clang API Documentation
00001 //===--- CGCleanup.cpp - Bookkeeping and code emission for cleanups -------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file contains code dealing with the IR generation for cleanups 00011 // and related information. 00012 // 00013 // A "cleanup" is a piece of code which needs to be executed whenever 00014 // control transfers out of a particular scope. This can be 00015 // conditionalized to occur only on exceptional control flow, only on 00016 // normal control flow, or both. 00017 // 00018 //===----------------------------------------------------------------------===// 00019 00020 #include "CGCleanup.h" 00021 #include "CodeGenFunction.h" 00022 00023 using namespace clang; 00024 using namespace CodeGen; 00025 00026 bool DominatingValue<RValue>::saved_type::needsSaving(RValue rv) { 00027 if (rv.isScalar()) 00028 return DominatingLLVMValue::needsSaving(rv.getScalarVal()); 00029 if (rv.isAggregate()) 00030 return DominatingLLVMValue::needsSaving(rv.getAggregateAddr()); 00031 return true; 00032 } 00033 00034 DominatingValue<RValue>::saved_type 00035 DominatingValue<RValue>::saved_type::save(CodeGenFunction &CGF, RValue rv) { 00036 if (rv.isScalar()) { 00037 llvm::Value *V = rv.getScalarVal(); 00038 00039 // These automatically dominate and don't need to be saved. 00040 if (!DominatingLLVMValue::needsSaving(V)) 00041 return saved_type(V, ScalarLiteral); 00042 00043 // Everything else needs an alloca. 00044 llvm::Value *addr = CGF.CreateTempAlloca(V->getType(), "saved-rvalue"); 00045 CGF.Builder.CreateStore(V, addr); 00046 return saved_type(addr, ScalarAddress); 00047 } 00048 00049 if (rv.isComplex()) { 00050 CodeGenFunction::ComplexPairTy V = rv.getComplexVal(); 00051 llvm::Type *ComplexTy = 00052 llvm::StructType::get(V.first->getType(), V.second->getType(), 00053 (void*) nullptr); 00054 llvm::Value *addr = CGF.CreateTempAlloca(ComplexTy, "saved-complex"); 00055 CGF.Builder.CreateStore(V.first, CGF.Builder.CreateStructGEP(addr, 0)); 00056 CGF.Builder.CreateStore(V.second, CGF.Builder.CreateStructGEP(addr, 1)); 00057 return saved_type(addr, ComplexAddress); 00058 } 00059 00060 assert(rv.isAggregate()); 00061 llvm::Value *V = rv.getAggregateAddr(); // TODO: volatile? 00062 if (!DominatingLLVMValue::needsSaving(V)) 00063 return saved_type(V, AggregateLiteral); 00064 00065 llvm::Value *addr = CGF.CreateTempAlloca(V->getType(), "saved-rvalue"); 00066 CGF.Builder.CreateStore(V, addr); 00067 return saved_type(addr, AggregateAddress); 00068 } 00069 00070 /// Given a saved r-value produced by SaveRValue, perform the code 00071 /// necessary to restore it to usability at the current insertion 00072 /// point. 00073 RValue DominatingValue<RValue>::saved_type::restore(CodeGenFunction &CGF) { 00074 switch (K) { 00075 case ScalarLiteral: 00076 return RValue::get(Value); 00077 case ScalarAddress: 00078 return RValue::get(CGF.Builder.CreateLoad(Value)); 00079 case AggregateLiteral: 00080 return RValue::getAggregate(Value); 00081 case AggregateAddress: 00082 return RValue::getAggregate(CGF.Builder.CreateLoad(Value)); 00083 case ComplexAddress: { 00084 llvm::Value *real = 00085 CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(Value, 0)); 00086 llvm::Value *imag = 00087 CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(Value, 1)); 00088 return RValue::getComplex(real, imag); 00089 } 00090 } 00091 00092 llvm_unreachable("bad saved r-value kind"); 00093 } 00094 00095 /// Push an entry of the given size onto this protected-scope stack. 00096 char *EHScopeStack::allocate(size_t Size) { 00097 if (!StartOfBuffer) { 00098 unsigned Capacity = 1024; 00099 while (Capacity < Size) Capacity *= 2; 00100 StartOfBuffer = new char[Capacity]; 00101 StartOfData = EndOfBuffer = StartOfBuffer + Capacity; 00102 } else if (static_cast<size_t>(StartOfData - StartOfBuffer) < Size) { 00103 unsigned CurrentCapacity = EndOfBuffer - StartOfBuffer; 00104 unsigned UsedCapacity = CurrentCapacity - (StartOfData - StartOfBuffer); 00105 00106 unsigned NewCapacity = CurrentCapacity; 00107 do { 00108 NewCapacity *= 2; 00109 } while (NewCapacity < UsedCapacity + Size); 00110 00111 char *NewStartOfBuffer = new char[NewCapacity]; 00112 char *NewEndOfBuffer = NewStartOfBuffer + NewCapacity; 00113 char *NewStartOfData = NewEndOfBuffer - UsedCapacity; 00114 memcpy(NewStartOfData, StartOfData, UsedCapacity); 00115 delete [] StartOfBuffer; 00116 StartOfBuffer = NewStartOfBuffer; 00117 EndOfBuffer = NewEndOfBuffer; 00118 StartOfData = NewStartOfData; 00119 } 00120 00121 assert(StartOfBuffer + Size <= StartOfData); 00122 StartOfData -= Size; 00123 return StartOfData; 00124 } 00125 00126 EHScopeStack::stable_iterator 00127 EHScopeStack::getInnermostActiveNormalCleanup() const { 00128 for (stable_iterator si = getInnermostNormalCleanup(), se = stable_end(); 00129 si != se; ) { 00130 EHCleanupScope &cleanup = cast<EHCleanupScope>(*find(si)); 00131 if (cleanup.isActive()) return si; 00132 si = cleanup.getEnclosingNormalCleanup(); 00133 } 00134 return stable_end(); 00135 } 00136 00137 EHScopeStack::stable_iterator EHScopeStack::getInnermostActiveEHScope() const { 00138 for (stable_iterator si = getInnermostEHScope(), se = stable_end(); 00139 si != se; ) { 00140 // Skip over inactive cleanups. 00141 EHCleanupScope *cleanup = dyn_cast<EHCleanupScope>(&*find(si)); 00142 if (cleanup && !cleanup->isActive()) { 00143 si = cleanup->getEnclosingEHScope(); 00144 continue; 00145 } 00146 00147 // All other scopes are always active. 00148 return si; 00149 } 00150 00151 return stable_end(); 00152 } 00153 00154 00155 void *EHScopeStack::pushCleanup(CleanupKind Kind, size_t Size) { 00156 assert(((Size % sizeof(void*)) == 0) && "cleanup type is misaligned"); 00157 char *Buffer = allocate(EHCleanupScope::getSizeForCleanupSize(Size)); 00158 bool IsNormalCleanup = Kind & NormalCleanup; 00159 bool IsEHCleanup = Kind & EHCleanup; 00160 bool IsActive = !(Kind & InactiveCleanup); 00161 EHCleanupScope *Scope = 00162 new (Buffer) EHCleanupScope(IsNormalCleanup, 00163 IsEHCleanup, 00164 IsActive, 00165 Size, 00166 BranchFixups.size(), 00167 InnermostNormalCleanup, 00168 InnermostEHScope); 00169 if (IsNormalCleanup) 00170 InnermostNormalCleanup = stable_begin(); 00171 if (IsEHCleanup) 00172 InnermostEHScope = stable_begin(); 00173 00174 return Scope->getCleanupBuffer(); 00175 } 00176 00177 void EHScopeStack::popCleanup() { 00178 assert(!empty() && "popping exception stack when not empty"); 00179 00180 assert(isa<EHCleanupScope>(*begin())); 00181 EHCleanupScope &Cleanup = cast<EHCleanupScope>(*begin()); 00182 InnermostNormalCleanup = Cleanup.getEnclosingNormalCleanup(); 00183 InnermostEHScope = Cleanup.getEnclosingEHScope(); 00184 StartOfData += Cleanup.getAllocatedSize(); 00185 00186 // Destroy the cleanup. 00187 Cleanup.Destroy(); 00188 00189 // Check whether we can shrink the branch-fixups stack. 00190 if (!BranchFixups.empty()) { 00191 // If we no longer have any normal cleanups, all the fixups are 00192 // complete. 00193 if (!hasNormalCleanups()) 00194 BranchFixups.clear(); 00195 00196 // Otherwise we can still trim out unnecessary nulls. 00197 else 00198 popNullFixups(); 00199 } 00200 } 00201 00202 EHFilterScope *EHScopeStack::pushFilter(unsigned numFilters) { 00203 assert(getInnermostEHScope() == stable_end()); 00204 char *buffer = allocate(EHFilterScope::getSizeForNumFilters(numFilters)); 00205 EHFilterScope *filter = new (buffer) EHFilterScope(numFilters); 00206 InnermostEHScope = stable_begin(); 00207 return filter; 00208 } 00209 00210 void EHScopeStack::popFilter() { 00211 assert(!empty() && "popping exception stack when not empty"); 00212 00213 EHFilterScope &filter = cast<EHFilterScope>(*begin()); 00214 StartOfData += EHFilterScope::getSizeForNumFilters(filter.getNumFilters()); 00215 00216 InnermostEHScope = filter.getEnclosingEHScope(); 00217 } 00218 00219 EHCatchScope *EHScopeStack::pushCatch(unsigned numHandlers) { 00220 char *buffer = allocate(EHCatchScope::getSizeForNumHandlers(numHandlers)); 00221 EHCatchScope *scope = 00222 new (buffer) EHCatchScope(numHandlers, InnermostEHScope); 00223 InnermostEHScope = stable_begin(); 00224 return scope; 00225 } 00226 00227 void EHScopeStack::pushTerminate() { 00228 char *Buffer = allocate(EHTerminateScope::getSize()); 00229 new (Buffer) EHTerminateScope(InnermostEHScope); 00230 InnermostEHScope = stable_begin(); 00231 } 00232 00233 /// Remove any 'null' fixups on the stack. However, we can't pop more 00234 /// fixups than the fixup depth on the innermost normal cleanup, or 00235 /// else fixups that we try to add to that cleanup will end up in the 00236 /// wrong place. We *could* try to shrink fixup depths, but that's 00237 /// actually a lot of work for little benefit. 00238 void EHScopeStack::popNullFixups() { 00239 // We expect this to only be called when there's still an innermost 00240 // normal cleanup; otherwise there really shouldn't be any fixups. 00241 assert(hasNormalCleanups()); 00242 00243 EHScopeStack::iterator it = find(InnermostNormalCleanup); 00244 unsigned MinSize = cast<EHCleanupScope>(*it).getFixupDepth(); 00245 assert(BranchFixups.size() >= MinSize && "fixup stack out of order"); 00246 00247 while (BranchFixups.size() > MinSize && 00248 BranchFixups.back().Destination == nullptr) 00249 BranchFixups.pop_back(); 00250 } 00251 00252 void CodeGenFunction::initFullExprCleanup() { 00253 // Create a variable to decide whether the cleanup needs to be run. 00254 llvm::AllocaInst *active 00255 = CreateTempAlloca(Builder.getInt1Ty(), "cleanup.cond"); 00256 00257 // Initialize it to false at a site that's guaranteed to be run 00258 // before each evaluation. 00259 setBeforeOutermostConditional(Builder.getFalse(), active); 00260 00261 // Initialize it to true at the current location. 00262 Builder.CreateStore(Builder.getTrue(), active); 00263 00264 // Set that as the active flag in the cleanup. 00265 EHCleanupScope &cleanup = cast<EHCleanupScope>(*EHStack.begin()); 00266 assert(!cleanup.getActiveFlag() && "cleanup already has active flag?"); 00267 cleanup.setActiveFlag(active); 00268 00269 if (cleanup.isNormalCleanup()) cleanup.setTestFlagInNormalCleanup(); 00270 if (cleanup.isEHCleanup()) cleanup.setTestFlagInEHCleanup(); 00271 } 00272 00273 void EHScopeStack::Cleanup::anchor() {} 00274 00275 /// All the branch fixups on the EH stack have propagated out past the 00276 /// outermost normal cleanup; resolve them all by adding cases to the 00277 /// given switch instruction. 00278 static void ResolveAllBranchFixups(CodeGenFunction &CGF, 00279 llvm::SwitchInst *Switch, 00280 llvm::BasicBlock *CleanupEntry) { 00281 llvm::SmallPtrSet<llvm::BasicBlock*, 4> CasesAdded; 00282 00283 for (unsigned I = 0, E = CGF.EHStack.getNumBranchFixups(); I != E; ++I) { 00284 // Skip this fixup if its destination isn't set. 00285 BranchFixup &Fixup = CGF.EHStack.getBranchFixup(I); 00286 if (Fixup.Destination == nullptr) continue; 00287 00288 // If there isn't an OptimisticBranchBlock, then InitialBranch is 00289 // still pointing directly to its destination; forward it to the 00290 // appropriate cleanup entry. This is required in the specific 00291 // case of 00292 // { std::string s; goto lbl; } 00293 // lbl: 00294 // i.e. where there's an unresolved fixup inside a single cleanup 00295 // entry which we're currently popping. 