank

zfs allow tank

Create time permissions on (tank)

create,destroy

Local+Descendent permissions on (tank)

group staff create,mount

su cindys

cindys% zfs create tank/cindys

cindys% exit

su marks

marks% zfs create tank/marks/data

marks% exit

cindys% zfs destroy tank/marks/data

cannot destroy ’tank/mark’: permission denied

EXAMPLE 9–5 Delegating Permissions at the Correct File System Level

Make sure that you grant users permission at the correct file system level. For example, user
marks is granted create, destroy, and mount permissions for the local and descendent file
systems. User marks is granted local permission to snapshot the tank file system, but he is not
allowed to snapshot his own file system. So, he has not been granted the snapshot permission at
the correct file system level.

zfs allow -l marks snapshot tank

zfs allow tank

Local permissions on (tank)

user marks snapshot

Local+Descendent permissions on (tank)

user marks create,destroy,mount

Using ZFS Delegated Administration

Solaris ZFS Administration Guide • September 2008222

EXAMPLE 9–5 Delegating Permissions at the Correct File System Level (Continued)

su marks

marks$ zfs snapshot tank/@snap1

marks$ zfs snapshot tank/marks@snap1

cannot create snapshot ’mark/marks@snap1’: permission denied

To grant user marks permission at the descendent level, use the zfs allow -d option. For
example:

zfs unallow -l marks snapshot tank

zfs allow -d marks snapshot tank

zfs allow tank

Descendent permissions on (tank)

user marks snapshot

Local+Descendent permissions on (tank)

user marks create,destroy,mount

su marks

$ zfs snapshot tank@snap2

cannot create snapshot ’sandbox@snap2’: permission denied

$ zfs snapshot tank/marks@snappy

Now, user marks can only create a snapshot below the tank level.

EXAMPLE 9–6 Defining and Using Complex Delegated Permissions

You can grant specific permissions to users or groups. For example, the following zfs allow

command grants specific permissions to the staff group. In addition, destroy and snapshot

permissions are granted after tank file systems are created.

zfs allow staff create,mount tank

zfs allow -c destroy,snapshot tank

zfs allow tank

Create time permissions on (tank)

destroy,snapshot

Local+Descendent permissions on (tank)

group staff create,mount

Because user marks is a member of the staff group, he can create file systems in tank. In
addition, user marks can create a snapshot of tank/marks2 because he has specific permissions
to do so. For example:

Using ZFS Delegated Administration

Chapter 9 • ZFS Delegated Administration 223

EXAMPLE 9–6 Defining and Using Complex Delegated Permissions (Continued)

su marks

$ zfs create tank/marks2

$ zfs allow tank/marks2

Local permissions on (tank/marks2)

user marks destroy,snapshot

Create time permissions on (tank)

destroy,snapshot

Local+Descendent permissions on (tank)

group staff create

everyone mount

But, he can't create a snapshot in tank/marks because he doesn't have specific permissions to do
so. For example:

$ zfs snapshot tank/marks2@snap1

$ zfs snapshot tank/marks@snappp

cannot create snapshot ’tank/marks@snappp’: permission denied

If you have create permission in your home directory, you can create your own snapshot
directories. This scenario is helpful when your file system is NFS mounted. For example:

$ cd /tank/marks2

$ ls

$ cd .zfs

$ ls

snapshot

$ cd snapshot

$ ls -l

total 3

drwxr-xr-x 2 marks staff 2 Dec 15 13:53 snap1

$ pwd

/tank/marks2/.zfs/snapshot

$ mkdir snap2

$ zfs list

NAME USED AVAIL REFER MOUNTPOINT

tank 264K 33.2G 33.5K /tank

tank/marks 24.5K 33.2G 24.5K /tank/marks

tank/marks2 46K 33.2G 24.5K /tank/marks2

tank/marks2@snap1 21.5K - 24.5K -

tank/marks2@snap2 0 - 24.5K -

$ ls

snap1 snap2

$ rmdir snap2

Using ZFS Delegated Administration

Solaris ZFS Administration Guide • September 2008224

EXAMPLE 9–6 Defining and Using Complex Delegated Permissions (Continued)

$ ls

snap1

EXAMPLE 9–7 Defining and Using a ZFS Delegated Permission Set

The following example shows how to create a permission set @myset and grants the permission
set and the rename permission to the group staff for the tank file system. User cindys, a staff
group member, has the permission to create a file system in tank. However, user lp has no
permission to create a file system in tank.

zfs allow -s @myset create,destroy,mount,snapshot,promote,clone,readonly tank

zfs allow tank

Permission sets on (tank)

@myset clone,create,destroy,mount,promote,readonly,snapshot

zfs allow staff @myset,rename tank

zfs allow tank

Permission sets on (tank)

@myset clone,create,destroy,mount,promote,readonly,snapshot

Local+Descendent permissions on (tank)

group staff @myset,rename

chmod A+group:staff:add_subdirectory:fd:allow tank

su cindys

cindys% zfs create tank/data

Cindys% zfs allow tank

Permission sets on (tank)

@myset clone,create,destroy,mount,promote,readonly,snapshot

Local+Descendent permissions on (tank)

group staff @myset,rename

cindys% ls -l /tank

total 15

drwxr-xr-x 2 cindys staff 2 Aug 8 14:10 data

cindys% exit

su lp

$ zfs create tank/lp

cannot create ’tank/lp’: permission denied

Using ZFS Delegated Administration

Chapter 9 • ZFS Delegated Administration 225

Removing ZFS Permissions (Examples)
You can use the zfs unallow command to remove granted permissions. For example, user
cindys has permissions to create, destroy, mount, and snapshot in the tank/cindys file system.

zfs allow cindys create,destroy,mount,snapshot tank/cindys

zfs allow tank/cindys

Local+Descendent permissions on (tank/cindys)

user cindys create,destroy,mount,snapshot

The following zfs unallow syntax removes user cindys's snapshot permission from the
tank/cindys file system:

zfs unallow cindys snapshot tank/cindys

zfs allow tank/cindys

Local+Descendent permissions on (tank/cindys)

user cindys create,destroy,mount

cindys% zfs create tank/cindys/data

cindys% zfs snapshot tank/cindys@today

cannot create snapshot ’tank/cindys@today’: permission denied

As another example, user marks has the following permissions in tank/marks:

zfs allow tank/marks

Local+Descendent permissions on (tank/marks)

user marks create,destroy,mount

In this example, the following zfs unallow syntax removes all permissions for user marks from
tank/marks:

zfs unallow marks tank/marks

The following zfs unallow syntax removes a permission set on the tank file system.

zfs allow tank

Permission sets on (tank)

@myset clone,create,destroy,mount,promote,readonly,snapshot

Create time permissions on (tank)

create,destroy,mount

Local+Descendent permissions on (tank)

group staff create,mount

Using ZFS Delegated Administration

Solaris ZFS Administration Guide • September 2008226

zfs unallow -s @myset tank

$ zfs allow tank

Create time permissions on (tank)

create,destroy,mount

Local+Descendent permissions on (tank)

group staff create,mount

Using ZFS Delegated Administration

Chapter 9 • ZFS Delegated Administration 227

228

ZFS Advanced Topics

This chapter describes ZFS volumes, using ZFS on a Solaris system with zones installed, ZFS
alternate root pools, and ZFS rights profiles.

The following sections are provided in this chapter:

■ “ZFS Volumes” on page 229
■ “Using ZFS on a Solaris System With Zones Installed” on page 232
■ “Using ZFS Alternate Root Pools” on page 237
■ “ZFS Rights Profiles” on page 238

ZFS Volumes
A ZFS volume is a dataset that represents a block device and can be used like any block device.
ZFS volumes are identified as devices in the /dev/zvol/{dsk,rdsk}/path directory.

In the following example, 5-Gbyte ZFS volume, tank/vol, is created:

zfs create -V 5gb tank/vol

When you create a volume, a reservation is automatically set to the initial size of the volume.
The reservation size continues to equal the size of the volume so that unexpected behavior
doesn't occur. For example, if the size of the volume shrinks, data corruption might occur. You
must be careful when changing the size of the volume.

In addition, if you create a snapshot of a volume that changes in size, you might introduce file
system inconsistencies if you attempt to rollback the snapshot or create a clone from the
snapshot.

For information about file system properties that can be applied to volumes, see Table 6–1.

10C H A P T E R 1 0

229

If you are using a Solaris system with zones installed, you cannot create or clone a ZFS volume
in a non-global zone. Any attempt to create or clone a volume from within a non-global zone
will fail. For information about using ZFS volumes in a global zone, see “Adding ZFS Volumes
to a Non-Global Zone” on page 234.

Using a ZFS Volume as a Swap or Dump Device
During an installation of a ZFS root file system or a migration from a UFS file system, a swap
device is created on a ZFS volume in the ZFS root pool. The swap area size is based on 1/2 the
size of physical memory. For example:

swap -l

swapfile dev swaplo blocks free

/dev/zvol/dsk/rpool/swap 253,3 16 8257520 8257520

During an installation of a ZFS root file system or a migration from a UFS file system, a dump
device is created on a ZFS volume in the ZFS root pool. The dump device size is based on 1/2 the
size of physical memory. The dump device no administration after it is setup. For example:

dumpadm

Dump content: kernel pages

Dump device: /dev/zvol/dsk/rpool/dump (dedicated)

Savecore directory: /var/crash/t2000

Savecore enabled: yes

Due to CR 6724860, you must run savecore manually to save a crash dump when using a ZFS
dump volume.

If you need to change your swap area or dump device after the system is installed or upgraded,
use the swap and dumpadm commands as in previous Solaris releases. If you need to set up an
additional swap area create a ZFS volume of a specific size and then enable swap on that device.

To set up a swap area, create a ZFS volume of a specific size and then enable swap on that device.

In the following example, the 5-Gbyte tank/vol volume is added as a swap device.

zfs create -V 5gb tank/vol

swap -a /dev/zvol/dsk/tank/vol

swap -l

swapfile dev swaplo blocks free

/dev/dsk/c0t0d0s1 32,33 16 1048688 1048688

/dev/zvol/dsk/tank/vol 254,1 16 10485744 10485744

Do not swap to a file on a ZFS file system. A ZFS swap file configuration is not supported.

For information about adjusting the size of the swap and dump volumes, see “Adjusting the
Sizes of Your ZFS Swap and Dump Devices” on page 78.

ZFS Volumes

Solaris ZFS Administration Guide • September 2008230

Using a ZFS Volume as a Solaris iSCSI Target
Solaris iSCSI targets and initiators are supported in the Solaris release.

In addition, you can easily create a ZFS volume as a iSCSI target by setting the shareiscsi
property on the volume. For example:

zfs create -V 2g tank/volumes/v2

zfs set shareiscsi=on tank/volumes/v2

iscsitadm list target

Target: tank/volumes/v2

iSCSI Name: iqn.1986-03.com.sun:02:984fe301-c412-ccc1-cc80-cf9a72aa062a

Connections: 0

After the iSCSI target is created, set up the iSCSI initiator. For more information about Solaris
iSCSI targets and initiators, see Chapter 14, “Configuring Solaris iSCSI Targets and Initiators
(Tasks),” in System Administration Guide: Devices and File Systems.

Note – Solaris iSCSI targets can also be created and managed with iscsitadm command. If you
set the shareiscsi property on a ZFS volume, do not use the iscsitadm command to also
create the same target device. Otherwise, you will end up with duplicate target information for
the same device.

A ZFS volume as an iSCSI target is managed just like another ZFS dataset. However, the
rename, export, and import operations work a little differently for iSCSI targets.

■ When you rename a ZFS volume, the iSCSI target name remains the same. For example:

zfs rename tank/volumes/v2 tank/volumes/v1

iscsitadm list target

Target: tank/volumes/v1

iSCSI Name: iqn.1986-03.com.sun:02:984fe301-c412-ccc1-cc80-cf9a72aa062a

Connections: 0

■ Exporting a pool that contains a shared ZFS volume causes the target to be removed.
Importing a pool that contains a shared ZFS volume causes the target to be shared. For
example:

zpool export tank

iscsitadm list target

zpool import tank

iscsitadm list target

Target: tank/volumes/v1

iSCSI Name: iqn.1986-03.com.sun:02:984fe301-c412-ccc1-cc80-cf9a72aa062a

Connections: 0

ZFS Volumes

Chapter 10 • ZFS Advanced Topics 231

http://docs.sun.com/doc/819-2723/fmvcd?a=view
http://docs.sun.com/doc/819-2723/fmvcd?a=view

All iSCSI target configuration information is stored within the dataset. Like an NFS shared file
system, an iSCSI target that is imported on a different system is shared appropriately.

Using ZFS on a Solaris System With Zones Installed
The following sections describe how to use ZFS on a system with Solaris zones.

