clang API Documentation
00001 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This contains code to emit Decl nodes as LLVM code. 00011 // 00012 //===----------------------------------------------------------------------===// 00013 00014 #include "CodeGenFunction.h" 00015 #include "CGDebugInfo.h" 00016 #include "CGOpenCLRuntime.h" 00017 #include "CodeGenModule.h" 00018 #include "clang/AST/ASTContext.h" 00019 #include "clang/AST/CharUnits.h" 00020 #include "clang/AST/Decl.h" 00021 #include "clang/AST/DeclObjC.h" 00022 #include "clang/Basic/SourceManager.h" 00023 #include "clang/Basic/TargetInfo.h" 00024 #include "clang/CodeGen/CGFunctionInfo.h" 00025 #include "clang/Frontend/CodeGenOptions.h" 00026 #include "llvm/IR/DataLayout.h" 00027 #include "llvm/IR/GlobalVariable.h" 00028 #include "llvm/IR/Intrinsics.h" 00029 #include "llvm/IR/Type.h" 00030 using namespace clang; 00031 using namespace CodeGen; 00032 00033 00034 void CodeGenFunction::EmitDecl(const Decl &D) { 00035 switch (D.getKind()) { 00036 case Decl::TranslationUnit: 00037 case Decl::Namespace: 00038 case Decl::UnresolvedUsingTypename: 00039 case Decl::ClassTemplateSpecialization: 00040 case Decl::ClassTemplatePartialSpecialization: 00041 case Decl::VarTemplateSpecialization: 00042 case Decl::VarTemplatePartialSpecialization: 00043 case Decl::TemplateTypeParm: 00044 case Decl::UnresolvedUsingValue: 00045 case Decl::NonTypeTemplateParm: 00046 case Decl::CXXMethod: 00047 case Decl::CXXConstructor: 00048 case Decl::CXXDestructor: 00049 case Decl::CXXConversion: 00050 case Decl::Field: 00051 case Decl::MSProperty: 00052 case Decl::IndirectField: 00053 case Decl::ObjCIvar: 00054 case Decl::ObjCAtDefsField: 00055 case Decl::ParmVar: 00056 case Decl::ImplicitParam: 00057 case Decl::ClassTemplate: 00058 case Decl::VarTemplate: 00059 case Decl::FunctionTemplate: 00060 case Decl::TypeAliasTemplate: 00061 case Decl::TemplateTemplateParm: 00062 case Decl::ObjCMethod: 00063 case Decl::ObjCCategory: 00064 case Decl::ObjCProtocol: 00065 case Decl::ObjCInterface: 00066 case Decl::ObjCCategoryImpl: 00067 case Decl::ObjCImplementation: 00068 case Decl::ObjCProperty: 00069 case Decl::ObjCCompatibleAlias: 00070 case Decl::AccessSpec: 00071 case Decl::LinkageSpec: 00072 case Decl::ObjCPropertyImpl: 00073 case Decl::FileScopeAsm: 00074 case Decl::Friend: 00075 case Decl::FriendTemplate: 00076 case Decl::Block: 00077 case Decl::Captured: 00078 case Decl::ClassScopeFunctionSpecialization: 00079 case Decl::UsingShadow: 00080 llvm_unreachable("Declaration should not be in declstmts!"); 00081 case Decl::Function: // void X(); 00082 case Decl::Record: // struct/union/class X; 00083 case Decl::Enum: // enum X; 00084 case Decl::EnumConstant: // enum ? { X = ? } 00085 case Decl::CXXRecord: // struct/union/class X; [C++] 00086 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 00087 case Decl::Label: // __label__ x; 00088 case Decl::Import: 00089 case Decl::OMPThreadPrivate: 00090 case Decl::Empty: 00091 // None of these decls require codegen support. 00092 return; 00093 00094 case Decl::NamespaceAlias: 00095 if (CGDebugInfo *DI = getDebugInfo()) 00096 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); 00097 return; 00098 case Decl::Using: // using X; [C++] 00099 if (CGDebugInfo *DI = getDebugInfo()) 00100 DI->EmitUsingDecl(cast<UsingDecl>(D)); 00101 return; 00102 case Decl::UsingDirective: // using namespace X; [C++] 00103 if (CGDebugInfo *DI = getDebugInfo()) 00104 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); 00105 return; 00106 case Decl::Var: { 00107 const VarDecl &VD = cast<VarDecl>(D); 00108 assert(VD.isLocalVarDecl() && 00109 "Should not see file-scope variables inside a function!"); 00110 return EmitVarDecl(VD); 00111 } 00112 00113 case Decl::Typedef: // typedef int X; 00114 case Decl::TypeAlias: { // using X = int; [C++0x] 00115 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 00116 QualType Ty = TD.getUnderlyingType(); 00117 00118 if (Ty->isVariablyModifiedType()) 00119 EmitVariablyModifiedType(Ty); 00120 } 00121 } 00122 } 00123 00124 /// EmitVarDecl - This method handles emission of any variable declaration 00125 /// inside a function, including static vars etc. 00126 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 00127 if (D.isStaticLocal()) { 00128 llvm::GlobalValue::LinkageTypes Linkage = 00129 CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false); 00130 00131 // FIXME: We need to force the emission/use of a guard variable for 00132 // some variables even if we can constant-evaluate them because 00133 // we can't guarantee every translation unit will constant-evaluate them. 00134 00135 return EmitStaticVarDecl(D, Linkage); 00136 } 00137 00138 if (D.hasExternalStorage()) 00139 // Don't emit it now, allow it to be emitted lazily on its first use. 00140 return; 00141 00142 if (D.getStorageClass() == SC_OpenCLWorkGroupLocal) 00143 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 00144 00145 assert(D.hasLocalStorage()); 00146 return EmitAutoVarDecl(D); 00147 } 00148 00149 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) { 00150 if (CGM.getLangOpts().CPlusPlus) 00151 return CGM.getMangledName(&D).str(); 00152 00153 // If this isn't C++, we don't need a mangled name, just a pretty one. 00154 assert(!D.isExternallyVisible() && "name shouldn't matter"); 00155 std::string ContextName; 00156 const DeclContext *DC = D.getDeclContext(); 00157 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 00158 ContextName = CGM.getMangledName(FD); 00159 else if (const auto *BD = dyn_cast<BlockDecl>(DC)) 00160 ContextName = CGM.getBlockMangledName(GlobalDecl(), BD); 00161 else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC)) 00162 ContextName = OMD->getSelector().getAsString(); 00163 else 00164 llvm_unreachable("Unknown context for static var decl"); 00165 00166 ContextName += "." + D.getNameAsString(); 00167 return ContextName; 00168 } 00169 00170 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl( 00171 const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) { 00172 // In general, we don't always emit static var decls once before we reference 00173 // them. It is possible to reference them before emitting the function that 00174 // contains them, and it is possible to emit the containing function multiple 00175 // times. 00176 if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D]) 00177 return ExistingGV; 00178 00179 QualType Ty = D.getType(); 00180 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 00181 00182 // Use the label if the variable is renamed with the asm-label extension. 00183 std::string Name; 00184 if (D.hasAttr<AsmLabelAttr>()) 00185 Name = getMangledName(&D); 00186 else 00187 Name = getStaticDeclName(*this, D); 00188 00189 llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty); 00190 unsigned AddrSpace = 00191 GetGlobalVarAddressSpace(&D, getContext().getTargetAddressSpace(Ty)); 00192 00193 // Local address space cannot have an initializer. 00194 llvm::Constant *Init = nullptr; 00195 if (Ty.getAddressSpace() != LangAS::opencl_local) 00196 Init = EmitNullConstant(Ty); 00197 else 00198 Init = llvm::UndefValue::get(LTy); 00199 00200 llvm::GlobalVariable *GV = 00201 new llvm::GlobalVariable(getModule(), LTy, 00202 Ty.isConstant(getContext()), Linkage, 00203 Init, Name, nullptr, 00204 llvm::GlobalVariable::NotThreadLocal, 00205 AddrSpace); 00206 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 00207 setGlobalVisibility(GV, &D); 00208 00209 if (D.getTLSKind()) 00210 setTLSMode(GV, D); 00211 00212 if (D.isExternallyVisible()) { 00213 if (D.hasAttr<DLLImportAttr>()) 00214 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 00215 else if (D.hasAttr<DLLExportAttr>()) 00216 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 00217 } 00218 00219 // Make sure the result is of the correct type. 00220 unsigned ExpectedAddrSpace = getContext().getTargetAddressSpace(Ty); 00221 llvm::Constant *Addr = GV; 00222 if (AddrSpace != ExpectedAddrSpace) { 00223 llvm::PointerType *PTy = llvm::PointerType::get(LTy, ExpectedAddrSpace); 00224 Addr = llvm::ConstantExpr::getAddrSpaceCast(GV, PTy); 00225 } 00226 00227 setStaticLocalDeclAddress(&D, Addr); 00228 00229 // Ensure that the static local gets initialized by making sure the parent 00230 // function gets emitted eventually. 