00296 if (Fixup.OptimisticBranchBlock == nullptr) { 00297 new llvm::StoreInst(CGF.Builder.getInt32(Fixup.DestinationIndex), 00298 CGF.getNormalCleanupDestSlot(), 00299 Fixup.InitialBranch); 00300 Fixup.InitialBranch->setSuccessor(0, CleanupEntry); 00301 } 00302 00303 // Don't add this case to the switch statement twice. 00304 if (!CasesAdded.insert(Fixup.Destination)) continue; 00305 00306 Switch->addCase(CGF.Builder.getInt32(Fixup.DestinationIndex), 00307 Fixup.Destination); 00308 } 00309 00310 CGF.EHStack.clearFixups(); 00311 } 00312 00313 /// Transitions the terminator of the given exit-block of a cleanup to 00314 /// be a cleanup switch. 00315 static llvm::SwitchInst *TransitionToCleanupSwitch(CodeGenFunction &CGF, 00316 llvm::BasicBlock *Block) { 00317 // If it's a branch, turn it into a switch whose default 00318 // destination is its original target. 00319 llvm::TerminatorInst *Term = Block->getTerminator(); 00320 assert(Term && "can't transition block without terminator"); 00321 00322 if (llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Term)) { 00323 assert(Br->isUnconditional()); 00324 llvm::LoadInst *Load = 00325 new llvm::LoadInst(CGF.getNormalCleanupDestSlot(), "cleanup.dest", Term); 00326 llvm::SwitchInst *Switch = 00327 llvm::SwitchInst::Create(Load, Br->getSuccessor(0), 4, Block); 00328 Br->eraseFromParent(); 00329 return Switch; 00330 } else { 00331 return cast<llvm::SwitchInst>(Term); 00332 } 00333 } 00334 00335 void CodeGenFunction::ResolveBranchFixups(llvm::BasicBlock *Block) { 00336 assert(Block && "resolving a null target block"); 00337 if (!EHStack.getNumBranchFixups()) return; 00338 00339 assert(EHStack.hasNormalCleanups() && 00340 "branch fixups exist with no normal cleanups on stack"); 00341 00342 llvm::SmallPtrSet<llvm::BasicBlock*, 4> ModifiedOptimisticBlocks; 00343 bool ResolvedAny = false; 00344 00345 for (unsigned I = 0, E = EHStack.getNumBranchFixups(); I != E; ++I) { 00346 // Skip this fixup if its destination doesn't match. 00347 BranchFixup &Fixup = EHStack.getBranchFixup(I); 00348 if (Fixup.Destination != Block) continue; 00349 00350 Fixup.Destination = nullptr; 00351 ResolvedAny = true; 00352 00353 // If it doesn't have an optimistic branch block, LatestBranch is 00354 // already pointing to the right place. 00355 llvm::BasicBlock *BranchBB = Fixup.OptimisticBranchBlock; 00356 if (!BranchBB) 00357 continue; 00358 00359 // Don't process the same optimistic branch block twice. 00360 if (!ModifiedOptimisticBlocks.insert(BranchBB)) 00361 continue; 00362 00363 llvm::SwitchInst *Switch = TransitionToCleanupSwitch(*this, BranchBB); 00364 00365 // Add a case to the switch. 00366 Switch->addCase(Builder.getInt32(Fixup.DestinationIndex), Block); 00367 } 00368 00369 if (ResolvedAny) 00370 EHStack.popNullFixups(); 00371 } 00372 00373 /// Pops cleanup blocks until the given savepoint is reached. 00374 void CodeGenFunction::PopCleanupBlocks(EHScopeStack::stable_iterator Old) { 00375 assert(Old.isValid()); 00376 00377 while (EHStack.stable_begin() != Old) { 00378 EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin()); 00379 00380 // As long as Old strictly encloses the scope's enclosing normal 00381 // cleanup, we're going to emit another normal cleanup which 00382 // fallthrough can propagate through. 00383 bool FallThroughIsBranchThrough = 00384 Old.strictlyEncloses(Scope.getEnclosingNormalCleanup()); 00385 00386 PopCleanupBlock(FallThroughIsBranchThrough); 00387 } 00388 } 00389 00390 /// Pops cleanup blocks until the given savepoint is reached, then add the 00391 /// cleanups from the given savepoint in the lifetime-extended cleanups stack. 00392 void 00393 CodeGenFunction::PopCleanupBlocks(EHScopeStack::stable_iterator Old, 00394 size_t OldLifetimeExtendedSize) { 00395 PopCleanupBlocks(Old); 00396 00397 // Move our deferred cleanups onto the EH stack. 00398 for (size_t I = OldLifetimeExtendedSize, 00399 E = LifetimeExtendedCleanupStack.size(); I != E; /**/) { 00400 // Alignment should be guaranteed by the vptrs in the individual cleanups. 00401 assert((I % llvm::alignOf<LifetimeExtendedCleanupHeader>() == 0) && 00402 "misaligned cleanup stack entry"); 00403 00404 LifetimeExtendedCleanupHeader &Header = 00405 reinterpret_cast<LifetimeExtendedCleanupHeader&>( 00406 LifetimeExtendedCleanupStack[I]); 00407 I += sizeof(Header); 00408 00409 EHStack.pushCopyOfCleanup(Header.getKind(), 00410 &LifetimeExtendedCleanupStack[I], 00411 Header.getSize()); 00412 I += Header.getSize(); 00413 } 00414 LifetimeExtendedCleanupStack.resize(OldLifetimeExtendedSize); 00415 } 00416 00417 static llvm::BasicBlock *CreateNormalEntry(CodeGenFunction &CGF, 00418 EHCleanupScope &Scope) { 00419 assert(Scope.isNormalCleanup()); 00420 llvm::BasicBlock *Entry = Scope.getNormalBlock(); 00421 if (!Entry) { 00422 Entry = CGF.createBasicBlock("cleanup"); 00423 Scope.setNormalBlock(Entry); 00424 } 00425 return Entry; 00426 } 00427 00428 /// Attempts to reduce a cleanup's entry block to a fallthrough. This 00429 /// is basically llvm::MergeBlockIntoPredecessor, except 00430 /// simplified/optimized for the tighter constraints on cleanup blocks. 