Explaining queries
If it is unclear how a given query will perform, clients can retrieve a query's execution plan from the AQL query optimizer without actually executing the query. Getting the query execution plan from the optimizer is called explaining.
An explain will throw an error if the given query is syntactically invalid. Otherwise, it will return the execution plan and some information about what optimizations could be applied to the query. The query will not be executed.
Explaining a query can be achieved by calling the HTTP REST API.
A query can also be explained from the ArangoShell using ArangoStatement
's explain
method.
By default, the query optimizer will return what it considers to be the optimal plan. The
optimal plan will be returned in the plan
attribute of the result. If explain
is
called with option allPlans
set to true
, all plans will be returned in the plans
attribute instead. The result object will also contain an attribute warnings, which
is an array of warnings that occurred during optimization or execution plan creation.
Each plan in the result is an object with the following attributes:
- nodes: the array of execution nodes of the plan. The list of available node types can be found here
- estimatedCost: the total estimated cost for the plan. If there are multiple plans, the optimizer will choose the plan with the lowest total cost.
- collections: an array of collections used in the query
- rules: an array of rules the optimizer applied. The list of rules can be found here
- variables: array of variables used in the query (note: this may contain internal variables created by the optimizer)
Here is an example for retrieving the execution plan of a simple query:
arangosh> var stmt = db._createStatement(
........> "FOR user IN _users RETURN user");
arangosh> stmt.explain();
{
"plan" : {
"nodes" : [
{
"type" : "SingletonNode",
"dependencies" : [ ],
"id" : 1,
"estimatedCost" : 1,
"estimatedNrItems" : 1
},
{
"type" : "EnumerateCollectionNode",
"dependencies" : [
1
],
"id" : 2,
"estimatedCost" : 3,
"estimatedNrItems" : 1,
"database" : "_system",
"collection" : "_users",
"random" : false,
"satellite" : false,
"outVariable" : {
"id" : 0,
"name" : "user"
}
},
{
"type" : "ReturnNode",
"dependencies" : [
2
],
"id" : 3,
"estimatedCost" : 4,
"estimatedNrItems" : 1,
"inVariable" : {
"id" : 0,
"name" : "user"
}
}
],
"rules" : [ ],
"collections" : [
{
"name" : "_users",
"type" : "read"
}
],
"variables" : [
{
"id" : 0,
"name" : "user"
}
],
"estimatedCost" : 4,
"estimatedNrItems" : 1,
"initialize" : true
},
"warnings" : [ ],
"stats" : {
"rulesExecuted" : 29,
"rulesSkipped" : 0,
"plansCreated" : 1
},
"cacheable" : true
}
arangosh> var stmt = db._createStatement(
........> "FOR user IN _users RETURN user");
arangosh> stmt.explain();
As the output of explain
is very detailed, it is recommended to use some
scripting to make the output less verbose:
arangosh> var formatPlan = function (plan) {
........> return { estimatedCost: plan.estimatedCost,
........> nodes: plan.nodes.map(function(node) {
........> return node.type; }) }; };
arangosh> formatPlan(stmt.explain().plan);
{
"estimatedCost" : 4,
"nodes" : [
"SingletonNode",
"EnumerateCollectionNode",
"ReturnNode"
]
}
arangosh> var formatPlan = function (plan) {
........> return { estimatedCost: plan.estimatedCost,
........> nodes: plan.nodes.map(function(node) {
........> return node.type; }) }; };
arangosh> formatPlan(stmt.explain().plan);
If a query contains bind parameters, they must be added to the statement before
explain
is called:
arangosh> var stmt = db._createStatement(
........> `FOR doc IN @@collection FILTER doc.user == @user RETURN doc`
........> );
arangosh> stmt.bind({ "@collection" : "_users", "user" : "root" });
arangosh> stmt.explain();
{
"plan" : {
"nodes" : [
{
"type" : "SingletonNode",
"dependencies" : [ ],
"id" : 1,
"estimatedCost" : 1,
"estimatedNrItems" : 1
},
{
"type" : "IndexNode",
"dependencies" : [
1
],
"id" : 6,
"estimatedCost" : 1.95,
"estimatedNrItems" : 1,
"database" : "_system",
"collection" : "_users",
"satellite" : false,
"outVariable" : {
"id" : 0,
"name" : "doc"
},
"indexes" : [
{
"id" : "9",
"type" : "hash",
"fields" : [
"user"
],
"selectivityEstimate" : 1,
"unique" : true,
"sparse" : true,
"deduplicate" : true
}
],
"condition" : {
"type" : "n-ary or",
"subNodes" : [
{
"type" : "n-ary and",
"subNodes" : [
{
"type" : "compare ==",
"subNodes" : [
{
"type" : "attribute access",
"name" : "user",
"subNodes" : [
{
"type" : "reference",
"name" : "doc",
"id" : 0
}
]
},
{
"type" : "value",
"value" : "root"
}
]
}
]
}
]
},
"reverse" : false
},
{
"type" : "ReturnNode",
"dependencies" : [
6
],
"id" : 5,
"estimatedCost" : 2.95,
"estimatedNrItems" : 1,
"inVariable" : {
"id" : 0,
"name" : "doc"
}
}
],
"rules" : [
"use-indexes",
"remove-filter-covered-by-index",
"remove-unnecessary-calculations-2"
],
"collections" : [
{
"name" : "_users",
"type" : "read"
}
],
"variables" : [
{
"id" : 2,
"name" : "1"
},
{
"id" : 0,
"name" : "doc"
}
],
"estimatedCost" : 2.95,
"estimatedNrItems" : 1,
"initialize" : true
},
"warnings" : [ ],
"stats" : {
"rulesExecuted" : 29,
"rulesSkipped" : 0,
"plansCreated" : 1
},
"cacheable" : true
}
arangosh> var stmt = db._createStatement(
........> `FOR doc IN @@collection FILTER doc.user == @user RETURN doc`
........> );
arangosh> stmt.bind({ "@collection" : "_users", "user" : "root" });
arangosh> stmt.explain();
In some cases the AQL optimizer creates multiple plans for a single query. By default
only the plan with the lowest total estimated cost is kept, and the other plans are
discarded. To retrieve all plans the optimizer has generated, explain
can be called
with the option allPlans
set to true
.
