Header And Logo

PostgreSQL
| The world's most advanced open source database.

Data Structures | Defines | Functions

_int_gist.c File Reference

#include "postgres.h"
#include "access/gist.h"
#include "access/skey.h"
#include "_int.h"
Include dependency graph for _int_gist.c:

Go to the source code of this file.

Data Structures

struct  SPLITCOST

Defines

#define GETENTRY(vec, pos)   ((ArrayType *) DatumGetPointer((vec)->vector[(pos)].key))

Functions

 PG_FUNCTION_INFO_V1 (g_int_consistent)
 PG_FUNCTION_INFO_V1 (g_int_compress)
 PG_FUNCTION_INFO_V1 (g_int_decompress)
 PG_FUNCTION_INFO_V1 (g_int_penalty)
 PG_FUNCTION_INFO_V1 (g_int_picksplit)
 PG_FUNCTION_INFO_V1 (g_int_union)
 PG_FUNCTION_INFO_V1 (g_int_same)
Datum g_int_consistent (PG_FUNCTION_ARGS)
Datum g_int_compress (PG_FUNCTION_ARGS)
Datum g_int_decompress (PG_FUNCTION_ARGS)
Datum g_int_penalty (PG_FUNCTION_ARGS)
Datum g_int_picksplit (PG_FUNCTION_ARGS)
Datum g_int_union (PG_FUNCTION_ARGS)
Datum g_int_same (PG_FUNCTION_ARGS)
static int comparecost (const void *a, const void *b)

Define Documentation

#define GETENTRY (   vec,
  pos 
)    ((ArrayType *) DatumGetPointer((vec)->vector[(pos)].key))

Definition at line 11 of file _int_gist.c.

Referenced by g_int_picksplit(), and g_int_union().


Function Documentation

static int comparecost ( const void *  a,
const void *  b 
) [static]

Definition at line 356 of file _int_gist.c.

Referenced by g_int_picksplit().

{
    if (((const SPLITCOST *) a)->cost == ((const SPLITCOST *) b)->cost)
        return 0;
    else
        return (((const SPLITCOST *) a)->cost > ((const SPLITCOST *) b)->cost) ? 1 : -1;
}

Datum g_int_compress ( PG_FUNCTION_ARGS   ) 

Definition at line 145 of file _int_gist.c.

References ARRISEMPTY, ARRNELEMS, ARRPTR, CHECKARRVALID, DatumGetArrayTypeP, DatumGetArrayTypePCopy, DatumGetPointer, elog, FALSE, gistentryinit, i, GISTENTRY::key, GISTENTRY::leafkey, MAXNUMRANGE, memmove, NOTICE, GISTENTRY::offset, GISTENTRY::page, palloc(), pfree(), PG_GETARG_POINTER, PG_RETURN_POINTER, PointerGetDatum, PREPAREARR, GISTENTRY::rel, and resize_intArrayType().

{
    GISTENTRY  *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
    GISTENTRY  *retval;
    ArrayType  *r;
    int         len;
    int        *dr;
    int         i,
                min,
                cand;

    if (entry->leafkey)
    {
        r = DatumGetArrayTypePCopy(entry->key);
        CHECKARRVALID(r);
        PREPAREARR(r);

        if (ARRNELEMS(r) >= 2 * MAXNUMRANGE)
            elog(NOTICE, "input array is too big (%d maximum allowed, %d current), use gist__intbig_ops opclass instead",
                 2 * MAXNUMRANGE - 1, ARRNELEMS(r));

        retval = palloc(sizeof(GISTENTRY));
        gistentryinit(*retval, PointerGetDatum(r),
                      entry->rel, entry->page, entry->offset, FALSE);