00431 /// 00432 /// Returns the new block, whatever it is. 00433 static llvm::BasicBlock *SimplifyCleanupEntry(CodeGenFunction &CGF, 00434 llvm::BasicBlock *Entry) { 00435 llvm::BasicBlock *Pred = Entry->getSinglePredecessor(); 00436 if (!Pred) return Entry; 00437 00438 llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Pred->getTerminator()); 00439 if (!Br || Br->isConditional()) return Entry; 00440 assert(Br->getSuccessor(0) == Entry); 00441 00442 // If we were previously inserting at the end of the cleanup entry 00443 // block, we'll need to continue inserting at the end of the 00444 // predecessor. 00445 bool WasInsertBlock = CGF.Builder.GetInsertBlock() == Entry; 00446 assert(!WasInsertBlock || CGF.Builder.GetInsertPoint() == Entry->end()); 00447 00448 // Kill the branch. 00449 Br->eraseFromParent(); 00450 00451 // Replace all uses of the entry with the predecessor, in case there 00452 // are phis in the cleanup. 00453 Entry->replaceAllUsesWith(Pred); 00454 00455 // Merge the blocks. 00456 Pred->getInstList().splice(Pred->end(), Entry->getInstList()); 00457 00458 // Kill the entry block. 00459 Entry->eraseFromParent(); 00460 00461 if (WasInsertBlock) 00462 CGF.Builder.SetInsertPoint(Pred); 00463 00464 return Pred; 00465 } 00466 00467 static void EmitCleanup(CodeGenFunction &CGF, 00468 EHScopeStack::Cleanup *Fn, 00469 EHScopeStack::Cleanup::Flags flags, 00470 llvm::Value *ActiveFlag) { 00471 // EH cleanups always occur within a terminate scope. 00472 if (flags.isForEHCleanup()) CGF.EHStack.pushTerminate(); 00473 00474 // If there's an active flag, load it and skip the cleanup if it's 00475 // false. 00476 llvm::BasicBlock *ContBB = nullptr; 00477 if (ActiveFlag) { 00478 ContBB = CGF.createBasicBlock("cleanup.done"); 00479 llvm::BasicBlock *CleanupBB = CGF.createBasicBlock("cleanup.action"); 00480 llvm::Value *IsActive 00481 = CGF.Builder.CreateLoad(ActiveFlag, "cleanup.is_active"); 00482 CGF.Builder.CreateCondBr(IsActive, CleanupBB, ContBB); 00483 CGF.EmitBlock(CleanupBB); 00484 } 00485 00486 // Ask the cleanup to emit itself. 00487 Fn->Emit(CGF, flags); 00488 assert(CGF.HaveInsertPoint() && "cleanup ended with no insertion point?"); 00489 00490 // Emit the continuation block if there was an active flag. 00491 if (ActiveFlag) 00492 CGF.EmitBlock(ContBB); 00493 00494 // Leave the terminate scope. 00495 if (flags.isForEHCleanup()) CGF.EHStack.popTerminate(); 00496 } 00497 00498 static void ForwardPrebranchedFallthrough(llvm::BasicBlock *Exit, 00499 llvm::BasicBlock *From, 00500 llvm::BasicBlock *To) { 00501 // Exit is the exit block of a cleanup, so it always terminates in 00502 // an unconditional branch or a switch. 00503 llvm::TerminatorInst *Term = Exit->getTerminator(); 00504 00505 if (llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Term)) { 00506 assert(Br->isUnconditional() && Br->getSuccessor(0) == From); 00507 Br->setSuccessor(0, To); 00508 } else { 00509 llvm::SwitchInst *Switch = cast<llvm::SwitchInst>(Term); 00510 for (unsigned I = 0, E = Switch->getNumSuccessors(); I != E; ++I) 00511 if (Switch->getSuccessor(I) == From) 00512 Switch->setSuccessor(I, To); 00513 } 00514 } 00515 00516 /// We don't need a normal entry block for the given cleanup. 00517 /// Optimistic fixup branches can cause these blocks to come into 00518 /// existence anyway; if so, destroy it. 00519 /// 00520 /// The validity of this transformation is very much specific to the 00521 /// exact ways in which we form branches to cleanup entries. 00522 static void destroyOptimisticNormalEntry(CodeGenFunction &CGF, 00523 EHCleanupScope &scope) { 00524 llvm::BasicBlock *entry = scope.getNormalBlock(); 00525 if (!entry) return; 00526 00527 // Replace all the uses with unreachable. 00528 llvm::BasicBlock *unreachableBB = CGF.getUnreachableBlock(); 00529 for (llvm::BasicBlock::use_iterator 00530 i = entry->use_begin(), e = entry->use_end(); i != e; ) { 00531 llvm::Use &use = *i; 00532 ++i; 00533 00534 use.set(unreachableBB); 00535 00536 // The only uses should be fixup switches. 00537 llvm::SwitchInst *si = cast<llvm::SwitchInst>(use.getUser()); 00538 if (si->getNumCases() == 1 && si->getDefaultDest() == unreachableBB) { 00539 // Replace the switch with a branch. 00540 llvm::BranchInst::Create(si->case_begin().getCaseSuccessor(), si); 00541 00542 // The switch operand is a load from the cleanup-dest alloca. 00543 llvm::LoadInst *condition = cast<llvm::LoadInst>(si->getCondition()); 00544 00545 // Destroy the switch. 00546 si->eraseFromParent(); 00547 00548 // Destroy the load. 00549 assert(condition->getOperand(0) == CGF.NormalCleanupDest); 00550 assert(condition->use_empty()); 00551 condition->eraseFromParent(); 00552 } 00553 } 00554 00555 assert(entry->use_empty()); 00556 delete entry; 00557 } 00558 00559 /// Pops a cleanup block. If the block includes a normal cleanup, the 00560 /// current insertion point is threaded through the cleanup, as are 00561 /// any branch fixups on the cleanup. 00562 void CodeGenFunction::PopCleanupBlock(bool FallthroughIsBranchThrough) { 00563 assert(!EHStack.empty() && "cleanup stack is empty!"); 00564 assert(isa<EHCleanupScope>(*EHStack.begin()) && "top not a cleanup!"); 00565 EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin()); 00566 assert(Scope.getFixupDepth() <= EHStack.getNumBranchFixups()); 00567 00568 // Remember activation information. 00569 bool IsActive = Scope.isActive(); 00570 llvm::Value *NormalActiveFlag = 00571 Scope.shouldTestFlagInNormalCleanup() ? Scope.getActiveFlag() : nullptr; 00572 llvm::Value *EHActiveFlag = 00573 Scope.shouldTestFlagInEHCleanup() ? Scope.getActiveFlag() : nullptr; 00574 00575 // Check whether we need an EH cleanup. This is only true if we've 00576 // generated a lazy EH cleanup block. 