In the following example, the optimizer has created two plans:
arangosh> var stmt = db._createStatement(
........> "FOR user IN _users FILTER user.user == 'root' RETURN user");
arangosh> stmt.explain({ allPlans: true }).plans.length;
1
To see a slightly more compact version of the plan, the following transformation can be applied:
arangosh> stmt.explain({ allPlans: true }).plans.map(
........> function(plan) { return formatPlan(plan); });
[
{
"estimatedCost" : 2.95,
"nodes" : [
"SingletonNode",
"IndexNode",
"ReturnNode"
]
}
]
arangosh> stmt.explain({ allPlans: true }).plans.map(
........> function(plan) { return formatPlan(plan); });
explain
will also accept the following additional options:
- maxPlans: limits the maximum number of plans that are created by the AQL query optimizer
- optimizer.rules: an array of to-be-included or to-be-excluded optimizer rules
can be put into this attribute, telling the optimizer to include or exclude
specific rules. To disable a rule, prefix its name with a
-
, to enable a rule, prefix it with a+
. There is also a pseudo-ruleall
, which will match all optimizer rules.
The following example disables all optimizer rules but remove-redundant-calculations
:
arangosh> stmt.explain({ optimizer: {
........> rules: [ "-all", "+remove-redundant-calculations" ] } });
{
"plan" : {
"nodes" : [
{
"type" : "SingletonNode",
"dependencies" : [ ],
"id" : 1,
"estimatedCost" : 1,
"estimatedNrItems" : 1
},
{
"type" : "EnumerateCollectionNode",
"dependencies" : [
1
],
"id" : 2,
"estimatedCost" : 3,
"estimatedNrItems" : 1,
"database" : "_system",
"collection" : "_users",
"random" : false,
"satellite" : false,
"outVariable" : {
"id" : 0,
"name" : "user"
}
},
{
"type" : "CalculationNode",
"dependencies" : [
2
],
"id" : 3,
"estimatedCost" : 4,
"estimatedNrItems" : 1,
"expression" : {
"type" : "compare ==",
"subNodes" : [
{
"type" : "attribute access",
"name" : "user",
"subNodes" : [
{
"type" : "reference",
"name" : "user",
"id" : 0
}
]
},
{
"type" : "value",
"value" : "root"
}
]
},
"outVariable" : {
"id" : 2,
"name" : "1"
},
"canThrow" : false,
"expressionType" : "simple"
},
{
"type" : "FilterNode",
"dependencies" : [
3
],
"id" : 4,
"estimatedCost" : 5,
"estimatedNrItems" : 1,
"inVariable" : {
"id" : 2,
"name" : "1"
}
},
{
"type" : "ReturnNode",
"dependencies" : [
4
],
"id" : 5,
"estimatedCost" : 6,
"estimatedNrItems" : 1,
"inVariable" : {
"id" : 0,
"name" : "user"
}
}
],
"rules" : [ ],
"collections" : [
{
"name" : "_users",
"type" : "read"
}
],
"variables" : [
{
"id" : 2,
"name" : "1"
},
{
"id" : 0,
"name" : "user"
}
],
"estimatedCost" : 6,
"estimatedNrItems" : 1,
"initialize" : true
},
"warnings" : [ ],
"stats" : {
"rulesExecuted" : 1,
"rulesSkipped" : 28,
"plansCreated" : 1
},
"cacheable" : true
}
arangosh> stmt.explain({ optimizer: {
........> rules: [ "-all", "+remove-redundant-calculations" ] } });
The contents of an execution plan are meant to be machine-readable. To get a human-readable version of a query's execution plan, the following commands can be used:
arangosh> var query = "FOR doc IN mycollection FILTER doc.value > 42 RETURN doc"; arangosh> require("@arangodb/aql/explainer").explain(query, {colors:false}); Query string: FOR doc IN mycollection FILTER doc.value > 42 RETURN doc Execution plan: Id NodeType Est. Comment 1 SingletonNode 1 * ROOT 2 EnumerateCollectionNode 302 - FOR doc IN mycollection /* full collection scan */ 3 CalculationNode 302 - LET #1 = (doc.`value` > 42) /* simple expression */ /* collections used: doc : mycollection */ 4 FilterNode 302 - FILTER #1 5 ReturnNode 302 - RETURN doc Indexes used: none Optimization rules applied: none
arangosh> var query = "FOR doc IN mycollection FILTER doc.value > 42 RETURN doc"; arangosh> require("@arangodb/aql/explainer").explain(query, {colors:false});
The above command prints the query's execution plan in the ArangoShell directly, focusing on the most important information.