00231 const Decl *DC = cast<Decl>(D.getDeclContext()); 00232 00233 // We can't name blocks or captured statements directly, so try to emit their 00234 // parents. 00235 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) { 00236 DC = DC->getNonClosureContext(); 00237 // FIXME: Ensure that global blocks get emitted. 00238 if (!DC) 00239 return Addr; 00240 } 00241 00242 GlobalDecl GD; 00243 if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 00244 GD = GlobalDecl(CD, Ctor_Base); 00245 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 00246 GD = GlobalDecl(DD, Dtor_Base); 00247 else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 00248 GD = GlobalDecl(FD); 00249 else { 00250 // Don't do anything for Obj-C method decls or global closures. We should 00251 // never defer them. 00252 assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl"); 00253 } 00254 if (GD.getDecl()) 00255 (void)GetAddrOfGlobal(GD); 00256 00257 return Addr; 00258 } 00259 00260 /// hasNontrivialDestruction - Determine whether a type's destruction is 00261 /// non-trivial. If so, and the variable uses static initialization, we must 00262 /// register its destructor to run on exit. 00263 static bool hasNontrivialDestruction(QualType T) { 00264 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 00265 return RD && !RD->hasTrivialDestructor(); 00266 } 00267 00268 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 00269 /// global variable that has already been created for it. If the initializer 00270 /// has a different type than GV does, this may free GV and return a different 00271 /// one. Otherwise it just returns GV. 00272 llvm::GlobalVariable * 00273 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 00274 llvm::GlobalVariable *GV) { 00275 llvm::Constant *Init = CGM.EmitConstantInit(D, this); 00276 00277 // If constant emission failed, then this should be a C++ static 00278 // initializer. 00279 if (!Init) { 00280 if (!getLangOpts().CPlusPlus) 00281 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 00282 else if (Builder.GetInsertBlock()) { 00283 // Since we have a static initializer, this global variable can't 00284 // be constant. 00285 GV->setConstant(false); 00286 00287 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 00288 } 00289 return GV; 00290 } 00291 00292 // The initializer may differ in type from the global. Rewrite 00293 // the global to match the initializer. (We have to do this 00294 // because some types, like unions, can't be completely represented 00295 // in the LLVM type system.) 00296 if (GV->getType()->getElementType() != Init->getType()) { 00297 llvm::GlobalVariable *OldGV = GV; 00298 00299 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 00300 OldGV->isConstant(), 00301 OldGV->getLinkage(), Init, "", 00302 /*InsertBefore*/ OldGV, 00303 OldGV->getThreadLocalMode(), 00304 CGM.getContext().getTargetAddressSpace(D.getType())); 00305 GV->setVisibility(OldGV->getVisibility()); 00306 00307 // Steal the name of the old global 00308 GV->takeName(OldGV); 00309 00310 // Replace all uses of the old global with the new global 00311 llvm::Constant *NewPtrForOldDecl = 00312 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 00313 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 00314 00315 // Erase the old global, since it is no longer used. 00316 OldGV->eraseFromParent(); 00317 } 00318 00319 GV->setConstant(CGM.isTypeConstant(D.getType(), true)); 00320 GV->setInitializer(Init); 00321 00322 if (hasNontrivialDestruction(D.getType())) { 00323 // We have a constant initializer, but a nontrivial destructor. We still 00324 // need to perform a guarded "initialization" in order to register the 00325 // destructor. 00326 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 00327 } 00328 00329 return GV; 00330 } 00331 00332 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 00333 llvm::GlobalValue::LinkageTypes Linkage) { 00334 llvm::Value *&DMEntry = LocalDeclMap[&D]; 00335 assert(!DMEntry && "Decl already exists in localdeclmap!"); 00336 00337 // Check to see if we already have a global variable for this 00338 // declaration. This can happen when double-emitting function 00339 // bodies, e.g. with complete and base constructors. 00340 llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage); 00341 00342 // Store into LocalDeclMap before generating initializer to handle 00343 // circular references. 00344 DMEntry = addr; 00345 00346 // We can't have a VLA here, but we can have a pointer to a VLA, 00347 // even though that doesn't really make any sense. 00348 // Make sure to evaluate VLA bounds now so that we have them for later. 00349 if (D.getType()->isVariablyModifiedType()) 00350 EmitVariablyModifiedType(D.getType()); 00351 00352 // Save the type in case adding the initializer forces a type change. 00353 llvm::Type *expectedType = addr->getType(); 00354 00355 llvm::GlobalVariable *var = 00356 cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 00357 // If this value has an initializer, emit it. 00358 if (D.getInit()) 00359 var = AddInitializerToStaticVarDecl(D, var); 00360 00361 var->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 00362 00363 if (D.hasAttr<AnnotateAttr>()) 00364 CGM.AddGlobalAnnotations(&D, var); 00365 00366 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 00367 var->setSection(SA->getName()); 00368 00369 if (D.hasAttr<UsedAttr>()) 00370 CGM.addUsedGlobal(var); 00371 00372 // We may have to cast the constant because of the initializer 00373 // mismatch above. 00374 // 00375 // FIXME: It is really dangerous to store this in the map; if anyone 00376 // RAUW's the GV uses of this constant will be invalid. 00377 llvm::Constant *castedAddr = 00378 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType); 00379 DMEntry = castedAddr; 00380 CGM.setStaticLocalDeclAddress(&D, castedAddr); 00381 00382 CGM.getSanitizerMetadata()->reportGlobalToASan(var, D); 00383 00384 // Emit global variable debug descriptor for static vars. 00385 CGDebugInfo *DI = getDebugInfo(); 00386 if (DI && 00387 CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 00388 DI->setLocation(D.getLocation()); 00389 DI->EmitGlobalVariable(var, &D); 00390 } 00391 } 00392 00393 namespace { 00394 struct DestroyObject : EHScopeStack::Cleanup { 00395 DestroyObject(llvm::Value *addr, QualType type, 00396 CodeGenFunction::Destroyer *destroyer, 00397 bool useEHCleanupForArray) 00398 : addr(addr), type(type), destroyer(destroyer), 00399 useEHCleanupForArray(useEHCleanupForArray) {} 00400 00401 llvm::Value *addr; 00402 QualType type; 00403 CodeGenFunction::Destroyer *destroyer; 00404 bool useEHCleanupForArray; 00405 00406 void Emit(CodeGenFunction &CGF, Flags flags) override { 00407 // Don't use an EH cleanup recursively from an EH cleanup. 00408 bool useEHCleanupForArray = 00409 flags.isForNormalCleanup() && this->useEHCleanupForArray; 00410 00411 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 00412 } 00413 }; 00414 00415 struct DestroyNRVOVariable : EHScopeStack::Cleanup { 00416 DestroyNRVOVariable(llvm::Value *addr, 00417 const CXXDestructorDecl *Dtor, 00418 llvm::Value *NRVOFlag) 00419 : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {} 00420 00421 const CXXDestructorDecl *Dtor; 00422 llvm::Value *NRVOFlag; 00423 llvm::Value *Loc; 00424 00425 void Emit(CodeGenFunction &CGF, Flags flags) override { 00426 // Along the exceptions path we always execute the dtor. 00427 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 00428 00429 llvm::BasicBlock *SkipDtorBB = nullptr; 00430 if (NRVO) { 00431 // If we exited via NRVO, we skip the destructor call. 00432 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 00433 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 00434 llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val"); 00435 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 00436 CGF.EmitBlock(RunDtorBB); 00437 } 00438 00439 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 00440 /*ForVirtualBase=*/false, 00441 /*Delegating=*/false, 00442 Loc); 00443 00444 if (NRVO) CGF.EmitBlock(SkipDtorBB); 00445 } 00446 }; 00447 00448 struct CallStackRestore : EHScopeStack::Cleanup { 00449 llvm::Value *Stack; 00450 CallStackRestore(llvm::Value *Stack) : Stack(Stack) {} 00451 void Emit(CodeGenFunction &CGF, Flags flags) override { 00452 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 00453 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 00454 CGF.Builder.CreateCall(F, V); 00455 } 00456 }; 00457 00458 struct ExtendGCLifetime : EHScopeStack::Cleanup { 00459 const VarDecl &Var; 00460 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 00461 00462 void Emit(CodeGenFunction &CGF, Flags flags) override { 00463 // Compute the address of the local variable, in case it's a 00464 // byref or something. 