Header And Logo

PostgreSQL
| The world's most advanced open source database.

Data Structures | Functions | Variables

seg.c File Reference

#include "postgres.h"
#include <float.h>
#include "access/gist.h"
#include "access/skey.h"
#include "segdata.h"
Include dependency graph for seg.c:

Go to the source code of this file.

Data Structures

struct  gseg_picksplit_item

Functions

int seg_yyparse ()
void seg_yyerror (const char *message)
void seg_scanner_init (const char *str)
void seg_scanner_finish (void)
 PG_FUNCTION_INFO_V1 (seg_in)
 PG_FUNCTION_INFO_V1 (seg_out)
 PG_FUNCTION_INFO_V1 (seg_size)
 PG_FUNCTION_INFO_V1 (seg_lower)
 PG_FUNCTION_INFO_V1 (seg_upper)
 PG_FUNCTION_INFO_V1 (seg_center)
Datum seg_in (PG_FUNCTION_ARGS)
Datum seg_out (PG_FUNCTION_ARGS)
Datum seg_size (PG_FUNCTION_ARGS)
Datum seg_lower (PG_FUNCTION_ARGS)
Datum seg_upper (PG_FUNCTION_ARGS)
Datum seg_center (PG_FUNCTION_ARGS)
bool gseg_consistent (GISTENTRY *entry, SEG *query, StrategyNumber strategy, Oid subtype, bool *recheck)
GISTENTRYgseg_compress (GISTENTRY *entry)
GISTENTRYgseg_decompress (GISTENTRY *entry)
float * gseg_penalty (GISTENTRY *origentry, GISTENTRY *newentry, float *result)
GIST_SPLITVECgseg_picksplit (GistEntryVector *entryvec, GIST_SPLITVEC *v)
bool gseg_leaf_consistent (SEG *key, SEG *query, StrategyNumber strategy)
bool gseg_internal_consistent (SEG *key, SEG *query, StrategyNumber strategy)
SEGgseg_union (GistEntryVector *entryvec, int *sizep)
SEGgseg_binary_union (SEG *r1, SEG *r2, int *sizep)
boolgseg_same (SEG *b1, SEG *b2, bool *result)
bool seg_same (SEG *a, SEG *b)
bool seg_contains_int (SEG *a, int *b)
bool seg_contains_float4 (SEG *a, float4 *b)
bool seg_contains_float8 (SEG *a, float8 *b)
bool seg_contains (SEG *a, SEG *b)
bool seg_contained (SEG *a, SEG *b)
bool seg_overlap (SEG *a, SEG *b)
bool seg_left (SEG *a, SEG *b)
bool seg_over_left (SEG *a, SEG *b)
bool seg_right (SEG *a, SEG *b)
bool seg_over_right (SEG *a, SEG *b)
SEGseg_union (SEG *a, SEG *b)
SEGseg_inter (SEG *a, SEG *b)
void rt_seg_size (SEG *a, float *sz)
int32 seg_cmp (SEG *a, SEG *b)
bool seg_lt (SEG *a, SEG *b)
bool seg_le (SEG *a, SEG *b)
bool seg_gt (SEG *a, SEG *b)
bool seg_ge (SEG *a, SEG *b)
bool seg_different (SEG *a, SEG *b)
static int restore (char *s, float val, int n)
int significant_digits (char *s)
static int gseg_picksplit_item_cmp (const void *a, const void *b)

Variables

 PG_MODULE_MAGIC

Function Documentation

SEG * gseg_binary_union ( SEG r1,
SEG r2,
int *  sizep 
)

Definition at line 519 of file seg.c.

References seg_union().

Referenced by gseg_union().

{
    SEG        *retval;

    retval = seg_union(r1, r2);
    *sizep = sizeof(SEG);

    return (retval);
}

GISTENTRY * gseg_compress ( GISTENTRY entry  ) 

Definition at line 268 of file seg.c.

{
    return (entry);
}

bool gseg_consistent ( GISTENTRY entry,
SEG query,
StrategyNumber  strategy,
Oid  subtype,
bool recheck 
)

Definition at line 213 of file seg.c.

References DatumGetPointer, GIST_LEAF, gseg_internal_consistent(), gseg_leaf_consistent(), and GISTENTRY::key.