        PG_RETURN_POINTER(retval);
    }

    /*
     * leaf entries never compress one more time, only when entry->leafkey
     * ==true, so now we work only with internal keys
     */

    r = DatumGetArrayTypeP(entry->key);
    CHECKARRVALID(r);
    if (ARRISEMPTY(r))
    {
        if (r != (ArrayType *) DatumGetPointer(entry->key))
            pfree(r);
        PG_RETURN_POINTER(entry);
    }

    if ((len = ARRNELEMS(r)) >= 2 * MAXNUMRANGE)
    {                           /* compress */
        if (r == (ArrayType *) DatumGetPointer(entry->key))
            r = DatumGetArrayTypePCopy(entry->key);
        r = resize_intArrayType(r, 2 * (len));

        dr = ARRPTR(r);

        for (i = len - 1; i >= 0; i--)
            dr[2 * i] = dr[2 * i + 1] = dr[i];

        len *= 2;
        cand = 1;
        while (len > MAXNUMRANGE * 2)
        {
            min = 0x7fffffff;
            for (i = 2; i < len; i += 2)
                if (min > (dr[i] - dr[i - 1]))
                {
                    min = (dr[i] - dr[i - 1]);
                    cand = i;
                }
            memmove((void *) &dr[cand - 1], (void *) &dr[cand + 1], (len - cand - 1) * sizeof(int32));
            len -= 2;
        }
        r = resize_intArrayType(r, len);
        retval = palloc(sizeof(GISTENTRY));
        gistentryinit(*retval, PointerGetDatum(r),
                      entry->rel, entry->page, entry->offset, FALSE);
        PG_RETURN_POINTER(retval);
    }
    else
        PG_RETURN_POINTER(entry);
}

Datum g_int_consistent ( PG_FUNCTION_ARGS   ) 

Definition at line 40 of file _int_gist.c.

References BooleanSearchStrategy, CHECKARRVALID, DatumGetPointer, DirectFunctionCall3, execconsistent(), g_int_same(), GIST_LEAF, inner_int_contains(), inner_int_overlap(), GISTENTRY::key, pfree(), PG_GETARG_ARRAYTYPE_P_COPY, PG_GETARG_POINTER, PG_GETARG_UINT16, PG_RETURN_BOOL, PointerGetDatum, PREPAREARR, RTContainedByStrategyNumber, RTContainsStrategyNumber, RTOldContainedByStrategyNumber, RTOldContainsStrategyNumber, RTOverlapStrategyNumber, and RTSameStrategyNumber.

{
    GISTENTRY  *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
    ArrayType  *query = PG_GETARG_ARRAYTYPE_P_COPY(1);
    StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);

    /* Oid      subtype = PG_GETARG_OID(3); */
    bool       *recheck = (bool *) PG_GETARG_POINTER(4);
    bool        retval;

    /* this is exact except for RTSameStrategyNumber */
    *recheck = (strategy == RTSameStrategyNumber);

    if (strategy == BooleanSearchStrategy)
    {
        retval = execconsistent((QUERYTYPE *) query,
                                (ArrayType *) DatumGetPointer(entry->key),
                                GIST_LEAF(entry));

        pfree(query);
        PG_RETURN_BOOL(retval);
    }

    /* sort query for fast search, key is already sorted */
    CHECKARRVALID(query);
    PREPAREARR(query);

    switch (strategy)
    {
        case RTOverlapStrategyNumber:
            retval = inner_int_overlap((ArrayType *) DatumGetPointer(entry->key),
                                       query);
            break;
        case RTSameStrategyNumber:
            if (GIST_LEAF(entry))
                DirectFunctionCall3(g_int_same,
                                    entry->key,
                                    PointerGetDatum(query),
                                    PointerGetDatum(&retval));
            else
                retval = inner_int_contains((ArrayType *) DatumGetPointer(entry->key),
                                            query);
            break;
        case RTContainsStrategyNumber:
        case RTOldContainsStrategyNumber:
            retval = inner_int_contains((ArrayType *) DatumGetPointer(entry->key),
                                        query);
            break;
        case RTContainedByStrategyNumber:
        case RTOldContainedByStrategyNumber:
            if (GIST_LEAF(entry))
                retval = inner_int_contains(query,
                                  (ArrayType *) DatumGetPointer(entry->key));
            else
                retval = inner_int_overlap((ArrayType *) DatumGetPointer(entry->key),
                                           query);
            break;
        default:
            retval = FALSE;
    }
    pfree(query);
    PG_RETURN_BOOL(retval);
}

Datum g_int_decompress ( PG_FUNCTION_ARGS   ) 

Definition at line 223 of file _int_gist.c.