00577 llvm::BasicBlock *EHEntry = Scope.getCachedEHDispatchBlock(); 00578 assert(Scope.hasEHBranches() == (EHEntry != nullptr)); 00579 bool RequiresEHCleanup = (EHEntry != nullptr); 00580 EHScopeStack::stable_iterator EHParent = Scope.getEnclosingEHScope(); 00581 00582 // Check the three conditions which might require a normal cleanup: 00583 00584 // - whether there are branch fix-ups through this cleanup 00585 unsigned FixupDepth = Scope.getFixupDepth(); 00586 bool HasFixups = EHStack.getNumBranchFixups() != FixupDepth; 00587 00588 // - whether there are branch-throughs or branch-afters 00589 bool HasExistingBranches = Scope.hasBranches(); 00590 00591 // - whether there's a fallthrough 00592 llvm::BasicBlock *FallthroughSource = Builder.GetInsertBlock(); 00593 bool HasFallthrough = (FallthroughSource != nullptr && IsActive); 00594 00595 // Branch-through fall-throughs leave the insertion point set to the 00596 // end of the last cleanup, which points to the current scope. The 00597 // rest of IR gen doesn't need to worry about this; it only happens 00598 // during the execution of PopCleanupBlocks(). 00599 bool HasPrebranchedFallthrough = 00600 (FallthroughSource && FallthroughSource->getTerminator()); 00601 00602 // If this is a normal cleanup, then having a prebranched 00603 // fallthrough implies that the fallthrough source unconditionally 00604 // jumps here. 00605 assert(!Scope.isNormalCleanup() || !HasPrebranchedFallthrough || 00606 (Scope.getNormalBlock() && 00607 FallthroughSource->getTerminator()->getSuccessor(0) 00608 == Scope.getNormalBlock())); 00609 00610 bool RequiresNormalCleanup = false; 00611 if (Scope.isNormalCleanup() && 00612 (HasFixups || HasExistingBranches || HasFallthrough)) { 00613 RequiresNormalCleanup = true; 00614 } 00615 00616 // If we have a prebranched fallthrough into an inactive normal 00617 // cleanup, rewrite it so that it leads to the appropriate place. 00618 if (Scope.isNormalCleanup() && HasPrebranchedFallthrough && !IsActive) { 00619 llvm::BasicBlock *prebranchDest; 00620 00621 // If the prebranch is semantically branching through the next 00622 // cleanup, just forward it to the next block, leaving the 00623 // insertion point in the prebranched block. 00624 if (FallthroughIsBranchThrough) { 00625 EHScope &enclosing = *EHStack.find(Scope.getEnclosingNormalCleanup()); 00626 prebranchDest = CreateNormalEntry(*this, cast<EHCleanupScope>(enclosing)); 00627 00628 // Otherwise, we need to make a new block. If the normal cleanup 00629 // isn't being used at all, we could actually reuse the normal 00630 // entry block, but this is simpler, and it avoids conflicts with 00631 // dead optimistic fixup branches. 00632 } else { 00633 prebranchDest = createBasicBlock("forwarded-prebranch"); 00634 EmitBlock(prebranchDest); 00635 } 00636 00637 llvm::BasicBlock *normalEntry = Scope.getNormalBlock(); 00638 assert(normalEntry && !normalEntry->use_empty()); 00639 00640 ForwardPrebranchedFallthrough(FallthroughSource, 00641 normalEntry, prebranchDest); 00642 } 00643 00644 // If we don't need the cleanup at all, we're done. 00645 if (!RequiresNormalCleanup && !RequiresEHCleanup) { 00646 destroyOptimisticNormalEntry(*this, Scope); 00647 EHStack.popCleanup(); // safe because there are no fixups 00648 assert(EHStack.getNumBranchFixups() == 0 || 00649 EHStack.hasNormalCleanups()); 00650 return; 00651 } 00652 00653 // Copy the cleanup emission data out. Note that SmallVector 00654 // guarantees maximal alignment for its buffer regardless of its 00655 // type parameter. 00656 SmallVector<char, 8*sizeof(void*)> CleanupBuffer; 00657 CleanupBuffer.reserve(Scope.getCleanupSize()); 00658 memcpy(CleanupBuffer.data(), 00659 Scope.getCleanupBuffer(), Scope.getCleanupSize()); 00660 CleanupBuffer.set_size(Scope.getCleanupSize()); 00661 EHScopeStack::Cleanup *Fn = 00662 reinterpret_cast<EHScopeStack::Cleanup*>(CleanupBuffer.data()); 00663 00664 EHScopeStack::Cleanup::Flags cleanupFlags; 00665 if (Scope.isNormalCleanup()) 00666 cleanupFlags.setIsNormalCleanupKind(); 00667 if (Scope.isEHCleanup()) 00668 cleanupFlags.setIsEHCleanupKind(); 00669 00670 if (!RequiresNormalCleanup) { 00671 destroyOptimisticNormalEntry(*this, Scope); 00672 EHStack.popCleanup(); 00673 } else { 00674 // If we have a fallthrough and no other need for the cleanup, 00675 // emit it directly. 00676 if (HasFallthrough && !HasPrebranchedFallthrough && 00677 !HasFixups && !HasExistingBranches) { 00678 00679 destroyOptimisticNormalEntry(*this, Scope); 00680 EHStack.popCleanup(); 00681 00682 EmitCleanup(*this, Fn, cleanupFlags, NormalActiveFlag); 00683 00684 // Otherwise, the best approach is to thread everything through 00685 // the cleanup block and then try to clean up after ourselves. 00686 } else { 00687 // Force the entry block to exist. 00688 llvm::BasicBlock *NormalEntry = CreateNormalEntry(*this, Scope); 00689 00690 // I. Set up the fallthrough edge in. 00691 00692 CGBuilderTy::InsertPoint savedInactiveFallthroughIP; 00693 00694 // If there's a fallthrough, we need to store the cleanup 00695 // destination index. For fall-throughs this is always zero. 00696 if (HasFallthrough) { 00697 if (!HasPrebranchedFallthrough) 00698 Builder.CreateStore(Builder.getInt32(0), getNormalCleanupDestSlot()); 00699 00700 // Otherwise, save and clear the IP if we don't have fallthrough 00701 // because the cleanup is inactive. 00702 } else if (FallthroughSource) { 00703 assert(!IsActive && "source without fallthrough for active cleanup"); 00704 savedInactiveFallthroughIP = Builder.saveAndClearIP(); 00705 } 00706 00707 // II. Emit the entry block. This implicitly branches to it if 00708 // we have fallthrough. All the fixups and existing branches 00709 // should already be branched to it. 00710 EmitBlock(NormalEntry); 00711 00712 // III. Figure out where we're going and build the cleanup 00713 // epilogue. 