{
    /* All cases served by this function are exact */
    *recheck = false;

    /*
     * if entry is not leaf, use gseg_internal_consistent, else use
     * gseg_leaf_consistent
     */
    if (GIST_LEAF(entry))
        return (gseg_leaf_consistent((SEG *) DatumGetPointer(entry->key), query, strategy));
    else
        return (gseg_internal_consistent((SEG *) DatumGetPointer(entry->key), query, strategy));
}

GISTENTRY * gseg_decompress ( GISTENTRY entry  ) 

Definition at line 274 of file seg.c.

{
    return (entry);
}

bool gseg_internal_consistent ( SEG key,
SEG query,
StrategyNumber  strategy 
)

Definition at line 476 of file seg.c.

References RTContainedByStrategyNumber, RTContainsStrategyNumber, RTLeftStrategyNumber, RTOldContainedByStrategyNumber, RTOldContainsStrategyNumber, RTOverlapStrategyNumber, RTOverLeftStrategyNumber, RTOverRightStrategyNumber, RTRightStrategyNumber, RTSameStrategyNumber, seg_contains(), seg_left(), seg_over_left(), seg_over_right(), seg_overlap(), and seg_right().

Referenced by gseg_consistent().

{
    bool        retval;

#ifdef GIST_QUERY_DEBUG
    fprintf(stderr, "internal_consistent, %d\n", strategy);
#endif

    switch (strategy)
    {
        case RTLeftStrategyNumber:
            retval = (bool) !seg_over_right(key, query);
            break;
        case RTOverLeftStrategyNumber:
            retval = (bool) !seg_right(key, query);
            break;
        case RTOverlapStrategyNumber:
            retval = (bool) seg_overlap(key, query);
            break;
        case RTOverRightStrategyNumber:
            retval = (bool) !seg_left(key, query);
            break;
        case RTRightStrategyNumber:
            retval = (bool) !seg_over_left(key, query);
            break;
        case RTSameStrategyNumber:
        case RTContainsStrategyNumber:
        case RTOldContainsStrategyNumber:
            retval = (bool) seg_contains(key, query);
            break;
        case RTContainedByStrategyNumber:
        case RTOldContainedByStrategyNumber:
            retval = (bool) seg_overlap(key, query);
            break;
        default:
            retval = FALSE;
    }
    return (retval);
}

bool gseg_leaf_consistent ( SEG key,
SEG query,
StrategyNumber  strategy 
)

Definition at line 431 of file seg.c.

References RTContainedByStrategyNumber, RTContainsStrategyNumber, RTLeftStrategyNumber, RTOldContainedByStrategyNumber, RTOldContainsStrategyNumber, RTOverlapStrategyNumber, RTOverLeftStrategyNumber, RTOverRightStrategyNumber, RTRightStrategyNumber, RTSameStrategyNumber, seg_contained(), seg_contains(), seg_left(), seg_over_left(), seg_over_right(), seg_overlap(), seg_right(), and seg_same().

Referenced by gseg_consistent().

{
    bool        retval;

#ifdef GIST_QUERY_DEBUG
    fprintf(stderr, "leaf_consistent, %d\n", strategy);
#endif

    switch (strategy)
    {
        case RTLeftStrategyNumber:
            retval = (bool) seg_left(key, query);
            break;
        case RTOverLeftStrategyNumber:
            retval = (bool) seg_over_left(key, query);
            break;
        case RTOverlapStrategyNumber:
            retval = (bool) seg_overlap(key, query);
            break;
        case RTOverRightStrategyNumber:
            retval = (bool) seg_over_right(key, query);
            break;
        case RTRightStrategyNumber:
            retval = (bool) seg_right(key, query);
            break;
        case RTSameStrategyNumber:
            retval = (bool) seg_same(key, query);
            break;
        case RTContainsStrategyNumber:
        case RTOldContainsStrategyNumber:
            retval = (bool) seg_contains(key, query);
            break;
        case RTContainedByStrategyNumber:
        case RTOldContainedByStrategyNumber:
            retval = (bool) seg_contained(key, query);
            break;
        default:
            retval = FALSE;
    }
    return (retval);
}

float * gseg_penalty ( GISTENTRY origentry,
GISTENTRY newentry,
float *  result 
)

Definition at line 284 of file seg.c.

References DatumGetPointer, GISTENTRY::key, rt_seg_size(), and seg_union().

{
    SEG        *ud;
    float       tmp1,
                tmp2;

    ud = seg_union((SEG *) DatumGetPointer(origentry->key),
                   (SEG *) DatumGetPointer(newentry->key));
    rt_seg_size(ud, &tmp1);
    rt_seg_size((SEG *) DatumGetPointer(origentry->key), &tmp2);
    *result = tmp1 - tmp2;

#ifdef GIST_DEBUG
    fprintf(stderr, "penalty\n");
    fprintf(stderr, "\t%g\n", *result);
#endif

    return (result);
}

GIST_SPLITVEC * gseg_picksplit ( GistEntryVector entryvec,
GIST_SPLITVEC v 
)

Definition at line 329 of file seg.c.

References gseg_picksplit_item::center, gseg_picksplit_item::data, DatumGetPointer, gseg_picksplit_item_cmp(), i, gseg_picksplit_item::index, GISTENTRY::key, SEG::lower, GistEntryVector::n, palloc(), PointerGetDatum, qsort, seg_union(), GIST_SPLITVEC::spl_ldatum, GIST_SPLITVEC::spl_left, GIST_SPLITVEC::spl_nleft, GIST_SPLITVEC::spl_nright, GIST_SPLITVEC::spl_rdatum, GIST_SPLITVEC::spl_right, SEG::upper, and GistEntryVector::vector.

{
    int         i;
    SEG        *datum_l,
               *datum_r,
               *seg;
    gseg_picksplit_item *sort_items;
    OffsetNumber *left,
               *right;
    OffsetNumber maxoff;
    OffsetNumber firstright;

#ifdef GIST_DEBUG
    fprintf(stderr, "picksplit\n");
#endif

    /* Valid items in entryvec->vector[] are indexed 1..maxoff */
    maxoff = entryvec->n - 1;

    /*
     * Prepare the auxiliary array and sort it.
     */
    sort_items = (gseg_picksplit_item *)
        palloc(maxoff * sizeof(gseg_picksplit_item));
    for (i = 1; i <= maxoff; i++)
    {
        seg = (SEG *) DatumGetPointer(entryvec->vector[i].key);
        /* center calculation is done this way to avoid possible overflow */
        sort_items[i - 1].center = seg->lower * 0.5f + seg->upper * 0.5f;
        sort_items[i - 1].index = i;
        sort_items[i - 1].data = seg;
    }
    qsort(sort_items, maxoff, sizeof(gseg_picksplit_item),
          gseg_picksplit_item_cmp);

    /* sort items below "firstright" will go into the left side */
    firstright = maxoff / 2;

    v->spl_left = (OffsetNumber *) palloc(maxoff * sizeof(OffsetNumber));
    v->spl_right = (OffsetNumber *) palloc(maxoff * sizeof(OffsetNumber));
    left = v->spl_left;
    v->spl_nleft = 0;
    right = v->spl_right;
    v->spl_nright = 0;

    /*
     * Emit segments to the left output page, and compute its bounding box.
     */
    datum_l = (SEG *) palloc(sizeof(SEG));
    memcpy(datum_l, sort_items[0].data, sizeof(SEG));
    *left++ = sort_items[0].index;
    v->spl_nleft++;
    for (i = 1; i < firstright; i++)
    {
        datum_l = seg_union(datum_l, sort_items[i].data);
        *left++ = sort_items[i].index;
        v->spl_nleft++;
    }

    /*
     * Likewise for the right page.
     */
    datum_r = (SEG *) palloc(sizeof(SEG));
    memcpy(datum_r, sort_items[firstright].data, sizeof(SEG));
    *right++ = sort_items[firstright].index;
    v->spl_nright++;
    for (i = firstright + 1; i < maxoff; i++)
    {
        datum_r = seg_union(datum_r, sort_items[i].data);
        *right++ = sort_items[i].index;
        v->spl_nright++;
    }

    v->spl_ldatum = PointerGetDatum(datum_l);
    v->spl_rdatum = PointerGetDatum(datum_r);

    return v;
}

static int gseg_picksplit_item_cmp ( const void *  a,
const void *  b 
) [static]

Definition at line 308 of file seg.c.