00465 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 00466 Var.getType(), VK_LValue, SourceLocation()); 00467 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE), 00468 SourceLocation()); 00469 CGF.EmitExtendGCLifetime(value); 00470 } 00471 }; 00472 00473 struct CallCleanupFunction : EHScopeStack::Cleanup { 00474 llvm::Constant *CleanupFn; 00475 const CGFunctionInfo &FnInfo; 00476 const VarDecl &Var; 00477 00478 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 00479 const VarDecl *Var) 00480 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 00481 00482 void Emit(CodeGenFunction &CGF, Flags flags) override { 00483 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 00484 Var.getType(), VK_LValue, SourceLocation()); 00485 // Compute the address of the local variable, in case it's a byref 00486 // or something. 00487 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress(); 00488 00489 // In some cases, the type of the function argument will be different from 00490 // the type of the pointer. An example of this is 00491 // void f(void* arg); 00492 // __attribute__((cleanup(f))) void *g; 00493 // 00494 // To fix this we insert a bitcast here. 00495 QualType ArgTy = FnInfo.arg_begin()->type; 00496 llvm::Value *Arg = 00497 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 00498 00499 CallArgList Args; 00500 Args.add(RValue::get(Arg), 00501 CGF.getContext().getPointerType(Var.getType())); 00502 CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args); 00503 } 00504 }; 00505 00506 /// A cleanup to call @llvm.lifetime.end. 00507 class CallLifetimeEnd : public EHScopeStack::Cleanup { 00508 llvm::Value *Addr; 00509 llvm::Value *Size; 00510 public: 00511 CallLifetimeEnd(llvm::Value *addr, llvm::Value *size) 00512 : Addr(addr), Size(size) {} 00513 00514 void Emit(CodeGenFunction &CGF, Flags flags) override { 00515 llvm::Value *castAddr = CGF.Builder.CreateBitCast(Addr, CGF.Int8PtrTy); 00516 CGF.Builder.CreateCall2(CGF.CGM.getLLVMLifetimeEndFn(), 00517 Size, castAddr) 00518 ->setDoesNotThrow(); 00519 } 00520 }; 00521 } 00522 00523 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 00524 /// variable with lifetime. 00525 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 00526 llvm::Value *addr, 00527 Qualifiers::ObjCLifetime lifetime) { 00528 switch (lifetime) { 00529 case Qualifiers::OCL_None: 00530 llvm_unreachable("present but none"); 00531 00532 case Qualifiers::OCL_ExplicitNone: 00533 // nothing to do 00534 break; 00535 00536 case Qualifiers::OCL_Strong: { 00537 CodeGenFunction::Destroyer *destroyer = 00538 (var.hasAttr<ObjCPreciseLifetimeAttr>() 00539 ? CodeGenFunction::destroyARCStrongPrecise 00540 : CodeGenFunction::destroyARCStrongImprecise); 00541 00542 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 00543 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 00544 cleanupKind & EHCleanup); 00545 break; 00546 } 00547 case Qualifiers::OCL_Autoreleasing: 00548 // nothing to do 00549 break; 00550 00551 case Qualifiers::OCL_Weak: 00552 // __weak objects always get EH cleanups; otherwise, exceptions 00553 // could cause really nasty crashes instead of mere leaks. 00554 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 00555 CodeGenFunction::destroyARCWeak, 00556 /*useEHCleanup*/ true); 00557 break; 00558 } 00559 } 00560 00561 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 00562 if (const Expr *e = dyn_cast<Expr>(s)) { 00563 // Skip the most common kinds of expressions that make 00564 // hierarchy-walking expensive. 00565 s = e = e->IgnoreParenCasts(); 00566 00567 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 00568 return (ref->getDecl() == &var); 00569 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 00570 const BlockDecl *block = be->getBlockDecl(); 00571 for (const auto &I : block->captures()) { 00572 if (I.getVariable() == &var) 00573 return true; 00574 } 00575 } 00576 } 00577 00578 for (Stmt::const_child_range children = s->children(); children; ++children) 00579 // children might be null; as in missing decl or conditional of an if-stmt. 00580 if ((*children) && isAccessedBy(var, *children)) 00581 return true; 00582 00583 return false; 00584 } 00585 00586 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 00587 if (!decl) return false; 00588 if (!isa<VarDecl>(decl)) return false; 00589 const VarDecl *var = cast<VarDecl>(decl); 00590 return isAccessedBy(*var, e); 00591 } 00592 00593 static void drillIntoBlockVariable(CodeGenFunction &CGF, 00594 LValue &lvalue, 00595 const VarDecl *var) { 00596 lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var)); 00597 } 00598 00599 void CodeGenFunction::EmitScalarInit(const Expr *init, 00600 const ValueDecl *D, 00601 LValue lvalue, 00602 bool capturedByInit) { 00603 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 00604 if (!lifetime) { 00605 llvm::Value *value = EmitScalarExpr(init); 00606 if (capturedByInit) 00607 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 00608 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 00609 return; 00610 } 00611 00612 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init)) 00613 init = DIE->getExpr(); 00614 00615 // If we're emitting a value with lifetime, we have to do the 00616 // initialization *before* we leave the cleanup scopes. 00617 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) { 00618 enterFullExpression(ewc); 00619 init = ewc->getSubExpr(); 00620 } 00621 CodeGenFunction::RunCleanupsScope Scope(*this); 00622 00623 // We have to maintain the illusion that the variable is 00624 // zero-initialized. If the variable might be accessed in its 00625 // initializer, zero-initialize before running the initializer, then 00626 // actually perform the initialization with an assign. 00627 bool accessedByInit = false; 00628 if (lifetime != Qualifiers::OCL_ExplicitNone) 00629 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 00630 if (accessedByInit) { 00631 LValue tempLV = lvalue; 00632 // Drill down to the __block object if necessary. 00633 if (capturedByInit) { 00634 // We can use a simple GEP for this because it can't have been 00635 // moved yet. 00636 tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(), 00637 getByRefValueLLVMField(cast<VarDecl>(D)))); 00638 } 00639 00640 llvm::PointerType *ty 00641 = cast<llvm::PointerType>(tempLV.getAddress()->getType()); 00642 ty = cast<llvm::PointerType>(ty->getElementType()); 00643 00644 llvm::Value *zero = llvm::ConstantPointerNull::get(ty); 00645 00646 // If __weak, we want to use a barrier under certain conditions. 00647 if (lifetime == Qualifiers::OCL_Weak) 00648 EmitARCInitWeak(tempLV.getAddress(), zero); 00649 00650 // Otherwise just do a simple store. 00651 else 00652 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 00653 } 00654 00655 // Emit the initializer. 00656 llvm::Value *value = nullptr; 00657 00658 switch (lifetime) { 00659 case Qualifiers::OCL_None: 00660 llvm_unreachable("present but none"); 00661 00662 case Qualifiers::OCL_ExplicitNone: 00663 // nothing to do 00664 value = EmitScalarExpr(init); 00665 break; 00666 00667 case Qualifiers::OCL_Strong: { 00668 value = EmitARCRetainScalarExpr(init); 00669 break; 00670 } 00671 00672 case Qualifiers::OCL_Weak: { 00673 // No way to optimize a producing initializer into this. It's not 00674 // worth optimizing for, because the value will immediately 00675 // disappear in the common case. 00676 value = EmitScalarExpr(init); 00677 00678 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 00679 if (accessedByInit) 00680 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); 00681 else 00682 EmitARCInitWeak(lvalue.getAddress(), value); 00683 return; 00684 } 00685 00686 case Qualifiers::OCL_Autoreleasing: 00687 value = EmitARCRetainAutoreleaseScalarExpr(init); 00688 break; 00689 } 00690 00691 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 00692 00693 // If the variable might have been accessed by its initializer, we 00694 // might have to initialize with a barrier. We have to do this for 00695 // both __weak and __strong, but __weak got filtered out above. 00696 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 00697 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc()); 00698 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 00699 EmitARCRelease(oldValue, ARCImpreciseLifetime); 00700 return; 00701 } 00702 00703 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 00704 } 00705 00706 /// EmitScalarInit - Initialize the given lvalue with the given object. 00707 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) { 00708 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 00709 if (!lifetime) 00710 return EmitStoreThroughLValue(RValue::get(init), lvalue, true); 00711 00712 switch (lifetime) { 00713 case Qualifiers::OCL_None: 00714 llvm_unreachable("present but none"); 00715 00716 case Qualifiers::OCL_ExplicitNone: 00717 // nothing to do 00718 break; 00719 00720 case Qualifiers::OCL_Strong: 00721 init = EmitARCRetain(lvalue.getType(), init); 00722 break; 00723 00724 case Qualifiers::OCL_Weak: 00725 // Initialize and then skip the primitive store. 00726 EmitARCInitWeak(lvalue.getAddress(), init); 00727 return; 00728 00729 case Qualifiers::OCL_Autoreleasing: 00730 init = EmitARCRetainAutorelease(lvalue.getType(), init); 00731 break; 00732 } 00733 00734 EmitStoreOfScalar(init, lvalue, /* isInitialization */ true); 00735 } 00736 00737 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the 00738 /// non-zero parts of the specified initializer with equal or fewer than 00739 /// NumStores scalar stores. 00740 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init, 00741 unsigned &NumStores) { 00742 // Zero and Undef never requires any extra stores. 00743 if (isa<llvm::ConstantAggregateZero>(Init) || 00744 isa<llvm::ConstantPointerNull>(Init) || 00745 isa<llvm::UndefValue>(Init)) 00746 return true; 00747 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 00748 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 00749 isa<llvm::ConstantExpr>(Init)) 00750 return Init->isNullValue() || NumStores--; 00751 00752 // See if we can emit each element. 00753 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 00754 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 00755 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 00756 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 00757 return false; 00758 } 00759 return true; 00760 } 00761 00762 if (llvm::ConstantDataSequential *CDS = 00763 dyn_cast<llvm::ConstantDataSequential>(Init)) { 00764 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 00765 llvm::Constant *Elt = CDS->getElementAsConstant(i); 00766 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 00767 return false; 00768 } 00769 return true; 00770 } 00771 00772 // Anything else is hard and scary. 00773 return false; 00774 } 00775 00776 /// emitStoresForInitAfterMemset - For inits that 00777 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar 00778 /// stores that would be required. 00779 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc, 00780 bool isVolatile, CGBuilderTy &Builder) { 00781 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 00782 "called emitStoresForInitAfterMemset for zero or undef value."); 00783 00784 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 00785 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 00786 isa<llvm::ConstantExpr>(Init)) { 00787 Builder.CreateStore(Init, Loc, isVolatile); 00788 return; 00789 } 00790 00791 if (llvm::ConstantDataSequential *CDS = 00792 dyn_cast<llvm::ConstantDataSequential>(Init)) { 00793 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 00794 llvm::Constant *Elt = CDS->getElementAsConstant(i); 00795 00796 // If necessary, get a pointer to the element and emit it. 00797 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 00798 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i), 00799 isVolatile, Builder); 00800 } 00801 return; 00802 } 00803 00804 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 00805 "Unknown value type!"); 00806 00807 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 00808 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 00809 00810 // If necessary, get a pointer to the element and emit it. 00811 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 00812 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i), 00813 isVolatile, Builder); 00814 } 00815 } 00816 00817 00818 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset 00819 /// plus some stores to initialize a local variable instead of using a memcpy 00820 /// from a constant global. It is beneficial to use memset if the global is all 00821 /// zeros, or mostly zeros and large. 00822 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init, 00823 uint64_t GlobalSize) { 00824 // If a global is all zeros, always use a memset. 00825 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 00826 00827 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 00828 // do it if it will require 6 or fewer scalar stores. 00829 // TODO: Should budget depends on the size? Avoiding a large global warrants 00830 // plopping in more stores. 00831 unsigned StoreBudget = 6; 00832 uint64_t SizeLimit = 32; 00833 00834 return GlobalSize > SizeLimit && 00835 canEmitInitWithFewStoresAfterMemset(Init, StoreBudget); 00836 } 00837 00838 /// Should we use the LLVM lifetime intrinsics for the given local variable? 00839 static bool shouldUseLifetimeMarkers(CodeGenFunction &CGF, const VarDecl &D, 00840 unsigned Size) { 00841 // For now, only in optimized builds. 00842 if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) 00843 return false; 00844 00845 // Limit the size of marked objects to 32 bytes. We don't want to increase 00846 // compile time by marking tiny objects. 00847 unsigned SizeThreshold = 32; 00848 00849 return Size > SizeThreshold; 00850 } 00851 00852 00853 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 00854 /// variable declaration with auto, register, or no storage class specifier. 00855 /// These turn into simple stack objects, or GlobalValues depending on target. 00856 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 00857 AutoVarEmission emission = EmitAutoVarAlloca(D); 00858 EmitAutoVarInit(emission); 00859 EmitAutoVarCleanups(emission); 00860 } 00861 00862 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 00863 /// local variable. Does not emit initialization or destruction. 00864 CodeGenFunction::AutoVarEmission 00865 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 00866 QualType Ty = D.getType(); 00867 00868 AutoVarEmission emission(D); 00869 00870 bool isByRef = D.hasAttr<BlocksAttr>(); 00871 emission.IsByRef = isByRef; 00872 00873 CharUnits alignment = getContext().getDeclAlign(&D); 00874 emission.Alignment = alignment; 00875 00876 // If the type is variably-modified, emit all the VLA sizes for it. 00877 if (Ty->isVariablyModifiedType()) 00878 EmitVariablyModifiedType(Ty); 00879 00880 llvm::Value *DeclPtr; 00881 if (Ty->isConstantSizeType()) { 00882 bool NRVO = getLangOpts().ElideConstructors && 00883 D.isNRVOVariable(); 00884 00885 // If this value is an array or struct with a statically determinable 00886 // constant initializer, there are optimizations we can do. 00887 // 00888 // TODO: We should constant-evaluate the initializer of any variable, 00889 // as long as it is initialized by a constant expression. Currently, 00890 // isConstantInitializer produces wrong answers for structs with 00891 // reference or bitfield members, and a few other cases, and checking 00892 // for POD-ness protects us from some of these. 00893 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && 00894 (D.isConstexpr() || 00895 ((Ty.isPODType(getContext()) || 00896 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 00897 D.getInit()->isConstantInitializer(getContext(), false)))) { 00898 00899 // If the variable's a const type, and it's neither an NRVO 00900 // candidate nor a __block variable and has no mutable members, 00901 // emit it as a global instead. 