00714 00715 bool HasEnclosingCleanups = 00716 (Scope.getEnclosingNormalCleanup() != EHStack.stable_end()); 00717 00718 // Compute the branch-through dest if we need it: 00719 // - if there are branch-throughs threaded through the scope 00720 // - if fall-through is a branch-through 00721 // - if there are fixups that will be optimistically forwarded 00722 // to the enclosing cleanup 00723 llvm::BasicBlock *BranchThroughDest = nullptr; 00724 if (Scope.hasBranchThroughs() || 00725 (FallthroughSource && FallthroughIsBranchThrough) || 00726 (HasFixups && HasEnclosingCleanups)) { 00727 assert(HasEnclosingCleanups); 00728 EHScope &S = *EHStack.find(Scope.getEnclosingNormalCleanup()); 00729 BranchThroughDest = CreateNormalEntry(*this, cast<EHCleanupScope>(S)); 00730 } 00731 00732 llvm::BasicBlock *FallthroughDest = nullptr; 00733 SmallVector<llvm::Instruction*, 2> InstsToAppend; 00734 00735 // If there's exactly one branch-after and no other threads, 00736 // we can route it without a switch. 00737 if (!Scope.hasBranchThroughs() && !HasFixups && !HasFallthrough && 00738 Scope.getNumBranchAfters() == 1) { 00739 assert(!BranchThroughDest || !IsActive); 00740 00741 // TODO: clean up the possibly dead stores to the cleanup dest slot. 00742 llvm::BasicBlock *BranchAfter = Scope.getBranchAfterBlock(0); 00743 InstsToAppend.push_back(llvm::BranchInst::Create(BranchAfter)); 00744 00745 // Build a switch-out if we need it: 00746 // - if there are branch-afters threaded through the scope 00747 // - if fall-through is a branch-after 00748 // - if there are fixups that have nowhere left to go and 00749 // so must be immediately resolved 00750 } else if (Scope.getNumBranchAfters() || 00751 (HasFallthrough && !FallthroughIsBranchThrough) || 00752 (HasFixups && !HasEnclosingCleanups)) { 00753 00754 llvm::BasicBlock *Default = 00755 (BranchThroughDest ? BranchThroughDest : getUnreachableBlock()); 00756 00757 // TODO: base this on the number of branch-afters and fixups 00758 const unsigned SwitchCapacity = 10; 00759 00760 llvm::LoadInst *Load = 00761 new llvm::LoadInst(getNormalCleanupDestSlot(), "cleanup.dest"); 00762 llvm::SwitchInst *Switch = 00763 llvm::SwitchInst::Create(Load, Default, SwitchCapacity); 00764 00765 InstsToAppend.push_back(Load); 00766 InstsToAppend.push_back(Switch); 00767 00768 // Branch-after fallthrough. 00769 if (FallthroughSource && !FallthroughIsBranchThrough) { 00770 FallthroughDest = createBasicBlock("cleanup.cont"); 00771 if (HasFallthrough) 00772 Switch->addCase(Builder.getInt32(0), FallthroughDest); 00773 } 00774 00775 for (unsigned I = 0, E = Scope.getNumBranchAfters(); I != E; ++I) { 00776 Switch->addCase(Scope.getBranchAfterIndex(I), 00777 Scope.getBranchAfterBlock(I)); 00778 } 00779 00780 // If there aren't any enclosing cleanups, we can resolve all 00781 // the fixups now. 00782 if (HasFixups && !HasEnclosingCleanups) 00783 ResolveAllBranchFixups(*this, Switch, NormalEntry); 00784 } else { 00785 // We should always have a branch-through destination in this case. 00786 assert(BranchThroughDest); 00787 InstsToAppend.push_back(llvm::BranchInst::Create(BranchThroughDest)); 00788 } 00789 00790 // IV. Pop the cleanup and emit it. 00791 EHStack.popCleanup(); 00792 assert(EHStack.hasNormalCleanups() == HasEnclosingCleanups); 00793 00794 EmitCleanup(*this, Fn, cleanupFlags, NormalActiveFlag); 00795 00796 // Append the prepared cleanup prologue from above. 00797 llvm::BasicBlock *NormalExit = Builder.GetInsertBlock(); 00798 for (unsigned I = 0, E = InstsToAppend.size(); I != E; ++I) 00799 NormalExit->getInstList().push_back(InstsToAppend[I]); 00800 00801 // Optimistically hope that any fixups will continue falling through. 00802 for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups(); 00803 I < E; ++I) { 00804 BranchFixup &Fixup = EHStack.getBranchFixup(I); 00805 if (!Fixup.Destination) continue; 00806 if (!Fixup.OptimisticBranchBlock) { 00807 new llvm::StoreInst(Builder.getInt32(Fixup.DestinationIndex), 00808 getNormalCleanupDestSlot(), 00809 Fixup.InitialBranch); 00810 Fixup.InitialBranch->setSuccessor(0, NormalEntry); 00811 } 00812 Fixup.OptimisticBranchBlock = NormalExit; 00813 } 00814 00815 // V. Set up the fallthrough edge out. 00816 00817 // Case 1: a fallthrough source exists but doesn't branch to the 00818 // cleanup because the cleanup is inactive. 00819 if (!HasFallthrough && FallthroughSource) { 00820 // Prebranched fallthrough was forwarded earlier. 00821 // Non-prebranched fallthrough doesn't need to be forwarded. 00822 // Either way, all we need to do is restore the IP we cleared before. 00823 assert(!IsActive); 00824 Builder.restoreIP(savedInactiveFallthroughIP); 00825 00826 // Case 2: a fallthrough source exists and should branch to the 00827 // cleanup, but we're not supposed to branch through to the next 00828 // cleanup. 00829 } else if (HasFallthrough && FallthroughDest) { 00830 assert(!FallthroughIsBranchThrough); 00831 EmitBlock(FallthroughDest); 00832 00833 // Case 3: a fallthrough source exists and should branch to the 00834 // cleanup and then through to the next. 00835 } else if (HasFallthrough) { 00836 // Everything is already set up for this. 00837 00838 // Case 4: no fallthrough source exists. 00839 } else { 00840 Builder.ClearInsertionPoint(); 00841 } 00842 00843 // VI. Assorted cleaning. 