librdkafka
The Apache Kafka C/C++ client library
|
librdkafka is a high performance C implementation of the Apache Kafka client, providing a reliable and performant client for production use. librdkafka also provides a native C++ interface.
The following chapters are available in this document
librdkafka is a multi-threaded library designed for use on modern hardware and it attempts to keep memory copying at a minimal. The payload of produced or consumed messages may pass through without any copying (if so desired by the application) putting no limit on message sizes.
librdkafka allows you to decide if high throughput is the name of the game, or if a low latency service is required, all through the configuration property interface.
The two most important configuration properties for performance tuning are:
The following performance numbers stem from tests using the following setup:
log.flush.interval.messages=10000000
log.flush.interval.ms=100000
rdkafka_performance
program available in the examples
subdir.Test results
Note: See the Test details chapter at the end of this document for information about the commands executed, etc.
Note: Consumer performance tests will be announced soon.
The key to high throughput is message batching - waiting for a certain amount of messages to accumulate in the local queue before sending them off in one large message set or batch to the peer. This amortizes the messaging overhead and eliminates the adverse effect of the round trip time (rtt).
The default settings, batch.num.messages=10000 and queue.buffering.max.ms=1000, are suitable for high throughput. This allows librdkafka to wait up to 1000 ms for up to 10000 messages to accumulate in the local queue before sending the accumulate messages to the broker.
These setting are set globally (rd_kafka_conf_t
) but applies on a per topic+partition basis.
When low latency messaging is required the "queue.buffering.max.ms" should be tuned to the maximum permitted producer-side latency. Setting queue.buffering.max.ms to 1 will make sure messages are sent as soon as possible. You could check out How to decrease message latency to find more details.
Producer message compression is enabled through the "compression.codec" configuration property.
Compression is performed on the batch of messages in the local queue, the larger the batch the higher likelyhood of a higher compression ratio. The local batch queue size is controlled through the "batch.num.messages" and "queue.buffering.max.ms" configuration properties as described in the High throughput chapter above.
Message reliability is an important factor of librdkafka - an application can rely fully on librdkafka to deliver a message according to the specified configuration ("request.required.acks" and "message.send.max.retries", etc).
If the topic configuration property "request.required.acks" is set to wait for message commit acknowledgements from brokers (any value but 0, see https://github.com/edenhill/librdkafka/blob/master/CONFIGURATION.md "`CONFIGURATION.md`" for specifics) then librdkafka will hold on to the message until all expected acks have been received, gracefully handling the following events:
This is handled automatically by librdkafka and the application does not need to take any action at any of the above events. The message will be resent up to "message.send.max.retries" times before reporting a failure back to the application.
The delivery report callback is used by librdkafka to signal the status of a message back to the application, it will be called once for each message to report the status of message delivery:
error_code
is non-zero the message delivery failed and the error_code indicates the nature of the failure (rd_kafka_resp_err_t
enum).error_code
is zero the message has been successfully delivered.See Producer API chapter for more details on delivery report callback usage.
The delivery report callback is optional.
The librdkafka API is documented in the `rdkafka.h` header file, the configuration properties are documented in https://github.com/edenhill/librdkafka/blob/master/CONFIGURATION.md "`CONFIGURATION.md`"
The application needs to instantiate a top-level object rd_kafka_t
which is the base container, providing global configuration and shared state. It is created by calling rd_kafka_new()
.
It also needs to instantiate one or more topics (rd_kafka_topic_t
) to be used for producing to or consuming from. The topic object holds topic-specific configuration and will be internally populated with a mapping of all available partitions and their leader brokers. It is created by calling rd_kafka_topic_new()
.
Both rd_kafka_t
and rd_kafka_topic_t
comes with a configuration API which is optional. Not using the API will cause librdkafka to use its default values which are documented in https://github.com/edenhill/librdkafka/blob/master/CONFIGURATION.md "`CONFIGURATION.md`".
Note: An application may create multiple rd_kafka_t
objects and they share no state.
Note: An rd_kafka_topic_t
object may only be used with the rd_kafka_t
object it was created from.
To ease integration with the official Apache Kafka software and lower the learning curve, librdkafka implements identical configuration properties as found in the official clients of Apache Kafka.
Configuration is applied prior to object creation using the rd_kafka_conf_set()
and rd_kafka_topic_conf_set()
APIs.
Note: The rd_kafka.._conf_t
objects are not reusable after they have been passed to rd_kafka.._new()
. The application does not need to free any config resources after a rd_kafka.._new()
call.
rd_kafka_conf_t *conf; char errstr[512]; conf = rd_kafka_conf_new(); rd_kafka_conf_set(conf, "compression.codec", "snappy", errstr, sizeof(errstr)); rd_kafka_conf_set(conf, "batch.num.messages", "100", errstr, sizeof(errstr)); rd_kafka_new(RD_KAFKA_PRODUCER, conf);
librdkafka uses multiple threads internally to fully utilize modern hardware. The API is completely thread-safe and the calling application may call any of the API functions from any of its own threads at any time.