■ “Adding ZFS File Systems to a Non-Global Zone” on page 233
■ “Delegating Datasets to a Non-Global Zone” on page 233
■ “Adding ZFS Volumes to a Non-Global Zone” on page 234
■ “Using ZFS Storage Pools Within a Zone” on page 234
■ “Managing ZFS Properties Within a Zone” on page 235
■ “Understanding the zoned Property” on page 236

Keep the following points in mind when associating ZFS datasets with zones:

■ You can add a ZFS file system or a ZFS clone to a non-global zone with or without
delegating administrative control.

■ You can add a ZFS volume as a device to non-global zones
■ You cannot associate ZFS snapshots with zones at this time

In the sections below, a ZFS dataset refers to a file system or clone.

Adding a dataset allows the non-global zone to share space with the global zone, though the
zone administrator cannot control properties or create new file systems in the underlying file
system hierarchy. This is identical to adding any other type of file system to a zone, and should
be used when the primary purpose is solely to share common space.

ZFS also allows datasets to be delegated to a non-global zone, giving complete control over the
dataset and all its children to the zone administrator. The zone administrator can create and
destroy file systems or clones within that dataset, and modify properties of the datasets. The
zone administrator cannot affect datasets that have not been added to the zone, and cannot
exceed any top-level quotas set on the exported dataset.

Consider the following interactions when working with ZFS on a system with Solaris zones
installed:

■ A ZFS file system that is added to a non-global zone must have its mountpoint property set
to legacy.

■ Due to bug 6449301, do not add a ZFS dataset to a non-global zone when the non-global
zone is configured. Instead, add a ZFS dataset after the zone is installed.

■ When a source zonepath and the target zonepath both reside on ZFS and are in the same
pool, zoneadm clone will now automatically use ZFS clone to clone a zone. The zoneadm
clone command will take a ZFS snapshot of the source zonepath and set up the target

Using ZFS on a Solaris System With Zones Installed

Solaris ZFS Administration Guide • September 2008232

zonepath. You cannot use the zfs clone command to clone a zone. For more information,
see Part II, “Zones,” in System Administration Guide: Virtualization Using the Solaris
Operating System.

Adding ZFS File Systems to a Non-Global Zone
You can add a ZFS file system as a generic file system when the goal is solely to share space with
the global zone. A ZFS file system that is added to a non-global zone must have its mountpoint
property set to legacy.

You can add a ZFS file system to a non-global zone by using the zonecfg command's add fs
subcommand. For example:

In the following example, a ZFS file system is added to a non-global zone by a global
administrator in the global zone.

zonecfg -z zion

zonecfg:zion> add fs

zonecfg:zion:fs> set type=zfs

zonecfg:zion:fs> set special=tank/zone/zion

zonecfg:zion:fs> set dir=/export/shared

zonecfg:zion:fs> end

This syntax adds the ZFS file system, tank/zone/zion, to the already configured zion zone,
mounted at /export/shared. The mountpoint property of the file system must be set to legacy,
and the file system cannot already be mounted in another location. The zone administrator can
create and destroy files within the file system. The file system cannot be remounted in a different
location, nor can the zone administrator change properties on the file system such as atime,
readonly, compression, and so on. The global zone administrator is responsible for setting and
controlling properties of the file system.

For more information about the zonecfg command and about configuring resource types with
zonecfg, see Part II, “Zones,” in System Administration Guide: Virtualization Using the Solaris
Operating System.

Delegating Datasets to a Non-Global Zone
If the primary goal is to delegate the administration of storage to a zone, then ZFS supports
adding datasets to a non-global zone through use of the zonecfg command's add dataset
subcommand.

In the following example, a ZFS file system is delegated to a non-global zone by a global
administrator in the global zone.

Using ZFS on a Solaris System With Zones Installed

Chapter 10 • ZFS Advanced Topics 233

http://docs.sun.com/doc/819-2450/zone?a=view
http://docs.sun.com/doc/819-2450/zone?a=view
http://docs.sun.com/doc/819-2450/zone?a=view
http://docs.sun.com/doc/819-2450/zone?a=view

zonecfg -z zion

zonecfg:zion> add dataset

zonecfg:zion:dataset> set name=tank/zone/zion

zonecfg:zion:dataset> end

Unlike adding a file system, this syntax causes the ZFS file system tank/zone/zion to be visible
within the already configured zion zone. The zone administrator can set file system properties,
as well as create children. In addition, the zone administrator can take snapshots, create clones,
and otherwise control the entire file system hierarchy.

For more information about what actions are allowed within zones, see “Managing ZFS
Properties Within a Zone” on page 235.

Adding ZFS Volumes to a Non-Global Zone
ZFS volumes cannot be added to a non-global zone by using the zonecfg command's add
dataset subcommand. If an attempt to add an ZFS volume is detected, the zone cannot boot.
However, volumes can be added to a zone by using the zonecfg command's add device
subcommand.

In the following example, a ZFS volume is added to a non-global zone by a global administrator
in the global zone:

zonecfg -z zion

zion: No such zone configured

Use ’create’ to begin configuring a new zone.

zonecfg:zion> create

zonecfg:zion> add device

zonecfg:zion:device> set match=/dev/zvol/dsk/tank/vol

zonecfg:zion:device> end

This syntax exports the tank/vol volume to the zone. Note that adding a raw volume to a zone
has implicit security risks, even if the volume doesn't correspond to a physical device. In
particular, the zone administrator could create malformed file systems that would panic the
system when a mount is attempted. For more information about adding devices to zones and
the related security risks, see “Understanding the zoned Property” on page 236.

For more information about adding devices to zones, see Part II, “Zones,” in System
Administration Guide: Virtualization Using the Solaris Operating System.

Using ZFS Storage Pools Within a Zone
ZFS storage pools cannot be created or modified within a zone. The delegated administration
model centralizes control of physical storage devices within the global zone and control of
virtual storage to non-global zones. While a pool-level dataset can be added to a zone, any

Using ZFS on a Solaris System With Zones Installed

Solaris ZFS Administration Guide • September 2008234

http://docs.sun.com/doc/819-2450/zone?a=view
http://docs.sun.com/doc/819-2450/zone?a=view

command that modifies the physical characteristics of the pool, such as creating, adding, or
removing devices, is not allowed from within a zone. Even if physical devices are added to a
zone by using the zonecfg command's add device subcommand, or if files are used, the zpool
command does not allow the creation of any new pools within the zone.

Managing ZFS Properties Within a Zone
After a dataset is added to a zone, the zone administrator can control specific dataset properties.
When a dataset is added to a zone, all its ancestors are visible as read-only datasets, while the
dataset itself is writable as are all of its children. For example, consider the following
configuration:

global# zfs list -Ho name

tank

tank/home

tank/data

tank/data/matrix

tank/data/zion

tank/data/zion/home

If tank/data/zion is added to a zone, each dataset would have the following properties.

Dataset Visible Writable Immutable Properties

tank Yes No -

tank/home No - -

tank/data Yes No -

tank/data/matrix No - -

tank/data/zion Yes Yes sharenfs, zoned, quota,
reservation

tank/data/zion/home Yes Yes sharenfs, zoned

Note that every parent of tank/zone/zion is visible read-only, all children are writable, and
datasets that are not part of the parent hierarchy are not visible at all. The zone administrator
cannot change the sharenfs property, because non-global zones cannot act as NFS servers.
Neither can the zone administrator change the zoned property, because doing so would expose
a security risk as described in the next section.

Any other settable property can be changed, except for the quota property, and the dataset
itself. This behavior allows the global zone administrator to control the space consumption of
all datasets used by the non-global zone.

Using ZFS on a Solaris System With Zones Installed

Chapter 10 • ZFS Advanced Topics 235

In addition, the sharenfs and mountpoint properties cannot be changed by the global zone
administrator once a dataset has been added to a non-global zone.

Understanding the zonedProperty
When a dataset is added to a non-global zone, the dataset must be specially marked so that
certain properties are not interpreted within the context of the global zone. After a dataset has
been added to a non-global zone under the control of a zone administrator, its contents can no
longer be trusted. As with any file system, there might be setuid binaries, symbolic links, or
otherwise questionable contents that might adversely affect the security of the global zone. In
addition, the mountpoint property cannot be interpreted in the context of the global zone.
Otherwise, the zone administrator could affect the global zone's namespace. To address the
latter, ZFS uses the zoned property to indicate that a dataset has been delegated to a non-global
zone at one point in time.

The zoned property is a boolean value that is automatically turned on when a zone containing a
ZFS dataset is first booted. A zone administrator will not need to manually turn on this
property. If the zoned property is set, the dataset cannot be mounted or shared in the global
zone, and is ignored when the zfs share -a command or the zfs mount -a command is
executed. In the following example, tank/zone/zion has been added to a zone, while
tank/zone/global has not:

zfs list -o name,zoned,mountpoint -r tank/zone

NAME ZONED MOUNTPOINT

tank/zone/global off /tank/zone/global

tank/zone/zion on /tank/zone/zion

zfs mount

tank/zone/global /tank/zone/global

tank/zone/zion /export/zone/zion/root/tank/zone/zion

Note the difference between the mountpoint property and the directory where the
tank/zone/zion dataset is currently mounted. The mountpoint property reflects the property
as stored on disk, not where the dataset is currently mounted on the system.

When a dataset is removed from a zone or a zone is destroyed, the zoned property is not
automatically cleared. This behavior is due to the inherent security risks associated with these
tasks. Because an untrusted user has had complete access to the dataset and its children, the
mountpoint property might be set to bad values, or setuid binaries might exist on the file
systems.

To prevent accidental security risks, the zoned property must be manually cleared by the global
administrator if you want to reuse the dataset in any way. Before setting the zoned property to
off, make sure that the mountpoint property for the dataset and all its children are set to
reasonable values and that no setuid binaries exist, or turn off the setuid property.

Using ZFS on a Solaris System With Zones Installed

Solaris ZFS Administration Guide • September 2008236

After you have verified that no security vulnerabilities are left, the zoned property can be turned
off by using the zfs set or zfs inherit commands. If the zoned property is turned off while a
dataset is in use within a zone, the system might behave in unpredictable ways. Only change the
property if you are sure the dataset is no longer in use by a non-global zone.

Using ZFS Alternate Root Pools
When a pool is created, the pool is intrinsically tied to the host system. The host system
maintains knowledge about the pool so that it can detect when the pool is otherwise
unavailable. While useful for normal operation, this knowledge can prove a hindrance when
booting from alternate media, or creating a pool on removable media. To solve this problem,
ZFS provides an alternate root pool feature. An alternate root pool does not persist across
system reboots, and all mount points are modified to be relative to the root of the pool.

Creating ZFS Alternate Root Pools
The most common use for creating an alternate root pool is for use with removable media. In
these circumstances, users typically want a single file system, and they want it to be mounted
wherever they choose on the target system. When an alternate root pool is created by using the
-R option, the mount point of the root file system is automatically set to /, which is the
equivalent of the alternate root itself.

In the following example, a pool called morpheus is created with /mnt as the alternate root path:

zpool create -R /mnt morpheus c0t0d0

zfs list morpheus

NAME USED AVAIL REFER MOUNTPOINT

morpheus 32.5K 33.5G 8K /mnt/

Note the single file system, morpheus, whose mount point is the alternate root of the pool, /mnt.
The mount point that is stored on disk is / and the full path to /mnt is interpreted only in the
context of the alternate root pool. This file system can then be exported and imported under an
arbitrary alternate root pool on a different system.

Importing Alternate Root Pools
Pools can also be imported using an alternate root. This feature allows for recovery situations,
where the mount points should not be interpreted in context of the current root, but under
some temporary directory where repairs can be performed. This feature also can be used when
mounting removable media as described above.

In the following example, a pool called morpheus is imported with /mnt as the alternate root
path. This example assumes that morpheus was previously exported.

Using ZFS Alternate Root Pools

Chapter 10 • ZFS Advanced Topics 237

zpool import -R /mnt morpheus

zpool list morpheus

NAME SIZE USED AVAIL CAP HEALTH ALTROOT

morpheus 33.8G 68.0K 33.7G 0% ONLINE /mnt

zfs list morpheus

NAME USED AVAIL REFER MOUNTPOINT

morpheus 32.5K 33.5G 8K /mnt/morpheus

ZFS Rights Profiles
If you want to perform ZFS management tasks without using the superuser (root) account, you
can assume a role with either of the following profiles to perform ZFS administration tasks:

■ ZFS Storage Management – Provides the ability to create, destroy, and manipulate devices
within a ZFS storage pool

■ ZFS File system Management – Provides the ability to create, destroy, and modify ZFS file
systems

For more information about creating or assigning roles, see System Administration Guide:
Security Services.

In addition to using RBAC roles for administering ZFS file systems, you might also consider
using ZFS delegated administration for distributed ZFS administration tasks. For more
information, see Chapter 9, “ZFS Delegated Administration.”

