Caffe2 - Python API
A deep learning, cross platform ML framework
Public Member Functions | Public Attributes | List of all members
layer_test_util.LayersTestCase Class Reference
Inheritance diagram for layer_test_util.LayersTestCase:
test_util.TestCase

Public Member Functions

def setUp (self)
 
def new_record (self, schema_obj)
 
def get_training_nets (self)
 
def get_predict_net (self)
 
def run_train_net (self)
 
def assertBlobsEqual (self, spec_blobs, op_blobs)
 
def assertNetContainOps (self, net, op_specs)
 
- Public Member Functions inherited from test_util.TestCase
def setUpClass (cls)
 
def setUp (self)
 
def tearDown (self)
 

Public Attributes

 model
 
- Public Attributes inherited from test_util.TestCase
 ws
 

Detailed Description

Definition at line 24 of file layer_test_util.py.

Member Function Documentation

◆ assertBlobsEqual()

def layer_test_util.LayersTestCase.assertBlobsEqual (   self,
  spec_blobs,
  op_blobs 
)
spec_blobs can either be None or a list of blob names. If it's None,
then no assertion is performed. The elements of the list can be None,
in that case, it means that position will not be checked.

Definition at line 64 of file layer_test_util.py.

◆ assertNetContainOps()

def layer_test_util.LayersTestCase.assertNetContainOps (   self,
  net,
  op_specs 
)
Given a net and a list of OpSpec's, check that the net match the spec

Definition at line 78 of file layer_test_util.py.

◆ get_training_nets()

def layer_test_util.LayersTestCase.get_training_nets (   self)
We don't use
layer_model_instantiator.generate_training_nets_forward_only()
here because it includes initialization of global constants, which make
testing tricky

Definition at line 41 of file layer_test_util.py.


The documentation for this class was generated from the following file: