
2007 JavaOneSM Conference | Session BOF-7793 |

BOF-7793

The Java Concurrency API and
Deadlock Prevention in a RETE Rules
Engine to Implement a Pricing Service

Elie Levy

elie.levy@zilonis.org

2007 JavaOneSM Conference | Session BOF-7793 | 2

Goal of the Talk

How the Java platform can be used to
write a Concurrent RETE Forward
Production System:

The Zilonis Rules Engine

What You Will Learn

2007 JavaOneSM Conference | Session BOF-7793 | 3

Agenda

Pricing Service in Retail
Rules Engine (RETE)
Concurrency in the Rules Engine
Deadlock Prevention
Other Optimizations
Demo!

2007 JavaOneSM Conference | Session BOF-7793 | 4

Agenda

Pricing Service in Retail
Rules Engine (RETE)
Concurrency in the Rules Engine
Deadlock Prevention
Other Optimizations
Demo!

2007 JavaOneSM Conference | Session BOF-7793 | 5

Pricing Service in Retail

• Cost Plus vs. List Minus
• Marketing Campaigns
• Bulk Pricing
• Different Providers/Vendors
• Zone, Geo Location
• Price Discrimination/Contracts
• Competition

It is more complicated than what it seems at first

2007 JavaOneSM Conference | Session BOF-7793 | 6

Agenda

Pricing Service in Retail
Rules Engine (RETE)
Concurrency in the Rules Engine
Deadlock Prevention
Other Optimizations
Demo!

2007 JavaOneSM Conference | Session BOF-7793 | 7

Rules Engine

• Understandability:
• Declarative, well defined rules
• Easy to read and understand
• Business engagement early on the process (KPLM)

• We can get a clear explanation of why a result
was given

• Agile Maintainability
• Time to market

The value in a system like a pricing engine

2007 JavaOneSM Conference | Session BOF-7793 | 8

Rules Engine

• Working Memory
• A set of Facts: Working Memory Elements (WME)

• Production Memory
• A set of Rules: Productions

The Structure

2007 JavaOneSM Conference | Session BOF-7793 | 9

• Internal Representation is in 3-Tuples: Triples
• Complex Structures can be mapped to Triples

• RDF uses the same approach (SPO) in the
Semantic Web

Rules Engine
Working Memory

(Order (sku 3155123) (quantity 2) (channel web))

W1:(1 clazz Order)
W2:(1 sku 3155123)
W3:(1 quantity 2)
W4:(1 channel web)

2007 JavaOneSM Conference | Session BOF-7793 | 10

Rules Engine
Production Memory

(Name-of-Production
LeftHandSide /* one or more conditions */

=>
RightHandSide /* one or more actions */

Match
Phase

Conflict
Resolution

Phase

Action
Phase

2007 JavaOneSM Conference | Session BOF-7793 | 11

Rules Engine
Production Memory

(defrule retailPricingRule
 (order (channel web)
 (sku ?skuId))
 (item (sku ?skuId)
 (retailPrice ?price))
=>
 (assert (methodResult (price ?price)

 (method retailPrice))))

2007 JavaOneSM Conference | Session BOF-7793 | 12

Rules Engine

• Consider a production system of:
• 1,000 rules with 3 conditions each
• 1,000 Working Memory Elements (WME)

• Naive implementation:
• Each production is matched against all tuples of size 3

from working memory (WM)
• Over a trillion (1,000x1,0003) match operations per

cycle

• Even specialized algorithms take 90% of time in
this phase

Complexity of the Match Phase

2007 JavaOneSM Conference | Session BOF-7793 | 13

RETE Algorithm

• Dataflow network to represent the conditions

• The network has 2 parts:

• Alpha Network

• Beta Network

Version used in Zilonis and Soar

2007 JavaOneSM Conference | Session BOF-7793 | 14

RETE Algorithm
The Alpha Network

Results of C1

(defrule PriceResultRule
(?id clazz PriceResult)
(?id price ?price)
(?id method ?method)

=>
(print “result: ?1 method ?2”

?price ?method))

Results of C2

Results of C3

Alpha
Memory

2007 JavaOneSM Conference | Session BOF-7793 | 15

RETE Algorithm
The Beta Network

Results of
C1 and C2

Results of
C1 and C2

and C3

(PriceResultRule
(?id clazz PriceResult)
(?id price ?price)
(?id method ?method)

=>
RHSDummy

Beta Memory

Results
of C1

2007 JavaOneSM Conference | Session BOF-7793 | 16

RETE Algorithm
Putting it all together Assert: (1,clazz,PriceResult)