ZFS Rights Profiles

Solaris ZFS Administration Guide • September 2008238

http://docs.sun.com/doc/819-3321
http://docs.sun.com/doc/819-3321

ZFS Troubleshooting and Data Recovery

This chapter describes how to identify and recover from ZFS failure modes. Information for
preventing failures is provided as well.

The following sections are provided in this chapter:

■ “ZFS Failure Modes” on page 239
■ “Checking ZFS Data Integrity” on page 241
■ “Identifying Problems in ZFS” on page 243
■ “Repairing a Damaged ZFS Configuration” on page 248
■ “Repairing a Missing Device” on page 248
■ “Repairing a Damaged Device” on page 250
■ “Repairing Damaged Data” on page 257
■ “Repairing an Unbootable System” on page 261

ZFS Failure Modes
As a combined file system and volume manager, ZFS can exhibit many different failure modes.
This chapter begins by outlining the various failure modes, then discusses how to identify them
on a running system. This chapter concludes by discussing how to repair the problems. ZFS can
encounter three basic types of errors:

■ “Missing Devices in a ZFS Storage Pool” on page 240
■ “Damaged Devices in a ZFS Storage Pool” on page 240
■ “Corrupted ZFS Data” on page 240

Note that a single pool can experience all three errors, so a complete repair procedure involves
finding and correcting one error, proceeding to the next error, and so on.

11C H A P T E R 1 1

239

Missing Devices in a ZFS Storage Pool
If a device is completely removed from the system, ZFS detects that the device cannot be opened
and places it in the UNAVAIL state. Depending on the data replication level of the pool, this
might or might not result in the entire pool becoming unavailable. If one disk in a mirrored or
RAID-Z device is removed, the pool continues to be accessible. If all components of a mirror are
removed, if more than one device in a RAID-Z device is removed, or if a single-disk, top-level
device is removed, the pool becomes FAULTED. No data is accessible until the device is
reattached.

Damaged Devices in a ZFS Storage Pool
The term “damaged” covers a wide variety of possible errors. Examples include the following
errors:

■ Transient I/O errors due to a bad disk or controller
■ On-disk data corruption due to cosmic rays
■ Driver bugs resulting in data being transferred to or from the wrong location
■ Simply another user overwriting portions of the physical device by accident

In some cases, these errors are transient, such as a random I/O error while the controller is
having problems. In other cases, the damage is permanent, such as on-disk corruption. Even
still, whether the damage is permanent does not necessarily indicate that the error is likely to
occur again. For example, if an administrator accidentally overwrites part of a disk, no type of
hardware failure has occurred, and the device need not be replaced. Identifying exactly what
went wrong with a device is not an easy task and is covered in more detail in a later section.

Corrupted ZFS Data
Data corruption occurs when one or more device errors (indicating missing or damaged
devices) affects a top-level virtual device. For example, one half of a mirror can experience
thousands of device errors without ever causing data corruption. If an error is encountered on
the other side of the mirror in the exact same location, corrupted data will be the result.

Data corruption is always permanent and requires special consideration during repair. Even if
the underlying devices are repaired or replaced, the original data is lost forever. Most often this
scenario requires restoring data from backups. Data errors are recorded as they are
encountered, and can be controlled through routine disk scrubbing as explained in the
following section. When a corrupted block is removed, the next scrubbing pass recognizes that
the corruption is no longer present and removes any trace of the error from the system.

ZFS Failure Modes

Solaris ZFS Administration Guide • September 2008240

Checking ZFS Data Integrity
No fsck utility equivalent exists for ZFS. This utility has traditionally served two purposes, data
repair and data validation.

Data Repair
With traditional file systems, the way in which data is written is inherently vulnerable to
unexpected failure causing data inconsistencies. Because a traditional file system is not
transactional, unreferenced blocks, bad link counts, or other inconsistent data structures are
possible. The addition of journaling does solve some of these problems, but can introduce
additional problems when the log cannot be rolled back. With ZFS, none of these problems
exist. The only way for inconsistent data to exist on disk is through hardware failure (in which
case the pool should have been redundant) or a bug exists in the ZFS software.

Given that the fsck utility is designed to repair known pathologies specific to individual file
systems, writing such a utility for a file system with no known pathologies is impossible. Future
experience might prove that certain data corruption problems are common enough and simple
enough such that a repair utility can be developed, but these problems can always be avoided by
using redundant pools.

If your pool is not redundant, the chance that data corruption can render some or all of your
data inaccessible is always present.

Data Validation
In addition to data repair, the fsck utility validates that the data on disk has no problems.
Traditionally, this task is done by unmounting the file system and running the fsck utility,
possibly taking the system to single-user mode in the process. This scenario results in downtime
that is proportional to the size of the file system being checked. Instead of requiring an explicit
utility to perform the necessary checking, ZFS provides a mechanism to perform routine
checking of all data. This functionality, known as scrubbing, is commonly used in memory and
other systems as a method of detecting and preventing errors before they result in hardware or
software failure.

Controlling ZFS Data Scrubbing
Whenever ZFS encounters an error, either through scrubbing or when accessing a file on
demand, the error is logged internally so that you can get a quick overview of all known errors
within the pool.

Checking ZFS Data Integrity

Chapter 11 • ZFS Troubleshooting and Data Recovery 241

Explicit ZFS Data Scrubbing
The simplest way to check your data integrity is to initiate an explicit scrubbing of all data
within the pool. This operation traverses all the data in the pool once and verifies that all blocks
can be read. Scrubbing proceeds as fast as the devices allow, though the priority of any I/O
remains below that of normal operations. This operation might negatively impact performance,
though the file system should remain usable and nearly as responsive while the scrubbing
occurs. To initiate an explicit scrub, use the zpool scrub command. For example:

zpool scrub tank

The status of the current scrub can be displayed in the zpool status output. For example:

zpool status -v tank

pool: tank

state: ONLINE

scrub: scrub completed after 0h13m with 0 errors on Thu Aug 28 09:57:41 2008

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror ONLINE 0 0 0

c1t0d0 ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

errors: No known data errors

Note that only one active scrubbing operation per pool can occur at one time.

You can stop a scrub that is in progress by using the -s option. For example:

zpool scrub -s tank

In most cases, a scrub operation to ensure data integrity should continue to completion. Stop a
scrub at your own discretion if system performance is impacted by a scrub operation.

Performing routine scrubbing also guarantees continuous I/O to all disks on the system.
Routine scrubbing has the side effect of preventing power management from placing idle disks
in low-power mode. If the system is generally performing I/O all the time, or if power
consumption is not a concern, then this issue can safely be ignored.

For more information about interpreting zpool status output, see “Querying ZFS Storage
Pool Status” on page 116.

ZFS Data Scrubbing and Resilvering
When a device is replaced, a resilvering operation is initiated to move data from the good copies
to the new device. This action is a form of disk scrubbing. Therefore, only one such action can

Checking ZFS Data Integrity

Solaris ZFS Administration Guide • September 2008242

happen at a given time in the pool. If a scrubbing operation is in progress, a resilvering
operation suspends the current scrubbing, and restarts it after the resilvering is complete.

For more information about resilvering, see “Viewing Resilvering Status” on page 256.

Identifying Problems in ZFS
The following sections describe how to identify problems in your ZFS file systems or storage
pools.

■ “Determining if Problems Exist in a ZFS Storage Pool” on page 244
■ “Reviewing zpool status Output” on page 244
■ “System Reporting of ZFS Error Messages” on page 247

You can use the following features to identify problems with your ZFS configuration:

■ Detailed ZFS storage pool information with the zpool status command
■ Pool and device failures are reported with ZFS/FMA diagnostic messages
■ Previous ZFS commands that modified pool state information can be displayed with the

zpool history command

Most ZFS troubleshooting is centered around the zpool status command. This command
analyzes the various failures in the system and identifies the most severe problem, presenting
you with a suggested action and a link to a knowledge article for more information. Note that
the command only identifies a single problem with the pool, though multiple problems can
exist. For example, data corruption errors always imply that one of the devices has failed.
Replacing the failed device does not fix the data corruption problems.

In addition, a ZFS diagnostic engine is provided to diagnose and report pool failures and device
failures. Checksum, I/O, device, and pool errors associated with pool or device failures are also
reported. ZFS failures as reported by fmd are displayed on the console as well as the system
messages file. In most cases, the fmd message directs you to the zpool status command for
further recovery instructions.

The basic recovery process is as follows:

■ If appropriate, use the zpool history command to identify the previous ZFS commands
that led up to the error scenario. For example:

zpool history

History for ’tank’:

2007-04-25.10:19:42 zpool create tank mirror c0t8d0 c0t9d0 c0t10d0

2007-04-25.10:19:45 zfs create tank/erick

2007-04-25.10:19:55 zfs set checksum=off tank/erick

Notice in the above output that checksums are disabled for the tank/erick file system. This
configuration is not recommended.

Identifying Problems in ZFS

Chapter 11 • ZFS Troubleshooting and Data Recovery 243

■ Identify the errors through the fmd messages that are displayed on the system console or in
the /var/adm/messages files.

■ Find further repair instructions in the zpool status -x command.
■ Repair the failures, such as:

■ Replace the faulted or missing device and bring it online.
■ Restore the faulted configuration or corrupted data from a backup.
■ Verify the recovery by using the zpool status -x command.
■ Back up your restored configuration, if applicable.

This chapter describes how to interpret zpool status output in order to diagnose the type of
failure and directs you to one of the following sections on how to repair the problem. While
most of the work is performed automatically by the command, it is important to understand
exactly what problems are being identified in order to diagnose the type of failure.

Determining if Problems Exist in a ZFS Storage Pool
The easiest way to determine if any known problems exist on the system is to use the zpool
status -x command. This command describes only pools exhibiting problems. If no bad pools
exist on the system, then the command displays a simple message, as follows:

zpool status -x

all pools are healthy

Without the -x flag, the command displays the complete status for all pools (or the requested
pool, if specified on the command line), even if the pools are otherwise healthy.

For more information about command-line options to the zpool status command, see
“Querying ZFS Storage Pool Status” on page 116.

Reviewing zpool status Output
The complete zpool status output looks similar to the following:

zpool status tank

pool: tank

state: DEGRADED

status: One or more devices has been taken offline by the administrator.

Sufficient replicas exist for the pool to continue functioning in a

degraded state.

action: Online the device using ’zpool online’ or replace the device with

’zpool replace’.

scrub: none requested

config:

Identifying Problems in ZFS

Solaris ZFS Administration Guide • September 2008244

NAME STATE READ WRITE CKSUM

tank DEGRADED 0 0 0

mirror DEGRADED 0 0 0

c1t0d0 ONLINE 0 0 0

c1t1d0 OFFLINE 0 0 0

errors: No known data errors

This output is divided into several sections:

Overall Pool Status Information
This header section in the zpool status output contains the following fields, some of which are
only displayed for pools exhibiting problems:

pool The name of the pool.

state The current health of the pool. This information refers only to the ability of the pool
to provide the necessary replication level. Pools that are ONLINE might still have
failing devices or data corruption.

status A description of what is wrong with the pool. This field is omitted if no problems
are found.

action A recommended action for repairing the errors. This field is an abbreviated form
directing the user to one of the following sections. This field is omitted if no
problems are found.

see A reference to a knowledge article containing detailed repair information. Online
articles are updated more often than this guide can be updated, and should always
be referenced for the most up-to-date repair procedures. This field is omitted if no
problems are found.

scrub Identifies the current status of a scrub operation, which might include the date and
time that the last scrub was completed, a scrub in progress, or if no scrubbing was
requested.

errors Identifies known data errors or the absence of known data errors.

Configuration Information
The config field in the zpool status output describes the configuration layout of the devices
comprising the pool, as well as their state and any errors generated from the devices. The state
can be one of the following: ONLINE, FAULTED, DEGRADED, UNAVAILABLE, or OFFLINE. If the state is
anything but ONLINE, the fault tolerance of the pool has been compromised.

The second section of the configuration output displays error statistics. These errors are divided
into three categories:

Identifying Problems in ZFS

Chapter 11 • ZFS Troubleshooting and Data Recovery 245

■ READ – I/O errors occurred while issuing a read request.
■ WRITE – I/O errors occurred while issuing a write request.
■ CKSUM – Checksum errors. The device returned corrupted data as the result of a read request.

These errors can be used to determine if the damage is permanent. A small number of I/O
errors might indicate a temporary outage, while a large number might indicate a permanent
problem with the device. These errors do not necessarily correspond to data corruption as
interpreted by applications. If the device is in a redundant configuration, the disk devices might
show uncorrectable errors, while no errors appear at the mirror or RAID-Z device level. If this
scenario is the case, then ZFS successfully retrieved the good data and attempted to heal the
damaged data from existing replicas.