00844 00845 // Check whether we can merge NormalEntry into a single predecessor. 00846 // This might invalidate (non-IR) pointers to NormalEntry. 00847 llvm::BasicBlock *NewNormalEntry = 00848 SimplifyCleanupEntry(*this, NormalEntry); 00849 00850 // If it did invalidate those pointers, and NormalEntry was the same 00851 // as NormalExit, go back and patch up the fixups. 00852 if (NewNormalEntry != NormalEntry && NormalEntry == NormalExit) 00853 for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups(); 00854 I < E; ++I) 00855 EHStack.getBranchFixup(I).OptimisticBranchBlock = NewNormalEntry; 00856 } 00857 } 00858 00859 assert(EHStack.hasNormalCleanups() || EHStack.getNumBranchFixups() == 0); 00860 00861 // Emit the EH cleanup if required. 00862 if (RequiresEHCleanup) { 00863 CGDebugInfo *DI = getDebugInfo(); 00864 SaveAndRestoreLocation AutoRestoreLocation(*this, Builder); 00865 if (DI) 00866 DI->EmitLocation(Builder, CurEHLocation); 00867 00868 CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); 00869 00870 EmitBlock(EHEntry); 00871 00872 // We only actually emit the cleanup code if the cleanup is either 00873 // active or was used before it was deactivated. 00874 if (EHActiveFlag || IsActive) { 00875 00876 cleanupFlags.setIsForEHCleanup(); 00877 EmitCleanup(*this, Fn, cleanupFlags, EHActiveFlag); 00878 } 00879 00880 Builder.CreateBr(getEHDispatchBlock(EHParent)); 00881 00882 Builder.restoreIP(SavedIP); 00883 00884 SimplifyCleanupEntry(*this, EHEntry); 00885 } 00886 } 00887 00888 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 00889 /// specified destination obviously has no cleanups to run. 'false' is always 00890 /// a conservatively correct answer for this method. 00891 bool CodeGenFunction::isObviouslyBranchWithoutCleanups(JumpDest Dest) const { 00892 assert(Dest.getScopeDepth().encloses(EHStack.stable_begin()) 00893 && "stale jump destination"); 00894 00895 // Calculate the innermost active normal cleanup. 00896 EHScopeStack::stable_iterator TopCleanup = 00897 EHStack.getInnermostActiveNormalCleanup(); 00898 00899 // If we're not in an active normal cleanup scope, or if the 00900 // destination scope is within the innermost active normal cleanup 00901 // scope, we don't need to worry about fixups. 00902 if (TopCleanup == EHStack.stable_end() || 00903 TopCleanup.encloses(Dest.getScopeDepth())) // works for invalid 00904 return true; 00905 00906 // Otherwise, we might need some cleanups. 00907 return false; 00908 } 00909 00910 00911 /// Terminate the current block by emitting a branch which might leave 00912 /// the current cleanup-protected scope. The target scope may not yet 00913 /// be known, in which case this will require a fixup. 00914 /// 00915 /// As a side-effect, this method clears the insertion point. 00916 void CodeGenFunction::EmitBranchThroughCleanup(JumpDest Dest) { 00917 assert(Dest.getScopeDepth().encloses(EHStack.stable_begin()) 00918 && "stale jump destination"); 00919 00920 if (!HaveInsertPoint()) 00921 return; 00922 00923 // Create the branch. 00924 llvm::BranchInst *BI = Builder.CreateBr(Dest.getBlock()); 00925 00926 // Calculate the innermost active normal cleanup. 00927 EHScopeStack::stable_iterator 00928 TopCleanup = EHStack.getInnermostActiveNormalCleanup(); 00929 00930 // If we're not in an active normal cleanup scope, or if the 00931 // destination scope is within the innermost active normal cleanup 00932 // scope, we don't need to worry about fixups. 00933 if (TopCleanup == EHStack.stable_end() || 00934 TopCleanup.encloses(Dest.getScopeDepth())) { // works for invalid 00935 Builder.ClearInsertionPoint(); 00936 return; 00937 } 00938 00939 // If we can't resolve the destination cleanup scope, just add this 00940 // to the current cleanup scope as a branch fixup. 00941 if (!Dest.getScopeDepth().isValid()) { 00942 BranchFixup &Fixup = EHStack.addBranchFixup(); 00943 Fixup.Destination = Dest.getBlock(); 00944 Fixup.DestinationIndex = Dest.getDestIndex(); 00945 Fixup.InitialBranch = BI; 00946 Fixup.OptimisticBranchBlock = nullptr; 00947 00948 Builder.ClearInsertionPoint(); 00949 return; 00950 } 00951 00952 // Otherwise, thread through all the normal cleanups in scope. 00953 00954 // Store the index at the start. 00955 llvm::ConstantInt *Index = Builder.getInt32(Dest.getDestIndex()); 00956 new llvm::StoreInst(Index, getNormalCleanupDestSlot(), BI); 00957 00958 // Adjust BI to point to the first cleanup block. 00959 { 00960 EHCleanupScope &Scope = 00961 cast<EHCleanupScope>(*EHStack.find(TopCleanup)); 00962 BI->setSuccessor(0, CreateNormalEntry(*this, Scope)); 00963 } 00964 00965 // Add this destination to all the scopes involved. 00966 EHScopeStack::stable_iterator I = TopCleanup; 00967 EHScopeStack::stable_iterator E = Dest.getScopeDepth(); 00968 if (E.strictlyEncloses(I)) { 00969 while (true) { 00970 EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(I)); 00971 assert(Scope.isNormalCleanup()); 00972 I = Scope.getEnclosingNormalCleanup(); 00973 00974 // If this is the last cleanup we're propagating through, tell it 00975 // that there's a resolved jump moving through it. 00976 if (!E.strictlyEncloses(I)) { 00977 Scope.addBranchAfter(Index, Dest.getBlock()); 00978 break; 00979 } 00980 00981 // Otherwise, tell the scope that there's a jump propoagating 00982 // through it. If this isn't new information, all the rest of 00983 // the work has been done before. 00984 if (!Scope.addBranchThrough(Dest.getBlock())) 00985 break; 00986 } 00987 } 00988 00989 Builder.ClearInsertionPoint(); 00990 } 00991 00992 static bool IsUsedAsNormalCleanup(EHScopeStack &EHStack, 00993 EHScopeStack::stable_iterator C) { 00994 // If we needed a normal block for any reason, that counts. 