(1,clazz,PriceResult

Right Activates JoinNode

2007 JavaOneSM Conference | Session BOF-7793 | 17

RETE Algorithm
Putting it all together Assert: (1,clazz,PriceResult)

Token(1,clazz,PriceResult)

Left Activates BetaMemory

2007 JavaOneSM Conference | Session BOF-7793 | 18

RETE Algorithm
Putting it all together Assert: (1,clazz,PriceResult)

Left Activates JoinNode with
the new Token

2007 JavaOneSM Conference | Session BOF-7793 | 19

RETE Algorithm
Putting it all together Assert: (1,clazz,PriceResult)

Queries AlphaMemory
for WMEs and Tries to Match

2007 JavaOneSM Conference | Session BOF-7793 | 20

Demo: Let’s see it in the Analysis Tool

2007 JavaOneSM Conference | Session BOF-7793 | 21

• State-saving reduces calculation time
• Changes in WM: Are saved in Alpha and Beta

Memories
• No need to recalculate all the different possibilities

• Sharing of nodes
• Alpha Memory

• when two or more productions have similar conditions

• Beta Memory
• when the first few conditions of two or more productions are

similar

RETE Algorithm
Main advantages over the naive algorithm

2007 JavaOneSM Conference | Session BOF-7793 | 22

• The traditional algorithm is not Thread-Safe

• Some of the available implementations are aware
of the multithreaded challenges
• They lock the entire engine, similar to what

java.util.Hashtable does

RETE Algorithm
Why it is not widely used in E-Commerce?

2007 JavaOneSM Conference | Session BOF-7793 | 23

RETE Rules Engine

• Option #1: Create a RETE instance per Thread
• When tried to load 20,000 products (close to 250k

WMEs) the engine died.
• Can not even dream creating an instance of the engine

per Thread, just one does not work

• Option #2: One single instance, serial access to it
• Doesn’t take advantage of the multiprocessor/multi-

core architectures
• Does not scale to the throughput needs

Why it is not widely used in E-Commerce?

2007 JavaOneSM Conference | Session BOF-7793 | 24

Agenda

Pricing Service in Retail
Rules Engine (RETE)
Concurrency in the Rules Engine
Deadlock Prevention
Other Optimizations
Demo!

2007 JavaOneSM Conference | Session BOF-7793 | 25

Thread Safety

• Managing Access to Shared Mutable State

• Whenever more than one thread accesses a
given state variable, and one of them might write
to it, they all must coordinate their access using
Synchronization
• synchronized
• volatile variables
• explicit locks
• atomic variables

2007 JavaOneSM Conference | Session BOF-7793 | 26

Counter=8

Concurrency Challenges

// Susceptible to lost updates
private long counter=0;

public void execute() {
counter++;
System.out.println(counter);

}

Atomicity

Thread A:

Thread B:

7+1=8

Counter=7

Counter=7

7+1=8

Counter=8

2007 JavaOneSM Conference | Session BOF-7793 | 27

Concurrency Challenges
Atomicity: the java.util.concurrent.atomic API

public class SafeCounter {

private final AtomicLong counter = new
AtomicLong(0);

public long getCounter() { return count.get(); }

public void execute() {
counter.incrementAndGet();

}
}

2007 JavaOneSM Conference | Session BOF-7793 | 28

Concurrency Challenges
Race Conditions: The need for Locks

public class NotSafeTransfer {

private final AtomicLong checkingBalance =
new AtomicLong(0);

 private final AtomicLong savingsBalance =
new AtomicLong(0);

public void transfer100() {
checkingBalance.addAndGet(100);
savingsBalance.addAndGet(-100);

}

}

2007 JavaOneSM Conference | Session BOF-7793 | 29

Concurrency Challenges
Intrinsic Locks: enforcing atomicity

public class SafeTransfer {

private long checkingBalance = 0;
 private long savingsBalance = 0;

public synchronized void transfer100() {
checkingBalance+=100;
savingsBalance-=100;

}
}

2007 JavaOneSM Conference | Session BOF-7793 | 30

Concurrency Challenges

• Modern Compiler and Processor:
• Speculative Execution
• Instruction Scheduling
• Register Allocation
• Common Sub-expression Elimination
• Redundant Read Elimination

• Multiprocessor Systems
• Each processor has its own cache

Visibility

2007 JavaOneSM Conference | Session BOF-7793 | 31

Understanding Visibility and the JMM

public class Unpredictable {
private static boolean ready;
private static int number;
private static class CheckReady extends Thread {

public void run() {
while (!ready)

Thread.yield();
System.out.println(number);

}
}
public static void main(String[] arg) {

new CheckReady().start();
number = 42;
ready = true;