For more information about interpreting these errors to determine device failure, see
“Determining the Type of Device Failure” on page 250.

Finally, additional auxiliary information is displayed in the last column of the zpool status
output. This information expands on the state field, aiding in diagnosis of failure modes. If a
device is FAULTED, this field indicates whether the device is inaccessible or whether the data on
the device is corrupted. If the device is undergoing resilvering, this field displays the current
progress.

For more information about monitoring resilvering progress, see “Viewing Resilvering Status”
on page 256.

Scrubbing Status
The third section of the zpool status output describes the current status of any explicit scrubs.
This information is distinct from whether any errors are detected on the system, though this
information can be used to determine the accuracy of the data corruption error reporting. If the
last scrub ended recently, most likely, any known data corruption has been discovered.

For more information about data scrubbing and how to interpret this information, see
“Checking ZFS Data Integrity” on page 241.

Data Corruption Errors
The zpool status command also shows whether any known errors are associated with the
pool. These errors might have been found during disk scrubbing or during normal operation.
ZFS maintains a persistent log of all data errors associated with the pool. This log is rotated
whenever a complete scrub of the system finishes.

Data corruption errors are always fatal. Their presence indicates that at least one application
experienced an I/O error due to corrupt data within the pool. Device errors within a redundant
pool do not result in data corruption and are not recorded as part of this log. By default, only the

Identifying Problems in ZFS

Solaris ZFS Administration Guide • September 2008246

number of errors found is displayed. A complete list of errors and their specifics can be found
by using the zpool status -v option. For example:

zpool status -v

pool: tank

state: DEGRADED

status: One or more devices has experienced an error resulting in data

corruption. Applications may be affected.

action: Restore the file in question if possible. Otherwise restore the

entire pool from backup.

see: http://www.sun.com/msg/ZFS-8000-8A

scrub: resilver completed with 1 errors on Thu Aug 28 09:58:22 MDT 2008

config:

NAME STATE READ WRITE CKSUM

tank DEGRADED 0 0 1

mirror DEGRADED 0 0 1

c1t0d0 ONLINE 0 0 2

c1t1d0 UNAVAIL 0 0 0 corrupted data

errors: The following persistent errors have been detected:

DATASET OBJECT RANGE

5 0 lvl=4294967295 blkid=0

A similar message is also displayed by fmd on the system console and the /var/adm/messages
file. These messages can also be tracked by using the fmdump command.

For more information about interpreting data corruption errors, see “Identifying the Type of
Data Corruption” on page 258.

System Reporting of ZFS Error Messages
In addition to persistently keeping track of errors within the pool, ZFS also displays syslog
messages when events of interest occur. The following scenarios generate events to notify the
administrator:

■ Device state transition – If a device becomes FAULTED, ZFS logs a message indicating that
the fault tolerance of the pool might be compromised. A similar message is sent if the device
is later brought online, restoring the pool to health.

■ Data corruption – If any data corruption is detected, ZFS logs a message describing when
and where the corruption was detected. This message is only logged the first time it is
detected. Subsequent accesses do not generate a message.

Identifying Problems in ZFS

Chapter 11 • ZFS Troubleshooting and Data Recovery 247

■ Pool failures and device failures – If a pool failure or device failure occurs, the fault
manager daemon reports these errors through syslog messages as well as the fmdump
command.

If ZFS detects a device error and automatically recovers from it, no notification occurs. Such
errors do not constitute a failure in the pool redundancy or data integrity. Moreover, such
errors are typically the result of a driver problem accompanied by its own set of error messages.

Repairing a Damaged ZFS Configuration
ZFS maintains a cache of active pools and their configuration on the root file system. If this file
is corrupted or somehow becomes out of sync with what is stored on disk, the pool can no
longer be opened. ZFS tries to avoid this situation, though arbitrary corruption is always
possible given the qualities of the underlying file system and storage. This situation typically
results in a pool disappearing from the system when it should otherwise be available. This
situation can also manifest itself as a partial configuration that is missing an unknown number
of top-level virtual devices. In either case, the configuration can be recovered by exporting the
pool (if it is visible at all), and re-importing it.

For more information about importing and exporting pools, see “Migrating ZFS Storage Pools”
on page 123.

Repairing a Missing Device
If a device cannot be opened, it displays as UNAVAILABLE in the zpool status output. This
status means that ZFS was unable to open the device when the pool was first accessed, or the
device has since become unavailable. If the device causes a top-level virtual device to be
unavailable, then nothing in the pool can be accessed. Otherwise, the fault tolerance of the pool
might be compromised. In either case, the device simply needs to be reattached to the system to
restore normal operation.

For example, you might see a message similar to the following from fmd after a device failure:

SUNW-MSG-ID: ZFS-8000-FD, TYPE: Fault, VER: 1, SEVERITY: Major

EVENT-TIME: Fri Aug 22 13:01:15 MDT 2008

PLATFORM: SUNW,Ultra-Enterprise, CSN: -, HOSTNAME: neo

SOURCE: zfs-diagnosis, REV: 1.0

EVENT-ID: 1f4f33d6-4973-4884-d494-a29b284d9554

DESC: The number of I/O errors associated with a ZFS device exceeded acceptable levels.

Refer to http://sun.com/msg/ZFS-8000-FD for more information.

AUTO-RESPONSE: The device has been offlined and marked as faulted. An attempt

will be made to activate a hot spare if available.

Repairing a Damaged ZFS Configuration

Solaris ZFS Administration Guide • September 2008248

IMPACT: Fault tolerance of the pool may be compromised.

REC-ACTION: Run ’zpool status -x’ and replace the bad device.

The next step is to use the zpool status -x command to view more detailed information about
the device problem and the resolution. For example:

You can see from this output that the missing device c0t1d0 is not functioning. If you
determine that the drive is faulty, replace the device.

Then, use the zpool online command to online the replaced device. For example:

zpool online tank c0t1d0

Confirm that the pool with the replaced device is healthy.

zpool status -x tank

pool ’tank’ is healthy

Physically Reattaching the Device
Exactly how a missing device is reattached depends on the device in question. If the device is a
network-attached drive, connectivity should be restored. If the device is a USB or other
removable media, it should be reattached to the system. If the device is a local disk, a controller
might have failed such that the device is no longer visible to the system. In this case, the
controller should be replaced at which point the disks will again be available. Other pathologies
can exist and depend on the type of hardware and its configuration. If a drive fails and it is no
longer visible to the system (an unlikely event), the device should be treated as a damaged
device. Follow the procedures outlined in “Repairing a Damaged Device” on page 250.

Notifying ZFS of Device Availability
Once a device is reattached to the system, ZFS might or might not automatically detect its
availability. If the pool was previously faulted, or the system was rebooted as part of the attach
procedure, then ZFS automatically rescans all devices when it tries to open the pool. If the pool
was degraded and the device was replaced while the system was up, you must notify ZFS that the
device is now available and ready to be reopened by using the zpool online command. For
example:

zpool online tank c0t1d0

For more information about bringing devices online, see “Bringing a Device Online” on
page 107.

Repairing a Missing Device

Chapter 11 • ZFS Troubleshooting and Data Recovery 249

Repairing a Damaged Device
This section describes how to determine device failure types, clear transient errors, and replace
a device.

Determining the Type of Device Failure
The term damaged device is rather vague, and can describe a number of possible situations:

■ Bit rot – Over time, random events, such as magnetic influences and cosmic rays, can cause
bits stored on disk to flip in unpredictable events. These events are relatively rare but
common enough to cause potential data corruption in large or long-running systems. These
errors are typically transient.

■ Misdirected reads or writes – Firmware bugs or hardware faults can cause reads or writes of
entire blocks to reference the incorrect location on disk. These errors are typically transient,
though a large number might indicate a faulty drive.

■ Administrator error – Administrators can unknowingly overwrite portions of the disk with
bad data (such as copying /dev/zero over portions of the disk) that cause permanent
corruption on disk. These errors are always transient.

■ Temporary outage– A disk might become unavailable for a period of time, causing I/Os to
fail. This situation is typically associated with network-attached devices, though local disks
can experience temporary outages as well. These errors might or might not be transient.

■ Bad or flaky hardware – This situation is a catch-all for the various problems that bad
hardware exhibits. This could be consistent I/O errors, faulty transports causing random
corruption, or any number of failures. These errors are typically permanent.

■ Offlined device – If a device is offline, it is assumed that the administrator placed the device
in this state because it is presumed faulty. The administrator who placed the device in this
state can determine is this assumption is accurate.

Determining exactly what is wrong can be a difficult process. The first step is to examine the
error counts in the zpool status output as follows:

zpool status -v pool

The errors are divided into I/O errors and checksum errors, both of which might indicate the
possible failure type. Typical operation predicts a very small number of errors (just a few over
long periods of time). If you are seeing large numbers of errors, then this situation probably
indicates impending or complete device failure. However, the pathology for administrator error
can result in large error counts. The other source of information is the system log. If the log
shows a large number of SCSI or fibre channel driver messages, then this situation probably
indicates serious hardware problems. If no syslog messages are generated, then the damage is
likely transient.

Repairing a Damaged Device

Solaris ZFS Administration Guide • September 2008250

The goal is to answer the following question:

Is another error likely to occur on this device?

Errors that happen only once are considered transient, and do not indicate potential failure.
Errors that are persistent or severe enough to indicate potential hardware failure are considered
“fatal.” The act of determining the type of error is beyond the scope of any automated software
currently available with ZFS, and so much must be done manually by you, the administrator.
Once the determination is made, the appropriate action can be taken. Either clear the transient
errors or replace the device due to fatal errors. These repair procedures are described in the next
sections.

Even if the device errors are considered transient, it still may have caused uncorrectable data
errors within the pool. These errors require special repair procedures, even if the underlying
device is deemed healthy or otherwise repaired. For more information on repairing data errors,
see “Repairing Damaged Data” on page 257.

Clearing Transient Errors
If the device errors are deemed transient, in that they are unlikely to effect the future health of
the device, then the device errors can be safely cleared to indicate that no fatal error occurred.
To clear error counters for RAID-Z or mirrored devices, use the zpool clear command. For
example:

zpool clear tank c1t0d0

This syntax clears any errors associated with the device and clears any data error counts
associated with the device.

To clear all errors associated with the virtual devices in the pool, and clear any data error counts
associated with the pool, use the following syntax:

zpool clear tank

For more information about clearing pool errors, see “Clearing Storage Pool Devices” on
page 108.

Replacing a Device in a ZFS Storage Pool
If device damage is permanent or future permanent damage is likely, the device must be
replaced. Whether the device can be replaced depends on the configuration.

■ “Determining if a Device Can Be Replaced” on page 252

Repairing a Damaged Device

Chapter 11 • ZFS Troubleshooting and Data Recovery 251

■ “Devices That Cannot be Replaced” on page 253
■ “Replacing a Device in a ZFS Storage Pool” on page 253
■ “Viewing Resilvering Status” on page 256

Determining if a Device Can Be Replaced
For a device to be replaced, the pool must be in the ONLINE state. The device must be part of a
redundant configuration, or it must be healthy (in the ONLINE state). If the disk is part of a
redundant configuration, sufficient replicas from which to retrieve good data must exist. If two
disks in a four-way mirror are faulted, then either disk can be replaced because healthy replicas
are available. However, if two disks in a four-way RAID-Z device are faulted, then neither disk
can be replaced because not enough replicas from which to retrieve data exist. If the device is
damaged but otherwise online, it can be replaced as long as the pool is not in the FAULTED state.
However, any bad data on the device is copied to the new device unless there are sufficient
replicas with good data.

In the following configuration, the disk c1t1d0 can be replaced, and any data in the pool is
copied from the good replica, c1t0d0.

mirror DEGRADED

c1t0d0 ONLINE

c1t1d0 FAULTED

The disk c1t0d0 can also be replaced, though no self-healing of data can take place because no
good replica is available.

In the following configuration, neither of the faulted disks can be replaced. The ONLINE disks
cannot be replaced either, because the pool itself is faulted.

raidz FAULTED

c1t0d0 ONLINE

c2t0d0 FAULTED

c3t0d0 FAULTED

c3t0d0 ONLINE

In the following configuration, either top-level disk can be replaced, though any bad data
present on the disk is copied to the new disk.

c1t0d0 ONLINE

c1t1d0 ONLINE

If either disk were faulted, then no replacement could be performed because the pool itself
would be faulted.

Repairing a Damaged Device

Solaris ZFS Administration Guide • September 2008252

Devices That Cannot be Replaced
If the loss of a device causes the pool to become faulted, or the device contains too many data
errors in an non-redundant configuration, then the device cannot safely be replaced. Without
sufficient redundancy, no good data with which to heal the damaged device exists. In this case,
the only option is to destroy the pool and re-create the configuration, restoring your data in the
process.