00902 if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef && 00903 CGM.isTypeConstant(Ty, true)) { 00904 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 00905 00906 emission.Address = nullptr; // signal this condition to later callbacks 00907 assert(emission.wasEmittedAsGlobal()); 00908 return emission; 00909 } 00910 00911 // Otherwise, tell the initialization code that we're in this case. 00912 emission.IsConstantAggregate = true; 00913 } 00914 00915 // A normal fixed sized variable becomes an alloca in the entry block, 00916 // unless it's an NRVO variable. 00917 llvm::Type *LTy = ConvertTypeForMem(Ty); 00918 00919 if (NRVO) { 00920 // The named return value optimization: allocate this variable in the 00921 // return slot, so that we can elide the copy when returning this 00922 // variable (C++0x [class.copy]p34). 00923 DeclPtr = ReturnValue; 00924 00925 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 00926 if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) { 00927 // Create a flag that is used to indicate when the NRVO was applied 00928 // to this variable. Set it to zero to indicate that NRVO was not 00929 // applied. 00930 llvm::Value *Zero = Builder.getFalse(); 00931 llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo"); 00932 EnsureInsertPoint(); 00933 Builder.CreateStore(Zero, NRVOFlag); 00934 00935 // Record the NRVO flag for this variable. 00936 NRVOFlags[&D] = NRVOFlag; 00937 emission.NRVOFlag = NRVOFlag; 00938 } 00939 } 00940 } else { 00941 if (isByRef) 00942 LTy = BuildByRefType(&D); 00943 00944 llvm::AllocaInst *Alloc = CreateTempAlloca(LTy); 00945 Alloc->setName(D.getName()); 00946 00947 CharUnits allocaAlignment = alignment; 00948 if (isByRef) 00949 allocaAlignment = std::max(allocaAlignment, 00950 getContext().toCharUnitsFromBits(getTarget().getPointerAlign(0))); 00951 Alloc->setAlignment(allocaAlignment.getQuantity()); 00952 DeclPtr = Alloc; 00953 00954 // Emit a lifetime intrinsic if meaningful. There's no point 00955 // in doing this if we don't have a valid insertion point (?). 00956 uint64_t size = CGM.getDataLayout().getTypeAllocSize(LTy); 00957 if (HaveInsertPoint() && shouldUseLifetimeMarkers(*this, D, size)) { 00958 llvm::Value *sizeV = llvm::ConstantInt::get(Int64Ty, size); 00959 00960 emission.SizeForLifetimeMarkers = sizeV; 00961 llvm::Value *castAddr = Builder.CreateBitCast(Alloc, Int8PtrTy); 00962 Builder.CreateCall2(CGM.getLLVMLifetimeStartFn(), sizeV, castAddr) 00963 ->setDoesNotThrow(); 00964 } else { 00965 assert(!emission.useLifetimeMarkers()); 00966 } 00967 } 00968 } else { 00969 EnsureInsertPoint(); 00970 00971 if (!DidCallStackSave) { 00972 // Save the stack. 00973 llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack"); 00974 00975 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 00976 llvm::Value *V = Builder.CreateCall(F); 00977 00978 Builder.CreateStore(V, Stack); 00979 00980 DidCallStackSave = true; 00981 00982 // Push a cleanup block and restore the stack there. 00983 // FIXME: in general circumstances, this should be an EH cleanup. 00984 pushStackRestore(NormalCleanup, Stack); 00985 } 00986 00987 llvm::Value *elementCount; 00988 QualType elementType; 00989 std::tie(elementCount, elementType) = getVLASize(Ty); 00990 00991 llvm::Type *llvmTy = ConvertTypeForMem(elementType); 00992 00993 // Allocate memory for the array. 00994 llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla"); 00995 vla->setAlignment(alignment.getQuantity()); 00996 00997 DeclPtr = vla; 00998 } 00999 01000 llvm::Value *&DMEntry = LocalDeclMap[&D]; 01001 assert(!DMEntry && "Decl already exists in localdeclmap!"); 01002 DMEntry = DeclPtr; 01003 emission.Address = DeclPtr; 01004 01005 // Emit debug info for local var declaration. 01006 if (HaveInsertPoint()) 01007 if (CGDebugInfo *DI = getDebugInfo()) { 01008 if (CGM.getCodeGenOpts().getDebugInfo() 01009 >= CodeGenOptions::LimitedDebugInfo) { 01010 DI->setLocation(D.getLocation()); 01011 DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder); 01012 } 01013 } 01014 01015 if (D.hasAttr<AnnotateAttr>()) 01016 EmitVarAnnotations(&D, emission.Address); 01017 01018 return emission; 01019 } 01020 01021 /// Determines whether the given __block variable is potentially 01022 /// captured by the given expression. 01023 static bool isCapturedBy(const VarDecl &var, const Expr *e) { 01024 // Skip the most common kinds of expressions that make 01025 // hierarchy-walking expensive. 01026 e = e->IgnoreParenCasts(); 01027 01028 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 01029 const BlockDecl *block = be->getBlockDecl(); 01030 for (const auto &I : block->captures()) { 01031 if (I.getVariable() == &var) 01032 return true; 01033 } 01034 01035 // No need to walk into the subexpressions. 01036 return false; 01037 } 01038 01039 if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) { 01040 const CompoundStmt *CS = SE->getSubStmt(); 01041 for (const auto *BI : CS->body()) 01042 if (const auto *E = dyn_cast<Expr>(BI)) { 01043 if (isCapturedBy(var, E)) 01044 return true; 01045 } 01046 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) { 01047 // special case declarations 01048 for (const auto *I : DS->decls()) { 01049 if (const auto *VD = dyn_cast<VarDecl>((I))) { 01050 const Expr *Init = VD->getInit(); 01051 if (Init && isCapturedBy(var, Init)) 01052 return true; 01053 } 01054 } 01055 } 01056 else 01057 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 01058 // Later, provide code to poke into statements for capture analysis. 01059 return true; 01060 return false; 01061 } 01062 01063 for (Stmt::const_child_range children = e->children(); children; ++children) 01064 if (isCapturedBy(var, cast<Expr>(*children))) 01065 return true; 01066 01067 return false; 01068 } 01069 01070 /// \brief Determine whether the given initializer is trivial in the sense 01071 /// that it requires no code to be generated. 01072 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) { 01073 if (!Init) 01074 return true; 01075 01076 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 01077 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 01078 if (Constructor->isTrivial() && 01079 Constructor->isDefaultConstructor() && 01080 !Construct->requiresZeroInitialization()) 01081 return true; 01082 01083 return false; 01084 } 01085 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 01086 assert(emission.Variable && "emission was not valid!"); 01087 01088 // If this was emitted as a global constant, we're done. 01089 if (emission.wasEmittedAsGlobal()) return; 01090 01091 const VarDecl &D = *emission.Variable; 01092 QualType type = D.getType(); 01093 01094 // If this local has an initializer, emit it now. 01095 const Expr *Init = D.getInit(); 01096 01097 // If we are at an unreachable point, we don't need to emit the initializer 01098 // unless it contains a label. 01099 if (!HaveInsertPoint()) { 01100 if (!Init || !ContainsLabel(Init)) return; 01101 EnsureInsertPoint(); 01102 } 01103 01104 // Initialize the structure of a __block variable. 01105 if (emission.IsByRef) 01106 emitByrefStructureInit(emission); 01107 01108 if (isTrivialInitializer(Init)) 01109 return; 01110 01111 CharUnits alignment = emission.Alignment; 01112 01113 // Check whether this is a byref variable that's potentially 01114 // captured and moved by its own initializer. If so, we'll need to 01115 // emit the initializer first, then copy into the variable. 01116 bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init); 01117 01118 llvm::Value *Loc = 01119 capturedByInit ? emission.Address : emission.getObjectAddress(*this); 01120 01121 llvm::Constant *constant = nullptr; 01122 if (emission.IsConstantAggregate || D.isConstexpr()) { 01123 assert(!capturedByInit && "constant init contains a capturing block?"); 01124 constant = CGM.EmitConstantInit(D, this); 01125 } 01126 01127 if (!constant) { 01128 LValue lv = MakeAddrLValue(Loc, type, alignment); 01129 lv.setNonGC(true); 01130 return EmitExprAsInit(Init, &D, lv, capturedByInit); 01131 } 01132 01133 if (!emission.IsConstantAggregate) { 01134 // For simple scalar/complex initialization, store the value directly. 01135 LValue lv = MakeAddrLValue(Loc, type, alignment); 01136 lv.setNonGC(true); 01137 return EmitStoreThroughLValue(RValue::get(constant), lv, true); 01138 } 01139 01140 // If this is a simple aggregate initialization, we can optimize it 01141 // in various ways. 01142 bool isVolatile = type.isVolatileQualified(); 01143 01144 llvm::Value *SizeVal = 01145 llvm::ConstantInt::get(IntPtrTy, 01146 getContext().getTypeSizeInChars(type).getQuantity()); 01147 01148 llvm::Type *BP = Int8PtrTy; 01149 if (Loc->getType() != BP) 01150 Loc = Builder.CreateBitCast(Loc, BP); 01151 01152 // If the initializer is all or mostly zeros, codegen with memset then do 01153 // a few stores afterward. 