References ARRISEMPTY, ARRNELEMS, ARRPTR, CHECKARRVALID, DatumGetArrayTypeP, DatumGetPointer, FALSE, gistentryinit, i, internal_size(), GISTENTRY::key, MAXNUMRANGE, new_intArrayType(), GISTENTRY::offset, GISTENTRY::page, palloc(), pfree(), PG_GETARG_POINTER, PG_RETURN_POINTER, PointerGetDatum, and GISTENTRY::rel.

{
    GISTENTRY  *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
    GISTENTRY  *retval;
    ArrayType  *r;
    int        *dr,
                lenr;
    ArrayType  *in;
    int         lenin;
    int        *din;
    int         i,
                j;

    in = DatumGetArrayTypeP(entry->key);

    CHECKARRVALID(in);
    if (ARRISEMPTY(in))
    {
        if (in != (ArrayType *) DatumGetPointer(entry->key))
        {
            retval = palloc(sizeof(GISTENTRY));
            gistentryinit(*retval, PointerGetDatum(in),
                          entry->rel, entry->page, entry->offset, FALSE);
            PG_RETURN_POINTER(retval);
        }

        PG_RETURN_POINTER(entry);
    }

    lenin = ARRNELEMS(in);

    if (lenin < 2 * MAXNUMRANGE)
    {                           /* not compressed value */
        if (in != (ArrayType *) DatumGetPointer(entry->key))
        {
            retval = palloc(sizeof(GISTENTRY));
            gistentryinit(*retval, PointerGetDatum(in),
                          entry->rel, entry->page, entry->offset, FALSE);

            PG_RETURN_POINTER(retval);
        }
        PG_RETURN_POINTER(entry);
    }

    din = ARRPTR(in);
    lenr = internal_size(din, lenin);

    r = new_intArrayType(lenr);
    dr = ARRPTR(r);

    for (i = 0; i < lenin; i += 2)
        for (j = din[i]; j <= din[i + 1]; j++)
            if ((!i) || *(dr - 1) != j)
                *dr++ = j;

    if (in != (ArrayType *) DatumGetPointer(entry->key))
        pfree(in);
    retval = palloc(sizeof(GISTENTRY));
    gistentryinit(*retval, PointerGetDatum(r),
                  entry->rel, entry->page, entry->offset, FALSE);

    PG_RETURN_POINTER(retval);
}

Datum g_int_penalty ( PG_FUNCTION_ARGS   ) 

Definition at line 291 of file _int_gist.c.

References DatumGetPointer, inner_int_union(), GISTENTRY::key, pfree(), PG_GETARG_POINTER, PG_RETURN_POINTER, and rt__int_size().

{
    GISTENTRY  *origentry = (GISTENTRY *) PG_GETARG_POINTER(0);
    GISTENTRY  *newentry = (GISTENTRY *) PG_GETARG_POINTER(1);
    float      *result = (float *) PG_GETARG_POINTER(2);
    ArrayType  *ud;
    float       tmp1,
                tmp2;

    ud = inner_int_union((ArrayType *) DatumGetPointer(origentry->key),
                         (ArrayType *) DatumGetPointer(newentry->key));
    rt__int_size(ud, &tmp1);
    rt__int_size((ArrayType *) DatumGetPointer(origentry->key), &tmp2);
    *result = tmp1 - tmp2;
    pfree(ud);

    PG_RETURN_POINTER(result);
}

Datum g_int_picksplit ( PG_FUNCTION_ARGS   ) 

Definition at line 369 of file _int_gist.c.

References Abs, comparecost(), copy_intArrayType(), SPLITCOST::cost, DEBUG3, elog, FirstOffsetNumber, GETENTRY, i, inner_int_inter(), inner_int_union(), NODE::left, GistEntryVector::n, NULL, OffsetNumberNext, palloc(), pfree(), PG_GETARG_POINTER, PG_RETURN_POINTER, PointerGetDatum, SPLITCOST::pos, qsort, NODE::right, rt__int_size(), GIST_SPLITVEC::spl_ldatum, GIST_SPLITVEC::spl_left, GIST_SPLITVEC::spl_nleft, GIST_SPLITVEC::spl_nright, GIST_SPLITVEC::spl_rdatum, GIST_SPLITVEC::spl_right, and WISH_F.