}
}

Without the proper synchronization

2007 JavaOneSM Conference | Session BOF-7793 | 32

#1: Keep it simple, Keep it simple

RETE Rules Engine
Principles to Implement a Concurrent Version

2007 JavaOneSM Conference | Session BOF-7793 | 33

Risks of Threads

public class Predictable {

private static volatile boolean ready;

private static class CheckReady extends Thread {
public void run() {

while (!ready)
Thread.yield();

}
}
public static void main(String[] arg) {

new CheckReady().start();
ready = true;

}
}

Using Volatile

2007 JavaOneSM Conference | Session BOF-7793 | 34

RETE Rules Engine

#2: Don’t reinvent the wheel:
• Create a RETE with the optimizations of one of the

best algorithms available in the open source
community (SOAR).

#3: Analyze alternatives to make it multithreaded:
• Reusing the RETE Dataflow Network across multiple

Threads
• The Rules Developer should not worry about Session

Ids

Principles to Implement a Concurrent Version

2007 JavaOneSM Conference | Session BOF-7793 | 35

#4: Use of Locks:
• Partitioning the way threads access our Alpha and

Beta Memories
• With the right level of granularity
• Allowing multiple threads to operate in a thread-

safe way

RETE Rules Engine
Principles to Implement a Concurrent Version

2007 JavaOneSM Conference | Session BOF-7793 | 36

Principles:

#5: Follow a strict set of rules to obtain the
Locks as a way to Preventing Deadlocks

RETE Rules Engine
Feasible Solution: Implement a Concurrent Version

2007 JavaOneSM Conference | Session BOF-7793 | 37

Multithreaded Rules Engine
Observation:

W1 W2 W3

#1: Linked Lists are used to represent
the set of WME in Alpha Nodes

2007 JavaOneSM Conference | Session BOF-7793 | 38

Multithreaded Rules Engine
Observation:

J1 J2 J3

#2: Linked Lists are used to represent
the set of Join Nodes in Alpha Nodes

2007 JavaOneSM Conference | Session BOF-7793 | 39

Multithreaded Rules Engine
Observation:

J1 J2 J3

#3: Linked List are used to represent the
set of Join Nodes in Beta Memories

2007 JavaOneSM Conference | Session BOF-7793 | 40

How the Concurrent Users would be
using those Linked Lists?

• There is a part of them that is common, and does
not change
• That part can be safely shared
• In out Pricing Engine example: 20,000 SKUs, and

Pricing Rules

• Each User can have its own scope where only
one user modifies the state at a time
• Facts specific to that user
• In our example: the information about the user, and the

SKUs that wants to buy

2007 JavaOneSM Conference | Session BOF-7793 | 41

Multithreaded Rules Engine
Building Block: The ScopedLinkedList

W1 W2 W3Scope A:

W6 W7 W8Scope B:

Lock on the Scope

Scoped
Linked

List

A Thread can only hold the lock of a Scope at a time

2007 JavaOneSM Conference | Session BOF-7793 | 42

Multithreaded Rules Engine
Using the ScopedLinkedList

W1 W2 W3Scope A:

W6 W7 W8Scope B:

Scoped
Linked

List

Scope
Inheritance

2007 JavaOneSM Conference | Session BOF-7793 | 43

Scopes and Concurrency

Perform an Operation

Safe to Read

Not Safe to Read
or Write

Root

C1

C1.1

C1.2

C2

2007 JavaOneSM Conference | Session BOF-7793 | 44

Scope class

public class Scope {
private ReentrantReadWriteLock lock;
private Scope parent;
private LinkedList<Scope> children;

// The rest of the class implementation

}

2007 JavaOneSM Conference | Session BOF-7793 | 45

Agenda

Pricing Service in Retail
Rules Engine (RETE)
Concurrency in the Rules Engine
Deadlock Prevention
Other Optimizations
Demo!

2007 JavaOneSM Conference | Session BOF-7793 | 46

Deadlock

• Mutual Exclusion Condition
• Hold and Wait Condition
• No-Preemptive Condition
• Circular Wait Condition

Necessary and Sufficient Conditions

2007 JavaOneSM Conference | Session BOF-7793 | 47

Deadlock Prevention

• Our Scopes are defined in a Tree structure
(Graph without Cycles)

• Make sure we only get locks in one direction
(Avoiding Circular Wait)

How can we safely Lock without the Deadlock fears

2007 JavaOneSM Conference | Session BOF-7793 | 48

Deadlock Prevention

• Rule: To get the lock of a Scope, we need to get
the Lock of the Parent Scope First

2007 JavaOneSM Conference | Session BOF-7793 | 49

Scope class

public class Scope {
. . .