01154 if (shouldUseMemSetPlusStoresToInitialize(constant, 01155 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) { 01156 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 01157 alignment.getQuantity(), isVolatile); 01158 // Zero and undef don't require a stores. 01159 if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) { 01160 Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo()); 01161 emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder); 01162 } 01163 } else { 01164 // Otherwise, create a temporary global with the initializer then 01165 // memcpy from the global to the alloca. 01166 std::string Name = getStaticDeclName(CGM, D); 01167 llvm::GlobalVariable *GV = 01168 new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true, 01169 llvm::GlobalValue::PrivateLinkage, 01170 constant, Name); 01171 GV->setAlignment(alignment.getQuantity()); 01172 GV->setUnnamedAddr(true); 01173 01174 llvm::Value *SrcPtr = GV; 01175 if (SrcPtr->getType() != BP) 01176 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 01177 01178 Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(), 01179 isVolatile); 01180 } 01181 } 01182 01183 /// Emit an expression as an initializer for a variable at the given 01184 /// location. The expression is not necessarily the normal 01185 /// initializer for the variable, and the address is not necessarily 01186 /// its normal location. 01187 /// 01188 /// \param init the initializing expression 01189 /// \param var the variable to act as if we're initializing 01190 /// \param loc the address to initialize; its type is a pointer 01191 /// to the LLVM mapping of the variable's type 01192 /// \param alignment the alignment of the address 01193 /// \param capturedByInit true if the variable is a __block variable 01194 /// whose address is potentially changed by the initializer 01195 void CodeGenFunction::EmitExprAsInit(const Expr *init, 01196 const ValueDecl *D, 01197 LValue lvalue, 01198 bool capturedByInit) { 01199 QualType type = D->getType(); 01200 01201 if (type->isReferenceType()) { 01202 RValue rvalue = EmitReferenceBindingToExpr(init); 01203 if (capturedByInit) 01204 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 01205 EmitStoreThroughLValue(rvalue, lvalue, true); 01206 return; 01207 } 01208 switch (getEvaluationKind(type)) { 01209 case TEK_Scalar: 01210 EmitScalarInit(init, D, lvalue, capturedByInit); 01211 return; 01212 case TEK_Complex: { 01213 ComplexPairTy complex = EmitComplexExpr(init); 01214 if (capturedByInit) 01215 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 01216 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 01217 return; 01218 } 01219 case TEK_Aggregate: 01220 if (type->isAtomicType()) { 01221 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 01222 } else { 01223 // TODO: how can we delay here if D is captured by its initializer? 01224 EmitAggExpr(init, AggValueSlot::forLValue(lvalue, 01225 AggValueSlot::IsDestructed, 01226 AggValueSlot::DoesNotNeedGCBarriers, 01227 AggValueSlot::IsNotAliased)); 01228 } 01229 return; 01230 } 01231 llvm_unreachable("bad evaluation kind"); 01232 } 01233 01234 /// Enter a destroy cleanup for the given local variable. 01235 void CodeGenFunction::emitAutoVarTypeCleanup( 01236 const CodeGenFunction::AutoVarEmission &emission, 01237 QualType::DestructionKind dtorKind) { 01238 assert(dtorKind != QualType::DK_none); 01239 01240 // Note that for __block variables, we want to destroy the 01241 // original stack object, not the possibly forwarded object. 01242 llvm::Value *addr = emission.getObjectAddress(*this); 01243 01244 const VarDecl *var = emission.Variable; 01245 QualType type = var->getType(); 01246 01247 CleanupKind cleanupKind = NormalAndEHCleanup; 01248 CodeGenFunction::Destroyer *destroyer = nullptr; 01249 01250 switch (dtorKind) { 01251 case QualType::DK_none: 01252 llvm_unreachable("no cleanup for trivially-destructible variable"); 01253 01254 case QualType::DK_cxx_destructor: 01255 // If there's an NRVO flag on the emission, we need a different 01256 // cleanup. 01257 if (emission.NRVOFlag) { 01258 assert(!type->isArrayType()); 01259 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 01260 EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor, 01261 emission.NRVOFlag); 01262 return; 01263 } 01264 break; 01265 01266 case QualType::DK_objc_strong_lifetime: 01267 // Suppress cleanups for pseudo-strong variables. 01268 if (var->isARCPseudoStrong()) return; 01269 01270 // Otherwise, consider whether to use an EH cleanup or not. 01271 cleanupKind = getARCCleanupKind(); 01272 01273 // Use the imprecise destroyer by default. 01274 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 01275 destroyer = CodeGenFunction::destroyARCStrongImprecise; 01276 break; 01277 01278 case QualType::DK_objc_weak_lifetime: 01279 break; 01280 } 01281 01282 // If we haven't chosen a more specific destroyer, use the default. 01283 if (!destroyer) destroyer = getDestroyer(dtorKind); 01284 01285 // Use an EH cleanup in array destructors iff the destructor itself 01286 // is being pushed as an EH cleanup. 01287 bool useEHCleanup = (cleanupKind & EHCleanup); 01288 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 01289 useEHCleanup); 01290 } 01291 01292 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 01293 assert(emission.Variable && "emission was not valid!"); 01294 01295 // If this was emitted as a global constant, we're done. 01296 if (emission.wasEmittedAsGlobal()) return; 01297 01298 // If we don't have an insertion point, we're done. Sema prevents 01299 // us from jumping into any of these scopes anyway. 01300 if (!HaveInsertPoint()) return; 01301 01302 const VarDecl &D = *emission.Variable; 01303 01304 // Make sure we call @llvm.lifetime.end. This needs to happen 01305 // *last*, so the cleanup needs to be pushed *first*. 01306 if (emission.useLifetimeMarkers()) { 01307 EHStack.pushCleanup<CallLifetimeEnd>(NormalCleanup, 01308 emission.getAllocatedAddress(), 01309 emission.getSizeForLifetimeMarkers()); 01310 } 01311 01312 // Check the type for a cleanup. 01313 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType()) 01314 emitAutoVarTypeCleanup(emission, dtorKind); 01315 01316 // In GC mode, honor objc_precise_lifetime. 01317 if (getLangOpts().getGC() != LangOptions::NonGC && 01318 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 01319 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 01320 } 01321 01322 // Handle the cleanup attribute. 01323 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 01324 const FunctionDecl *FD = CA->getFunctionDecl(); 01325 01326 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 01327 assert(F && "Could not find function!"); 01328 01329 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 01330 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 01331 } 01332 01333 // If this is a block variable, call _Block_object_destroy 01334 // (on the unforwarded address). 01335 if (emission.IsByRef) 01336 enterByrefCleanup(emission); 01337 } 01338 01339 CodeGenFunction::Destroyer * 01340 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 01341 switch (kind) { 01342 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 01343 case QualType::DK_cxx_destructor: 01344 return destroyCXXObject; 01345 case QualType::DK_objc_strong_lifetime: 01346 return destroyARCStrongPrecise; 01347 case QualType::DK_objc_weak_lifetime: 01348 return destroyARCWeak; 01349 } 01350 llvm_unreachable("Unknown DestructionKind"); 01351 } 01352 01353 /// pushEHDestroy - Push the standard destructor for the given type as 01354 /// an EH-only cleanup. 01355 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 01356 llvm::Value *addr, QualType type) { 01357 assert(dtorKind && "cannot push destructor for trivial type"); 01358 assert(needsEHCleanup(dtorKind)); 01359 01360 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 01361 } 01362 01363 /// pushDestroy - Push the standard destructor for the given type as 01364 /// at least a normal cleanup. 