References gseg_picksplit_item::center.

Referenced by gseg_picksplit().

{
    const gseg_picksplit_item *i1 = (const gseg_picksplit_item *) a;
    const gseg_picksplit_item *i2 = (const gseg_picksplit_item *) b;

    if (i1->center < i2->center)
        return -1;
    else if (i1->center == i2->center)
        return 0;
    else
        return 1;
}

bool * gseg_same ( SEG b1,
SEG b2,
bool result 
)

Definition at line 413 of file seg.c.

References seg_same().

{
    if (seg_same(b1, b2))
        *result = TRUE;
    else
        *result = FALSE;

#ifdef GIST_DEBUG
    fprintf(stderr, "same: %s\n", (*result ? "TRUE" : "FALSE"));
#endif

    return (result);
}

SEG * gseg_union ( GistEntryVector entryvec,
int *  sizep 
)

Definition at line 237 of file seg.c.

References DatumGetPointer, gseg_binary_union(), i, GISTENTRY::key, GistEntryVector::n, NULL, and GistEntryVector::vector.

{
    int         numranges,
                i;
    SEG        *out = (SEG *) NULL;
    SEG        *tmp;

#ifdef GIST_DEBUG
    fprintf(stderr, "union\n");
#endif

    numranges = entryvec->n;
    tmp = (SEG *) DatumGetPointer(entryvec->vector[0].key);
    *sizep = sizeof(SEG);

    for (i = 1; i < numranges; i++)
    {
        out = gseg_binary_union(tmp, (SEG *)
                                DatumGetPointer(entryvec->vector[i].key),
                                sizep);
        tmp = out;
    }

    return (out);
}

PG_FUNCTION_INFO_V1 ( seg_upper   ) 
PG_FUNCTION_INFO_V1 ( seg_in   ) 
PG_FUNCTION_INFO_V1 ( seg_lower   ) 
PG_FUNCTION_INFO_V1 ( seg_center   ) 
PG_FUNCTION_INFO_V1 ( seg_out   ) 
PG_FUNCTION_INFO_V1 ( seg_size   ) 
static int restore ( char *  s,
float  val,
int  n 
) [static]

Definition at line 858 of file seg.c.

References Abs, buf, i, Min, NULL, pstrdup(), and sign.

Referenced by seg_out().

{
    static char efmt[8] = {'%', '-', '1', '5', '.', '#', 'e', 0};
    char        buf[25] = {
        '0', '0', '0', '0', '0',
        '0', '0', '0', '0', '0',
        '0', '0', '0', '0', '0',
        '0', '0', '0', '0', '0',
        '0', '0', '0', '0', '\0'
    };
    char       *p;
    int         exp;
    int         i,
                dp,
                sign;

    /*
     * put a cap on the number of siugnificant digits to avoid nonsense in the
     * output
     */
    n = Min(n, FLT_DIG);

    /* remember the sign */
    sign = (val < 0 ? 1 : 0);

    efmt[5] = '0' + (n - 1) % 10;       /* makes %-15.(n-1)e -- this format
                                         * guarantees that the exponent is
                                         * always present */

    sprintf(result, efmt, val);

    /* trim the spaces left by the %e */
    for (p = result; *p != ' '; p++);
    *p = '\0';

    /* get the exponent */
    strtok(pstrdup(result), "e");
    exp = atoi(strtok(NULL, "e"));

    if (exp == 0)
    {
        /* use the supplied mantyssa with sign */
        strcpy((char *) strchr(result, 'e'), "");
    }
    else
    {
        if (Abs(exp) <= 4)
        {
            /*
             * remove the decimal point from the mantyssa and write the digits
             * to the buf array
             */
            for (p = result + sign, i = 10, dp = 0; *p != 'e'; p++, i++)
            {
                buf[i] = *p;
                if (*p == '.')
                {
                    dp = i--;   /* skip the decimal point */
                }
            }
            if (dp == 0)
                dp = i--;       /* no decimal point was found in the above
                                 * for() loop */

            if (exp > 0)
            {
                if (dp - 10 + exp >= n)
                {
                    /*
                     * the decimal point is behind the last significant digit;
                     * the digits in between must be converted to the exponent
                     * and the decimal point placed after the first digit
                     */
                    exp = dp - 10 + exp - n;
                    buf[10 + n] = '\0';