public void lock() {
if (parent != null)

parent.getReadLock();
getWriteLock();

}

private void getWriteLock() {
lock.writeLock().lock();
for (Scope child : children)

child.getWriteLock();
}

}

2007 JavaOneSM Conference | Session BOF-7793 | 50

Scope class

public class Scope {
. . .

private void getReadLock() {
if (parent != null)

parent.getReadLock();
lock.readLock().lock();

}

2007 JavaOneSM Conference | Session BOF-7793 | 51

ScopedLinkedList

public class ScopeLinkedList<Element> {
private ConcurrentHashMap<Scope, SubList> map;

public void add(Scope scope, Element element) {
SubList subList = map.get(scope);
if (subList == null) {

subList = new SubList(scope);
map.put(scope, subList);

}
subList.add(element);

}

public Iterator<Element> iterator(Scope scope) {
return new ScopedIterator(scope);

}

}

2007 JavaOneSM Conference | Session BOF-7793 | 52

Agenda

Pricing Service in Retail
Rules Engine (RETE)
Concurrency in the Rules Engine
Deadlock Prevention
Other optimizations
Demo!

2007 JavaOneSM Conference | Session BOF-7793 | 53

Other Optimizations

• Implementation of the Entry in the linked list for
fast removals

• Use of two global indexes:
• Nodes in alpha memories
• Nodes in beta memories

2007 JavaOneSM Conference | Session BOF-7793 | 54

Implementation of Dobly Linked List

• The WME are in 2 lists

• The Tokens are in several lists also

Multi List
Element

Multi List
Element

Multi List
Element

Multi List
Element

Multi List
Element

List 1

List 2

2007 JavaOneSM Conference | Session BOF-7793 | 55

MultiListElement

public class MultiListElement implements NextHolder,
IMultiListElement {

private IMultiListElement next[];

private NextHolder prev[];

. . .
public void remove(int list) {

// check for null references
next[list].setPrev(prev[list]);
prev[list].setNext(next[list]);

}

}

2007 JavaOneSM Conference | Session BOF-7793 | 56

WME and Token

public class Token extends MultiListElement {

public Token(Token parent, WME wme) {
super(NUMBER_OF_LISTS);
. . .

}
}

2007 JavaOneSM Conference | Session BOF-7793 | 57

Searching for WMEs and Tokens
In Alpha and Beta Networks

public abstract class Index<Type extends IMultiListElement>
implements NextHolder {

private static final int LOG2_INDEX_SIZE = 13;
private static final int INDEX_SIZE = (((int) 1) <<

LOG2_INDEX_SIZE);
private static final int INDEX_MASK = (INDEX_SIZE - 1);

final IMultiListElement index[];

 . . .
} One global index for all scopes

We need to lock here

2007 JavaOneSM Conference | Session BOF-7793 | 58

Synchronization in the Index
In Alpha and Beta Networks

public abstract class Index<Type extends IMultiListElement>
implements NextHolder {

. . .
private static final int SEGMENT_SIZE =

(((int) 1) << LOG2_SEGMENT_SIZE);
private static final int SEGMENT_MASK =

(SEGMENT_SIZE - 1);

final ReentrantLock segment[];
final IMultiListElement index[];

 . . .
}

Follow the same pattern that ConcurrentHashMap uses

2007 JavaOneSM Conference | Session BOF-7793 | 59

Some results

• Tested 20,000 Products, with a significant amount
of pricing rules

• We achieved response times of 5 to 10 msec per
request

• Up to 600 Req/Sec on just a Core 2 Duo
Machine, with 1.5GB of RAM in the Heap of the
VM

2007 JavaOneSM Conference | Session BOF-7793 | 60

Roadmap
• Production Version 1.0

• Full Multithreaded Support
• CLIPS like language
• Full JSR 094 Support
• Embedded and WAR Deployable Service
• Zilonis Analysis Tool
• Good Documentation

• Next Version
• Rules Management Tool with JSR 208: Java Business

Integration (JBI) Support
• Natural Language Generation (GATE, KPLM)
• XML-Rules Language
• Support for SBVR

2007 JavaOneSM Conference | Session BOF-7793 | 61

For More Information

• http://www.zilonis.org
• http://weblogs.java.net/blog/elevy
• Production Matching for Large Learning Systems

• Robert B. Doorenbos

• SOAR Project:
• http://sitemaker.umich.edu/soar/home

• JSR 094: Java Rule Engine API
• http://jcp.org/aboutJava/communityprocess/review/jsr094/

2007 JavaOneSM Conference | Session BOF-7793 |

Let’s see a Complete Demo!

2007 JavaOneSM Conference | Session BOF-7793 |

Q&A