A poll-based API is used to provide signaling back to the application, the application should call rd_kafka_poll() at regular intervals. The poll API will call the following configured callbacks (optional):
Optional callbacks not triggered by poll, these may be called from any thread:
librdkafka only needs an initial list of brokers (at least one), called the bootstrap brokers. It will connect to all the bootstrap brokers, specified by the "metadata.broker.list" configuration property or by rd_kafka_brokers_add()
, and query each one for Metadata information which contains the full list of brokers, topic, partitions and their leaders in the Kafka cluster.
Broker names are specified as "host[:port]" where the port is optional (default 9092) and the host is either a resolvable hostname or an IPv4 or IPv6 address. If host resolves to multiple addresses librdkafka will round-robin the addresses for each connection attempt. A DNS record containing all broker address can thus be used to provide a reliable bootstrap broker.
Apache Kafka broker version 0.10.0 added support for the ApiVersionRequest API which allows a client to query a broker for its range of supported API versions.
librdkafka supports this functionality and will query each broker on connect for this information (if api.version.request=true
) and use it to enable or disable various protocol features, such as MessageVersion 1 (timestamps), KafkaConsumer, etc.
If the broker fails to respond to the ApiVersionRequest librdkafka will assume the broker is too old to support the API and fall back to an older broker version's API. These fallback versions are hardcoded in librdkafka and is controlled by the broker.version.fallback
configuration property.
After setting up the rd_kafka_t
object with type RD_KAFKA_PRODUCER
and one or more rd_kafka_topic_t
objects librdkafka is ready for accepting messages to be produced and sent to brokers.
The rd_kafka_produce()
function takes the following arguments:
rkt
- the topic to produce to, previously created with rd_kafka_topic_new()
partition
- partition to produce to. If this is set to RD_KAFKA_PARTITION_UA
(UnAssigned) then the configured partitioner function will be used to select a target partition.msgflags
- 0, or one of:
RD_KAFKA_MSG_F_COPY
- librdkafka will immediately make a copy of the payload. Use this when the payload is in non-persistent memory, such as the stack.RD_KAFKA_MSG_F_FREE
- let librdkafka free the payload using free(3)
when it is done with it.These two flags are mutually exclusive and neither need to be set in which case the payload is neither copied nor freed by librdkafka.
If RD_KAFKA_MSG_F_COPY
flag is not set no data copying will be performed and librdkafka will hold on the payload pointer until the message has been delivered or fails. The delivery report callback will be called when librdkafka is done with the message to let the application regain ownership of the payload memory. The application must not free the payload in the delivery report callback if RD_KAFKA_MSG_F_FREE is set
.
payload
,len
- the message payloadkey
,keylen
- an optional message key which can be used for partitioning. It will be passed to the topic partitioner callback, if any, and will be attached to the message when sending to the broker.msg_opaque
- an optional application-provided per-message opaque pointer that will be provided in the message delivery callback to let the application reference a specific message.rd_kafka_produce()
is a non-blocking API, it will enqueue the message on an internal queue and return immediately. If the number of queued messages would exceed the "queue.buffering.max.messages" configuration property then rd_kafka_produce()
returns -1 and sets errno to ENOBUFS
, thus providing a backpressure mechanism.
Note: See examples/rdkafka_performance.c
for a producer implementation.
NOTE: For the high-level KafkaConsumer interface see rd_kafka_subscribe (rdkafka.h) or KafkaConsumer (rdkafkacpp.h)
The consumer API is a bit more stateful than the producer API. After creating rd_kafka_t
with type RD_KAFKA_CONSUMER
and rd_kafka_topic_t
instances the application must also start the consumer for a given partition by calling rd_kafka_consume_start()
.
rd_kafka_consume_start()
arguments:
rkt
- the topic to start consuming from, previously created with rd_kafka_topic_new()
.partition
- partition to consume from.offset
- message offset to start consuming from. This may either be an absolute message offset or one of the two special offsets: RD_KAFKA_OFFSET_BEGINNING
to start consuming from the beginning of the partition's queue (oldest message), or RD_KAFKA_OFFSET_END
to start consuming at the next message to be produced to the partition, or RD_KAFKA_OFFSET_STORED
to use the offset store.After a topic+partition consumer has been started librdkafka will attempt to keep "queued.min.messages" messages in the local queue by repeatedly fetching batches of messages from the broker.