                    /* insert the decimal point */
                    if (n > 1)
                    {
                        dp = 11;
                        for (i = 23; i > dp; i--)
                            buf[i] = buf[i - 1];
                        buf[dp] = '.';
                    }

                    /*
                     * adjust the exponent by the number of digits after the
                     * decimal point
                     */
                    if (n > 1)
                        sprintf(&buf[11 + n], "e%d", exp + n - 1);
                    else
                        sprintf(&buf[11], "e%d", exp + n - 1);

                    if (sign)
                    {
                        buf[9] = '-';
                        strcpy(result, &buf[9]);
                    }
                    else
                        strcpy(result, &buf[10]);
                }
                else
                {               /* insert the decimal point */
                    dp += exp;
                    for (i = 23; i > dp; i--)
                        buf[i] = buf[i - 1];
                    buf[11 + n] = '\0';
                    buf[dp] = '.';
                    if (sign)
                    {
                        buf[9] = '-';
                        strcpy(result, &buf[9]);
                    }
                    else
                        strcpy(result, &buf[10]);
                }
            }
            else
            {                   /* exp <= 0 */
                dp += exp - 1;
                buf[10 + n] = '\0';
                buf[dp] = '.';
                if (sign)
                {
                    buf[dp - 2] = '-';
                    strcpy(result, &buf[dp - 2]);
                }
                else
                    strcpy(result, &buf[dp - 1]);
            }
        }

        /* do nothing for Abs(exp) > 4; %e must be OK */
        /* just get rid of zeroes after [eE]- and +zeroes after [Ee]. */

        /* ... this is not done yet. */
    }
    return (strlen(result));
}

void rt_seg_size ( SEG a,
float *  sz 
)

Definition at line 675 of file seg.c.

References Abs, SEG::lower, NULL, and SEG::upper.

Referenced by gseg_penalty().

{
    if (a == (SEG *) NULL || a->upper <= a->lower)
        *size = 0.0;
    else
        *size = (float) Abs(a->upper - a->lower);

    return;
}

Datum seg_center ( PG_FUNCTION_ARGS   ) 

Definition at line 178 of file seg.c.

References SEG::lower, PG_GETARG_POINTER, PG_RETURN_FLOAT4, and SEG::upper.

{
    SEG        *seg = (SEG *) PG_GETARG_POINTER(0);

    PG_RETURN_FLOAT4(((float) seg->lower + (float) seg->upper) / 2.0);
}

int32 seg_cmp ( SEG a,
SEG b 
)

Definition at line 698 of file seg.c.

References elog, ERROR, SEG::l_ext, SEG::l_sigd, SEG::lower, SEG::u_ext, SEG::u_sigd, and SEG::upper.

Referenced by seg_different(), seg_ge(), seg_gt(), seg_le(), seg_lt(), and seg_same().

{
    /*
     * First compare on lower boundary position
     */
    if (a->lower < b->lower)
        return -1;
    if (a->lower > b->lower)
        return 1;

    /*
     * a->lower == b->lower, so consider type of boundary.
     *
     * A '-' lower bound is < any other kind (this could only be relevant if
     * -HUGE_VAL is used as a regular data value). A '<' lower bound is < any
     * other kind except '-'. A '>' lower bound is > any other kind.
     */
    if (a->l_ext != b->l_ext)
    {
        if (a->l_ext == '-')
            return -1;
        if (b->l_ext == '-')
            return 1;
        if (a->l_ext == '<')
            return -1;
        if (b->l_ext == '<')
            return 1;
        if (a->l_ext == '>')
            return 1;
        if (b->l_ext == '>')
            return -1;
    }

    /*
     * For other boundary types, consider # of significant digits first.
     */
    if (a->l_sigd < b->l_sigd)  /* (a) is blurred and is likely to include (b) */
        return -1;
    if (a->l_sigd > b->l_sigd)  /* (a) is less blurred and is likely to be
                                 * included in (b) */
        return 1;