00995 if (cast<EHCleanupScope>(*EHStack.find(C)).getNormalBlock()) 00996 return true; 00997 00998 // Check whether any enclosed cleanups were needed. 00999 for (EHScopeStack::stable_iterator 01000 I = EHStack.getInnermostNormalCleanup(); 01001 I != C; ) { 01002 assert(C.strictlyEncloses(I)); 01003 EHCleanupScope &S = cast<EHCleanupScope>(*EHStack.find(I)); 01004 if (S.getNormalBlock()) return true; 01005 I = S.getEnclosingNormalCleanup(); 01006 } 01007 01008 return false; 01009 } 01010 01011 static bool IsUsedAsEHCleanup(EHScopeStack &EHStack, 01012 EHScopeStack::stable_iterator cleanup) { 01013 // If we needed an EH block for any reason, that counts. 01014 if (EHStack.find(cleanup)->hasEHBranches()) 01015 return true; 01016 01017 // Check whether any enclosed cleanups were needed. 01018 for (EHScopeStack::stable_iterator 01019 i = EHStack.getInnermostEHScope(); i != cleanup; ) { 01020 assert(cleanup.strictlyEncloses(i)); 01021 01022 EHScope &scope = *EHStack.find(i); 01023 if (scope.hasEHBranches()) 01024 return true; 01025 01026 i = scope.getEnclosingEHScope(); 01027 } 01028 01029 return false; 01030 } 01031 01032 enum ForActivation_t { 01033 ForActivation, 01034 ForDeactivation 01035 }; 01036 01037 /// The given cleanup block is changing activation state. Configure a 01038 /// cleanup variable if necessary. 01039 /// 01040 /// It would be good if we had some way of determining if there were 01041 /// extra uses *after* the change-over point. 01042 static void SetupCleanupBlockActivation(CodeGenFunction &CGF, 01043 EHScopeStack::stable_iterator C, 01044 ForActivation_t kind, 01045 llvm::Instruction *dominatingIP) { 01046 EHCleanupScope &Scope = cast<EHCleanupScope>(*CGF.EHStack.find(C)); 01047 01048 // We always need the flag if we're activating the cleanup in a 01049 // conditional context, because we have to assume that the current 01050 // location doesn't necessarily dominate the cleanup's code. 01051 bool isActivatedInConditional = 01052 (kind == ForActivation && CGF.isInConditionalBranch()); 01053 01054 bool needFlag = false; 01055 01056 // Calculate whether the cleanup was used: 01057 01058 // - as a normal cleanup 01059 if (Scope.isNormalCleanup() && 01060 (isActivatedInConditional || IsUsedAsNormalCleanup(CGF.EHStack, C))) { 01061 Scope.setTestFlagInNormalCleanup(); 01062 needFlag = true; 01063 } 01064 01065 // - as an EH cleanup 01066 if (Scope.isEHCleanup() && 01067 (isActivatedInConditional || IsUsedAsEHCleanup(CGF.EHStack, C))) { 01068 Scope.setTestFlagInEHCleanup(); 01069 needFlag = true; 01070 } 01071 01072 // If it hasn't yet been used as either, we're done. 01073 if (!needFlag) return; 01074 01075 llvm::AllocaInst *var = Scope.getActiveFlag(); 01076 if (!var) { 01077 var = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), "cleanup.isactive"); 01078 Scope.setActiveFlag(var); 01079 01080 assert(dominatingIP && "no existing variable and no dominating IP!"); 01081 01082 // Initialize to true or false depending on whether it was 01083 // active up to this point. 01084 llvm::Value *value = CGF.Builder.getInt1(kind == ForDeactivation); 01085 01086 // If we're in a conditional block, ignore the dominating IP and 01087 // use the outermost conditional branch. 01088 if (CGF.isInConditionalBranch()) { 01089 CGF.setBeforeOutermostConditional(value, var); 01090 } else { 01091 new llvm::StoreInst(value, var, dominatingIP); 01092 } 01093 } 01094 01095 CGF.Builder.CreateStore(CGF.Builder.getInt1(kind == ForActivation), var); 01096 } 01097 01098 /// Activate a cleanup that was created in an inactivated state. 01099 void CodeGenFunction::ActivateCleanupBlock(EHScopeStack::stable_iterator C, 01100 llvm::Instruction *dominatingIP) { 01101 assert(C != EHStack.stable_end() && "activating bottom of stack?"); 01102 EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(C)); 01103 assert(!Scope.isActive() && "double activation"); 01104 01105 SetupCleanupBlockActivation(*this, C, ForActivation, dominatingIP); 01106 01107 Scope.setActive(true); 01108 } 01109 01110 /// Deactive a cleanup that was created in an active state. 01111 void CodeGenFunction::DeactivateCleanupBlock(EHScopeStack::stable_iterator C, 01112 llvm::Instruction *dominatingIP) { 01113 assert(C != EHStack.stable_end() && "deactivating bottom of stack?"); 01114 EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(C)); 01115 assert(Scope.isActive() && "double deactivation"); 01116 01117 // If it's the top of the stack, just pop it. 01118 if (C == EHStack.stable_begin()) { 01119 // If it's a normal cleanup, we need to pretend that the 01120 // fallthrough is unreachable. 01121 CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); 01122 PopCleanupBlock(); 01123 Builder.restoreIP(SavedIP); 01124 return; 01125 } 01126 01127 // Otherwise, follow the general case. 01128 SetupCleanupBlockActivation(*this, C, ForDeactivation, dominatingIP); 01129 01130 Scope.setActive(false); 01131 } 01132 01133 llvm::Value *CodeGenFunction::getNormalCleanupDestSlot() { 01134 if (!NormalCleanupDest) 01135 NormalCleanupDest = 01136 CreateTempAlloca(Builder.getInt32Ty(), "cleanup.dest.slot"); 01137 return NormalCleanupDest; 01138 } 01139 01140 /// Emits all the code to cause the given temporary to be cleaned up. 01141 void CodeGenFunction::EmitCXXTemporary(const CXXTemporary *Temporary, 01142 QualType TempType, 01143 llvm::Value *Ptr) { 01144 pushDestroy(NormalAndEHCleanup, Ptr, TempType, destroyCXXObject, 01145 /*useEHCleanup*/ true); 01146 }