For more information about restoring an entire pool, see “Repairing ZFS Storage Pool-Wide
Damage” on page 260.

Replacing a Device in a ZFS Storage Pool
Once you have determined that a device can be replaced, use the zpool replace command to
replace the device. If you are replacing the damaged device with another different device, use
the following command:

zpool replace tank c1t0d0 c2t0d0

This command begins migrating data to the new device from the damaged device, or other
devices in the pool if it is in a redundant configuration. When the command is finished, it
detaches the damaged device from the configuration, at which point the device can be removed
from the system. If you have already removed the device and replaced it with a new device in the
same location, use the single device form of the command. For example:

zpool replace tank c1t0d0

This command takes an unformatted disk, formats it appropriately, and then begins resilvering
data from the rest of the configuration.

For more information about the zpool replace command, see “Replacing Devices in a Storage
Pool” on page 108.

EXAMPLE 11–1 Replacing a Device in a ZFS Storage Pool

The following example shows how to replace a device (c1t3d0) in the mirrored storage pool
tank on a Sun Fire x4500 system. If you are going to replace the disk c1t3d0 with a new disk at
the same location (c1t3d0), then unconfigure the disk before you attempt to replace it. The
basic steps are as follows:

■ Offline the disk to be replaced first. You cannot unconfigure a disk that is currently being
used.

■ Identify the disk (c1t3d0) to be unconfigured and unconfigure it. The pool will be degraded
with the disk offlined in this mirrored configuration but the pool will continue to be
available.

Repairing a Damaged Device

Chapter 11 • ZFS Troubleshooting and Data Recovery 253

EXAMPLE 11–1 Replacing a Device in a ZFS Storage Pool (Continued)

■ Physically replace the disk (c1t3d0). Make sure that the blue "Ready to Remove" LED is
illuminated before you physically remove the faulted drive.

■ Reconfigure the disk (c1t3d0).
■ Bring the disk (c1t3d0) back online.
■ Run the zpool replace command to replace the disk (c1t3d0).

Note – If you had previously set the pool property autoreplace=on, then any new device,
found in the same physical location as a device that previously belonged to the pool, is
automatically formatted and replaced without using the zpool replace command. This
feature might not be supported on all hardware.

zpool offline tank c1t3d0

cfgadm | grep c1t3d0

sata1/3::dsk/c1t3d0 disk connected configured ok

cfgadm -c unconfigure sata1/3

Unconfigure the device at: /devices/pci@0,0/pci1022,7458@2/pci11ab,11ab@1:3

This operation will suspend activity on the SATA device

Continue (yes/no)? yes

cfgadm | grep sata1/3

sata1/3 disk connected unconfigured ok

<Replace the physical disk c1t3d0>

cfgadm -c configure sata1/3

cfgadm | grep sata3/7

sata3/7::dsk/c5t7d0 disk connected configured ok

zpool online tank c1t3d0

zpool replace tank c1t3d0

zpool status

pool: tank

state: ONLINE

scrub: resilver completed after 0h0m with 0 errors on Tue Apr 22 14:44:46 2008

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror ONLINE 0 0 0

c0t1d0 ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

mirror ONLINE 0 0 0

c0t2d0 ONLINE 0 0 0

c1t2d0 ONLINE 0 0 0

mirror ONLINE 0 0 0

c0t3d0 ONLINE 0 0 0

Repairing a Damaged Device

Solaris ZFS Administration Guide • September 2008254

EXAMPLE 11–1 Replacing a Device in a ZFS Storage Pool (Continued)

c1t3d0 ONLINE 0 0 0

errors: No known data errors

Note that the preceding zpool output might show both the new and old disks under a replacing
heading. For example:

replacing DEGRADED 0 0 0

c1t3d0s0/o FAULTED 0 0 0

c1t3d0 ONLINE 0 0 0

This text means that the replacement process is progress and the new disk is being resilvered.

If you are going to replace a disk (c1t3d0) with another disk (c4t3d0), then you only need to
run the zpool replace command after the disk is physically replaced. For example:

zpool replace tank c1t3d0 c4t3d0

zpool status

pool: tank

state: DEGRADED

scrub: resilver completed after 0h0m with 0 errors on Tue Apr 22 14:54:50 2008

config:

NAME STATE READ WRITE CKSUM

tank DEGRADED 0 0 0

mirror ONLINE 0 0 0

c0t1d0 ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

mirror ONLINE 0 0 0

c0t2d0 ONLINE 0 0 0

c1t2d0 ONLINE 0 0 0

mirror DEGRADED 0 0 0

c0t3d0 ONLINE 0 0 0

replacing DEGRADED 0 0 0

c1t3d0 OFFLINE 0 0 0

c4t3d0 ONLINE 0 0 0

errors: No known data errors

You might have to run the zpool status command several times until the disk replacement is
complete.

zpool status tank

pool: tank

state: ONLINE

Repairing a Damaged Device

Chapter 11 • ZFS Troubleshooting and Data Recovery 255

EXAMPLE 11–1 Replacing a Device in a ZFS Storage Pool (Continued)

scrub: resilver completed after 0h0m with 0 errors on Tue Apr 22 14:54:50 2008

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror ONLINE 0 0 0

c0t1d0 ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

mirror ONLINE 0 0 0

c0t2d0 ONLINE 0 0 0

c1t2d0 ONLINE 0 0 0

mirror ONLINE 0 0 0

c0t3d0 ONLINE 0 0 0

c4t3d0 ONLINE 0 0 0

Viewing Resilvering Status
The process of replacing a drive can take an extended period of time, depending on the size of
the drive and the amount of data in the pool. The process of moving data from one device to
another device is known as resilvering, and can be monitored by using the zpool status
command.

Traditional file systems resilver data at the block level. Because ZFS eliminates the artificial
layering of the volume manager, it can perform resilvering in a much more powerful and
controlled manner. The two main advantages of this feature are as follows:

■ ZFS only resilvers the minimum amount of necessary data. In the case of a short outage (as
opposed to a complete device replacement), the entire disk can be resilvered in a matter of
minutes or seconds, rather than resilvering the entire disk, or complicating matters with
“dirty region” logging that some volume managers support. When an entire disk is replaced,
the resilvering process takes time proportional to the amount of data used on disk.
Replacing a 500-Gbyte disk can take seconds if only a few gigabytes of used space is in the
pool.

■ Resilvering is interruptible and safe. If the system loses power or is rebooted, the resilvering
process resumes exactly where it left off, without any need for manual intervention.

To view the resilvering process, use the zpool status command. For example:

zpool status tank

pool: tank

state: ONLINE

status: One or more devices is currently being resilvered. The pool will

continue to function, possibly in a degraded state.

action: Wait for the resilver to complete.

Repairing a Damaged Device

Solaris ZFS Administration Guide • September 2008256

scrub: resilver in progress for 0h2m, 16.43% done, 0h13m to go

config:

NAME STATE READ WRITE CKSUM

tank DEGRADED 0 0 0

mirror DEGRADED 0 0 0

replacing DEGRADED 0 0 0

c1t0d0 ONLINE 0 0 0

c2t0d0 ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

In this example, the disk c1t0d0 is being replaced by c2t0d0. This event is observed in the status
output by presence of the replacing virtual device in the configuration. This device is not real,
nor is it possible for you to create a pool by using this virtual device type. The purpose of this
device is solely to display the resilvering process, and to identify exactly which device is being
replaced.

Note that any pool currently undergoing resilvering is placed in the ONLINE or DEGRADED state,
because the pool cannot provide the desired level of redundancy until the resilvering process is
complete. Resilvering proceeds as fast as possible, though the I/O is always scheduled with a
lower priority than user-requested I/O, to minimize impact on the system. Once the resilvering
is complete, the configuration reverts to the new, complete, configuration. For example:

zpool status tank

pool: tank

state: ONLINE

scrub: resilver completed after 0h2m with 0 errors on Thu Aug 28 09:50:11 2008

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror ONLINE 0 0 0

c2t0d0 ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

errors: No known data errors

The pool is once again ONLINE, and the original bad disk (c1t0d0) has been removed from the
configuration.

Repairing Damaged Data
The following sections describe how to identify the type of data corruption and how to repair
the data, if possible.

■ “Identifying the Type of Data Corruption” on page 258

Repairing Damaged Data

Chapter 11 • ZFS Troubleshooting and Data Recovery 257

■ “Repairing a Corrupted File or Directory” on page 259
■ “Repairing ZFS Storage Pool-Wide Damage” on page 260

ZFS uses checksumming, redundancy, and self-healing data to minimize the chances of data
corruption. Nonetheless, data corruption can occur if the pool isn't redundant, if corruption
occurred while the pool was degraded, or an unlikely series of events conspired to corrupt
multiple copies of a piece of data. Regardless of the source, the result is the same: The data is
corrupted and therefore no longer accessible. The action taken depends on the type of data
being corrupted, and its relative value. Two basic types of data can be corrupted:

■ Pool metadata – ZFS requires a certain amount of data to be parsed to open a pool and
access datasets. If this data is corrupted, the entire pool or complete portions of the dataset
hierarchy will become unavailable.

■ Object data – In this case, the corruption is within a specific file or directory. This problem
might result in a portion of the file or directory being inaccessible, or this problem might
cause the object to be broken altogether.

Data is verified during normal operation as well as through scrubbing. For more information
about how to verify the integrity of pool data, see “Checking ZFS Data Integrity” on page 241.

Identifying the Type of Data Corruption
By default, the zpool status command shows only that corruption has occurred, but not
where this corruption occurred. For example:

zpool status

pool: monkey

state: ONLINE

status: One or more devices has experienced an error resulting in data

corruption. Applications may be affected.

action: Restore the file in question if possible. Otherwise restore the

entire pool from backup.

see: http://www.sun.com/msg/ZFS-8000-8A

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

monkey ONLINE 0 0 0

c1t1d0s6 ONLINE 0 0 0

c1t1d0s7 ONLINE 0 0 0

errors: 8 data errors, use ’-v’ for a list

Each error indicates only that an error occurred at the given point in time. Each error is not
necessarily still present on the system. Under normal circumstances, this situation is true.

Repairing Damaged Data

Solaris ZFS Administration Guide • September 2008258

Certain temporary outages might result in data corruption that is automatically repaired once
the outage ends. A complete scrub of the pool is guaranteed to examine every active block in the
pool, so the error log is reset whenever a scrub finishes. If you determine that the errors are no
longer present, and you don't want to wait for a scrub to complete, reset all errors in the pool by
using the zpool online command.

If the data corruption is in pool-wide metadata, the output is slightly different. For example:

zpool status -v morpheus

pool: morpheus

id: 1422736890544688191

state: FAULTED

status: The pool metadata is corrupted.

action: The pool cannot be imported due to damaged devices or data.

see: http://www.sun.com/msg/ZFS-8000-72

config:

morpheus FAULTED corrupted data

c1t10d0 ONLINE

In the case of pool-wide corruption, the pool is placed into the FAULTED state, because the pool
cannot possibly provide the needed redundancy level.

Repairing a Corrupted File or Directory
If a file or directory is corrupted, the system might still be able to function depending on the
type of corruption. Any damage is effectively unrecoverable if no good copies of the data exist
anywhere on the system. If the data is valuable, you have no choice but to restore the affected
data from backup. Even so, you might be able to recover from this corruption without restoring
the entire pool.

If the damage is within a file data block, then the file can safely be removed, thereby clearing the
error from the system. Use the zpool status -v command to display a list of filenames with
persistent errors. For example:

zpool status -v

pool: monkey

state: ONLINE

status: One or more devices has experienced an error resulting in data

corruption. Applications may be affected.

action: Restore the file in question if possible. Otherwise restore the

entire pool from backup.

see: http://www.sun.com/msg/ZFS-8000-8A

scrub: none requested

config:

Repairing Damaged Data

Chapter 11 • ZFS Troubleshooting and Data Recovery 259

NAME STATE READ WRITE CKSUM

monkey ONLINE 0 0 0

c1t1d0s6 ONLINE 0 0 0

c1t1d0s7 ONLINE 0 0 0

errors: Permanent errors have been detected in the following files:

/monkey/a.txt

/monkey/bananas/b.txt

/monkey/sub/dir/d.txt

/monkey/ghost/e.txt

/monkey/ghost/boo/f.txt

The preceding output is described as follows:

■ If the full path to the file is found and the dataset is mounted, the full path to the file is
displayed. For example:

/monkey/a.txt

■ If the full path to the file is found, but the dataset is not mounted, then the dataset name with
no preceding slash (/), followed by the path within the dataset to the file, is displayed. For
example:

monkey/ghost/e.txt

■ If the object number to a file path cannot be successfully translated, either due to an error or
because the object doesn't have a real file path associated with it , as is the case for a dnode_t,
then the dataset name followed by the object's number is displayed. For example:

monkey/dnode:<0x0>

■ If an object in the meta-object set (MOS) is corrupted, then a special tag of <metadata>,
followed by the object number, is displayed.