    /*
     * For same # of digits, an approximate boundary is more blurred than
     * exact.
     */
    if (a->l_ext != b->l_ext)
    {
        if (a->l_ext == '~')    /* (a) is approximate, while (b) is exact */
            return -1;
        if (b->l_ext == '~')
            return 1;
        /* can't get here unless data is corrupt */
        elog(ERROR, "bogus lower boundary types %d %d",
             (int) a->l_ext, (int) b->l_ext);
    }

    /* at this point, the lower boundaries are identical */

    /*
     * First compare on upper boundary position
     */
    if (a->upper < b->upper)
        return -1;
    if (a->upper > b->upper)
        return 1;

    /*
     * a->upper == b->upper, so consider type of boundary.
     *
     * A '-' upper bound is > any other kind (this could only be relevant if
     * HUGE_VAL is used as a regular data value). A '<' upper bound is < any
     * other kind. A '>' upper bound is > any other kind except '-'.
     */
    if (a->u_ext != b->u_ext)
    {
        if (a->u_ext == '-')
            return 1;
        if (b->u_ext == '-')
            return -1;
        if (a->u_ext == '<')
            return -1;
        if (b->u_ext == '<')
            return 1;
        if (a->u_ext == '>')
            return 1;
        if (b->u_ext == '>')
            return -1;
    }

    /*
     * For other boundary types, consider # of significant digits first. Note
     * result here is converse of the lower-boundary case.
     */
    if (a->u_sigd < b->u_sigd)  /* (a) is blurred and is likely to include (b) */
        return 1;
    if (a->u_sigd > b->u_sigd)  /* (a) is less blurred and is likely to be
                                 * included in (b) */
        return -1;

    /*
     * For same # of digits, an approximate boundary is more blurred than
     * exact.  Again, result is converse of lower-boundary case.
     */
    if (a->u_ext != b->u_ext)
    {
        if (a->u_ext == '~')    /* (a) is approximate, while (b) is exact */
            return 1;
        if (b->u_ext == '~')
            return -1;
        /* can't get here unless data is corrupt */
        elog(ERROR, "bogus upper boundary types %d %d",
             (int) a->u_ext, (int) b->u_ext);
    }

    return 0;
}

bool seg_contained ( SEG a,
SEG b 
)

Definition at line 537 of file seg.c.

References seg_contains().

Referenced by gseg_leaf_consistent().

{
    return (seg_contains(b, a));
}

bool seg_contains ( SEG a,
SEG b 
)

Definition at line 531 of file seg.c.

References SEG::lower, and SEG::upper.

Referenced by gseg_internal_consistent(), gseg_leaf_consistent(), and seg_contained().

{
    return ((a->lower <= b->lower) && (a->upper >= b->upper));
}

bool seg_contains_float4 ( SEG a,
float4 b 
)

Definition at line 1011 of file seg.c.

References SEG::lower, and SEG::upper.

{
    return ((a->lower <= *b) && (a->upper >= *b));
}

bool seg_contains_float8 ( SEG a,
float8 b 
)

Definition at line 1017 of file seg.c.

References SEG::lower, and SEG::upper.

{
    return ((a->lower <= *b) && (a->upper >= *b));
}

bool seg_contains_int ( SEG a,
int *  b 
)

Definition at line 1005 of file seg.c.

References SEG::lower, and SEG::upper.

{
    return ((a->lower <= *b) && (a->upper >= *b));
}

bool seg_different ( SEG a,
SEG b 
)

Definition at line 841 of file seg.c.

References seg_cmp().

{
    return seg_cmp(a, b) != 0;
}

bool seg_ge ( SEG a,
SEG b 
)

Definition at line 835 of file seg.c.

References seg_cmp().

{
    return seg_cmp(a, b) >= 0;
}

bool seg_gt ( SEG a,
SEG b 
)

Definition at line 829 of file seg.c.

References seg_cmp().

{
    return seg_cmp(a, b) > 0;
}

Datum seg_in ( PG_FUNCTION_ARGS   ) 

Definition at line 121 of file seg.c.