This local message queue is then served to the application through three different consume APIs:
rd_kafka_consume()
- consumes a single messagerd_kafka_consume_batch()
- consumes one or more messagesrd_kafka_consume_callback()
- consumes all messages in the local queue and calls a callback function for each one.These three APIs are listed above the ascending order of performance, rd_kafka_consume()
being the slowest and rd_kafka_consume_callback()
being the fastest. The different consume variants are provided to cater for different application needs.
A consumed message, as provided or returned by each of the consume functions, is represented by the rd_kafka_message_t
type.
rd_kafka_message_t
members:
err
- Error signaling back to the application. If this field is non-zero the payload
field should be considered an error message and err
is an error code (rd_kafka_resp_err_t
). If err
is zero then the message is a proper fetched message and payload
et.al contains message payload data.rkt
,partition
- Topic and partition for this message or error.payload
,len
- Message payload data or error message (err!=0).key
,key_len
- Optional message key as specified by the produceroffset
- Message offsetBoth the payload
and key
memory, as well as the message as a whole, is owned by librdkafka and must not be used after an rd_kafka_message_destroy()
call. librdkafka will share the same messageset receive buffer memory for all message payloads of that messageset to avoid excessive copying which means that if the application decides to hang on to a single rd_kafka_message_t
it will hinder the backing memory to be released for all other messages from the same messageset.
When the application is done consuming messages from a topic+partition it should call rd_kafka_consume_stop()
to stop the consumer. This will also purge any messages currently in the local queue.
Note: See examples/rdkafka_performance.c
for a consumer implementation.
Broker based offset management is available for broker version >= 0.9.0 in conjunction with using the high-level KafkaConsumer interface (see rdkafka.h or rdkafkacpp.h)
Offset management is also available through a local offset file store, where the offset is periodically written to a local file for each topic+partition according to the following topic configuration properties:
auto.commit.enable
auto.commit.interval.ms
offset.store.path
offset.store.sync.interval.ms
There is currently no support for offset management with ZooKeeper.
Broker based consumer groups (requires Apache Kafka broker >=0.9) are supported, see KafkaConsumer in rdkafka.h or rdkafkacpp.h
Topic auto creation is supported by librdkafka. The broker needs to be configured with "auto.create.topics.enable=true".
Previous to the 0.9.3 release librdkafka's metadata handling was chatty and excessive, which usually isn't a problem in small to medium-sized clusters, but in large clusters with a large amount of librdkafka clients the metadata requests could hog broker CPU and bandwidth.
The remaining Metadata sections describe the current behaviour.
Note: "Known topics" in the following section means topics for locally created rd_kafka_topic_t
objects.
There are four reasons to query metadata:
The above list is sorted so that the sub-sequent entries contain the information above, e.g., 'known topics' contains enough information to also satisfy 'specific topic' and 'brokers'.
The prevalent cache timeout is metadata.max.age.ms
, any cached entry will remain authoritative for this long or until a relevant broker error is returned.
metadata.max.age.ms
Each broker is leader for one of the two partitions. The random partitioner is used (default) and each broker and partition is assigned approximately 250000 messages each.
Command:
# examples/rdkafka_performance -P -t test2 -s 100 -c 500000 -m "_____________Test1:TwoBrokers:500kmsgs:100bytes" -S 1 -a 2 .... % 500000 messages and 50000000 bytes sent in 587ms: 851531 msgs/s and 85.15 Mb/s, 0 messages failed, no compression
Result:
Message transfer rate is approximately 850000 messages per second, 85 megabytes per second.
Command:
# examples/rdkafka_performance -P -t test2 -s 100 -c 500000 -m "_____________Test2:OneBrokers:500kmsgs:100bytes" -S 1 -a 0 -p 1 .... % 500000 messages and 50000000 bytes sent in 698ms: 715994 msgs/s and 71.60 Mb/s, 0 messages failed, no compression
Result:
Message transfer rate is approximately 710000 messages per second, 71 megabytes per second.
Command:
# examples/rdkafka_performance -P -t test2 -s 100 -c 500000 -m "_____________Test3:TwoBrokers:500kmsgs:100bytes:snappy" -S 1 -a 2 -z snappy .... % 500000 messages and 50000000 bytes sent in 1672ms: 298915 msgs/s and 29.89 Mb/s, 0 messages failed, snappy compression
Result:
Message transfer rate is approximately 300000 messages per second, 30 megabytes per second.
Command:
# examples/rdkafka_performance -P -t test2 -s 100 -c 500000 -m "_____________Test3:TwoBrokers:500kmsgs:100bytes:gzip" -S 1 -a 2 -z gzip .... % 500000 messages and 50000000 bytes sent in 2111ms: 236812 msgs/s and 23.68 Mb/s, 0 messages failed, gzip compression
Result:
Message transfer rate is approximately 230000 messages per second, 23 megabytes per second.