If the corruption is within a directory or a file's metadata, the only choice is to move the file
elsewhere. You can safely move any file or directory to a less convenient location, allowing the
original object to be restored in place.

Repairing ZFS Storage Pool-Wide Damage
If the damage is in pool metadata that damage prevents the pool from being opened, then you
must restore the pool and all its data from backup. The mechanism you use varies widely by the
pool configuration and backup strategy. First, save the configuration as displayed by zpool
status so that you can recreate it once the pool is destroyed. Then, use zpool destroy -f to
destroy the pool. Also, keep a file describing the layout of the datasets and the various locally set

Repairing Damaged Data

Solaris ZFS Administration Guide • September 2008260

properties somewhere safe, as this information will become inaccessible if the pool is ever
rendered inaccessible. With the pool configuration and dataset layout, you can reconstruct your
complete configuration after destroying the pool. The data can then be populated by using
whatever backup or restoration strategy you use.

Repairing an Unbootable System
ZFS is designed to be robust and stable despite errors. Even so, software bugs or certain
unexpected pathologies might cause the system to panic when a pool is accessed. As part of the
boot process, each pool must be opened, which means that such failures will cause a system to
enter into a panic-reboot loop. In order to recover from this situation, ZFS must be informed
not to look for any pools on startup.

ZFS maintains an internal cache of available pools and their configurations in
/etc/zfs/zpool.cache. The location and contents of this file are private and are subject to
change. If the system becomes unbootable, boot to the none milestone by using the
-m milestone=none boot option. Once the system is up, remount your root file system as
writable and then rename or move the /etc/zfs/zpool.cache file to another location. These
actions cause ZFS to forget that any pools exist on the system, preventing it from trying to
access the bad pool causing the problem. You can then proceed to a normal system state by
issuing the svcadm milestone all command. You can use a similar process when booting
from an alternate root to perform repairs.

Once the system is up, you can attempt to import the pool by using the zpool import
command. However, doing so will likely cause the same error that occurred during boot,
because the command uses the same mechanism to access pools. If multiple pools exist on the
system, do the following:

■ Rename or move the zpool.cache file to another location as discussed above.
■ Determine which pool might have issues by using the fmdump -eV command to display the

pools with reported fatal errors.
■ Import the pools one-by-one, skipping the pools that are having issues, as described in the

fmdump output.

Repairing an Unbootable System

Chapter 11 • ZFS Troubleshooting and Data Recovery 261

262

Index

A
accessing

ZFS snapshot
(example of), 172

ACL model, Solaris, differences between ZFS and
traditional file systems, 53

ACL property mode
aclinherit, 137
aclmode, 138

aclinherit property mode, 189
aclmode property mode, 189
ACLs

access privileges, 186
ACL inheritance, 188
ACL inheritance flags, 188
ACL on ZFS directory

detailed description, 192
ACL on ZFS file

detailed description, 191
ACL property modes, 189
aclinherit property mode, 189
aclmode property mode, 189
description, 183
differences from POSIX-draft ACLs, 184
entry types, 186
format description, 184
modifying trivial ACL on ZFS file (verbose mode)

(example of), 193
restoring trivial ACL on ZFS file (verbose mode)

(example of), 197
setting ACL inheritance on ZFS file (verbose mode)

(example of), 199

ACLs (Continued)
setting ACLs on ZFS file (compact mode)

(example of), 210
description, 209

setting ACLs on ZFS file (verbose mode)
description, 192

setting on ZFS files
description, 190

adding
a mirrored log devices (example of), 102
cache devices (example of), 103
devices to ZFS storage pool (zpool add)

(example of), 99
disks to a RAID-Z configuration (example of), 101
ZFS file system to a non-global zone

(example of), 233
ZFS volume to a non-global zone

(example of), 234
adjusting, sizes of swap and dump devices, 78
alternate root pools

creating
(example of), 237

description, 237
importing

(example of), 237
altroot property, description, 114
atime property, description, 138
attaching

devices to ZFS storage pool (zpool attach)
(example of), 104

autoreplace property, description, 115
available property, description, 138

263

available property, description, 115

B
bootblocks, installing with installboot and

installgrub, 80
bootfs property, description, 115
booting

a ZFS BE with boot -L and boot -Z on SPARC
systems, 81

root file system, 79

C
cache devices

considerations for using, 93
creating a pool with (example of), 93

cache devices, adding, (example of), 103
cache devices, removing, (example of), 103
canmount property

description, 138
detailed description, 147

capacity property, description, 115
casesensitivity property, description, 139
checking, ZFS data integrity, 241
checksum, definition, 39
checksum property, description, 139
checksummed data, description, 38
clearing

a device in a ZFS storage pool (zpool clear)
description, 108

device errors (zpool clear)
(example of), 251

clearing a device
ZFS storage pool

(example of), 108
clone, definition, 39
clones

creating
(example of), 174

destroying
(example of), 174

features, 173

command history, zpool history, 29
components of, ZFS storage pool, 85
components of ZFS, naming requirements, 41
compression property, description, 139
compressratio property, description, 139
controlling, data validation (scrubbing), 241
copies property, description, 140
creating

a basic ZFS file system (zpool create)
(example of), 44

a storage pool with cache devices (example of), 93
a storage pool with log devices (example of), 93
a ZFS storage pool (zpool create)

(example of), 44
alternate root pools

(example of), 237
double-parity RAID-Z storage pool (zpool create)

(example of), 92
emulated volume as swap device

(example of), 230
mirrored ZFS storage pool (zpool create)

(example of), 91
single-parity RAID-Z storage pool (zpool create)

(example of), 91
ZFS clone

(example of), 174
ZFS file system, 47

(example of), 134
description, 134

ZFS file system hierarchy, 46
ZFS snapshot

(example of), 170
ZFS storage pool

description, 90
ZFS storage pool (zpool create)

(example of), 90
ZFS volume

(example of), 229
creation property, description, 140

D
data

corrupted, 240

Index

Solaris ZFS Administration Guide • September 2008264

data (Continued)
corruption identified (zpool status -v)

(example of), 247
repair, 241
resilvering

description, 243
scrubbing

(example of), 242
validation (scrubbing), 241

dataset
definition, 40
description, 133

dataset types, description, 151
delegated administration, overview, 215
delegating

dataset to a non-global zone
(example of), 233

permissions (example of), 221
delegating permissions, zfs allow, 218
delegating permissions to a group, (example of), 222
delegating permissions to an individual user, (example

of), 221
delegation property, description, 115
delegation property, disabling, 216
destroying

ZFS clone
(example of), 174

ZFS file system
(example of), 135

ZFS file system with dependents
(example of), 135

ZFS snapshot
(example of), 171

ZFS storage pool
description, 90

ZFS storage pool (zpool destroy)
(example of), 98

detaching
devices to ZFS storage pool (zpool detach)

(example of), 105
detecting

in-use devices
(example of), 95

detecting (Continued)
mismatched replication levels

(example of), 97
determining

if a device can be replaced
description, 252

type of device failure
description, 250

devices property, description, 140
differences between ZFS and traditional file systems

file system granularity, 51
mounting ZFS file systems, 53
new Solaris ACL Model, 53
out of space behavior, 52
traditional volume management, 53
ZFS space accounting, 52

disks, as components of ZFS storage pools, 86
displaying

command history, 29
delegated permissions (example of), 219
detailed ZFS storage pool health status

(example of), 122
health status of storage pools

description of, 120
syslog reporting of ZFS error messages

description, 247
ZFS storage pool health status

(example of), 121
ZFS storage pool I/O statistics

description, 118
ZFS storage pool vdev I/O statistics

(example of), 119
ZFS storage pool-wide I/O statistics

(example of), 119
dry run

ZFS storage pool creation (zpool create -n)
(example of), 97

dynamic striping
description, 89
storage pool feature, 89

Index

265

E
EFI label

description, 86
interaction with ZFS, 86

exec property, description, 140
exporting

ZFS storage pool
(example of), 124

F
failmode property, description, 115
failure modes, 239

corrupted data, 240
damaged devices, 240
missing (faulted) devices, 240

file system, definition, 40
file system granularity, differences between ZFS and

traditional file systems, 51
file system hierarchy, creating, 46
files, as components of ZFS storage pools, 87

G
guid property, description, 115

H
hardware and software requirements, 43
health property, description, 116
hot spares

creating
(example of), 110

description of
(example of), 110

I
identifying

storage requirements, 45

identifying (Continued)
type of data corruption (zpool status -v)

(example of), 258
ZFS storage pool for import (zpool import -a)

(example of), 124
importing

alternate root pools
(example of), 237

ZFS storage pool
(example of), 128

ZFS storage pool from alternate directories (zpool
import -d)
(example of), 126

in-use devices
detecting

(example of), 95
inheriting

ZFS properties (zfs inherit)
description, 153

initial installation of ZFS root file system, (example
of), 59

installing
ZFS root file system

(initial installation), 58
features, 56
JumpStart installation, 64
requirements, 57

installing bootblocks
installboot and installgrup

(example of), 80

J
JumpStart installation

root file system
issues, 67
profile examples, 64

JumpStart profile keywords, ZFS root file system, 65

Index

Solaris ZFS Administration Guide • September 2008266

L
listing

descendents of ZFS file systems
(example of), 151

types of ZFS file systems
(example of), 152

ZFS file systems
(example of), 150

ZFS file systems (zfs list)
(example of), 49

ZFS file systems without header information
(example of), 152

ZFS pool information, 46
ZFS properties (zfs list)

(example of), 154
ZFS properties by source value

(example of), 155
ZFS properties for scripting

(example of), 156
ZFS storage pools

(example of), 117
description, 116

luactivate

root file system
(example of), 72

lucreate

root file system with zones
(example of), 74

ZFS BE from a ZFS BE
(example of), 74

M
migrating

UFS root file system to ZFS root file system
(Solaris Live Upgrade), 67
issues, 69

migrating ZFS storage pools, description, 123
mirror, definition, 40
mirrored configuration

conceptual view, 88
description, 88
redundancy feature, 88

mirrored log devices, creating a pool with (example
of), 93

mirrored log devices, adding, (example of), 102
mirrored storage pool (zpool create), (example

of), 91
mismatched replication levels

detecting
(example of), 97

modifying
trivial ACL on ZFS file (verbose mode)

(example of), 193
mount points

automatic, 157
legacy, 157
managing ZFS

description, 157
mounted property, description, 140
mounting

ZFS file systems
(example of), 159

mounting ZFS file systems
differences between ZFS and traditional file

systems, 53
with NFSv4 mirror mounts (example of), 21

mountpoint
default for ZFS file system, 134
default for ZFS storage pools, 98

mountpoint property, description, 140

N
naming requirements, ZFS components, 41
NFSv4 ACLs

ACL inheritance, 188
ACL inheritance flags, 188
ACL property modes, 189
differences from POSIX-draft ACLs, 184
format description, 184
model

description, 183
NFSv4 mirror mounts, 21
notifying

ZFS of reattached device (zpool online)
(example of), 249

Index

267

O
offlining a device (zpool offline)

ZFS storage pool
(example of), 106

onlining a device
ZFS storage pool (zpool online)

(example of), 107
onlining and offlining devices

ZFS storage pool
description, 106

origin property, description, 141
out of space behavior, differences between ZFS and

traditional file systems, 52

P
permission sets, defined, 215
pool, definition, 40
pooled storage, description, 37
POSIX-draft ACLs, description, 184
properties of ZFS

description, 137
description of heritable properties, 137

Q
quota property, description, 141
quotas and reservations, description, 165

R
RAID-Z, definition, 40
RAID-Z configuration

(example of), 91
conceptual view, 88
double-parity, description, 88
redundancy feature, 88
single-parity, description, 88

RAID-Z configuration, adding disks to, (example
of), 101

read-only properties of ZFS
available, 138

read-only properties of ZFS (Continued)
compression, 139
creation, 140
description, 144
mounted, 140
origin, 141
referenced, 142
type, 143
used, 143

read-only property, description, 141
receiving

ZFS file system data (zfs receive)
(example of), 178

recordsize property
description, 141
detailed description, 148

recovering
destroyed ZFS storage pool

(example of), 129
referenced property, description, 142
refquota property, description, 142
refreservation property, description, 142
removing, cache devices (example of), 103
removing permissions, zfs unallow, 219
renaming