References palloc(), PG_GETARG_CSTRING, PG_RETURN_POINTER, seg_scanner_finish(), seg_scanner_init(), seg_yyerror(), and seg_yyparse().

{
    char       *str = PG_GETARG_CSTRING(0);
    SEG        *result = palloc(sizeof(SEG));

    seg_scanner_init(str);

    if (seg_yyparse(result) != 0)
        seg_yyerror("bogus input");

    seg_scanner_finish();

    PG_RETURN_POINTER(result);
}

SEG * seg_inter ( SEG a,
SEG b 
)

Definition at line 637 of file seg.c.

References SEG::l_ext, SEG::l_sigd, SEG::lower, palloc(), SEG::u_ext, SEG::u_sigd, and SEG::upper.

{
    SEG        *n;

    n = (SEG *) palloc(sizeof(*n));

    /* take min of upper endpoints */
    if (a->upper < b->upper)
    {
        n->upper = a->upper;
        n->u_sigd = a->u_sigd;
        n->u_ext = a->u_ext;
    }
    else
    {
        n->upper = b->upper;
        n->u_sigd = b->u_sigd;
        n->u_ext = b->u_ext;
    }

    /* take max of lower endpoints */
    if (a->lower > b->lower)
    {
        n->lower = a->lower;
        n->l_sigd = a->l_sigd;
        n->l_ext = a->l_ext;
    }
    else
    {
        n->lower = b->lower;
        n->l_sigd = b->l_sigd;
        n->l_ext = b->l_ext;
    }

    return (n);
}

bool seg_le ( SEG a,
SEG b 
)

Definition at line 823 of file seg.c.

References seg_cmp().

{
    return seg_cmp(a, b) <= 0;
}

bool seg_left ( SEG a,
SEG b 
)

Definition at line 575 of file seg.c.

References SEG::lower, and SEG::upper.

Referenced by gseg_internal_consistent(), and gseg_leaf_consistent().

{
    return (a->upper < b->lower);
}

Datum seg_lower ( PG_FUNCTION_ARGS   ) 

Definition at line 186 of file seg.c.

References SEG::lower, PG_GETARG_POINTER, and PG_RETURN_FLOAT4.

{
    SEG        *seg = (SEG *) PG_GETARG_POINTER(0);

    PG_RETURN_FLOAT4(seg->lower);
}

bool seg_lt ( SEG a,
SEG b 
)

Definition at line 817 of file seg.c.

References seg_cmp().

{
    return seg_cmp(a, b) < 0;
}

Datum seg_out ( PG_FUNCTION_ARGS   ) 

Definition at line 137 of file seg.c.

References SEG::l_ext, SEG::l_sigd, SEG::lower, palloc(), PG_GETARG_POINTER, PG_RETURN_CSTRING, restore(), SEG::u_ext, SEG::u_sigd, and SEG::upper.

{
    SEG        *seg = (SEG *) PG_GETARG_POINTER(0);
    char       *result;
    char       *p;

    p = result = (char *) palloc(40);

    if (seg->l_ext == '>' || seg->l_ext == '<' || seg->l_ext == '~')
        p += sprintf(p, "%c", seg->l_ext);

    if (seg->lower == seg->upper && seg->l_ext == seg->u_ext)
    {
        /*
         * indicates that this interval was built by seg_in off a single point
         */
        p += restore(p, seg->lower, seg->l_sigd);
    }
    else
    {
        if (seg->l_ext != '-')
        {
            /* print the lower boundary if exists */
            p += restore(p, seg->lower, seg->l_sigd);
            p += sprintf(p, " ");
        }
        p += sprintf(p, "..");
        if (seg->u_ext != '-')
        {
            /* print the upper boundary if exists */
            p += sprintf(p, " ");
            if (seg->u_ext == '>' || seg->u_ext == '<' || seg->l_ext == '~')
                p += sprintf(p, "%c", seg->u_ext);
            p += restore(p, seg->upper, seg->u_sigd);
        }
    }

    PG_RETURN_CSTRING(result);
}

bool seg_over_left ( SEG a,
SEG b 
)

Definition at line 567 of file seg.c.

References SEG::upper.

Referenced by gseg_internal_consistent(), and gseg_leaf_consistent().