01365 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 01366 llvm::Value *addr, QualType type) { 01367 assert(dtorKind && "cannot push destructor for trivial type"); 01368 01369 CleanupKind cleanupKind = getCleanupKind(dtorKind); 01370 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 01371 cleanupKind & EHCleanup); 01372 } 01373 01374 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr, 01375 QualType type, Destroyer *destroyer, 01376 bool useEHCleanupForArray) { 01377 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 01378 destroyer, useEHCleanupForArray); 01379 } 01380 01381 void CodeGenFunction::pushStackRestore(CleanupKind Kind, llvm::Value *SPMem) { 01382 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem); 01383 } 01384 01385 void CodeGenFunction::pushLifetimeExtendedDestroy( 01386 CleanupKind cleanupKind, llvm::Value *addr, QualType type, 01387 Destroyer *destroyer, bool useEHCleanupForArray) { 01388 assert(!isInConditionalBranch() && 01389 "performing lifetime extension from within conditional"); 01390 01391 // Push an EH-only cleanup for the object now. 01392 // FIXME: When popping normal cleanups, we need to keep this EH cleanup 01393 // around in case a temporary's destructor throws an exception. 01394 if (cleanupKind & EHCleanup) 01395 EHStack.pushCleanup<DestroyObject>( 01396 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type, 01397 destroyer, useEHCleanupForArray); 01398 01399 // Remember that we need to push a full cleanup for the object at the 01400 // end of the full-expression. 01401 pushCleanupAfterFullExpr<DestroyObject>( 01402 cleanupKind, addr, type, destroyer, useEHCleanupForArray); 01403 } 01404 01405 /// emitDestroy - Immediately perform the destruction of the given 01406 /// object. 01407 /// 01408 /// \param addr - the address of the object; a type* 01409 /// \param type - the type of the object; if an array type, all 01410 /// objects are destroyed in reverse order 01411 /// \param destroyer - the function to call to destroy individual 01412 /// elements 01413 /// \param useEHCleanupForArray - whether an EH cleanup should be 01414 /// used when destroying array elements, in case one of the 01415 /// destructions throws an exception 01416 void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type, 01417 Destroyer *destroyer, 01418 bool useEHCleanupForArray) { 01419 const ArrayType *arrayType = getContext().getAsArrayType(type); 01420 if (!arrayType) 01421 return destroyer(*this, addr, type); 01422 01423 llvm::Value *begin = addr; 01424 llvm::Value *length = emitArrayLength(arrayType, type, begin); 01425 01426 // Normally we have to check whether the array is zero-length. 01427 bool checkZeroLength = true; 01428 01429 // But if the array length is constant, we can suppress that. 01430 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 01431 // ...and if it's constant zero, we can just skip the entire thing. 01432 if (constLength->isZero()) return; 01433 checkZeroLength = false; 01434 } 01435 01436 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 01437 emitArrayDestroy(begin, end, type, destroyer, 01438 checkZeroLength, useEHCleanupForArray); 01439 } 01440 01441 /// emitArrayDestroy - Destroys all the elements of the given array, 01442 /// beginning from last to first. The array cannot be zero-length. 01443 /// 01444 /// \param begin - a type* denoting the first element of the array 01445 /// \param end - a type* denoting one past the end of the array 01446 /// \param type - the element type of the array 01447 /// \param destroyer - the function to call to destroy elements 01448 /// \param useEHCleanup - whether to push an EH cleanup to destroy 01449 /// the remaining elements in case the destruction of a single 01450 /// element throws 01451 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 01452 llvm::Value *end, 01453 QualType type, 01454 Destroyer *destroyer, 01455 bool checkZeroLength, 01456 bool useEHCleanup) { 01457 assert(!type->isArrayType()); 01458 01459 // The basic structure here is a do-while loop, because we don't 01460 // need to check for the zero-element case. 01461 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 01462 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 01463 01464 if (checkZeroLength) { 01465 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 01466 "arraydestroy.isempty"); 01467 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 01468 } 01469 01470 // Enter the loop body, making that address the current address. 01471 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 01472 EmitBlock(bodyBB); 01473 llvm::PHINode *elementPast = 01474 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 01475 elementPast->addIncoming(end, entryBB); 01476 01477 // Shift the address back by one element. 01478 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 01479 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 01480 "arraydestroy.element"); 01481 01482 if (useEHCleanup) 01483 pushRegularPartialArrayCleanup(begin, element, type, destroyer); 01484 01485 // Perform the actual destruction there. 01486 destroyer(*this, element, type); 01487 01488 if (useEHCleanup) 01489 PopCleanupBlock(); 01490 01491 // Check whether we've reached the end. 01492 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 01493 Builder.CreateCondBr(done, doneBB, bodyBB); 01494 elementPast->addIncoming(element, Builder.GetInsertBlock()); 01495 01496 // Done. 01497 EmitBlock(doneBB); 01498 } 01499 01500 /// Perform partial array destruction as if in an EH cleanup. Unlike 01501 /// emitArrayDestroy, the element type here may still be an array type. 01502 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 01503 llvm::Value *begin, llvm::Value *end, 01504 QualType type, 01505 CodeGenFunction::Destroyer *destroyer) { 01506 // If the element type is itself an array, drill down. 01507 unsigned arrayDepth = 0; 01508 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 01509 // VLAs don't require a GEP index to walk into. 01510 if (!isa<VariableArrayType>(arrayType)) 01511 arrayDepth++; 01512 type = arrayType->getElementType(); 01513 } 01514 01515 if (arrayDepth) { 01516 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1); 01517 01518 SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero); 01519 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 01520 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 01521 } 01522 01523 // Destroy the array. We don't ever need an EH cleanup because we 01524 // assume that we're in an EH cleanup ourselves, so a throwing 01525 // destructor causes an immediate terminate. 01526 CGF.emitArrayDestroy(begin, end, type, destroyer, 01527 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 01528 } 01529 01530 namespace { 01531 /// RegularPartialArrayDestroy - a cleanup which performs a partial 01532 /// array destroy where the end pointer is regularly determined and 01533 /// does not need to be loaded from a local. 01534 class RegularPartialArrayDestroy : public EHScopeStack::Cleanup { 01535 llvm::Value *ArrayBegin; 01536 llvm::Value *ArrayEnd; 01537 QualType ElementType; 01538 CodeGenFunction::Destroyer *Destroyer; 01539 public: 01540 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 01541 QualType elementType, 01542 CodeGenFunction::Destroyer *destroyer) 01543 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 01544 ElementType(elementType), Destroyer(destroyer) {} 01545 01546 void Emit(CodeGenFunction &CGF, Flags flags) override { 01547 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 01548 ElementType, Destroyer); 01549 } 01550 }; 01551 01552 /// IrregularPartialArrayDestroy - a cleanup which performs a 01553 /// partial array destroy where the end pointer is irregularly 01554 /// determined and must be loaded from a local. 