|
def | __init__ (self, name=None, init_params=True, allow_not_known_ops=True, skip_sparse_optim=False, param_model=None) |
|
def | get_name (self) |
|
def | add_param (self, param, key=None, shape=None, length=None) |
|
def | param_info (self, grad_type=None, id=None) |
|
def | GetParams (self, namescope=None, top_scope=False) |
|
def | Proto (self) |
|
def | InitProto (self) |
|
def | RunAllOnGPU (self, args, kwargs) |
|
def | CreateDB (self, blob_out, db, db_type, kwargs) |
|
def | AddGradientOperators (self, args, kwargs) |
|
def | get_param_to_grad (self, params) |
|
def | GetOptimizationPairs (self, params=None) |
|
def | GetComputedParams (self, namescope=None) |
|
def | GetAllParams (self, namescope=None) |
|
def | TensorProtosDBInput (self, unused_blob_in, blob_out, batch_size, db, db_type, kwargs) |
|
def | AddOperator (self, op_type, inputs, parameters, args, kwargs) |
|
def | GetDevices (self) |
|
def | __getattr__ (self, op_type) |
|
A helper model so we can write models more easily, without having to
manually define parameter initializations and operators separately.
In order to add support for specific operators, inherit from this class
and add corresponding methods. Operator representing methods should
take care of adding their parameters to params
Definition at line 54 of file model_helper.py.
def model_helper.ModelHelperBase.AddOperator |
( |
|
self, |
|
|
|
op_type, |
|
|
|
inputs, |
|
|
|
parameters, |
|
|
|
args, |
|
|
|
kwargs |
|
) |
| |
Adds an operator to a model. Use parameters list
to specify which operator inputs are model parameters to be
optimized.
Example of usage:
model.SparseLengthsSum(
[embedding, indices, lengths],
parameters=[embedding],
)
Here embedding is a parameter to be optimized while indices
and lengths are not.
Definition at line 253 of file model_helper.py.