{
    GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
    GIST_SPLITVEC *v = (GIST_SPLITVEC *) PG_GETARG_POINTER(1);
    OffsetNumber i,
                j;
    ArrayType  *datum_alpha,
               *datum_beta;
    ArrayType  *datum_l,
               *datum_r;
    ArrayType  *union_d,
               *union_dl,
               *union_dr;
    ArrayType  *inter_d;
    bool        firsttime;
    float       size_alpha,
                size_beta,
                size_union,
                size_inter;
    float       size_waste,
                waste;
    float       size_l,
                size_r;
    int         nbytes;
    OffsetNumber seed_1 = 0,
                seed_2 = 0;
    OffsetNumber *left,
               *right;
    OffsetNumber maxoff;
    SPLITCOST  *costvector;

#ifdef GIST_DEBUG
    elog(DEBUG3, "--------picksplit %d", entryvec->n);
#endif

    maxoff = entryvec->n - 2;
    nbytes = (maxoff + 2) * sizeof(OffsetNumber);
    v->spl_left = (OffsetNumber *) palloc(nbytes);
    v->spl_right = (OffsetNumber *) palloc(nbytes);

    firsttime = true;
    waste = 0.0;
    for (i = FirstOffsetNumber; i < maxoff; i = OffsetNumberNext(i))
    {
        datum_alpha = GETENTRY(entryvec, i);
        for (j = OffsetNumberNext(i); j <= maxoff; j = OffsetNumberNext(j))
        {
            datum_beta = GETENTRY(entryvec, j);

            /* compute the wasted space by unioning these guys */
            /* size_waste = size_union - size_inter; */
            union_d = inner_int_union(datum_alpha, datum_beta);
            rt__int_size(union_d, &size_union);
            inter_d = inner_int_inter(datum_alpha, datum_beta);
            rt__int_size(inter_d, &size_inter);
            size_waste = size_union - size_inter;

            pfree(union_d);

            if (inter_d != (ArrayType *) NULL)
                pfree(inter_d);

            /*
             * are these a more promising split that what we've already seen?
             */

            if (size_waste > waste || firsttime)
            {
                waste = size_waste;
                seed_1 = i;
                seed_2 = j;
                firsttime = false;
            }
        }
    }

    left = v->spl_left;
    v->spl_nleft = 0;
    right = v->spl_right;
    v->spl_nright = 0;
    if (seed_1 == 0 || seed_2 == 0)
    {
        seed_1 = 1;
        seed_2 = 2;
    }

    datum_alpha = GETENTRY(entryvec, seed_1);
    datum_l = copy_intArrayType(datum_alpha);
    rt__int_size(datum_l, &size_l);
    datum_beta = GETENTRY(entryvec, seed_2);
    datum_r = copy_intArrayType(datum_beta);
    rt__int_size(datum_r, &size_r);

    maxoff = OffsetNumberNext(maxoff);

    /*
     * sort entries
     */
    costvector = (SPLITCOST *) palloc(sizeof(SPLITCOST) * maxoff);
    for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
    {
        costvector[i - 1].pos = i;
        datum_alpha = GETENTRY(entryvec, i);
        union_d = inner_int_union(datum_l, datum_alpha);
        rt__int_size(union_d, &size_alpha);
        pfree(union_d);
        union_d = inner_int_union(datum_r, datum_alpha);
        rt__int_size(union_d, &size_beta);
        pfree(union_d);
        costvector[i - 1].cost = Abs((size_alpha - size_l) - (size_beta - size_r));
    }
    qsort((void *) costvector, maxoff, sizeof(SPLITCOST), comparecost);

    /*
     * Now split up the regions between the two seeds.  An important property
     * of this split algorithm is that the split vector v has the indices of
     * items to be split in order in its left and right vectors.  We exploit
     * this property by doing a merge in the code that actually splits the
     * page.
     *
     * For efficiency, we also place the new index tuple in this loop. This is
     * handled at the very end, when we have placed all the existing tuples
     * and i == maxoff + 1.
     */


    for (j = 0; j < maxoff; j++)
    {
        i = costvector[j].pos;

        /*
         * If we've already decided where to place this item, just put it on
         * the right list.  Otherwise, we need to figure out which page needs
         * the least enlargement in order to store the item.
         */

        if (i == seed_1)
        {
            *left++ = i;
            v->spl_nleft++;
            continue;
        }
        else if (i == seed_2)
        {
            *right++ = i;
            v->spl_nright++;
            continue;
        }

        /* okay, which page needs least enlargement? */
        datum_alpha = GETENTRY(entryvec, i);
        union_dl = inner_int_union(datum_l, datum_alpha);
        union_dr = inner_int_union(datum_r, datum_alpha);
        rt__int_size(union_dl, &size_alpha);
        rt__int_size(union_dr, &size_beta);

        /* pick which page to add it to */
        if (size_alpha - size_l < size_beta - size_r + WISH_F(v->spl_nleft, v->spl_nright, 0.01))
        {
            if (datum_l)
                pfree(datum_l);
            if (union_dr)
                pfree(union_dr);
            datum_l = union_dl;
            size_l = size_alpha;
            *left++ = i;
            v->spl_nleft++;
        }
        else
        {
            if (datum_r)
                pfree(datum_r);
            if (union_dl)
                pfree(union_dl);
            datum_r = union_dr;
            size_r = size_beta;
            *right++ = i;
            v->spl_nright++;
        }
    }
    pfree(costvector);
    *right = *left = FirstOffsetNumber;

    v->spl_ldatum = PointerGetDatum(datum_l);
    v->spl_rdatum = PointerGetDatum(datum_r);

    PG_RETURN_POINTER(v);
}

Datum g_int_same ( PG_FUNCTION_ARGS   ) 

Definition at line 313 of file _int_gist.c.

References ARRNELEMS, ARRPTR, CHECKARRVALID, PG_GETARG_ARRAYTYPE_P, PG_GETARG_POINTER, and PG_RETURN_POINTER.

Referenced by g_int_consistent().

{
    ArrayType  *a = PG_GETARG_ARRAYTYPE_P(0);
    ArrayType  *b = PG_GETARG_ARRAYTYPE_P(1);
    bool       *result = (bool *) PG_GETARG_POINTER(2);
    int32       n = ARRNELEMS(a);
    int32      *da,
               *db;

    CHECKARRVALID(a);
    CHECKARRVALID(b);

    if (n != ARRNELEMS(b))
    {
        *result = false;
        PG_RETURN_POINTER(result);
    }
    *result = TRUE;
    da = ARRPTR(a);
    db = ARRPTR(b);
    while (n--)
    {
        if (*da++ != *db++)
        {
            *result = FALSE;
            break;
        }
    }

    PG_RETURN_POINTER(result);
}

Datum g_int_union ( PG_FUNCTION_ARGS   ) 

Definition at line 105 of file _int_gist.c.

References _int_unique(), ARRNELEMS, ARRPTR, CHECKARRVALID, GETENTRY, i, GistEntryVector::n, new_intArrayType(), PG_GETARG_POINTER, PG_RETURN_POINTER, QSORT, and VARSIZE.

{
    GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
    int        *size = (int *) PG_GETARG_POINTER(1);
    int32       i,
               *ptr;
    ArrayType  *res;
    int         totlen = 0;

    for (i = 0; i < entryvec->n; i++)
    {
        ArrayType  *ent = GETENTRY(entryvec, i);

        CHECKARRVALID(ent);
        totlen += ARRNELEMS(ent);
    }

    res = new_intArrayType(totlen);
    ptr = ARRPTR(res);

    for (i = 0; i < entryvec->n; i++)
    {
        ArrayType  *ent = GETENTRY(entryvec, i);
        int         nel;

        nel = ARRNELEMS(ent);
        memcpy(ptr, ARRPTR(ent), nel * sizeof(int32));
        ptr += nel;
    }

    QSORT(res, 1);
    res = _int_unique(res);
    *size = VARSIZE(res);
    PG_RETURN_POINTER(res);
}

PG_FUNCTION_INFO_V1 ( g_int_penalty   ) 
PG_FUNCTION_INFO_V1 ( g_int_same   ) 
PG_FUNCTION_INFO_V1 ( g_int_picksplit   ) 
PG_FUNCTION_INFO_V1 ( g_int_decompress   ) 
PG_FUNCTION_INFO_V1 ( g_int_consistent   ) 
PG_FUNCTION_INFO_V1 ( g_int_compress   ) 
PG_FUNCTION_INFO_V1 ( g_int_union   )