{
    return (a->upper <= b->upper);
}

bool seg_over_right ( SEG a,
SEG b 
)

Definition at line 591 of file seg.c.

References SEG::lower.

Referenced by gseg_internal_consistent(), and gseg_leaf_consistent().

{
    return (a->lower >= b->lower);
}

bool seg_overlap ( SEG a,
SEG b 
)

Definition at line 555 of file seg.c.

References SEG::lower, and SEG::upper.

Referenced by gseg_internal_consistent(), and gseg_leaf_consistent().

{
    return (
            ((a->upper >= b->upper) && (a->lower <= b->upper))
            ||
            ((b->upper >= a->upper) && (b->lower <= a->upper))
        );
}

bool seg_right ( SEG a,
SEG b 
)

Definition at line 583 of file seg.c.

References SEG::lower, and SEG::upper.

Referenced by gseg_internal_consistent(), and gseg_leaf_consistent().

{
    return (a->lower > b->upper);
}

bool seg_same ( SEG a,
SEG b 
)

Definition at line 547 of file seg.c.

References seg_cmp().

Referenced by gseg_leaf_consistent(), and gseg_same().

{
    return seg_cmp(a, b) == 0;
}

void seg_scanner_finish ( void   ) 

Referenced by seg_in().

void seg_scanner_init ( const char *  str  ) 

Referenced by seg_in().

Datum seg_size ( PG_FUNCTION_ARGS   ) 

Definition at line 686 of file seg.c.

References Abs, SEG::lower, PG_GETARG_POINTER, PG_RETURN_FLOAT4, and SEG::upper.

{
    SEG        *seg = (SEG *) PG_GETARG_POINTER(0);

    PG_RETURN_FLOAT4((float) Abs(seg->upper - seg->lower));
}

SEG * seg_union ( SEG a,
SEG b 
)

Definition at line 598 of file seg.c.

References SEG::l_ext, SEG::l_sigd, SEG::lower, palloc(), SEG::u_ext, SEG::u_sigd, and SEG::upper.

Referenced by gseg_binary_union(), gseg_penalty(), and gseg_picksplit().

{
    SEG        *n;

    n = (SEG *) palloc(sizeof(*n));

    /* take max of upper endpoints */
    if (a->upper > b->upper)
    {
        n->upper = a->upper;
        n->u_sigd = a->u_sigd;
        n->u_ext = a->u_ext;
    }
    else
    {
        n->upper = b->upper;
        n->u_sigd = b->u_sigd;
        n->u_ext = b->u_ext;
    }

    /* take min of lower endpoints */
    if (a->lower < b->lower)
    {
        n->lower = a->lower;
        n->l_sigd = a->l_sigd;
        n->l_ext = a->l_ext;
    }
    else
    {
        n->lower = b->lower;
        n->l_sigd = b->l_sigd;
        n->l_ext = b->l_ext;
    }

    return (n);
}

Datum seg_upper ( PG_FUNCTION_ARGS   ) 

Definition at line 194 of file seg.c.

References PG_GETARG_POINTER, PG_RETURN_FLOAT4, and SEG::upper.

{
    SEG        *seg = (SEG *) PG_GETARG_POINTER(0);

    PG_RETURN_FLOAT4(seg->upper);
}

void seg_yyerror ( const char *  message  ) 

Referenced by seg_in().

int seg_yyparse (  ) 

Referenced by seg_in().

int significant_digits ( char *  s  ) 

Definition at line 1026 of file seg.c.

{
    char       *p = s;
    int         n,
                c,
                zeroes;

    zeroes = 1;
    /* skip leading zeroes and sign */
    for (c = *p; (c == '0' || c == '+' || c == '-') && c != 0; c = *(++p));

    /* skip decimal point and following zeroes */
    for (c = *p; (c == '0' || c == '.') && c != 0; c = *(++p))
    {
        if (c != '.')
            zeroes++;
    }

    /* count significant digits (n) */
    for (c = *p, n = 0; c != 0; c = *(++p))
    {
        if (!((c >= '0' && c <= '9') || (c == '.')))
            break;
        if (c != '.')
            n++;
    }

    if (!n)
        return (zeroes);

    return (n);
}


Variable Documentation

Definition at line 24 of file seg.c.