01555 class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup { 01556 llvm::Value *ArrayBegin; 01557 llvm::Value *ArrayEndPointer; 01558 QualType ElementType; 01559 CodeGenFunction::Destroyer *Destroyer; 01560 public: 01561 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 01562 llvm::Value *arrayEndPointer, 01563 QualType elementType, 01564 CodeGenFunction::Destroyer *destroyer) 01565 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 01566 ElementType(elementType), Destroyer(destroyer) {} 01567 01568 void Emit(CodeGenFunction &CGF, Flags flags) override { 01569 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 01570 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 01571 ElementType, Destroyer); 01572 } 01573 }; 01574 } 01575 01576 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 01577 /// already-constructed elements of the given array. The cleanup 01578 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 01579 /// 01580 /// \param elementType - the immediate element type of the array; 01581 /// possibly still an array type 01582 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 01583 llvm::Value *arrayEndPointer, 01584 QualType elementType, 01585 Destroyer *destroyer) { 01586 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 01587 arrayBegin, arrayEndPointer, 01588 elementType, destroyer); 01589 } 01590 01591 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 01592 /// already-constructed elements of the given array. The cleanup 01593 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 01594 /// 01595 /// \param elementType - the immediate element type of the array; 01596 /// possibly still an array type 01597 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 01598 llvm::Value *arrayEnd, 01599 QualType elementType, 01600 Destroyer *destroyer) { 01601 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 01602 arrayBegin, arrayEnd, 01603 elementType, destroyer); 01604 } 01605 01606 /// Lazily declare the @llvm.lifetime.start intrinsic. 01607 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() { 01608 if (LifetimeStartFn) return LifetimeStartFn; 01609 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), 01610 llvm::Intrinsic::lifetime_start); 01611 return LifetimeStartFn; 01612 } 01613 01614 /// Lazily declare the @llvm.lifetime.end intrinsic. 01615 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() { 01616 if (LifetimeEndFn) return LifetimeEndFn; 01617 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), 01618 llvm::Intrinsic::lifetime_end); 01619 return LifetimeEndFn; 01620 } 01621 01622 namespace { 01623 /// A cleanup to perform a release of an object at the end of a 01624 /// function. This is used to balance out the incoming +1 of a 01625 /// ns_consumed argument when we can't reasonably do that just by 01626 /// not doing the initial retain for a __block argument. 01627 struct ConsumeARCParameter : EHScopeStack::Cleanup { 01628 ConsumeARCParameter(llvm::Value *param, 01629 ARCPreciseLifetime_t precise) 01630 : Param(param), Precise(precise) {} 01631 01632 llvm::Value *Param; 01633 ARCPreciseLifetime_t Precise; 01634 01635 void Emit(CodeGenFunction &CGF, Flags flags) override { 01636 CGF.EmitARCRelease(Param, Precise); 01637 } 01638 }; 01639 } 01640 01641 /// Emit an alloca (or GlobalValue depending on target) 01642 /// for the specified parameter and set up LocalDeclMap. 01643 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg, 01644 bool ArgIsPointer, unsigned ArgNo) { 01645 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 01646 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 01647 "Invalid argument to EmitParmDecl"); 01648 01649 Arg->setName(D.getName()); 01650 01651 QualType Ty = D.getType(); 01652 01653 // Use better IR generation for certain implicit parameters. 01654 if (isa<ImplicitParamDecl>(D)) { 01655 // The only implicit argument a block has is its literal. 01656 if (BlockInfo) { 01657 LocalDeclMap[&D] = Arg; 01658 llvm::Value *LocalAddr = nullptr; 01659 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 01660 // Allocate a stack slot to let the debug info survive the RA. 01661 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), 01662 D.getName() + ".addr"); 01663 Alloc->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 01664 LValue lv = MakeAddrLValue(Alloc, Ty, getContext().getDeclAlign(&D)); 01665 EmitStoreOfScalar(Arg, lv, /* isInitialization */ true); 01666 LocalAddr = Builder.CreateLoad(Alloc); 01667 } 01668 01669 if (CGDebugInfo *DI = getDebugInfo()) { 01670 if (CGM.getCodeGenOpts().getDebugInfo() 01671 >= CodeGenOptions::LimitedDebugInfo) { 01672 DI->setLocation(D.getLocation()); 01673 DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, ArgNo, 01674 LocalAddr, Builder); 01675 } 01676 } 01677 01678 return; 01679 } 01680 } 01681 01682 llvm::Value *DeclPtr; 01683 bool DoStore = false; 01684 bool IsScalar = hasScalarEvaluationKind(Ty); 01685 CharUnits Align = getContext().getDeclAlign(&D); 01686 // If we already have a pointer to the argument, reuse the input pointer. 01687 if (ArgIsPointer) { 01688 // If we have a prettier pointer type at this point, bitcast to that. 01689 unsigned AS = cast<llvm::PointerType>(Arg->getType())->getAddressSpace(); 01690 llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS); 01691 DeclPtr = Arg->getType() == IRTy ? Arg : Builder.CreateBitCast(Arg, IRTy, 01692 D.getName()); 01693 // Push a destructor cleanup for this parameter if the ABI requires it. 01694 // Don't push a cleanup in a thunk for a method that will also emit a 01695 // cleanup. 01696 if (!IsScalar && !CurFuncIsThunk && 01697 getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 01698 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 01699 if (RD && RD->hasNonTrivialDestructor()) 01700 pushDestroy(QualType::DK_cxx_destructor, DeclPtr, Ty); 01701 } 01702 } else { 01703 // Otherwise, create a temporary to hold the value. 01704 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), 01705 D.getName() + ".addr"); 01706 Alloc->setAlignment(Align.getQuantity()); 01707 DeclPtr = Alloc; 01708 DoStore = true; 01709 } 01710 01711 LValue lv = MakeAddrLValue(DeclPtr, Ty, Align); 01712 if (IsScalar) { 01713 Qualifiers qs = Ty.getQualifiers(); 01714 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 01715 // We honor __attribute__((ns_consumed)) for types with lifetime. 01716 // For __strong, it's handled by just skipping the initial retain; 01717 // otherwise we have to balance out the initial +1 with an extra 01718 // cleanup to do the release at the end of the function. 01719 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 01720 01721 // 'self' is always formally __strong, but if this is not an 01722 // init method then we don't want to retain it. 01723 if (D.isARCPseudoStrong()) { 01724 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl); 01725 assert(&D == method->getSelfDecl()); 01726 assert(lt == Qualifiers::OCL_Strong); 01727 assert(qs.hasConst()); 01728 assert(method->getMethodFamily() != OMF_init); 01729 (void) method; 01730 lt = Qualifiers::OCL_ExplicitNone; 01731 } 01732 01733 if (lt == Qualifiers::OCL_Strong) { 01734 if (!isConsumed) { 01735 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 01736 // use objc_storeStrong(&dest, value) for retaining the 01737 // object. But first, store a null into 'dest' because 01738 // objc_storeStrong attempts to release its old value. 01739 llvm::Value *Null = CGM.EmitNullConstant(D.getType()); 01740 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 01741 EmitARCStoreStrongCall(lv.getAddress(), Arg, true); 01742 DoStore = false; 01743 } 01744 else 01745 // Don't use objc_retainBlock for block pointers, because we 01746 // don't want to Block_copy something just because we got it 01747 // as a parameter. 01748 Arg = EmitARCRetainNonBlock(Arg); 01749 } 01750 } else { 01751 // Push the cleanup for a consumed parameter. 01752 if (isConsumed) { 01753 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 01754 ? ARCPreciseLifetime : ARCImpreciseLifetime); 01755 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg, 01756 precise); 01757 } 01758 01759 if (lt == Qualifiers::OCL_Weak) { 01760 EmitARCInitWeak(DeclPtr, Arg); 01761 DoStore = false; // The weak init is a store, no need to do two. 01762 } 01763 } 01764 01765 // Enter the cleanup scope. 01766 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 01767 } 01768 } 01769 01770 // Store the initial value into the alloca. 01771 if (DoStore) 01772 EmitStoreOfScalar(Arg, lv, /* isInitialization */ true); 01773 01774 llvm::Value *&DMEntry = LocalDeclMap[&D]; 01775 assert(!DMEntry && "Decl already exists in localdeclmap!"); 01776 DMEntry = DeclPtr; 01777 01778 // Emit debug info for param declaration. 01779 if (CGDebugInfo *DI = getDebugInfo()) { 01780 if (CGM.getCodeGenOpts().getDebugInfo() 01781 >= CodeGenOptions::LimitedDebugInfo) { 01782 DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder); 01783 } 01784 } 01785 01786 if (D.hasAttr<AnnotateAttr>()) 01787 EmitVarAnnotations(&D, DeclPtr); 01788 }