ZFS file system
(example of), 136

ZFS snapshot
(example of), 171

repairing
a damaged ZFS configuration

description, 248
an unbootable system

description, 261
pool-wide damage

description, 261
repairing a corrupted file or directory

description, 259
replacing

a device (zpool replace)
(example of), 108, 253, 256

a missing device
(example of), 248

replication features of ZFS, mirrored or RAID-Z, 88

Index

Solaris ZFS Administration Guide • September 2008268

requirements, for installation and Live Upgrade, 57
reservation property, description, 142
resilvering, definition, 41
resilvering and data scrubbing, description, 243
restoring

trivial ACL on ZFS file (verbose mode)
(example of), 197

rights profiles
for management of ZFS file systems and storage

pools
description, 238

rolling back
ZFS snapshot

(example of), 173

S
saving

ZFS file system data (zfs send)
(example of), 177

scripting
ZFS storage pool output

(example of), 118
scrubbing

(example of), 242
data validation, 241

self-healing data, description, 89
sending and receiving

ZFS file system data
description, 176

separate log devices, considerations for using, 23
settable properties of ZFS

aclinherit, 137
aclmode, 138
atime, 138
canmount, 138

detailed description, 147
casesensitivity, 139
checksum, 139
compression, 139
copies, 140
description, 145
devices, 140
exec, 140

settable properties of ZFS (Continued)
mountpoint, 140
quota, 141
read-only, 141
recordsize, 141

detailed description, 148
refquota, 142
refreservation, 142
reservation, 142
setuid, 142
sharenfs, 143
sharesmb, 143
snapdir, 143
used

detailed description, 145
volblocksize, 144
volsize, 143

detailed description, 148
xattr, 144
zoned, 144

setting
ACL inheritance on ZFS file (verbose mode)

(example of), 199
ACLs on ZFS file (compact mode)

(example of), 210
description, 209

ACLs on ZFS file (verbose mode)
(description, 192

ACLs on ZFS files
description, 190

compression property
(example of), 48

legacy mount points
(example of), 158

mountpoint property, 48
quota property (example of), 48
sharenfs property

(example of), 48
ZFS atime property

(example of), 153
ZFS file system quota (zfs set quota)

example of, 165
ZFS file system reservation

(example of), 167

Index

269

setting (Continued)
ZFS mount points (zfs set mountpoint)

(example of), 158
ZFS quota

(example of), 153
setuid property, description, 142
sharenfs property

description, 143, 161
sharesmb property

(example of), 163
description, 143

sharesmb property, description, detailed, 148
sharing

ZFS file systems
description, 161
example of, 161

sharing ZFS file systems
sharesmb property, 148
with sharesmb property (example of), 163

simplified administration, description, 39
size property, description, 116
snapdir property, description, 143
snapshot

accessing
(example of), 172

creating
(example of), 170

definition, 41
destroying

(example of), 171
features, 169
renaming

(example of), 171
rolling back

(example of), 173
space accounting, 172

Solaris ACLs
ACL inheritance, 188
ACL inheritance flags, 188
ACL property modes, 189
differences from POSIX-draft ACLs, 184
format description, 184
new model

description, 183

Solaris Live Upgrade
for root file system migration, 67
root file system migration issues, 69

storage requirements, identifying, 45
swap and dump devices

adjusting sizes of, 78
description, 78
issues, 78

T
terminology

checksum, 39
clone, 39
dataset, 40
file system, 40
mirror, 40
pool, 40
RAID-Z, 40
resilvering, 41
snapshot, 41
virtual device, 41
volume, 41

traditional volume management, differences between
ZFS and traditional file systems, 53

transactional semantics, description, 37
troubleshooting

clear device errors (zpool clear)
(example of), 251

damaged devices, 240
data corruption identified (zpool status -v)

(example of), 247
determining if a device can be replaced

description, 252
determining if problems exist (zpool status

-x), 244
determining type of data corruption (zpool status

-v)
(example of), 258

determining type of device failure
description, 250

identifying problems, 243
missing (faulted) devices, 240

Index

Solaris ZFS Administration Guide • September 2008270

troubleshooting (Continued)
notifying ZFS of reattached device (zpool online)

(example of), 249
overall pool status information

description, 245
repairing a corrupted file or directory

description, 259
repairing a damaged ZFS configuration, 248
repairing an unbootable system

description, 261
repairing pool-wide damage

description, 261
replacing a device (zpool replace)

(example of), 253, 256
replacing a missing device

(example of), 248
syslog reporting of ZFS error messages, 247
ZFS failure modes, 239

type property, description, 143

U
unmounting

ZFS file systems
(example of), 160

unsharing
ZFS file systems

example of, 162
upgrading

ZFS storage pool
description, 130

used property
description, 143
detailed description, 145

used property, description, 116
user properties of ZFS

(example of), 149
detailed description, 149

V
version property, description, 116
virtual device, definition, 41

virtual devices, as components of ZFS storage pools, 94
volblocksize property, description, 144
volsize property

description, 143
detailed description, 148

volume, definition, 41

W
whole disks, as components of ZFS storage pools, 86

X
xattr property, description, 144

Z
zfs allow

described, 218
displaying delegated permissions, 219

zfs create

(example of), 47, 134
description, 134

ZFS delegated administration, overview, 215
zfs destroy, (example of), 135
zfs destroy -r, (example of), 135
ZFS file system, description, 133
ZFS file systems

ACL on ZFS directory
detailed description, 192

ACL on ZFS file
detailed description, 191

adding ZFS file system to a non-global zone
(example of), 233

adding ZFS volume to a non-global zone
(example of), 234

and NFSv4 mirror mounts, 21
booting a root file system

description, 79
booting a ZFS BE with boot -Land boot -Z

(SPARC example of), 81

Index

271

ZFS file systems (Continued)
checksum

definition, 39
checksummed data

description, 38
clone

creating, 174
destroying, 174
replacing a file system with (example of), 175

clones
definition, 39
description, 173

component naming requirements, 41
creating

(example of), 134
creating a ZFS volume

(example of), 229
creating an ZFS volume as swap device

(example of), 230
dataset

definition, 40
dataset types

description, 151
default mountpoint

(example of), 134
delegating dataset to a non-global zone

(example of), 233
description, 37
destroying

(example of), 135
destroying with dependents

(example of), 135
file system

definition, 40
inheriting property of (zfs inherit)

(example of), 153
initial installation of ZFS root file system, 58
installation and Live Upgrade requirements, 57
installing a root file system, 56
JumpStart installation of root file system, 64
listing

(example of), 150
listing descendents

(example of), 151

ZFS file systems (Continued)
listing properties by source value

(example of), 155
listing properties for scripting

(example of), 156
listing properties of (zfs list)

(example of), 154
listing types of

(example of), 152
listing without header information

(example of), 152
managing automatic mount points, 157
managing legacy mount points

description, 157
managing mount points

description, 157
modifying trivial ACL on ZFS file (verbose mode)

(example of), 193
mounting

(example of), 159
pooled storage

description, 37
property management within a zone

description, 235
receiving data streams (zfs receive)

(example of), 178
renaming

(example of), 136
restoring trivial ACL on ZFS file (verbose mode)

(example of), 197
rights profiles, 238
root file system migration issues, 69
root file system migration with Solaris Live

Upgrade, 67
saving data streams (zfs send)

(example of), 177
sending and receiving

description, 176
setting a reservation

(example of), 167
setting ACL inheritance on ZFS file (verbose mode)

(example of), 199
setting ACLs on ZFS file (compact mode)

(example of), 210

Index

Solaris ZFS Administration Guide • September 2008272

ZFS file systems, setting ACLs on ZFS file (compact
mode) (Continued)

description, 209
setting ACLs on ZFS file (verbose mode)

description, 192
setting ACLs on ZFS files

description, 190
setting atime property

(example of), 153
setting legacy mount point

(example of), 158
setting mount point (zfs set mountpoint)

(example of), 158
setting quota property

(example of), 153
sharing

description, 161
example of, 161

simplified administration
description, 39

snapshot
accessing, 172
creating, 170
definition, 41
description, 169
destroying, 171
renaming, 171
rolling back, 173

snapshot space accounting, 172
swap and dump devices

adjusting sizes of, 78
description, 78
issues, 78

transactional semantics
description, 37

unmounting
(example of), 160

unsharing
example of, 162

using on a Solaris system with zones installed
description, 232

volume
definition, 41

ZFS file systems (zfs set quota)
setting a quota

example of, 165
zfs get, (example of), 154
zfs get -H -o, (example of), 156
zfs get -s, (example of), 155
zfs inherit, (example of), 153
ZFS intent log (ZIL), description, 23
zfs list

(example of), 49, 150
zfs list -H, (example of), 152
zfs list -r, (example of), 151
zfs list -t, (example of), 152
zfs mount, (example of), 159
ZFS pool properties

alroot, 114
autoreplace, 115
available, 115
bootfs, 115
capacity, 115
delegation, 115
guid, 115
health, 116
size, 116
used, 116
version, 116

zfs promote, clone promotion (example of), 175
ZFS properties

aclinherit, 137
aclmode, 138
atime, 138
available, 138
canmount, 138

detailed description, 147
casesensitivity, 139
checksum, 139
compression, 139
compressratio, 139
copies, 140
creation, 140
description, 137
devices, 140
exec, 140
inheritable, description of, 137

Index

273

ZFS properties (Continued)
management within a zone

description, 235
mounted, 140
mountpoint, 140
origin, 141
quota, 141
read-only, 141
read-only, 144
recordsize, 141

detailed description, 148
referenced, 142
refquota, 142
refreservation, 142
reservation, 142
settable, 145
setuid, 142
sharenfs, 143
sharesmb, 143
sharesmb property (example of), 163
snapdir, 143
type, 143
used, 143

detailed description, 145
user properties

detailed description, 149
volblocksize, 144
volsize, 143

detailed description, 148
xattr, 144
zoned, 144
zoned property

detailed description, 236
zfs receive, (example of), 178
zfs rename, (example of), 136
zfs send, (example of), 177
zfs set atime, (example of), 153
zfs set compression, (example of), 48
zfs set mountpoint

(example of), 48, 158
zfs set mountpoint=legacy, (example of), 158
zfs set quota

(example of), 48
zfs set quota, (example of), 153

zfs set quota

example of, 165
zfs set reservation, (example of), 167
zfs set sharenfs, (example of), 48
zfs set sharenfs=on, example of, 161
ZFS space accounting, differences between ZFS and

traditional file systems, 52
ZFS storage pools

adding devices to (zpool add)
(example of), 99

alternate root pools, 237
attaching devices to (zpool attach)

(example of), 104
clearing a device

(example of), 108
clearing device errors (zpool clear)

(example of), 251
components, 85
corrupted data

description, 240
creating (zpool create)

(example of), 90
creating a RAID-Z configuration (zpool create)

(example of), 91
creating mirrored configuration (zpool create)

(example of), 91
damaged devices

description, 240
data corruption identified (zpool status -v)

(example of), 247
data repair

description, 241
data scrubbing

(example of), 242
description, 241

data scrubbing and resilvering
description, 243

data validation
description, 241

default mountpoint, 98
destroying (zpool destroy)

(example of), 98
detaching devices from (zpool detach)

(example of), 105

Index

Solaris ZFS Administration Guide • September 2008274

ZFS storage pools (Continued)
determining if a device can be replaced

description, 252
determining if problems exist (zpool status -x)

description, 244
determining type of device failure

description, 250
displaying detailed health status

(example of), 122
displaying health status, 120

(example of), 121
doing a dry run (zpool create -n)

(example of), 97
dynamic striping, 89
exporting

(example of), 124
failure modes, 239
identifying for import (zpool import -a)

(example of), 124
identifying problems

description, 243
identifying type of data corruption (zpool status

-v)
(example of), 258

importing
(example of), 128

importing from alternate directories (zpool import
-d)
(example of), 126

listing
(example of), 117

migrating
description, 123

mirror
definition, 40

mirrored configuration, description of, 88
missing (faulted) devices

description, 240
notifying ZFS of reattached device (zpool online)

(example of), 249
offlining a device (zpool offline)

(example of), 106
onlining and offlining devices

description, 106

ZFS storage pools (Continued)
overall pool status information for troubleshooting

description, 245
pool

definition, 40
pool-wide I/O statistics

(example of), 119
RAID-Z

definition, 40
RAID-Z configuration, description of, 88
recovering a destroyed pool

(example of), 129
repairing a corrupted file or directory

description, 259
repairing a damaged ZFS configuration, 248
repairing an unbootable system

description, 261
repairing pool-wide damage

description, 261
replacing a device (zpool replace)

(example of), 108, 253
replacing a missing device

(example of), 248
resilvering

definition, 41
rights profiles, 238
scripting storage pool output

(example of), 118
system error messages

description, 247
upgrading

description, 130
using files, 87
using whole disks, 86
vdev I/O statistics

(example of), 119
viewing resilvering process

(example of), 256
virtual device

definition, 41
virtual devices, 94

ZFS storage pools (zpool online)
onlining a device

(example of), 107

Index

275

zfs unallow, described, 219
zfs unmount, (example of), 160
ZFS volume

as swap device, 230
description, 229

zoned property
description, 144
detailed description, 236

zones
adding ZFS file system to a non-global zone

(example of), 233
adding ZFS volume to a non-global zone

(example of), 234
delegating dataset to a non-global zone

(example of), 233
using with ZFS file systems

description, 232
ZFS property management within a zone

description, 235
zoned property

detailed description, 236
zpool add, (example of), 99
zpool attach, (example of), 104
zpool clear

