References¶
[Bengio07] |
|
[Bengio09] |
|
[BengioDelalleau09] |
|
[BoulangerLewandowski12] | N Boulanger-Lewandowski, Y. Bengio and P. Vincent, Modeling Temporal Dependencies in High-Dimensional Sequences: Application to Polyphonic Music Generation and Transcription, in Proceedings of the 29th International Conference on Machine Learning (ICML), 2012. |
[Fukushima] | Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36, 193–202. |
[Hinton06] | G.E. Hinton and R.R. Salakhutdinov, Reducing the Dimensionality of Data with Neural Networks, Science, 28 July 2006, Vol. 313. no. 5786, pp. 504 - 507. |
[Hinton07] | G.E. Hinton, S. Osindero, and Y. Teh, “A fast learning algorithm for deep belief nets”, Neural Computation, vol 18, 2006 |
[Hubel68] | Hubel, D. and Wiesel, T. (1968). Receptive fields and functional architecture of monkey striate cortex. Journal of Physiology (London), 195, 215–243. |
[LeCun98] | LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998d). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324. |
[Lee08] |
|
[Lee09] |
|
[Ranzato10] |
|
[Ranzato07] | M.A. Ranzato, C. Poultney, S. Chopra and Y. LeCun, in J. Platt et al., Efficient Learning of Sparse Representations with an Energy-Based Model, Advances in Neural Information Processing Systems (NIPS 2006), MIT Press, 2007. |
[Serre07] | Serre, T., Wolf, L., Bileschi, S., and Riesenhuber, M. (2007). Robust object recog- nition with cortex-like mechanisms. IEEE Trans. Pattern Anal. Mach. Intell., 29(3), 411–426. Member-Poggio, Tomaso. |
[Vincent08] |
|
[Tieleman08] |
|
[Xavier10] |
|