(example of), 108
description, 108

zpool create

(example of), 44, 46
basic pool

(example of), 90
mirrored storage pool

(example of), 91
RAID-Z storage pool

(example of), 91
zpool create -n

dry run
(example of), 97

zpool destroy, (example of), 98
zpool detach, (example of), 105
zpool export, (example of), 124
zpool history, (example of), 29
zpool import -a, (example of), 124
zpool import -D, (example of), 129
zpool import -d, (example of), 126

zpool import name, (example of), 128
zpool iostat, pool-wide (example of), 119
zpool iostat -v, vdev (example of), 119
zpool list

(example of), 46, 117
description, 116

zpool list -Ho name, (example of), 118
zpool offline, (example of), 106
zpool online, (example of), 107
zpool replace, (example of), 108
zpool status -v, (example of), 122
zpool status -x, (example of), 121
zpool upgrade, 130

Index

Solaris ZFS Administration Guide • September 2008276

	Solaris ZFS Administration Guide
	Preface
	Who Should Use This Book
	How This Book Is Organized
	Related Books
	Documentation, Support, and Training
	Typographic Conventions
	Shell Prompts in Command Examples

	ZFS File System (Introduction)
	What's New in ZFS?
	Using ZFS ACL Sets
	ZFS Installation and Boot Support
	Rolling Back a Dataset Without Unmounting
	Using Cache Devices in Your ZFS Storage Pool
	Enhancements to the zfs send Command
	ZFS Quotas and Reservations for File System Data Only
	ZFS File System Properties for the Solaris CIFS Service
	ZFS Storage Pool Properties
	ZFS and File System Mirror Mounts
	ZFS Command History Enhancements (zpool history)
	Upgrading ZFS File Systems (zfs upgrade)
	ZFS Delegated Administration
	Setting Up Separate ZFS Logging Devices
	Creating Intermediate ZFS Datasets
	ZFS Hotplugging Enhancements
	Recursively Renaming ZFS Snapshots (zfs rename -r)
	ZFS Boot Support on x86 Systems
	GZIP Compression is Available for ZFS
	Storing Multiple Copies of ZFS User Data
	Improved zpool status Output
	ZFS and Solaris iSCSI Improvements
	Sharing ZFS File System Enhancements
	ZFS Command History (zpool history)
	ZFS Property Improvements
	ZFS xattr Property
	ZFS canmount Property
	ZFS User Properties
	Setting Properties When Creating ZFS File Systems

	Displaying All ZFS File System Information
	New zfs receive -F Option
	Recursive ZFS Snapshots
	Double Parity RAID-Z (raidz2)
	Hot Spares for ZFS Storage Pool Devices
	Replacing a ZFS File System With a ZFS Clone (zfs promote)
	Upgrading ZFS Storage Pools (zpool upgrade)
	Using ZFS to Clone Non-Global Zones and Other Enhancements
	ZFS Backup and Restore Commands are Renamed
	Recovering Destroyed Storage Pools
	ZFS is Integrated With Fault Manager
	New zpool clear Command
	Compact NFSv4 ACL Format
	File System Monitoring Tool (fsstat)
	ZFS Web-Based Management

	What Is ZFS?
	ZFS Pooled Storage
	Transactional Semantics
	Checksums and Self-Healing Data
	Unparalleled Scalability
	ZFS Snapshots
	Simplified Administration

	ZFS Terminology
	ZFS Component Naming Requirements

	Getting Started With ZFS
	ZFS Hardware and Software Requirements and Recommendations
	Creating a Basic ZFS File System
	Creating a ZFS Storage Pool
	How to Identify Storage Requirements for Your ZFS Storage Pool
	How to Create a ZFS Storage Pool

	Creating a ZFS File System Hierarchy
	How to Determine Your ZFS File System Hierarchy
	How to Create ZFS File Systems

	ZFS and Traditional File System Differences
	ZFS File System Granularity
	ZFS Space Accounting
	Out of Space Behavior

	Mounting ZFS File Systems
	Traditional Volume Management
	New Solaris ACL Model

	Installing and Booting a ZFS Root File System
	Installing and Booting a ZFS Root File System (Overview)
	ZFS Installation Features
	Solaris Installation and Solaris Live Upgrade Requirements for ZFS Support

	Installing a ZFS Root File System (Initial Installation)
	Installing a ZFS Root File System (JumpStart Installation)
	ZFS JumpStart Profile Examples
	ZFS JumpStart Keywords
	ZFS JumpStart Issues

	Migrating a UFS root File System to a ZFS root File System (Solaris Live Upgrade)
	Required Solaris Live Upgrade Patch Information
	ZFS Solaris Live Upgrade Migration Issues
	Using Solaris Live Upgrade to Migrate Zones
	Using Solaris Live Upgrade to Migrate to a ZFS Root File System

	ZFS Support for Swap and Dump Devices
	Adjusting the Sizes of Your ZFS Swap and Dump Devices

	Booting From a ZFS Root File System
	Booting From a Alternate Disk in a Mirrored ZFS root Pool
	Booting From a ZFS root File System on a SPARC Based System
	Booting From a ZFS Root File System on an x86 Based System

	Managing ZFS Storage Pools
	Components of a ZFS Storage Pool
	Using Disks in a ZFS Storage Pool
	Using Slices in a ZFS Storage Pool
	Using Files in a ZFS Storage Pool

	Replication Features of a ZFS Storage Pool
	Mirrored Storage Pool Configuration
	RAID-Z Storage Pool Configuration
	Self-Healing Data in a Redundant Configuration
	Dynamic Striping in a Storage Pool

	Creating and Destroying ZFS Storage Pools
	Creating a ZFS Storage Pool
	Creating a Basic Storage Pool
	Creating a Mirrored Storage Pool
	Creating RAID-Z Storage Pools
	Creating a ZFS Storage Pool with Log Devices
	Creating a ZFS Storage Pool with Cache Devices

	Displaying Storage Pool Virtual Device Information
	Handling ZFS Storage Pool Creation Errors
	Detecting In-Use Devices
	Mismatched Replication Levels
	Doing a Dry Run of Storage Pool Creation
	Default Mount Point for Storage Pools

	Destroying ZFS Storage Pools
	Destroying a Pool With Faulted Devices

	Managing Devices in ZFS Storage Pools
	Adding Devices to a Storage Pool
	Attaching and Detaching Devices in a Storage Pool
	Onlining and Offlining Devices in a Storage Pool
	Taking a Device Offline
	Bringing a Device Online

	Clearing Storage Pool Devices
	Replacing Devices in a Storage Pool
	Designating Hot Spares in Your Storage Pool
	Activating and Deactivating Hot Spares in Your Storage Pool

	Managing ZFS Storage Pool Properties
	Querying ZFS Storage Pool Status
	Displaying Basic ZFS Storage Pool Information
	Listing Information About All Storage Pools
	Listing Specific Storage Pool Statistics
	Scripting ZFS Storage Pool Output

	Viewing ZFS Storage Pool I/O Statistics
	Listing Pool-Wide Statistics
	Listing Virtual Device Statistics

	Determining the Health Status of ZFS Storage Pools
	Basic Storage Pool Health Status
	Detailed Health Status

	Migrating ZFS Storage Pools
	Preparing for ZFS Storage Pool Migration
	Exporting a ZFS Storage Pool
	Determining Available Storage Pools to Import
	Finding ZFS Storage Pools From Alternate Directories
	Importing ZFS Storage Pools
	Recovering Destroyed ZFS Storage Pools
	Upgrading ZFS Storage Pools

	Managing ZFS File Systems
	Creating and Destroying ZFS File Systems
	Creating a ZFS File System
	Destroying a ZFS File System
	Renaming a ZFS File System

	Introducing ZFS Properties
	ZFS Read-Only Native Properties
	The used Property

	Settable ZFS Native Properties
	The canmount Property
	The casesensitivity Property
	The recordsize Property
	The sharesmb Property
	The volsize Property

	ZFS User Properties

	Querying ZFS File System Information
	Listing Basic ZFS Information
	Creating Complex ZFS Queries

	Managing ZFS Properties
	Setting ZFS Properties
	Inheriting ZFS Properties
	Querying ZFS Properties
	Querying ZFS Properties for Scripting

	Mounting and Sharing ZFS File Systems
	Managing ZFS Mount Points
	Automatic Mount Points
	Legacy Mount Points

	Mounting ZFS File Systems
	Using Temporary Mount Properties
	Unmounting ZFS File Systems
	Sharing and Unsharing ZFS File Systems
	Controlling Share Semantics
	Unsharing ZFS File Systems
	Sharing ZFS File Systems
	Legacy Share Behavior

	Sharing ZFS Files in a Solaris CIFS Environment

	ZFS Quotas and Reservations
	Setting Quotas on ZFS File Systems
	Setting Reservations on ZFS File Systems

	Working With ZFS Snapshots and Clones
	Overview of ZFS Snapshots
	Creating and Destroying ZFS Snapshots
	Renaming ZFS Snapshots

	Displaying and Accessing ZFS Snapshots
	Snapshot Space Accounting

	Rolling Back to a ZFS Snapshot

	Overview of ZFS Clones
	Creating a ZFS Clone
	Destroying a ZFS Clone
	Replacing a ZFS File System With a ZFS Clone

	Sending and Receiving ZFS Data
	Sending a ZFS Snapshot
	Receiving a ZFS Snapshot
	Sending and Receiving Complex ZFS Snapshot Streams
	Remote Replication of ZFS Data

	Saving ZFS Data With Other Backup Products

	Using ACLs and Attributes to Protect ZFS Files
	New Solaris ACL Model
	Syntax Descriptions for Setting ACLs
	ZFS ACL Sets

	ACL Inheritance
	ACL Property Modes

	Setting ACLs on ZFS Files
	Setting and Displaying ACLs on ZFS Files in Verbose Format
	Setting ACL Inheritance on ZFS Files in Verbose Format

	Setting and Displaying ACLs on ZFS Files in Compact Format
	Applying Special Attributes to ZFS Files

	ZFS Delegated Administration
	Overview of ZFS Delegated Administration
	Disabling ZFS Delegated Permissions

	Delegating ZFS Permissions
	Syntax Description for Delegating Permissions (zfs allow)
	Removing ZFS Delegated Permissions (zfs unallow)

	Using ZFS Delegated Administration
	Displaying ZFS Delegated Permissions (Examples)
	Delegating ZFS Permissions (Examples)
	Removing ZFS Permissions (Examples)

	ZFS Advanced Topics
	ZFS Volumes
	Using a ZFS Volume as a Swap or Dump Device
	Using a ZFS Volume as a Solaris iSCSI Target

	Using ZFS on a Solaris System With Zones Installed
	Adding ZFS File Systems to a Non-Global Zone
	Delegating Datasets to a Non-Global Zone
	Adding ZFS Volumes to a Non-Global Zone
	Using ZFS Storage Pools Within a Zone
	Managing ZFS Properties Within a Zone
	Understanding the zoned Property

	Using ZFS Alternate Root Pools
	Creating ZFS Alternate Root Pools
	Importing Alternate Root Pools

	ZFS Rights Profiles

	ZFS Troubleshooting and Data Recovery
	ZFS Failure Modes
	Missing Devices in a ZFS Storage Pool
	Damaged Devices in a ZFS Storage Pool
	Corrupted ZFS Data

	Checking ZFS Data Integrity
	Data Repair
	Data Validation
	Controlling ZFS Data Scrubbing
	Explicit ZFS Data Scrubbing
	ZFS Data Scrubbing and Resilvering

	Identifying Problems in ZFS
	Determining if Problems Exist in a ZFS Storage Pool
	Reviewing zpool status Output
	Overall Pool Status Information
	Configuration Information
	Scrubbing Status
	Data Corruption Errors

	System Reporting of ZFS Error Messages

	Repairing a Damaged ZFS Configuration
	Repairing a Missing Device
	Physically Reattaching the Device
	Notifying ZFS of Device Availability

	Repairing a Damaged Device
	Determining the Type of Device Failure
	Clearing Transient Errors
	Replacing a Device in a ZFS Storage Pool
	Determining if a Device Can Be Replaced
	Devices That Cannot be Replaced
	Replacing a Device in a ZFS Storage Pool
	Viewing Resilvering Status

	Repairing Damaged Data
	Identifying the Type of Data Corruption
	Repairing a Corrupted File or Directory
	Repairing ZFS Storage Pool-Wide Damage

	Repairing an Unbootable System

	Index

